

Copyright © 2001, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DISCRETE-TIME DATAFLOW

MODELS FOR VISUAL

SIMULATION IN PTOLEMY II

by

Chamberlain Fong

Memorandum No. UCB/ERL MOl/9

21 December 2000

DISCRETE-TIME DATAFLOW

MODELS FOR VISUAL

SIMULATION IN PTOLEMY II

by

Chamberlain Fong

Memorandum No. UCB/ERL MO 1/9

21 December 2000

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University ofCalifornia, Berkeley

94720

•L;., -• ..

:.'r;-'-.';.J.

Discrete-Time Dataflow Models

for Visual Simulation in Ptolemy D

by Chamberlain Fong

Research Project

Submitted to the Department ofElectrical Engineering and Computer Sciences,
University ofCalifornia atBerkeley, inpartial satisfaction ofthe requirements for the
degree of Master of Science, Flan II.

Approval for theReport andComprehensive Examination:

Conunittee:

Professor Edward A. Lee

Research Advisor

(Date)

:|c ^ 4^ 4c

Professor Alberto Sangiovanni-Vincentelli
Second Reader

(Date)

Abstract

The Discrete Time (DT) domain in Ptolemy n is a timed extension of the
Synchronous Dataflow (SDF) domain. Although not completely backward
compatible with SDF, DT keeps most of the desirable properties of SDF like static
scheduling, regular/periodic execution, bounded memory usage, anl a guarantee that
deadlock will never occur. In addition, DT has some desirable temporal properties
such as uniformly-timed token flow and causality. This paper will present the
semantics and implementation of the DT domain in Ptolemy U. This paper will also
present the DT domain working with other domains in Ptolemy]L In particular, it
will present applications of DT working with the Graphics (OP.) domain for 3D
animated simulations.

Discrete Time Dataflow Models for Visual Simulation in Ptolemy II

Acknowledgements

I would like to thank my research advisor. Professor Edward A. Lee, for introducing
me to this research area. I appreciate all the support and guidance that he has given
me. I really enjoyed my meetings with him where we brainstormed through the
different twists and pitfalls ofresearch indataflow computing.

I would also like to thank Professor Alberto Sangiovanni-Vincentelli, the second
reader of this report. His EE249 class gave me solid background on the different
models of computations.

I would also like to thank all my colleagues in the Ptolemy group. I really appreciate
the help given to me by Brian Vogel, Steve Neuendorffer, Jie Liu, and Xiaojun Liu
while I was trying to leam to usethe Ptolemy n system.

Lastly, I would like to thank my parents for their continuous support and
encouragement. This report is dedicated to them.

Discrete Time Dataflow Models for Visual Simulation in Ptolemy II H

Table of Contents

1. Introduction
1.1 Dataflow Computing
1.2 Ptolemy n
1.3 Models of Computation
1.4 Heterogeneous Hierarchies

2. Discrete-Time (DT) Domain
2.1 Overview

2.2 Synchronous Dataflow
2.3 Port Rates and Actor Repetitions
2.4 Delays and Loops
2.5 Design Features / DT Semantics
2.6 Global and Local Time

2.7 Token Timeline Charts

2.8 Causality and Latency
2.9 Hierarchical DT

3. DT and Other Ptolemy 11 Domains
3.1 Heterogeneous Hierarchies in Ptolemy n
3.2 Synchronous Dataflow (SDF) Domain
3.3 Discrete Event (DE) Domain
3.4 Continuous Time (CT) Domain
3.5 Finite State Machines (FSM) Domain
3.6 Graphics (GR) Domain

4. Applications in 3D simulation
4.1 GR Revisited

4.2 Robotic Arm Model

4.3 DT & CT: Pendulum Model
4.4 DT & DE: Inverse Kinematics

4.4 DT & FSM: Picking Objects
5. Conclusion & Future Work

6. References

Discrete Time Dataflow Models for Visual Simulation in Ptolemy 11 111

List of Figures

Figure 1. Vergil screenshot
Figure 2. Actors, ports, and relations
Figure 3. Hierarchies in Ptolemy n
Figure 4. A comparison of SDF and DT
Figure 5. A comparison of CT and DT
Figure 6. SDF *eye-diagram' model
Figure 7. Abstract SDF graphs
Figure 8. A simple SDF graph
Figure 9. Another SDF graph
Figure 10. An SDF graph with a delay actor
Figure 11. A looped SDF graph
Figure 12. A deadlocked SDF graph
Figure 13. Concurrency and partial orders
Figure 14. DT dataflow graphand its tokentimeline chart
Figure 15. Another DT dataflow graph
Figure 16. A token timeline chartwithout initial time lag
Figure 17. A token timelinechart with initial time lag
Figure 18. Token timeline chartof a graph witha delay actor
Figure 19. A counter-example to our conjecture
Figure20. A more complicated DT dataflow graph
Figure 21. A fix for our counter-example
Figure 22. An SDF actor
Figure 23. Latency tokens in a token timelinechart
Figure24. A transparent hierarchical SDF graph
Figure 25. An opaque hierarchicalSDF graph
Figure26. Another opaquehierarchical SDFgraph
Figure 27. DE refining to DT
Figure 28. DT refining to CT
Figure 29. An example scene graph
Figure 30. Scene graphs may change over time
Figure 31. Real and simulated robotic arm
Figure 32. GR scene graph for a robotic arm
Figure 33. Top-level representation of a pendulum model
Figure 34. Vergil screenshotof a pendulumanimation
Figure 35. Continuous-time model for a pendulum
Figure 36. GR scene graph for a pendulummodel
Figure 37. Cyclic-coordinatedescent algorithm
Figure 38. Inverse Kinematics demo
Figure 39. Three states for robotic arm animation
Figure 40. DT refining to FSM and GR

