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Abstract

Prepositional Satisfiability Algorithms in EDA Applications

by

Mnknl Ranjan Prasad

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of Cafifomia at Berkeley

Professor Robert K Brayton, Chgdr

Recent years have seen a dramatic growth in the application of SAT solvers to problems

in electronic design automation. This trend is due in part to recent developments in SAT

algorithms which have revolutionized the field of satisfiability testing. SAT has grown from

a problem of academic interest to a core computational resource of immense value.

However, despite the significant progress in this domain there is considerable room

for improvement in several areas. The goal of this dissertation is to advance the theory,

practice and core technology of SAT algorithms in the context of EDA applications. The

success of a SAT algorithm in a given EDA application may be ensured by a realistic

quantitative assessment of the projected performance of the overall algorithm in a practical

setting, by carefully ordiestrating the use of SAT in the application and by improving the

SAT algorithm per se. This dissertation addresses these three issues.

The first part of the dissertation presents a framework for analyzing the complexity

of a SAT based formulation of the combinational ATPG problem, in a practical setting. We

introduce the concept of cut-width of a circuit and characterize the complexity of ATPG

in terms of this property. We present theoretical results and empirical evidence to argue

that a large class of practical circuits can be expected to have cut-width characteristics

conducive to an efficient solution of ATPG on them. These results also help to reconcile

the intractability of ATPG, as predicted by traditional worst case analysis results, with the

relative ease of solving practical instances of the problem.

The second part of the dissertation focuses on the optimum orchestration of SAT

methods for a given EDA application. We revisit the application of SAT algorithms to the



combinational equivalence checking (CEC) problem. We argue that SAT is a more robust
and flexible engine of Boolean reasoning for the CEC application than binary decision
diagrams (BDDs), which have traditionally been the method of choice. Preliminary results
on asimple framework for SAT-based CEC show aspeedup of up to two orders of magmtude
over previous methods for SAT-based CEC. Further, the prototype implementation is only
moderately slower and sometimes faster than a state-of-the-art BDD-based mixed-engine
commercial CEC tool.

The third and final part of the dissertation is aimed at enhancing the core tech
niques used in current SAT solvers. We introduce the notion of problem symmetry in search
based SAT algorithms. We develop a theory of essential points to formally characterize
the potential search spaoe pruning that can be realized by exploiting problem sjrmme-
try. We unify several powerful search pruning techniques used in modem SAT solvers
under a single framework, by showing them to be special cases of the theory of essential
points. We also propose a new pmning rule exploiting problem symmetry. Preliminary
experimental results validate the efficacy of this rule in providing additional search space
pnming over the pruning realized by techniques implemented inleading-edge SAT solvers.

Professor Robert K Brayton
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 The Propositional Satisfiability (SAT) Problem

The Propositional Satisfiability (SAT) problem is a core problem inmathematical
logic and computing theory. The SAT problem is known to be NP-Complete [GJ79], one
of the first problems to be proven NP-Complete. Thus it is generally accepted that any
algorithmic technique for solving anarbitrary instance of SAT could require, in the worst-
case, computational resources exponential in the size of the problem. In other words it is
highly imlikely that there exists an algorithm for SAT that can solve an arbitrary instance
of the problem, efficiently^.

Over the years, several interesting problems from various applications in logic and
computer science have been modeled assatisfiability problems. Moreover, several instances

ofsuch problems, arising in practise, can be efficiently solved by SAT solvers. Thus, any
advance in SAT solver technology may translate into significant improvements in several

practical applications. This potential coupled with the simple formulation of the satisfi
ability problem and its inherent intractability has continued to interest theoreticians and
practitioners alike, over the last fom decades.

There have beensignificant advancements in SAT solver technology since the first

complete algorithm for Boolean Satisfiability proposed by Davis and Putnam [DP60] in1960.
hi current practice SAT is fundamental in solving several problems m areas as diverse as

automated reasoning, computer-aided manufacturing, machine vision, databases, robotics,

^By efficiently we mean that the algorithm uses computational resources polynomial in the size of the
problem.
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Figure 1.1: SAT in a typical 10 Design & Verification flow

computer architecture and computer network design [GPFW97]. This ever-widening gamut

of SAT applications continues to fuel further research in this area.

1.2 SAT in EDA Applications

The design and manufacture of integrated circuits is a complex process. Its rich

ness and complexity translates into a number of challenging problems in electronic design

automation which offers a fertile groimd for application of optimization and decision pro

cedures such as Boolean Satisfiability.

The use of SAT procedures for EDA applications is a relatively recent phenomenon.

While branch and bound procedures, somewhat similar (although not nearly as powerful)

to those used in SAT solvers, have been employed in EDA tools for some time now, the
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application ofSAT solvers per se to EDA problems is only a decade old.

Recent years have seen dramatic improvements inSAT algorithms and tools [Zha97,
MSS99, MMZ'''01], allowing much laxger problem instances to besolved. It isnotuncommon

for current leading-edge SAT solvers to efficiently handle problem instances with thousands

of variables and tens of thousands of clauses [MMZ'̂ 01]. This has expanded the realm of

applicabUity ofSAT solvers in EDA and fueled the growth ofSAT from a problem, primar

ily of academic interest, to an enabling technology for several EDA applications. Spurred
bythese recent advancements SAT algorithms have been successfully applied to solve prob

lems from a wide variety of EDA applications such as Automatic Test Pattern Generation

(ATPG), timing analysis, sequential and combinational logic optimization, crosstalk noise
analysis, FPGA routing, functional vector generation, combinational equivalence checking,

reachability analysis, model checking and microprocessor verification [MSSOO].

Figure 1.1 shows the potentialrole ofSAT in a typical design and verification flow

for integrated circuits. It shows that SAT formulations canbe employed in almost allmajor

steps of the design process and in all aspects of verification i.e. design, implementation
a.nH manufacture verification. Despite this significant progress much groimd remains to be

covered in several areas.

The current levelof understanding regarding the strengths and weaknesses of SAT

in the context of various EDA problem settings is limited. A deeper theoretical as well

practical understanding of these issues may lead to more effective ways of using SAT for

EDA problems. This has been an impediment in making SAT the method of choice for

certain applications or having it work with more established engines such as structural

ATPG and BDD methods. The other aspect is of course to develop more effective core SAT

methods to expand the scope of SAT to emerging EDA applications.

1.3 Thesis Overview Sc Organization

The research described in this dissertation is aimed at advancing the theory, prac

tice and core technology of SAT algorithms in the context of EDA applications. Figmre 1.2

shows the general setting in which this research is based. The scenario is that of a SAT

solver being applied to solve or aid in the solution of EDA applications such as combina

tional verification, ATPG etc. The various components of this dissertation focus on different

aspects of enhancing the efficacy of such a combination. Specifically, this work addresses
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the following three aspects:

1. Input Distribution Dependent Complexity Analysis: The first step in trying

to solve a given application through a certain algorithm is to perform a formal quanti

tative analysis of the complexity of the problem and the expected performance of the

algorithm on the given problem^. In practice, and specifically in the EDA community,

the kind of performance analysis that is done is a worst case complexity analysis. By

definition, it is pessimistic. This fact assumes greater relevance in our context, i.e.

SAT used in an EDA application. SATis known to be NP-Complete [GJ79) and prob

ably the EDA application it is being used in is also NP-Complete or even harder^.

Thus worst case complexity analysis might imply that there is little hope of any prac

tical success. The reality is quite the contrary. The answer lies in the fact that SAT

instances coming from EDA applications are a specialized and structured subset of

the general class of SAT instances. Traditional worst-case complexity cannot make

^These two entities are not identical since the problem may have an inherent complexity different from
the algorithm employed to solve it.

^Such is the case with most EDA problems.
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f-.hig distinction. Therefore, what is required is an analysis that models and accounts

for the characteristics of SAT instances arising from EDA applications, in a practical

setting.

2. SAT formulation: A SAT formulation of a problem determines "how" the solver is

being used to solve the application at hand. The formulation determines the num

ber, the nature and the specific CNF representation of SAT instances generated by

a single instance of the EDA application as well as the sequence in which these in
stances are solved by a SAT solver. For example, a single instance of combinational

ATPC^ is typically formulated as a single SAT instance [Lar92] whereas a single in

stance of a Bounded Model Checking application [BCCZ99] produces a set of SAT

instances. In combinational ATPG, the specific CNF representation is key. It has

been shown [Lar92, SBSV96] that the addition of fault propagation information to

the CNF in the form of clauses known as active clauses can have a dramatic impact to

the ease of solving the SAT instance, and hence the solvability of the original ATPG

instance. The formulation also determines the configuration of the SAT solver such

as the variable ordering heuristic, the information (if any) passed between the SAT

solver and other components of the application tool etc. Usually, the formulation

stems firom insights about the EDA application and empirical guidelines from what

works in practice.

3. The SAT Solver: Another obvious mode of enhancing the efiiciency of an EDA

application is to improve the SAT solver itself. This may be general enhancements

to the SAT algorithm which may benefit any application using such a solver. For

example, recent developments in SAT algorithms such as conflict based learning and

non-chronological backtracking [MSS99] have been shown to be beneficial in most

SAT applications. Alternatively, these enhancements could be algorithmic features

that more directly benefit the specific application at hand, e.g. a recursive learning

enhanced SAT solver aimed at learning equivalences [MSG99] is particularly useful

for combinational verification but not so effective in other EDA applications.

This dissertation is organized as follows. Chapter 2 develops the notational frame

work used in the rest of the dissertation. It also presents some fundamental SAT algorithms

single instance refers to the task of testing a particular single stuck-at fault in the circuit
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and some recently proposed pruning techniques. These form the foimdation on which most

of the theoretical results and algorithms developed in this research are based.

Chapter 3 surveys some more recent developments in SAT algorithms and appli

cations, particularly the ones relevant to EDA. These developments have acted as catalysts

for SAT research in EDA. Comprehensive surveys on some of the earlier developments on

these subjects can be foimd in [GPFW97] and [MSSOO].

The research contribution of this dissertation is organized in three chapters, each

addressing one of the three axes of contribution described above.

The first part of the research, presented in Chapter 4 is an attempt at input

distribution based complexity analysis of an EDA SAT application. The problem analyzed

is a SAT based formulation of the combinational ATPG problem. The results shed Ught on

the following paradox. Empirical observation shows that practically encoimtered instances

of combinational ATPG are efficiently solvable. However, it has been known for more than

two decades that ATPG is an NP-complete problem [IS75]. The presented analysis is one

of the first attempts to reconcile these results. We introduce the concept of cut-width of a

circuit and characterize the complexity of SAT based ATPG in terms of this property. We

introduce the class of log-hounded width circuits and prove that SAT based combinational

ATPG is efficiently solvable on members of this class. The class of log-hounded width circuits

is shown to strictly subsume the class of k-hounded circuits introduced in [Fuj88]. Weprovide

empirical evidence which indicates that an interestingly large class of practical circuits is

expected to have log-hounded width. The analysis framework presented is fairly general and

could be used to perform a similar analysis of other SAT-EDA problems.

Chapter 5 presents a SAT based algorithmic framework to address the combina

tional equivalence checking (CEO) problem. This addresses the second aspect described

above i.e. developing improved methods of using SAT in a typical EDA application. The

contributions of this work are twofold. First, it offers a qualitative understanding of aspects

or parts of the CEC problem that are best suited to be handled by a SAT solver rather than

HDDs, which currently form the computational core of most CEC tools. Second, it devel

ops improved methods of using SAT algorithms for CEC whidi dramatically outperform

previous approaches for SAT based CEC.

Chapter 6 addresses improvements to the core technology of SAT solvers. Specif

ically, we introduce the notion of problem symmetry in search-based SAT algorithms. A

theory of essential points is developed to characterize the potential search-space pruning
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that caji be realized by exploiting problem symmetry. Several search-pruning tedmiques
used inmodem SAT solvers are shown to bespecial cases ofthe general theory ofessential
points. We also propose a new pruning rule exploiting problem symmetry. Preliminary
experimental results validate the efficacy of this rule in providing additional search-space
pruning beyond the pruning realized by tedmiques implemented in current leading-edge
SAT solvers.

Chapter 7summarizes the main results and condusions of this research and presents
avenues for improvement and directions for future research.



Chapter 2

Preliminaries

2.1 Propositional Variables & Literals

Throughout this dissertation, propositional variables (interchangeably referred to

as Boolean variables or just variables) will be denoted by symbols drawn from the set of

symbols [rstuwxyz]^Q_Q^*. A propositional variable, x can assume a logic value, denoted
v{x), with i/{x) G {0,1, A}. When i/(x) = 1 (the proposition is TRUE) or iy{x) = 0

(the proposition is FALSE), x is said to be assigned and when if{x) = X, x is said to be

unassigned. X is also used to denote that the value of the variable is either unknown or

undecided.

A literal, Z, is an instance of a variable or its complement, e.g. if a; is a propositional

variable, x and x represent, respectively the complemented and im-complemented literals

derived from it, i.e. the propositions ar = 0 and a: = 1 respectively.

The following treatment wiH assume a set of variables V = {a;i,a;2, ••• tlie

cardinality of which is iV or simply | V|.

2.2 Conjimctive Normal Form (CNF) Formulas

A conjunctive normal form (CNF) is comprised of clauses. A clause, u is defined

as a disjunction of literals,

|a,|

= (2.1)
i=l
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where each is a literal and the clause lj is comprised of |u;| literals. Alternatively, a clause

can be represented as a set of literals, w= {^i, ^2? ••• » |̂w|}-

A CNF formula (f) is defined as a conjunction of clauses,

1^1

<^ = JJwt (2.2)
t=i

where each Wt is a clause and the CNF formula (f> is comprised of |0| clauses. Alternatively,

a CNF can be represented as a set of clauses, (f) = {a;i,a;2,. •.

Example 2.1 An example ofa CNFformula is (j>i =,(a;i+X2+53)-(^+X3)-(a;i+^+X3)-
Alternatively, in set notation (f) = {£*^1,^2,^3}, where uji = {xi,X2,X3}j ^2 —{3?1jX3}

wz = {xi,^,X3}-

The CNF ofExample2.1is basedon a set of three prepositionalvariables, xi, X2, xz

anH is comprised of three clauses, w\,u}2 suid W3. Clause wz is composed of three literals,

xi,^ and X3.

2.3 The Satisfiability Problem

Given a set of variables V, an assignment A. is a function that maps a set U Q V

to{0,1}. Ais interpreted as a set A C 17 x{0,1} ofvariable value pairs (x, fx)- Avariable
y ^ U, not assigned a value by A assumes a value X by default. Assignment A is said to

be complete if every variable x G F is assigned a value by A, i.e. |A| = | F|, otherwise A

is said to be partial (|A| < | F|).

Given an assignment V (partial or complete), and a literal ly of variable y, the

value of ly imder V, denoted ly \a is given by

U = if ^y = 2/ and (y,Uy) GA (2.3)

= —tU
y

if ly = y and (y, i^y) GA

= X otherwise

Given a clause uj the value of w imder assignment A is denoted by uj and

computed as:

|a,|

i=l
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X y x-\-y

0 0 0

0 1 1

0 X X

1 0 1

1 1 1

1 X 1

X 0 X

X 1 1

X X X

10

Table 2.1: The disjunction operator over {0,1,X}

The definition of the disjunction operator (+ or V) over {0,1,X} is given by Table 2.1. If

u |a= 1 then uj is said to be satisfied. If u\a= 0 then lj is said to be unsatisfied. Otherwise

(jj is said to be unresolved. The unassigned literals of w, if any, axe called free literals. An

unresolved clause with only one firee literal is called a unit clause. The empty clause () or

contradiction is a clause with no literals (or all literals unsatisfied and removed) and is a

shorthand representation for the unsatisfiable clause (0).

The value of a CNF formtila, 0 (defined as per Equation 2.2) is denoted by (j)\a

and computed as

1^1

i=i

The definition of the conjunction operator (• or A) over {0,1,X} is given by Table 2.2. If

<l> U= 1 then ({> is said to be satisfied. If (j)\a= 0 then is said to be unsatisfied. Otherwise

(f> is said to be unresolved. It is easily verified that a CNF, 0 is satisfied imder assignment

A if and only if at least one literal in each clause of <!> assumes value 1 under A.

Definition 2.1 (The SAT Problem) Given a CNF formula <j), the Satisfiabilityproblem

posed on <!>, SAT(<f}) seeks to determine if there exists an assignment A under which ^ is

satisfied. Such an assignment, if one exists, is called a satisfying assignment for <f> and the

formula <j) is termed satisfiable. Otherwise is termed unsatisfiable.

It can be verified that the formula of Example 2.1 is satisfiable and that the

assignment A = {(rci,1), (2:3,1)} is a satisfying assignment for (f)\.
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X y x-y

0 0 0

0 1 0

0 X 0

1 0 0

1 1 1

1 X X

X 0 0

X 1 X

X X X

11

Table 2.2: The conjiinction operator over {0,1,X}

2.4 The Davis-Putnam-Logemann-Loveland (DPLL) Search

Algorithm for SAT

The Davis-PutnaTn-Logemann-Loveland or DPLL algorithm [DLL62]^ is a search
based algorithm for SAT. It is one ofthe earliest complete algorithms for the Satisfiability
problem and also the backbone of almost all successful SAT solvers. Abrief description of
the algorithm is presented in the following. It is, in essence, very similar to the original
version that appeared in [DLL62] but specifically based on current implementations ofthe
DPLL algorithm.

The DPLL algorithm for SAT is a branch and bound search algorithm. Given a

CNF <f> based on the variable set V the algorithm searches all possible partial assignments

to V for a satisfying assignment. The search terminates either on finding a satisfying
assignment or after all partial assignments have beenexhausted.

Thesearch tree isorganized by exploring possible extensions ofthe current partial

assignment, Acurr- An imassigned variable, y ischosen and Acnrr isextended by branching
on the two disjoint possibilities Acurr U(2/> 0) and Acurr U(3/> !)• The variable y is called

a decision variable and an assignment made to it, a decision assignment. The search is

pruned whenever the current partial assignment results inaclause of 0 being unsatisfied (i.e.

(f)\Aettrr— O)' Such asituation istermed a conflict condition or simply a conflict and denoted
by X. The particular clause unsatisfied under A', through which the conflict was detected,

^H. Putnaon is not one of the authors of the article proposing the algorithm but is still credited with
algorithm since the procedure draws heavily from the Davis-Putnam algorithm [DP60] which was a

predecessor to this work.
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is Ccdled the conflict clause and denoted by u;{X). A particular conflict X is identifled by

its conflict clause u){X). A decision level A(x) is associated with each instance of a decision

variable x. This is the level of the decision node in the search tree explored by the algorithm.

The root of this tree has decision level 1. The search tree explored by the algorithm can

be graphically represented as a tree graph, where the decision variables are the nodes and

edges from these nodes, labeled with Boolean values, denote decision assignments to the

respective variables. In keeping with this graphical representation, the two assignments to

a decision variable x are called the left branch and right branch assignments of x, where the

left branch conventionally denotes the assignment e:q)lored flrst by the algorithm.

The above simple branch and boimd scheme is augmented with two other pruning

rules, called the unit literal rule and the pure literal rule. The pseudo code for the DPLL

algorithm is shown in Algorithm 2.1.

2.4.1 The Unit Literal Rule

According to this rule, if at any point in the search a unit literal clause, {ix} is

derived then the assignment (i®, 1) can be immediately made, without having to branch on

the variable x. This rule follows from the fact that the opposite assignment (Z®, 0) will render

the above clause, and hence <^, imsatisfled. Obviously there is no solution for SAT(<^) in

that subspace. Hence that subspace can be pnmed away. Iterated application of the Unit

Literal rule is called Boolean Constraint Propagation (BOP) and is a powerful component

of all DPLL based SAT algorithms. The pseudo code for BCP appears in Algorithm 2.2.

Variable assignments derived through BCP are referred to as deduced assignments

or implied assignments (also implications or deductions in short). With each deduced

variable y (and the corresponding deduced assignment /) it is convenient to associate a

clause, u)x{y) from which the implication was derived. As with decision variables, deduced

variables are also assigned a decision level X{y) which is recmsively deflned as:

X{y) = max X{x)

It is easy to show that under a given partial assignment, X{x) is unambiguously defined for

each assigned variable x by the above definitions. Henceforth, the notation x = i/@A will

be used to denote that variable x is assigned a value i/ at decision level A. Occasionally,

it is useful to annotate a set of assignments with decision levels for each assignment, using

the above notation.



CHAPTER 2. PRELIMINARIES 13

Algorithm 2.1 DPLL Algorithm for SAT
procedure DPLL_inain(0)

<r- "NULL"

return DPLL_recursive(0, •Acttrr?

procedure DPLL_recursive((^,

Acurr <- Acurr U(x,i/j) 11 Extend Actirr by settingx-^r-v^
if All clauses satisfied then

return "SAT"

else if Exists an unsatisfied clause uiuneat then

return "UNSAT"

else

status "OPEN"

end if

hcp-status BCP(Acurr)

if bcp-status ^ "OPEN" then

return bcp-status

end if

Apply_PureLiteral_Rule( •Actirr)

if All clauses satisfied then

return "SAT"

end if

Xnext Choose_Next_Variable(0, -Acurr)
lefLbranch-status •<— DPLL_recursive( 0,Acum ®T»extj 0)
if left-branch^status = "SAT" then

return "SAT"

else

right-bmnch-status ir- DPLL_recursive(^, Acurr j3'nexti l)
if right-branch-status = "SAT" then

return "SAT"

else

return "UNSAT" // Both branches of x„e»t unsatisfiable

end if

end if
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Algorithm 2.2 BGP(Acurr)
status ^ "OPEN"

while unit clauses in (f> AND status == OPEN do

if exists imit clause uj^nxt = h then

•A-curr ^ Acurr U (Z®, 1) // Make unit literal assignment

end if

if exists an unsatisfied clause uj^nsat then

status <r- "UNSAT"

else if all clauses satisfied by Acurr then

status •(— "SAT"

end if

end while

retmn status

2.4.2 The Pure Literal Rule

The pure literal rule states that if a variable x appears only as literals of one

polarity, say Ix iu the currently unresolved clauses of the CNF <f) then the assignment {Ix, 1)

can be immediately effected, without needing to branch on the variable x.

This rule is based on the result that if a solution for SAT(^) lies in the subspace

of the current partial assignment, Acurr extended with the assignment (Za;,0) then there

must be a solution for SAT(<^) in the subspace Acurr U(Z®, 1). Thus from the point of view

of testing satisfiability of 0 it is suflicient to explore just the latter subspace.

2.5 The Davis-Putnam Resolution Algorithm for SAT

The Davis-Putnam algorithm [DP60] was one of the first complete algorithms for

CNF satisfiability. The basic operation used in this algorithm is the consensus [Qui55]

operation over clauses. Consider clauses wi and U2 which contain a literal of variable x,

instantiated in opposite polarities in wi and a;2. Say, ui = + x) and UJ2 = {0J2 + x).

Then the consensus of wi and (jJ2 with respect to variable x, denoted c(a;i,W2,®), is defined

as

c{ui ,u}2,x) —Ui-\-u)2 (2A)
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In theorem proving terminology [R,ob65, Lov78] consensus over cla>uses is com

monly referred to as ground resolution or simply resolution. Resolution and its derivatives
form an integral component of theorem proving algorithms.

Algorithm 2.3 DPJElesolve-Variable(^,g)
(f)^ {uj\x e uj VXe u} 11 clauses with literal x or x

{x}|a; € 0 A{x} Gw} // aj-literal clauses with x dropped
{a; _ {^}|a; G A{x} Gw} 11 x-literal clauses with x dropped

ua;i|a;o € G</?i} 11 resolve out variable x

<f> {(f> —(f>x) U (l>x

return <f>

The Davis-Putnam procedure is an iterative algorithm. Variables of the CNF 0

are resolved out one at a time, as per Algorithm 2.3, until the empty clause is derived

or the formula becomes a tautology. The former condition happens when two umt-clauses

ofopposite polarity (^e.g. "{ic}" and "{f?)") resolved and indicates that the original CNF
<f) is unsatisfiable. The latter condition occurs when all clauses are resolved out without
encountering an empty clause and indicates that is satisfiable.

