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Abstract

Propositional Satisfiability Algorithms in EDA Applications
by

Mukul Ranjan Prasad

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences
University of California at Berkeley

Professor Robert K Brayton, Chair

Recent years have seen a dramatic growth in the application of SAT solvers to problems
in electronic design automation. This trend is due in part to recent developments in SAT
algorithms which have revolutionized the field of satisfiability testing. SAT has grown from
a problem of academic interest to a core computational resource of immense value.

However, despite the significant progress in this domain there is considerable room
for improvement in several areas. The goal of this dissertation is to advance the theory,
practice and core technology of SAT algorithms in the context of EDA applications. The
success of a SAT algorithm in a given EDA application may be ensured by a realistic
quantitative assessment of the projected performance of the overall algorithm in a practical
setting, by carefully orchestrating the use of SAT in the application and by improving the
SAT algorithm per se. This dissertation addresses these three issues.

The first part of the dissertation presents a framework for analyzing the complexity
of a SAT based formulation of the combinational ATPG problem, in a practical setting. We
introduce the concept of cut-width of a circuit and characterize the complexity of ATPG
in terms of this property. We present theoretical results and empirical evidence to argue
that a large class of practical circuits can be expected to have cut-width characteristics
conducive to an efficient solution of ATPG on them. These results also help to reconcile
the intractability of ATPG, as predicted by traditional worst case analysis results, with the
relative ease of solving practical instances of the problem.

The second part of the dissertation focuses on the optimum orchestration of SAT
methods for a given EDA application. We revisit the application of SAT algorithms to the



combinational equivalence checking (CEC) problem. We argue that SAT is a more robust
and flexible engine of Boolean reasoning for the CEC application than binary decision
diagrams (BDDs), which have traditionally been the method of choice. Preliminary results
on a simple framework for SAT-based CEC show a speedup of up to two orders of magnitude
over previous methods for SAT-based CEC. Further, the prototype implementation is only
moderately slower and sometimes faster than a state-of-the-art BDD-based mixed-engine
commercial CEC tool.

The third and final part of the dissertation is aimed at enhancing the core tech-
niques used in current SAT solvers. We introduce the notion of problem symmetry in search
based SAT algorithms. We develop a theory of essential points to formally characterize
the potential search space pruning that can be realized by exploiting problem symme-
try. We unify several powerful search pruning techniques used in modern SAT solvers
under a single framework, by showing them to be special cases of the theory of essential
points. We also propose a new pruning rule exploiting problem symmetry. Preliminary
experimental results validate the efficacy of this rule in providing additional search space
pruning over the pruning realized by techniques implemented in leading-edge SAT solvers.

Professor Robert K Brayton
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 The Propositional Satisfiability (SAT) Problem

The Propositional Satisfiability (SAT) problem is a core problem in mathematical
logic and computing theory. The SAT problem is known to be NP-Complete [GI79], one
of the first problems to be proven NP-Complete. Thus it is generally accepted that any
algorithmic technique for solving an arbitrary instance of SAT could require, in the worst-
case, computational resources exponential in the size of the problem. In other words it is
highly unlikely that there exists an algorithm for SAT that can solve an arbitrary instance
of the problem, efficiently!.

Over the years, several interesting problems from various applications in logic and
computer science have been modeled as satisfiability problems. Moreover, several instances
of such problems, arising in practise, can be efficiently solved by SAT solvers. Thus, any
advance in SAT solver technology may translate into significant improvements in several
practical applications. This potential coupled with the simple formulation of the satisfi-
ability problem and its inherent intractability has continued to interest theoreticians and
practitioners alike, over the last four decades.

There have been significant advancements in SAT solver technology since the first
complete algorithm for Boolean Satisfiability proposed by Davis and Putnam [DP60] in 1960.
In current practice SAT is fundamental in solving several problems in areas as diverse as

automated reasoning, computer-aided manufacturing, machine vision, databases, robotics,

1By efficiently we mean that the algorithm uses computational resources polynomial in the size of the
problem.
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Figure 1.1: SAT in a typical IC Design & Verification flow

computer architecture and computer network design [GPFW97). This ever-widening gamut
of SAT applications continues to fuel further research in this area.

1.2 SAT in EDA Applications

The design and manufacture of integrated circuits is a complex process. Its rich-
ness and complexity translates into a number of challenging problems in electronic design
automation which offers a fertile ground for application of optimization and decision pro-
cedures such as Boolean Satisfiability.

The use of SAT procedures for EDA applications is a relatively recent phenomenon.
While branch and bound procedures, somewhat similar (although not nearly as powerful)

to those used in SAT solvers, have been employed in EDA tools for some time now, the
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application of SAT solvers per se to EDA problems is only a decade old.

Recent years have seen dramatic improvements in SAT algorithms and tools [Zha97,
MSS99, MMZ+01], allowing much larger problem instances to be solved. It is not uncommon
for current leading-edge SAT solvers to efficiently handle problem instances with thousands
of variables and tens of thousands of clauses [MMZ+01]. This has expanded the realm of
applicability of SAT solvers in EDA and fueled the growth of SAT from a problem, primar-
ily of academic interest, to an enabling technology for several EDA applications. Spurred
by these recent advancements SAT algorithms have been successfully applied to solve prob-
lems from a wide variety of EDA applications such as Automatic Test Pattern Generation
(ATPG), timing analysis, sequential and combinational logic optimization, crosstalk noise
analysis, FPGA routing, functional vector generation, combinational equivalence checking,
reachability analysis, model checking and microprocessor verification [MSS00].

Figure 1.1 shows the potential role of SAT in a typical design and verification flow
for integrated circuits. It shows that SAT formulations can be employed in almost all major
steps of the design process and in all aspects of verification i.e. design, implementation
and manufacture verification. Despite this significant progress much ground remains to be
covered in several areas.

The current level of understanding regarding the strengths and weaknesses of SAT
in the context of various EDA problem settings is limited. A deeper theoretical as well
practical understanding of these issues may lead to more effective ways of using SAT for
EDA problems. This has been an impediment in making SAT the method of choice for
certain applications or having it work with more established engines such as structural
ATPG and BDD methods. The other aspect is of course to develop more effective core SAT
methods to expand the scope of SAT to emerging EDA applications.

1.3 Thesis Overview & Organization

The research described in this dissertation is aimed at advancing the theory, prac-
tice and core technology of SAT algorithms in the context of EDA applications. Figure 1.2
shows the general setting in which this research is based. The scenario is that of a SAT
solver being applied to solve or aid in the solution of EDA applications such as combina-
tional verification, ATPG etc. The various components of this dissertation focus on different

aspects of enhancing the efficacy of such a combination. Specifically, this work addresses
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the following three aspects:

1. Input Distribution Dependent Complexity Analysis: The first step in trying
to solve a given application through a certain algorithm is to perform a formal quanti-
tative analysis of the complexity of the problem and the expected performance of the
algorithm on the given problem?. In practice, and specifically in the EDA community,
the kind of performance analysis that is done is a worst case complexity analysis. By
definition, it is pessimistic. This fact assumes greater relevance in our context, i.e.
SAT used in an EDA application. SAT is known to be NP-Complete [GJ79] and prob-
ably the EDA application it is being used in is also NP-Complete or even harder3.
Thus worst case complexity analysis might imply that there is little hope of any prac-
tical success. The reality is quite the contrary. The answer lies in the fact that SAT
instances coming from EDA applications are a specialized and structured subset of

the general class of SAT instances. Traditional worst-case complexity cannot make

2These two entities are not identical since the problem may have an inherent complexity different from
the algorithm employed to solve it.
3Such is the case with most EDA problems.



CHAPTER 1. INTRODUCTION 5

this distinction. Therefore, what is required is an analysis that models and accounts
for the characteristics of SAT instances arising from EDA applications, in a practical

setting.

2. SAT formulation: A SAT formulation of a problem determines “how” the solver is
being used to solve the application at hand. The formulation determines the num-
ber, the nature and the specific CNF representation of SAT instances generated by
a single instance of the EDA application as well as the sequence in which these in-
stances are solved by a SAT solver. For example, a single instance of combinational
ATPG? is typically formulated as a single SAT instance [Lar92] whereas a single in-
stance of a Bounded Model Checking application [BCCZ99] produces a set of SAT
instances. In combinational ATPG, the specific CNF representation is key. It has
been shown [Lar92, SBSV96] that the addition of fault propagation information to
the CNF in the form of clauses known as active clauses can have a dramatic impact to
the ease of solving the SAT instance, and hence the solvability of the original ATPG
instance. The formulation also determines the configuration of the SAT solver such
as the variable ordering heuristic, the information (if any) passed between the SAT
solver and other components of the application tool etc. Usually, the formulation
stems from insights about the EDA application and empirical guidelines from what

works in practice.

3. The SAT Solver: Another obvious mode of enhancing the efficiency of an EDA
application is to improve the SAT solver itself. This may be general enhancements
to the SAT algorithm which may benefit any application using such a solver. For
example, recent developments in SAT algorithms such as conflict based learning and
non-chronological backtracking [MSS99] have been shown to be beneficial in most
SAT applications. Alternatively, these enhancements could be algorithmic features
that more directly benefit the specific application at hand, e.g. a recursive learning
enhanced SAT solver aimed at learning equivalences [MSG99] is particularly useful

for combinational verification but not so effective in other EDA applications.

This dissertation is organized as follows. Chapter 2 develops the notational frame-
work used in the rest of the dissertation. It also presents some fundamental SAT algorithms

A single instance refers to the task of testing a particular single stuck-at fault in the circuit
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and some recently proposed pruning techniques. These form the foundation on which most
of the theoretical results and algorithms developed in this research are based.

Chapter 3 surveys some more recent developments in SAT algorithms and appli-
cations, particularly the ones relevant to EDA. These developments have acted as catalysts
for SAT research in EDA. Comprehensive surveys on some of the earlier developments on
these subjects can be found in [GPFW97] and [MSS00].

The research contribution of this dissertation is organized in three chapters, each
addressing one of the three axes of contribution described above. '

The first part of the research, presented in Chapter 4 is an attempt at input
distribution based complexity analysis of an EDA SAT application. The problem analyzed
is a SAT based formulation of the combinational ATPG problem. The results shed light on
the following paradox. Empirical observation shows that practically encountered instances
of combinational ATPG are efficiently solvable. However, it has been known for more than
two decades that ATPG is an NP-complete problem [IS75]. The presented analysis is one
of the first attempts to reconcile these results. We introduce the concept of cut-width of a
circuit and characterize the complexity of SAT based ATPG in terms of this property. We
introduce the class of log-bounded width circuits and prove that SAT based combinational
ATPG is efficiently solvable on members of this class. The class of log-bounded width circuits
is shown to strictly subsume the class of k-bounded circuits introduced in [Fuj88]. We provide
empirical evidence which indicates that an interestingly large class of practical circuits is
expected to have log-bounded width. The analysis framework presented is fairly general and
could be used to perform a similar analysis of other SAT-EDA problems.

Chapter 5 presents a SAT based algorithmic framework to address the combina-
tional equivalence checking (CEC) problem. This addresses the second aspect described
above i.e. developing improved methods of using SAT in a typical EDA application. The
contributions of this work are twofold. First, it offers a qualitative understanding of aspects
or parts of the CEC problem that are best suited to be handled by a SAT solver rather than
BDDs, which currently form the computational core of most CEC tools. Second, it devel-
ops improved methods of using SAT algorithms for CEC which dramatically outperform
previous approaches for SAT based CEC.

Chapter 6 addresses improvements to the core technology of SAT solvers. Specif-
ically, we introduce the notion of problem symmetry in search-based SAT algorithms. A

theory of essential points is developed to characterize the potential search-space pruning
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that can be realized by exploiting problem symmetry. Several search-pruning techniques
used in modern SAT solvers are shown to be special cases of the general theory of essential
points. We also propose a new pruning rule exploiting problem symmetry. Preliminary
experimental results validate the efficacy of this rule in providing additional search-space
pruning beyond the pruning realized by techniques implemented in current leading-edge
SAT solvers.

Chapter 7 summarizes the main results and conclusions of this research and presents

avenues for improvement and directions for future research.



Chapter 2

Preliminaries

2.1 Propositional Variables & Literals

Throughout this dissertation, propositional variables (interchangeably referred to
as Boolean variables or just variables) will be denoted by symbols drawn from the set of
symbols [rstuwzyz]g_g+. A propositional variable, z can assume a logic value, denoted
v(z), with v(z) € {0,1,X}. When v(z) = 1 (the proposition is TRUE) or v(z) = 0
(the proposition is FALSE), z is said to be assigned and when v(z) = X, z is said to be
unassigned. X is also used to denote that the value of the variable is either unknown or
undecided.

A literal, 1, is an instance of a variable or its complement. e.g. if z is a propositional
variable, Z and z represent, respectively the complemented and un-complemented literals
derived from it, i.e. the propositions £ = 0 and z = 1 respectively.

The following treatment will assume a set of variables V = {z1,z2,... ,Zn}, the
cardinality of which is N or simply | V|.

2.2 Conjunctive Normal Form (CNF) Formulas

A conjunctive normal form (CNF) is comprised of clauses. A clause, w is defined

as a disjunction of literals,

w=>»k (2.1)

i=
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where each I; is a literal and the clause w is comprised of |w| literals. Alternatively, a clause
can be represented as a set of literals, w = {l1,l2,. .- ,{ju}-
A CNF formula ¢ is defined as a conjunction of clauses,

|61
¢=[]w (2:2)

i=1
where each w; is a clause and the CNF formula ¢ is comprised of |¢| clauses. Alternatively,

a CNF can be represented as a set of clauses, ¢ = {w1,w2,... ,w)¢|}-

Example 2.1 An ezample of a CNF formula is ¢y = (z1+z2+73) - (F1+3) - (21 + T2+ 73)-
Alternatively, in set notation ¢ = {wy,ws, w3}, where wy = {z1,%2,73}, w2 = {Z1,z3} and

ws = {z1,%3, 3}

The CNF of Example 2.1 is based on a set of three propositional variables, x1, z2, z3
and is comprised of three clauses, wy,ws and w3. Clause w3 is composed of three literals,

z1,%3 and z3.

2.3 The Satisfiability Problem

Given a set of variables V, an assignment A is a function that maps aset U C V
to {0,1}. A is interpreted as a set A C U x {0, 1} of variable value pairs (z,z). A variable
y € U, not assigned a value by A assumes a value X by default. Assignment A is said to
be complete if every variable z € V is assigned a value by A, i.e. |A| = | V|, otherwise A
is said to be partial (|4] < | V).

Given an assignment V (partial or complete), and a literal ly of variable y, the
value of l, under V, denoted ly |4 is given by

la = w fly=yand (y,1n) €A (2.3)
= -y ifly=7and (y,1y) € A
= X otherwise

Given a clause w the value of w under assignment A is denoted by w |4 and
computed as:

d

wla=) lila

i=1
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Table 2.1: The disjunction operator over {0,1, X}

The definition of the disjunction operator (+ or V) over {0,1, X} is given by Table 2.1. If
w|a= 1 then w is said to be satisfied. If w|4= 0 then w is said to be unsatisfied. Otherwise
w is said to be unresolved. The unassigned literals of w, if any, are called free literals. An
unresolved clause with only one free literal is called a unit clause. The empty clause () or
contradiction is a clause with no literals (or all literals unsatisfied and removed) and is a
shorthand representation for the unsatisfiable clause (0).

The value of a CNF formula, ¢ (defined as per Equation 2.2) is denoted by ¢ |4

and computed as

6l
$la=[Jwila

j=1
The definition of the conjunction operator (- or A) over {0,1, X} is given by Table 2.2. If
#|a= 1 then ¢ is said to be satisfied. If ¢|4= 0 then ¢ is said to be unsatisfied. Otherwise

¢ is said to be unresolved. 1t is easily verified that a CNF, ¢ is satisfied under assignment
A if and only if at least one literal in each clause of ¢ assumes value 1 under A.

Definition 2.1 (The SAT Problem) Given a CNF formula ¢, the Satisfiability problem
posed on ¢, SAT(¢p) seeks to determine if there exists an assignment A under which ¢ is
satisfied. Such an assignment, if one exists, is called a satisfying assignment for ¢ and the

formula ¢ is termed satisfiable. Otherwise ¢ is termed unsatisfiable.

It can be verified that the formula ¢, of Example 2.1 is satisfiable and that the
assignment A = {(z1,1), (z3,1)} is a satisfying assignment for ¢;.
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Table 2.2: The conjunction operator over {0,1,X}

2.4 The Davis-Putnam-Logemann-Loveland (DPLL) Search
Algorithm for SAT

The Davis-Putnam-Logemann-Loveland or DPLL algorithm [DLL62)! is a search
based algorithm for SAT. It is one of the earliest complete algorithms for the Satisfiability
problem and also the backbone of almost all successful SAT solvers. A brief description of
the algorithm is presented in the following. It is, in essence, very similar to the original
version that appeared in [DLL62] but specifically based on current implementations of the
DPLL algorithm.

The DPLL algorithm for SAT is a branch and bound search algorithm. Given a
CNF ¢ based on the variable set V' the algorithm searches all possible partial assigmﬁents
to V for a satisfying assignment. The search terminates either on finding a satisfying
assignment or after all partial assignments have been exhausted.

The search tree is organized by exploring possible extensions of the current partial
assignment, A cyrr. An unassigned variable, y is chosen and Acyrr is extended by branching
on the two disjoint possibilities Acyrr U (9,0) and Acuer U (y,1). The variable y is called
a decision variable and an assignment made to it, a decision assignment. The search is
pruned whenever the current partial assignment results in a clause of ¢ being unsatisfied (i.e.
#|4.er=0). Such a situation is termed a conflict condition or simply a conflict and denoted

by X. The particular clause unsatisfied under X, through which the conflict was detected,

1. Putnam is not one of the authors of the article proposing the algorithm but is still credited with
this algorithm since the procedure draws heavily from the Davis-Putnam algorithm [DP60] which was a
predecessor to this work.
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is called the conflict clause and denoted by w(X). A particular conflict X is identified by
its conflict clause w(X). A decision level A(z) is associated with each instance of a decision
variable z. This is the level of the decision node in the search tree explored by the algorithm.
The root of this tree has decision level 1. The search tree explored by the algorithm can
be graphically represented as a tree graph, where the decision variables are the nodes and
edges from these nodes, labeled with Boolean values, denote decision assignments to the
respective variables. In keeping with this graphical representation, the two assignments to
a decision variable z are called the left branch and right branch assignments of x, where the
left branch conventionally denotes the assignment explored first by the algorithm.

The above simple branch and bound scheme is augmented with two other pruning
rules, called the unit literal rule and the pure literal rule. The pseudo code for the DPLL
algorithm is shown in Algorithm 2.1.

2.4.1 The Unit Literal Rule

According to this rule, if at any point in the search a unit literal clause, {l,} is
derived then the assignment (I, 1) can be immediately made, without having to branch on
the variable z. This rule follows from the fact that the opposite assignment (I, 0) will render
the above clause, and hence ¢, unsatisfied. Obviously there is no solution for SAT(¢) in
that subspace. Hence that subspace can be pruned away. Iterated application of the Unit
Literal rule is called Boolean Constraint Propagation (BCP) and is a powerful component
of all DPLL based SAT algorithms. The pseudo code for BCP appears in Algorithm 2.2.

Variable assignments derived through BCP are referred to as deduced assignments
or implied assignments (also implications or deductions in short). With each deduced
variable y (and the corresponding deduced assignment [) it is convenient to associate a
clause, wz(y) from which the implication was derived. As with decision variables, deduced
variables are also assigned a decision level A(y) which is recursively defined as:

Ay) = max  A@)
It is easy to show that under a given partial assignment, A(z) is unambiguously defined for
each assigned variable z by the above definitions. Henceforth, the notation z = v@\ will
be used to denote that variable z is assigned a value v at decision level A\. Occasionally,
it is useful to annotate a set of assignments with decision levels for each assignment, using

the above notation.
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Algorithm 2.1 DPLL Algorithm for SAT

procedure DPLL_main(¢)
Acyrr — 9

z+ 0

vy + “NULL"

return DPLL _recursive(¢, Acurr; T, Vz)

procedure DPLL recursive(¢, Acurr, Z;Vz)
Acurr — Acurr U (2,V;) // Extend Acur by setting z + vz
if All clauses satisfied then
return “SAT”
else if Exists an unsatisfied clause wynsqt then
return “UNSAT”
else
status +— “OPEN”
end if
bep-status +— BCP(Acurr)
if bep_status # “OPEN” then
return bcp_status
end if
Apply_PurelLiteral Rule( Acum)
if All clauses satisfied then
return “SAT”
end if
Znest — Choose_Next_Variable(d, A curr)
left_branch.status < DPLL_recursive( @, Acurr; Tnezt,0)
if left_branch_status = “SAT” then
return “SAT”
else
right_branch_status + DPLL_recursive(d, Acurr, Tnezt, 1)
if right_branch_status = “SAT” then
return “SAT”
else
return “UNSAT” // Both branches of Zn.r: unsatisfiable
end if
end if
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Algorithm 2.2 BCP(Acyrr)
status « “OPEN”

while unit clauses in ¢ AND status == OPEN do

if exists unit clause wynie = I; then
Acurr ¢+ Acyrr U (12, 1) // Make unit literal assignment
end if
if exists an unsatisfied clause wynsq: then
status «— “UNSAT”
else if all clauses satisfied by Acys then
status « “SAT”
end if
end while

return status

2.4.2 The Pure Literal Rule

The pure literal rule states that if a variable z appears only as literals of one
polarity, say I in the currently unresolved clauses of the CNF ¢ then the assignment (I, 1)
can be immediately effected, without needing to branch on the variable z.

This rule is based on the result that if a solution for SAT(¢) lies in the subspace
of the current partial assignment, Acyrr extended with the assignment (I,0) then there
must be a solution for SAT(¢) in the subspace Aoy U(lz,1). Thus from the point of view
of testing satisfiability of ¢ it is sufficient to explore just the latter subspace.

2.5 The Davis-Putnam Resolution Algorithm for SAT

The Davis-Putnam algorithm [DP60] was one of the first complete algorithms for
CNF satisfiability. The basic operation used in this algorithm is the consensus [Qui55]
operation over clauses. Consider clauses w; and wp which contain a literal of variable z,
instantiated in opposite polarities in wy and ws. Say, wy = (w} + z) and wp = (wj + Z).
Then the consensus of w; and wy with respect to variable z, denoted c(wi,w2, x), is defined

as

c(w, we, ) = wy + wh (2.4)
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In theorem proving terminology [Rob65, Lov78] consensus over clauses is com-
monly referred to as ground resolution or simply resolution. Resolution and its derivatives

form an integral component of theorem proving algorithms.

Algorithm 2.3 DP_Resolve_Variable(¢, z)

¢z — {wlz EWVTE cw} // clauses with literal z or Z

p1 ¢ {w— {z}|lw € ¢ A {z} € w} // z-literal clauses with z dropped
o + {w— {Z}w € ¢ A {Z} € w} // T-literal clauses with T dropped
¢%, — {wo Uwi|wo € wo,w1 € p1} // resolve out variable =

b (b—da) UL

return ¢

The Davis-Putnam procedure is an iterative algorithm. Variables of the CNF ¢
are resolved out one at a time, as per Algorithm 2.3, until the empty clause is derived
or the formula becomes a tautology. The former condition happens when two unit-clauses
of opposite polarity (e.g. {z} and {z}) are resolved and indicates that the original CNF
¢ is unsatisfiable. The latter condition occurs when all clauses are resolved out without
encountering an empty clause and indicates that ¢ is satisfiable.