Discrete Time Dataflow Models for Visual Simulation in Ptolemy 11 iv

1. Introduction

1.1 Dataflow Computing
We are all familiar with the Von-Neumann/stored-program execution model for
computing. However, there are several viable alternatives to the Von-Ncumann execution
model. For example, there are computers with execution models based on neural
networks, analog electronics, and DNA molecules. Dataflow is another example of an
alternative model for computing. Dataflow consists of computing blocks that are
connected in a directed graph. The computing blocks process data from their inputs and
produce data on their outputs. Aside from processing I/O and perfoming computation,
the blocks also communicate with each other through their connections in the underlying
dataflow graph. Dataflow is commonly used in block diagrjon programming
environments such as our software system - Ptolemy 11.

1.2 Ptolemy II
Ptolemy H [4] is a software infrastructure currently under active development in the
EECS department of the University ofCalifornia, Berkeley. Ptolemy Dcan be thought as
a visual programming language that supports hierarchy. Its primarily focus is on the
design and simulation of complex heterogeneous systems. These systems are complex
and heterogeneous in the sense that they mix widely different operati(tns, such as signal
processing, feedback control, 3D visualization, and user interfaces. Users of the Ptolemy
n software design their systems through components that encafsulate computing
capability. Ptolemy II interprets the execution and interaction semantics of its
components through what we call domains. Depending on the domai i, the components
can represent subroutines, threads, processes, hardware IP, or even mechanical parts.
Each domain has a well-defined model of computation that specifies th; formal semantics
of component behavior in the given domain. Figure 1 shows a screen jhot of Ptolemy n.
In particular, it shows Vergil, the front-end graphical user-interface >f Ptolemy II. We
will be using a lot of Vergil screenshots in the figures used in this paper. This will help
illustrate our concepts more clearly.

UMKMrr

Figure 1: Screenshot of Vergil

Discrete Time Dataflow Models for Visual Simulation in Ptolemy 11

The components in Ptolemy n are called actors. The actors are connected in a directed
graph topology by links called relations. Each actor has input and output ports for which
theycommunicate with other actors. The actors conununicate with each otherby passing
messages called tokens. The actors produce and consume tokens during execution (also
known asfiring) of the actor. In order to facilitate the firing of the actors, each domain in
Ptolemy n has its own director and receiver class. The director coordinates the
scheduling and execution of actors within the domain. The receivers contain the
necessary buffers for token flow. In some domains, the director also keeps track of time
and concurrency of the actors.

Figure 2.A Ptolemy n component-based graph. Theboxes labeled A,B,C, and
D are theactors. Theedges that linktheactors arecalledimplicit relations. The

edges withdiamond-shaped splitters are calledexplicitrelations. The arrows
where the relations/links come in and out of the actors are called ports

1.3 Models of Computation
Models of computation [8] form the mathematical underpinning of each domain in
Ptolemy n More specifically, a model ofcomputation provides an abstract setofrules in
which the actors in the given domain behave. These rules include: theorder (also known
as schedule) in which the actors are fired; the progression of time; and the amount of
buffer memory in each of the actors* ports. Instead of explaining these concepts using
elaborate examples, we will provide some important questions that motivate the use of
models of computation. These questions will be answered in the latter sections of this
paper.

• There are several different ways to order the sequence in which the actors are
Bred. How do I know which one is valid? Is the schedule computed at compile-
time or at run-time?

• How many tokens can an actor consume and produce at each firing? Should an
actor stall when there are no tokens available when it fires?

• How much buffer memory should be allocated for each receiving port of the
actors? What happens when more tokens arrive andthereceiving buffer is full?

• What is the meaning of time? What is the. minimumtime-slice in the progression
of time? Does computation explicitly take time?

Discrete Time Dataflow Models for Visual Simulation in Ptolemy n

n|iputation strongly
ous to the "laws

the model. The

n that deal with

sof computations

An important principle ofPtolemy n is that the choice ofmodels ofco
affects the quality of a system design. A model of computation is analogs
of physics" in the sense that it governs the interaction of actors in
Ptolemy n software provides a rich variety of models of computatioi
concurrency and time indifferent ways. Here is a rundown of the model 5
currently provided in Ptolemy 11:

CSP - communicating sequential processes
CT - continuous time

DDE - distributed discrete event

DE - discrete event

DT - discrete time (the main subject of this report)
FSM - finite state machines

PN - process networks
SDF - synchronous dataflow

As an aside, we would like to mention that some actors in Ptolemy n
i.e. they can only work with under certain models of computations. Th(j
in the CT domain is an example of this. In contrast, there are domain
in Ptolemy n. These actors work under all models of computations.
*Scale' actor are examples of domain-polymorphic actors. Please refei
documentation [4] for more details on these actors.