This basic procedure is augmented with a few other rules to simplify the CNF,
particularly the pure literal rule and the unit clause rule. These rules, discussed earlier (Sec
tions 2.4.2 and 2.4.1 respectively) were first proposed inthe Davis-Putnam algorithm [DP60]
and later adapted for use intheDPLL procedure [DLL62]. Simply put, using thepure literal
rule and the unit clause rule"^ in the DP procedure amounts to applying the variable reso

lution procedttre (Algorithm 2.3) on pure-literal variables and unit-literal variables before
other variables.

Thebiggest andmostobvious drawback ofthe Davis-Putnam algorithm is that it is

fairly space intensive. The DPLL backtracking algorithm, whose space complexity is linear

in the size of the SAT instance, is the preferred alternative for most practical SAT solvers.

Another minor drawback of the Davis-Putnam algorithm is that when it returns with the

answer that the CNF is satisfiable, a witness satisfying assignment is not provided^. From
a practical point of view such an assignment could be important in the target application

be precise, the unit literal rule is a two step procedure of first resolving out the variable appearing
in the unit literal and then simplifying the new clauses generated by resolution through clause subsumption.

'The procedure can be augmented to derive such an assignment albeit at the cost of an additional
computational overhead.
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from which the SAT instance was derived, e.g. a test vector in the case of SAT-based

ATPG. In DPLL based SAT, satisfying assignments are free by-products of the algorithm

itself.

2.6 Advanced Pruning Techniques in Search Algorithms

Much of the success of SAT solvers in EDA applications can be attributed to

recent advancements in search pruning techniques. Two prominent contributions in this

area are conflict based learning and non-chronological backtracking. These concepts had

been used in constraint satisfaction problem (CSP) solvers [Dec90, SV93] but were adapted

to the propositional satisfiability problem and popularized by the RELSAT [BS97] and

GRASP [MSS99] SAT solvers.

Central to both these techniques is the notion of conflict analysis. Given a conflict

condition X encoimtered by the SAT algorithm during the search and the current set of

assignments Acum conflict analysis seeks to determine a subset Ati{X) C Acutt which

can be held responsible for the conflict X. Specifically, the assignments AjiiX) should be

such that if just these assignments are made on the CNF (f> (accompanied by the ensuing

BOP) then the original conflict clause (jj(X) of conflict X would still be unsatisfied without

having made the remaining assignments of Acurv What makes this analysis important is

the observation that in practice only a small fraction of the assignments leading up to a

conflict actually influence or cause the conflict. The following example taken from [MSS99]

illustrates the notion of conflict analysis.

Example 2.2 [MSS99] Consider the following set of clauses that form part of a CNF <f>,

Ui = (xi + X2) Uq

LJ2 = (^ + a;3 + xg) U7

wa = ^ + X4) Us

UJ4 = (54 + xs-\- iCio) Uq

Us = (^4 "b ~b

Suppose the current assignment is given by

Acurr —{®9 —0@l,a;io = 0®3,xii = 0@3,xi2 —1@2, a;i3 = 1®2,...}
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Now make the decision assiguTnent xi = 1@6. This decision assignment and ensuing BCP
implications produce a conflict X\ on the given clauses. The specific conflict analysis algo
rithmpresented in [MSS99] when applied to this example produces

An{Xi) = {xi = 1@6,X9 = O@l,a;io = 0@3,a:ii = 0@3}

Thus this conflict does not depend on any decisions or implications made at decision levels
2,4 or 5.

Conflict analysis is perfornied by analyzing the chronology of decision and de

duced assignments leading up to the conflict, to determine an appropriate Agiven
conflict X can have several possible Ati{X) which can act as sufficient reasons for that con

flict [MSS99]. Depending on the specific nature of the conflict analysis procedure, one or
more specific An(X) sets out ofthe many possibilities may beexamined ona given conflict.
While it is generally accepted that the particular choice (or choices) of Ati{X) can have a
significant impact on the performance ofthe SAT algorithm theproblem ofdetermining the
most suitable An{X) for a given X (both in terms of the efficiency of computing A^{X)
and the potential search space pruning it can eventually provide) remains an open ques

tion. Recent work by Zhang et al [ZMMMOl] addresses this problem and provides some

empirical guidelines. However, much work remains to be done on both the theoretical and
practical aspects of this problem.

2.6.1 Conflict Based Learning

Conflict based learning is the notion of recording information, on encountering

a conflict condition, with the objective of using the recorded information to avoid future

occurrences of the same or related conflicts. The recorded information is an implicate of the

CNF (f> which is unsatisfied under the given conflict condition. A trivial candidate for this

purpose would betheconflict clause uj{X). However, this clause does not addany additional

value to the CNF since it is already a part of (f>. Therefore, the added clause, wn(X) is a

clause derived from the set An{X) obtained through conflict analysis. Specifically,

uJTi{X) = ^ I (2.5)
leA^iiX)

Hence conflict based learning is also known as conflict clause recording or simply clause

recording. For the conflict Xi of Example 2.2 the recorded clause would be wni^i) =
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+xg + aJio + icii). From the definition of conflict analysis, it follows that adding

to 0 ensures that the search will not regenerate the conflicting assignment that led to X.

Further, adding u}ji{X) has the potential of identifying future implications that are not

derivable otherwise.

2.6.2 Non-chronological Backtracking

Backtracking, in the context of a search based SAT algorithm like DPLL, is the

operation of undoing or erasing one or more decision assignments (as well as the associated

implications) from the current set of assignments Acurr with the aim of exploring unexplored

partial assignments to the variables. Backtracking is performed when the CNF <}> has been

proved to be iinsatisfiable in the sub-space imder Acurr > e.5. by means of one or more

conflicts.

In the DPLL algorithm (Algorithm 2.1) the badctracking performed is chronolog

ical backtracking. This has the following meaning. Say, x and y are two decision variables

hi Acurr such that A(a:) < X{y). Further, suppose x and y were currently being explored in

their left branch assignment. Then the right branch assignment of y will always be explored

before attempting the right branch assignment of x. Operationally, the DPLL algorithm,

on encoimtering a conflict, would undo assignments from Acurr hi reverse chronological

order of decision level until it reached the first left branch assignment. At this point the

assignment of this variable would be flipped and the search would resume.

Non-chronological backtracking (NCB) is based on the observation that it may

be possible to establish that the sub-space under an unexplored right branch (i.e. the

variable is currently being explored in its left branch in Acurr) cannot contain a solution

for (f>. Such a determination may be made by analyzing the current (and previous conflict

conditions) and proving that the current conflict condition would continue to exist or repeat

in this sub-space. Operationally, one way to do this'* is to perform conflict anedysis on the

current conflict condition X and determine the lowest variable xioweat (^-c. the one that

has the decision level with the highest numerical value) in the set An(X). By the above

argument the search can directly jump to X{xicyu>eat) erasing all assignments between the

current decision level (i.e. the level of the cmrent conflict) and X(xioxueat) and thereby

bjrpassing or "jumping over" any explored right branches in these intermediate levels. In

*This is the method used by almost all SAT solvers implementing NCB.
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Decision Level

3

- 5
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Figure 2.1: An Example of Non-chronological Backtracking [MSS99]

this sense the backtracking is non-chronological

An instance ofnon-chronological backtracking can be seen on the CNF ofExam

ple 2.2. Figure 2.1 illustrates this. Consider conflict from the example. Conflict analysis
on Xi generates = {«i = 1,X9 = O,a;io = 0,®ii = 0}. From the above discussion
on NCB we can deduce the backtrack level of the current conflict to be 6 i.e. the current

level. Therefore, we simply flip the value ofx\ from 1to 0. Note, that up to this point the
backtracking is still chronological. However, the new assignment ajj = 0 will immediately
lead to another conflict X2 (this can be confirmed from the CNF given in Example 2.2).
Analysis of this conflict yields

An{X2) = {0:9 = 0@l,a;io = 0@3,a;ii = 0@3,xi2 = l@2,xi3 = 1@2}

From this the backtrack level can be deduced to be 3 which is indeed a non-chronological
jump (the chronological backtrack level would have been 5).

2.7 Transformation of Non-Clausal SAT problems to CNF

For certain classes of Satisfiability problems the native representation is not con

junctive normal form. Since most SAT tedmiques and solvers are based on CNF repre-
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sentations, efficient procedures to convert instances from non-clausal forms to CNF axe an

essential component of SAT methodologies. In the following we discuss two such transfor

mations which axe especially relevant in the context of EDA applications.

2.7.1 CNF Representations of Propositional Formulas

Let F be a set of propositional variables. Well formed propositional formulas

based on the set V axe defined as follows [DW83, MS95]:

1. Any propositional variable a: G F is a well formed formula.

2. If p is a well-formed formula, then so is p.

3. If p and cr axe well formed formulas then so axe (p •o"), (p + cr) and a).

Prom the above definition it is clear that CNP formulas axe a special case of weU

formed propositional formulas. A simple procediure to convert an arbitrary well formed

propositional formula to a CNF representation is as follows [DW83, MS95].

1. Express equivalence operations in terms of conjimction, disjimction and negation op

erations through the transformation: (p -H- cr) = ((p •a) + (p •cr)).

2. Apply De Morgan's laws to expand out all negations, other than those associated with

single variables.

3. Absorb double negations over single variables using the identity: x = x.

4. Repeatedly apply the distributive law: {{li •^2) + {h ' h)) = (^i + ^3) • ('i + ^4) • ('2 +

h) • (^2 + ^4) till a CNF is obtained.

Example 2.3 The formula <f> = (x y) + {y z) is a well formed propositional formula.

It can be converted to a CNF representation using the above procedure. Applying Step 1 gives

(}) = [xy + xy)-\-{yz + yz) which after Steps2 &3 transforms to {x+y)(x-hy)-\-{y-^z){y-\-z).

Finally, applying Step 4 onc^ simplifying using basic axioms of Boolean Algebra^, yields the

CNF <f) = {xy-\r z)(x H- y + z).

Example 2.4 Consider the propositional formula = (... (a:i X2)...) -<4 a;jv). It can

be shown that applying the above procedure will yield a CNF with 2^~* clauses.
®x + ®= x, «*x = x, l-x = x and x + x = 1
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This example illustrates that the above procedure to convert a well formed propo-
sitional formula to CNF cansometimes result in a CNF representation that is exponentially
larger than the size of the original propositional formula. In Example 2.4 the size of the
original (f) is linear in N while the CNF is exponential in N. Atransformation procedure
proposed by G. Tseitin [Tse68] addresses this problem. Tseitin's transformation is defined
as follows.

Definition 2.2 (Tseitin's Transformation [Tse68]) Let(l> he the given well formed propo
sitional formula.

1. Associate a new propositioned variable Xfj with each sub-formula r} contained in
such that Xrf and 77 always assume the same propositional value.

2. For each operation in <l>, i.e. for each sub-formula of(j) (including <f> itself) create a
set of clauses as follows:

mIfrj^p-a (where 77, p and a are all sub-formulas of<f>) define clauses

(a^Tj + Xp) •{Xfj d" X(j) •(Xff + Xp + Xff).

• Ifrj —p-la define clauses {Xff + + iCp + ^<7)-

• Iff} =1 p a define clauses {^-IXp-\-^y{^-{-'̂ +Xa)'{xr}-\-Xp-\-XtTy{xr}-^Xp-\-X(r).

• If r} = p define clauses • (xn + Xp).

3. Finally add a unit-literal clause (</>) to assert that the formula is required to be true.

4. The conjunction ofall clauses generated above defines the desired CNF representation
of (f), whose satisfiability we seek to determine.

Consider the CNF 4>\ from Example 2.4. Let us apply Tseitin's transformation,

described above, to this formula. <j>i has JV —1 sub-formulas, 771,... ,r}N-i defined as
77^ = rji-i Xi+i for i = 2,... ,iV —1 and 771 = xi X2. Hence, JNT —1 new propositional
variables Xfju .•. created and for each rji the clauses {xrf + ®i+i)'

+ ®i+i) •(®»7 + + ®i+i) • are added to the CNF. Thus, the
resulting CNF has 4x(iV-1)+1 clauses and is linear in thesize oftheoriginal propositional
formula.

^0 is also a sub-formula of itself.
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Tseitin's transformation is the most popular method for transforming general

prepositional formulas into CNF. However, other polynomial size transformations have also

been developed. The interested reader is referred to [MS95] for more details on these meth

ods.

2.7.2 Solving SAT problems on Logic Circuits

Many EDA applications using SAT models involve SAT problems posed on logic

circuits^. Most of the work on SAT formulations of logic circuit EDA problems has focused

on combinational logic circuits and such will be the focus of the research presented in this

dissertation as well. Therefore, in the following discussion and in the rest of the dissertation

the term logic circuit will be used to refer to a combinational logic circuit, unless expHcitly

noted otherwise.

Traditional solutions to EDA problems have sometimes employed algorithms that

worked off the native representation of the logic circuit, often performing a branch-and-

boimd search similar to a DPLL-like algorithm, e.g. the PODEM algorithm for combi

national ATPG [GoeSl]. However, recent advancements in CNF based SAT solvers have

prompted the formulation of such EDA problems in terms of CNF based SAT. In the fol

lowing we review the essential elements of some popular techniques for transforming SAT

problems on logic circuits to CNF.

For the purpose of solving SAT problems posed on combinational logic circuits,

it is adequate to work with an abstract representation of a multi-level combinational logic

circuit, known as a Boolean network [BRSVW87]. In this dissertationa given combinational

logic circuit C is indistinguishable from its corresponding Booleannetwork.

A Boolean network is a directed acyclic graph (DAG), where a node without any

incoming edgerepresents a primary input and a node without any outgoingedgerepresents

a primary output. All other nodes represent intermediate gates®. A Boolean function is
associated with each intermediate node. There is an edge from node to a node Uj if the

function associated with nj explicitly depends oil Ui. If there is an edge from node ni to

node 712, ni is said to be a fanin nodeof 712 and 712 is said to be a fanout node of ni. If there

is a directed path from 7ii to 712 hi the Boolean network, 7ii is said to be in the transitive

fanin of 712 and 712 is said to be in the transitive fanout of 7ii.

^An exception are SAT formulations ofphysical design problems in EDA e.g. [WR98].
®It is assumed that primary inputs and outputs do not compute any non-trivial function.
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Further, every node in the Boolean network (including primary inputs, prunary

outputs and the outputs of internal gates) is associated with a prepositional variable. For
a node n whose output variable is y, I{y) denotes the fanin of the node (i.e. the input
variables ofthe gate) and fy(I{y)) denotes the Boolean function implemented by the gate.

Most SAT problems arising from combinational logic circuits, such as combinar

tional ATPG, combinational equivalence checking etc. can be posed as a generic satisfiability
problem on a suitable circuit. This generic satisfiability problem is known as CIRCUIT-
SAT. In the following we define this problem ona circuit with a single primary output and
present methods to transform such aproblem into a CNF based SAT problem. While a dis
cussion describing the transformation ofevery known logic circuit based SAT problem into
CNF isbeyond thescope ofthis discussion, the transformation methods for CIRCUIT-SAT
apply tomost such problems and provide a good starting point for the remaining problems.

Definition 2.3 (CIRCUIT-SAT) Given a single output Boolean circuit C, the circuit
satisfiability problem on C, denoted as CIRCUITSAT{C), seeks to determine a logic value
assignment (partial or complete) to the primary inputs ofC under which the primary output
ofC evaluates to 1. Such an assignment, if one exists, is called a satisfying assignment of
C, otherwise the instance CIRCUITSAT{C) is said to be unsatisfiable.

Given a CIRCUIT-SAT problem ona logic circuit C onenaive methodto transform

thisintoa CNF SAT problem would be thefollowing. Firstconstruct a single prepositional
formula for the function of the primary output of C by starting with the primary output

(say y) and recursively substituting /«,(/(iy)) into fy{I{y)) for eadi w € I{y)' Then this
prepositional formula can be transformed into CNF using one of the methods outlined in
Section 2.7.1. The problem with this approach is that the prepositional formula obtained
ran be exponentially larger than the circuit representation C, thus making the approach

impractical.

What is used in practice is essentially an adaptation of Tseitin's transformation

to combinational circuits. For each gate in C, with output y, we construct a consistency

function, ^y [MS95] defined as follows.

y) = W{y)) ®2/I
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Gate type Gate Function iy

AND y = AND{wi,... ,Wk) ^n(^i +S?)j
OR y= OR(wi,... ,Wk)

NAND y = NAND{wi,... jWk)

NOR y = NOR(wu... ,Wk)

NOT y = NOT(w) (ly -1- y) • (itJ -by)
BUFFER y = BUFFER{w) (lu + y) • (W -by)

Table 2.3: CNF formulas for simple gates

24

The Boolean function ^y(-f(2/),y) evaluates to 1 when the values of the inputs of

I{y) are consistent with the value of the output y as per the Boolean function fy associ

ated with the node. To construct the CNF for CIRCUIT-SAT(C) we construct the CNF

representation for the consistency function of each node in C, tcdce the conjimction of all

these CNFs and add an additional unit-literal clause asserting the primary output of C

to 1. The resulting representation is the CNF SAT formula corresponding to the instance

CmCUIT-SAT(C).

The above procedure requires the construction of the CNF for ^y(J(2/),y). There

are several ways to do this including obtaining a product-of-sums (POS) representation

by directly simplifying the fyuth table of ^y(/(y),2/) [MS95] or by using one of the two

procedures described in Section 2.7.1. However, the most popular method is to first de

compose each gate in the original circuit C into a set of simple gates (AND, OR, NOT,

NAND, NOR etc.) by using one of several well-known Boolean function decomposition

techniques[BRSVW87]. Then the aboveprocedure is applied on this circuit ofsimplegates

by using rules such as those given in Table 2.3 to construct the CNF for ^y{I{y), y) of each

simple gate. Figure 2.2 tabulates the CNF formulas for 2-input and 1-input simple gates.

These are just the formulas given in Table 2.3 evaluated for the case k = 2.

The reader will note that this procedure is identical to Tseitin's Transformation

for propositional formulas (Definition 2.2). Here the addition of extra variables is obviated
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Figure 2.2: CNF formulas for 2-mput & 1-input simple gates

by the existence of intermediate gate output variables which do indeed define sub-formulas
of the overall circuit formula. Further, the formulas in Table 2.3 are simple generalizations

of the rules in Step 2 of Definition 2.2.
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Recent years have seen dramatic improvements in the performance of algorithms

and tools for SAT, allowing muchlarger problem instances to be solvedand greatly expand

ing the realm of applicability of SAT solvers. Spurred by the recent advancements in SAT

solver technology, SAT algorithms have been successfully applied to problems from a wide

variety of EDA applications [MSSOO]. In fact, SAT solvers are expected to have an impact

on EDA applications similar to what BDDs have had since their introduction more than a

decade ago.

This chapter surveys the recent developments in the area of SAT algorithms and

their application to EDA problems. Some of the early progress in this domain is com

prehensively described in two other works [GPFW97, MSSOO]. Progress in this held can

be categorized along two axes, namely 1.) improvements to core SAT algorithms and tech

niques and 2.) application ofSAT algorithms to various EDA problems. These are surveyed

in Section 3.1 and Section 3.2 respectively.

Traditionally, the propositional satisfiability problem is posed on a Conjunctive

Normal Form (CNF) formula. The SAT problem can be quite naturally posed on other

representations of Boolean formulas e.g. DNF, multi-level logic circuits, etc. Sudi works are

surveyed in Section 3.1. However, unlessotherwise stated, the discussion is with respect to

a CNF representation.
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3.1 SAT Algorithms & Tools

SAT algorithms can be broadly divided into two categories.

1. Complete SAT algorithms: Given a SAT problem, a complete SAT algorithm will
either find a satisfying assignment for the problem or prove that no such assignment

exists. Such algorithms are mostly deterministic^ in nature and involve some kind of
organized explorationof the complete solution space.

2. Incomplete SAT algorithms: For a given SAT instance such an algorithm either
1.) retmns with a satisfying assignment for the problem or 2.) terminates without
an answer. The idea behind this class of algorithms is to spend a given amoimt

of resources in "quickly" finding solutions to a large fraction of satisfiable mstances

and to leave the "hard-to-satisfy" and unsatisfiable instances to the complete (albeit

expensive) SAT algorithms. These algorithms are partly stochastic in nature and
usually involve some kind ofsampling ofthesolution space (incontrast to anorganized
exploration).

3.1.1 Complete SAT Solvers

3.1.1.1 SAT Solvers based on Propositional Formulas

The two earliest complete methods for the SAT problem are the Davis-PutTiam

(DP) method [DP60] and the Davis-Putnam-Logemann-Loveland (DPLL) procedure [DLL62],
reviewed in Section 2.5 and Section 2.4 respectively. The former employs a proof-theoretic

approach based on an organized application ofthe clause resolution operation. The latter
does a branch-and-bound exploration of the space of all possible Boolean assignments to

the variables of the CNF formula. Most current SAT solvers are derivatives of the DPLL

procedme augmented with a limited amoimt of resolution based reasoning.

The GRASP SAT solver [MSS99] was the first to introduce the techniques of
non-chronological backtracking and conflict driven learning (these have been reviewed in

Section 2.6) into DPLL based SAT solvers. These techniques are foimded on the notion

of conflict analysis which seeks to determine and analyze the causes of a given conflict
encoimtered during the search. The above techniques were independently developed and

proposed in the RELSAT SAT solver [BS97] by Bayardo & Schrag. A novel feature of
^Probabilistic SAT methods can also be made to be complete.
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RELSAT is the notion of relevance hosed learning whereby a recorded clause is discarded

when at most i literals in it have changed value since its recording. This feature is used to

control the growth of the CNF formula as is the notion of recording only clauses bounded

by a certain size (size bounded learning).

SATO [ZS96] proposed a new datarstructure for performingefficient BooleanCon

straint Propagation (EOF), since this operation is a significant component of the computer

tion time of all DPLL based solvers. SATO was later extended [Zha97] to incorporate the

techniques proposed in GRASP. More recently, Moskewicz et al. have proposed the Chaff

SAT solver [MMZ"^01]. Chaff is a very efficient and optimized implementation combining

the datarstructure of SATO, the search pruning techniques of GRASP, the notion of

relevance based learning from RELSAT and the technique of search restarts from [GSK98]

with some of its own enhancements. The solver employs a novel cheap and efficient decision

heuristic which significantly speeds up the computation, as well as garbage collection tech

niques to efficiently manage the clause database. This solver is arguably the current state

of the art in terms of implementation and algorithmic advancements in SAT solvers.

Another class of techniques is based on a patented method [Sta] by Gunnar

Stalmarck [SSOO]. The method is in use in a commercial tool offering by Prover Technolo

gies [pro] and has had somesuccess in the verification domain [Bor97]. Stalmarck'smethod

wasoriginally proposed to workoffa non-CNF representation but has been adapted to work

on CNF representations in the HeerHugo solver [GW99]. HeerHugo also employs some

restricted, rule-based application of resolution.