This basic procedure is augmented with a few other rules to simplify the CNF,
particularly the pure literal rule and the unit clause rule. These rules, discussed earlier (Sec-
tions 2.4.2 and 2.4.1 respectively) were first proposed in the Davis-Putnam algorithm [DP60]
and later adapted for use in the DPLL procedure [DLL62]. Simply put, using the pure literal
rule and the unit clause rule? in the DP procedure amounts to applying the variable reso-
lution procedure (Algorithm 2.3) on pure-literal variables and unit-literal variables before
other variables.

The biggest and most obvious drawback of the Davis-Putnam algorithm is that it is
fairly space intensive. The DPLL backtracking algorithm, whose space complexity is linear
in the size of the SAT instance, is the preferred alternative for most practical SAT solvers.
Another minor drawback of the Davis-Putnam algorithm is that when it returns with the
answer that the CNF is satisfiable, a witness satisfying assignment is not provided3. From

a practical point of view such an assignment could be important in the target application

2To be precise, the unit literal rule is a two step procedure of first resolving out the variable appearing
in the unit literal and then simplifying the new clauses generated by resolution through clause subsumption.

3The procedure can be augmented to derive such an assignment albeit at the cost of an additional
computational overhead.
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from which the SAT instance was derived. e.g. a test vector in the case of SAT-based
ATPG. In DPLL based SAT, satisfying assignments are free by-products of the algorithm
itself.

2.6 Advanced Pruning Techniques in Search Algorithms

Much of the success of SAT solvers in EDA applications can be attributed to
recent advancements in search pruning techniques. Two prominent .contributions in this
area are conflict based learning and non-chronological backtracking. These concepts had -
been used in constraint satisfaction problem (CSP) solvers [Dec80, SV93] but were adapted
to the propositional satisfiability problem and popularized by the RELSAT [BS97] and
GRASP [MSS99] SAT solvers.

Central to both these techniques is the notion of conflict analysis. Given a conflict
condition X encountered by the SAT algorithm during the search and the current set of
assignments Ay, conflict analysis seeks to determine a subset Agr(X) C Acyrr Which
can be held responsible for the conflict X. Specifically, the assignments Agr(X) should be
such that if just these assignments are made on the CNF ¢ (accompanied by the ensuing
BCP) then the original conflict clause w(&X) of conflict X would still be unsatisfied without
having made the remaining assignments of Agy,,». What makes this analysis important is
the observation that in practice only a small fraction of the assignments leading up to a
conflict actually influence or cause the conflict. The following example taken from [MSS99)

illustrates the notion of conflict analysis.

Example 2.2 [MSS599] Consider the following set of clauses that form part of a CNF ¢,

w = (F1+22) weg = (T5+ Ts)

wy = (Tr+z3+x9) wr = (z1+z7+%12)
w3 = (T2+7T3+ z4) ws = (z1+zs)

ws = (Tq+ 25+ T10) wg = (Z7+ T3 +7Z13)
ws = (Tg3+z6+2z11)

Suppose the current assignment is given by

Ay = {z9 = 0@1, 210 = 0@3,21; = 0@3, 215 = 1@2, 213 = 1@2,...}
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Now make the decision assignment £; = 1@6. This decision assignment and ensuing BCP
implications produce a conflict X1 on the given clauses. The specific conflict analysis algo-

rithm presented in [MSS99] when applied to this ezample produces
Ar (X)) = {z1 =1@6,x9 = 0@1,z10 = 0@3, z;; = 0@3}

Thus this conflict does not depend on any decisions or implications made at decision levels
2,4 or 5.

Conflict analysis is performed by analyzing the chronology of decision and de-
duced assignments leading up to the conflict, to determine an appropriate Ag(X). A given
conflict X can have several possible Ar(X) which can act as sufficient reasons for that con-
flict [MSS99). Depending on the specific nature of the conflict analysis procedure, one or
more specific A (X) sets out of the many possibilities may be examined on a given conflict.
While it is generally accepted that the particular choice (or choices) of Ar(X) can have a
significant impact on the performance of the SAT algorithm the problem of determining the
most suitable Agr(X) for a given X (both in terms of the efficiency of computing Ar(X)
and the potential search space pruning it can eventually provide) remains an open ques-
tion. Recent work by Zhang et al. [ZMMMO1] addresses this problem and provides some
empirical guidelines. However, much work remains to be done on both the theoretical and

practical aspects of this problem.

2.6.1 Conlflict Based Learning

Conflict based learning is the notion of recording information, on encountering
a conflict condition, with the objective of using the recorded information to avoid future
occurrences of the same or related conflicts. The recorded information is an implicate of the
CNF ¢ which is unsatisfied under the given conflict condition. A trivial candidate for this
purpose would be the conflict clause w(X). However, this clause does not add any additional
value to the CNF since it is already a part of ¢. Therefore, the added clause, wr(X) isa
clause derived from the set Ax(X) obtained through conflict analysis. Specifically,

wr(X)= \ 1 (2.5)
leAr(X)

Hence conflict based learning is also known as conflict clause recording or simply clause
recording. For the conflict A; of Example 2.2 the recorded clause would be wr(X) =
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(Z1+ zg + z10 + 711). From the definition of conflict analysis, it follows that adding wg (X)
to ¢ ensures that the search will not regenerate the conflicting assignment that led to X.
Further, adding wgr(X) has the potential of identifying future implications that are not

derivable otherwise.

2.6.2 Non-chronological Backtracking

Backtracking, in the context of a search based SAT algorithm like DPLL, is the
operation of undoing or erasing one or more decision assignments (as well as the associated
implications) from the current set of assignments A cysr with the aim of exploring unexplored
partial assignments to the variables. Backtracking is performed when the CNF ¢ has been
proved to be unsatisfiable in the sub-space under A y.r, €.g. by means of one or more
conflicts.

In the DPLL algorithm (Algorithm 2.1) the backtracking performed is chronolog-
ical backtracking. This has the following meaning. Say, z and y are two decision variables
in Acypr such that A(z) < A(y). Further, suppose = and y were currently being explored in
their left branch assignment. Then the right branch assignment of y will always be explored
before attempting the right branch assignment of z. Operationally, the DPLL algorithm,
on encountering a conflict, would undo assignments from Ay in reverse chronological
order of decision level until it reached the first left branch assignment. At this point the
assignment of this variable would be flipped and the search would resume.

Non-chronological backtracking (NCB) is based on the observation that it may
be possible to establish that the sub-space under an unexplored right branch (i.e. the
variable is currently being explored in its left branch in Acy) cannot contain a solution
for ¢. Such a determination may be made by analyzing the current (and previous conflict
conditions) and proving that the current conflict condition would continue to exist or repeat
in this sub-space. Operationally, one way to do this? is to perform conflict analysis on the
current conflict condition X and determine the lowest variable Zjoyest (i.€. the one that
has the decision level with the highest numerical value) in the set Agr(X). By the above
argument the search can directly jump to A(Zjoywes:) €rasing all assignments between the
current decision level (i.e. the level of the current conflict) and A(iowest) and thereby

bypassing or “jumping over” any explored right branches in these intermediate levels. In

“This is the method used by almost all SAT solvers implementing NCB.
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Figure 2.1: An Example of Non-chronological Backtracking [MSS99)

this sense the backtracking is non-chronological.

An instance of non-chronological backtracking can be seen on the CNF of Exam-
ple 2.2. Figure 2.1 illustrates this. Consider conflict A from the example. Conflict analysis
on X; generates Ag(X1) = {1 = 1,9 = 0,210 = 0,211 = 0}. From the above discussion
on NCB we can deduce the backtrack level of the current conflict to be 6 i.e. | the current
level. Therefore, we simply flip the value of z; from 1 to 0. Note, that up to this point the
backtracking is still chronological. However, the new assignment z; = 0 will immediately
lead to another conflict X, (this can be confirmed from the CNF given in Example 2.2).
Analysis of this conflict yields

Ag(Xo) = {:Z:g = 0@Q1, z19 = 0@3,z1; = 0@3, 12 = 1@2, ;3 = 1@2}

From this the backtrack level can be deduced to be 3 which is indeed a non-chronological
jump (the chronological backtrack level would have been 5).

2.7 Transformation of Non-Clausal SAT problems to CNF

For certain classes of Satisfiability problems the native representation is not con-

junctive normal form. Since most SAT techniques and solvers are based on CNF repre-
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sentations, efficient procedures to convert instances from non-clausal forms to CNF are an
essential component of SAT methodologies. In the following we discuss two such transfor-
mations which are especially relevant in the context of EDA applications.

2.7.1 CNF Representations of Propositional Formulas

Let V be a set of propositional variables. Well formed propositional formulas
based on the set V are defined as follows [DW83, MS95]:

1. Any propositional variable z € V is a well formed formula.
2. If p is a well-formed formula, then so is 5.
3. If p and o are well formed formulas then so are (p- o), (0 + o) and (p & o).

From the above definition it is clear that CNF formulas are a special case of well
formed propositional formulas. A simple procedure to convert an arbitrary well formed
propositional formula to a CNF representation is as follows [DW83, MS95].

1. Express equivalence operations in terms of conjunction, disjunction and negation op-

erations through the transformation: (p « o) = ((7-7) + (p: 0)).

2. Apply De Morgan’s laws to expand out all negations, other than those associated with

single variables.
3. Absorb double negations over single variables using the identity: T = z.

4. Repeatedly apply the distributive law: ((I1 - L)+ (- L) =1 +13) - (i +1s) - (L2 +
I3) - (la + l4) till a CNF is obtained.

Example 2.3 The formula ¢ = (z & y) + (y © 2z) is a well formed propositional formula.
It can be converted to a CNF representation using the above procedure. Applying Step 1 gives
¢ = (TG + zy)+(TZ + yz) which after Steps 2 & 3 transforms to (z+y)(T+7)+(y+2)(F+2).
Finally, applying Step 4 and simplifying using basic axioms of Boolean Algebrad®, yields the
CNF¢=(z+y+2)(T+7+72).

Example 2.4 Consider the propositional formula ¢1 = (... (z1 © x2)...) & zn). It can
be shown that applying the above procedure will yield a CNF with 2N-1 clguses.

Ss+z=z,z-z=2,1-s=zandz+T=1
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This example illustrates that the above procedure to convert a well formed propo-
sitional formula to CNF can sometimes result in a CNF representation that is exponentially
larger than the size of the original propositional formula. In Example 2.4 the size of the
original ¢ is linear in N while the CNF is exponential in N. A transformation procedure
proposed by G. Tseitin [Tse68] addresses this problem. Tseitin’s transformation is defined

as follows.

Definition 2.2 (Tseitin’s Transformation [Tse68]) Let ¢ be the given well formed propo-

sitional formula.

1. Associate a new propositional variable z,, with each sub-formula contained in ¢°,

such that z, and n always assume the same propositional value.

2. For each operation in @, i.e. for each sub-formula of ¢ (including @ itself) create a

set of clauses as follows:

o Ifn=p-0o (wheren, p and o are all sub-formulas of ¢ ) define clauses
(@n + Tp) - (T + Zo) * (T + Tp + To).
o Ifn=p+o define clauses (z, + ;) - (xy + T3) - (Fy + Tp + Ta)-
o Ifn = p ¢ o define clauses (Tq+x,+T7)-(Tq+Tp+o) (Ty+2p+o) (Tn+Tp+Ts)-

e Ifn =7 define clauses (Ty + Tp) * (zq + Tp)-
3. Finally add a unit-literal clause (@) to assert that the formula is required to be true.

4. The conjunction of all clauses generated above defines the desired CNF representation

of ¢, whose satisfiability we seek to determine.

Consider the CNF ¢; from Example 2.4. Let us apply Tseitin’s transformation,
described above, to this formula. ¢; has N — 1 sub-formulas, n1,... ,9N-1 defined as
T =1Ni_1 + Tip1 fori=2,... ,N —1 and ;m = z1 ¢ zo. Hence, N — 1 new propositional
variables Zy,, ... ,Zpy_, are created and for each #; the clauses (Zy + Zp;_, + Tig1) - (Zp +
Ty + Zig1) * (& + Ty + Tig1) « (@ + Ty + Tig1) are added to the CNF. Thus, the
resulting CNF has 4 x (N —1)+1 clauses and is linear in the size of the original propositional

formula.

% is also a sub-formula of itself.
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Tseitin’s transformation is the most popular method for transforming general
propositional formulas into CNF. However, other polynomial size transformations have also
been developed. The interested reader is referred to [MS95] for more details on these meth-
ods.

2.7.2 Solving SAT problems on Logic Circuits

Many EDA applications using SAT models involve SAT problems posed on logic
circuits’. Most of the work on SAT formulations of logic circuit EDA problems has focused
on combinational logic circuits and such will be the focus of the research presented in this
dissertation as well. Therefore, in the following discussion and in the rest of the dissertation
the term logic circuit will be used to refer to a combinational logic circuit, unless explicitly
noted otherwise.

Traditional solutions to EDA problems have sometimes employed algorithms that
worked off the native representation of the logic circuit, often performing a branch-and-
bound search similar to a DPLI-like algorithm, e.g. the PODEM algorithm for combi-
national ATPG [Goe81]. However, recent advancements in CNF based SAT solvers have
prompted the formulation of such EDA problems in terms of CNF based SAT. In the fol-
lowing we review the essential elements of some popular techniques for transforming SAT
problems on logic circuits to CNF.

For the purpose of solving SAT problems posed on combinational logic circuits,
it is adequate to work with an abstract representation of a multi-level combinational logic
circuit, known as a Boolean network [BRSVW87). In this dissertation a given combinational
logic circuit C is indistinguishable from its corresponding Boolean network.

A Boolean network is a directed acyclic graph (DAG), where a node without any
incoming edge represents a primary input and a node without any outgoing edge represents
a primary output. All other nodes represent intermediate gates®. A Boolean function is
associated with each intermediate node. There is an edge from node n; to a node n; if the
function associated with n; explicitly depends on n;. If there is an edge from node n; to
node ngy, n; is said to be a fanin node of ny and ny is said to be a fanout node of n;. If there
is a directed path from n; to ny in the Boolean network, n; is said to be in the transitive

fanin of ny and n, is said to be in the transitive fanout of n;.

7An exception are SAT formulations of physical design problems in EDA e.g. [WR98].
81t is assumed that primary inputs and outputs do not compute any non-trivial function.
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Further, every node in the Boolean network (including primary inputs, primary
outputs and the outputs of internal gates) is associated with a propositional variable. For
a node n whose output variable is y, I(y) denotes the fanin of the node (i.e. the input
variables of the gate) and f,(I(y)) denotes the Boolean function implemented by the gate.

Most SAT problems arising from combinational logic circuits, such as combina-~
tional ATPG, combinational equivalence checking etc. can be posed as a generic satisfiability
problem on a suitable circuit. This generic satisfiability problem is known as CIRCUIT-
SAT. In the following we define this problem on a circuit with a single primary output-and
present methods to transform such a problem into a CNF based SAT problem. While a dis-
cussion describing the transformation of every known logic circuit based SAT problem into
CNF is beyond the scope of this discussion, the transformation methods for CIRCUIT-SAT

apply to most such problems and provide a good starting point for the remaining problems.

Definition 2.3 (CIRCUIT-SAT) Given a single output Boolean circuil C, the circuit
satisfiability problem on C, denoted as CIRCUIT-SAT(C), seeks to determine a logic value
assignment (partial or complete) to the primary inputs of C under which the primary output
of C evaluates to 1. Such an assignment, if one exists, is called a satisfying assignment of
C, otherwise the instance CIRCUIT-SAT(C) is said to be unsatisfiable.

Given a CIRCUIT-SAT problem on a logic circuit C one naive method to transform
this into a CNF SAT problem would be the following. First construct a single propositional
formula for the function of the primary output of C by starting with the primary output
(say y) and recursively substituting f,(I(w)) into fy(I(y)) for each w € I(y). Then this
propositional formula can be transformed into CNF using one of the methods outlined in
Section 2.7.1. The problem with this approach is that the propositional formula obtained
can be exponentially larger than the circuit representation C, thus making the approach
impractical.

What is used in practice is essentially an adaptation of Tseitin’s transformation

to combinational circuits. For each gate in C, with output y, we construct a consistency
Junction, &, [MS95] defined as follows.

&(I(v),y) =ls(I(v)) @9 (2.6)
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| Gate type | Gate Function &y
k
AND y = AND(wy, ... ,wg) (H(wi + ﬂ)) . ( w; + y)
i=1 i=1
k
OR y = OR(wy,... ,wk) (H(W;-ﬁ-y)) . ( w; +ﬂ)
i=1 i=1
k k
NAND Y= NAND('U)], cen ,'wk) (H(wi + y)) . (Z_t + g)
=1 i=1
k k
NOR y = NOR(wy, ... ,wy) (H(w—,+y)) : (Zw, +y)
NOT y = NOT(w) = (@+3) - [@+7)
BUFFER y = BUFFER(w) w+7) @+y)
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Table 2.3: CNF formulas for simple gates

The Boolean function &,(I(y),y) evaluates to 1 when the values of the inputs of
I(y) are consistent with the value of the output y as per the Boolean function f, associ-
ated with the node. To construct the CNF for CIRCUIT-SAT(C) we construct the CNF
representation for the consistency function of each node in C, take the conjunction of all
these CNFs and add an additional unit-literal clause asserting the primary output of C
to 1. The resulting representation is the CNF SAT formula corresponding to the instance
CIRCUIT-SAT(C).

The above procedure requires the construction of the CNF for &,(I(y),y). There
are several ways to do this including obtaining a product-of-sums (POS) representation
by directly simplifying the truth table of &y(I(y),y) [MS95] or by using one of the two
procedures described in Section 2.7.1. However, the most popular method is to first de-
compose each gate in the original circuit C into a set of simple gates (AND, OR, NOT,
NAND, NOR etc.) by using one of several well-known Boolean function decomposition
techniques [BRSVW87]. Then the above procedure is applied on this circuit of simple gates
by using rules such as those given in Table 2.3 to construct the CNF for &,(I(y), y) of each
simple gate. Figure 2.2 tabulates the CNF formulas for 2-input and l-input simple gates.

These are just the formulas given in Table 2.3 evaluated for the case k = 2.

The reader will note that this procedure is identical to Tseitin’s Transformation
for propositional formulas (Definition 2.2). Here the addition of extra variables is obviated
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wy —
AND (] (wy + 7)(wa + 7) (W1 + W2 +y)

W2

w

o Yy (W1 + v)(Ws + y) (w1 + w2+ 7)

VY

w
v NAND Y (it y) w2+ y) @+ T +7)
wy
0 o—y  ([@+P)@+Y)(wi+wr+y)

w —@O—y (w+ )@ +7)
w —[BUE y  (w+p@+Y)

Figure 2.2: CNF formulas for 2-input & 1-input simple gates

by the existence of intermediate gate output variables which do indeed define sub-formulas
of the overall circuit formula. Further, the formulas in Table 2.3 are simple generalizations
of the rules in Step 2 of Definition 2.2.
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Chapter 3

SAT Algorithms in EDA: Recent

Developments

Recent years have seen dramatic improvements in the performance of algorithms
and tools for SAT, allowing much larger problem instances to be solved and greatly expand-
ing the realm of applicability of SAT solvers. Spurred by the recent advancements in SAT
solver technology, SAT algorithms have been successfully applied to problems from a wide
variety of EDA applications [MSS00]. In fact, SAT solvers are expected to have an impact
on EDA applications similar to what BDDs have had since their introduction more than a

decade ago.

This chapter surveys the recent developments in the area of SAT algorithms and
their application to EDA problems. Some of the early progress in this domain is com-
prehensively described in two other works [GPFW97, MSS00]. Progress in this field can
be categorized along two axes, namely 1.) improvements to core SAT algorithms and tech-
niques and 2.) application of SAT algorithms to various EDA problems. These are surveyed

in Section 3.1 and Section 3.2 respectively.

Traditionally, the propositional satisfiability problem is posed on a Conjunctive
Normal Form (CNF) formula. The SAT problem can be quite naturally posed on other
representations of Boolean formulas e.g. DNF, multi-level logic circuits, etc. Such works are
surveyed in Section 3.1. However, unless otherwise stated, the discussion is with respect to

a CNF representation.



CHAPTER 3. SAT ALGORITHMS IN EDA: RECENT DEVELOPMENTS 27

3.1 SAT Algorithms & Tools

SAT algorithms can be broadly divided into two categories.

1. Complete SAT algorithms: Given a SAT problem, a complete SAT algorithm will
either find a satisfying assignment for the problem or prove that no such assignment
exists. Such algorithms are mostly deterministic! in nature and involve some kind of

organized exploration of the complete solution space.

2. Incomplete SAT algorithms: For a given SAT instance such an algorithm either
1.) returns with a satisfying assignment for the problem or 2.) terminates without
an answer. The idea behind this class of algorithms is to spend a given amount
of resources in “quickly” finding solutions to a large fraction of satisfiable instances
and to leave the “hard-to-satisfy” and unsatisfiable instances to the complete (albeit
expensive) SAT algorithms. These algorithms are partly stochastic in nature and
usually involve some kind of sampling of the solution space (in contrast to an organized

exploration).

3.1.1 Complete SAT Solvers
3.1.1.1 SAT Solvers based on Propositional Formulas

The two earliest complete methods for the SAT problem are the Davis-Putnam
(DP) method [DP60] and the Davis- Putnam-Logemann-Loveland (DPLL ) procedure [DLL62],
reviewed in Section 2.5 and Section 2.4 respectively. The former employs a proof-theoretic
approach based on an organized application of the clause resolution operation. The latter
does a branch-and-bound exploration of the space of all possible Boolean assignments to
the variables of the CNF formula. Most current SAT solvers are derivatives of the DPLL
procedure augmented with a limited amount of resolution based reasoning.

The GRASP SAT solver [MSS99] was the first to introduce the techniques of
non-chronological backtracking and conflict driven learning (these have been reviewed in
Section 2.6) into DPLL based SAT solvers. These techniques are founded on the notion
of conflict analysis which seeks to determine and analyze the causes of a given conflict
encountered during the search. The above techniques were independently developed and

proposed in the RELSAT SAT solver [BS97] by Bayardo & Schrag. A novel feature of
Probabilistic SAT metheds can also be made to be complete.
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RELSAT is the notion of relevance based learning whereby a recorded clause is discarded
when at most ¢ literals in it have changed value since its recording. This feature is used to
control the growth of the CNF formula as is the notion of recording only clauses bounded

by a certain size (size bounded learning).

SATO [ZS96] proposed a new data-structure for performing efficient Boolean Con-
straint Propagation (BCP), since this operation is a significant component of the computa-
tion time of all DPLL based solvers. SAT'O was later extended [Zha97] to incorporate the
techniques proposed in GRASP. More recently, Moskewicz et al. have proposed the Chaff
SAT solver [MMZ*01). Chaff is a very efficient and optimized implementation combining
the data-structure of SATO, the search pruning techniques of GRASP, the notion of
relevance based learning from RELSAT and the technique of search restarts from [GSK98]
with some of its own enhancements. The solver employs a novel cheap and efficient decision
heuristic which significantly speeds up the computation, as well as garbage collection tech-
niques to efficiently manage the clause database. This solver is arguably the current state

of the art in terms of implementation and algorithmic advancements in SAT solvers.