1.4 Heterogeneous Hierarchies
One of the most important features of Ptolemy n is that di ferent models of

computation can be hierarchical composed to create complex and elaborate systems. In
order to support hierarchy, Ptolemy n has two types of actors - composite actors and
atomic actors. Composite actors are actors that contain other actors i " '
like a directorycontains files. On the other hand, atomic actors cannot

ari domain'Specific\
integrator' actor

•{polymorphic actors
The *Ramp' and
to the Ptolemy n

jnside them, much
contain any actors

inside. For example, figure 3 shows a graph of simple hierarchical model in Ptolemy n
a composite actor
C, D, and E in the

The model has three actors: A, B, and C on the top level. Actor B is
that contains two actors inside, D and E. On the other hand; actors A,
model are atomic actors. The nesting of actors inside actors is the bajis for hierarchy in
Ptolemy n.

Composite actors can also contain directors. When a composits
director, it is said to be an opaque composite actor. When a compo:
contain a director, it is said to be a transparent composite actor.
actors are much more common in Ptolemy n models because they
mixing different models of computations. The director that directs an
actor is called the outside or executive director. The director containep
composite actor is called the insidedirector.

Discrete Time Dataflow Models for Visual Simulation in Ptolemy II

actor contains a

kite actor does not

Opaque composite
form the basis for

opaque composite
inside an opaque

Outside Director

composite actor

Outside Director

Inside Director

Figure 3. Outside and Inside Directors foropaque hierarchies

Discrete Time Dataflow Models for Visual Simulation in Ptolemy n

2. Discrete Time (DT) Domain

2.1 Overview |
DT was first-and-foremost designed to be a timed-extension o^ SDF. SDF is a

standard and well-understood model ofcomputation in Ptolemy Classip and Ptolemy II.
However, SDF lacks semantics for time; and hence doesn't have some desirable temporal
interaction semantics when hierarchically linked with other timed models of computation
like Discrete Event (DE) and Continuous Time (CT). The prospect ofSDF working with
other models of computations is the main motivation for extending it into a timed
domain. As an example, consider the simple Ptolemy n diagrams showb below. We have
a simple model oftwo actors: a ramp and a timed plotter. The diagram on the left is under
an SDF director; and the diagram on the right is under aDT director. |The results of the
execution are shown as plots below the diagrams. The SDF diagram produces a plot that
is fixed at time =0.0 seconds. All results of the SDF execution conceptjially occur at time
= 0.0 seconds. This is largely due to the fact that SDF is an untimed domain; and that
connecting a ramp with a timed plotter under SDF does not have mucli meaning. On the
other hand, the DT plot shows a more reasonable result where the nmp output values
increase over time.

|FUb Edit 2raph_ Help

w ♦
Synctranov* Daianow director

Ramp actor TimedPlotlar actor

File yew Edit Oraph Help

• !♦!

Discrata-Ttma director

Rarrv actor TlmadPiottarictor

Figure 4. A comparison of SDF and DT

Discrete Time Dataflow Models for Visual Simulation in Ptolemy 11

There is another view for which we can present DT. Ptolemy n has a rich software
infrastructure for analyzing and modeling systems and signals. Natural and man-made
systems are usually described using continuous-time and discrete-time models.
Continuous-time systems are governed by differential equations. Discrete-time systems
are usually sampled versions of continuous-time systems; and are governed bydifference
equations. Mathematical tools like the Laplace and Fourier transform are used to analyze
continuous-time systems. In contrast, Z-transforms and discrete-time Fourier transforms
are used to analyze discrete-time systems. Ptolemy 11 has a fairly mature infrastructure
for continuous-time modeling, which is implemented in the CT domain. It turns out that
Ptolemy n also has the necessary infrastructure for discrete-time modeling, too. SDF is
excellent in handling sampled systems and difference equations. However, there are bits
and pieces missing in SDF for discrete-time modeling. To be more specific, there is no
concept of the progression of time in the SDF domain; hence we extend it to the DT
domain. Figure 5 shows the basic difference between continuous-time and discrete-time
models in Ptolemy n.

l'J|fite:/'C:/ptdiagrams/ct_time.Kml :^rile:/C:/ptdiagranis/dt_timej(fnl HllISS

File View Edit' Graph Help File view Edit Graph Help

ContinucMJS-Tims Director Discrete-Trme Director

CurrentTime TimedPlotter CunentTime TimedPlotter

0 5 10 15 20 0 5 10 IS 20

Figure 5. A comparison of CT and DT

Discrete Time Dataflow Models for Visual Simulation in Ptolemy II

Although the core of this paper is about the theory and implementation of the DT domain
in Ptolemy n, we will provide simple applications at the end of this paper. In particular,
we will focus our applications on simulation and computer graphics animation. Of
course, computer graphics is not the only application of DT; we just lappen to have a
preference for it.

We have built a new experimental domain called GR (short for graphics) to handle
computer graphics rendering and geometry management in Ptolemy n. The GR domain is
an untimed domain, so it is useful to couple it with DT to produce animated simulations.
We must now admit that continuous-time models might be more appropriate in computer
graphics applications, especially those that simulate physical phencmena such as a
swinging pendulum. However, the computer that displays the simulation still has to do
the animation in discrete-time. We normally view computer-generated animations at
about 15-30 frames per second in discrete time.