An interesting set of contributions orthogonal to progress in SAT solvers per se

is in the area of incremental satisfiability [KMSSOOb, WKSOlj. The motivation behind

this researdi is that in many practical applications such as delay-faidt testing, timing anal

ysis and bounded model checking etc. the task is to solve a set of SAT instances which

share a lajge percentage of common clauses. Usually these instances are merely different

"questions" posed on the same basic physical system. Incremental satisfiability techniques

attempt to efficiently solve such a set of related SAT instances by using specific infonnar

tion from the solution process of one instance to aid the solution of other instances. The

SATIRE [WKSOl] solver which is built on top of GRASP supports this incremental fear

ture and also supports some forms of non-Boolean constraints in the input SAT instance.
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3.1.1.2 Circuit Based Boolean Reasoning

A multi-level logic circuit can also be viewed as a representation ofthe function(s)

realized by the primary output(s) of the circuit. Thus, SAT problems can be posed and

solved on circuit representations as well. The combinational ATPG problem can be quite

naturally posed as a SAT problem. Traditionally, ATPG tools viz. PODEjM [GoeSl],
SOCRATES [STS88] and [ZRP97] have performed Boolean Reasoning on the original

circuit representation. Recursive Learning [KP94] proposed by Kunz and Pradhan is a

complete technique to perform Boolean reasoning on multi-level circmts^. While recursive
learning has not proved to be very effective as a stand-alone technique, restricted forms ofit

have beenused in SAT solvers [MSG99, KGPOl]. In fact, Stalmarck's method and its CNF
implementation in HeerHugo also bear some similarity to recursive learning. Recently,

Kuehlmann et a/. [KGPOl] have proposed a Boolean reasoning engine that operates directly

on a circuit graph representation. It includes a state of the art branch and bound SAT

solver that incorporates features of advanced CNF solvers as well as a number of other,

circuit specific, search pruning techniques.

SAT problems posed on logic circuits are frequently solved by transforming the

problem to CNF,albeit at the costofhiding structural information that a circuit-based tech

nique could exploit. In some applications such information can be invaluable in solving the

problem. The early works using CNF basedSAT for circuit problems [Lar92, SBSV96] per

formed a singlepass of static learning to extract important functionalinformation from the

circuit structure, which was added as clauses to the CNF database. Silva et al. [eSSMS99]

have proposed adding a layer on top of a traditional CNF Solver (GRASP in this case)

which passes structural information firom the circuit to aid the solver. Tafertshofer et

al. [TCH97] have proposed a new specialized datarstructure called an implication graph

which has the topology to represent the circuit structrure but is general enough to homoge

neously integrate some forms of leaxning, traditionally supported by CNF solvers. [CFOl]

proposes a variant of this data^-structure and some novel static and dynamic learning tech

niques that can be applied to it.

'In other words solve SAT problems on circuits.
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3.1.1.3 Other improvements to SAT solvers

A recent direction in SAT solving has been the use of dedicated reconfigurable

hardware architectmes [ZMAM99, AdSOO, dSMSAOl]. The objective here is to exploit

the fine-grained parallelism of hardware to solve the problem faster. Unfortimately, given

today's technology, the overhead associated with mapping a SAT instance to hardware is

too much to justify the use of this approach, except for very large problem instances.

Some other recent developments have been aimed at enhancing specific aspects

of a typical complete SAT algorithm. Variable ordering (decision heuristic) issues have

been discussed in [LA97] and [AMSOl]. The SATZ solver [LA97] uses a partial one-step

lookahead scheme and chooses the variable giving the greatestnumber ofBCP assignments^

as the next branching variable. [AMSOl] has proposed a novel static variable ordering

scheme based on mincut partitioning.

Rule-based learning or CNF simplification approadies constitute another class of

enhancements that have been proposed. The equivalency reasoning approach proposed by

Li [LiOD] uses a set of rules to recognize and deduce new 2 and 3-variable equivalency con

ditions (biconditionals) using unit-literal propagation and pattern recognition on the CNF.

This is done at each step of the DPLL procedure. Interestingly, SATZ enhanced with

equivalency reasoning (EqSatz) is able to solve almost all the BMC examples [BCC"''99] in

times comparable to or faster than Chaff. Le Berre [BerOl] proposed a similar approach

where a set of rules is used to deduce special cases of implications, equivalences and bicon

ditionals by examining consequences of both assignments to a variable with full BCP (here

the procedure has commonalities with level-1 recursive learning). Marques-Silva [MSOO]

proposes a rule-based pattern-matching approach to simply the CNF in a preprocessing

step. His rules detect equivalent variables and simple 2-literal clauses deduced through

special cases of resolution. While each of the above rule-based approaches have claimed

limited success in their respective experimental environments, they have not been proven

or incorporated in a leading edge SAT solver such as Chaff. An orthogonal category of

research is aimed at solving SAT on decision diagram datarstructures rather than CNFs or

logic circuits; [AMSOl] use ZBDDs while Williams et at. [WAHOl] propose using Boolean

Expression Diagrams (BEDs).

There is also a body of work aimed at trying to make complete SAT algorithms

opposed to computing some estimate of the potential BCP.



CHAPTER 3. SAT ALGORITHMS IN EDA: RECENT DEVELOPMENTS 31

paxtly stochastic in nature. The most notable contributions in this direction are the use of
randomization and restarts and dynamic backtracking. The notion ofsearch restarts is used

to partially remedy "early bad" variable choices made by the decision heuristic. Simply
put, the strategy is to abort the search after a certain number ofbacktracks and restart
from scratch, retaining all or some of the clauses that were learned in the search thus far.
Randomization is used mainly in the decision heuristic, say by randomly choosing the next

branching variable from a set of "good" candidates. These techniques were introduced
in [GSK98], in the context of AI applications and incorporated in the GRASP[BMSOO]
and Chaff [MMZ+01] solvers. The general consensus regarding their efficacy is that they
do not have an appreciable overhead in the instances where they are not effective but
give significant speedups (up to one order of magmtude) in cases where they are useful.
Pynamir. backtracking was proposed in the context of incomplete solvers in [Gin93] and

recently adapted for complete search [LBMSOl]. The basic idea is that on a conflict, instead
of undoing the last variable responsible for the conflict, the algorithm randomly undoes
any one of the responsible assignments. This and other variants ofdynamic backtracking
sdiemes are stillvery much in the experimental stage. These techniques will need to mature

before a definitive statement on their utility can be made.

3.1.2 Incomplete SAT Solvers

Incomplete SAT solvers shot to prominence with the work on GSAT [SLM92]

where greedy local search was shown to outperform state of the art complete algorithms,

for some applications from the Artificial Intelligence domain. The GSAT algorithm con

sists of a set of tries. In each try, starting from an random initial assignment, variables are

greedily chosen and flipped with the cost function of maximizing the number of satisfied
clauses. This is done till all the clauses are satisfied or the algorithm exhausts a predeter

mined maximum number of tries. The GSAT algorithm was later developed into IVSAT

(Walksat) [SKC96] by adding a small amoiuit of noise to escape local minima. The algo
rithm is again organized as a sequence of tries, where each try is a sequence of flips. Each

flip is made by first randomly picking an unsatisfied clause and picking (either at random

or according to a greedy heuristic) a variable within that clause to flip. In the experience

of the EDA community the GSAT and WSAT algorithms per se are not well suited to

EDA applications because EDA SAT problems represent highly constrained spaces. Even
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successors to WSAT like [KMS97], which axe designed to operate in constrained spaces,

have not found acceptance in EDA. Recent work on stochastic local search employing dy

namic backtracking [Gin93, PreOO] seems promising but is yet to be extensively tested on

EDA problems.

However, incomplete stochastic techniques such as random and weighted random

simulation are routinely used in ATPG and verification applications. Such techniques axe in

some sense similax to algorithms like WSAT. Also, a simple variant of WSAT adapted to

work offBDDs was successfullyused by Singhal & Burch in their equivalencechecker [BS98].

Therefore, it may be just a matter of time before effective incomplete solvers for EDA

applications axe developed.

3.2 SAT Applications in EDA

Several EDA applications have problems that can be quite naturally formiilated

in terms of SAT which is rapidly becoming the method of choice for solving an increasing

fraction of these problems. Verification has provided the richest application domain for use

of SAT in EDA. However, applications in other areas exist as well. These axe reviewed

in Sections 3.2.1 and 3.2.2 respectively. For a more complete list of some of the early

applications of SAT in EDA refer to [GPFW97].

3.2.1 SAT in Verification

Combinational ATPG was one of the earliest applications of SAT in EDA. Efficient

SAT-basedCombinationalATPG tools such as NEMESIS [Lax92], TEGUS [SBSV96] and

TIP [TG99] were developed for the single stuck-at and bridging fault models. SAT models

have also been used for delay fault testing [CG96,KMSSOOa]. The formulation of SAT based

combinational ATPG for single stuck-at faults, originally proposed by Laxrabee [Lax92],

and later iised by all subsequent works is briefly reviewed in Section 4.1. A recent, related

application has been in using a hybrid of 3-SAT and linear programming in functional vector

generation for HDL models [FDK98].

Combinational Verification (CEC) has also provided a fertile groimd for appli

cation of SAT methods. The HANNIBAiL [Kun93] tool employs recursive learning on

the circtiit supplemented with an ATPG engine, [TGH97] perform Boolean reasoning on

their implication graph datarstructure, [MSG99] proposed using the GRASP solver pre-
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ceded by a pre-processing phase of CNF-based recursive learning. However, state-of-the
art CEC tools use a cut-point based approach where SAT is used in combination with a
number ofother engines such as BDDs, simulation and structural analysis algorithms (e.g.
graph isomorphism) [GA98, BS98, MJT+99, PKOO]. [BS98] uses a BDD and simulation
framework complemented with randomized SAT algorithms modified to work off the BDD
datarstructure. [MJT+99] uses a filter-based approach where a single cut-point check passes
throu^ a sequence of engines (such as simulation, structural approaches, SAT, BDDs) of
increasing power and complexity. In [PKOO] Paruthi &Kuehlmann use aninterleaved invo
cationofBDDs and a SAT solver, withincreasing thresholds, to accomplish each equivalence

check.

A relatively recent application is the use ofSAT for verifying safety properties on

sequential systems. One such method that has become popular is Bounded Model Check
ing [BCCZ99, BCC+99]. Simply put, it involves unrolling asequential circuit for aspecified
number of time-frames and constructing a CNF which asserts that a particular safetyprop

erty is violated on the unrolled circuit. A case study for the application of this method
is presented in [BCRZ99] and improvements to the original formulation are reported in
[ShtOO, ShtOl]. The proposed improvements include variable ordering issues and ideas
drawn from incremental satisfiability.

Bounded model cheddng techniques are incomplete verification techniques in that

they reason only about the state-space covered by a fixed number of tune-firames. A fairly
recent direction in SAT research is to explore the use of SAT methods in a conventional

(i.e. complete) model checking framework for problem such as reachability analysis and
image computation [SS90, SSSOO, ABEOO, BCOO, WBCGOO, GYAGOO, BLMOl]. AbduUa et
al. [ABEOO] use a non-canonical data-structure called a Reduced Boolean Circuit (RBC) to
represent the functions (i.e. the transition relation, state sets etc.) and a conventional SAT
checker (the PROVER tool based onStamarck's method) is used for various SAT checks
required during the entire process viz. checking for the fixed-point. The quantification step

ofimage computation is implemented on the RBC itself using quantification axioms such as

inlining and scope reduction to alleviate size explosion ofthe RBC. [WBCGOO] use a similar
approach where Boolean Expression Diagrams (BED) areused in place ofthe RBC, SATO

is used as the SAT checker and some additional priming techniquesare employed to control

size explosion of BEDs. [SSSOO] and [BCOO] report results on using powerful variants of
induction and a SAT solver (PROVER in this case) to perform property checking. Gupta
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et al. [GYAGOO] have proposed an approach of combining SAT and BDDs to perform

image computation. BDDs are used to represent the state sets and a CNF to represent the

transition relation. The next-state computation is done through a combination of BDDs and

SAT algorithms. Several improvements to this basic framework are proposed in [GGYAOl]

and [GYA+Olb].

Velev et al. investigated the use of SAT procedures in microprocessor verification.

In [BGVOl] the microprocessor verification task is expressed in the logic of equality with

uninterpreted functions and then efiicientlyreduced to propositional satisfiability (SAT). In

a recent series of works by the same authors this formulation has been extended to model su

perscalar microprocessors [VB99], superscalar processors with m\ilti-cycle functional units,

exceptions and branch prediction [VBOO] and VLIW processors with speculative execu

tion [VelOO].

A verification methodology, gaining popularity in the EDA industry, is a class of

methods known as semi-formal techniques. The objective is to use an efficient combination

of simulation and formal techniques to do a more effective validation of the design, find

more bugs or do a limited amoimt of formal checking. The SIVA tool [GYA+Ola] and the

Ketchum tool [HSH+OO] are twosuch works that use SATmethods as one of the engines in

combination with BDDs, simulation, symbolic simulation and structural ATPG methods.

3.2.2 Other Applications

In the area of s3nithesis, SAT algorithms have been used for exact timing analy

sis [MSS"''91, eSMSSS97] and logic optimization through redundancy removal [EC95]. More

recently, SAT models have been applied to Crosstalk noise analysis [CK99] and logic opti

mization using don't cares [SBOl].

Physical design has not seen many applications of SAT, its only notable use being

in FPGA Routing [WR98, NSR99, NASROl]. The reason for this is that many problems

in physical design are geometrical in nature and a propositional encoding of such problems

usually produces very large SAT instances, which cannot be solved by current SAT methods.

Other physical design problems are inherently non-discrete and thereby best suited for

continuous optimization methods.
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3.3 Conclusions

The last few years have seen the growth of SAT solvers in EDA from being an

algorithmic problem of academic interest to a powerful reasoning tool and an enabling
technology for several applications. A host of SAT solvers and extensive suites of SAT
benchmarks are now available in the public domain (see SATLIVE! [Ber], SATLIB [Ber]

and Sat-Ex [SCOl]) to facilitate research inSAT algorithms and apphcations. Realizing the
commercial potential of SAT solvers, several companies, e.g. Prover Technologies [pro]
and Greentech Computing Inc. [gre] are commercially marketing SAT solvers and ser

vices associated with their use in various applications. However, despite the dramatic

progress in this area, only a small fraction of the immense potential of SAT for EDA has

been realized. The next few years promises to be an exciting time for EDA professionals

engaged in SAT research.
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This chapter presents an analysis of the complexity of an important and well

studied EDA application that \ises SAT methods. The imderlying objective is to make

such an analysis more realistic by accoimting for salient characteristics of problem instances

encountered in real life. The problem examined is the combinational automatic test pattern

generation (ATPG) problem for the single stuck-at fault model.

Combinational ATPG techniques find widespread use in a number of EDA appli

cations. In addition to generating test patterns for testing digital combinational circuits,

for which they were originally proposed, they have proved to be effective tools of logic opti

mization [DMSV88, EC95] and have recently found application in verification techniques as

well [Bra93]. The analysis presented in the sequel also sheds light on the following paradox

regarding the combinational ATPG problem.

It has been known for more than two decades that the combinational ATPG prob

lemis NP-complete [IS75]. This meansthat imless P = NP, there cannot existan algorithm

which solves an arbitrary instance of this problem in poljnttomial time. However, as early as

1979, Williams and Parker [WP79] claimedthat for practically encountered instances of the

problem the complexity of combinational ATPG is only O(n^). In fact, the widespread use

of ATPG-based techniques can largely be attributed to the relative ease with which large

instances of the problem are solved in practice.

We corroborated the claim that combinational ATPG is easily solvable in prac-
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Figure 4.1: Results of TEGUS on ATPG-SAT instances
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tice by performing the following experiment. ATPG was carried out on the combinar

tional circuits from the MCNC91 [Yan91] and ISCAS85 [BF85] benchmark suites, using

TEGUS [SBSV96], an ATPG tool based on a Boolean satisfiability (SAT) formulation.
The time to solve each SAT instance was recorded as a function of the size of the instance

(number of SAT variables) and plotted in Figure 4.1. Of the 11,000 SAT instances gener

ated, some with over 15,000 variables, over 90% were solved in less than 1/lOOth ofsecond;

these were removed from the plot for clarity. The remaining instances exhibited roughly

a cubic growth in execution time. Thus, the theoretical worst case complexity of ATPG,

i.e. the fact that it is NP-complete, would seem to be a poor indicator of the practical ease

of the problem. The work in this chapter is one of the first attempts to offer a theoretical

explanation for the practical ease of ATPG. In the rest of the chapter, the term ATPG is

used to refer to combinational ATPG.

The practical ease of ATPG suggests that there is some underlying property com

mon to real-life ATPG instances which makes them tractable. These instances are usually

derived from practical VLSI circuits. Therefore, we develop a characterization of the com

plexity ofsolving ATPGin termsofa topological circuit property, namely cut-width. Wealso

demonstrate, through theoretical arguments and experiments on practical circuits, that a

large classof interesting circuits havesmall cut-widths^ provably permitting ef5.cient ATPG.
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We use a popular formiilation based on SAT as our working model of the ATPG al

gorithm. This formulation is based on Tseitin's transformation for transforming a CIRCUIT-

SAT problem into an instance of CNF Satisfiability (reviewed in Section 2.7.2). The for

mulation was originally proposed by Larrabee [Lar92] and later developed by Stephan et

al. [SBSV96]. It must be noted that although the current analysis is intended for the ATPG

problem, the same basic analysis firamework could be appHed to any EDA problem that uses

a CIRCUIT-SAT based formulation.

The rest of the chapter is organized as follows. We begin with some definitions

and notation in Section 4.1. In Section 4.2 we briefiy discuss some seemingly promising

approaches for analyzing the complexity of ATPG instances, based on existing results and

analysis techniques. We argue that these approaxdies provide only an incomplete or incon

clusive answer to the practical complexity of ATPG. Section 4.3 presents our model of the

backtracking based algorithm for solving SAT, the cut-width property of circuits, and an

analysis of the complexity of ATPG in terms of cut-width. In Section 4.4 we present both

theoretical arguments and empirical results to show that a cut-width based argument does

in fact predict a polynomial runtime of ATPG on a large class of practical circuits. In

Section 4.5 we present interesting parallels and points of contrast between our results and

publishedwork addressing bounds on the sizeof binary decision diagrams (BDDs). A sum

mary and discussion of the salient results presented in this chapter is given in Section 4.6.

4.1 Definitions and Notation

Definition 4.1 (Single Stuck-at-fault) Given a Boolean network C [BRSVW87], a sin

gle stuck-at fault -0 = 0(a;, B) is one which causes a net x in C to be permanently stuck at

logic value B (where B € {0,1}).

In the above, we consider a net to be the output of a gate (node) and all its

associated fanout stems. Normally, one would distinguish the potential faults for different

fanouts of a single net. However, for the purpose of our analysis we consider just one fault

per net. This does not affect the generality of our results.

Definition 4.2 (Faulted Circuit) Given a circuit C and a single-stuck at fault if;(x,B),
the faulted circuit C^ is the original circuit C with the fault 0 operative i.e. the fault-net x
asserted to B.
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Definition 4.3 (The ATPG Problem) Given aBoolean network C and asingle stuck-at
fault ip, the ATPG problem ATPG(C,ip{x,B)) seeks to determine an assignment ofBoolean
values to the primary inputs ofC (and thus C^) such that fault net x has complementary
logic values in C and C^ and at least one pair of corresponding primary outputs of C and

have complementary logic values. Such a Boolean assignment issaid to be a test for the
fault ijj. If no such assignment exists the fault is said to be untestable.

The CIRCUIT-SAT problem, introduced earlier in Section 2.7.2 (Defimtion 2.3)
can be easily generalized to multi-output circuits as follows.

Definition 4.4 (CIRCUIT-SAT) Given a multi-output Boolean circuit C, the circuit
satisfiability problem on C, denoted as CIRCUIT-SAT{C) seeks to determine a logic value
assignment (partial or complete) to the primary inputs of C under which at least one of the
primary outputs ofC evaluates to1. Such an assignment is called a satisfying assignment
ofC; if none exists the instance CIRCUIT-SAT{C) is said to be unsatisfiable.

To simplify the discussion we use the above definition of CIRCUIT-SAT in the
rest of the chapter. The transformation of a CIRCUIT-SAT problem posed on a multi-
output circuit to a CNF Satisfiability problem proceeds on the same lines as discussed in
Section 2.7.2 for a single output circuit. The only difference is that the unit-literal clause
asserting the primary output to 1 is replaced by a clause which is the disjimction of all
primary output variables. This enforces the requirement that at least one primary output

must be set to 1. In the following treatment we wiU make no distinction between the
CIRCUIT-SAT problem on a circuit C and the Boolean satisfiability (SAT) problem onits
corresponding CNF formula <^(C). The set ofvariables of <t>(C) will be denoted by Vc-

The ATPG problem canbenaturallycast as a satisfiability problem byformulating

it as a CIRCUIT-SAT problem on a suitablecircuit, derived from the original circuit

C and the fault *0 ^ follows [Lar92].

^ Qaub,i>. rpiig sub-circuit of C containing all gates, inputs and outputs in the transitive

fan in of the transitive fanout of the fault-point x.

• The sub-circuit of corresponding to the transitive-fanout of a; in C^. The

set of primary inputs of comprise the fault-boundary of C (Figure 4.2). The
inputs of are fed from appropriate signal points in
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-rr

Fault Boundary \ ^fanout

Figure 4.2: Circuit used for ATPG-SAT

• The circuit obtained by the pedrwise XOR of corresponding outputs of

and

The set of all satisfying assignments for the CIRCUIT-SAT instance gives

precisely the set of all input vectors that test the fault tp . Thus the ATPG problem

ATPG{C,ip{XjB)) can be formulated as an instance of Boolean satisfiability denoted by

CIRCUITSAT{C '̂̂ ^^). Henceforth, we will refer tothis special instance ofSAT as ATPG-
SAT.

Definition 4.5 (ATPG-SAT problem) ATPG-SAT refers to the SAT instance corre

sponding to an ATPG problem. Specifically, ATPG-SAT{C,'ip) refers to the SATformula

for testing the single stuck-at fault ip on circuit C.

Throughout this discussion, we assume that the circuits we deal with have gates

with the niunber of fanins and number of fanouts boxmded by kfi and kfo, respectively.

We also assume the circuits are mapped to simple AND and OR gates, allowing inversions.

The former restriction is enforced for practicality; design and technology constraints prohibit

unlimited fariin and fanout. The latter restriction is enforced to facilitate the construction

of the corresponding SAT formulas; it is difficult in practice to derive SAT formulas for

arbitrary gates. TEGUS [SBSV96] enforces this latter condition for exactly this reason.
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4.2 Applying Existing Techniques

In this section, we analyze three possible approaches based on an application
of existing results and analysis techniques. We argue that none is capable of offering a
conclusive orsufficiently general explanation for the practical complexity ofATPG.

4.2.1 Simple SAT Classes

Certain classes of SAT problems are known to be solvable in pol5momial time.

2-SAT and Horn-SAT" [GPFW97] formulas are two examples. If we could show that an
interestingly large class of ATPG-SAT instances fall into one ofthe known polynomial time
solvable SAT classes it would imply that the corresponding class of ATPG problems are

efficiently solvable. We argue that this is highly unlikely, using the following reasoning.

Definition 4.6 (Complexity Index [BCHS94]) Given a CNF Boolean formvla <f>, de
fined on Boolean variables a;i,X2, ••.®n having clauses wi,a;2,. •• '̂ he complexity
index of (f) is the optimal value of the following linear programming problem, LP{^

Z{(j>) = minZ

such that

(1 - Oi) < Z (A; = 1... m) and
i€Pk ieNk

0 < CKt ^ 1 (i = 1... n)

where P^ (N^) is the set ofpositive (negative) literals in clause Uk, and ai,0!2) ••• jQJn
the variables of the LP problem, one each corresponding to variables xi,X2,'.-Xn of the
formula

Boros et al. [BCH90] identified afairly general class of efficiently (polynomial time)
solvable SAT formulas known as q-Hom formulas. The set of q-Hom problems include

several efficiently solvable classes ofSAT formulas such asHom-SAT, 2-SAT, Hidden-Horn-

SAT, Extended-Hom-SAT etc.