Another class of techniques is based on a patented method [St3] by Gunnar
Stalmarck [SS00]. The method is in use in a commercial tool offering by Prover Technolo-
gies [pro] and has had some success in the verification domain [Bor97]. Stalmarck’s method
was originally proposed to work off a non-CNF representation but has been adapted to work
on CNF representations in the HeerHugo solver [GW99]. HeerHugo also employs some

restricted, rule-based application of resolution.

An interesting set of contributions orthogonal to progress in SAT solvers per se
is in the area of incremental satisfiability [KMSS00b, WKSO01]. The motivation behind
this research is that in many practical applications such as delay-fault testing, timing anal-
ysis and bounded model checking etc. the task is to solve a set of SAT instances which
share a large percentage of common clauses. Usually these instances are merely different
“questions” posed on the same basic physical system. Incremental satisfiability techniques
attempt to efficiently solve such a set of related SAT instances by using specific informa-
tion from the solution process of one instance to aid the solution of other instances. The
SATIRE [WKSO01] solver which is built on top of GRASP supports this incremental fea-

ture and also supports some forms of non-Boolean constraints in the input SAT instance.
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3.1.1.2 Circuit Based Boolean Reasoning

A multi-level logic circuit can also be viewed as a representation of the function(s)
realized by the primary output(s) of the circuit. Thus, SAT problems can be posed and
solved on circuit representations as well. The combinational ATPG problem can be quite
naturally posed as a SAT problem. Traditionally, ATPG tools vizz. PODEM [Goe81],
SOCRATES [STS88] and [ZRP97] have performed Boolean Reasoning on the original
circuit representation. Recursive Learning [KP94] proposed by Kunz and Pradhan is a
complete technique to perform Boolean reasoning on multi-level circuits®. While recursive
learning has not proved to be very effective as a stand-alone technique, restricted forms of it
have been used in SAT solvers [MSG99, KGPO01]. In fact, Stalmarck’s method and its CNF
implementation in HeerHugo also bear some similarity to recursive learning. Recently,
Kuehlmann et al.[KGP01] have proposed a Boolean reasoning engine that operates directly
on a circuit graph representation. It includes a state of the art branch and bound SAT
solver that incorporates features of advanced CNF solvers as well as a number of other,

circuit specific, search pruning techniques.

SAT problems posed on logic circuits are frequently solved by transforming the
problem to CNF, albeit at the cost of hiding structural information that a circuit-based tech-
nique could exploit. In some applications such information can be invaluable in solving the
problem. The early works using CNF based SAT for circuit problems [Lar92, SBSV96] per-
formed a single pass of static learning to extract important functional information from the
circuit structure, which was added as clauses to the CNF database. Silva et al. [eSSMS99)
have proposed adding a layer on top of a traditional CNF Solver (GRASP in this case)
which passes structural information from the circuit to aid the solver. Tafertshofer et
al. [TGH97) have proposed a new specialized data-structure called an implication graph
which has the topology to represent the circuit structure but is general enough to homoge-
neously integrate some forms of learning, traditionally supported by CNF solvers. [GF01]
proposes a variant of this data-structure and some novel static and dynamic learning tech-

niques that can be applied to it.

?In other words solve SAT problems on circuits.
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3.1.1.3 Other improvements to SAT solvers

A recent direction in SAT solving has been the use of dedicated reconfigurable
hardware architectures [ZMAM99, AdS00, dSMSAO01]). The objective here is to exploit
the fine-grained parallelism of hardware to solve the problem faster. Unfortunately, given
today’s technology, the overhead associated with mapping a SAT instance to hardware is
too much to justify the use of this approach, except for very large problem instances.

Some other recent developments have been aimed at enhancing specific aspects
of a typical complete SAT algorithm. Variable ordering (decision heuristic) issues have
been discussed in [LA97] and [AMSOI]. The SATZ solver [LA97] uses a partial one-step
lookahead scheme and chooses the variable giving the greatest number of BCP assignments®
as the next branching variable. [AMSO01] has proposed a novel static variable ordering
scheme based on mincut partitioning.

Rule-based learning or CNF simplification approaches constitute another class of
enhancements that have been proposed. The equivalency reasoning approach proposed by
Li [Li00] uses a set of rules to recognize and deduce new 2 and 3-variable equivalency con-
ditions (biconditionals) using unit-literal propagation and pattern recognition on the CNF.
This is done at each step of the DPLL procedure. Interestingly, SATZ enhanced with
equivalency reasoning (EqSatz) is able to solve almost all the BMC examples [BCC*99] in
times comparable to or faster than Chaff. Le Berre [Ber01] proposed a similar approach
where a set of rules is used to deduce special cases of implications, equivalences and bicon-
ditionals by examining consequences of both assignments to a variable with full BCP (here
the procedure has commonalities with level-1 recursive learning). Marques-Silva [MS00]
proposes a rule-based pattern-matching approach to simply the CNF in a preprocessing
step. His rules detect equivalent variables and simple 2-literal clauses deduced through
special cases of resolution. While each of the above rule-based approaches have claimed
limited success in their respective experimental environments, they have not been proven
or incorporated in a leading edge SAT solver such as Chaff. An orthogonal category of
research is aimed at solving SAT on decision diagram data-structures rather than CNF's or
logic circuits; [AMSO01] use ZBDDs while Williams et al. [WAHO1] propose using Boolean
Ezpression Diagrams (BEDs).

There is also a body of work aimed at trying to make complete SAT algorithms

3 As opposed to computing some estimate of the potential BCP.
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partly stochastic in nature. The most notable contributions in this direction are the use of
randomization and restarts and dynamic backtracking. The notion of search restarts is used
to partially remedy “early bad” variable choices made by the decision heuristic. Simply
put, the strategy is to abort the search after a certain number of backtracks and restart
from scratch, retaining all or some of the clauses that were learned in the search thus far.
Randomization is used mainly in the decision heuristic, say by randomly choosing the next
branching variable from a set of “good” candidates. These techniques were introduced
in [GSK98], in the context of Al applications and incorporated in the GRASP[BMS00]
and Chaff [MMZ*01] solvers. The general consensus regarding their efficacy is that they
do not have an appreciable overhead in the instances where they are not effective but
give significant speedups (up to one order of magnitude) in cases where they are useful.
Dynamic backtracking was proposed in the context of incomplete solvers in [Gin93] and
recently adapted for complete search [LBMS01]. The basic idea is that on a conflict, instead
of undoing the last variable responsible for the conflict, the algorithm randomly undoes
any one of the responsible assignments. This and other variants of dynamic backtracking
schemes are still very much in the experimental stage. These techniques will need to mature

before a definitive statement on their utility can be made.

3.1.2 Incomplete SAT Solvers

Incomplete SAT solvers shot to prominence with the work on GSAT [SLM92]
where greedy local search was shown to outperform state of the art complete algorithms,
for some applications from the Artificial Intelligence domain. The GSAT algorithm con-
sists of a set of tries. In each try, starting from an random initial assignment, variables are
greedily chosen and flipped with the cost function of maximizing the number of satisfied
clauses. This is done till all the clauses are satisfied or the algorithm exhausts a predeter-
mined maximum number of tries. The GSAT algorithm was later developed into WSAT
(Walksat) [SKC96] by adding a small amount of noise to escape local minima. The algo-
rithm is again organized as a sequence of tries, where each try is a sequence of flips. Each
flip is made by first randomly picking an unsatisfied clause and picking (either at random
or according to a greedy heuristic) a variable within that clause to flip. In the experience
of the EDA community the GSAT and WSAT algorithms per se are not well suited to
EDA applications because EDA SAT problems represent highly constrained spaces. Even
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successors to WSAT like [KMS97), which are designed to operate in constrained spaces,
have not found acceptance in EDA. Recent work on stochastic local search employing dy-
namic backtracking [Gin93, Pre00] seems promising but is yet to be extensively tested on
EDA problems.

However, incomplete stochastic techniques such as random and weighted random
simulation are routinely used in ATPG and verification applications. Such techniques are in
some sense similar to algorithms like WSAT. Also, a simple variant of WSAT adapted to
work off BDDs was successfully used by Singhal & Burch in their equivalence checker [BS98].
Therefore, it may be just a matter of time before effective incomplete solvers for EDA .

applications are developed.

3.2 SAT Applications in EDA

Several EDA applications have problems that can be quite naturally formulated
in terms of SAT which is rapidly becoming the method of choice for solving an increasing
fraction of these problems. Verification has provided the richest application domain for use
of SAT in EDA. However, applications in other areas exist as well. These are reviewed
in Sections 3.2.1 and 3.2.2 respectively. For a more complete list of some of the early
applications of SAT in EDA refer to [GPFW97].

3.2.1 SAT in Verification

Combinational ATPG was one of the earliest applications of SAT in EDA. Efficient
SAT-based Combinational ATPG tools such as NEMESIS [Lar92], TEGUS [SBSV96] and
TIP [TG99] were developed for the single stuck-at and bridging fault models. SAT models
have also been used for delay fault testing [CG96, KMSS00a). The formulation of SAT based
combinational ATPG for single stuck-at faults, originally proposed by Larrabee [Lar92},
and later used by all subsequent works is briefly reviewed in Section 4.1. A recent, related
application has been in using a hybrid of 3-SAT and linear programming in functional vector
generation for HDL models [FDK98].

Combinational Verification (CEC) has also provided a fertile ground for appli-
cation of SAT methods. The HANNIBAL [Kun93] tool employs recursive learning on
the circuit supplemented with an ATPG engine, [TGH97] perform Boolean reasoning on

their implication graph data-structure, [MSG99] proposed using the GRASP solver pre-
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ceded by a pre-processing phase of CNF-based recursive learning. However, state-of-the
art CEC tools use a cut-point based approach where SAT is used in combination with a
number of other engines such as BDDs, simulation and structural analysis algorithms (e.g.
graph isomorphism) [GA98, BS98, MJT+99, PK00]. [BS98] uses a BDD and simulation
framework complemented with randomized SAT algorithms modified to work off the BDD
data-structure. [MJT+99) uses a filter-based approach where a single cut-point check passes
through a sequence of engines (such as simulation, structural approaches, SAT, BDDs) of
increasing power and complexity. In [PK00] Paruthi & Kuehlmann use an interleaved invo-
cation of BDDs and a SAT solver, with increasing thresholds, to accomplish each equivalence
check.

A relatively recent application is the use of SAT for verifying safety properties on
sequential systems. One such method that has become popular is Bounded Model Check-
ing [BCCZ99, BCC*99]. Simply put, it involves unrolling a sequential circuit for a specified
number of time-frames and constructing a CNF which asserts that a particular safety prop-
erty is violated on the unrolled circuit. A case study for the application of this method
is presented in [BCRZ99] and improvements to the original formulation are reported in
[Sht00, Sht01]. The proposed improvements include variable ordering issues and ideas
drawn from incremental satisfiability.

Bounded model checking techniques are incomplete verification techniques in that
they reason only about the state-space covered by a fixed number of time-frames. A fairly
recent direction in SAT research is to explore the use of SAT methods in a conventional
(i.e. complete) model checking framework for problem such as reachability analysis and
image computation [SS90, SSS00, ABE00, BC00, WBCG00, GYAG00, BLMO1]. Abdulla et
al. [ABEO0] use a non-canonical data-structure called a Reduced Boolean Circuit (RBC) to
represent the functions (i.e. the transition relation, state sets etc.) and a conventional SAT
checker (the PROVER tool based on Stamarck’s method) is used for various SAT checks
required during the entire process viz. checking for the fixed-point. The quantification step
of image computation is implemented on the RBC itself using quantification axioms such as
inlining and scope reduction to alleviate size explosion of the RBC. [WBCGO0] use a similar
approach where Boolean Ezpression Diagrams (BED) are used in place of the RBC, SATO
is used as the SAT checker and some additional pruning techniques are employed to control
size explosion of BEDs. [SSS00] and [BCO0] report results on using powerful variants of
induction and a SAT solver (PROVER in this case) to perform property checking. Gupta
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et al. [GYAGOO0] have proposed an approach of combining SAT and BDDs to perform
image computation. BDDs are used to represent the state sets and a CNF to represent the
transition relation. The next-state computation is done through a combination of BDDs and
SAT algorithms. Several improvements to this basic framework are proposed in [GGYAOI]
and [GYA*01b].

Velev et al. investigated the use of SAT procedures in microprocessor verification.
In [BGV01] the microprocessor verification task is expressed in the logic of equality with
uninterpreted functions and then efficiently reduced to propositional satisfiability (SAT). In
a recent series of works by the same authors this formulation has been extended to model su-
perscalar microprocessors [VB99], superscalar processors with multi-cycle functional units,
exceptions and branch prediction [VB00] and VLIW processors with speculative execu-
tion [Vel00].

A verification methodology, gaining popularity in the EDA industry, is a class of
methods known as semi-formal techniques. The objective is to use an efficient combination
of simulation and formal techniques to do a more effective validation of the design, find
more bugs or do a limited amount of formal checking. The SIVA tool [GYA*+0la] and the
Ketchum tool [HSH*00] are two such works that use SAT methods as one of the engines in
combination with BDDs, simulation, symbolic simulation and structural ATPG methods.

3.2.2 Other Applications

In the area of synthesis, SAT algorithms have been used for ezact timing analy-
sis [MSS+91, eSMSSS97] and logic optimization through redundancy removal [EC95]. More
recently, SAT models have been applied to Crosstalk noise analysis [CK99] and logic opti-

mization using don’t cares [SBO1).

Physical design has not seen many applications of SAT, its only notable use being
in FPGA Routing [WR98, NSR99, NASRO1]. The reason for this is that many problems
in physical design are geometrical in nature and a propositional encoding of such problems
usually produces very large SAT instances, which cannot be solved by current SAT methods.
Other physical design problems are inherently non-discrete and thereby best suited for

continuous optimization methods.
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3.3 Conclusions

The last few years have seen the growth of SAT solvers in EDA from being an
algorithmic problem of academic interest to a powerful reasoning tool and an enabling
technology for several applications. A host of SAT solvers and extensive suites of SAT
benchmarks are now available in the public domain (see SATLIVE! [Ber], SATLIB [Ber]
and Sat-Ex [SCO01)) to facilitate research in SAT algorithms and applications. Realizing the
commercial potential of SAT solvers, several companies, e.g. Prover Technologies [pro]
and Greentech Computing Inc. [gre] are commercially marketing SAT solvers and ser-
vices associated with their use in various applications. However, despite the dramatic
progress in this area, only a small fraction of the immense potential of SAT for EDA has
been realized. The next few years promises to be an exciting time for EDA professionals
engaged in SAT research.
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Chapter 4

The Practical Complexity of SAT
Based ATPG

This chapter presents an analysis of the complexity of an important and well
studied EDA application that uses SAT methods. The underlying objective is to make
such an analysis more realistic by accounting for salient characteristics of problem instances
encountered in real life. The problem examined is the combinational automatic test pattern

generation (ATPG) problem for the single stuck-at fault model.
Combinational ATPG techniques find widespread use in a number of EDA appli-

cations. In addition to generating test patterns for testing digital combinational circuits,
for which they were originally proposed, they have proved to be effective tools of logic opti-
mization [DMSV88, EC95] and have recently found application in verification techniques as
well [Bra93]. The analysis presented in the sequel also sheds light on the following paradox
regarding the combinational ATPG problem.

It has been known for more than two decades that the combinational ATPG prob-
lem is NP-complete [IS75). This means that unless P = N P, there cannot exist an algorithm
which solves an arbitrary instance of this problem in polynomial time. However, as early as
1979, Williams and Parker [WP79)] claimed that for practically encountered instances of the
problem the complexity of combinational ATPG is only O(n®). In fact, the widespread use
of ATPG-based techniques can largely be attributed to the relative ease with which large

instances of the problem are solved in practice.

We corroborated the claim that combinational ATPG is easily solvable in prac-
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Figure 4.1: Results of TEGUS on ATPG-SAT instances

tice by performing the following experiment. ATPG was carried out on the combina~
tional circuits from the MCNC91 [Yan91] and ISCAS85 [BF85] benchmark suites, using
TEGUS [SBSV96], an ATPG tool based on a Boolean satisfiability (SAT) formulation.
The time to solve each SAT instance was recorded as a function of the size of the instance
(number of SAT variables) and plotted in Figure 4.1. Of the 11,000 SAT instances gener-
ated, some with over 15,000 variables, over 90% were solved in less than 1/100th of second;
these were removed from the plot for clarity. The remaining instances exhibited roughly
a cubic growth in execution time. Thus, the theoretical worst case complexity of ATPG,
i.e. the fact that it is NP-complete, would seem to be a poor indicator of the practical ease
of the problem. The work in this chapter is one of the first attempts to offer a theoretical
explanation for the practical ease of ATPG. In the rest of the chapter, the term ATPG is
used to refer to combinational ATPG.

The practical ease of ATPG suggests that there is some underlying property com-
mon to real-life ATPG instances which makes them tractable. These instances are usually
derived from practical VLSI circuits. Therefore, we develop a characterization of the com-
plexity of solving ATPG in terms of a topological circuit property, namely cut-width. We also
demonstrate, through theoretical arguments and experiments on practical circuits, that a
large class of interesting circuits have small cut-widths, provably permitting efficient ATPG.



CHAPTER 4. THE PRACTICAL COMPLEXITY OF SAT BASED ATPG 38

We use a popular formulation based on SAT as our working model of the ATPG al-
gorithm. This formulation is based on Tseitin’s transformation for transforming a CIRCUIT-
SAT problem into an instance of CNF Satisfiability (reviewed in Section 2.7.2). The for-
mulation was originally proposed by Larrabee [Lar92] and later developed by Stephan et
al. [SBSV96]. It must be noted that although the current analysis is intended for the ATPG
problem, the same basic analysis framework could be applied to any EDA problem that uses
a CIRCUIT-SAT based formulation.

The rest of the chapter is organized as follows. We begin with some definitions
and notation in Section 4.1. In Section 4.2 we briefly discuss some seemingly promising
approaches for analyzing the complexity of ATPG instances, based on existing results and
analysis techniques. We argue that these approaches provide only an incomplete or incon-
clusive answer to the practical complexity of ATPG. Section 4.3 presents our model of the
backtracking based algorithm for solving SAT, the cut-width property of circuits, and an
analysis of the complexity of ATPG in terms of cut-width. In Section 4.4 we present both
theoretical arguments and empirical results to show that a cut-width based argument does
in fact predict a polynomial runtime of ATPG on a large class of practical circuits. In
Section 4.5 we present interesting parallels and points of contrast between our results and
published work addressing bounds on the size of binary decision diagrams (BDDs). A sum-
mary and discussion of the salient results presented in this chapter is given in Section 4.6.

4.1 Definitions and Notation

Definition 4.1 (Single Stuck-at-fault) Given a Boolean network C [BRSVW87], a sin-
gle stuck-at fault ¢ = (z, B) is one which causes a net z in C to be permanently stuck at
logic value B (where B € {0,1}).

In the above, we consider a net to be the output of a gate (node) and all its
associated fanout stems. Normally, one would distinguish the potential faults for different
fanouts of a single net. However, for the purpose of our analysis we consider just one fault

per net. This does not affect the generality of our results.

Definition 4.2 (Faulted Circuit) Given a circuit C and a single-stuck at fault y(z, B),
the faulted circuit Cy is the original circuit C' with the fault 1 operative i.e. the fault-net
asserted to B.
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Definition 4.3 (The ATPG Problem) Given a Boolean network C and a single stuck-at
fault 1, the ATPG problem ATPG(C, ¥(x, B)) seeks to determine an assignment of Boolean
values to the primary inputs of C (and thus Cy ) such that fault net x has complementary
logic values in C and Cy and at least one pair of corresponding primary outputs of C and
Cy have complementary logic values. Such a Boolean assignment is said to be a test for the

fault 4. If no such assignment exists the fault is said to be untestable.

The CIRCUIT-SAT problem, introduced earlier in Section 2.7.2 (Definition 2.3)

can be easily generalized to multi-output circuits as follows.

Definition 4.4 (CIRCUIT-SAT) Given a multi-output Boolean circuit C, the circuit
satisfiability problem on C, denoted as CIRCUIT-SAT(C) seeks to determine a logic value
assignment (partial or complete) to the primary inputs of C under which at least one of the
primary outputs of C evaluates to 1. Such an assignment is called o satisfying assignment
of C; if none exists the instance CIRCUIT-SAT(C) is said to be unsatisfiable.

To simplify the discussion we use the above definition of CIRCUIT-SAT in the
rest of the chapter. The transformation of a CIRCUIT-SAT problem posed on a multi-
output circuit to a CNF Satisfiability problem proceeds on the same lines as discussed in
Section 2.7.2 for a single output circuit. The only difference is that the unit-literal clause
asserting the primary output to 1 is replaced by a clause which is the disjunction of all
primary output variables. This enforces the requirement that at least one primary output
must be set to 1. In the following treatment we will make no distinction between the
CIRCUIT-SAT problem on a circuit C and the Boolean satisfiability (SAT) problem on its
corresponding CNF formula ¢(C). The set of variables of ¢(C) will be denoted by Vc.

The ATPG problem can be naturally cast as a satisfiability problem by formulating
it as a CIRCUIT-SAT problem on a suitable circuit, CfTF¢ derived from the original circuit
C and the fault 4 as follows [Lar92].

e C?u¥: The sub-circuit of C containing all gates, inputs and outputs in the transitive

fanin of the transitive fanout of the fault-point z.

. Cé,“m‘: The sub-circuit of Cy corresponding to the transitive-fanout of z in Cy. The
set of primary inputs of C;Z“"”t comprise the fault-boundary of C (Figure 4.2). The
inputs of C,i‘"w"t are fed from appropriate signal points in C**5¥.
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Figure 4.2: Circuit C{TFG used for ATPG-SAT

. C’;,;‘TP G. The circuit obtained by the pairwise XOR of corresponding outputs of C**>¥
and C'i“"‘"“.

The set of all satisfying assignments for the CIRCUIT-SAT instance C;;}TP G gives
precisely the set of all input vectors that test the fault 4 . Thus the ATPG problem
ATPG(C,4(x,B)) can be formulated as an instance of Boolean satisfiability denoted by
CIRCUI T-SAT(C’;I‘}TP G). Henceforth, we will refer to this special instance of SAT as ATPG-
SAT.

Definition 4.5 (ATPG-SAT problem) ATPG-SAT refers to the SAT instance corre-
sponding to an ATPG problem. Specifically, ATPG-SAT(C,v) refers to the SAT formula

for testing the single stuck-at fault ¢ on circuit C.

Throughout this discussion, we assume that the circuits we deal with have gates
with the number of fanins and number of fanouts bounded by ky; and ky,, respectively.
We also assume the circuits are mapped to simple AND and OR gates, allowing inversions.
The former restriction is enforced for practicality; design and technology constraints prohibit
unlimited fanin and fanout. The latter restriction is enforced to facilitate the construction
of the corresponding SAT formulas; it is difficult in practice to derive SAT formulas for
arbitrary gates. TEGUS [SBSV96] enforces this latter condition for exactly this reason.
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4.2 Applying Existing Techniques

In this section, we analyze three possible approaches based on an application
of existing results and analysis techniques. We argue that none is capable of offering a

conclusive or sufficiently general explanation for the practical complexity of ATPG.