2.2 Synchronous Dataflow (SDF)

The Synchronous Dataflow (SDF) domain [9][10] was origin
component-based design of multi-rate signal processing algorithms. F
example of component-based design under SDF. In particular, it shows
simulating the 'eye diagram' in communication systems. SDF provide
rigorous dataflow specification for executing actors. Moreover, SDF m(
desirable properties that are proven to hold. These properties include:
code-generation, and a guaranteed upper bound on the buffer memory
of the ports. Later work has generalized SDF into more powerful a
computation such as Boolean Dataflow (BDF), Dynamic Dataflow (E
Networks (PN) [2][11].

ally devised for
igure 6 shows an
in SDF model for

5S an abstract and

)dels have several

relatively simple
required for each
bstract models of

DF), and Process

Eflttvil

SynchronousDataflowdiracior

RaiSMlCoslnaS

AddSubtract RsisedCotineS SequencaSoqie #\
•" /7

IX oj 14 u u 11 II y* li II IS

Figure 6. An SDF model (left) for simulating the eye-diagram (right) in
communication systems.

Discrete Time Dataflow Models for Visual Simulation in Ptolemy 11

Under the SDF domain, the execution order of the actors is statically determined prior
to execution. In other words, the firing sequence (also known as schedule) of the actors
can be pre-calculated and cached during compile-time or load-time. This schedule is then
periodically repeated during simulation. Every periodic execution of a schedule is called
an iteration. There is veiy little overheadon the simulation kernel during execution. This
means that most of the time associated with simulation can be devoted to the actors
performingtheir computations. This also means that the kernel devotes very little time to
figuring out which component should execute next. This is a very desirable property of
SDF that DT inherits.

Before we proceed, it is convenient to change gears and jump to a more abstract
setting. Instead of dealing with real SDF models that are applied to real-world circuits
and systems, we will deal with abstract SDF graphs. It is more convenient to study the
properties of SDF and DT using abstract mathematical concepts. An SDF graph is a
cormected directed graph with positive integer labels (implicitly or explicitly) on each
end of every edge. Figure 7 shows an example of an SDF graph. The vertices labeled
with capital letters are the actors.

H 1
2

I

A I—B tT' F I ' F 1
2
i^-i ' G 1

K L

J I'

Figure 7. An abstract SDF graph

2.3 Port Rates and Actor Repetitions and Schedules
By definition, every SDF actor has fixed consumption and production rates on its

ports. That is, for every firing of an actor, a fixed number of tokens are consumed and
produced. This property makes it possible to statically schedule SDF graphs for
execution. We will talk more about scheduling in the latter part of this section, but first,
let us cover some basic definitions and concepts in SDF.

A 1
2 3

B

— six tokens

flowing per iteration

Figure 8. A simple SDFgraphwithpossible schedule (3A)(2B).

Discrete Time Dataflow Models for Visual Simulation in Ptolemy n 8

Consider the simple SDF graph shown in figure 8. Actor A pro
every firing. Actor Bconsumes 3 tokens at every firing. In SDF jargoiji
output port of actor A has a token production rate of 2. Similarly, we
portof actor B has a token consumption rate of 3. It is important that al
by actor A areconsumed byactorB. We can think of this as theprincip
of tokens. All SDF graphs conserve tokens. We want to repeatedly fire
certain number of times so that no tokens are left over afterwards,
number of firings per iteration of actorA as rA and the number of firings
If we apply the principle of conservation of tokens, we get the Dio
(also called an SDF balance equation)

2 Ta = 3 Tb

The smallest positive integer solution to this equation is rA=3 and rB=2
called the actor repetitions of actors A and B, respectively. More
graphs have multiple balance equations. In general, there is a balance (quation for every
edgeof an SDFgraph. Getting backto the diagram, we see that firing ictorA thrice and
firing actor B twice causes six tokens to flow from actor A to actor B with no leftover
tokens on the edge. We shall denote the number of tokens flowing per iteration on an
edge as its tokenflow rate. In the SDF graph shown below, the token f
AB, BC, and CD are 36, 12, and 24 respectively. The token flow ratv. of an edge is an
important property that we will refer to again later when we disc uss DT concepts.
Incidentally, the keen-eyed reader might observe that the output port of actor B and the
input port of actor C do not have labeled rates. The convention for this
without labeled rates have an implicit rate of value one. Such ports ^e also known as
homogeneous ports. Actors that only have homogeneous ports are ca led homogeneous
actors.

12 tokens

^ flowing per iteration

auces 2 tokens at
, we say that the
say that the input
tokens produced

e of conservation

actors A and B a

iLet us denote the
of actor B as re.

plhantine equation:

These values are

complicated SDF

A 1
4 3

R 1 C 1
2 3

D

^24
flowing

^ 36 tokens

flowing per iteration

Figure 9 Another SDF graph (Note the convention used throughout t^is paper -
ports without label^ rates have an implicit port rate ofvalue

tokens

[»er iteration

me)

flow rates of anOnce the balance equations of an SDF graph are solved, the tokejn
edge can be calculated using the following equation:

token flow rate = actor repetitions * port rate

Discrete Time Dataflow Models for Visual Simulation in Ptolemy 11

There are actually two ways to view the previous equation. Since every edge connects a
source and destination actor in an SDF graph, we can interpret the previous equation
either from the source actor's viewpoint or from the destination actor's viewpoint. From
the source actor's viewpoint, the port rate is its production rate. From the destination
actors' viewpoint, the port rate is its consumption rate.

The balance equations of an SDF graph play a key role in the scheduling of the SDF
graph. Those SDF graphs that do not have solutions to their balance equations are said to
be not schedulable. Recall that an SDF schedule is a sequential ordering of the actors for
execution. Also recall that the director periodically fires the actors in an SDF graph
according to the schedule sequence. For example, the SDF graph shown in figure 8 can
have a possible schedule of (3A)(2B). This notation is shorthand for a schedule that frres
actor A thrice consecutively and then fires actor B twice consecutively. We must now
note that SDF schedules are not necessarily unique. The given SDF graph can have a
different schedule: A(2AB). In ordinary words, this schedule means fire actor A once
and then fire actor A and B in sequence twice. Another importantconcept worth noting is
determinism. Determinism in an SDF graph means that the end result of an iteration over
the graph should be the same no matter what schedule is used.