Theorem 4.1 [BCH90] q-Hom formulas have a complexity index of at most 1.

Now, consider the circuit Cgub shown in Figme 4.3. Let <i>8ub denote the CNF

formula comprising the conjunction of the CNFs for the consistency functions of the gates
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Figure 4.3: A simple sub-circuit Cg^ that produces a non-q-Hom formula

of Cg^b. Thus, (/>gub = </»!• <^2, where

<^i = (x5 + 0:3) (®5 + ®4)(iC5 + + X4)

(f>2 = (^ + a;i)(^+®2)(a:3 + ^ + ^)

42

Proposition 4.1 The formula ^g^b = <i>\' 4>2 is not q-Hom.

Proof: To prove that ^g^b is not q-Hom^ we prove by contradiction that Z{(f>aud) > !•

Suppose that Z{<f>g^b) < 1- Consider LP(<l>i)

l-\-X5-Xz<Z

1 + X5—X4<Z

l-X5-{-X3-\-X4< Z

0 ^ ^ 0 ^ ^ 1» 0 ^ ^ 1

Substituting Z = 1 in the above and solving gives

Now, consider LP{<f)2)

X3 = X4 = X5 = 0

1 + xi — X3 <

l-\- X2 —xz ^ Z

2 d- X3 —xi —X2 ^

0 < a;i < 1, 0 < X2 < 1, 0 < X3 < 1

(4.1)
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Substituting Z = 1 and the solution of from Equation 4.1 in LP{<I>2) gives no
solution.

=» Z{(f>i ' 02) = Z{4>8vh) > 1

•

Prom Proposition 4.1, Theorem 4.1 and Definition 4.6 it follows that any formula
of which (f>8uh is a, sub-formula cannot be q-Horn. Thus, any circuit containing circuit
as a sub-circuit cannot have a q-Horn CIRCUIT-SAT formula. Further, any ATPG-SAT
formula derived from this circuit will not be q-Horn. Clearly circuit Cgtib is a fairly simple
circuit pattern that could be expected to occur in a large number of real circuits. Thus it
appears that the practical tractability of ATPG-SAT cannot be explained by the intrinsic
tractability of the SAT formulas. The answer Ues in relating the solution process of SAT
to properties of the circuits from which they were derived. We investigate this further in
Section 4.3.

4.2.2 fc-bounded Circuits

Fujiwara [Fuj88] introduced the notion of k-bounded circuits and showed that
ATPG can be efficiently performed on this class^ This class was shown to contain some

circuits of practical interest such as ripple-carry adders, decoders, and one- and two-
dimensional cellular arrays.

Briefiy, a circuit is Jfe-bounded if its nodes can be partitioned into disjoint blocks
such that each block has at most k inputs, and the blocks form a directed acyclic graph

with no r©conv©rg©nt pnl/hs. Simply put this means that all the reconvergence of the
circuit is ofa loccd nature, i.e. confined within fe-input blodrs. Practical circuits with deep
reconvergent paths are abundant. Hence, fc-boundedness seems too restrictive for general
VLSI circuits.

4.2.3 Average-Time Analysis

Another approach ofassessing thepractical complexity ofATPG-SAT istoperform

an average running time analysis on the population ofATPG-SAT instances. A number
ofaverage-time analyses already exist for difierent models ofSAT formulas and algorithms

^This algorithm, described in [Fuj88], isexponential in k, but for constant k the algorithm ispolynomial
in the circuit size.
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[GPFW97, PB87]; for our analysis we use the one in [PB87], since this model best matches
our CIRCUIT-SAT problem domain.

Consider SATinstancesgenerated by the following model. Using the notation from

[PB87], letVbethenumber ofvariables ina SAT instance. Let p(v) be theprobability that
a given literal appears in a given CNF clause, and let t(y) be the number of CNF clauses
which appear in the SAT instance. A given pair of functions p{v) and t{v) characterize a

family of SAT instances.

Figure 4.4istaken from [PB87] anddepicts thespace ofSAT problems asa function

of p(i>) and t(v). The lines delimit areas ofSAT problems which have a known polynomial
average running tim^ algorithm andarelabeled withthename ofthe associated algorithm.

The areas labeled "Hard" and "Difl&cult" characterize the problems for which there is no

known polynomial average running time algorithm.

InFigure 4.4 notice the point corresponding top{v) = ^ and t{v) = 1.963v which
is marked with a +; consider the region corresponding to p(u) = t{v) > 1.963u. This

region lies inthespace of random formulas that are solvable in poljmomial average nmtime
by backtracking based algorithms. In the following we refer to this region as F and show

^t.e. running time averaged over all members of a class of instances.
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that CIRCUIT-SAT formulas, under suitable weak assumptions on the underlying circuit,
correspond to problems which lie within the region T.

Theorem 4.2 Let C be a circuit consisting solely of2-input AND gates, allowing inversions

on the inputs and outputs of the gates. Suppose C has at most 0.52871 primary inputs, where
n is the number ofgates in C. Then CIRCUIT-SAT{C) lies in the region T.

Proof: The following characterization can be found in [PB87]. Let p{v) and t{v) be defined
as above. Let b= limv->oo 'yp('u), let d be thesolution of ln(l+ d) + dln(l+ g) = 26, and let
ebe any small positive number. If6> In 2and t{v) > (ln2+e)u^, then simple backtracking
will give a polynomial average runrung tune for the set of SAT problems corresponding to
the given p{v) and <(1;).

Note that for the problem CIRCUITSAT(C), v = n-\-k, where n is the number

of gates in the circuit and kis the number of primary inputs. Given our assiunption on the
AND-gate decomposition of the circuit, a single gate will give rise to exactly three CNF
clauses in the SAT formula. For instance, a gate for x = y -z corresponds to the clauses

{y-^x){z-]-x){y-\-z-\-x). Two of these clauses have exactly two literals, while the remaining
^ • T

clause has three literals. Thus the average clause length in the overall SAT formula is 3

literals. Since there are 2v possible literals, any given literal has probability ^ of appearing
in any given clause, so p(v) =

Thus for the circuit C, b - limt,_^oo = g > ln2, and solving for d gives

d = 3.305. In the limit as e 0, we require t{v) > ln(2)t;^ = 1.963i; for a polynomial
average running time. But since each gate gives rise to three clauses, t(u) = Sn, so for
a polynomial average running time we require 3n > 1.963(71 k), or k < 0.528n. Thus
CIRCUITSAT{C) lies in T. •

It is reasonable to assume that a large fraction of practical circuits satisfy the

two conditions of Theorem 4.2. The first condition requires that the circuit consists of

only 2-input AND gates, allowing inversions. Note that any circuit can be decomposed in
this manner. In fact, as noted in Section 4.1, this is a decomposition technique which is

commonly used for SAT-based ATPG algorithms, since it simplifies the construction ofthe
SAT formula. Second, we assume that the primary inputs to the circmt contribute only

a small fraction (< 0.528) of the variables of the SAT problem. This is also reasonable.
Moreover, the process of mapping the circuit to simple 2-input AND gates will replace
single complex gates with several AND gates, while keeping the number of primary inputs
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the same. Thus, for circuits found in practice, the number of gates is expected to be

significantly greater than the number of primary inputs.

ATPG instances can be formulated as a CIRCUIT-SAT problem. Moreover, it

is easily seen that if the circuit from which the ATPG instance was derived satisfies the

conditions of Theorem 4.2, so will the derived ATPG-SAT instance. Thus, based on the

above arguments wecan claimthat a large fraction of real-life ATPG-SAT instancescan be

expected to lie in region P.

Despite this characterization, wecannot decisively conclude that practicalATPG-

SAT instances can be solved in polsmomial average time; while region T contains a large

fractionof practicalATPG-SAT instances, the samep{v) and t{v) characteristics encompass

many other SAT instances, including instances outside ofCIRCUIT-SAT, and we may only

conclude a polynomial average running time over the entire set ofinstances spanned by T.

Thus, this form of average-time analysis, which is representative of the state of the

art in the realm of average time complexity analysis ofSAT formulas, is not strongenough

to prove anything conclusive about the average time complexity of real-life ATPG-SAT

instances.

4.3 Analysis of ATPG-SAT

A number ofapproaches for solving SAT have been proposed in the literature (see

[GPFW97] for a comprehensove survey). Among these, backtracking techniques based on
the DPLL algorithm are the most popular. Hence, for our analysis ofATPG-SAT we chose

to model theSAT algorithm by a "caching based" variant ofsimple backtracking [GPFW97].
This algorithm isdescribed inSection 4.3.1. Briefly, thealgorithm isderived from theDPLL
algorithm by excluding the pure literal and unit literal rules, including the caching feature
(described later) and restricting the order of all variable assignments to conform to a fixed
static order.

We introduce the notion of cut-width of a circuit and characterize the worst case

complexity of solving ATPG-SAT instances interms ofthe cut-width ofcircuits from which
the instances were derived. To illustrate the salient resiilts, we willuse the circuit shownin

Figure 4.5(a) as our working example. As per the discussion inSection 2.7.2 the CIRCUIT-
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(a) CIRCUrr-SAT example

Faulted Sub-circuit

X2
)

z

X'4

(b) ATPG circuit example

Figure 4.5: Example Circuits
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SAT instance corresponding to this circuit is:

(^2 + a;6)(^ + X6)(X2 + a;3 + ^)(X4 + X7)(X5 + X7)(^ + ^ + ^)

(xi + ^)(X6 + + X6 + X8)(X8 + ^)(X7 + X9)(x8 + ^ + X9)(X9) (4.2)

The ATPG problem we consider is a stuck-at-J fault on the net xe- The ATPGi-SAT

instance generated by this fault corresponds to the circuit shown in Figure 4.5(b).

4.3.1 Caching-Based Backtracking for CIRCUIT-SAT

Our caching based version of simple backtracking is a simplifiedway of modeling

the notion of learning from previous confiicts. This notion is implementedas conflict-clause

recording [MSS99] in almost allcurrent successful SAT solvers. The essential ideaofcaching

based backtracking is to perform simple backtracking with a fixed variable order, except

that whenever the algorithm backtracks from an unsatisfiable sub-formula, the sub-formula

is cached. Correspondingly, before a sub-formula is taken up for a satisfiabilitycheck, it is

looked up in the cache. If foimd, it can be diagnosed immediately as being unsatisfiable and

the algorithm can backtrack from it without trying any further variable assignments. The

pseudo-code for the algorithm appears below. In Algorithm 4.1, (f> Is the CNF formula for

the satisfiability check, h is a function that orders the variables of </>, and £ is a hash table

for storing the set of unsatisfiable sub-formulas of (f) encountered during the backtracking

search.

Figure 4.6 shows an example run of this algorithm on Formula 4.2. The variable

ordering Oi = (x2 < X3 < xe < < X8 < < 2:5 < < 3^9) is used for the backtracking

search. Note there are severalplaceswhere the caching strategy works to prune the search.

For example, consider the partial assignment X2 = 0,X3 = 0,xe = 0,xi = 0,X8 = 0; this

leaves the sub-formula (x4 + X7)(x5 + X7)(x4 -f X5 -I- X7)(x7 + ^)(x9)(x9). This same sub-

formula is obtained imder the assignment X2 = 0,X3 = 0,X6 = 0,xi = 1,X8 = 0 and so we

can prime this branch of the search without further computation.

The running time of Algorithm 4.1 on a given formula (f>, is denoted by

and can be analyzed as follows. A sub-formula of ^ is obtained by setting a subset of the
variables of (f> to certain values. Define a consistent sub-formula (CSF) of asa sub-formula

having no empty claused (i.e. a clause where all the literals have been set to false under
the partial assignment).

®A formula with empty clauses is trivially unsatisfiable.
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Algorithm 4.1 Satisfiability through Caching-Based Backtracking
procedure Sat(£,/i,0)

£^0

if Cache^at(a:/ir3t,O,0,/i) = "UNSAT" and Cache_Sat(x/irst, l,(l>,h) = "UNSAT" then
return "UNSAT"

else

return "SAT"

end if

procedure Cache_Sat(Xcurrent> <f>suby h)

{xcurrent - Variable currently chosen for assignment, B :Value assigned to Xairrent}
(f>Bub ^ Assign(<^atii,, aJcurrenij

if Null_Clause(08ti6) then

return "UNSAT"

else {(f>8ub lias no NULL clauses}

if TableXookup(jC, (f)aub) then

return "UNSAT"

end if

^next Next_Var(a;current> h)

if Cache_SAT(xnexi»0»<^su6>h) = "SAT" then

return "SAT"

end if

if CacheJSAT(xnest, = "SAT" then

return "SAT"

end if

{Both Subtrees UNSAT}

Insert_Table(iI,

return "UNSAT"

end if
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Ordering C>i : X2 < X3 < xe < xi < xs < X4 < X5 < X7 < xg

X2)

X X

X X X X

f]
v^O V^=l

X Null Clause

^ Cache Hit

E] * ^

X SAT

Figure 4.6: Cadiing-based backtracking for Formula 4.2
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We assume that the sub-formulas are cached as sets of clauses. Thus, from our

point of view two sub-formulas are identical ifand only ifthey have the same set of clauses.
Sub-formulaswith a differentset of clauses may still be functionally equivalent; however, we

do not recognize this equivalence in this treatment. T(^) is upper bounded by theproduct
ofthesize ofthebacktracking tree (i.e. thesearch treeexplored bytheSAT algorithm) and

the worst case timefor a single cache access (insertion, lookup or deletion). For the purpose

ofthis analysis we assume that the caching is perfect; cache lookups and msertions canbe
done in constant time^. Thus, T{<l>) is upper-bounded by the size of the backtrackmg tree,

which in turn is boimded by the number of distinct consistent sub-formulas (DCSFs) of

that can be generated imder a particular static ordering of the formiila variables. Thus,

under the ordering h,

= 0(:F(7'fc(V))) (4.3)

where ^{Ph{^)) isthenumber ofDCSFs ofcf) under theordering h^V is theset ofvariables
of</» andVhO^) denotes theset ofthose subsets ofV which arevalid prefixes oftheordering

h. If the formula (j) corresponds to a CIRCUIT-SAT instance, generated from a circuitC, we

canfurther characterize Tijff) in termsofa topological property of C. This characterization

is developed in the following section.

4.3.2 Cut-width and Sub-formula Count

Consider a CIRCUIT-SATioraxola. (j>{C) corresponding to circuit C. For the initial

part of the analysis assume that C has a single output. The results are extended to midti-

output circuits, in Section 4.3.3. The network C can be seen as an imdirected hypergraph

with the signals as the hyper-edges, and the gates, inputs and outputs as the nodes. For

the purpose of this exposition a Boolean network and its imderlying hypergraph are not

distinguished. Cut-width of a hypergraph is defined as follows.

Definition 4.7 (Cut-width) Given a hypergraph G{V, E) and a one-to-one function h,

ordering the vertices ofG. h : V -> {1,2,... , IV]}. The cut-width of G, under the ordering

h, is denoted as WiG^h) and is given by the expression

W(G,/i)= max I{e G jE? : 3u,v 6 V

such that {u,v} C e and h{u) <i < h(v)} \

^An imperfect cache can add to the overall complexityby a linear factor at worst.
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(Note: Each hyperedge e of G is denoted by the set of vertices spanned by that hyper-

edge.) The minimum cut-width of G over all possible orderings h is denoted by Wmin{G).

Henceforth, cut-width of a circuit without reference to a particular variable ordering will

refer to the Tniuimum cut-width Wmin(G).

Figure 4.7 illustrates the notion of cut-width on the example circuit from Fig

ure 4.5(a), using two different variable orderings, 0\ and 02- Ordering Oi, which was used

for the backtracking tree example of Figure 4.6, also happens to be a minimiim cut-width

(W"mtn) ordering for this circuit.

The number of nodes at a certain level in the backtracking tree for (j>{C) can be

bounded in terms of the size of an appropriate cut of the circuit C. A disjoint partition

(Svci^Vo) variables Vc defines a unique cut in C. An assignment of truth values to
the variables Svc hi the formula (f>(C) yields a sub-formula <i>srxb{0!) of <i>{C).

Lemma 4.3 Given a Boolean network C, its corresponding CIRCUIT-SAT formula (f>{C)

and a cut (Svct^Vc) ^f^c, the number of DCSFs that can be obtained by the set of all

possible truth assignments to the variables Svc w denoted by can be bounded as:

H^Vc) < (4.4)

where l(^Vc,^Vc)l denotes the size of the cut, i.e. the number of distinct nets crossing the

cut

Proof: Consider thesetof2'̂ ^c Ipossible different Boolean assignments to thevariables Svc•
Only a fraction of these produce consistent sub-formulas. Consider only these assignments.

They partition the clauses of 0(G) into three disjoint categories.

• Clauses all of whose variables are part of Svc • Every CSF of 0(G) has these clauses

satisfied.

• Clauses all of whose variables are part of Svc These clauses are imaffected by any

assignment to the variables Svc a^d thus appear imaltered in any consistent sub-

formula.

• Clauses part of whose variables are in ^Vc • We call these clauses injured clauses.

Prom the above categorization it is clear that different consistent sub-formulas of the set

F{5vc) differ only in the configuration of the injured clauses. Furthermore, imder any
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Figure 4.8: Case 1 for generating injured clauses

CASE 2.1 CASE 2.2

Assigned

Cut Net

Unassigned

Unassigned

/

Assigned

\

Cut Net

''''
Unassigned

Assigned

54

Figure 4.9: Case 2 for generating injured clauses

assignment to variables Svc an injured clause can have only two different configurations.

Consider a tjrpical injured clause w = (Zi + ^2 + ••• + + ^t+i + ••• + such that the

variables corresponding to literals Zi + ^2 + ••• -I" are paxt of Svc and the remaining

variables (corresponding to literals Zt+i + •••+ ifc) are paxt of Svc • Under any assignment

to the variables Svct takes one ofthe two configiirations, {k+i +... + ife) or 1 (i.e. it has
been satisfied). Thus we can bound

F{Svc) < 2^* iAjured clauses) (4 5J

The number of injured clauses can be upper boimded as follows. Every injured

clause must contain at least one assigned variable and at least one imassigned variable.

Moreover, a pair of variables occur in a common clause only under one of the following two

cases:

• Case 1: They form an input-output pair for a gate (see Figure 4.8). For this pair

to produce an injured clause either the input variable is assigned and the output

unassigned orvice-versa. Inboththese cases, the input net falls in thecut (^Vc>^Vc)*

• Case 2: They form a pair of "sibling" inputs for a common gate g (see Figure 4.9).

As before, they can be responsible for an injured clause if and only if one of them
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is assigned and the other unassigned. Additionally, the output of g can be either
assigned or unassigned. In either case, from the clause construction ofFigure 2.2, it
is clear that every injured clause that these "siblings" participate in already contains
a pair of variables that have been counted in Case 1 (namely the output of g and the
input that differs from the output in assignment status). Thus, this case is subsumed
by Case 1.

From the above case analysis it is evident that every injured clause can be asso

ciated with a cut-net and also that Case 1 can account for all injured clauses. Since the

network is fanout-bounded by each cut net can fan out to at most kfo gates and there

fore produce at most kjo instances of Case 1. Moreover, since the network is composed of
simple gates only, a given pair of variables can occur in at most two common clauses (see
Figure 2.2). Thiis each cut net can account for at most 2kjo injured clauses. Hence,

Number of injured clauses < 2A:/o|(^vb ><^Vc) I

Applying this result to Equation 4.5 the bound on F{5vc) follows.
•

The usefulness of this result stems from the fact that the formula set size is expo

nential not in the sizeof the variableset but in the sizeof the cut, whichcould be potentially

much smaller. For example consider the cut (^v>^v) on the circuit of Figure 4.5(a), with

Sv = {x2i a;3, are, ari, are}; this corresponds to the level inthe backtracking tree corresponding
to the Cut Z label inFigure 4.7. Lemma 4.3 indicates that there can be at most 2^ distinct
consistent sub-formulas generated by all possible value assignments to the Sy variables,

whereas a naive bound would be 2® (there are 2® distinct assignments to the variables Jy).
Based on the above we derive the following bound for the running time of Algo

rithm 4.1.

Theorem 4.4 Given a Boolean network C and ordering h on Vc, Algorithm 4-1 can solve

the CIRCUIT-SAT instance 0(C) in time 0(n •(22*=/oW'(<^.^))), where n = \Vc\.

Proof:

Toprove the result, we derive a boimdon F{'Ph(Vc)) and then applyEquation4.3.

Recall that Ph(Vc) = {Svc\^Vc Q and 6vc is a prefix ofthe ordering h}. Therefore
\Vh{Vc)\ = \Vc\=^n.
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nMVc)) <
Svc^'PhiVc)

< n • max
Svc^mVc)

< 71' max
Svc^VhiVc)

{from Lemma 4.3)

= n • (from Definition 4.7)

Prom the above result it is evident that if a circuit has a cut-width which is

logarithmic in the size of the circuit, CIRCUIT-SAT can be performed on it in pol3momiaI

time. We discuss further implications of this result in Section 4.4.

As explained in Section 4.1, under the SAT formulation of the ATPG problem,

testing for a certain fault on b. circuit C amoimts to performing CIRCUIT-SAT on a

certain circuit, namely The following result shows that, for any fault if) in circuit

C, the cut-width of C is linearly related to the cut-width of This means that we can

reason about the as3rmptotic behavior of Algorithm 4.1 on ATPG-SAT instances generated

from circmt C by analyzing the cut-width properties of circuit C (or sub-circuits thereof)

rather than having to deal with the circuit

Lemma 4.5 Given a Boolean network C, for any ordering h of the variables Vc and any

fault if) on C , 3 an ordering of the variables of such that

h^) <2- W{C, /i) + 2 (4.7)

Proof: The circuit is composed of the two sub-circuits and and

a single 2-input XOR gate y (see Figme 4.2). Note that both and are

sub-circuits of C, One may see that given any variable ordering h for Vc> tlds imphes

a corresponding ordering hg^b any sub-circuit Cgub of C such that W(Cau6,/la^fe) <

W(C,h).

Given ordering h for Vc, h^j, can be constructed as follows. Extract the implied

orderings for sub-circuits and from h. Now merge these two together by

putting each variable of the faulted sub-circuit just after its corresponding "un-

faulted variable" x (derived from Now construct by adding y to the beginning
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Figure 4.10: Proof for ATPG circuit width vs. original circuit width

ofthis merged ordering. To derive the width of under this ordering, consider the
following.

The gate y is a two-input gate and can contribute at most 2 to

(this accoimts for the additive 2 in the expression). Now, for the moment assume that
the primary inputs of are not fed from fanout points in but from separate
dummy nodes (the dummy nodes are inserted after the corresponding signal nodes in the
ordering /i^). In this scenario it is easy to see that the width of the resulting circuit is at
most 2•W(C, h) -f2. Merging the dummy nodes with the corresponding signal nodes does
not increase the cut-width of the resulting circuit (see Figure 4.10). Hence the required

result follows. •

Figure 4.11 illustrates this result on our example ATPG circuit from Figure 4.5(b).
As shown in Figure 4.7 the circuit ofFigure 4.5(a) has a cut-width of3 under ordering Oi
(Figure 4.6). The ordering 0[ can be derived (see the proof of Lemma 4.5 above) from Oi
to yield a cut-width of 4 for the ATPG circuit of Figure 4.5(b).