4.2.1 Simple SAT Classes

Certain classes of SAT problems are known to be solvable in polynomial time.
2-SAT and Horn-SAT' [GPFW97] formulas are two examples. If we could show that an
interestingly large class of ATPG-SAT instances fall into one of the known polynomial time
solvable SAT classes it would imply that the corresponding class of ATPG problems are
efficiently solvable. We argue that this is highly unlikely, using the following reasoning.

Definition 4.6 (Complexity Index [BCHS94]) Given a CNF Boolean formula ¢, de-
fined on Boolean variables x1,23,...Tn and having clauses wy,w2, ... ,Wm- The complexity

index of ¢ is the optimal value Z(¢) of the following linear programming problem, LP(¢)

Z(¢) =minZ
such that
Za,-+ Z(l—ai) <Z (k=1...m) and
i€l 1EN;
0<a<1 (i=1...n)
where P, (Ny) is the set of positive (negative) literals in clause wr, and a1,02,... ,0p GTE

the variables of the LP problem, one each corresponding to variables z1,%2,...%n of the
formula ¢.

Boros et al. [BCH90] identified a fairly general class of efficiently (polynomial time)
solvable SAT formulas known as g-Horn formulas. The set of g-Horn problems include
several efficiently solvable classes of SAT formulas such as Horn-SAT, 2-SAT, Hidden-Horn-
SAT, Extended-Horn-SAT etc.

Theorem 4.1 [BCH90] ¢-Horn formulas have a complezity index of at most 1.

Now, consider the circuit C,y shown in Figure 4.3. Let @qub denote the CNF

formula comprising the conjunction of the CNFs for the consistency functions of the gates
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Z7

Z3

T2
s

T4

Figure 4.3: A simple sub-circuit Cjyyp that produces a non-g-Horn formula

of Cyup. Thus, dgup = ¢1 - ¢2, Where

&
¢2 = (T3 +z1)(T3 + z2)(23 + 71 +T2)

(x5 + 73) (25 + T2)(T5 + 23 + 74)

Proposition 4.1 The formula ¢sup = ¢1 - ¢2 is not g-Horn.

42

Proof: To prove that ¢gyp is not g-Horn, we prove by contradiction that Z(@sw) > 1.

Suppose that Z(¢s,s) < 1. Consider LP(¢)

1+2z5—23< 2

l+zs—24< 2

l—zs+a3+24< 2

0<z3<1, 0<=z4<1, 0<z5<1

Substituting Z = 1 in the above and solving gives
T3=z4=x5=0
Now, consider LP(¢2)

1+z1—-23< 2
l14+z9—23<2
24+z3—T1—22< Z

0<z:1<1, 0<z2<1, 0<z3<1

(4.)
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Substituting Z = 1 and the solution of LP(¢;) from Equation 4.1 in LP(¢7) gives no

solution.

= Z(¢l : ¢2) = Z(¢sub) >1

[

From Proposition 4.1, Theorem 4.1 and Definition 4.6 it follows that any formula
of which ¢,yp is a sub-formula cannot be g-Horn. Thus, any circuit containing circuit Cgyp
as a sub-circuit cannot have a g-Horn CIRCUIT-SAT formula. Further, any ATPG-SAT
formula derived from this circuit will not be g-Horn. Clearly circuit Cgyp is a fairly simple
circuit pattern that could be expected to occur in a large number of real circuits. Thus it
appears that the practical tractability of ATPG-SAT cannot be explained by the intrinsic
tractability of the SAT formulas. The answer lies in relating the solution process of SAT
to properties of the circuits from which they were derived. We investigate this further in
Section 4.3.

4.2.2 k-bounded Circuits

Fujiwara [Fuj88] introduced the notion of k-bounded circuits and showed that
ATPG can be efficiently performed on this class!. This class was shown to contain some
circuits of practical interest such as ripple-carry adders, decoders, and one- and two-
dimensional cellular arrays.

Briefly, a circuit is k-bounded if its nodes can be partitioned into disjoint blocks
such that each block has at most k inputs, and the blocks form a directed acyclic graph
with no reconvergent paths. Simply put this means that all the reconvergence of the
circuit is of a local nature, i.e. confined within k-input blocks. Practical circuits with deep

reconvergent paths are abundant. Hence, k-boundedness seems too restrictive for general
VLSI circuits.

4.2.3 Average-Time Analysis

Another approach of assessing the practical complexity of ATPG-SAT is to perform
an average running time analysis on the population of ATPG-SAT instances. A number

of average-time analyses already exist for different models of SAT formulas and algorithms

1This algorithm, described in [Fuj88], is exponential in k, but for constant k the algorithm is polynomial
in the circuit size.
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Figure 4.4: Average Time Analysis (from [PB87])

[GPFW97, PB87]; for our analysis we use the one in [PB87], since this model best matches
our CIRCUIT-SAT problem domain.

Consider SAT instances generated by the following model. Using the notation from
[PB87], let v be the number of variables in a SAT instance. Let p(v) be the probability that
a given literal appears in a given CNF clause, and let ¢(v) be the number of CNF clauses
which appear in the SAT instance. A given pair of functions p(v) and ¢(v) characterize a
family of SAT instances.

Figure 4.4 is taken from [PB87] and depicts the space of SAT problems as a function
of p(v) and t(v). The lines delimit areas of SAT problems which have a known polynomial
average running time? algorithm and are labeled with the name of the associated algorithm.
The areas labeled “Hard” and “Difficult” characterize the problems for which there is no
known polynomial average running time algorithm.

In Figure 4.4 notice the point corresponding to p(v) = 37; and t(v) = 1.963v which
is marked with a +; consider the region corresponding to p(v) = &, t(v) > 1.963v. This
region lies in the space of random formulas that are solvable in polynomial average runtime
by backtracking based algorithms. In the following we refer to this region as I’ and show

2i.¢. running time averaged over all members of a class of instances.
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that CIRCUIT-SAT formulas, under suitable weak assumptions on the underlying circuit,
correspond to problems which lie within the region T'.

Theorem 4.2 Let C be a circuit consisting solely of 2-input AND gates, allowing inversions
on the inputs and outputs of the gates. Suppose C has at most 0.528n primary inputs, where
n is the number of gates in C. Then CIRCUIT-SAT(C) lies in the region T.

Proof: The following characterization can be found in [PB87]. Let p(v) and t(v) be defined
as above. Let b = limy_,00 vp(v), let d be the solution of In(1+d)+dIn(1+ 1)=12b, and let
¢ be any small positive number. Ifb > In2 and t(v) > (In2+ e)v%, then simple backtracking
will give a polynomial average running time for the set of SAT problems corresponding to
the given p(v) and t(v).

Note that for the problem CIRCUIT-SAT(C), v =n +k, where n is the number
of gates in the circuit and k is the number of primary inputs. Given our assumption on the
AND-gate decomposition of the circuit, a single gate will give rise to exactly three CNF
clauses in the SAT formula. For instance, a gate for £ = y - 2 corresponds to the clauses
(y+%)(z+Z)(@+Z+x). Two of these clauses have exactly two literals, while the remaining
clause has three literals. Thus the average clause length in the overall SAT formula is %
literals. Since there are 2v possible literals, any given literal has probability 57; of appearing
in any given clause, so p(v) = &.

Thus for the circuit C, b = limy—oovp(v) = % > In2, and solving for d gives
d = 3.305. In the limit as ¢ — 0, we require t(v) > 1n(2)'v% = 1.963v for a polynomial
average running time. But since each gate gives rise to three clauses, t(v) = 3n, so for
a polynomial average running time we require 3n > 1.963(n + k), or k < 0.528n. Thus
CIRCUIT-SAT(C) lies in T". n

1t is reasonable to assume that a large fraction of practical circuits satisfy the
two conditions of Theorem 4.2. The first condition requires that the circuit consists of
only 2-input AND gates, allowing inversions. Note that any circuit can be decomposed in
this manner. In fact, as noted in Section 4.1, this is a decomposition technique which is
commonly used for SAT-based ATPG algorithms, since it simplifies the construction of the
SAT formula. Second, we assume that the primary inputs to the circuit contribute only
a small fraction (< 0.528) of the variables of the SAT problem. This is also reasonable.
Moreover, the process of mapping the circuit to simple 2-input AND gates will replace

single complex gates with several AND gates, while keeping the number of primary inputs
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the same. Thus, for circuits found in practice, the number of gates is expected to be

significantly greater than the number of primary inputs.
ATPG instances can be formulated as a CIRCUIT-SAT problem. Moreover, it

is easily seen that if the circuit from which the ATPG instance was derived satisfies the
conditions of Theorem 4.2, so will the derived ATPG-SAT instance. Thus, based on the
above arguments we can claim that a large fraction of real-life ATPG-SAT instances can be
expected to lie in region I'.

Despite this characterization, we cannot decisively conclude that practical ATPG-
SAT instances can be solved in polynomial average time; while region I' contains a large
fraction of practical ATPG-SAT instances, the same p(v) and #(v) characteristics encompass
many other SAT instances, including instances outside of CIRCUIT-SAT, and we may only

conclude a polynomial average running time over the entire set of instances spanned by I'.

Thus, this form of average-time analysis, which is representative of the state of the
art in the realm of average time complexity analysis of SAT formulas, is not strong enough
to prove anything conclusive about the average time complexity of real-life ATPG-SAT

instances.

4.3 Analysis of ATPG-SAT

A number of approaches for solving SAT have been proposed in the literature (see
[GPFW97] for a comprehensove survey). Among these, backtracking techniques based on
the DPLL algorithm are the most popular. Hence, for our analysis of ATPG-SAT we chose
to model the SAT algorithm by a “caching based” variant of simple backtracking [GPFW97].
This algorithm is described in Section 4.3.1. Briefly, the algorithm is derived from the DPLL
algorithm by excluding the pure literal and unit literal rules, including the caching feature
(described later) and restricting the order of all variable assignments to conform to a fixed

static order.

We introduce the notion of cut-width of a circuit and characterize the worst case
complexity of solving ATPG-SAT instances in terms of the cut-width of circuits from which
the instances were derived. To illustrate the salient results, we will use the circuit shown in
Figure 4.5(a) as our working example. As per the discussion in Section 2.7.2 the CIRCUIT-
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SAT instance corresponding to this circuit is:

(T2 + 26) (T3 + @6) (22 + 23 + Te) (4 + 27) (w5 + 27)(Ta + T5 + T7)
(z1 + T8)(ze + T8)(T1 + T + z8)(zs + Ta) (7 + T9)(Ts + T7 + o) (29) (4.2)

The ATPG problem we consider is a stuck-at-1 fault on the net zg. The ATPG-SAT
instance generated by this fault corresponds to the circuit shown in Figure 4.5(b).

4.3.1 Caching-Based Backtracking for CIRCUIT-SAT

Our caching based version of simple backtracking is a simplified - way of modeling
the notion of learning from previous conflicts. This notion is implemented as conflict-clause
recording [MSS99] in almost all current successful SAT solvers. The essential idea of caching
based backtracking is to perform simple backtracking with a fixed variable order, except
that whenever the algorithm backtracks from an unsatisfiable sub-formula, the sub-formula
is cached. Correspondingly, before a sub-formula is taken up for a satisfiability check, it is
looked up in the cache. If found, it can be diagnosed immediately as being unsatisfiable and
the algorithm can backtrack from it without trying any further variable assignments. The
pseudo-code for the algorithm appears below. In Algorithm 4.1, ¢ is the CNF formula for
the satisfiability check, k is a function that orders the variables of ¢, and £ is a hash table
for storing the set of unsatisfiable sub-formulas of ¢ encountered during the backtracking
search.

Figure 4.6 shows an example run of this algorithm on Formula 4.2. The variable
ordering 0; = (z2 < 23 < Tg < T1 < z8 < T4 < x5 < 7 < &) is used for the backtracking
search. Note there are several places where the caching strategy works to prune the search.
For example, consider the partial assignment zp = 0,23 = 0,z = 0,71 = 0,73 = 0; this
leaves the sub-formula (z4 + z7)(xs + z7)(Z1 + Ts + Z7) (27 + Ts)(T9) (9). This same sub-
formula is obtained under the assignment z; = 0,z3 = 0,z¢ = 0,z; = 1,28 = 0 and so we
can prune this branch of the search without further computation.

The running time of Algorithm 4.1 on a given formula ¢, is denoted by T($)
and can be analyzed as follows. A sub-formula of ¢ is obtained by setting a subset of the
variables of ¢ to certain values. Define a consistent sub-formula (CSF)of ¢ asa sub-formula
having no empty clauses® (i.e. a clause where all the literals have been set to false under

the partial assignment).

3A formula with empty clauses is trivially unsatisfiable.
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Algorithm 4.1 Satisfiability through Caching-Based Backtracking
procedure Sat(L,h,¢)

L+0

if Cache.Sat(Zjirst, 0, ¢, h) = “UNSAT” and Cache Sat(zfirst; 1,9, h) = “UNSAT” then
return “UNSAT”

else
return “SAT”

end if

procedure Cache_Sat(zcurrent, B, $subs h)
{Tcurrent : Variable currently chosen for assignment, B :Value assigned to Zcurrent }
boub — Assign(dsub, Tcurrent, B)
if Null_Clause(¢syp) then
return “UNSAT”
else {¢syp has no NULL clauses}
if Table Lookup(L, ¢syp) then
return “UNSAT”
end if
Tpezt < Next_Var(Teyrrent; i)
if Cache SAT(Znext, 0, dsub, ) = “SAT” then
return “SAT”
end if
if Cache SAT(Znest, 1, sub, h) = “SAT” then
return “SAT”
end if
{Both Subtrees UNSAT}
Insert_Table(L, ¢syup)
return “UNSAT”
end if




CHAPTER 4. THE PRACTICAL COMPLEXITY OF SAT BASED ATPG 50

Ordering O; : X2 < x3 < X < X3 < Xg < X4 < X5 < X7 < Xg

v=i 0 J=1

X Null Claus¢
(v)] Cache Hit

Figure 4.6: Caching-based backtracking for Formula 4.2
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We assume that the sub-formulas are cached as sets of clauses. Thus, from our
point of view two sub-formulas are identical if and only if they have the same set of clauses.
Sub-formulas with a different set of clauses may still be functionally equivalent; however, we
do not recognize this equivalence in this treatment. 7(4) is upper bounded by the product
of the size of the backtracking tree (i.e. the search tree explored by the SAT algorithm) and
the worst case time for a single cache access (insertion, lookup or deletion). For the purpose
of this analysis we assume that the caching is perfect; cache lookups and insertions can be
done in constant time?. Thus, 7(¢) is upper-bounded by the size of the backtracking tree,
which in turn is bounded by the number of distinct consistent sub-formulas (DCSFs) of ¢
that can be generated under a particular static ordering of the formula variables. Thus,

under the ordering h,
T(¢) = O(F(Pu(V))) (4.3)

where F(P;(V)) is the number of DCSFs of ¢ under the ordering h, V' is the set of variables
of ¢ and Px(V) denotes the set of those subsets of V' which are valid prefixes of the ordering
h. If the formula ¢ corresponds to a CIRCUIT-SAT instance, generated from a circuit C, we
can further characterize 7(¢) in terms of a topological property of C. This characterization

is developed in the following section.

4.3.2 Cut-width and Sub-formula Count

Consider a CIRCUIT-SAT formula ¢(C) corresponding to circuit C. For the initial
part of the analysis assume that C has a single output. The results are extended to multi-
output circuits, in Section 4.3.3. The network C can be seen as an undirected hypergraph
with the signals as the hyper-edges, and the gates, inputs and outputs as the nodes. For
the purpose of this exposition a Boolean network and its underlying hypergraph are not
distinguished. Cut-width of a hypergraph is defined as follows.

Definition 4.7 (Cut-width) Given a hypergraph G(V, E) and a one-to-one function h,
ordering the vertices of G. h: V — {1,2,...,|V|}. The cut-width of G, under the ordering
h, is denoted as W(G, h) and is given by the ezpression

W(G,h)= max_ |{e€E:3u,veV
i€{1,2,...,|V[}

such that {u,v} C e and h(u) < i < h(v)}|

4An imperfect cache can add to the overall complexity by a linear factor at worst.



CHAPTER 4. THE PRACTICAL COMPLEXITY OF SAT BASED ATPG 52

(Note: Each hyperedge e of G is denoted by the set of vertices spanned by that hyper-
edge.) The minimum cut-width of G over all possible orderings h is denoted by Win(G).
Henceforth, cut-width of a circuit without reference to a particular variable ordering will
refer to the minimum cut-width Wi (G).

Figure 4.7 illustrates the notion of cut-width on the example circuit from Fig-
ure 4.5(a), using two different variable orderings, O; and O,. Ordering O;, which was used
for the backtracking tree example of Figure 4.6, also happens to be a minimum cut-width
(Whin) ordering for this circuit.

The number of nodes at a certain level in the backtracking tree for ¢(C) can be
bounded in terms of the size of an appropriate cut of the circuit C. A disjoint partition
(6v, 0y ) of the variables Vi defines a unique cut in C. An assignment of truth values to
the variables dy,, in the formula ¢(C) yields a sub-formula ¢,4(C) of ¢(C).

Lemma 4.3 Given a Boolean network C, its corresponding CIRCUIT-SAT formula ¢(C)
and a cut (JVC,FV:) of Vg, the number of DCSFs that can be obtained by the set of all

possible truth assignments to the variables dy,, is denoted by F(dv,;) and can be bounded as:
F(bv) < 22ksollévedvo)l (4.4)

where |(6Vc,3?/:)| denotes the size of the cut, i.e. the number of distinct nets crossing the

cut.

Proof: Consider the set of 2/¢vc! possible different Boolean assignments to the variables dv,.
Only a fraction of these produce consistent sub-formulas. Consider only these assignments.
They partition the clauses of ¢(C) into three disjoint categories.

e Clauses all of whose variables are part of dy,,. Every CSF of ¢(C) has these clauses

satisfied.

e Clauses all of whose variables are part of R These clauses are unaffected by any
assignment to the variables dy, and thus appear unaltered in any consistent sub-

formula.
e Clauses part of whose variables are in E We call these clauses injured clauses.

From the above categorization it is clear that different consistent sub-formulas of the set

F(dy,) differ only in the configuration of the injured clauses. Furthermore, under any
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Figure 4.7: Example cut-widths for the circuit of Figure 4.5(a)
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Figure 4.8: Case 1 for generating injured clauses
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Figure 4.9: Case 2 for generating injured clauses

assignment to variables dy,, an injured clause can have only two different configurations.
Consider a typical injured clause w = (I + o + ... + l; + liz1 + ... + i) such that the
variables corresponding to literals ; + Il + ... + l; are part of dy, and the remaining
variables (corresponding to literals /iy + ... + ;) are part of dy,. Under any assignment
to the variables §y,,, w takes one of the two configurations, (li41+...+1) or 1 (i.e. it has

been satisfied). Thus we can bound
F(dv,) < o(# injured clauses) (4.5)

The number of injured clauses can be upper bounded as follows. Every injured
clause must contain at least one assigned variable and at least one unassigned variable.
Moreover, a pair of variables occur in a common clause only under one of the following two

cases:

e Case 1: They form an input-output pair for a gate (see Figure 4.8). For this pair
to produce an injured clause either the input variable is assigned and the output

unassigned or vice-versa. In both these cases, the input net falls in the cut (JVC,J_VC_).

e Case 2: They form a pair of “sibling” inputs for a common gate g (see Figure 4.9).

As before, they can be responsible for an injured clause if and only if one of them
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is assigned and the other unassigned. Additionally, the output of g can be either
assigned or unassigned. In either case, from the clause construction of Figure 2.2, it
is clear that every injured clause that these “siblings” participate in already contains
a pair of variables that have been counted in Case 1 (namely the output of g and the
input that differs from the output in assignment status). Thus, this case is subsumed
by Case 1.

From the above case analysis it is evident that every injured clause can be asso-
ciated with a cut-net and also that Case 1 can account for all injured clauses. Since the
network is fanout-bounded by ky,, each cut net can fan out to at most ks, gates and there-
fore produce at most ky, instances of Case 1. Moreover, since the network is composed of
simple gates only, a given pair of variables can occur in at most two common clauses (see

Figure 2.2). Thus each cut net can account for at most 2kj, injured clauses. Hence,

Number of injured clauses < 2kj,|(dv,, 0vi )| (4.6)

Applying this result to Equation 4.5 the bound on F(dy,) follows.
=
The usefulness of this result stems from the fact that the formula set size is expo-
nential not in the size of the variable set but in the size of the cut, which could be potentially
much smaller. For example consider the cut (§y,dy) on the circuit of Figure 4.5(a), with
dy = {x2,x3, Te, 1, Tg}; this corresponds to the level in the backtracking tree corresponding
to the Cut Z label in Figure 4.7. Lemma 4.3 indicates that there can be at most 22 distinct
consistent sub-formulas generated by all possible value assignments to the dy variables,
whereas a naive bound would be 2° (there are 25 distinct assignments to the variables dy).
Based on the above we derive the following bound for the running time of Algo-
rithm 4.1.

Theorem 4.4 Given a Boolean network C and ordering h on Vg, Algorithm 4.1 can solve
the CIRCUIT-SAT instance ¢(C) in time O(n - (22k1W(Ch))) where n = Vgl

Proof:

To prove the result, we derive a bound on F(P;(Vc)) and then apply Equation 4.3.
Recall that P,(Vo) = {dvgldve € Vo, and dy; is a prefix of the ordering h}. Therefore
|Pr(Ve)l = [Vo| = n.
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F(Pu(Ve)) < d Flve)

Sy, €Pn(Vo)
< n- max F(dy,
Sy €P(Ve) (Ove)
< max 22kf ol (‘ch :370-”

n-
JVC €Pn(Vc)
(from Lemma 4.3)

= n-2%1W(CM (from Definition 4.7)

=

From the above result it is evident that if a circuit has a cut-width which is
logarithmic in the size of the circuit, CIRCUIT-SAT can be performed on it in polynomial
time. We discuss further implications of this result in Section 4.4.

As explained in Section 4.1, under the SAT formulation of the ATPG problem,
testing for a certain fault 4 on a circuit C amounts to performing CIRCUIT-SAT on a
certain circuit, namely C;;TP G. The following result shows that, for any fault 4 in circuit
C, the cut-width of C is linearly related to the cut-width of C’;/‘,‘TP G, This means that we can
reason about the asymptotic behavior of Algorithm 4.1 on ATPG-SAT instances generated
from circuit C by analyzing the cut-width properties of circuit C' (or sub-circuits thereof)
rather than having to deal with the circuit C¢ATP G,

Lemma 4.5 Given a Boolean network C, for any ordering h of the variables Vo and any
fault ¢ on C , 3 an ordering hy of the variables of C{;TP G such that

W(CHTPC hy) < 2-W(C,h) +2 (4.7)
¥ v

Proof: The circuit C:/‘}TP G is composed of the two sub-circuits C,i‘"“’“‘ and C*u¥ and
a single 2-input XOR. gate y (see Figure 4.2). Note that both C,i“'“’"t and C*“¥ are
sub-circuits of C. One may see that given any variable ordering h for Vg, this implies
a corresponding ordering R,y for any sub-circuit Cyyp of C such that W(Coup, heus) <
W(C,h).

Given ordering h for Vg, hy, can be constructed as follows. Extract the implied
orderings for sub-circuits C’é‘mm‘t and C®*®¥ from h. Now merge these two together by
putting each variable 2/ of the faulted sub-circuit C‘;;“"""t just after its corresponding “un-
faulted variable” z (derived from C®*>¥). Now construct hy by adding y to the beginning
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Figure 4.10: Proof for ATPG circuit width vs. original circuit width

of this merged ordering. To derive the width of C’;,‘}TP G under this ordering, consider the
following.