There is a fair amount of literature on SDF scheduling. For our purposes, we just need
to know what SDF schedules are and how to read SDF scheduling notation. We will not
go into the details of SDF scheduling algorithms and SDF graph theorems. The
enthusiastic reader is motivated to read the original SDF paper [10]. The paper gives
more details on the formal semantics and scheduling of SDF graphs.

2.4 Delays, Loops, and Deadlocks
In general, looped directed-graph topologiesare not allowed in SDF because they can

cause data-dependency problems. However, if delay actors are inserted into loops, these
problems can be fixed. Delay actors are special SDF actors that act as buffers for data-
delay. They also act as actors for holding initial tokens during the start of the model
execution.

It is convenient at this point to digress and talk about notation first. We use the
notation Z"' to denote delay actors in this paper. For those who are familiar with the
conventions used in signal processing block diagrams, this will look familiar as the
inverse of the Z transform variable. The value of exponent over the Z variable signifies
the number of data delays in the actor. For example, Z"^ means an actor with two data
delays and Z"^ means an actor with three data delays.

Let us examine an example of an SDF graph with delay actors. Consider the SDF
graph shown in figure 10. Let us say that in the first iteration of execution, actor A
produces tokens ti & t2 on its first firing, ts & t4 on its second firing, and ts & t6 on its
third firing. Now, since there is a delay actor in between actors A and B, it holds an initial

Discrete Time Dataflow Models for Visual Simulation in Ptolemy II 10

token, which we will call to. From actor B's point of view, the tokens
iteration will be to, ti, t2 on the first firing and t3, t4, is on the second fi
will not arrive until the next iteration. This illustrates a delay in
tokens by actor B from those tokens produced by actor A. The delay
insertion of an initial token, to, by the delay actor.

arriving during the
ring. The token to

consumption of
^as caused by the

th(i

A 1
2

• *7'̂ 1
3

BA 1 JL '

^ six tokens six tokens
floviing per iteration flowing per iteration

Figure 10. An SDF graph with a delay actor

• A 1
2 2

B 1

Z''^•
Figure 11. A looped SDF graph

Aside from having solutions to their balance equations, all schedulable SDF graphs
should also be deadlock-free. Deadlock occurs when there are not enough tokens for any
actorto executeat a certain pointof timeduring the execution. For example, considerthe
SDF graph shown below, the delay actor produces two initial tokens
the execution. Actor A then fires to produce three tokens for actor B
point actor B does not have enough tokens to fire. In fact, none of the
graph is ready to fire. This is deadlock. Usually, it is possible to fix deadlock problems by
increasing the initial tokens in delay actors in the loop. For example, in figure 12,
changing the delay actor fi"om Z*^ to Z"^ isenough to prevent deadlock.

^ A I
D %>

B 1

+ Z'^¥

Figure 12. A deadlocked SDF graph

Discrete Time Dataflow Models for Visual Simulation in Ptolemy n

during the start of
However, at this

actors in the SDF

11

2.5 Design Features and DT Semantics
We came up with three important criteria in the design of DT. These criteria, in our
opinion, form the core desirable properties of our proposed model of computation. These
criteria also helped as our semantic guidelines in extending SDF.

a) Uniform Token Flow. The time interval between tokens should be regular and
unchanging. This conforms to the idea of having sampled systems with fixed rates.
The tokens flowing in DT do not keep internal time stamps. Each actor has to query
the director in order to get the current simulation time.

b) Causality: Tokens produced by an actor should only depend on tokens produced or
consumed in the past. This makes sense because we don't expect an actor to produce
a token before it can calculate the token's value. For example, if an actor needs three
tokens ti, ta, and ts to compute token t4, then the time when tokens ti, t2, and is are
consumed should be earlier than or equal to the time when token t4is produced. Note
that in DT semantics, time does not get incremented due to computation.

c) SDF-style semantics: We want DT to be a timed-superset of SDF with compatible
token flow and scheduling. However, we will show in section 2.8 that we can only
approximate this behavior. We will show that it is not possible to have uniform token
flow, causality, and SDF-style semantics at the same time. Causalitybreaks for non-
homogeneous actors in a feedback system. We have to introduce forced-latencies that
preclude DT from being completely backward compatible with SDF. More on this
later.

Side note: From here onwards, we will use the term *DT dataflow graph' to
interchangeably mean *SDF graph'. Most of the topics we will discuss after this section
have to do with temporal semantics, whichare only interestingin DT dataflowgraphs.

2.6 Global and Local Time

The firings of the actors in a DT dataflow graph form a partially ordered set. This
execution ordering of the actors means that certain actors have to be fired before certain
actors. However, since this ordering is only partial, some actors do not have execution
ordering dependency with respect to other actors. This means that some of the actors in a
DT dataflow graph can be executed concurrently. For example, if you consider the DT
dataflow graph shown on figure 13, you will see that actor C does not have any data
dependency relationships with actors A and B; hence actor C can be executed
concurrently with actors A and B.