4.3.3 Extension to Multi-output Circuits

The discussion so far has been restricted to single-output circuits. Consider a

multi-output circuit C, withp primary outputs oi, 02,.. •Op. For the purpose ofa CIRCUIT-

SAT test, C can be seen as a set ofp single-output circuits {Ci,(72, •.. Cp}, one each for

the transitive fanin cone of each primary output. CIRCUIT-SAT on C can be performed

by performing CIRCUIT-SAT on each of the single-output circuits Ci,C2,... Cp, one at a

time. Then, CIRCUIT-SAT(C) = CIRCUIT-SAT(Ci) CIRCUITSAT(Cp).
In this scenario, the results of Sections 4.3.1 and 4.3.2 can be applied to multi-

output circuits as follows. Given a multi-output circuit C = {(7i,C2,.. .Cp} and a set
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H = {hi,/i2> ••• ofnode orderings for thesingle-output circuits Ci,C2,.. •Cp, thenotion
of cut-width as given by Definition 4.7 can be extended as:

W(C,H)= max W(Cuhi) (4.8)
tG{l,2,...p}

TheTniniTnuTn cut-width Wmini'O) generalizes onsimilar lines, except now the min

imum isover all possible sets ofofferings H. Hence therunmng tune ofCIRCUITSAT{C),
(based on Algorithm 4.1) can be bounded as:

T(0(C)) = 0{p •Umax ' where Umax =

Similarly, Lemma 4.5 can be restated as:

Lemma 4.6 Given a multi-output Boolean network C, for any set of orderings H =

{hi, /i2,... hp} of the variables Vci, Vca, •••Vcp and any fault i) on C, 3 an ordering H^ of
the variables of such that

W{Cf^^, H^) <2- W(C, if)+2 (4.10)

4.4 Cut-width Properties of Circuits

4.4.1 Log-bounded-width Circuits

In the following we define a class ofcircuits known as log-bounded-width circuits
and show that by employing Algorithm 4.1 ATPG can be eflB.ciently performed on these
circuits. We also prove that fc-boimded circuits (see Section 4.2.2) lie within the class of
log-bounded-width circuits.

Definition 4.8 (Log-bounded width circuit) Agiven multi-output circuit C is log-bounded-
width iffor each single stuck-at fault lif on C, there exisU aset oforderings H ofthe variables

f suoh ^hcL't

W(C^ '̂̂ ,fr) = 0(log{\C'''̂ ''̂ \)) (4.11)

Theorem 4.7 Given a log-bounded-width circuit C and any single stuck-at fault ip on C,

test generation for can be accomplished in time polynomial in the size ofthe circuit C.
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Proof: Applying Lemma 4.6and Equation4.9to the definition oflog-bounded-width above

(Definition 4.8), we can use Algorithm 4.1 to solve the instance ATPG-SAT{C,ip) in time
polynomial in \C^ '̂̂ \. Since < |C1, then the rimning time is poljrnomial in |C| as
weU. •

Lemma 4.8 Given a k-ary tree T over n vertices, there exists an ordering h, of the vari

ables Vt such that W{T, h) <(k —1)log(n).

Proof: Consider a ik-ary tree T over n vertices with root r. For a vertex ordering, take the

variables by using depth-first searchstarting from the root; at eachnode visit the children

in increasing order of the size of the sub-trees rooted at each child. Under this ordering T

has a max-cut of at most (k —1)log(n) edges. This can be proved by induction on n. For

the base case n = 1, the cut is zero.

For larger n, assume W{T,h) < {k —l)log(m) for trees of size m < n. The

induction proof has two cases. Let Si, 1 < z < A; be the subtrees rooted at the immediate

children ofr, and let c* be the size of the max-cut for Sj. For the first case, let all |si| < ti/2.

Then the max-cut imder the given DFS ordering is at most (fc —l)-bc, where c = maxcj. By

the induction hjrpothesis, c < (A: —1)log(n/2), so the max-cut ofT is at most {k —1)log(n).

For the second case, for some f, |st| >nl2 and there can be at most one of these.

Then this subtree is visited last by the DFS ordering, and so the max-cut of T by this

ordering is at most max((/s —1) -f- c,ct), where c= n^Ci. Since |si| < n/2,i ^ f, the
induction hjrpothesis gives (A; —1)+ c < {k —1)log(n), and since |se| < n, < (A; —1)log(n)

as well.

Thus the max-cut of T is at most (A; —1) log(n). •

Theorem 4.9 Any k-hounded circuit, for a given constant k is log-bounded-width.

Proof: First consider the graph G consisting of the blocks of a fc-bounded circuit; by the

non-reconvergence property of A:-boimded circuits, the cone for eaohoutput of G is a k-aiy

tree. For each output tree, use the ordering scheme proposed in the proof of Lemma 4.8 to

order the blocks of G. Now, within each block order the vertices of the block arbitrarily.

Eadi block can thus increase the max-cut by a factor ofat most2^. Hence, given Lemma 4.8

for k-ary trees we can conclude an upper boimd of 2^ >{k —1) log(n) for the max-cut of a
fc-bo\mded circuit. •
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As shown above, tree circuits areoflog-bounded-width. Intuitively, reconvergence

tends to increase circuit cut-width. But, as long as the circuits are suflficiently "tree-like"

the log-bounded-width property could be expected to apply. The locality of reconveTyence
required by fc-boundedness is just one instance of this, (which log-bomded-width has been
shown tocapture). Inprinciple log-bounded-width simply requires a miniTnality ofreconver
gence and istherefore amore general property than fc-boundedness. Note thatTheorem 4.7
applies to all faults in the circuit, including the redundant faults, which need to be proven
imtestable.

4.4.2 Practical VLSI circuits

It is clear that cut-width is intrinsicallylinked to the topology of the circuit. Thus,

when a class of circuits can be described in terms of suitable topological characteristics, it

is possible to derive the cut-width properties of that class, and therefore reason about
the ELSjrmptotic complexity ofATPG-SAT, as was done for log-bounded-width circuits and
k-bounded circuits above. However, practical designs are usually not specified in such a

manner. Moreover, extracting common topological characteristics from a set of arbitrary

circuit designs is non-trivial and beyond the scope ofthis research. Thus, we have instead
performed anempirical study ofcut-width for aset of circuits. The study isorganized intwo
parts. First we study circuits in the MCNC91 and ISCAS85 multi-level combinational
benchmark suites, estimate their cut-widths and compare the cut-widths to the size of the

circuit.

[HGRC98] presents a system which extracts topological properties from a given
circuit and generates arbitrarily large circuits which have similar characteristics. In the
second part ofourstudy, we use thisscheme to generate a "family" ofcircuits from a given

circuit and then examine the cut-width properties of this family.

4.4.2.1 Experimental Setup

The key element of our experimental setup is a mechanism to measure the cut-

width of a single-output circuit C. This can then be used to derive the cut-width of a

multi-output circuit. Prom the definition, the minimum cut-width is simply the value of

the max-cut obtained under a min-cut linear arrangement [GJ79] of C. Since the min-cut

1inpararrangement (MLA) problem is known to be NP-complete, it would not make sense to
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challenge the exponential complexity of ATPG if the procedure for deriving the ordering for

the ATPG (in other words, the cut-width) involved the solution of another NP-Complete

problem, namely MLA. Therefore, we use a well-known polynomial time algorithm [Hoc97]

to approximate the MLA, and hence upper-bound the cut-width for a given circuit. Since

our entire empirical analysis and conclusions are based on the approximate cut-width, the

actual complexity of exact MLA has no bearing on our results or conclusions. It is notewor

thy that practical ATPG tools often use some kind of topological ordering for the branch

and bound. In many cases this actually coincides with an optimal cut-width ordering, for

example in the case of trees. Therefore, even though the ATPG tool may not be work

ing with the cut-width metric in mind while deriving the ordering it may serendipitously

generate a cut-width optimal (or close to optimal) ordering.

Our approximation algorithm for MLA generates a placement based on recursive

mincut bipartitioning, until the partitions are sufficiently small and then performs an exact

MLA for each of these partitions. We used the HMETIS package [KAKS99] from the

University of Minnesota to perform the bipartitioning.

For each benchmark circuit the complete set of all stuck-at-0 and stuck-at-1 faults

was &st pnmed by using fault-collapsing methods (viz. fault-dominance and fault equiv

alence). Random vector generation was not used to further reduce the fault list in order

to keep the data set interestingly large and rich for the following dataranalysis. Note that

this does not bias our results in any way since our analysis is a worst-case analysis, and any

worst-case efficiency result derived on a set of faults would certainly hold on any pruned

subset of it®.

For each fault of the collapsed set, one data point was generated as follows. For a

given fault ip in circuit C, the data-point measures the approximate cut-width of the circuit
Q8uh,tl> versus the size of this circuit. The size of the circuit is in direct correspondence

to the size of the SAT instance ATPG-SAT(C,iJ;) (in terms of the numberofvariables) and

the cut-width of this circuit is representative of the complexity of solving this instance (as

per Equation 4.9 and Lemma 4.6).

®The &ult collapsing based on dominance and equivalence just removes multiple, identical superimposed
points from the plots which do not add any real value to the results.
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4.4.2.2 Study of Existing Benchmark Suites

Instudying the cut-width properties of the MCNC91 and ISCAS85 benchmark
circuits, it became clear that the individual circuits have different structural properties.
Some have nodes with fanin ofa dozen or more inputs, while others are composed solely of
two-input AND gates and inverters. Similarly, some of the benchmark circuits have nodes
which implement complex functions, while others use only sunple AND/OR gates.

These differences probably would not exist in actual implementations ofcircuitsj
fanin and node complexity is necessarily limited due to speed and size requirements on
the gates. Moreover, in performing ATPG it is often desirable to map circuits to simple
AND and OR gates (with inverters), since the corresponding SAT formulas become easier
to derive. Thus, in order to bring more uniformity to the circuits and to more closely
emulate the actual ATPG process, we mapped the benchmark circuits to three or fewer
input AND/OR gate networks (allowing inversions) using the tech.decomp procedure from
the SIS [8+92] package.

Figure 4.12(a) shows the results for the circuits identified as "logic' circuits from
theMCNC91 benchmark suite. We excluded circuit t481, which we considered degenerate,

having over 3800 nodes after gate mapping yet with only a single output. Figure 4.12(b)
corresponds to the ISCAS85 combinational benchmark circuits. We omitted the circuits
C3540 and C6288 in this analysis, due to limitations in our min-cut linear arrangement

tool.® We expect C6288 to have a large cut-width.

In any event, our method ran successfully for all the remaining benchmarks (48
from MCNC91 and 9 from ISCAS85).

4.4.2.3 Study of Generated Circuits

Using the existing benchmark suites limits the size of the circuits which we analyze.
Ideally, we would like to have a large range of circuit sizes so that we can examine the
growth of the cut-width with larger circuits. To this end, we use synthetic benchmark
generation tediniques to construct example circuits over a wide range of sizes. These
techniques take existing circuits, extract statistical properties deemed critical to producing
"realistic" circuits, and generate random circuits with these same characteristics. [HGRC98]

®We used HMETIS in a mode which fixed some vertices to specific partitions. These circuits generated
too many fixed vertices for HMETIS to handle.
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and [GB99] propose methods for synthetic benchmaxk generation. We chose to apply the

programs circ andgen, described in [HGRC98], to generate ourbenchmaxk examples. Note

that these programs do not generate any useful circuits in that the functionof eachnode is

undefined. However, this is of no concern, since we axe only interested in the structure of

the circuit, in particular the cut-width corresponding to each possible fault point.

Om goal is to generate circuits with structures similar to the original MONO

benchmaxk circuits but with varying sizes. To this end, weuse circ to find the characteris

tics for a selection of the benchmaxk circuits, and then scale these parameters before using

gen. In particular, we change only the number of nodes in the circuit, the number of pri

mary inputs, the number of primary outputs, and the number of edges (nets) in the circuit.

We do not change the depth of logic, since this parameter is bounded for practical circuits

to meet delay constraints. We also do not change the distribution of delays, fanouts or edge

lengths in the circuit; [HGRC98] identifies these parameters as important in characterizing

the structure of a circuit, and we wish to obtain circuits structmally similar to the original

benchmarks.

For each benchmark circuit used here, we used circ and gen to generate a "family"

of circuits ranging from 1,000 nodes to 6,000 nodes. For each generated circuit, we take

each possible fault V> find the induced sub-circuit and calculate the size of this

sub-circuit and estimate its TniuimuTn cut-width; this is exactly the same procedure as used

with the original benchmark circuits.

Figures 4.13(a) through 4.14(b) show the cut-width versus circuit size for four

different families of circuits generated as described above.

4.4.2.4 Experimental Results

The cut-width plots for the MCNC91 and ISCAS85 suites, and the four families

of cloned circuits (Figures 4.12(a) through 4.14(b)) reveal several interesting properties of

real-life circuits. First, the cut-width values saturate at values of around 10-20 for all six

sets of benchmarks. This is even true for data-points with circuit-sizes of thousands of

nodes. Thus, Theorem 4.4 shows that the complexity of solving these instances would be

of the order of 2^^ as against 2^®°° which is what a naive worst case analysis would predict.

Secondly, it is evident from all six plots that the cut-width is a slowly growing

function of the circuit size. To ascertain the precise functional nature of the growth we
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Circuit Set ax-lb a^/x -\- b ax® (6) alogx -1- 6

MCNC91 9.060 4.982 5.013(0.425) 4.085

ISCAS85 2.930 2.467 2.015(0.339) 2.015

i9 family 1.447 1.273 1.202(0.216) 0.984

14 family 0.573 0.476 0.445(0.244) 0.429

cml62a

family
2.363 1.969 1.861(0.299) 1.727

cml63a

family
1.204 0.936 0.865(0.298) 0.812
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Table 4.1: Sum of squared errors for various functional fits on each data set (Normalized
by a factor of 10®)

performed curve-fitting on the six data sets. While there is no provably correct procedure

ofdetermining the precise functional nature of a set ofdata, the accepted practice [Mey75,

Ric95] consists of the foUowing two-step procedure:

1. A candidate distribution (say f{x)) is chosen, based on a combination of visual in

spection of plotted data and theoretical prediction.

2. The exact parameters of f(x) for the given data are determined by performing a fit

based on the Least Squares Error [Mey75]. Alternatives to the least squares metric

are known but the least squares error method is by far the most popular one.

In case there are multiple candidates for functions suiting the data the best func

tional fit can be found by comparing the squared error value of the best fit for each of the

candidate functions.

In conformity with this procedure, we used a least-squares method [Mey75] to fit

four diflferent functions to each of the six data sets: linear (f(x) = ax + 6), square-root

{f{x) = a-v/x + 6), power (/(x) = ox®) and logarithmic (/(x) = alog(x) H- 6) curves, where
/(x) denotes the cut-width and x is the number of nodes. A super-linear function can
be ruled out since, by definition, cut-width can be no larger than the size of the circuit.

The squared-error for the four functional fits is listed in Table 4.1. Ofthe four curves, the
log curve gives the smallest square error for all six benchmark sets; the best-fit log curves
are shown in the figures. These plots suggest that the cut-width is indeed a logarithmic

function of circuit size for these circuits, and so we can expect these benchmarks to be easily

testable. This agrees with the empirical results from TEGUS (Figure 4.1).
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The functional fit depicted by the above plots is fairly convincing, especially con

sidering the following noise sources which might be present. First, we are attempting to
fit discrete data to a continuous function. Hence, there would be some noise on account of

truncation errors.

Second, since the datapoints come from diflcerent circmts it is conceivable that
they in fact lie on a family of related curves rather than a single curve. Thus, there would
be a normalization error when we try to fit the data to a single curve. An eflcort has been

made to partially mitigate this effect by working with sets of circuits with similar topology.
However, this effect still surfaces insome cases where the plots appear togive the semblance
of a family of curves rather than asingle curve. Another way to correct for this error could
be use a normalization scheme on the data, before curve-fitting. We have experimented
with a few simple normalization schemes. The results of one such scheme on the ISCAS
and MCNC cut-width data sets of Figures 4.12(a) and 4.12(b) is shown inFigures 4.15(a)
and 4.15(b). Here, the cut-widths from each circuit are normalized with respect to the
TPa'̂ 'imiiTn saturation cut-width value obtained from that circuit. This scheme does appear

to partly correct the normalization error for these plots, but it is not as effective in the case
of the synthetic circuits. In some cases the effect of these errors can be strong enough to
completely mask out any kind of pattern in the cut-width data. Such is the case with the
ISCAS89 sequential circuits which we tried to analyze. We have therefore omitted those
results from this study.

In a nutshell, since curve fitting procedures have traditionally not been applied
to the application at hand, i.e. for the asymptotic complexity analysis of a combinatorial
algorithm they are not tuned to deal with these problems. In principle, these techmques
could be adapted and tuned to further sharpen the curve fit and the conclusions we have
tried to derive above. However, such aneffort would require some research into curve fitting
techniques per se, which is beyond the scope of the analysis presented here.

In any case, the growth of the cut-width is definitely sub-linear with the size of
the circuit. The value of the exponent, h of the power curve fit (recorded in parentheses
in Table 4.1), which consistently assumes a value between 0.2 - 0.35 (i.e. less than 1) for
all six sets ofdata, further buttresses this fact. Thus, while the logarithmic nature ofthe
cut-width growth provably gives a polynomial rimtime for ATPG (Theorem 4.7) from an
asymptotic complexity standpoint, inpractice the slow growth of cut-width is sufficient to
ensure that the complexity ofATPG on typical circuits grows sub-exponentially with the
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size of the problem.

4.5 BDDs and CIRCUIT-SAT

The concept of circuit-width has been used by researchers [Ber91, McM92] to
obtain upper bounds on the size of BDDs representing the circuit function. At first glance
our treatment ofcircuit cut-width would seem to bear a striking similarity to these results.
However, our results have no direct relationship tothe BDD bounds. We discuss this aspect
in some detail below and conclude that neither result subsumes theother, each useful in its
own domain.

Binary decision diagrams (BDDs) and CNF Boolean formulas are both represen
tations ofBoolean functions. Solving CIRCUIT-SAT on a Boolean circmt C could bedone

by building a BDD for the circuit and doing a "0" check on the BDD. Alternatively, one
can construct a CNF Boolean formula <I>{C) and solve satisfiability on the formula using

a backtracking algorithm. In essence, a BDD and a backtrackmg tree represent the same
entity, i.e. the Boolean space of the function.

Berman [Ber91] gave a bound on the BDD size, for any topological ordering of the
circuit elements. This result was extended by McMillan [McM92] for arbitrary orderings.

McMillan's result can be summarized as follows. Given a single-output circuit C, with n

inputs, if the elements of C can be linearly ordered such that over all cross-sections of the
linear arrangement, Wf (forward width) bounds the number of wires running in the forward
direction and v)r (reverse width) boimds the number of wires inthe reverse direction, then
the size ofthe BDD representing theoutput ofC can be upper bounded by xhis
result differs from the result presented in this paper on two counts.

• Our definition of circuit cut-width is independent of the direction of signal-flow (our
characterizationof width is on an undirected hjrp^^graph) and thus substantially dif

ferent from Wf and tt;,. in an operational sense.

• The above result is exponential in the forward width and double-exponential in the

reverse widths while our result has only a single exponential. We exploit this property

in defining the class of log-bounded-width circuits.

The explanation for these discrepancies hes in the following differences between

BDDsand CIRCUIT-SAT formulas. BDDs represent the intrinsic nature of a Booleanfunc-
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tion, independent of the specific hardware implementation, while CIRCUIT-SAT formulas

(as per the construction of Section 4.1) are in one to one correspondence with the circuit

topology. The residt of [McM92] bounds the BDDsize by boundingthe niimber of possible

multi-output functions that a certain sub-circuit of the original circuit could compute. Our

proof technique however, treats the SAT formula as a string encoding the circuit topology

and tries to boimd the number of distinct sub-strings that can be generated from a par

tial truth assignment to the CIRCUIT-SAT variables. Therefore, the two results, although

similar in spirit, characterize different entities altogether.

4.6 Conclusions

We have presented a worst case complexity analysis for a SAT based formulation

of the combinational ATPG problem which accounts for salient characteristics of problem

instances encountered in real life. Incidentally, this work is also one of the first attempts at

reconciling the theoretical, worst case complexity of combinational ATPG with the relative

ease with which practical instances of it are solved. For the purpose of analysis we have

employed the SAT based ATPG formulation proposed by Larrabee [Lar92], with a caching

based variant of simple backtracking (see Section 4.3) used to model the SAT solver.

Under this model of the algorithm the complexity of ATPG on a given circuit has

been characterized in terms of a topological property of the circuit, namely the undirected

circuit cut-width. Theoretical arguments and experimental results confirmthat this property

can be used to predict polynomial nmtimes of ATPG, for a wide range of practical VLSI

circuits.

Specifically, this analysis has been used to define a class of circuits called log-

bounded-width circuits which we have shown to be eflS.ciently testable. Additionally, this

class of circuits has been shown to subsume the class of fe-bounded circuits. Our exper

iments on a wide range of benchmark and generated circuits show that they exhibit the

log-bo\mded-width property. On an intuitive level the log-bounded-width property essen

tially captures the "treeness" of the circuit. As long as a circuit has limited reconvergence

(not necessarily local reconvergence), the log-boimded-width property can be expected to
apply.

Practical ATPG engines [SBSV96, Lar92] employ a host of other search pruning

techniques to reduce complexity, such as random test pattern generation etc. [ABF95], and
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in some cases these techniques do bring about substantial reduction in complexity. The

benchmark C6288 from the ISCAS85 suite is a notable example which has a large cut-width

but is efficiently testable through random test pattern generation. However, such cases are

more the exception than the rule and a cut-width based argument is much more generally
applicable and can single handedly account for the tractability ofATPG ona wide range of
real-life instances. Nevertheless, the presented analysis can be improved by including more

algorithmic features ofATPG and SAT tools in the algorithm model used for the analysis.
It is noteworthy that although the present analysis is aimed at the combinational

ATPG problem, the notion of cut-width and its use in analyzing the complexity of a
CIRCUIT-SAT based problem formulation is not endemic to the current problem. The

same analysis framework can potentially be modified to apply to other EDA problems.
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Combinationalequivalence checking (CEC) is oneof the most ofwidelyused formal

techniques in the verification of digital circuits. While, theoretically the problem is co-NP

Hard, practical instances of the problem axe more tractable. Current design methodology

ensures that the two combinational circuits being checked for equivalence have a fair degree

of structural and functional snnilarity [BT89]. In recent years several approaches to CEC

have been proposed which exploit the above property. While these techniques have signif

icantly advanced the state of the art in CEC, the inherent complexity of the problem and

the growing size and complexity of digital systems continues to motivate further research.

Most of the successful programs for CEC use a combination of various engines,

with Binary Decision Diagrams (BDDs) [Bry86] as the main workhorse. Although a few

of the proposed approaches use BooleanSatisfiability (SAT) [MSG99] or SAT-like engines

{viz. ATPG methods [Bra93], recursive learning [Kun93]) as the principal engine, these

methods have not become popular. Consequently, the use of SAT in current CEC is largely

ancillary to BDDs; e.g. it is used to eliminate false negatives or to choose candidate pairs

for deducing intermediate relationships [BS98].

The work presented in this chapter makes a case for the use of SAT methods

in CEC. There are several reasons for pursuing this line of research. First, there have

beensignificant advances in SAT algorithms [Sta, MSS99, MMZ"'"01]. Second, while it has

been claimed that BDDs are relatively more efficient for CEC, neither has a quantitative
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comparison been published nor the reasons for the purported inefficiency of SAT algorithms
analyzed in detail. Third, as discussed in more detail in Section 5.3, SAT algorithms have
several inherent features which HDDs lack, that can potentially make them a more flexible
and robust core technology for this application. This raises the following questions:

• Is the perceived inefficiency of SAT algorithms in CEC anecessary consequence of the
use of SAT algorithms per se, or is it an artifact of the particular SAT algorithm and
the way it was used in the CEC framework?

• Is it possible to bridge the eflficiency gap between SAT-based and BDD-based CEC
tools by using more sophisticated SAT algorithms currently available and/or by fine-
tuning the implementation of the tool^?