The gate y is a two-input gate and can contribute at most 2 to W(C;;}TP G, hy)
(this accounts for the additive 2 in the expression). Now, for the moment assume that
the primary inputs of C’;;“"‘"‘t are not fed from fanout points in C***¥ but from separate
dummy nodes (the dummy nodes are inserted after the corresponding signal nodes in the
ordering hy). In this scenario it is easy to see that the width of the resulting circuit is at
most 2 - W(C, h) + 2. Merging the dummy nodes with the corresponding signal nodes does
not increase the cut-width of the resulting circuit (see Figure 4.10). Hence the required
result follows. [

Figure 4.11 illustrates this result on our example ATPG circuit from Figure 4.5(b).
As shown in Figure 4.7 the circuit of Figure 4.5(a) has a cut-width of 3 under ordering Oy
(Figure 4.6). The ordering O] can be derived (see the proof of Lemma 4.5 above) from O
to yield a cut-width of 4 for the ATPG circuit of Figure 4.5(b).

4.3.3 Extension to Multi-output Circuits

The discussion so far has been restricted to single-output circuits. Consider a
multi-output circuit C, with p primary outputs o1, 02, . . . 0p. For the purpose of a CIRCUIT-
SAT test, C can be seen as a set of p single-output circuits {C, Ca,...Cp}, one each for
the transitive fanin cone of each primary output. CIRCUIT-SAT on C can be performed
by performing CIRCUIT-SAT on each of the single-output circuits C1,Cs,...Cp, one at a
time. Then, CIRCUIT-SAT(C) = CIRCUIT-SAT(C,) + ...+ CIRCUIT-SAT(Cy).

In this scenario, the results of Sections 4.3.1 and 4.3.2 can be applied to multi-

output circuits as follows. Given a multi-output circuit C = {C1,C2,...Cp} and a set
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H = {hy, ha, ... hp} of node orderings for the single-output circuits C1,Cs,...Cy, the notion
of cut-width as given by Definition 4.7 can be extended as:

W(C,H)= _max W(Cih) (4.8)

The minimum cut-width Wiy, (C) generalizes on similar lines, except now the min-
imum is over all possible sets of orderings H. Hence the running time of CIRCUIT-SAT(C),
(based on Algorithm 4.1) can be bounded as:

T(@(C)) = O imas - PHW M) where nmge = _max Vol (49)
ie{1,2,...p

Similarly, Lemma 4.5 can be restated as:

Lemma 4.6 Given a multi-output Boolean network C, for any set of orderings H =
{h1,h2,...hp} of the variables Vg, Vg, .. Ve, and any fault ¢ on C, 3 an ordering Hy of
the variables of C$TP G such that

W(C4TFC, Hy) <2-W(C,H) +2 (4.10)

4.4 Cut-width Properties of Circuits

4.4.1 Log-bounded-width Circuits

In the following we define a class of circuits known as log-bounded-width circuits
and show that by employing Algorithm 4.1 ATPG can be efficiently performed on these
circuits. We also prove that k-bounded circuits (see Section 4.2.2) lie within the class of

log-bounded-width circuits.

Definition 4.8 (Log-bounded width circuit) A given multi-output circuit C is log-bounded-
width if for each single stuck-at fault on C, there exists a set of orderings H of the variables
Vgeusw, such that

W (C™¥, H) = O(log(|C™**))) (4.11)

Theorem 4.7 Given a log-bounded-width circuit C and any single stuck-at fault ¢ on C,

test generation for ¢ can be accomplished in time polynomial in the size of the circuit C.
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Proof: Applying Lemma 4.6 and Equation 4.9 to the definition of log-bounded-width above
(Definition 4.8), we can use Algorithm 4.1 to solve the instance ATPG-SAT(C, ) in time
polynomial in |C®¥5¥|. Since |C**®¥| < |C|, then the running time is polynomial in |C| as

well. =

Lemma 4.8 Given a k-ary tree T over n vertices, there ezists an ordering h, of the vari-
ables Vp such that W(T,h) < (k — 1) log(n).

Proof: Consider a k-ary tree T over n vertices with root r. For a vertex ordering, take the
variables by using depth-first search starting from the root; at each node visit the children
in increasing order of the size of the sub-trees rooted at each child. Under this ordering T
has a max-cut of at most (k — 1) log(n) edges. This can be proved by induction on n. For
the base case n = 1, the cut is zero.

For larger n, assume W(T,h) < (k — 1)log(m) for trees of size m < n. The
induction proof has two cases. Let si, 1 < ¢ < k be the subtrees rooted at the immediate
children of r, and let ¢; be the size of the max-cut for s;. For the first case, let all |s;| < n/2.
Then the max-cut under the given DFS ordering is at most (k—1)-+c, where c = maxc;. By
the induction hypothesis, ¢ < (k—1) log(n/2), so the max-cut of T is at most (k — i) log(n).

For the second case, for some t, |3;| > n/2 and there can be at most one of these.
Then this subtree is visited last by the DFS ordering, and so the max-cut of T' by this
ordering is at most max((k — 1) + ¢,c;), where ¢ = max c;. Since |s;| < n/2,i # t, the
induction hypothesis gives (k— 1)+ ¢ < (k— 1) log(n), and since |8¢] < », ¢; < (k —1) log(n)
as well.

Thus the max-cut of T is at most (k — 1)log(n). ]
Theorem 4.9 Any k-bounded circuit, for a given constant k is log-bounded-width.

Proof: First consider the graph G consisting of the blocks of a k-bounded circuit; by the
non-reconvergence property of k-bounded circuits, the cone for each output of G is a k-ary
tree. For each output tree, use the ordering scheme proposed in the proof of Lemma 4.8 to
order the blocks of G. Now, within each block order the vertices of the block arbitrarily.
Each block can thus increase the max-cut by a factor of at most 2¥. Hence, given Lemma 4.8
for k-ary trees we can conclude an upper bound of 2¥ - (k — 1)log(n) for the max-cut of a

k-bounded circuit. .
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As shown above, tree circuits are of log-bounded-width. Intuitively, reconvergence
tends to increase circuit cut-width. But, as long as the circuits are sufficiently “tree-like”
the log-bounded-width property could be expected to apply. The locality of reconvergence
required by k-boundedness is just one instance of this, (which log-bounded-width has been
shown to capture). In principle log-bounded-width simply requires a minimality of reconver-
gence and is therefore a more general property than k-boundedness. Note that Theorem 4.7
applies to all faults in the circuit, including the redundant faults, which need to be proven

untestable.

4.4.2 Practical VLSI circuits

1t is clear that cut-width is intrinsically linked to the topology of the circuit. Thus,
when a class of circuits can be described in terms of suitable topological characteristics, it
is possible to derive the cut-width properties of that class, and therefore reason about
the asymptotic complexity of ATPG-SAT, as was done for log-bounded-width circuits and
k-bounded circuits above. However, practical designs are usually not specified in such a
manner. Moreover, extracting common topological characteristics from a set of arbitrary
circuit designs is non-trivial and beyond the scope of this research. Thus, we have instead
performed an empirical study of cut-width for a set of circuits. The study is organized in two
parts. First we study circuits in the MCNC91 and ISCAS85 multi-level combinational
benchmark suites, estimate their cut-widths and compare the cut-widths to the size of the
circuit.

[HGRC98] presents a system which extracts topological properties from a given
circuit and generates arbitrarily large circuits which have similar characteristics. In the
second part of our study, we use this scheme to generate a “family” of circuits from a given

circuit and then examine the cut-width properties of this family.

4.4.2.1 Experimental Setup

The key element of our experimental setup is a mechanism to measure the cut-
width of a single-output circuit C. This can then be used to derive the cut-width of a
multi-output circuit. From the definition, the minimum cut-width is simply the value of
the maz-cut obtained under a min-cut linear arrangement [GJ79] of C. Since the min-cut

linear arrangement (MLA) problem is known to be NP-complete, it would not make sense to
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challenge the exponential complexity of ATPG if the procedure for deriving the ordering for
the ATPG ( in other words, the cut-width) involved the solution of another NP-Complete
problem, namely MLA. Therefore, we use a well-known polynomial time algorithm [Hoc97]
to approximate the MLA, and hence upper-bound the cut-width for a given circuit. Since
our entire empirical analysis and conclusions are based on the approximate cut-width, the
actual complexity of exact ML A has no bearing on our results or conclusions. It is notewor-
thy that practical ATPG tools often use some kind of topological ordering for the branch
and bound. In many cases this actually coincides with an optimal cut-width ordering, for
example in the case of trees. Therefore, even though the ATPG tool may not be work-
ing with the cut-width metric in mind while deriving the ordering it may serendipitously

generate a cut-width optimal (or close to optimal) ordering.

Our approximation algorithm for MLA generates a placement based on recursive
mincut bipartitioning, until the partitions are sufficiently small and then performs an exact
MLA for each of these partitions. We used the HMETIS package [KAKS99] from the

University of Minnesota to perform the bipartitioning.

For each benchmark circuit the complete set of all stuck-at-0 and stuck-at-1 faults
was first pruned by using fault-collapsing methods (viz. fault-dominance and fault equiv-
alence). Random vector generation was not used to further reduce the fault list in order
to keep the data set interestingly large and rich for the following data-analysis. Note that
this does not bias our results in any way since our analysis is a worst-case analysis, and any
worst-case efficiency result derived on a set of faults would certainly hold on any pruned

subset of it5.

For each fault of the collapsed set, one data point was generated as follows. For a
given fault 9 in circuit C, the data-point measures the approximate cut-width of the circuit
C*ub.¥ versus the size of this circuit. The size of the circuit C**5¥ is in direct correspondence
to the size of the SAT instance ATPG-SAT(C, ) (in terms of the number of variables) and
the cut-width of this circuit is representative of the complexity of solving this instance (as
per Equation 4.9 and Lemma 4.6).

5The fault collapsing based on dominance and equivalence just removes multiple, identical superimposed
points from the plots which do not add any real value to the results.
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4.4.2.2 Study of Existing Benchmark Suites

In studying the cut-width properties of the MCNC91 and ISCASS85 benchmark
circuits, it became clear that the individual circuits have different structural properties.
Some have nodes with fanin of a dozen or more inputs, while others are composed solely of
two-input AND gates and inverters. Similarly, some of the benchmark circuits have nodes
which implement complex functions, while others use only simple AND/OR gates.

These differences probably would not exist in actual implementations of circuits;
fanin and node complexity is necessarily limited due to speed and size requirements on
the gates. Moreover, in performing ATPG it is often desirable to map circuits to simple
AND and OR gates (with inverters), since the corresponding SAT formulas become easier
to derive. Thus, in order to bring more uniformity to the circuits and to more closely
emulate the actual ATPG process, we mapped the benchmark circuits to three or fewer
input AND/OR gate networks (allowing inversions) using the tech_decomp procedure from
the SIS [S*92] package.

Figure 4.12(a) shows the results for the circuits identified as “logic” circuits from
the MCNC91 benchmark suite. We excluded circuit t481, which we considered degenerate,
having over 3800 nodes after gate mapping yet with only a single output. Figure 4.12(b)
corresponds to the ISCAS85 combinational benchmark circuits. We omitted the circuits
C3540 and 6288 in this analysis, due to limitations in our min-cut linear arrangement
tool.8 We expect 6288 to have a large cut-width.

In any event, our method ran successfully for all the remaining benchmarks (48
from MCNC91 and 9 from ISCASS85).

4.4.2.3 Study of Generated Circuits

Using the existing benchmark suites limits the size of the circuits which we analyze.
Ideally, we would like to have a large range of circuit sizes so that we can examine the
growth of the cut-width with larger circuits. To this end, we use synthetic benchmark
generation techniques to construct example circuits over a wide range of sizes. These
techniques take existing circuits, extract statistical properties deemed critical to producing

“realistic” circuits, and generate random circuits with these same characteristics. [HGRC98]

6We used HMETIS in a mode which fixed some vertices to specific partitions. These circuits generated
too many fixed vertices for HMETIS to handle.
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and [GB99] propose methods for synthetic benchmark generation. We chose to apply the
programs circ and gen, described in [HGRC98], to generate our benchmark examples. Note
that these programs do not generate any useful circuits in that the function of each node is
undefined. However, this is of no concern, since we are only interested in the structure of
the circuit, in particular the cut-width corresponding to each possible fault point.

Our goal is to generate circuits with structures similar to the original MCNC
benchmark circuits but with varying sizes. To this end, we use circ to find the characteris-
tics for a selection of the benchmark circuits, and then scale these parameters before using
gen. In particular, we change only the number of nodes in the circuit, the number of pri-
mary inputs, the number of primary outputs, and the number of edges (nets) in the circuit.
We do not change the depth of logic, since this parameter is bounded for practical circuits
to meet delay constraints. We also do not change the distribution of delays, fanouts or edge
lengths in the circuit; [HGRC98] identifies these parameters as important in characterizing
the structure of a circuit, and we wish to obtain circuits structurally similar to the original
benchmarks.

For each benchmark circuit used here, we used circ and gen to generate a “family”
of circuits ranging from 1,000 nodes to 6,000 nodes. For each generated circuit, we take
each possible fault 1, find the induced sub-circuit C***¥, and calculate the size of this
sub-circuit and estimate its minimum cut-width; this is exactly the same procedure as used
with the original benchmark circuits.

Figures 4.13(a) through 4.14(b) show the cut-width versus circuit size for four

different families of circuits generated as described above.

4.4.2.4 Experimental Results

The cut-width plots for the MCNC91 and ISCAS85 suites, and the four families
of cloned circuits (Figures 4.12(a) through 4.14(b)) reveal several interesting properties of
real-life circuits. First, the cut-width values saturate at values of around 10-20 for all six
sets of benchmarks. This is even true for data-points with circuit-sizes of thousands of
nodes. Thus, Theorem 4.4 shows that the complexity of solving these instances would be
of the order of 2?0 as against 21990 which is what a naive worst case analysis would predict.

Secondly, it is evident from all six plots that the cut-width is a slowly growing

function of the circuit size. To ascertain the precise functional nature of the growth we
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Circuit Set | az +b | av/z+ b az® (b) alogz +b |
MCNC91 | 9.060 4.982 | 5.013(0.425) 4.085
ISCAS85 | 2.930 2.467 | 2.015(0.339) 2.015
19 family | 1.447 | 1.273 | 1.202(0.216) | 0.984
i4 family | 0.573 0.476 | 0.445(0.244) 0.429

cml62a
family | 2363 | 1969 | 1861(0.209) | 1.727
cmlb3a | 004 | 0936 |0.865(0.298) | 0.812
family

Table 4.1: Sum of squared errors for various functional fits on each data set (Normalized
by a factor of 10°)

performed curve-fitting on the six data sets. While there is no provably correct procedure
of determining the precise functional nature of a set of data, the accepted practice [MeyTs,

Ric95] consists of the following two-step procedure:

1. A candidate distribution (say f(z)) is chosen, based on a combination of visual in-

spection of plotted data and theoretical prediction.

2. The exact parameters of f(z) for the given data are determined by performing a fit
based on the Least Squares Error [Mey75]. Alternatives to the least squares metric

are known but the least squares error method is by far the most popular one.

In case there are multiple candidates for functions suiting the data the best func-
tional fit can be found by comparing the squared error value of the best fit for each of the
candidate functions.

In conformity with this procedure, we used a least-squares method [Mey75] to fit
four different functions to each of the six data sets: linear (f(z) = ax + b), square-root
(#(z) = a/z + b), power (f(x) = az®) and logarithmic (f(x) = alog(z) + b) curves, where
f(x) denotes the cut-width and z is the number of nodes. A super-linear function can
be ruled out since, by definition, cut-width can be no larger than the size of the circuit.
The squared-error for the four functional fits is listed in Table 4.1. Of the four curves, the
log curve gives the smallest square error for all six benchmark sets; the best-fit log curves
are shown in the figures. These plots suggest that the cut-width is indeed a logarithmic
function of circuit size for these circuits, and so we can expect these benchmarks to be easily
testable. This agrees with the empirical results from TEGUS (Figure 4.1).
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The functional fit depicted by the above plots is fairly convincing, especially con-
sidering the following noise sources which might be present. First, we are attempting to
fit discrete data to a continuous function. Hence, there would be some noise on account of
truncation errors.

Second, since the datapoints come from different circuits it is conceivable that
they in fact lie on a family of related curves rather than a single curve. Thus, there would
be a normalization error when we try to fit the data to a single curve. An effort has been
made to partially mitigate this effect by working with sets of circuits with similar topology.
However, this effect still surfaces in some cases where the plots appear to give the semblance
of a family of curves rather than a single curve. Another way to correct for this error could
be use a normalization scheme on the data, before curve-fitting. We have experimented
with a few simple normalization schemes. The results of one such scheme on the ISCAS
and MCNC cut-width data sets of Figures 4.12(a) and 4.12(b) is shown in Figures 4.15(a)
and 4.15(b). Here, the cut-widths from each circuit are normalized with respect to the
maximum saturation cut-width value obtained from that circuit. This scheme does appear
to partly correct the normalization error for these plots, but it is not as effective in the case
of the synthetic circuits. In some cases the effect of these errors can be strong enough to
completely mask out any kind of pattern in the cut-width data. Such is the case with the
ISCAS89 sequential circuits which we tried to analyze. We have therefore omitted those
results from this study.

In a nutshell, since curve fitting procedures have traditionally not been applied
to the application at hand, i.e. for the asymptotic complexity analysis of a combinatorial
algorithm they are not tuned to deal with these problems. In principle, these techniques
could be adapted and tuned to further sharpen the curve fit and the conclusions we have
tried to derive above. However, such an effort would require some research into curve fitting
techniques per se, which is beyond the scope of the analysis presented here.

In any case, the growth of the cut-width is definitely sub-linear with the size of
the circuit. The value of the exponent, b of the power curve fit (recorded in parentheses
in Table 4.1), which consistently assumes a value between 0.2 — 0.35 (i.e. less than 1) for
all six sets of data, further buttresses this fact. Thus, while the logarithmic nature of the
cut-width growth provably gives a polynomial runtime for ATPG (Theorem 4.7) from an
asymptotic complexity standpoint, in practice the slow growth of cut-width is sufficient to

ensure that the complexity of ATPG on typical circuits grows sub-exponentially with the
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size of the problem.

4.5 BDDs and CIRCUIT-SAT

The concept of circuit-width has been used by researchers [Ber91, McM92] to
obtain upper bounds on the size of BDDs representing the circuit function. At first glance
our treatment of circuit cut-width would seem to bear a striking similarity to these results.
However, our results have no direct relationship to the BDD bounds. We discuss this aspect
in some detail below and conclude that neither result subsumes the other, each useful in its
own domain.

Binary decision diagrams (BDDs) and CNF Boolean formulas are both represen-
tations of Boolean functions. Solving CIRCUIT-SAT on a Boolean circuit C could be done
by building a BDD for the circuit and doing a “0” check on the BDD. Alternatively, one
can construct a CNF Boolean formula ¢(C) and solve satisfiability on the formula using
a backtracking algorithm. In essence, a BDD and a backtracking tree represent the same
entity, i.e. the Boolean space of the function.

Berman [Ber91] gave a bound on the BDD size, for any topological ordering of the
circuit elements. This result was extended by McMillan [McM92] for arbitrary orderings.
McMillan’s result can be summarized as follows. Given a single-output circuit C, with n
inputs, if the elements of C can be linearly ordered such that over all cross-sections of the
linear arrangement, w; (forward width) bounds the number of wires running in the forward
direction and w, (reverse width) bounds the number of wires in the reverse direction, then
the size of the BDD representing the output of C can be upper bounded by n2*/ 2% This
result differs from the result presented in this paper on two counts.

e Our definition of circuit cut-width is independent of the direction of signal-flow (our
characterization of width is on an undirected hypergraph) and thus substantially dif-

ferent from wy and w, in an operational sense.

o The above result is exponential in the forwerd width and double-exponential in the
reverse width, while our result has only a single exponential. We exploit this property
in defining the class of log-bounded-width circuits.

The explanation for these discrepancies lies in the following differences between
BDDs and CIRCUIT-SAT formulas. BDDs represent the intrinsic nature of a Boolean func-
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tion, independent of the specific hardware implementation, while CIRCUIT-SAT formulas
(as per the construction of Section 4.1) are in one to one correspondence with the circuit
topology. The result of [McM92] bounds the BDD size by bounding the number of possible
multi-output functions that a certain sub-circuit of the original circuit could compute. Our
proof technique however, treats the SAT formula as a string encoding the circuit topology
and tries to bound the number of distinct sub-strings that can be generated from a par-
tial truth assignment to the CIRCUIT-SAT variables. Therefore, the two results, although

similar in spirit, characterize different entities altogether.

4.6 Conclusions

We have presented a worst case complexity analysis for a SAT based formulation
of the combinational ATPG problem which accounts for salient characteristics of problem
instances encountered in real life. Incidentally, this work is also one of the first attempts at
reconciling the theoretical, worst case complexity of combinational ATPG with the relative
ease with which practical instances of it are solved. For the purpose of analysis we have
employed the SAT based ATPG formulation proposed by Larrabee [Lar92], with a caching
based variant of simple backtracking (see Section 4.3) used to model the SAT solver.

Under this model of the algorithm the complexity of ATPG on a given circuit has
been characterized in terms of a topological property of the circuit, namely the undirected
circuit cut-width. Theoretical arguments and experimental results confirm that this property
can be used to predict polynomial runtimes of ATPG, for a wide range of practical VLSI
circuits.

Specifically, this analysis has been used to define a class of circuits called log-
bounded-width circuits which we have shown to be efficiently testable. Additionally, this
class of circuits has been shown to subsume the class of k-bounded circuits. Our exper-
iments on a wide range of benchmark and generated circuits show that they exhibit the
log-bounded-width property. On an intuitive level the log-bounded-width property essen-
tially captures the “treeness” of the circuit. As long as a circuit has limited reconvergence
(not necessarily local reconvergence), the log-bounded-width property can be expected to
apply.

Practical ATPG engines [SBSV96, Lar92] employ a host of other search pruning

techniques to reduce complexity, such as random test pattern generation etc. [ABF95], and
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in some cases these techniques do bring about substantial reduction in complexity. The
benchmark C6288 from the ISCAS85 suite is a notable example which has a large cut-width
but is efficiently testable through random test pattern generation. However, such cases are
more the exception than the rule and a cut-width based argument is much more generally
applicable and can single handedly account for the tractability of ATPG on a wide range of
real-life instances. Nevertheless, the presented analysis can be improved by including more
algorithmic features of ATPG and SAT tools in the algorithm model used for the analysis.
It is noteworthy that although the present analysis is aimed at the combinational
ATPG problem, the notion of cut-width and its use in analyzing the complexity of a
CIRCUIT-SAT based problem formulation is not endemic to the current problem. The
same analysis framework can potentially be modified to apply to other EDA problems.
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Chapter 5

SAT-Based Combinational
Equivalence Checking

Combinational equivalence checking (CEC) is one of the most of widely used formal
techniques in the verification of digital circuits. While, theoretically the problem is co-NP
Hard, practical instances of the problem are more tractable. Current design methodology
ensures that the two combinational circuits being checked for equivalence have a fair degree
of structural and functional similarity [BT89]. In recent years several approaches to CEC
have been proposed which exploit the above property. While these techniques have signif-
icantly advanced the state of the art in CEC, the inherent complexity of the problem and

the growing size and complexity of digital systems continues to motivate further research.