Discrete Time Dataflow Models for Visual Simulation in Ptolemy n 12

D I—» E

Figure 13. ADT dataflow graph illustrating concurrency and partia ordering

This inherent concurrency in DT dataflow graphs introduces two
DT- global time and local time. Global time increases steadily as ex
Moreover, global time increments by fixed discrete chunks of time has
the period parameter. On the other hand, local time applies to each
model. All of the ports have distinct local times as an iteration proceejl!
of a port gets monotonically incremented every time a token is con
obeys the following constraintwith respect to global time:

global time < local time < (global time + period)

The period parameter specifies how much simulated time one
execute. For example, let us say that the DT dataflow graph shown
period value of 3.5. At the start of the execution, the model has globjd
end of the first iteration, the global time is 3.5. At the end of the se
global time is 7.0. This repeats ad infinitum.

2.7 Token Timeline Charts

notions of time in

ecution progresses,
d on the value of

the ports in the
s. The local time

sbmed. Local time

of

iteration takes to

in figure 13 has a
time 0.0. At the

bond iteration, the

In order to analyze discrete-time models, we need to introduce
For those who have seen or used Gantt charts for task scheduling, to!
might look similar. Token timeline charts are useful for visualizing the
occur. This, in turn, helps in determining causality in DT dataflow
consist of token timelines for each edge of the DT dataflow graph,
charts are schedule-independent; i.e. the token timeline chart of a D1
independent of its schedule.

toke:n timeline charts.

timeline charts

time when tokens

phs. These charts
^1 token timeline
dataflow graph is

ken

gia]

Discrete Time Dataflow Models for Visual Simulation in Ptolemy 11 13

A 1
2 3

B

123456123456

ab |H I I I I I I I I I I ?

one period

Figure 14. A simple DTdataflow graph (top) and itstoken timeline (bottom)

Consider the simple DT dataflow graph showm above. At each iteration, six tokens
flow from actor A to actor B. These tokens are labeled 1 to 6 in the AB token timeline.
There are two important things tonote here. First, the time between tokens inthe timeline
is equally spaced. This is expected from design feature#l in section 2.5. Second, the sum
of these token intervals is equal to one period interval. This follows from DT semantics
described in section 2.5. Using these observations, we can generalize and give the
equation for the timeinterval between tokens in an edge:

time interval between tokens = period / token flow rate

Let us look at the slightly more complicated DT dataflow graph shown below. At
each iteration, six tokens flow from actor A to actor B; andtwo tokens flow from actor B
to actor C. If we view edges AB and BC as independent, we have the token timeline
chart shown in figure 16. However, there is a data dependency between edge AB and
edge BC. The token timeline chart shown in figure 16 is invalid because it doesn't take
into account causality (design feature#2). Tokens cannot flow from actor B to actor C
until after three tokens are made available to actor B by actor A.

A 1
2 3

B 1 C

six tokens two tokens ^
flowing per iteration flowing per iteration

Figure 15.Another DT dataflow graph

Discrete Time Dataflow Models for Visual Simulation in Ptolemy 11 14

AB

BC

123456123456

I I I I I I I I I I-+

/ , / TiiiriHtr"||''"''"

one period

Figure 16. An invalid (non-causal) token timeline chart fortheprevious graph

Our first approach to keeping causality is through the introduction
in the token timelines. We will show later in the next section that this
flaws and will have to be abandoned. We are only showing it here to
we encountered while experimenting with DT; and to motivate the reatfi
behind our approach in next section. So in figure 17 we insert an inr
firing of actorB. This results in a corresponding initial time lag in the
This approach works for arbitrarily long chains of loop-less DT datafl
works for loop-less DT dataflow graphs with delay actors.

123456 1 23456

AB I I III—!

si It I
.Minwiij 'iii'i 'I'l'mliri ii'T-rm-T^T-TTm—rf|n-'

I 2^1

1

BC

one period

Figure 17. Token timeline chart corrected by inserting an initial time la|g on edge BC

of initial time lags
spproach has some

reveal the pitfalls
er to the rationale

tlial time lag in the
BC token timeline,

ow graphs. It also

e chart. There are

graph has a delay
the token timeline

e as a result of the

4tlythose tokens in
results from one

, but also as time-

Figure 18 shows another DT dataflow graph and its token timelin
severd interesting things to note regarding this DT dataflow graph. Th(5
actor. The result of the delay actor on the flow of tokens is apparent in
chart. We can see that there is an initial token inserted in the ZB timelii^i
delay actor. We can also see that the tokens in the ZB timeline are exa
the AB timeline delayed by one token time interval. This observatioh
importantDT fact: In DT, delay actors not only act as data-delay actor*
delay actors.

Discrete Time Dataflow Models for Visual Simulation in Ptolemy 11 15

A 1
2

' Z''«
3

B

\ .
V— «isix tokens ^ sL\ tokens

flowing per iteration flowing per iteration

123456123456

\\\u\
r111»; I'M! rrIntiTifmajraij ^«imiiijiii»i«|i' 'rTwri|-aia«at|j;

123456 1 23456

^initial token
Figure 18.A DT dataflow graphwith a delayactor

2.8 Causality and Latency

Inserting initial time lags is enough to fix all causality issues for loop-less DT
dataflow graphs. However, problems invariably show up for looped DT dataflow graphs.
In fact, these problems are serious enough that we have to abandon the idea of initial time
lags and introduce the concept of latency.

Before we start talking about latency, let us first consider our original intuition
regarding causality in looped DT dataflow graphs. We thought that being deadlock-free
was enough for causality.