This research addresses these questions. The main contributions ofthe work pre
sented here can be summarized as follows:

• We present a detailed analysis of the features of SAT algorithms and BDDs in the
context of CEC toargue that SAT based algorithms can be a more flexible and robust
core technology in this application.

• We present a simple CEC framework drawing from anumber of previously proposed
CEC methodologies [Bra93, BS98, vE97] as weU as our own insights into applying
SAT for CEC. SAT algorithms form the core engine ofthis approach.

• We make a direct quantitative comparison between a preliminary implementation of
the proposed CEC framework and a state-of-the-art BDD-based, mixed-engine tool
for CEC [BS98], and assess the performance gap between BDD-based and SAT-based
checkers.

• We offer insights into several avenues for improving the performance of the above
SAT based tool. In our opinion, with these enhancements, the proposed SAT-based
checker has the potential to outperform state-of-the-art BDD-based CEC tools.

The experiments reported inSection 5.5 show that our checker outperforms state-
of-the-art SAT-based CEC methods by over two orders ofmagnitude. Moreover, even the

^BDD-based tools draw upon over a decade of research invariable ordering and efficient implementation,
as well as highly tuned implementations of CEC packages, while precious little has been done in these
respects for SAT in CEC.
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current prototype implementation is only moderately slower (a factor of 2-3) and sometimes

faster than state-of-the-art BDD-based mixed-engine checkers. This work is presented as

a proof of concept to show how SAT-based techniques can effectively remedy the inherent

problems associated with BDD-based methods. We advocate that once suitably timed and

applied, SAT-based techniques can more actively complement and even replace BDDs in

CEC whUe significantly advancing the state-of-the-art in this area.

The rest of the chapter is organized as follows. Section 5.1 reviews the CEC

problem and the modem view of a general framework to solve it in a practical setting.

Section 5.2 brieflydiscusses previous efforts in the areas of BDD-based and SAT-based CEC.

In Section 5.3 we provide arguments and illustrations to show how SAT-based methods can

potentially be a more flexible and robust tool for Boolean reasoning in CEC. Section 5.4

describes our proposed SAT-based CEC framework. Experimental results comparing our

method with several existing SAT-based CEC tools as well as a state-of-the-art BDD-based

mixed engine CEC tool are presented in Section 5.5. Section 5.6 concludes the chapter

with a discussion of several avenues for improving the performance of the proposed CEC

fi:amework.

5.1 The Combinational Equivalence Checking Problem

Let Ci and C2 be two combinational logic circuits with the same set of primary

inputs, denoted by / = ii,i2> •••im Qsuch. having a single primary output (assumed for ease

of exposition), denoted by oi and 02 respectively. The combinational equivalence checking

(CEC) problem or combinational verification problem over Ci and C2 is to determine if

both circuits implement the same logic function i.e. if for each of the 2" Boolean value

assignments to inputs J, oi and 02 evaluate to the same logic value.

Although in general this problem is co-NP Hard, in practice the circuits Ci and

C2 exhibit a fair degree of structural and functional similarity [BT89]. In recent years,

this property has been exploited to develop powerful engines for combinational equivalence

checking [BT89, Bra93, BS98, KK97, Kun93, MSG99, Mat96, PKOO]. Most of these ap

proaches operate imder the following general framework.

The similarity between the two circuits is exploited to deduce specific succinct

relationships (equivalences, implications, replacability relationships) between internal nodes

(called cutpoints [KK97]) of the two circuits being checked for equivalence. Using these
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relationships the overall equivalence check is performed as a set of smaller equivalence
checks. Briefly, a cutpoint is an internal node of one circuit that is proven to be related
to one or more internal nodes of the other circuit through a specific succinct relationship

(usually equivalence or equivalence modulo inversion^. The algorithm proceeds by sweeping
the two circuits (or the miter [Bra93]) from inputs to outputs, deducing new cutpoints
from previously deduced cutpoints, until the primary outputs are proved equivalent or a
miscomparing pattern is found. The algorithm maintains a cut or frontier ofcutpoints
deduced thus far. This is used as a basis for deducing further cutpoints. Negatives (either

false or true) encountered during this process, as a result of functional constraints between
internal circuit nodes, are resolved by attempting to justify them towards the primary

inputs.

Overall, methodology comprises a Deduction Engine to derive internal node
relationships and a Justification Engine which ehminates false negatives or identifies true
negatives. A negative is a witness assignment to a set ofexisting cut-points
used to disprove the existence ofa cut-point relationship {e.g. equivalence) between a pair
ofpotential new cut-points. Afalse negative is a negative which cannot be justified back
to the primary inputs i.e. there does not exist a primary input assignment under which
the signal nodes a;i,a;2} ••• assume the witness assignment claimed by the negative. The
false negative problem assumes great importance in the context ofthe above methodology
where the algorithm lacks a global view of the circuits when attempting to deduce new
cutpoints. In practice considerable resources of the algorithm are devoted to efficiently
resolving potential false negatives.

The following exposition will be with respect to cut-point methods based on de

ducing equivalences. Thus the cut or cut-point frontier will be referred to as an equivalence

cut and denoted by 6. Note that an equivalence cut carries a topological interpretation in

terms ofCi and C2 (it partitions the inputs ofCi and C2 from their outputs) as well a set
interpretation (it is a set of variables forming the physical cut in the circuits Ci and C2).
In the following we use both these interpretations interchangeably. The equivalence cut is

also irredundant in the sense that no proper subset of it forms a cut over Ci and C2.
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5.2 Previous Approaches

As described in Section 5.1 a typical cut-point based method is composed of a

deduction engine and a. justification engine. In many of the proposed works on CEC [JMF95,

KK97, Mat96], BDDs are used in both the deduction engine as well as the justification

engine. Recently, Burch and Singhal [BS98] proposed a methodology where BDDs axe

the primary deduction engine as weU as paxt of the justification engine. Randomized SAT

algorithms, modified to work off the BDDs are used to supplement BDD based justification.

Paruthi and Kuehlmann [PKOO] proposed a tighter integration of BDDs and SAT based

methods for CEC using an interleaved combination of BDDs and a SAT solver as the

deduction engine. However, BDDs continue to be a major part of their deduction engine.

Moreover their method of using the SAT solver in the overall flow is fairly orthogonal to

our proposed approach.

There have been a few attempts to use SAT based algorithms to perform the

entire equivalence check. Brand [Bra93] proposed a outpoint based methodology based on

replacability relationships which were derived using an ATPG tool. HANNIBAL [Kim93]

used recursive learning to derive implications which were then used by an ATPG tool to

perform the equivalence check. Marques-Silva et al. [MSeS99] proposed using a reciirsive

learning based pre-processor to derive equivalence relationships which are subsequently used

by a general purpose SAT solver to perform the verification task. While these methods

offer an innovative alternative to BDD-based methods, they have not become the method

of choice for CEC; generally it is believed that SAT-based methods are not as efficient as

BDD-based methods. However, we believe that this is not a necessary consequence of using

SAT methods vs. BDDs but rather a result of the specific SAT algorithms used and the way

they have been applied in the overall methodology. This work is an attempt to validate this

claim.

A nrimber of other approaches addressing the CEC problem have appeared in the

literature. However, they have been omitted from the above survey since they are not

directly relevant to the focus of this research, which is the application of SAT methods to

CEC. The interested reader is referred to [BS98, JNFSV97] for more detailed surveys on

other CEC approaches.
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5.3 SAT Vs. BDDs in CEC

As described in Section 5.2, BDDs have been successfully used as the core equiva

lence deduction engine ina number of programs for CEC [BS98, KK97, Mat96]. The reason
for this success is the ability of BDDs to compactly represent the complete Boolean space

of reasonably laxge functions (variable support ofup to 15-20 variables or even greater).
However, SAT algorithms have au inherent advantage over BDDs in Boolean rear

soning, imder a given set of constraints. BDDs have no means of performing Boolean
constraint propagation (BCP), a feature that is integral toall branch and bound based SAT
solvers. Since branching based SAT solvers explore each assignment to thevariables ofthe
formula one by one, BCP or "examining the logical consequences of each assignment", is
a natural component of such algorithms. Thus, such an algorithm can actually work with
(branch on) only a small portion of the given Boolean variables while still being able to
examine the logical consequences of this branching on the remaining variables atanegligible
additional expense (the expense of BCP). On the other hand, BDDs work by constructing
a representation of the entire Boolean space of a specified set of output variables, in terms
of a specified set of input variables. The only way to introduce additional variables is to
explicitly construct BDDs of those functions as well and connect them to the existing BDDs
by some logical operation, viz. conjunction or existential quantification. For the current
application i.e. CEC, this single feature gives a SAT-based algorithm several operational
advantages. Properly harnessed, these can translate into significant gains in the overall
efficiency and robustness of the tool. Some ofthese are discussed below.

5.3.1 Locality and robustness of outpoint resolution

In order to deduce an internal equivalence x = x' a tjrpical BDD based deduction

engine has to build BDDs of x and x' in terms of a common set of outpoints (Y,Y') such
that a;(Y) = a:'(Y'). To determine asuitable set (Y,Y') such methods [BS98, Mat96, vE97]
resort to a host of heuristics to resolve outpoints backwards until a suitable cut is found.

Such an approach is inherently unrobust since there is no good criterion to determine the
"right cut" to leam an equivalence from. Thus, often such an approach uses a set (Y,Y')
much larger and farther away than needed to learn the equivalence. The key point is that
the inability to leam x = x' from a given cut (Y,Y') is due to thepresence ofcertain false
negatives on this cut. Often it is possible to resolve these through local BCP or a fairly
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Cut S

Ci C2

Figure 5.1: False Negatives can be resolved by local BCP

"local branch and bound search" by a SAT algorithm.

Example 5.1 Consider the circuit of Figure 5.1 where the signals y and 3/ are not equiva

lent in terms of the cut S = {x,x'}iWi,W2,W3 but are actually globally equivalent in terms of

the signals wi,W2,wz'̂ . The miscomparing patterns ('e.g. x = x' = IjWi = 0,t02 = IjWs =

1) can be easily resolved by a SATprocedure through local BCP, while operating from the

cut S, but a BDD based approach operating in terms of the same cut would not be able to

deduce the equivalence of y = yf.

5.3.2 Use of previously deduced equivalences

To the best of our knowledge all cutpoint based methods immediately merge nodes

that are deduced as equivalent. With BDD based methods there is probably no benefit in

doing otherwise. However, with SAT basedmethods it is possible to simply add the deduced

equivalence as a clause or constraint to the overall formula without merging the two nodes

and benefit from this.

^Such a situation is frequently produced by simple operations such as factoring and re-substitution in
logic optimization.
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Cut S

V
y

y = y

r-
Unobservable combination 5{z)

Figure 5.2: Previoiosly deduced equivalences as shallow witnesses offalse negatives

Example 5.2 Consider the example of Figure 5.2 where the current outpoint frontier S
has an unobservable or false negative assignment S(^z^ which blocks learning equivalences

x = x' as well as y = from the cut 5. Once we have expended some branching effort in

backjustifying this false negative for learning x = x^ we can add inx = x' as a local witness
of6{z) (and not merge x^x') so that when trying to learn y = 1/ this false negative can be
justified with no branching effort (since this assignment will immediately violate x= x^).

Thesame reasoning applies to not merging equivalences behind the current equivalence cut

so that they can be used as shallow vntnesses of unobservable assignments when trying to

backjustify false negatives towards the primary inputs.

5.3.3 Learning more general relationships

In almost all BDD based cutpoint methods the notion of outpoints corresponds

to equivalence relationships (or equivalence modulo inversion) in terms of the circuit pri

mary inputs. Such relationships can be naturally obtained by BDD pointer comparisons.

However, using SAT methods it is possible to work with a much more general notion of

outpoints. One such generalization [Bra93] proposed the notion of replacability of gates

where x can be replaced with y iff on replacing x with the gate z = x®y there does not

exist a test for the stuck-at-0 faiilt at the output of z. This and a number of other variations

of this notion can be realized by slightly modifying the SAT problem posed to the solver.

However, for simplicity we have chosen not to exercise this degree of freedom in this work.



CHAPTER 5. SAT-BASED COMBINATIONAL EQUIVALENCE CHECKING 82

5.4 Proposed Methodology

Our overall framework is similar to most outpoint based methods as described in

Section 5.1. The key difference is that we use SAT procedures alone to accomplish both

the deduction and the justification phases. As in [KK97] the two circuits to be checked

for equivalence are decomposed into a network of two-input AND gates, allowing inversions

on the edges. This decomposed network is used as the base datarstructure. Currently, the

deductionprocedure is restricted to deducing equivalences {x= y) and equivalences modulo

complementation {x = y). All deduced relationships are tagged onto the respective gates.

Our methodology is implemented through a combinationof two SATengines which

work in tandem in an interleaved fashion. The first engine is an inexpensive, DPLL based

engine designed to catch most of the "easy to prove" equivalences in the vicinity of the

equivalence cut. The second engine uses a more advanced general purpose SAT solver (in
oiir case the GRASP [MSS99] solver) to deduce the relatively more difficult equivalences.

The two engines are described below.

5.4.1 Segment sweeping based deduction

Thisengine isdesigned to catch allequivalence pairs (x,x') such that the combined

support of Xand x' in terms of the current equivalence cut, 5 is less than some specified

parameter k. The intuition behind this engine is similar to motivation of the node hashing

scheme [KK97]. It isroughly analogous to building BDDs, in terms ofthecurrent cut, of all
those nodes whose support size (in terms of <5) is less than k and deducing all equivalences

that can be deduced fi:om these BDDs. However, for reasons discussed in Section 5.3 our

methodis much more powerful than either the BDD schemes or hashing, even if the hashing

is generalized on the lines of [KGPOl].

Let 5 denote the outpoint frontier. A segment 13 of this cut is a subset of outpoints

(as well as their equivalent counterparts) of 6. Let Base^jS^ denote all those gates (variables),
in the transitive fanout of the cut S in circuits Ci and 0/2, whose support in terms of <5 is

a subset of Consider a pair of variables x,x' G Base{0). The equivalence deduction

procedure is based on the following principle. Under eaxdi assignment to the variable of
each variable of Base(/3) takes a Boolean value (0 or 1). If x and x' assume the same

Boolean value mder each of these 2'̂ ' assignments, then x = x' globally, i.e. in terms of

the primary inputs. Similarly, if x ^ x' (globally) then the following result follows.
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Proposition 5.1 Given segment ^ of cut S and two variables x,x' GBase{^\ if x ^ x'
(globally) then there exists a Boolean value assignment Ap to the variables of^ such that

^\a0^ ®1^^.

In fact this proposition can be further strengthened as follows.

Proposition 5.2 Given segment ^ of cut 6 and two variables x^af G Bose(/9), if x ^ x'

(globally) then there exists a Boolean value assignment Ap to the variables of ^ and an

assignment Aj to the primary inputs I such that P\ai= o,nd xIa^^

Based on Proposition 5.1 equivalence relationships are deduced by constructiug

and manipulating equivalence classes as follows. Given a segment of cut S the variables

Base(p) are first put into asingle class, T. Then each of the 2'̂ ' assignments to is explored
one by one with the associated values of the variables Base{l3) under each assignment, using

Boolean value propagation through the circuits. Suppose imder the first assignment to jS,

variables Fi evaluate to 1 whereas variables Fq evaluate to 0, where Fo,Fi CF,FoUFi = F

and Fq n Fi = 0. Then the class F is split into two sub-classes, Fq and Fi. This process is

repeated for each current class, after each assignment (and value propagation) to )0. After

exploring all 2'̂ ' assignments to the segment, if two variables x and x' lie in a common

class, it follows from Proposition 5.1 that x = x' holds globally.

Using the result of Proposition 5.2 the above strategy can be improved consid

erably. First, when branching on the segment variables (i.e. exploring the 2'̂ ' possible
assignments to segment variables) complete Boolean value propagation is done after each

variable assignment. The propagation is carried both in front of and behind the cut, using

the functional gate level circuit description as well as all previously deduced equivalence re

lationships. The current branch is terminated as soon a conflict is encoimtered. Secondly,

the classes are split if and only if the branching doesn't terminate in a conflict. The above

deduction procedure based on branching on a single segment and splitting classes is called

a segment deduction run.

Given the current cut, <5, the local deduction of equivalences is accomplished

through a sequence of segment deduction runs, each with a new segment ^ drawn from

the current cut 5. At the end of these runs we can informally guarantee that all equiva

lences, deducible from the ciirrent cut and within a certain neighborhood of it, have been

deduced. In otur experiments a segment size of 5 provided a good compromise between

deduction power and efficiency.
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5.4.2 Global hypothesis based deduction

While the above procedure works fairly well in regions of the circuit where equiv

alences axe abundant and densely scattered, it cannot be generalized to handle all equiva

lences for the following reasons:

• The distribution of equivalences is highly non-uniform for difficult verification in

stances. Hence it is impossible to determine a good value of the segment size a priori,

in the absence of which the algorithm does a lot of wasted work.

• In some cases, especiallyarithmetic circuits, missingeven a few equivalences can make

an appreciable difference in the difficulty of the remaining sub-problem.

We concur with the viewof [BS98] on the issue that for more difficult equivalences

one needs a robiist approach to generate candidate pairs of cut-points to verify (we refer to

these as global hypotheses) and a robust mechanism for verifying these pairs that does not

work off a preset hard threshold on the amount of effort to invest in verifydng a particular

pair.

Our framework for global h5rpothesis generation and proving, draws on techniques

in [Bra93, BS98, vE97] and is similar to the one used in [BS98]. The key difference is that

a single SAT algorithm is used both for proving equivalent pairs as well as identifying true

negatives^. The algorithm pseudo code is shownin Algorithm 5.1.

The GeneratelnitGlobalHypothesisCIasses routine picks up all nodes in the

transitive fanout of the cmrent equivalence cut and clusters them into Global Hypothesis

Classes by running 32-bit parallelsimulationon the circuit. Nodeswith identicalsignatures

under simulation lie in the same global hypothesis class. The simulation can be per

formed with purely random vectors or any other "interesting" set of vectors. This function

is used only when global equivalence deduction is invoked for the first time.

ChooseHypothesis selects a pair of nodes, a;i,X2} belonging to the two circuits

from a global hypothesis class, such that the pair is topologically closest to the current

equivalence cut. This hypothesis is resolved by invoking a SAT solver on the formula
denoting xi®X2' All previously deduced equivalences are partofthisformula. Iftheformula

is unsatisfiable then xi = X2. Thus all previously deduced equivalences currently tagged

^[BS98] used BDDs for the proving equivalences and heuristically combined it with a randomized SAT
algorithm implemented on the BDDs to identify some of the true negatives.
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Algorithm 5.1 Global Hypothesis Deduction
GenerateInitGlobalH5rpothesisClasses

while Outputs Unresolved & Not Deduced Sufficient New Equivs. do

(xi,a;2) = ChooseHypothesis

Status = ResoIveHypothesis(xi,X2)

if Status = "TRUE-NEGATIVE" then

RefineGlobalHypothesisClasses

if Outputs in different classes then

retiim UNEQUAL, test

end if

else

MergeEquiyClasses(xi, X2)

if Outputs in the same EquivClass then

return EQUAL

end if

end if

end while

onto xi aTid X2 are merged (routine MergeEquivClasses). If the formula is satisfiable,
thesolution returned provides a vector to sunulate and refine i.e. to split thecurrent global
hypothesis classes (routine RefineGlobalHypothesisClasses).

This process iterates until the primary outputs are resolved or a certain number
(a parameter to the algorithm) of new outpoints are deduced. If the primary outputs are
deduced as inequivalent, the algorithm returns a witness vector (test in Algorithm 5.1)
under which the outputs assume different values.

5.4.3 Overall Algorithm

The overall algorithm alternately invokes segment sweeping based deduction and

global hypothesis based deduction, switching from one to the other using the following
heuristic. The algorithm is initiated by applying segment sweeping on theinitial cut, which
isthesetofcommon primary inputs I for the two circuits. Ifthesegment sweeping runs from

the current cut yield new equivalences, the equivalence cut is advanced by incorporating

the new equivalences and segment sweeping is reinvoked on this new cut. This process is
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iterated until segment sweeping from the current cut reveals no new equivalences.

At this stage the algorithm switches to global h5rpothesis based deduction, resolv

ing candidate pairs until the primary outputs axe resolved or a pre-specified number ofnew

outpoints axe deduced. The cut is advanced to include the new equivalences and segment

sweeping is again invoked from the new cut.

Note that the globalhypothesis classes maintained and manipulatedby the global

hypothesis deduction engine axe different from the equivalence classes created and subse

quently discarded in each segment deduction run. New equivalences deduced through seg

ment sweeping axe removed from the global hypothesis classes. Thus, equivalences deduced

by segment sweeping axe never taken up for resolution by global h3rpothesis deduction.

5.5 Experimental Results

This section presents experimental results based on a preliminary implementation

of the proposed methodology for SAT based CEC. It has been implemented in C and

uses the GRASP SAT solver [MSS99] for the global hypothesis based deduction phase

(Section 5.4.2). Our experiments were run on a Sun Ultra Spaxc-1 with 256 Mbytes of

memory. The current interface to GRASP is through files^ but the reported runtimes do

not include the file I/O times since this can be removed easily through a better integration

of the tools. As mentioned earlier, the main objective is to present a realistic assessment

of a SAT based CEC tool, rather than to present an optimized and complete equivalence

checker.

We present two sets of results. The first compares our method against four tools

which in our opinion represent the state of the art in SAT based combinational equivalence

checking.

1. RIi_GRASP [MSG99] : Animplementation of GRASP augmented with Recursive

Learning [KS97].

2. RL_CGRASP [MSeS99] : An implementation of GRASP augmented with Re

cursive Learning as well a framework for exploiting circuit topology.

3. HANNIBAL [Kun93] : A CEC tool usingRecursive Learning and a test generator.

^GRASP is written in C++ whereas our tool is in C.
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Circuit RL.GRASP

(sees)
RL-CGRASP

(sees)
HANNIBAL

(sees)
Implication Graph

(sees)
Our Method

(sees)

C432 2.8 3.6 3 1.3 0.7

C499 6.8 8.8 6 1.4 1.17

C1355 18.0 27.4 19 7.0 2.37

C1908 94.8 153.0 26 19.5 3.87

C2670 56.4 74.6 231 24.1 4.46

C3540 4006 2560 2057 791.0 38.94

C5315 445.4 476.6 797 33.4 6.96

C6288 109.6 43.6 48 8.9 5.04

C7552 2124 2868 4724 570.1 23.11

Table 5.1: Verifying original vs. irredundant circuits

4. Implication Graph based method [TGH97]: Presents a tuned and optimized
implementation of a backtracking SAT algorithm that employs some elements ofnon
local imphcations and recursive learning. The algorithms are implemented on a spe
cialized datarstructure called the implication graph.

The comparative results presented in Table 5.1 show the results of verifying the
ISCAS'85 benchmarks against their irredundant versions. These benchmarks are relatively
easy instances of combinational verification. They are also the only common set of bendi-
marks on which the above tools have reported results.The results of RX_CGRASP were

obtained by running the publicly available version of the tool on our madune, using opti

mized settings which the authors [MSeS99] kindly provided. Since RL_GRASP was not
available we used the runtime numbers from [MSG99] appropriately scaling for architec

tural differences. The results for HANNIBAL are the original numbers from the paper

[Kim93] since we were unable to find suitable scaling data for the Sparc ELC station used
by the authors in those experiments. The results of [TGH97] are the numbers from the
original paper reported on a DEC Alpha Station 250^^^®®, which is a madune comparable
in performance to our own. Although, a direct exact value to value comparison is neither
fair norintended, the results ofTable 5.1 clearly demonstrate that ourmethod consistently
outperforms all the other techniques. Especially noteworthy is the fact that on the three
hardest instances of the set, namely 05315, C3540 and 07552 our method outperforms all

the other methods by over two orders of magnitude.