Most of the successful programs for CEC use a combination of various engines,
with Binary Decision Diagrams (BDDs) [Bry86] as the main workhorse. Although a few
of the proposed approaches use Boolean Satisfiability (SAT) [MSG99] or SAT-like engines
(viz. ATPG methods [Bra93|, recursive learning [Kun93]) as the principal engine, these
methods have not become popular. Consequently, the use of SAT in current CEC is largely
ancillary to BDDs; e.g. it is used to eliminate false negatives or to choose candidate pairs
for deducing intermediate relationships [BS98].

The work presented in this chapter makes a case for the use of SAT methods
in CEC. There are several reasons for pursuing this line of research. First, there have
been significant advances in SAT algorithms [St3, MSS99, MMZ*01]. Second, while it has

been claimed that BDDs are relatively more efficient for CEC, neither has a quantitative
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comparison been published nor the reasons for the purported inefficiency of SAT algorithms
analyzed in detail. Third, as discussed in more detail in Section 5.3, SAT algorithms have
several inherent features which BDDs lack, that can potentially make them a more flexible
and robust core technology for this application. This raises the following questions:

e Is the perceived inefficiency of SAT algorithms in CEC a necessary consequence of the
use of SAT algorithms per se, or is it an artifact of the particular SAT algorithm and

the way it was used in the CEC framework?

e Is it possible to bridge the efficiency gap between SAT-based and BDD-based CEC -
tools by using more sophisticated SAT algorithms currently available and/or by fine-

tuning the implementation of the tool'?

This research addresses these questions. The main contributions of the work pre-

sented here can be summarized as follows:

o We present a detailed analysis of the features of SAT algorithms and BDDs in the
context of CEC to argue that SAT based algorithms can be a more flexible and robust
core technology in this application.

e We present a simple CEC framework drawing from a number of previously proposed
CEC methodologies [Bra93, BS98, vE97] as well as our own insights into applying
SAT for CEC. SAT algorithms form the core engine of this approach.

e We make a direct quantitative comparison between a preliminary implementation of
the proposed CEC framework and a state-of-the-art BDD-based, mixed-engine tool
for CEC [BS98], and assess the performance gap between BDD-based and SAT-based
checkers.

e We offer insights into several avenues for improving the performance of the above
SAT based tool. In our opinion, with these enhancements, the proposed SAT-based
checker has the potential to outperform state-of-the-art BDD-based CEC tools.

The experiments reported in Section 5.5 show that our checker outperforms state-
of-the-art SAT-based CEC methods by over two orders of magnitude. Moreover, even the

1BDD-based tools draw upon over a decade of research in variable ordering and efficient implementation,
as well as highly tuned implementations of CEC packages, while precious little has been done in these
respects for SAT in CEC.
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current prototype implementation is only moderately slower (a factor of 2-3) and sometimes
faster than state-of-the-art BDD-based mixed-engine checkers. This work is presented as
a proof of concept to show how SAT-based techniques can effectively remedy the inherent
problems associated with BDD-based methods. We advocate that once suitably tuned and
applied, SAT-based techniques can more actively complement and even replace BDDs in
CEC while significantly advancing the state-of-the-art in this area.

The rest of the chapter is organized as follows. Section 5.1 reviews the CEC
problem and the modern view of a general framework to solve it in a practical setting.
Section 5.2 briefly discusses previous efforts in the areas of BDD-based and SAT-based CEC.
In Section 5.3 we provide arguments and illustrations to show how SAT-based methods can
potentially be a more flexible and robust tool for Boolean reasoning in CEC. Section 5.4
describes our proposed SAT-based CEC framework. Experimental results comparing our
method with several existing SAT-based CEC tools as well as a state-of-the-art BDD-based
mixed engine CEC tool are presented in Section 5.5. Section 5.6 concludes the chapter
with a discussion of several avenues for improving the performance of the proposed CEC

framework.

5.1 The Combinational Equivalence Checking Problem

Let C; and C; be two combinational logic circuits with the same set of primary
inputs, denoted by I = 4;,13, .. .1n, each having a single primary output (assumed for ease
of exposition), denoted by o, and o; respectively. The combinational equivalence checking
(CEC) problem or combinational verification problem over C; and C: is to determine if
both circuits implement the same logic function i.e. if for each of the 2" Boolean value
assignments to inputs I, o; and oz evaluate to the same logic value.

Although in general this problem is co-NP Hard, in practice the circuits C; and
C, exhibit a fair degree of structural and functional similarity [BT89]. In recent years,
this property has been exploited to develop powerful engines for combinational equivalence
checking [BT89, Bra93, BS98, KK97, Kun93, MSG99, Mat96, PK00]. Most of these ap-
proaches operate under the following general framework.

The similarity between the two circuits is exploited to deduce specific succinct
relationships (equivalences, implications, replacability relationships) between internal nodes
(called cutpoints [KK97]) of the two circuits being checked for equivalence. Using these
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relationships the overall equivalence check is performed as a set of smaller equivalence
checks. Briefly, a cutpoint is an internal node of one circuit that is proven to be related
to one or more internal nodes of the other circuit through a specific succinct relationship
(usually equivalence or equivalence modulo inversion). The algorithm proceeds by sweeping
the two circuits (or the miter [Bra93]) from inputs to outputs, deducing new cutpoints
from previously deduced cutpoints, until the primary outputs are proved equivalent or a
miscomparing pattern is found. The algorithm maintains a cut or frontier of cutpoints
deduced thus far. This is used as a basis for deducing further cutpoints. Negatives (either
false or true) encountered during this process, as a result of functional constraints between
internal circuit nodes, are resolved by attempting to justify them towards the primary

inputs.

Overall, this methodology comprises a Deduction Engine to derive internal node
relationships and a Justification Engine which eliminates false negatives or identifies true
negatives. A negative is a witness assignment to a set of existing cut-points z1,Z2,...Zk
used to disprove the existence of a cut-point relationship (e.g. equivalence) between a pair
of potential new cut-points. A false negative is a negative which cannot be justified back
to the primary inputs i.e. there does not exist a primary input assignment under which
the signal nodes z1,z2, ...z} assume the witness assignment claimed by the negative. The
false negative problem assumes great importance in the context of the above methodology
where the algorithm lacks a global view of the circuits when attempting to deduce new
cutpoints. In practice considerable resources of the algorithm are devoted to efficiently

resolving potential false negatives.

The following exposition will be with respect to cut-point methods based on de-
ducing equivalences. Thus the cut or cut-point frontier will be referred to as an equivalence
cut and denoted by 8. Note that an equivalence cut carries a topological interpretation in
terms of C; and C; (it partitions the inputs of C; and C; from their outputs) as well a set
interpretation (it is a set of variables forming the physical cut in the circuits Cy and C).
In the following we use both these interpretations interchangeably. The equivalence cut is

also irredundant in the sense that no proper subset of it forms a cut over C; and C;.
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5.2 Previous Approaches

As described in Section 5.1 a typical cut-point based method is composed of a
deduction engine and a justification engine. In many of the proposed works on CEC [JMF95,
KK97, Mat96], BDDs are used in both the deduction engine as well as the justification
engine. Recently, Burch and Singhal [BS98] proposed a methodology where BDDs are
the primary deduction engine as well as part of the justification engine. Randomized SAT
algorithms, modiﬁed to work off the BDDs are used to supplement BDD based justification.
Paruthi and Kuehlmann [PKO00] proposed a tighter integration of BDDs and SAT based
methods for CEC using an interleaved combination of BDDs and a SAT solver as the
deduction engine. However, BDDs continue to be a major part of their deduction engine.
Moreover their method of using the SAT solver in the overall flow is fairly orthogonal to

our proposed approach.

There have been a few attempts to use SAT based algorithms to perform the
entire equivalence check. Brand [Bra93] proposed a cutpoint based methodology based on
replacability relationships which were derived using an ATPG tool. HANNIBAL [Kun93]
used recursive learning to derive implications which were then used by an ATPG tool to
perform the equivalence check. Marques-Silva et al. [MSeS99] proposed using a recursive
learning based pre-processor to derive equivalence relationships which are subsequently used
by a general purpose SAT solver to perform the verification task. While these methods
offer an innovative alternative to BDD-based methods, they have not become the method
of choice for CEC; generally it is believed that SAT-based methods are not as efficient as
BDD-based methods. However, we believe that this is not a necessary consequence of using
SAT methods vs. BDDs but rather a result of the specific SAT algorithms used and the way
they have been applied in the overall methodology. This work is an attempt to validate this

claim.

A number of other approaches addressing the CEC problem have appeared in the
literature. However, they have been omitted from the above survey since they are not
directly relevant to the focus of this research, which is the application of SAT methods to
CEC. The interested reader is referred to [BS98, JNFSV97] for more detailed surveys on
other CEC approaches.
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5.3 SAT Vs. BDDs in CEC

As described in Section 5.2, BDDs have been successfully used as the core equiva-
lence deduction engine in a number of programs for CEC [BS98, KK97, Mat96]. The reason
for this success is the ability of BDDs to compactly represent the complete Boolean space
of reasonably large functions (variable support of up to 15-20 variables or even greater).

However, SAT algorithms have an inherent advantage over BDDs in Boolean rea-
soning, under a given set of constraints. BDDs have no means of performing Boolean
constraint propagation (BCP), a feature that is integral to all branch and bound based SAT
solvers. Since branching based SAT solvers explore each assignment to the variables of the
formula one by one, BCP or “examining the logical consequences of each assignment”, is
a natural component of such algorithms. Thus, such an algorithm can actually work with
(branch on) only a small portion of the given Boolean variables while still being able to
examine the logical consequences of this branching on the remaining variables at a negligible
additional expense (the expense of BCP). On the other hand, BDDs work by constructing
a representation of the entire Boolean space of a specified set of output variables, in terms
of a specified set of input variables. The only way to introduce additional variables is to
explicitly construct BDDs of those functions as well and connect them to the existing BDDs
by some logical operation, viz. conjunction or existential quantification. For the current
application i.e. CEC, this single feature gives a SAT-based algorithm several operational
advantages. Properly harnessed, these can translate into significant gains in the overall

efficiency and robustness of the tool. Some of these are discussed below.

5.3.1 Locality and robustness of cutpoint resolution

In order to deduce an internal equivalence z = z' a typical BDD based deduction
engine has to build BDDs of z and z’ in terms of a common set of cutpoints (Y,Y?) such
that z(Y) = #/(Y*). To determine a suitable set (Y,Y") such methods [BS98, Mat96, VE97)
resort to a host of heuristics to resolve cutpoints backwards until a suitable cut is found.
Such an approach is inherently unrobust since there is no good criterion to determine the
“right cut” to learn an equivalence from. Thus, often such an approach uses a set (Y,Y?)
much larger and farther away than needed to learn the equivalence. The key point is that
the inability to learn z = z’ from a given cut (Y,Y”) is due to the presence of certain false

negatives on this cut. Often it is possible to resolve these through local BCP or a fairly
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Figure 5.1: False Negatives can be resolved by local BCP

“local branch and bound search” by a SAT algorithm.

Example 5.1 Consider the circuit of Figure 5.1 where the signals y and y' are not equiva-
lent in terms of the cut § = {z,z}, w1, w2, w3 but are actually globally equivalent in terms of
the signals wy, we, w3?. The miscomparing patterns (e.g. z=2' = 1,w; =0,ws = 1, w3 =
1) can be easily resolved by a SAT procedure through local BCP, while operating from the
cut 6, but a BDD based approach operating in terms of the same cut would not be able to

deduce the equivalence of y=1vy'.

5.3.2 Use of previously deduced equivalences

To the best of our knowledge all cutpoint based methods immediately merge nodes
that are deduced as equivalent. With BDD based methods there is probably no benefit in
doing otherwise. However, with SAT based methods it is possible to simply add the deduced
equivalence as a clause or constraint to the overall formula without merging the two nodes
and benefit from this.

3Such a situation is frequently produced by simple operations such as factoring and re-substitution in
logic optimization.
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Cut 6 . -~

-------

Unobservable combination §(z)

Figure 5.2: Previously deduced equivalences as shallow witnesses of false negatives

Example 5.2 Consider the example of Figure 5.2 where the current cutpoint frontier &
has an unobservable or false negative assignment 8(z) which blocks learning equivalences
z =2z as well as y =y from the cut §. Once we have ezpended some branching effort in
backjustifying this false negative for learning z = z' we can add in z = ' as a local witness
of §(z) (and not merge z,z') so that when trying to learn y = Y this false negative can be

justified with no branching effort (since this assignment will immediately violate z = ' ).

The same reasoning applies to not merging equivalences behind the current equivalence cut
so that they can be used as shallow witnesses of unobservable assignments when trying to

backjustify false negatives towards the primary inputs.

5.3.3 Learning more general relationships

In almost all BDD based cutpoint methods the notion of cutpoints corresponds
to equivalence relationships (or equivalence modulo inversion) in terms of the circuit pri-
mary inputs. Such relationships can be naturally obtained by BDD pointer comparisons.
However, using SAT methods it is possible to work with a much more general notion of
cutpoints. One such generalization [Bra93] proposed the notion of replacability of gates
where z can be replaced with y iff on replacing z with the gate z = z @ y there does not
exist a test for the stuck-at-0 fault at the output of z. This and a number of other variations
of this notion can be realized by slightly modifying the SAT problem posed to the solver.

However, for simplicity we have chosen not to exercise this degree of freedom in this work.
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5.4 Proposed Methodology

Our overall framework is similar to most cutpoint based methods as described in
Section 5.1. The key difference is that we use SAT procedures alone to accomplish both
the deduction and the justification phases. As in [KK97] the two circuits to be checked
for equivalence are decomposed into a network of two-input AND gates, allowing inversions
on the edges. This decomposed network is used as the base data-structure. Currently, the
deduction procedure is restricted to deducing equivalences (z = y) and equivalences modulo
complementation (z = 7). All deduced relationships are tagged onto the respective gates.

Our methodology is implemented through a combination of two SAT engines which
work in tandem in an interleaved fashion. The first engine is an inexpensive, DPLL based
engine designed to catch most of the “easy to prove” equivalences in the vicinity of the
equivalence cut. The second engine uses a more advanced general purpose SAT solver (in
our case the GRASP [MSS99] solver) to deduce the relatively more difficult equivalences.
The two engines are described below.

5.4.1 Segment sweeping based deduction

This engine is designed to catch all equivalence pairs (z, ') such that the combined
support of z and z' in terms of the current equivalence cut, J is less than some specified
parameter k. The intuition behind this engine is similar to motivation of the node hashing
scheme [KK97]. It is roughly analogous to building BDDs, in terms of the current cut, of all
those nodes whose support size (in terms of §) is less than k and deducing all equivalences
that can be deduced from these BDDs. However, for reasons discussed in Section 5.3 our
method is much more powerful than either the BDD schemes or hashing, even if the hashing
is generalized on the lines of [KGP01].

Let & denote the cutpoint frontier. A segment § of this cut is a subset of cutpoints
(as well as their equivalent counterparts) of d. Let Base(f) denote all those gates (variables),
in the transitive fanout of the cut § in circuits C; and Ca, whose support in terms of J is
a subset of 8. Consider a pair of variables z,2’ € Base(8). The equivalence deduction
procedure is based on the following principle. Under each assignment to the variable of
B, each variable of Base(8) takes a Boolean value (0 or 1). If z and z’ assume the same
Boolean value under each of these 214! assignments, then = z’ globally, i.e. in terms of
the primary inputs. Similarly, if z # =’ (globally) then the following result follows.
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Proposition 5.1 Given segment B of cut § and two variables x,x’ € Base(B), if z # z’

(globally) then there ezists a Boolean value assignment Ag to the variables of B such that
z| a7 2’| 4p-
In fact this proposition can be further strengthened as follows.

Proposition 5.2 Given segment B of cut § and two variables z,z’ € Base(f), if x # 2’
(globally) then there ezists a Boolean value assignment Ag to the variables of B and an

assignment Ap to the primary inputs I such that Bla,= Ag and z|4,# ' | ag-

Based on Proposition 5.1 equivalence relationships are deduced by constructing
and manipulating equivalence classes as follows. Given a segment 3 of cut § the variables
Base(B) are first put into a single class, I. Then each of the 218l assignments to 8 is explored
one by one with the associated values of the variables Base(8) under each assignment, using
Boolean value propagation through the circuits. Suppose under the first assignment to 3,
variables I'; evaluate to 1 whereas variables I'y evaluate to 0, where I'g,I'y C T, ToUT'; =T
and Ty NT; = @. Then the class I' is split into two sub-classes, I'g and I';. This process is
repeated for each current class, after each assignment (and value propagation) to 5. After
exploring all 28! assignments to the segment, if two variables = and 2’ lie in a common
class, it follows from Proposition 5.1 that z = z’ holds globally.

Using the result of Proposition 5.2 the above strategy can be improved consid-
erably. First, when branching on the segment variables (i.e. exploring the 218l possible
assignments to segment variables) complete Boolean value propagation is done after each
variable assignment. The propagation is carried both in front of and behind the cut, using
the functional gate level circuit description as well as all previously deduced equivalence re-
lationships. The current branch is terminated as soon a conflict is encountered. Secondly,
the classes are split if and only if the branching doesn’t terminafe in a conflict. The above
deduction procedure based on branching on a single segment and splitting classes is called
a segment deduction run.

Given the current cut, J, the local deduction of equivalences is accomplished
through a sequence of segment deduction runs, each with a new segment § drawn from
the current cut J. At the end of these runs we can informally guarantee that all equiva-
lences, deducible from the current cut and within a certain neighborhood of it, have been
deduced. In our experiments a segment size of 5 provided a good compromise between

deduction power and efficiency.
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5.4.2 Global hypothesis based deduction

While the above procedure works fairly well in regions of the circuit where equiv-
alences are abundant and densely scattered, it cannot be generalized to handle all equiva-

lences for the following reasons:

e The distribution of equivalences is highly non-uniform for difficult verification in-
stances. Hence it is impossible to determine a good value of the segment size a priori,
in the absence of which the algorithm does a lot of wasted work.

e In some cases, especially arithmetic circuits, missing even a few equivalences can make

an appreciable difference in the difficulty of the remaining sub-problem.

We concur with the view of [BS98] on the issue that for more difficult equivalences
one needs a robust approach to generate candidate pairs of cut-points to verify (we refer to
these as global hypotheses) and a robust mechanism for verifying these pairs that does not
work off a preset hard threshold on the amount of effort to invest in verifying a particular
pair.

Our framework for global hypothesis generation and proving, draws on techniques
in [Bra93, BS98, vE97] and is similar to the one used in [BS98]. The key difference is that
a single SAT algorithm is used both for proving equivalent pairs as well as identifying true
negatives®. The algorithm pseudo code is shown in Algorithm 5.1.

The GeneratelnitGlobalHypothesisClasses routine picks up all nodes in the
transitive fanout of the current equivalence cut and clusters them into Global Hypothesis
Classes by running 32-bit parallel simulation on the circuit. Nodes with identical signatures
under this simulation lie in the same global hypothesis class. The simulation can be per-
formed with purely random vectors or any other “interesting” set of vectors. This function
is used only when global equivalence deduction is invoked for the first time.

ChooseHypothesis selects a pair of nodes, 1,2, belonging to the two circuits
from a global hypothesis class, such that the pair is topologically closest to the current
equivalence cut. This hypothesis is resolved by invoking a SAT solver on the formula
denoting xy ®z2. All previously deduced equivalences are part of this formula. If the formula
is unsatisfiable then z; = z2. Thus all previously deduced equivalences currently tagged

3(BS98] used BDDs for the proving equivalences and heuristically combined it with a randomized SAT
algorithm implemented on the BDDs to identify some of the true negatives.
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Algorithm 5.1 Global Hypothesis Deduction
GeneratelnitGlobalHypothesisClasses

while Outputs Unresolved & Not Deduced Sufficient New Equivs. do
(%1, z2) = ChooseHypothesis

Status = ResolveHypothesis(z1, z2)
if Status = “TRUE_NEGATIVE” then
RefineGlobalHypothesisClasses
if Outputs in different classes then
return UNEQUAL, test
end if
else
MergeEquivClasses(z1, T2)
if Outputs in the same EquivClass then
return EQUAL
end if
end if
end while

onto z; and z, are merged (routine MergeEquivClasses). If the formula is satisfiable,
the solution returned provides a vector to simulate and refine i.e. to split the current global
hypothesis classes (routine RefineGlobalHypothesisClasses).

This process iterates until the primary outputs are resolved or a certain number
(a parameter to the algorithm) of new cutpoints are deduced. If the primary outputs are
deduced as inequivalent, the algorithm returns a witness vector (test in Algorithm 5.1)

under which the outputs assume different values.

5.4.3 Overall Algorithm

The overall algorithm alternately invokes segment sweeping based deduction and
global hypothesis based deduction, switching from one to the other using the following
heuristic. The algorithm is initiated by applying segment sweeping on the initial cut, which
is the set of common primary inputs I for the two circuits. If the segment sweeping runs from
the current cut yield new equivalences, the equivalence cut is advanced by incorporating

the new equivalences and segment sweeping is reinvoked on this new cut. This process is
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iterated until segment sweeping from the current cut reveals no new equivalences.

At this stage the algorithm switches to global hypothesis based deduction, resolv-
ing candidate pairs until the primary outputs are resolved or a pre-specified number of new
cutpoints are deduced. The cut is advanced to include the new equivalences and segment
sweeping is again invoked from the new cut.

Note that the global hypothesis classes maintained and manipulated by the global
hypothesis deduction engine are different from the equivalence classes created and subse-
quently discarded in each segment deduction run. New equivalences deduced through seg-
ment sweeping are removed from the global hypothesis classes. Thus, equivalences deduced

by segment sweeping are never taken up for resolution by global hypothesis deduction.

5.5 Experimental Results

This section presents experimental results based on a preliminary implementation
of the proposed methodology for SAT based CEC. It has been implemented in C and
uses the GRASP SAT solver [MSS99] for the global hypothesis based deduction phase
(Section 5.4.2). Our experiments were run on a Sun Ultra Sparc-1 with 256 Mbytes of
memory. The current interface to GRASP is through files* but the reported runtimes do
not include the file I/O times since this can be removed easily through a better integration
of the tools. As mentioned earlier, the main objective is to present a realistic assessment
of a SAT based CEC tool, rather than to present an optimized and complete equivalence
checker.

We present two sets of results. The first compares our method against four tools
which in our opinion represent the state of the art in SAT based combinational equivalence
checking.

1. RL_.GRASP [MSG99] : An implementation of GRASP augmented with Recursive
Learning [KS97).

2. RL.CGRASP [MSeS99] : An implementation of GRASP augmented with Re-

cursive Learning as well a framework for exploiting circuit topology.

3. HANNIBAL [Kun93] : A CEC tool using Recursive Learning and a test generator.

4GRASP is written in C+-+ whereas our tool is in C.
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Circuit | RL.GRASP | RL_.CGRASP | HANNIBAL | Implication Graph Our Method
(secs) (secs) (secs) (secs) (secs)
C432 2.8 3.6 3 1.3 0.7
C499 6.8 8.8 6 14 1.17
C1355 18.0 27.4 19 7.0 2.37
C1908 94.8 153.0 26 19.5 3.87
C2670 56.4 74.6 231 24.1 4.46
C3540 4006 2560 2057 791.0 38.94
C5315 445.4 476.6 797 334 6.96
C6288 109.6 43.6 48 8.9 5.04
C7552 2124 2868 4724 570.1 23.11

Table 5.1: Verifying original vs. irredundant circuits

4. Implication Graph based method [TGH97]: Presents a tuned and optimized
implementation of a backtracking SAT algorithm that employs some elements of non-
local implications and recursive learning. The algorithms are implemented on a spe-

cialized data-structure called the implication graph.