Conjecture: Every deadlock-free DT dataflow graph is causal

It turns out that our intuition is wrong. It is possible to have a deadlock-free DT
dataflow graph that will have causality problems. Our counterexample to the conjecture
is shown on figure 19. The graph is deadlock-free and has a unique schedule; ABZ.
When we analyze the token flow across the actors through time, we will see that causality
breaks. Let us begin our analysis. At first, the delay actor produces an initial token to
cause actor A to fire. After which, actor A produces two tokens for actorB. We insert an
initial time lag for actor B while it waits for the two tokens from actor A. When actor B
fires, the ou^ut is fed to the delay token which causes a time delay before the token is
fed back to actor A. Thisdelay is actually longer than the time interval between tokens in
actor A. Hence, actor A cannot fire in the second iteration without breaking causality
(design feature#2) or breaking uniform token time intervals (design feature #1). This
presents a serious problem in DT semantics. We*ve tried different approaches to solving

Discrete Time Dataflow Models for Visual Simulation in Ptolemy 11 16

im time intervals

mately didn't work
aphs like the one

this problem. One interesting approach involved abandoning unifo
between tokens and introducing iteration start andend times. That ultir
because we kept on coming up with more complicated dataflow gr;
shown figure 20 that causeother problems.

' A 1
2 2

B 1

+ Z''^t

Figure 19. A counter-example to theconjecture. This non-causal DTdataflow
graphcannotbe madecausalby inserting initial time lags

A I'
2 2

• B

•I Z •

E i:

C I-
3 3

* D

Figure 20. A more complicated DT dataflow graph

Discrete Time Dataflow Models for Visual Simulation in Ptolemy II 17

The ultimate solution we came up with is the introduction of latency. Latency comes
in the form of initial tokens. Since we already observed that every actor with a non-
homogeneous input port requires an implicit initial time lag, it might make sense to make
the time lag explicit. Forcing initial tokens does this. We call these initial tokens as
latency tokens.

Consider the example in figure 21. Instead of moving the BZ timeline to after the
second token from actor A is available, we put an initial token in the output portof actor
A, much like we have initial tokens on delay actors. The token timeline chart shows that
this does not violate causality. Actor Acan fire during the second iteration because of the
latency token provided by actor Batthe start ofthe first iteration. In general, the insertion
ofinitial tokens on the output ports ofactors with non-homogeneous inputs will get rid of
all causality problems, evenfor loopedtopologies.

AB

BZ

ZA

• A 1
2 2

B 1

-1

-I z

latency
token .

.nitial

token

Figure 21. Afix forourcounterexample using latency tokens

The introduction of mandatory latency precludes our backward-compatibility with
SDF (design feature#3). This is not necessarily all that bad. In SDF, initial tokens are
optional for non-delay actors. In DT, initial tokens are required for actors with non-
homogeneous input ports. A properly designed SDF model will behave similarly under
DT. The only difference would be at the start of the execution. For example, in audio
signal processing applications, the difference between the execution ofan SDF and a DT
model might be a few milliseconds of silence.

Discrete Time Dataflow Models for Visual Simulation in Ptolemy II 18

m
A 1

n

" /A 1

Figure 22. An SDF actor

How many initial tokens should be inserted on the outputports of r on-homogeneous
actors? Consider the actor shown in figure 22. Actor A has input port consumption rate m
and ou^ut port production rate n. We have calculated that the numbe: of initial tokens
requiredfor the output port should at least be:

n (m -1)

m

For SDF actors with multiple input ports, the same formula holds, b
variable m with the maximum (argmax) of the input ports consumptioi|i
the appendix for details on how we derived this expression.

Before we conclude this section, let us go back to the some of
diagrams and correct them by putting latency tokens on ports where
necessary. It tums out that we don*t need to modify the token timeline
14 and 18. However, we need to correct the token timeline chart of figuie

A i- I B i> • C

123456123456 1

AB \—I—11 I—h"I—I—I I I—HI

BC
•N >
latency
token

•I

It we replace the
rates. Please see

our previous DT
these tokens are

charts for figures
15.

Figure 23. A corrected timeline for the graph in figure]5

Discrete Time Dataflow Models for Visual Simulation in Ptolemy II 19

2.9 Hierarchical Discrete Time

Hierarchical DT has similar semantics as hierarchical SDF. The main difference has
to do with temporal semantics. Before getting into this, it is first appropriate to discuss
the details of hierarchical SDF. There are two ways to hierarchically compose SDF
graphs. The composition can either be transparent or opaque.

Transparent composition of SDF graphs is trivial. The director unravels all
transparent composite actors before execution and schedules the whole system as if it
were not hierarchical. For example, consider the hierarchical SDF graph shown below.
This graph is equivalent to non-hierarchical SDF graph shown below it. The same
concept applies to the way DT handles transparent hierarchies.

Synchronous Dataflow director

transparent
composite actor

Synchronous Dataflow director

semanticaiiy
equivalent

Figure24.Two semantically equivalent SDFgraphs. The top graph shows a
hierarchical SDF graph with a transparent composite actor. The bottom graph

shows a semanticallyequivalent non-hierarchical SDF graph.

Opaque composition of SDF graphs is more involved. The trick is coming up with
schedules for both the inside and outside graphs that are consistentwith one another. We
first consider the scheduling of the graph inside the composite actor. The inputand output

Discrete Time Dataflow Models for Visual Simulation in Ptolemy II

ports of the composite actor are treated as actors with repetitions value of one and with
unknown token production and consumption rates. The scheduler t len uses balance
equations toget the rates of these ports. Once the rates are determined, aschedule for the
inside graph can be calculated. After which, a schedule for the outside graph can be
calculated by treating the opaque composite actor as an ordinary atomic SDF actor with
the recently computed rates on its input and output ports.