The second set of results provide a comparison on a much more difficult set
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Circuit Mixed Engine [BS98] Our Method

(sees) (sees)
C432 - 2.14

C499 - 0.92

C1355 - 1.1

C1908 - 5.90

C2670 3.5 4.93

C3540 25.7 20.98

C5315 5.3 27.45

C6288 12.1 14.52

C7552 12.7 35.18
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Table 5.2: Verifying original vs. optimized circuits

of instances with a state-of-the-art BDD based mixed engine combinational equivalence

checker [BS98]. Table 5.2 reports results on verifyingsome of the MCNC91 circuits against

a version optimized by a general purpose logic optimization script, script .rugged from

SIS [S"^92]. The results of [BS98] are reported on the same machine as ours. It is note

worthy that even with our current untuned and prototype implementation our runtimes are

mostly comparable to that of [BS98], sometimes a factor of 2-3 slower. However C3540 is

an example where our algorithm is faster. Interestingly enough, this is an example with

a fairly non-uniform distribution of cut-points, some of which are fairly hard to deduce.

Although we believe the nmtime discrepancy can be easily made up and in fact bettered

by the improvements listed in Section 5.6, we chose not to produce a commercial tool, but

to pursue other directions of research.

5.6 Conclusions and Future Directions

We revisited the application of Satisfiability (SAT) algorithms to CEC and argued

the case for SAT as a more robust and flexible engine of Boolean reasoning than BDDs. We

presented a simple framework for SAT-based CEC and reported results on a preliminary

implementation. The results show a speedup of up to two orders of magnitude compared

to state-of-the-art SAT-based methods for CEC. They also demonstrate that this simple

algorithm and imtimed prototype implementation is only moderately slower and sometimes

faster than a state-of-the-art BDD-based mixed-engine commercial CEC tool.
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There are severed avenues for improvement of the current algorithm and imple

mentation:

• Variable ordering in the SAT solver: It is well known that variable ordering

can affect the performance ofSAT solvers, tremendously®. Currently, we have exper
imented with only a few static variable ordering schemes with GRASP. More experi

mentation in this direction could provide substantial speedups.

• Better implementation of our CEC fraunework: The current data-structure

and routines are designed for flexibihty of rapid algorithm prototyping rather than
optimality ofthespecific proposed framework. Once rewritten and tuned for efficiency,
these could easily speed up the tune spent outside the calls to the SAT solver at least

by a factor of2-5. This time contributes 30-70% ofthe overall reported time.

• IVlore effective use of Initial Vector Simulation: Currently the 32-bit parallel

vector simulation, used for pruning the h3^othesis set,works with randomly generated

vectors. However, simulating a more intelligent set of vectors could substantially

decrease the number of calls to the SAT solver and boost performance proportionally.

One idea to do this is to make use of test vectors that are routinely generated for

simulating designs, during the design process. These could be "interesting" vectors
proposed by the designer or the ATPG test set for one or both of the circuits being
checked.

• Sharing effort between individual hypothesis checks: One of the reasons for
the efficiency ofBDD based methods is their ability to re-use previous work bystoring

part of the Boolean search space in the form of the BDD itself. While our current
methodmakes useofpreviously done work by storing and using deduced equivalences

as shallow witnesses of conflicts (Section 5.3), a more direct sharing of effort between

individual SAT calls, somewhat along the lines of [KMSSOOa] could substantially

improve performance.

• Using an improved SAT solver: As research in SAT solvers produces better al
gorithms and implementations, performance of the proposed framework will improve.

The Chaff SAT solver [MMZ+01] proposed recently has been shown to outperform

®just as BDD variable ordering affects the size of BDDs
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most other solvers (including GRASP) by up to 1-2orders of magnitude. Integrating

such a SAT solver into our framework should certainly enhance the performance of

our prototype.

SAT-based CEC methods merit further research and application based tuning be

fore they can surpass almost a decade of research in BDD-based combinational verification.

The work presented in this chapter is an attempt to demonstrate the advantageous features

and the immense potential of SAT methods in a practical verification setting.
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Using Problem Symmetry to

Reduce Search
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Recent years have seen significant improvements inSAT solver technology [MSS99,
MMZ+01, Zha97]. Much of the success of SAT solvers in EDA can be attributed tothese im
provements. Almost all current leading edge SAT solvers use abacktrackmg algorithm based
on the classical Davis-Putnam-Logemann-Loveland procedure (DPLL) [DLL62] enhanced

with some form of non-chronological backtracking and conflict based learning [MSS99,
MMZ+01]. Eflacient implementations of powerful search pruning techniques such as Boolean
constraint propagation, non-chronological backtrackmg and conflict based learning form the
computational backbone of most popular SAT solvers [MSS99, Zha97, BS97, MMZ"^01].
This chapter introduces and develops the notion ofproblem symmetry to formally charac
terize and enhance the search space pruning of such a SAT solver.

Thenotion ofproblem symmetT^ stems from thesimple observation that in certain

regions ofthe Boolean space theunsatisfiability ofthe given CNF can beestablished without
using a certain variable, say x. In other words, in this sub-space the CNF is symmetric
with respect to x (or this is a symmetric subspace with respect to o;)^. In the context of a
backtracking based SAT algorithm this canbe used as follows. Consider the backtrackmg
search tree shown in Figure 6.1. When exploring the left branch of branching variable x

(x = 0) the algorithm computes an (imder) approximation of the S3rmmetric sub-space (out
ofthespace explored under the branch x = 0) with respect tox (sub-space 0i inFigure 6.1)

^Note that this notion of symmetry is distinct from the often used notion of a Boolean function being
symmetric with respect to certain variables
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Conflicts witnessed
by X

Figure 6.1: Illustration of S3niiinetry in Search
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and in the rightbranchofx (x = 1) the counter-part ofthis S3rmmetric sub-space (sub-space

©2 in Figure 6.1) is pruned.

In this chapter weintroduce and develop the notion of problem symmetry in search

based SAT algorithms. Further, we introduce the notion of essential points and use it

to develop a formal charax:terization of the potential search space pruning that can be

realized by exploiting problem symmetry. We show that many popular search pruning

techniques such as the pure-literal rule, non-dironological backtracking and conflict based

learning that are employed in leading-edge SAT solvers are in fact special cases of pruning

under the general theory of essential points. Thereby this work unifies these apparently

disparate techniques imder a single framework and paves the way for discovering several

new pruning techniques. We also propose a new, simple and eflficient prumng tedmique

called the supercubing rule, based on problem sjnnmetry. Preliminary experimental results

demonstrate this to be effective in providing search space pruning over and above the

pruning afforded by existing techniques in SAT solvers.

Thischapterisorganized asfollows. Section 6.1 presents some basic definitions and

notationused in the exposition. Section 6.2illustrates the notionofproblem symmetry with

a few examples. The theory of essential points and a formal characterization of problem
symmetry is developed in Section 6.3. Section 6.4 presents theoretical results showing

several popular pruning techniques used in SAT solvers to be special cases of the general
theory of essential points. In Section 6.5 we develop the supercubing rule. This is also
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a special case of problem symmetry based pruning but subsumes some existing pruning
techniques and is orthogonal to others. Section 6.6 presents preliminary experimental results
validating the efficacy of this rule. Conclusions and directions for future developments are
presented in Section 6.7.

6.1 Definitions &: Notation

The following discussion is with respect to SAT instances expressed as conjunctive
normal form (CNF) formulas. Further, the underlying SAT algorithm used in the dis
cussion will be the basic DPLL [DLL62] algorithm, augmented with some form of conflict
analysis^ non-chronological backtracking and conflict clause recording [MSS99]. As discussed
earlier, this is representative of the SAT methods implemented in most leading edge SAT
solvers [MSS99, MMZ'̂ 'Ol, Zha97].

The exposition will be based on the notational framework developed in Chapter 2
as well as the following. Let I denote a literal of one of the variables V. lit{x) refers
to a literal of variable x i.e. is either x or x. if^ refers to a minteim or point in

the 2" Boolean space of variables xi,a;2>».« Note that a minterm *0 is a complete
Boolean assignment to the variables V. Further, a formula <l> can be evaluated under this
assignment. In the following we wiU occasionally use a literal of a variable to refer to a
particular value assignment to the variable {e.g. (a; = 0) = x) and a cube (minterm) to
refer to a partial(complete) value assignment to variables of V. A{x) refers to the current
assignment ofvariable x or alternatively the literal corresponding to that assignment.

From Section 2.4.1 refers to the clause that was used to imply or deduce the

variable x. Bxtending this terminology, T(w) will be used to denote the set of variables
whose literals appear in clause io and have been assigned values through BCP implications

from w or other clauses. 'D{u) will denote the set of variables whose literals appear in u)

and have been assigned values through decision assignments.

As discussed in Section 2.6, a given conffict condition X may haveseveral conffict

clauses that can be deduced fromit. The particular clause or clauses deduced by a given SAT

algorithm depend on the specific version ofthe conflict analysis procedure implemented by
it. For the sake of concreteness we wiQ use the following definition of Ati{X) in the sequel.

Consider the following recursive marking function Ad (a;), which operates ona clause u; and
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is defined as

A4(a;) = P(a;) UX(a;) (6-1)

Then V{X) = M{ijj{X)). Further V{X) can be split into disjoint subsets VviX) and

Vx[X) which are respectively the decision and implied variables comprising V{X). The

clause u}Ti{X) learned and recorded on conflict X is defined as:

An{X) = {A{x)\xeVv{X)}

un{X) = V I (6.2)

Definition 6.1 (Unsatisfiability cube) Given a clause u denote by U(u) the unsatisfi-

ability cube of u; which is the set of minterms (assignments) which unsatisfy w, e.g. given

V= {a;i,X2,a;3} andw = (xi +S2), U{C) = {^0:2X3,xra;2^}.

Note that U{(jj) can also be interpreted as a cube of literals, ZJ. For the above

example U{lj) = xlx2. In the following we use the two interpretations interchangeably.

6.2 Problem Symmetry in Search

The notion of problem symmetry was introduced and its potential in search space

pruning motivated briefly in the beginning of this chapter. In this Section we provide

two examples to buttress this understanding and illustrate that 1.) instances of problem

symmetry are plentiful in typical SAT instances arising from EDA applications and 2.)
current pruning techniques harness only a fraction (albeit inadvertently) of the potential

search space pruning afforded by problem symmetry.

Example 6.1 Consider the sub-circuit shown in Figure 6.2(a). Assume that this is part

ofa larger circuit on which some SAT problem is being solved^. Here x is a primary input
of the circuit and the three gates shown are the only fanouts ofx. Suppose the backtrack
tree explored by the SAT algorithm is of the form shown in Figure 6.2(b). Consider the
left branch (x = 1) ofbranching variable x. Suppose that under this branch the algorithm
subsequently makes the cLssignments wi = 1,1^2 —0 ^3 —I (and potentially other

^What is meant here is that an appropriate CNF formula is extracted from the circuit and solved by a
SAT solver.
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Wl = 1

Wo = 0

W3=l

©1

1—0

(a) Example Sub-circuit (b) Backtrack TVee

Figure 6.2: Example of Symmetry in SAT on circuits

assignments as well) and reaches a sub-space ©i (shown in Figure 6.2(b)). Note that in
sub-space ©i the value ofx is no longer relevant i.e. the formula is symmetric with respect
toa; in©1. Thus, if the algorithm finds sub-space ©i unsatisfiable then it need not explore the
sub-space ©2, the counterpart ofSi under the branch x = 0, as that too will be unsatisfiable.

This is a simple and classical case ofproblem symmetry in SAT instances derived
from logic circuits. This case isnot explicitly targeted by existing search pruning techniques,
so, sometimes such cases may not be effectively covered by existing techniques.

Thenext example isdesigned to illustrate that current implementations ofconflict
clause recording exploit only a fraction ofthe search space pruning potentially afforded by
problem symmetry.

Example 6.2 Consider the following CNF formula.

(f, = {y-\-z-\-w)(y-\-z-\-w){y-\-z-\-w){y-\-z)(y-]-z-\-w)

{y-\-z-{- w)(x-\-y-\-z-\- w)(x-\-y-{- z-\-w) (6.3)

A typical backtracking tree for solving this CNF is shown in Figure 6.3. The backtracking
algorithm employs conflict analysis, clause recording etc. The recorded clauses (as per the
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x,y,z

Figiire 6.3: Example of Sjrmmetry ra backtrack search

specific scheme described in Section 6.1) are shown below each conflict. Also noted are the

set of decision assignments relevant to the conflict, derived through conflict analysis. An

analysis of the conflicts in the branch x = 0 reveals that x was only relevant in conflict

X2. Alternatively, looking at conflict X2 it can be concluded that in the sub-space under the

branch x = 0, x was used in a conflict only when y = 1 and z = 0. The rest of the sub-space

under a; = 0 represents Hie symmetric sub-space with respect to x. Thus when exploring the

right branch ofx, i.e. x 1 we do not need to explore the sub-spacey = OVz = 1. Therefore,

on taking the branch x = 1 we can immediately assert y = 1 and z = 0. Note, that the

assertion 6 = 1 is also deduced by means of the recorded conflict clause {y). However,

derivation of the additional assignment 2 = 0 is made possible only by exploiting problem

symmetry more fully through the above analysis.

Note that the additional pruning realized in the above example is not an artifact

of the specific conflict clause recording mechanism used in this work and in this example.

Rather, it is a fundamental limitation of any practical implementation of conflict based

learning. Conflict based learning techniques typically record a small number (usually just

one) of implicates on each conflict. These recorded clauses represent only a fraction of

the implicates that could potentially be learned from eaxdi conflict. It is neither feasible

nor practical to learn all possible implicates. Intuitively, techniques based on problem

symmetry, such as the one illustrated above in Example 6.2, attempt to work in the pruning
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space of such "missed implicates" and are therefore relevant irrespective of the particular
clause recording technique used. The Supercubing technique presented later in Section 6.5
is motivated by the same reason.

Note that during thesearch, certain variables, initially picked asdecision variables,
become deduced variables due to BCP implicationsfrom newly added conflict clauses, e.g.

in Figure 6.3, y = 1 can be treated as a deduced assignment implied from the clause {y)
recorded onconflict X\. Sudi assignments are called/ai/ure-driven assertions (FDA) [MSS99].
However, y = l may aswell betreated asa decision assignment. In our treatment, FDAs are
treated as deduced assignments for the purpose of generating the recorded- conflict clauses

W72.(Af). However, for generating the responsible assignments shown inFigure 6.3 (and for
the supercubing rule presented in Section 6.5) FDAs are treated as decision assignments.
Both versions of the analysis still use Equations 6.1 and 6.2 but generate different sets

Vv{X) (and Av(X)).

6.3 The Theory of Essential Points

In this section we develop the notion of essential points to formally characterize

the search space pruning that can be realized by e^qiloiting problem S3unmetry.

Definition 6.2 (Essential point) Given a literal I, a minterm p is coiled an I—essential
point ifall clauses of 4> unsatisfied by the assignment p. (must be at least on^) contain literal
I, e.g. given <^ = (x+ ^)(z)(a; + y+ z)(« + 2)(a; + y+ z) the minterm xyz is anx-essential
point.

Definition 6.3 (Symmetric points) Let p and p* be two minterms in the 2^ Boolean
space, p* is said to be x-symmetric to p if it is obtained from p by inverting the value of
variable x in p, e.g. minterms p = xyzw and p* = xyzw are z-symmetric with respect to

each other.

Proposition 6.1 Letp be a complete assignment to variables xi, X2, ••• ,xjv (i.e. ominterm

of 2^) which satisfies <f>. Then assignment p* which is x-symmetric to p is either a lit(x)-
essentialpoint (where lit(x) £ p) or a satisfying assignment of (j).

^Thus, satisfying assignments of <f> are not essential points.
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Proof: Suppose fj,* is neither a solution nor lit(a;)-essential (where lit{x) G/z). Then there

exists a clause u of <f) such that fi* unsatisfies u and uj does not contain any x literal. But

then (jj is unsatisfied by ^ as well. Therefore /z is not a solution of <f). Contradiction ! •

Proposition 6.2 If assignment /z is lit(xJ-essential then assignment /z*, x-symmetric to

II, is either lit{x)-essential or is a solution^.

Proof: Suppose /z* is neither a solution nor /it(a;)-essential. Then there exists a clause u of

/ such that /z* unsatisfies u and u does not contain any x literal. But then u is nnsatisfied

by p as well. Therefore ii is not lit(a;)-essential. Contradiction ! •

For a literal I, the set of i-essential points with respect to the current CNF is

denoted by £(/). The subset of S{1) lying in a sub-space 0 is denoted by Se(l) and by

^mb{l) when the sub-space being referred to is clear from the context.
The search space pruning that can be achieved using the notion of essential points

can be operationally defined by the following theorem.

Theorem 6.1 Suppose the algorithm has explored the leftbranch ofvariable x (without loss

ofgenerality x = 0) andfound no solution. Moreover, suppose the algorithm has computed

Sx{x). Then underthe branch x = 1 solutions of(j) must lie in the set ofpoints x-symmetric

to points in Sx(x) (denoted by

Proof: For correctness, the algorithm only needs to ensure that it does not skip any

solutions of the CNF in the branch a; = 1 (it can prime everything else). By Proposition 6.1

solutions can only be points a;-symmetric to points in Sx{x). •

Theorem 6.1 implies that for testing satisfiability of when exploring the branch

a: = 1 the algorithm only needs to explore the set of points S^(x). It is also easy to see that

it is not necessary to compute the set Sx{^) exactly. Any over-approximation of it would

work as well, though the amount of pruning would be reduced proportionally.

Under a conflict clause recording scenario, i.e. when the algorithm progressively

adds implicates of the CNF to the clause database the set of essential points S{1) for each

literal I either remains unchanged or shrinks.

Theorem 6.2 Let CNF be obtained from (f) by adding clause to <!> where is an

implicate of(f). Then, for any literal I, the set ofessential points ofI in denoted €"^{1)
must satisfy ^"^(0 Q 5(Z).

^In other words a satisfying assignment of 0
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Proofi ConsidBr any minterni /z ^ ^(0* Theii, there must exist a. clause wof such tha>t
i ^ a; and Me U(u). But, since </•+ = <^ •a;+, a; is also a clause of <f>+. Thus, 0 S+{1).
Therefore, fx ^ £{l) => ^ {I). •

The relevance of Theorem 6.2 is that under a clause recording scenario, when a

new clause is added, allpartialsets ofessential points computed up to that point continue

to be valid with respect to the new CNF®.

6.4 Popular Pruning Techniques: Special Cases of Essential
Point Pruning

In the following we show that several popular search pruning techniques such

as the pure-literal rule [DP60], non-chronological backtracking (NCB) and conflict clause
recording [MSS99] are special cases ofthe pruning afforded by the theory ofessential points.
This unifies these techniques under a single framework and paves the way for developing

potentially more powerful variants of problem S3rmmetry based pruning.

6.4.1 The Pure-Literal Rule

The Pure-Literal rule [DP60], reviewed in Section 2.4.2, can be used to effect
pruning by looking for variables that appear in only one polarity (the pure polarity") in
unresolved clauses, at the current point in the search, and then asserting the variable to the

pure polarity. In effect this means pruning the other branch ofthe variable. If no solution
is foimd in the explored pure-branch, the pruning effected by the pure-literal rule can be

explained by essential points as follows.

The pure-polarity branch of the variable (say x = 0) can be considered the left

branch ofx, which thealgorithm explored and found no solution. The other polarity branch
X= 1 which was pruned by the pure-literal rule is the potential right branch. Thus, if we

can prove that the sub-space under the pure-branch x = 0 does not contain any x-essential
points then the pruning done by the pure-literal rule is explained by Theorem 6.1. In this
case the pure-literal rule canbe claimed to be a special case ofessential pointbased pnining.

Note that it is sufficient to consider the case when the pure-literal branch of the

pure-literal variable is unsatisfiable because in the case when there is a solution under the
^However, it f-An potentially overestimate the essential points with respect to the new CNF with the

added clause.
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pure-literal branch the algorithm terminates. In such a case the claim of pruning the other

branch has no meaning.

Theorem 6.3 The sub-space under the pure-polarity branch (say x = 0) of a pure-literal

variable x cannot contain any x-essential points.

Proof: Consider exploring the pure polarity branch (say a; = 0) of the pure-literal variable

X. By assumption, there is no solution imder this branch. Now consider the following

algorithm which just e^lores the sub-space \mder this branch using a stripped-down DPLL

procedure {i.e. no BOP or pure-literal rule).

Such an algorithm would simply explore the entire sub-spa<:e imder the x = 0

branch, stopping and chronologically backtreicking every time the current assignment un-

satisfies a clause of the CNF. Let the set of such conflict clauses encountered while exploring

this branch be wi,a;2,... ,Wp. It is easily seen that U{u;i) UU(uj2) U... UU{u)p) subsumes
the sub-spaoe explored imder the x = 0 branch. Additionally, none of these clauses contain

variable x since a conflict clause has all literals unsatisfied by the current assignment and

the pure-literal assignment x = 0 merely satisfies some clauses and restricts® none. The
result follows. •

6.4.2 Non-Chronological Backtracking (NOB)

As discussed in Section 2.6.2, the notion of non-chronological backtracking (NCB)

is used to prune areas of the search space by backtracking to the last variable responsible

for the current conflict, rather than the last variable in the current assignment stack. This

method effects pruning by skipping the right branch of some of the stack variables. Oper

ationally, this is accomplished by deducing an implicate (through conflict analysis) whose
unsatisfiability cube subsumes the regions to be pruned.

Another way of looking at this pruning is that NCB prunes the right branchof a

variable x, if and only if allconflicts in the left branch ofx were independent of (symmetric

in) X. This is obviously a special case ofsymmetry (described by the theory of essential
points) which targets pruning sub-spaces sjmametric inaparticular variable. Before proving
this, we state a few simple facts to formalize the operational definition of NCB. These
observations follow from the operational definition and correctness of the NCB procedure

as developed in [MS95] and reviewed in this dissertation in Section 2.6.2.
®An assignment which setsone more literals in a clause to 0 is said to restrict that clause.



CHAPTER 6. USING PROBLEM SYMMETRY TO REDUCE SEARCH 101

• Ikct 1: NCB pruning is done in a setting where conflict analysis is used to produce

conflict clauses (implicates) responsible for the conflict^.

• Fact 2: The deduction procedure for a conflict clause may be simulated by a tree of

resolution steps where the leafclauses are clauses of the original CNF (or previously

added conflict clauses) and the variable being resolved out at a node is a deduced
variable.

• Fact 3: NCB to pnme the right branch of variable x happens only on deducing a

conflict clause which does not contain any literal of x and whose unsatisfiability cube

subsumes the subspace being pnmed under the right branch of x.

Proposition 6.3 If clause u is the resolvent produced by resolving clauses wi and 0J2 in

some common variable (say x) then U{uj) C U{ui) UU{u2)-

Proof: Without loss of generality, let uji = W3 Vx and a;2 = W4 Vx, where W3 and U4 are

some disjunctions of literals. Then w = a;3 V0/4. Thus,

U{u) = W3 •0^4

C X 'lJzUx • W4

Theorem 6.4 If the right branch of a variable x is eligible for pruning under NCB, then

the subspace under the left branch of x (wiUiout loss of generality x = 0) cannot contain

any x-essential points.