The comparative results presented in Table 5.1 show the results of verifying the
ISCAS’85 benchmarks against their irredundant versions. These benchmarks are relatively
easy instances of combinational verification. They are also the only common set of bench-
marks on which the above tools have reported results.The results of RL_.CGRASP were
obtained by running the publicly available version of the tool on our machine, using opti-
mized settings which the authors [MSeS99)] kindly provided. Since RL_.GRASP was not
available we used the runtime numbers from [MSG99] appropriately scaling for architec-
tural differences. The results for HANNIBAL are the original numbers from the paper
[Kun93] since we were unable to find suitable scaling data for the Sparc ELC station used
by the authors in those experiments. The results of [TGH97] are the numbers from the
original paper reported on a DEC Alpha Station 250%/266, which is a machine comparable
in performance to our own. Although, a direct exact value to value comparison is neither
fair nor intended, the results of Table 5.1 clearly demonstrate that our method consistently
outperforms all the other techniques. Especially noteworthy is the fact that on the three
hardest instances of the set, namely C6315, C3540 and C7552 our method outperforms all
the other methods by over two orders of magnitude.

The second set of results provide a comparison on a much more difficult set
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Circuit | Mixed Engine [BS98] | Our Method
(secs) (secs)
C432 - 2.14
C499 - 0.92
C1355 - 11
C1908 - 5.90
C2670 3.5 4.93
C3540 25.7 20.98
C5315 5.3 27.45
C6288 12.1 14.52
C7552 12.7 35.18

Table 5.2: Verifying original vs. optimized circuits

of instances with a state-of-the-art BDD based mixed engine combinational equivalence
checker [BS98]. Table 5.2 reports results on verifying some of the MCNC91 circuits against
a version optimized by a general purpose logic optimization script, script.rugged from
SIS [S*92]. The results of [BS98] are reported on the same machine as ours. It is note-
worthy that even with our current untuned and prototype implementation our runtimes are
mostly comparable to that of [BS98], sometimes a factor of 2-3 slower. However C3540 is
an example where our algorithm is faster. Interestingly enough, this is an example with
a fairly non-uniform distribution of cut-points, some of which are fairly hard to deduce.
Although we believe the runtime discrepancy can be easily made up and in fact bettered
by the improvements listed in Section 5.6, we chose not to produce a commercial tool, but

to pursue other directions of research.

5.6 Conclusions and Future Directions

We revisited the application of Satisfiability (SAT') algorithms to CEC and argued
the case for SAT as a more robust and flexible engine of Boolean reasoning than BDDs. We
presented a simple framework for SAT-based CEC and reported results on a preliminary
implementation. The results show a speedup of up to two orders of magnitude compared
to state-of-the-art SAT-based methods for CEC. They also demonstrate that this simple
algorithm and untuned prototype implementation is only moderately slower and sometimes

faster than a state-of-the-art BDD-based mixed-engine commercial CEC tool.
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There are several avenues for improvement of the current algorithm and imple-

mentation:

e Variable ordering in the SAT solver: It is well known that variable ordering
can affect the performance of SAT solvers, tremendously®. Currently, we have exper-
imented with only a few static variable ordering schemes with GRASP. More experi-

mentation in this direction could provide substantial speedups.

e Better implementation of our CEC framework: The current data-structure
and routines are designed for flexibility of rapid algorithm prototyping rather than
optimality of the specific proposed framework. Once rewritten and tuned for efficiency,
these could easily speed up the time spent outside the calls to the SAT solver at least
by a factor of 2-5. This time contributes 30-70% of the overall reported time.

e More effective use of Initial Vector Simulation: Currently the 32-bit parallel
vector simulation, used for pruning the hypothesis set, works with randomly generated
vectors. However, simulating a more intelligent set of vectors could substantially
decrease the number of calls to the SAT solver and boost performance proportionally.
One idea to do this is to make use of test vectors that are routinely generated for
simulating designs, during the design process. These could be “interesting” vectors
proposed by the designer or the ATPG test set for one or both of the circuits being
checked.

e Sharing effort between individual hypothesis checks: One of the reasons for
the efficiency of BDD based methods is their ability to re-use previous work by storing
part of the Boolean search space in the form of the BDD itself. While our current
method makes use of previously done work by storing and using deduced equivalences
as shallow witnesses of conflicts (Section 5.3), a more direct sharing of effort between
individual SAT calls, somewhat along the lines of [KMSS00a] could substantially

improve performance.

e Using an improved SAT solver: As research in SAT solvers produces better al-
gorithms and implementations, performance of the proposed framework will improve.
The Chaff SAT solver [MMZ101] proposed recently has been shown to outperform

Sjust as BDD variable ordering affects the size of BDDs
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most other solvers (including GRASP) by up to 1-2 orders of magnitude. Integrating
such a SAT solver into our framework should certainly enhance the performance of

our protofype.

SAT-based CEC methods merit further research and application based tuning be-
fore they can surpass almost a decade of research in BDD-based combinational verification.
The work presented in this chapter is an attempt to demonstrate the advantageous features

and the immense potential of SAT methods in a practical verification setting.
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Chapter 6

Using Problem Symmetry to

Reduce Search

Recent years have seen significant improvements in SAT solver technology [MSS99,
MMZ*01, Zha97]. Much of the success of SAT solvers in EDA can be attributed to these im-
provements. Almost all current leading edge SAT solvers use a backtracking algorithm based
on the classical Davis-Putnam-Logemann-Loveland procedure (DPLL) [DLL62] enhanced
with some form of non-chronological backtracking and conflict based learning [MSS99,
MMZ*01]. Efficient implementations of powerful search pruning techniques such as Boolean
constraint propagation, non-chronological backtracking and conflict based learning form the
computational backbone of most popular SAT solvers [MSS99, Zha97, BS97, MMZ101].
This chapter introduces and develops the notion of problem symmetry to formally charac-
terize and enhance the search space pruning of such a SAT solver.

The notion of problem symmetry stems from the simple observation that in certain
regions of the Boolean space the unsatisfiability of the given CNF can be established without
using a certain variable, say z. In other words, in this sub-space the CNF is symmetric
with respect to z (or this is a symmetric subspace with respect to z)!. In the context of a
backtracking based SAT algorithm this can be used as follows. Consider the backtracking
search tree shown in Figure 6.1. When exploring the left branch of branching variable z
(z = 0) the algorithm computes an (under) approximation of the symmetric sub-space (out
of the space explored under the branch z = 0) with respect to z (sub-space ©; in Figure 6.1)

1Note that this notion of symmetry is distinct from the often used notion of a Boolean function being
symmetric with respect to certain variables
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&

Conflicts witnessed

Figure 6.1: Illustration of Symmetry in Search

and in the right branch of z (z = 1) the counter-part of this symmetric sub-space (sub-space
©; in Figure 6.1) is pruned.

In this chapter we introduce and develop the notion of problem symmetry in search
based SAT algorithms. Further, we introduce the notion of essential points and use it
to develop a formal characterization of the potential search space pruning that can be
realized by exploiting problem symmetry. We show that many popular search pruning
techniques such as the pure-literal rule, non-chronological backtracking and conflict based
learning that are employed in leading-edge SAT solvers are in fact special cases of pruning
under the general theory of essential points. Thereby this work unifies these apparently
disparate techniques under a single framework and paves the way for discovering several
new pruning techniques. We also propose a new, simple and efficient pruning technique
called the supercubing rule, based on problem symmetry. Preliminary experimental results
demonstrate this to be effective in providing search space pruning over and above the
pruning afforded by existing techniques in SAT solvers.

This chapter is organized as follows. Section 6.1 presents some basic definitions and
notation used in the exposition. Section 6.2 illustrates the notion of problem symmetry with
a few examples. The theory of essential points and a formal characterization of problem
symmetry is developed in Section 6.3. Section 6.4 presents theoretical results showing
several popular pruning techniques used in SAT solvers to be special cases of the general
theory of essential points. In Section 6.5 we develop the supercubing rule. This is also
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a special case of problem symmetry based pruning but subsumes some existing pruning
techniques and is orthogonal to others. Section 6.6 presents preliminary experimental results
validating the efficacy of this rule. Conclusions and directions for future developments are

presented in Section 6.7.

6.1 Definitions & Notation

The following discussion is with respect to SAT instances expressed as conjunctive
normal form (CNF) formulas. Further, the underlying SAT algorithm used in the dis-
cussion will be the basic DPLL [DLL62] algorithm, augmented with some form of conflict
analysis, non-chronological backtracking and conflict clause recording [MSS99]. As discussed
earlier, this is representative of the SAT methods implemented in most leading edge SAT
solvers [MSS99, MMZ+01, Zha97].

The exposition will be based on the notational framework developed in Chapter 2
as well as the following. Let ! denote a literal of one of the variables V. lit(x) refers
to a literal of variable z i.e. lit(z) is either z or Z. ¢ refers to a minterm or point in
the 2" Boolean space of variables z1,Z2,... ,Zn. Note that a minterm 9 is a complete
Boolean assignment to the variables V. Further, a formula ¢ can be evaluated under this
assignment. In the following we will occasionally use a literal of a variable to refer to a
particular value assignment to the variable (e.g. (x = 0) = %) and a cube (minterm) to
refer to a partial(complete) value assignment to variables of V. A(z) refers to the current
assignment of variable z or alternatively the literal corresponding to that assignment.

From Section 2.4.1 wr(l) refers to the clause that was used to imply or deduce the
variable z. Extending this terminology, Z(w) will be used to denote the set of variables
whose literals appear in clause w and have been assigned values through BCP implications
from w or other clauses. D(w) will denote the set of variables whose literals appear in w

and have been assigned values through decision assignments.

As discussed in Section 2.6, a given conflict condition X may have several conflict
clauses that can be deduced from it. The particular clause or clauses deduced by a given SAT
algorithm depend on the specific version of the conflict analysis procedure implemented by
it. For the sake of concreteness we will use the following definition of Agr(X) in the sequel.

Consider the following recursive marking function M(w), which operates on a clause w and
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is defined as
M(w)=Dw)UIWw) |J Mwz(z)) (6.1)
z€Z(w)

Then V(X) = M(w(X)). Further V(X) can be split into disjoint subsets Vp(X) and
Vz(X) which are respectively the decision and implied variables comprising V' (X). The
clause wr(X) learned and recorded on conflict X' is defined as:

Ar(X) {A(z)|z € Vp(X)}
wr(®) = \/ 1 (6.2)

leAn(X)

Definition 6.1 (Unsatisfiability cube) Given a clouse w denote by U(w) the unsatisfi-
ability cube of w which is the set of minterms (assignments) which unsatisfy w, e.g. given

V= {z1,%2,23} and w = (z1 + T3), U(C) = {T1z273, T12273}-

Note that U(w) can also be interpreted as a cube of literals, @. For the above

example U(w) = T1Z2. In the following we use the two interpretations interchangeably.

6.2 Problem Symmetry in Search

The notion of problem symmetry was introduced and its potential in search space
pruning motivated briefly in the beginning of this chapter. In this Section we provide
two examples to buttress this understanding and illustrate that 1.) instances of problem
symmetry are plentiful in typical SAT instances arising from EDA applications and 2.)
current pruning techniques harness only a fraction (albeit inadvertently) of the potential
search space pruning afforded by problem symmetry.

Example 6.1 Consider the sub-circuit shown in Figure 6.2(a). Assume that this is part
of a larger circuit on which some SAT problem is being solved®. Here x is a primary input
of the circuit and the three gates shown are the only fanouts of z. Suppose the backtrack
tree ezplored by the SAT algorithm is of the form shown in Figure 6.2(b). Consider the
left branch (x = 1) of branching variable =. Suppose that under this branch the algorithm

subsequently makes the assignments w; = l,wz = 0 and w3 =1 (and potentially other

TWhat is meant here is that an appropriate CNF formula is extracted from the circuit and solved by a
SAT solver.
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wye =0
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(a) Example Sub-circuit (b) Backtrack Tree

Figure 6.2: Example of Symmetry in SAT on circuits

assignments as well) and reaches a sub-space ©1 (shown in Figure 6.2(b)). Note that in
sub-space O, the value of T is no longer relevant i.e. the formula is symmetric with respect
tozin ©,. Thus, if the algorithm finds sub-space ©1 unsatisfiable then it need not explore the
sub-space O, the counterpart of ©; under the branch z = 0, as that too will be unsatisfiable.

This is a simple and classical case of problem symmetry in SAT instances derived
from logic circuits. This case is not explicitly targeted by existing search pruning techniques,
so, sometimes such cases may not be effectively covered by existing techniques.

The next example is designed to illustrate that current implementations of conflict

clause recording exploit only a fraction of the search space pruning potentially afforded by
problem symmetry.

Example 6.2 Consider the following CNF formula.

¢ = F+z+w)F+z+w)ly+z+w)(y+2)([T+Z+D)
(y+24+T)(z+T+2+W)T+T+ 2+ D) (6.3)

A typical backtracking tree for solving this CNF is shown in Figure 6.3. The backtracking

algorithm employs conflict analysis, clause recording etc. The recorded clauses (as per the
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Figure 6.3: Example of Symmetry in backtrack search

specific scheme described in Section 6.1) are shown below each conflict. Also noted are the
set of decision assignments relevant to the conflict, derived through conflict analysis. An
analysis of the conflicts in the branch £ = 0 reveals that z was only relevant in conflict
X,. Alternatively, looking at conflict Xy it can be concluded that in the sub-space under the
branch ¢ = 0, = was used in a conflict only when y =1 and z = 0. The rest of the sub-space
under £ = 0 represents the symmetric sub-space with respect to z. Thus when ezploring the
right branch of z, i.e. £ = 1 we do not need to explore the sub-spacey = 0Vz = 1. Therefore,
on taking the branch x = 1 we can immediately assert y = 1 and z = 0. Note, that the
assertion b = 1 is also deduced by means of the recorded conflict clause (y). However,
derivation of the additional assignment z = 0 is made possible only by exploiting problem

symmetry more fully through the above analysis.

Note that the additional pruning realized in the above example is not an artifact
of the specific conflict clause recording mechanism used in this work and in this example.
Rather, it is a fundamental limitation of any practical implementation of conflict based
learning. Conflict based learning techniques typically record a small number (usually just
one) of implicates on each conflict. These recorded clauses represent only a fraction of
the implicates that could potentially be learned from each conflict. It is neither feasible
nor practical to learn all possible implicates. Intuitively, techniques based on problem
symmetry, such as the one illustrated above in Example 6.2, attempt to work in the pruning
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space of such “missed implicates” and are therefore relevant irrespective of the particular
clause recording technique used. The Supercubing technique presented later in Section 6.5
is motivated by the same reason.

Note that during the search, certain variables, initially picked as decision variables,
become deduced variables due to BCP implications from newly added conflict clauses, e.g.
in Figure 6.3, y = 1 can be treated as a deduced assignment implied from the clause (y)
recorded on conflict X;. Such assignments are called failure-driven assertions (FDA) [MSS99)].
However, y = 1 may as well be treated as a decision assignment. In our treatment, FDAs are
treated as deduced assignments for the purpose of generating the recorded. conflict clauses
wr(X). However, for generating the responsible assignments shown in Figure 6.3 (and for
the supercubing rule presented in Section 6.5) FDAs are treated as decision assignments.
Both versions of the analysis still use Equations 6.1 and 6.2 but generate different sets
Vp(X) (and Ap(X)).

6.3 The Theory of Essential Points

In this section we develop the notion of essential points to formally characterize

the search space pruning that can be realized by exploiting problem symmetry.

Definition 6.2 (Essential point) Given a literall, a minterm p is called an I — essential
point if all clauses of ¢ unsatisfied by the assignment u (must be at least one® ) contain literal
I, e.g. given ¢ = (T +7)(2)(z + ¥+ 2)(T+2)(z + y+Z) the minterm zyz i3 an T-essential

point.

Definition 6.3 (Symmetric points) Let o and p* be two minterms in the 2N Boolean
space. p* is said to be z-symmetric to p if it is obtained from p by inverting the value of
variable T in p, e.g. minterms p = Tyzw and p* = TyZw are z-symmetric with respect to

each other.

Proposition 6.1 Let u be a complete assignment to variables x1,z2,... ,ZN (i.e. a minterm
of 2V ) which satisfies ¢. Then assignment u* which is z-symmetric to p is either a lit(z)-

essential point (where lit(z) € p) or a satisfying assignment of ¢.

3Thus, satisfying assignments of ¢ are not essential points.
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Proof: Suppose p* is neither a solution nor lit(x)-essential (where lit(x) € ). Then there
exists a clause w of ¢ such that u* unsatisfies w and w does not contain any z literal. But

then w is unsatisfied by u as well. Therefore 4 is not a solution of ¢. Contradiction ! n

Proposition 6.2 If assignment p is lit(z )-essential then assignment p*, z-symmetric to

B, is either lit(z)-essential or is a solution?.

Proof: Suppose u* is neither a solution nor lit(z)-essential. Then there exists a clause w of
f such that u* unsatisfies w and w does not contain any z literal. But then w is unsatisfied
by p as well. Therefore u is not lit(z)-essential. Contradiction ! . om
For a literal [, the set of l-essential points with respect to the current CNF is
denoted by £(I). The subset of £(I) lying in a sub-space © is denoted by £¢(l) and by
Esub(l) when the sub-space being referred to is clear from the context.
The search space pruning that can be achieved using the notion of essential points

can be operationally defined by the following theorem.

Theorem 6.1 Suppose the algorithm has explored the left branch of variable = (without loss
of generality £ = 0) and found no solution. Moreover, suppose the algorithm has computed
E:(x). Then under the branch z = 1 solutions of ¢ must lie in the set of points z-symmetric
to points in Ez(z) (denoted by E3(x)).

Proof: For correctness, the algorithm only needs to ensure that it does not skip any
solutions of the CNF in the branch z = 1 (it can prune everything else). By Proposition 6.1
solutions can only be points z-symmetric to points in £z(z). n

Theorem 6.1 implies that for testing satisfiability of ¢ when exploring the branch
z = 1 the algorithm only needs to explore the set of points £7(z). It is also easy to see that
it is not necessary to compute the set £z(z) exactly. Any over-approximation of it would
work as well, though the amount of pruning would be reduced proportionally.

Under a conflict clause recording scenario, i.e. when the algorithm progressively
adds implicates of the CNF to the clause database the set of essential points £({) for each
literal ! either remains unchanged or shrinks.

Theorem 6.2 Let CNF ¢+ be obtained from ¢ by adding clause w to ¢ where wt is an
implicate of ¢. Then, for any literal |, the set of essential points of l in ¢+, denoted £1 (1)
must satisfy £ET(1) C £(1).

“In other words a satisfying assignment of ¢
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Proof: Consider any minterm g ¢ £(!). Then, there must exist a clause w of ¢ such that
! ¢ wand p € U(w). But, since ¢* = ¢ - w¥, w is also a clause of ¢t. Thus, p € E*(1).
Therefore, p & E(1) = p € ET(1). =

The relevance of Theorem 6.2 is that under a clause recording scenario, when a
new clause is added, all partial sets of essential points computed up to that point continue
to be valid with respect to the new CNF®.

6.4 Popular Pruning Techniques: Special Cases of Essential

Point Pruning

In the following we show that several popular search pruning techniques such
as the pure-literal rule [DP60|, non-chronological backiracking (NCB) and conflict clause
recording [MSS99] are special cases of the pruning afforded by the theory of essential points.
This unifies these techniques under a single framework and paves the way for developing
potentially more powerful variants of problem symmetry based pruning.

6.4.1 The Pure-Literal Rule

The Pure-Literal rule [DP60], reviewed in Section 2.4.2, can be used to effect
pruning by looking for variables that appear in only one polarity (the pure polarity) in
unresolved clauses, at the current point in the search, and then asserting the variable to the
pure polarity. In effect this means pruning the other branch of the variable. If no solution
is found in the explored pure-branch, the pruning effected by the pure-literal rule can be
explained by essential points as follows.

The pure-polarity branch of the variable (say z = 0) can be considered the left
branch of z, which the algorithm explored and found no solution. The other polarity branch
z = 1 which was pruned by the pure-literal rule is the potential right branch. Thus, if we
can prove that the sub-space under the pure-branch = = 0 does not contain any z-essential
points then the pruning done by the pure-literal rule is explained by Theorem 6.1. In this
case the pure-literal rule can be claimed to be a special case of essential point based pruning.

Note that it is sufficient to consider the case when the pure-literal branch of the

pure-literal variable is unsatisfiable because in the case when there is a solution under the

SHowever, it can potentially overestimate the essential points with respect to the new CNF with the
added clause.



CHAPTER 6. USING PROBLEM SYMMETRY TO REDUCE SEARCH 100

pure-literal branch the algorithm terminates. In such a case the claim of pruning the other

branch has no meaning.

Theorem 6.3 The sub-space under the pure-polarity branch (say x = 0) of a pure-literal

variable  cannot contain any z-essential points.

Proof: Consider exploring the pure polarity branch (say z = 0) of the pure-literal variable
z. By assumption, there is no solution under this branch. Now consider the following
algorithm which just explores the sub-space under this branch using a stripped-down DPLL
procedure (i.e. no BCP or pure-literal rule).

Such an algorithm would simply explore the entire sub-space under the z = 0
branch, stopping and chronologically backtracking every time the current assignment un-
satisfies a clause of the CNF. Let the set of such conflict clauses encountered while exploring
this branch be wi,ws, ... ,wp. It is easily seen that U(w1) UU(w2) U...UU(wp) subsumes
the sub-space explored under the z = 0 branch. Additionally, none of these clauses contain
variable z since a conflict clause has all literals unsatisfied by the current assignment and
the pure-literal assignment z = 0 merely satisfies some clauses and restricts® none. The

result follows. .

6.4.2 Non-Chronological Backtracking (NCB)

As discussed in Section 2.6.2, the notion of non-chronological backtracking (NCB)
is used to prune areas of the search space by backtracking to the last variable responsible
for the current conflict, rather than the last variable in the current assignment stack. This
method effects pruning by skipping the right branch of some of the stack variables. Oper-
ationally, this is accomplished by deducing an implicate (through conflict analysis) whose
unsatisfiability cube subsumes the regions to be pruned.

Another way of looking at this pruning is that NCB prunes the right branch of a
variable z, if and only if all conflicts in the left branch of z were independent of (symmetric
in) z. This is obviously a special case of symmetry (described by the theory of essential
points) which targets pruning sub-spaces symmetric in a particular variable. Before proving
this, we state a few simple facts to formalize the operational definition of NCB. These
observations follow from the operational definition and correctness of the NCB procedure
as developed in [MS95] and reviewed in this dissertation in Section 2.6.2.

8An assignment which sets one more literals in a clause to 0 is said to restrict that clause.
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e Fact 1: NCB pruning is done in a setting where conflict analysis is used to produce

conflict clauses (implicates) responsible for the conflict”.

e Fact 2: The deduction procedure for a conflict clause may be simulated by a tree of
resolution steps where the leaf clauses are clauses of the original CNF (or previously
added conflict clauses) and the variable being resolved out at a node is a deduced

variable.

e Fact 3: NCB to prune the right branch of variable £ happens only on deducing a
conflict clause which does not contain any literal of z and whose unsatisfiability cube

subsumes the subspace being pruned under the right branch of .

Proposition 6.3 If clause w is the resolvent produced by resolving clauses w1 and wy in

some common variable (say z) then U{w) C U(wr) UU(w2).

Proof: Without loss of generality, let w1 = w3 V z and ws = w4 V T, where w3 and w4 are

some disjunctions of literals. Then w = w3 V ws. Thus,
Uw) = w3 s
C ZT-waUz Wy
]

Theorem 6.4 If the right branch of a varisble = is eligible for pruning under NCB, then
the subspace under the left branch of x (without loss of generality x = 0) cannot contain

any x-essential points.

Proof: From Fact 3, there must exist an implicate w, deduced through conflict analy-
sis which does not contain literals z or ¥ and which subsumes the subspace under the
unexplored right branch, z = 1. Since w does not contain literals of z it must also sub-
sume the sub-space under the left branch & = 0. Moreover, from Fact 2 there must exist
clauses wy,ws,...wy of the current CNF which form the leaves of the resolution tree sim-
ulating the deduction of w. From the recursive application of Proposition 6.3 it follows
that U(w) € U(w1) UU(wz) U ... UU(wi). Thus, clauses wy,ws, ...wy collectively cover
the subspace under the left branch of z. Also, since the resolution could only be done on
deduced variables, and z is a decision variable, clauses wy,ws,...wy cannot have variable

z. Therefore none of the points covered by them can be z-essential. ]
7The deduced conflict clauses may not be added to the clause database.
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6.4.3 Conflict Clause Recording

The simplistic intent of Conflict clause recording [MSS99] is to deduce an implicate
(through conflict analysis) responsible for the current conflict and add it to the clause
database with the aim of avoiding future occurrences of the same conflict.

Although not apparent from the above statement of the notion, the recorded con-
flict clauses do in fact effect symmetry based pruning. Consider the following situation. In
the left branch of variable z, say z = 0, a conflict X occurs on which a conflict clause wg (X)
is learned. Now, suppose wr(X) does not contain literal = (it cannot contain Z). Let the
set of assignments, preceding z be given by cube c. Let cube ¢; = c A Z AU(wr(X)) and
cube ¢ = c A z AU(wr(X)). Note that c; is precisely the sub-space potentially prunable
by wr(X) in the right branch z =1 of z.

As shown below, the pruning of sub-space ¢; by clause wg(X) can be accounted
for by the theory of essential points. Thus, conflict clause based pruning is a special case

of essential point based pruning.

Theorem 6.5 The symmetry based pruning afforded by a recorded conflict clause wr(X)
with respect to a variable T is subsumed by the pruning potentially realizable using essential

point based pruning (Theorem 6.1).

Proof: Using the above notation, note that ¢; is the z-symmetric region corresponding to
¢z, the region being pruned. By assumption, literal z does not appear in clause wr(X).
Thus, U(wgr(X)) cannot include any z-essential points (follows from Definition 6.2 and
Definition 6.1). Thus, £(z) N U(wr(X)) = 0. From this it follows that £(x) Ncy =
Therefore, by Theorem 6.1 the z-symmetric counterpart of ¢;, namely c; lies in the region
that can be pruned when exploring the right branch, z =1 of z. [
It can be shown that the entire pruning potentially accomplished by a recorded
clause, subsequent to its recording can be broken down into a series of right-branch prunings

like the above situation®.

Theorem 6.6 The search space pruning accomplished by a recorded clause wgr, subsequent
to its recording, can be divided into a set of sub-spaces such that each sub-space lies under
the right branch of a variable y, where wr was recorded in the left branch of y and y does

not appear in wg.

8provided the search is organized as a single tree i.e. without restarts.



CHAPTER 6. USING PROBLEM SYMMETRY TO REDUCE SEARCH 103

Proof: Consider the stack of assignments at the time of learning clause wgr. Let 21,Z2,... , Tk
be the decision variables in this stack that are currently in their left branches. The Boolean
sub-space explored by the SAT algorithm subsequent to recording wg, is the union of k dis-
joint sub-spaces ©1,03,... ,0O, where ©; is defined as follows. In the current assignment
stack, erase assignments up to but not including variable z; (i.e. all assignments below ;).
Now flip the variable z;. Variable z; is now in its right branch. The sub-space lying below
this right branch is ©;.

Now, every sub-space pruned by wg subsequent to its recording must lie in ©; U
©2 U...U O. Further if z; appears in wg, wr cannot prune any sub-space in ©; since it
would be satisfied in this sub-space. This completes the proof. [

From Theorem 6.5 and Theorem 6.6 conflict clause recording can be seen to be a

special case of essential point pruning.

6.5 Symmetry Based Pruning through Supercubing

In this section we develop a novel pruning rule based on exploiting problem sym-
metry. This rule is called the supercubing rule after the supercube operator defined below,

which is the core operation used in implementing it.

Definition 6.4 (Supercubing Operator (S)) Given two cubes c and ¢ over the 2"
Boolean space, S(c1,c2) computes the smallest cube containing both c¢; and cz, i.e. the su-

percube of ¢1 and c3.

6.5.1 Supercubing Procedure & Pruning

The algorithm maintains a cube called the supercube for each decision variable
currently on the decision stack. The supercube of variable z (denoted Sz) is initialized to
0 when z is first chosen for branching. In the left branch of & (say = 0) S; is updated
on each conflict X where z € Ag(X) (Ar(X) is computed considering FDAs as decision
variables) as follows:

Sz = 8(Sz, cs) where cs= /\ l (6.4)
leAr(X)

After the algorithm has explored the left branch z = 0 and found no solution, it
would have computed some supercube for z, denoted S{i"d. Say Sf’“’l =ZTALALA. . Al
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Then in the right branch, z = 1 we immediately assert [y = TRUE,l; = TRUE,...l; =
TRUE i.e. the region 2 A (I; VI V ... Vi) is pruned.

The asserted assignments are treated as conscious assignments for the purpose of
future conflict analysis and supercubing i.e. it is as though these variables v;,,vy,,... , vy,
were consciously branched on and the branches I, lz,... ,{; were pruned, while the other
branches were explored.

The supercubing rule is inspired by the theory of essential points. However, in
its current implementation it is not a special case of the theory of essential points. This is
because on a given conflict the assignments used for learning a conflict clause are different
from the assignments used for supercubing (FDAs are treated differently for these two
purposes). In the absence of this discrepancy? it is easy to prove that supercubing becomes

a special case of essential point pruning.

6.5.2 Proof of Correctness

The proof of correctness of the algorithm requires proving two propositions:

1. Every supercube-based pruning is legal, i.e. the pruned space cannot contain a solu-

tion.

2. At any time during the algorithm the following property holds for each minterm, %
in the Boolean sub-space that the algorithm has already explored (and found unsat-
isfiable).

Definition 6.5 Point 1 satisfies Property P if there exists a cube cy, such that C cy

and ¢y was processed by supercubing (Equation 6.4 ) under some previous conflict.

Proof: Note that the algorithm prunes off (and thus implicitly explores) regions of the
Boolean space through two kinds of pruning events, namely 1.) regular conflicts and 2))
supercube based pruning.

We prove the above two propositions simultaneously by induction on the sequence
of pruning events. The overall idea is to prove that if all points pruned by all previous

pruning events satisfy Property P; then

9We experimented with this version of supercubing and found it to be ineffective in providing any addi-
tional pruning over clause recording.
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a.) points pruned by the current pruning event satisfy Property P, and

b.) supercube-based pruning is legal.

Base Case : Since pruning occurs only in the right branch of a variable, the first pruning
event must be a conflict and by definition, the algorithm would generate a conflict clause
covering the pruned region and do supercubing on it. Therefore, all pruned points satisfy
Property P.

Induction hypothesis : Suppose points pruned by the first k pruning events satisfy
Property P and are legal prunings.

Induction proof : Consider the k + 1% pruning event. If this is a regular conflict the
proof trivially follows as per the base case. So consider the case when it is supercube based
pruning performed in the right branch £ = 1 of some variable x. The region pruned by
supercubing S§ "¢ =z A 3z - Sfinal - Consider any point ¥* € SE™*™° and point 9, which
is z-symmetric to ¢*. Obviously ¢ was examined by the algorithm in the left branch of
z. Further, ¢ € S£ inal Also, by the induction hypothesis there exists cube cs such that
4 € cs and cs was processed by supercubing. Thus, since cs sImal cube cs must not
have variable z which means that it covers point ¥* as well. Hence all points in SF™*"°
are covered by conflict clauses that have already been discovered and processed by the
algorithm. This also means that the current pruning is a legal one (since the pruned space
is obviously unsatisfiable).

Note that in reality there is a third kind of pruning event, namely BCP deductions,
which prune off regions of the Boolean space. However, this pruned space is completely
accounted for by the conflict clauses of the conflicts lying below this deduction. A simple
way to prove this is to take the current branching tree and “push” all BCP deductions
to the leaves of the tree i.e. after all the decision assignments in each branch. Since in
our procedure all conflict clauses are composed entirely of decision assignments the same
conflicts will still occur, but there will be no BCP-pruned areas this time. Here, the conflict
clauses can be trivially seen to cover the entire pruned areas. Also we have not considered
pure-literal rule based pruning in this proof since this rule is a special case of Supercubing

(see Proposition 6.4). ]

6.5.3 Supercubing and Other Pruning Techniques

Proposition 6.4 The pure-literal rule is a special case of supercubing based pruning.
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Proof: Consider a pure literal variable . Assume that it is a decision variable whose left
branch is the pure-literal branch i.e. the assignment dictated by the pure-literal rule, whose
right branch has been pruned off. Note that since a pure-literal assignment just satisfies
clauses, it can never contribute towards a conflict. This can be seen through a careful
examination of our specific definition of conflict analysis as stated in Section 6.1. A pure-
literal assignment can never be part of Ar(X)10. Thus, if z were a decision variable whose
left branch z = 0 was explored, = would never contribute to any conflict in this sub-space.
Thus its computed supercube would remain 0. Therefore, sﬁpercubing based pruning would
dictate pruning the right branch, which is what the pure-literal rule does.
(]
From the above proof it follows that in some of the instances where a null supercube
is computed for a decision variable z, supercubing based pruning of the right branch of z is
synonymous with an application of the pure-literal rule on z. In other such cases (i.e. where
a null supercube from the left branch causes supercubing to prune the right branch) the
behavior of the algorithm is identical to non-chronological backtracking. Thus, supercubing
overlaps with some instances of non-chronological backtracking. In fact, we conjecture
that supercubing subsumes non-chronological backtracking. All our experiments thus far
have not yielded a single case where non-chronological backtracking, implemented in the
conventional fashion, could prune a sub-space that supercubing could not. However, the
operational definition of NCB given in the literature (and re-stated in Section 6.4.2) is
not precise enough to prove or challenge our conjecture. A more unambiguous definition
of NCB would probably be required to do this. This could be an interesting problem for
future research.
Conjecture: Non-chronological backtracking is a special case of supercubing based prun-

ing.

6.6 Experimental Results

This section presents preliminary experimental results validating the efficacy of the
supercubing pruning rule described in Section 6.5. The pruning rule has been implemented
in a prototype SAT solver modeled on the lines of the GRASP SAT solver [MSS99]. The
prototype solver implements all the algorithmic features of GRASP including conflict anal-

10This fact would hold for any heuristic to compute the set Ax(X).
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Best Order Worst Order

Benchmark # Nodes # Nodes

Orig. | With SC Orig. | With SC
ssa-0432-003 1371 1050 3316 | 1074
ssa-2670-130 44039 38812 | 109766 66142
bf-0432-007 11487 10811 | 27298 9099
queueinvar8 3211 2983 5842 5842
aim-50-1_6-no-2 27 26 150 84
aim-100-1_6-no-1 120 64 881 455
aim-200-1_6-y-1-4 291 193 1155 354
aim-200-1_6-no-3 457 559 6671 1252
par-16-1-c 6543 6543 6543 6543
hole 6 719 719 817 817

Table 6.1: Experimental results with Supercubing

ysis, non-chronological backtracking, conflict based learning and various ordering heuristics
(e.g. DLCS, DLIS, MSTS, MSOS etc.). However, the solver has not yet been software en-
gineered for efficiency since its purpose is simply to evaluate the first order efficacy of some
pruning techniques.Therefore the reported results are in terms of number of nodes in the
SAT search tree, rather than CPU runtimes since reporting the latter would be unfair and
not particularly informative.

Preliminary results on some selected SAT benchmarks from the DIMACS suite and
bounded model checking [BCCZ99] are reported in Table 6.1. The benchmark examples
have been chosen to be representative of the examples that we ran, ranging from the ones
where supercubing gave the maximum improvement to ones where it was not so effective.

For each benchmark the solver was run in two configurations with four possible
orderings, DLCS, DLIS, MSTS, MSOS!! (i.e. eight configurations in total) 1.) ORIG:
without supercubing but with NCB and clause recording, and 2.) With SC: same as
ORIG except supercubing is used also. For each benchmark the best and the worst ORIG
results (in terms of number of nodes in the backtracking tree) were chosen and are reported
in columns 2 and 4 respectively. The corresponding results with SC (i.e. with the same

ordering heuristic as the ORIG result) are reported in columns 3 and 5 respectively.

As shown in Table 6.1 the search tree size decreases in most cases, sometimes

1Refer to the GRASP user manual for details on these heuristics.
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quite significantly. In the odd case (in our experience less than 1% of the cases) e.g.
aim-200-1_6-no-3 there is a slight increase in the number of nodes. This is because
supercubing and associated pruning disturbs the number of recorded clauses and hence the
variable order slightly. However, overall supercubing proved beneficial for both the best
order and the worst order. The improvements in the case of the worst ordering were more
significant suggesting that this pruning technique can partially correct a poor ordering.
The supercubing itself added virtually nothing to the runtimes since most of the book-
keeping required for it was being done by conflict analysis. The additional supercubing
operations were efficiently implemented by bit-vector operations. Thus gains in number of
search tree nodes translate directly to runtime gains. Also, since supercubing based pruning
partly overlaps with the pruning provided by conflict-based learning using supercubing
frequently led to fewer recorded clauses. This feature of supercubing can be used to partly
alleviate the clause database memory problems that are becoming an issue in current SAT
solvers [MMZ101).

6.7 Conclusions & Future Directions

In this chapter we introduced and formalized the notion of problem symmetry in
search based SAT algorithms. We developed the theory of essential points to formally
characterize the potential search space pruning that can be realized by exploiting problem
symmetry. We unified several powerful search pruning techniques used in modern SAT
solvers under a single framework, by showing them to be special cases of the theory of
essential points. We also proposed a new pruning rule based on problem symmetry and
showed it to provide additional search space pruning over the pruning realized by current
techniques.

Current SAT solvers integrate fairly sophisticated search pruning techniques in a
very tightly and efficiently engineered software framework. However, there is very little
fundamental understanding of how these techniques interact, what search space they prune
and what the margin for improvement is. This work is a step towards answering these
questions. We believe that it is possible to derive a whole family of search pruning techniques
with varying cost-power tradeoffs, under the general purview of problem symmetry based
pruning. The supercubing rule presented in Section 6.5 is a simple case in point. It is

quite obviously a very weak and cheap realization of symmetry based pruning. However, it
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still improves over the state-of-the-art, demonstrating the potential for improvement. Our

current and future research efforts are aimed at realizing some of this potential.
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Chapter 7

Conclusions & Future Directions

Recent years have seen dramatic improvements to SAT algorithms and tools and
an increased application of SAT methods to solving EDA problems. Despite this progress
there is an immense potential for improvement both in the understanding and application
of SAT methods in EDA as well in SAT methods themselves. The goal of this dissertation
was to advance the theory, practice and core technology of SAT algorithms in the context
of EDA applications. To this end the research was organized to address the following three

issues:

1. Tight complexity analysis of SAT based EDA applications which accounts for charac-

teristics of real-life problem instances.
2. SAT formulation of EDA applications.
3. Core SAT algorithms and pruning techniques.

These three issues were addressed in the three parts of the dissertation.

The first part of the dissertation was presented in Chapter 4. This chapter pre-
sented a worst case complexity analysis for a SAT formulation of the combinational ATPG
problem which incorporated salient characteristics of problem instances encountered in real
life. Incidentally, this analysis is also one of the first attempts at reconciling the theoretical
intractability of combinational ATPG with the relative ease with which practical instances
of it are solved. The analysis was based on the SAT formulation of ATPG proposed by
Larrabee [Lar92], with a caching based variant of simple backtracking (see Section 4.3)
used to model the SAT solver.
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Under this model of the algorithm the complexity of ATPG on a given circuit
was characterized in terms of a topological property of the circuit, the undirected circuit
cut-width. Theoretical arguments and experimental results confirmed that this property
could be used to predict polynomial runtimes of ATPG for a wide range of practical VLSI
circuits.

Specifically, the analysis was used to define a class of circuits called log-bounded-
width circuits which were shown to be efficiently testable. Additionally, this class of circuits
was shown to subsume the class of k-bounded circuits. Our experiments on a wide range of
benchmark and artificially generated circuits showed that they exhibited the log-bounded-
width property. On an intuitive level the log-bounded-width property essentially captures
the “treeness” of the circuit. As long as a circuit has limited reconvergence (not necessarily
local reconvergence), the log-bounded-width property can be expected to apply.

The theme of the second part of the dissertation was to investigate more effective
ways of solving EDA problems using existing SAT methods. In Chapter 5 we revisited the
application of Satisfiability (SAT) algorithms to the Combinational Equivalence Checking
(CEC) problem. CEC is an important and well researched EDA problem. Traditionally,
BDDs have formed the computational core of CEC tools and previously proposed SAT based
solutions were not popular. In Chapter 5 we argued the case for SAT as a more robust and
flexible engine of Boolean reasoning for the CEC application than BDDs. We presented a
simple framework for SAT based CEC and reported results on a preliminary implementa-
tion of this methodology. The results showed a speedup of up to two orders of magnitude
compared to state-of-the-art SAT based methods for CEC. Additionally, the relatively sim-
ple SAT based CEC approach and its initial prototype implementation proved to be only
moderately slower and sometimes faster than a state-of-the-art BDD-based mixed-engine
commercial CEC tool.

While SAT based CEC methods may need further research and application based
tuning to surpass almost a decade of research in BDD based combinational verification,
we showed that SAT based methods for verification are certainly promising and merit
continued research. Further, the work demonstrated the specific advantageous features
of SAT methods in a practical verification setting.

The third part of the dissertation, presented in Chapter 6, proposed theoretical
and practical advancements to the core algorithms and techniques used in modern SAT

solvers. Current SAT solvers integrate fairly sophisticated search pruning techniques in a
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very tightly and efficiently engineered software framework. However, there is little funda-
mental understanding of how these techniques interact, what search space they prune and
what the margin for improvement is. Part of the motivation for the work presented in this
Chapter was to address these issues.

Specifically, in this chapter we introduced and formalized the notion of problem
symmetry in search based SAT algorithms. We developed the theory of essential points
to formally characterize the potential pruning that can be realized by exploiting problem
symmetry. We unified most search pruning techniques used in modern SAT" solvers under
a single framework, by showing them to be special cases of the theory of essential points.
We also proposed a new pruning rule exploiting problem symmetry and demonstrated that
it could provide additional search space pruning over the pruning realized by current tech-

niques.

7.1 Future Directions

7.1.1 Input-distribution based complexity analysis of EDA-SAT problems

The analysis presented in Chapter 4 can be developed further. Although the
analysis is a significant improvement over traditional worst case complexity analysis, it is
based on a rather simplistic model of the ATPG-SAT algorithm. Practical ATPG-SAT
engines [SBSV96, Lar92] employ a host of other search pruning techniques to reduce com-
plexity, such as random test pattern generation [ABF95]. In some cases these techniques
do bring about substantial reduction in complexity. The benchmark C6288 from the IS-
CASS85 suite is an example with a large cut-width but is efficiently testable through random
test pattern generation. The presented analysis can be made tighter and more realistic by
including more algorithmic features of ATPG and SAT tools in the algorithm model.

Secondly, although the analysis of Chapter 4 was aimed at the combinational
ATPG problem, the notion of cut-width and its use in analyzing the complexity of a
CIRCUIT-SAT based problem formulation is not endemic to the ATPG problem. The same
analysis framework could be modified to apply to other EDA problems using a CIRCUIT-
SAT formulation.

Finally, a natural extension of cut-width is the notion of tree-width. Simply put,

tree-width of a graph is an index of the degree to which the topology of the graph resembles
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a tree. The significance of this measure is that several combinatorial problems, such as
graph coloring, which are intractable on general graph structures, have polynomial time
solutions on bounded tree-width graphs. Further, in the realm of EDA, several problems,
such as technology mapping, combinational ATPG, etc. are known to be efficiently solvable
on tree-structures but are intractable in the general case. An interesting line of research
would be to investigate the tree-width properties of graph structures derived from practical
circuits and to reason about the complexity of solving various EDA problems on graphs

with small or bounded tree-widths.

7.1.2 Using SAT methods in EDA problems

Section 5.6 details a list of possible enhancements to the SAT based CEC frame-
work proposed in Chapter 5. These would provide an immediate and perhaps commercially
interesting area of work for improving SAT based CEC.

Another avenue of future research is to find effective means of having SAT methods
co-operate with established engines such as BDDs, structural ATPG methods, simulation
etc. which have traditionally formed the mainstay of EDA tools. Some initial efforts in this
direction have been made in [GA98, BS98, MJT+99, PK00, HSH*00, GYAGO00]. However,
in many of these works the use of SAT solvers is either very limited or too specific to be
applied to other EDA problems. Moreover, some of these works used older SAT solvers
which are not representative of the capabilities of current leading-edge SAT solvers. Thus,
this avenue of research should be revisited and investigated further. This will also naturally
pave the way for the use of SAT solvers in new EDA problems.

Currently the application of SAT methods is largely restricted to problems on
combinational logic circuits. The only use of SAT for reasoning on sequential circuits
has been bounded model checking [BCCZ99]. Since the domain of problems on sequential
logic circuits is much richer and more challenging than the combinational domain, research
facilitating the use of SAT methods on sequential circuits would greatly widen the gamut
of SAT applications in EDA.

7.1.3 Improvements to SAT algorithms and tools

We believe that it is possible to derive a whole family of search pruning techniques
with varying cost-power tradeoffs, under the general purview of the theory of essential
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points, presented in Chapter 6. The supercubing rule presented in Section 6.5 is a simple
case in point. It is quite obviously a very weak and cheap realization of essential point
pruning. However, it still improves over the state-of-the-art clearly demonstrating the
potential for improvement. This would provide an interesting area for future research.
Another area of SAT research is that of incomplete SAT algorithms for EDA ap-
plications. Incomplete SAT solvers such as GSAT [SLM92] and WSAT [SKC96] have been
proposed in the Artificial Intelligence community and successfully applied in that domain
to solve several problems considered challenging or unsolvable by conventional branch and
bound complete SAT solvers. While these particular incomplete SAT solvers have not been
successful in solving EDA problems, techniques such as random and weighted random sim-
ulation are routinely and successfully used in several testing and verification applications.
These techniques are in some sense incomplete, stochastic SAT techniques, albeit very naive
ones. We believe that it should be possible to engineer incomplete SAT techniques that in-

herit the flavor of random simulation and are most aptly suited for EDA applications.
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