Proof: From Fact 3, there must exist an implicate w, deduced through conflict analy

sis which does not contain literals x or x and which subsumes the subspace under the

unexplored right branch, x = 1. Since lo does not contain literals of x it must also sub

sume the sub-space under the left branch x = 0. Moreover, from Fax:t 2 there must exist

claiises uJi,U2,.. .ujk of the current CNF which form the leaves of the resolution tree sim

ulating the deduction of uj. Prom the recursive application of Proposition 6.3 it follows

that l({u) C U(ui) UU{uj2) U ... UW(a;fe). Thus, clauses u;i,uJ2i •••Wfc collectively cover

the subspaoe under the left branch of x. Also, since the resolution could only be done on

deduced variables, and x is a decision variable, clauses a;i, W2,... Wfc cannot have variable

X. Therefore none of the points covered by them can be x-essential. •

^The deduced conflict clauses may not be added to the clause database.
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6.4.3 Conflict Clause Recording

The simplistic intent of Conflictclause recording [MSS99] is to deduce an implicate

(through conflict analysis) responsible for the current conflict and add it to the clause

database with the aim of avoiding futiure occurrences of the same conflict.

Although not apparent from the above statement of the notion, the recorded con

flict clauses do in fact effect symmetry based pruning. Consider the following situation. In

the left brandi of variable x, say x = 0, a conflict X occurs on which a conflict clause (jJn(X)

is learned. Now, suppose coTiiX) does not contain Hteral x (it cannot contain x). Let the

set of assignments, preceding x be given by cube c. Let cube ci = c A x A and

cube C2 = c AXAU{ioti{X)). Note that C2 is precisely the sub-space potentially pnmable

by bi the right branch x = 1 of x.

As shown below, the pruning of sub-space C2 by clause uti{X) can be accounted

for by the theory of essential points. Thus, conflict clause based pruning is a special case

of essential point based pruning.

Theorem 6.5 The symmetry hosed pruning afforded by a recorded conflict clause ojti{X)

with respect to a variable x is subsumed by the pruning potentially realizable using essential

point based pruning (Theorem 6.1).

Proof: Using the above notation, note that c\ is the x-symmetric region corresponding to

C2, the region being pruned. By assumption, literal x does not appear in clause ljti^X).

Thus, U{u}Ti(X)) cannot include any x-essential points (follows from Definition 6.2 and

Definition 6.1). Thus, S{x) n U{(jJti{X)) = 0. Prom this it follows that S{x) n ci = 0.

Therefore, by Theorem 6.1 the x-sjnnmetric counterpart of ci, namely C2 lies in the region

that can be pruned when exploring the right branch, x = 1 of x. •

It can be shown that the entire pruning potentially accomplished by a recorded

clause, subsequent to its recording can be broken down into a series of right-branch prunings

like the above situation®.

Theorem 6.6 The search space pruning accomplished by a recorded clause ljti, subsequent

to its recordingj can be divided into a set of sub-spaces such that each sub-space lies under

the right branch of a variable y, where uyji was recorded in the left branch of y and y does

not appear in w-ji.

^provided the search is organized as a single tree i.e. without restarts.



CHAPTER 6. USING PROBLEM SYMMETRY TO REDUCE SEARCH 103

Proof: Consider thestack ofassignments at thetime oflearning clause u-r,. Letxi, a;2, •••»

be the decision variables inthis stack that axe currently intheir left branches. The Boolean
sub-space explored by the SAT algorithm subsequent to recording ujr is the union of kdis
joint sub-spaces ©i,©2, ••• where ©» is defined as follows. In the current assignment
stack, erase assignments up to but not including variable Xi (i.e. all assignments below Xi).
Now flip the variable x,. Variable Xi is now in its right branch. The sub-space lying below
this right branch is ©t.

Now, every sub-space pruned by ior subsequent to its recording must lie in ©1 U
©2 U... U©fc. Further ifXj appears in ur cannot prime any sub-space in ©» since it
would be satisfied in this sub-space. This completes the proof. •

Prom Theorem 6.5 and Theorem 6.6 conflict clause recording can be seen to be a

special case of essential point pruning.

6.5 Symmetry Based Pruning through Supercubing

In this section we develop a novel pruning rule based on exploiting problem sym

metry. This rule is called the supercubing rule after the supercube operator defined below,
which is the core operation used in implementing it.

Definition 6.4 (Supercubing Operator (5)) Given two cubes ci and 02 over the 2"
Boolean space, 5(ci,C2) computes the smallest cube containing both ci and 02, i.e. the su
percube of ci and 02.

6.5.1 Supercubing Procedure & Pruning

The algorithm maintains a cube called the supercube for each decision variable
currently on the decision stack. The supercube ofvariable x (denoted 5x) is initialized to
0 when x is first chosen for branching. In the left branch of x (say x = 0) Sx is updated

on each conflict X where x GAr{X) {Ar{X) is computed considering PDAs as decision
variables) as follows:

Sx-S(Sx,cs) where 05= A ^
leATiiX)

After the algorithm has explored the left branch x = 0 and found no solution, it

would have computed some supercube for x, denoted Say = xAZi AZ2 A... A



CHAPTER 6. USING PROBLEM SYMMETRY TO REDUCE SEARCH 104

Then in the right branch, a; = 1 we immediately assert Zi = TRUE^h = TRUE^.. .Ik =

TRUE i.e. the region a; A (Zi V Z2 V... V/fc) is pnmed.

The asserted assignments are treated as conscious assignments for the piarpose of

future conflict analysis and supercubing i.e. it is as though these variables v/j, v/g,...

were consciously branched on and the branches were pruned, while the other

branches were explored.

The supercubing rule is inspired by the theory of essential points. However, in

its current implementation it is not a special case of the theory of essential points. This is

because on a given conflict the assignments used for learning a conflict clause are different

from the assignments used for supercubing (PDAs are treated differently for these two

purposes). In the absence ofthisdiscrepancy® it is easy to prove that supercubing becomes

a special case of essential point pruning.

6.5.2 Proof of Correctness

The proof of correctness of the algorithm requires proving two propositions:

1. Every supercube-based priming is legal, i.e. the pruned space cannot contain a solu

tion.

2. At any time during the algorithm the following property holds for each minterm, -0

in the Boolean sub-space that the algorithm has already explored (and found unsat-

isfiable).

Definition 6.5 Point 0 satisfies Property V if there exists a cube such that 0 C

and c^ was processed by supercubing (Equation 6.4) under some previous conflict.

Proof: Note that the algorithm prunes off (and thus implicitly explores) regions of the

Boolean space through two kinds of pruning events^ namely 1.) regular conflicts and 2.)
supercube based pruning.

We prove the above two propositions simultaneously by induction on the sequence

of pruning events. The overall idea is to prove that if all points pruned by all previous

pruning events satisfy Property V\ then

®We experimented with thisversion ofsupercubing and found it to be ineffective in providing any addi
tional pruning over clause recording.
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a.) points pruned by the current pruning event satisfy Property V, and
b.) supercube-based pruning is legal.

Base Case : Since pruning occurs only in the right branch ofa variable, the first pruning
event must be a conflict and by definition, the algorithm would generate a conflict clause

covering the pruned region and do supercubing on it. Therefore, all pruned points satisfy
Property V.

Induction hypothesis : Suppose points pruned by the first k prunmg events satisfy
Property V and are legal prunings.

Induction proof : Consider the k + pruning event. If this is a regular conflict the
proof trivially follows as per the base case. So consider the case when it is supercube based
pruning performed in the right branch x = 1 of some variable x. The region primed by
supercubing = x A3x• Consider any point tj)* G and point V, which
is x-symmetric to ip*. Obviously iff was examined by the algorithm in the left branch of
X. Further, if; ^ Also, by the induction hypothesis there exists cube 05 such that

if; £ cs and 05 was processed by supercubing. Thus, since 05 % cube C5 must not
have variable x which means that it covers point if;* as well. Hence aU points in

are covered by conflict clauses that have already been discovered and processed by the
algorithm. This also means that the current pruning is a legal one (since the pnmed space

is obviously unsatisflable).

Notethat in reality there is a third kindofpruningevent, namely BCP deductions,

which prune off regions of the Boolean space. However, this pruned space is completely
accounted for by the conflict clauses of the conflicts lying below this deduction. A simple

way to prove this is to take the current branching tree and "push" all BCP deductions
to the leaves of the tree i.e. after aU the decision assignments in each branch. Since in

our procedure all conflict clauses are composed entirely of decision assignments the same
conflicts will still occur, but therewill be noBCP-pruned areas this time. Here, the conflict

clauses can be trivially seento cover the entire pnmed areas. Also we have not considered

pure-literal rule based pruning in this proof since this rule is a special case ofSupercubing

(see Proposition 6.4). •

6.5.3 Supercubing and Other Pruning Techniques

Proposition 6.4 The pure-literal rule is a special case of supercubing based pruning.
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Proof: Consider a pure literal variable x. Assume that it is a decision variable whose left

branch is the pure-literal branch i.e. the assignment dictated by the pure-literal rule, whose

right branch has been primed off. Note that since a pure-literal assignment just satisfies

clauses, it can never contribute towards a conflict. This can be seen through a careful

examination of our specific definition of conflict analysis as stated in Section 6.1. A pure-

literal assignment can never be part of ATi(Xy^. Thus, if x were a decision variable whose

left branch a; = 0 was explored, x would never contribute to any conflict in this sub-space.

Thus its computed supercube would remain 0. Therefore, supercubing based pruning would

dictate pruning the right branch, which is what the pure-literal rule does.

•

From the above proofit foUows that in some of the instances where a null supercube

is computed for a decision variable x, supercubing based pruning of the right branch of x is

synonymous with an application of the pure-literal rule on x. In other such cases{i.e. where

a null supercube from the left branch causes supercubing to prune the right branch) the

behavior of the algorithm is identical to non-chronologicalbacktracking. Thus, supercubing

overlaps with some instances of non-chronological backtracking. In fact, we conjecture

that supercubing subsumes non-chronological backtracking. All oiir experiments thus far

have not yielded a single case where non-chronological backtracking, implemented in the

conventional fashion, could prune a sub-space that supercubing could not. However, the

operational definition of NCB given in the literatme (and re-stated in Section 6.4.2) is

not precise enough to prove or challenge our conjecture. A more unambiguous definition

of NCB would probably be required to do this. This could be an interesting problem for

future researdi.

Conjecture: Non-chronological backtracking is a special case of supercubing based prun

ing.

6.6 Experimental Results

This section presents preliminary experimental results validating the efl&cacy of the

supercubing pruning rule described in Section 6.5. The pruning rulehas beenimplemented

in a prototype SAT solver modeled on the lines of the GRASP SAT solver [MSS99]. The

prototjrpe solver implements all the algorithmic features of GRASP including conflict anal-

*°This fact would hold for any heuristic to compute the set AniX).
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Best Grder Worst Grder

Benchmark # Nodes Nodes

Grig. With SC Grig. With SC

ssar0432-003 1371 1050 3316 1074

ssar2670-130 44039 38812 109766 66142

bf-0432-007 11487 10811 27298 9099

queueinvarS 3211 2983 5842 5842

aim-50-1_6-no-2 27 26 150 84

aim-100-l_6-no-1 120 64 881 455

aim-200-l-6-y-l-4 291 193 1155 354

aim-200-l-6-no-3 457 559 6671 1252

par-16-l-c 6543 6543 6543 6543

hole 6 719 719 817 817
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Table 6.1: Experimental results with Supercubing

ysis, non-chronological backtracking, conflict based learning and various ordering heuristics
(e.g. DLCS, DLIS, MSTS, MSGS etc.). However, the solver has not yet been software en
gineered for efficiency since its purpose is simply to evaluate thefirst order efficacy ofsome
pruning techniques.Therefore the reported results are in terms ofnumber ofnodes in the
SAT search tree, rather than CPU nmtimes since reporting the latter would be unfair and

not particularly informative.

Preliminary results onsome selected SAT benchmarks from the DIMACS suite and

bounded model checking [BCCZ99] are reported in Table 6.1. The benchmark examples

have been chosen to be representative of the examples that we ran, ranging from the ones

where supercubing gave the maximum improvement to ones where it was not so effective.

For each benchmark the solver was run in two configurations with four possible

orderings, DLCS, DLIS, MSTS, MSGS^^ (i.e. eight configurations in total) 1.) GRIG:
without supercubing but with NCB and clause recording, and 2.) With SC: same as

GRIG except supercubing is used also. For each benchmark the best and the worst GRIG

results (interms ofnumber ofnodes in thebadctracking tree) were chosen and are reported
in columns 2 and 4 respectively. The corresponding results with SC (i.e. with the same

ordering heuristic as the GRIG result) are reported in columns 3 and 5 respectively.

As shown in Table 6.1 the search tree size decreases in most cases, sometimes

^^Refer to the GRASP user manual for details on these heuristics.



CHAPTER 6. USING PROBLEM SYMMETRY TO REDUCE SEARCH 108

quite significantly. In the odd case (in our experience less than 1% of the cases) e.g.

aim-200-l_6-no-3 there is a slight increase in the number of nodes. This is because

supercubing and associated pruning disturbs the number of recorded clauses and hence the

variable order slightly. However, overall supercubing proved beneficial for both the best

order and the worst order. The improvements in the case of the worst ordering were more

significant suggesting that this pruning technique can partially correct a poor ordering.

The supercubing itself added virtually nothing to the runtimes since most of the book

keeping required for it was being done by conflict analysis. The additional supercubing
operations were efficiently implemented by bit-vector operations. Thus gains in number of

search tree nodes translate directly to runtime gains. Also, since supercubing based pruning

partly overlaps with the pruning provided by conflict-based learning using supercubing
frequently led to fewer recorded clauses. This feature ofsupercubing can be used to partly
alleviate the clause database memory problems that are becoming an issue in current SAT

solvers [MMZ"'"01].

6.7 Conclusions & Future Directions

In this chapter we introduced and formalized the notion of problem symmetry in

search based SAT algorithms. We developed the theory of essential points to formally
characterize the potential search space pruning that can be realized by exploiting problem

symmetry. We unified several powerful search pruning techniques used in modem SAT
solvers under a single framework, by showing them to be special cases of the theory of
essential points. We also proposed a new pruning rule based on problem symmetry and
showed it to provide additional search space pruning over the pruning realized by current

techniques.

Current SAT solvers integrate fairly sophisticated search pruning techniques in a

very tightly and efficiently engineered software framework. However, there is very little
fundamental understanding ofhow these techniques interact, what search space they prime

^and what the margin for improvement is. This work is a step towards answering these
questions. We believe that it ispossible toderive awhole family ofsearch pruning techniques
with varying cost-power tradeoffs, under the general purview ofproblem symmetry based
pruning. The supercubing rule presented in Section 6.5 is a simple case in point. It is
quite obviously a very weak and cheap realization ofsymmetry based pruning. However, it
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still improves over the state-of-the-art, demonstrating the potential for improvement. Our
current and future research efforts are aimed at realizing some of this potential.
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Chapter 7

Conclusions & Future Directions

Recent years have seen dramatic improvements to SAT algorithms and tools and

an increased application of SAT methods to solving EDA problems. Despite this progress

there is an immense potential for improvement both in the understanding and application

of SAT methods in EDA as well in SAT methods themselves. The goal of this dissertation

was to advance the theory, practice and core technology of SAT algorithms in the context

of EDA applications. To this end the research was organized to address the following three

issues:

1. Tight complexity analysis of SAT based EDA applications which accounts for charac

teristics of real-life problem instances.

2. SAT formulation of EDA applications.

3. Core SAT algorithms and pruning techniques.

These three issues were addressed in the three parts of the dissertation.

The first part of the dissertation was presented in Chapter 4. This chapter pre

sented a worst case complexity analysis for a SAT formulation of the combinational ATPG

problem which incorporated salient characteristics of problem instances encountered in real

life. Incidentally, this analysis is also one of the first attempts at reconciling the theoretical

intractability of combinational ATPG with the relative ease with which practical instances

of it are solved. The analysis was based on the SAT formulation of ATPG proposed by

Laxrabee [Lar92], with a caching based variant of simple backtracking (see Section 4.3)

used to model the SAT solver.



CHAPTER 7. CONCLUSIONS &: FUTURE DIRECTIONS lH

Under t.Viis model of the algorithm the complexity of ATPG on a given circuit

was chajacterized in terms of a topological property of the circuit, the undivccttd circuit

cut-width. Theoretical arguments and experimental results confirmed that this property

could be used to predict poljrnomial runtimes ofATPG for a wide range of practical VLSI

circuits.

Specifically, the analysis was used to define a class of circuits called log-bounded-

width circuits which were shown to be efficiently testable. Additionally, this class of circuits

was shown to subsume the class of A;-bounded circuits. Our experiments on a wide range of

benchmaxk and artificially generated circuits showed that they exhibited the log-bounded-

width property. On an intuitive level the log-bounded-width property essentially captures

the "treeness" of the circuit. As long as a circuit has limited reconvergence (not necessarily

local reconvergence), the log-boimded-width property can be expected to apply.

The theme of the second part of the dissertation was to investigate more effective

ways of solving EDA problems using existing SAT methods. In Chapter 5 we revisited the

application of Satisfiability (SAT) algorithms to the Combinational Equivalence Checking

(CEC) problem. CEC is an important and well researched EDA problem. Traditionally,

BDDshaveformed the computational coreofCEC tools and previously proposedSATbased

solutions were not popular. In Chapter 5 we argued the case for SAT as a more robust and

fiexible engine of Boolean reasoning for the CEC application than BDDs. We presented a

simple framework for SAT based CEC and reported results on a preliminary implementa

tion of this methodology. The results showed a speedup of up to two orders of magmtude

compared to state-of-the-art SAT based methods for CEC. Additionally, the relativelysim

ple SAT based CEC approach and its initial prototype implementation proved to be only

moderately slower and sometimes faster than a state-of-the-art BDD-based mixed-engine

commercial CEC tool.

While SAT based CEC methods may need further research and application based

tuning to surpass almost a decade of research in BDD based combinational verification,

we showed that SAT based methods for verification are certainly promising and merit

continued research. Further, the work demonstrated the specific advantageous features

of SAT methods in a practical verification setting.

The third part of the dissertation, presented in Chapter 6, proposed theoretical

and practical advancements to the core algorithms and techniques used in modem SAT

solvers. Current SAT solvers integrate fairly sophisticated search pruning techniques in a
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very tightly and efficiently engineered software framework. However, there is little funda^

mental understanding of how these techniques interact, what search space they prune and

what the margin for improvement is. Part of the motivation for the work presented in this

Chapter was to address these issues.

Specifically, in this chapter we introduced and formalized the notion of problem

symmetry in search based SAT algorithms. We developed the theory of essential points

to formally characterize the potential pruning that can be realized by exploiting problem

sjrmmetry. We unified most search pruning techniques used in modem SAT solvers under

a single framework, by showing them to be special cases of the theory of essential points.

We also proposed a new pruning rule exploiting problem symmetry and demonstrated that

it could provide ewdditional search space pruning over the pruning realized by current tech

niques.

7.1 Future Directions

7.1.1 Input-distribution based complexity analysis of EDA-SAT problems

The analysis presented in Chapter 4 can be developed further. Although the

analysis is a significant improvement over traditional worst case complexity analysis, it is

based on a rather simplistic model of the ATPGi-SAT algorithm. Practical ATPGi-SAT

PTigiTiPfi [SBSV96, Lar92] employ a host of other search pruning techniques to reduce com

plexity, such as random test pattern generation [ABF95]. In some cases these techniques

do bring about substantial reduction in complexity. The benchmark C6288 from the IS-

CAS85 suite is an examplewith a large cut-width but is efficiently testable through random

test pattern generation. The presented analysis can be made tighter and more realistic by

including more algonthmic features of ATPG and SAT tools in the algorithm model.

Secondly, although the analysis of Chapter 4 was aimed at the combinational

ATPG problem, the notion of cut-width and its use in analyzing the complexity of a

CIRCUIT-SAT based problem formtdation is not endemicto the ATPG problem. The same

analysis framework coiild be modified to apply to other EDA problems using a CIRCUIT-

SAT formulation.

Finally, a natural extension of cut-width is the notion of tree-width. Simply put,

tree-width ofa graphis an indexof the degree to which the topology of the graphresembles



CHAPTER 7. CONCLUSIONS k FUTURE DIRECTIONS 113

a tree. The significance of this measure is that several combinatorial problems, such as
graph coloring, which are intractable on general graph structures, have pol3momial time
solutions on bounded tree-width graphs. Further, in the realm ofEDA, several problems,
such as technology Tnctpping, combincLtioncbl ATPG^ etc. are known to be eflB.ciently solvable
on tree-structures but are intractable in the general case. An interesting line of research

would beto investigate the tree-width properties ofgraph structures derived from practical
circuits and to reason about the complexity of solving various EDA problems on graphs

with small or bounded tree-widths.

7.1.2 Using SAT methods in EDA problems

Section 5.6 details a list of possible enhancements to the SAT based CEC frame

work proposed inChapter 5. These would provide animmediate and perhaps commercially
interesting area of work for improving SAT based CEC.

Another avenue of future research is to find effective means of having SATmethods

co-operate with established engines such as BDDs, structural ATPG methods, simulation
etc. which have traditionally formed the mainstay ofEDA tools. Some initialefforts in this

direction have been made in [GA98, BS98, MJT+99, PKOO, HSH+00, GYAGOO]. However,
in many of these works the use ofSAT solvers is either very limited or too specific to be
applied to other EDA problems. Moreover, some of these works used older SAT solvers
which are not representative ofthe capabilities ofcurrent leading-edge SAT solvers. Thus,

this avenueof research should be revisited and investigated further. This will also naturally

pave the way for the use of SAT solvers in new EDA problems.

Currently the application of SAT methods is largely restricted to problems on

combinational logic circuits. The only use of SAT for reasoning on sequential circuits
Vias been bounded model checking [BCCZ99]. Since the domain ofproblems on sequential

logic circuits is much richer and more challenging thanthecombinational domain, research
facilitating the use of SAT methods on sequential circuits would greatly widen the gamut

of SAT applications in EDA.

7.1.3 Improvements to SAT algorithms and tools

We believe that it is possible to derive a whole familyof search pnming techniques

with varying cost-power tradeoffs, under the general purview of the theory of essential
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points, presented in Chapter 6. The supercubing rule presented in Section 6.5 is a simple

case in point. It is quite obviously a very weak and cheap realization of essential point

pruning. However, it still improves over the state-of-the-art clearly demonstrating the

potential for improvement. This would provide an interesting area for future research.

Another area of SAT research is that of incomplete SAT algorithms for EDA ap

plications. Incomplete SATsolvers sudi as GSAT [SLM92] and WSAT [SKC96] have been

proposed in the Artificial Intelligence community and successfully apphed in that domain

to solve several problems considered challenging or unsolvable by conventional branch and

bound complete SAT solvers. While these particular incomplete SAT solvers have not been

successful in solving EDA problems, techniques such as random and weighted random sim

ulation are routinely and successfully used in several testing and verification applications.

These techniques are in some sense incomplete, stochastic SAT techniques, albeit very naive

ones. We believe that it should be possible to engineer incomplete SAT techniques that in

herit the fiavor of random simulation and are most aptly suited for EDA applications.
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right branch assignment, 12

SAT, 1

applications, 2

applications in EDA, 3

problem, 10

Sat-Ex, 35

SATIRE, 28

satisfiability problem, 10

satisfiable, 10

satisfied, 10

satisfying assignment, 10, 23

SATLIB, 35

SATLIVE, 35

SATO, 28

SATZ, 30

search tree, 12

simple gate, 24

SIS, 63, 88

SIVA, 34

SOCRATES, 29

stuck-at faiilt, 38

Stalmarck's method, 28, 34

sub-formula, 48

consistent, 48

distinct consistent, 51

supercubing

operator, 103

rule, 92, 104

symmetric point, 97

synthetic benchmark generation, 65

tautology, 15

TEGUS, 32

TIP, 32

transitive fanin, 22

transitive fanout, 22

tree, 60

tree-width, 113

Tseitin's transformation, 21

for logic circuits, 24

unit clause, 10

unit literal rule, 12

unresolved, 10

clause, 99
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