Synchronous Dataflow director

Synchronous Dataflow djrector

Synchronous Dataflow director

Synchronous Datanow director

Figure 25. An example of an opaque hierarchical SDF graph

Consider the opaque hierarchical SDF graph shown above. After scheduling the
inside graph, the port rates for the opaque composite actor containing actor B can be
determined. In. this example, the calculated token consumption rate is 2 and the calculated
token production rate is 3. This information is then propagated to the outside graph. After
which, it is possible to schedule the outside graph. The end result woi ld be the schedule
for the inside graph: B (a trivial schedule); and the schedule for ihe outside graph:
(2A)X(3C). X stands for the composite actor containing actor B. It is important to note
that the port rates are not just copied from the port rates of actor B. The scheduler
actually had to solve balance equations to come up with token consumption rate and
production rate values for the composite actor. The opaque hierarchical SDF graph in

Discrete Time Dataflow Models for Visual Simulation in Ptolemy II

figure 26 shows another example of the procedure. The end result would be a schedule
for the inside graph: (3B)(2C), and a schedule for the outside graph: (3A)(2X)(3D).

Synchronous Dataflow director

Synchronous Dataflow director

after schedulifiQ
Synchronous Dataflow director

Synchronous Dataflow director

Figure 26.Another example of an opaque hierarchical SDFgraph

Now that we have discussed the semantics of hierarchical SDF, it is time to discuss
the temporal semantics of hierarchical DT. Actually, it is quite simple. The outer director
acts a master and the inner director acts as a slave. Users cannot set the period parameter
of the inner director's period parameter. The inner director uses the period of the outside
director to determine its own period. This is why it is a slave to the outside director.
There is an explicit formula for calculating the period of an inside director. Let us denote
Ri as the actor repetitions of the composite actor that contains the inner director. The
period of the inner director is given by the formula:

inner period = outer period / Ri

This formula was derived from a simple analysis of how to keep the token time intervals
between the outside director and the inside director consistent.

Discrete Time Dataflow Models for Visual Simulation in Ptolemy n

3. DT and Other Ptolemy n Domains

3.1 Heterogeneous Hierarchies in Ptolemy H
In this section, we explain the semantics of composing DT with

domains. In particular, we will discuss composing DT with SDF, DE,
will provide simple examples of heterogeneous models involving DT. More elaborate
examples and applications will be given in Section 4 of this paper. Note that, hierarchical
compositions of DT with the CSP, PN, and DDE domains are not cov(jred in this paper;
and are the subject of future research.

other Ptolemy n
CT, and GR. We

3.2 Synchronous Dataflow (SDF) Domain
Hierarchically compositions of DT with SDF are very similar to plai

and plain hierarchical SDF. We already discussed these in section 2.9.
to mention except for the fact that the mixed model has temporal semi
the DT model.

3.3 Discrete Event (DE) Domain
The Discrete Event (DE) domain [14] in Ptolemy n provides a gei

for time-oriented simulations of systems such as queuing systems
networks, and hardware systems. Discrete event systems are well
simulation research community. There are several good books written
we will not give a detailed account on the semantics of discrete event
interest here is to explain the semantics of composing DT with DE.

Case#l: DT inside DE

The DT composite actor behaves like a clock actor. It requests the
it periodically. The period parameter of the DT director is used to dlei
between firings. If the DT composite actor has input ports and theie
tokens on its input ports when it is fired, then it simply does not fire. If ti
actor has output ports, the times when tokens are produced are exactly
they show up on the token timeline chart of the DT dataflow graph. T
time between output tokens of each output port of the DT composite
constant during a specific firing. This is the exact same behavior thai
design feature#! of section 2.5. Figure 27 shows an example of a DT
DE model.

Caseit2: DE inside DT

The DT director executes the DE composite actor as if it were a ho
actor. The static DT schedule determines when the DE composite actdn
the DE composite actor cannot explicitly request to be fired at a certair
precise, the DT director ignores firing requests of a DE composite actor
acts as a master that controls the progression of time. The DE composi
time with respect to outside DT director.

Discrete Time Dataflow Models for Visual Simulation in I^olemy n

n hierarchical DT

There isn't much

^tics that follows

neral environment

communication

Understood by the
on the subject, so

Systems. Our main

:DE director to fire

termine the time

are not enough
he DT composite
those times when

lis means that the

actor should be

we prescribed in
Subsystem inside a

^ogeneous atomic
r will be fired, so
time. To be more

. The DT director

Ite actor adjusts its

23

raie:/C:/ptd«agrams/ng27dl_dl:.Kinl
FHb Wew Edit Graph Help

Olscreie Event

repeater

(DT subsystem) TImedPlotter

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

Figure 27. DTinside DE. The DTsubsystem takes invalues in its
input port and produces four copies in its output port. The clock actor

has period 2.0; and the DT subsystem has period 0.5 .

j £B« Vjew gtflt flraph Hrtp
Tn

--~ cTEmBsadsfl ^
- ™ Ol0t» !
- ™RTP j
ll actorlisrwy j
elJ sources :J
S sinks

@ Olscard

(glHIstoflfamPloter
' I^MatiWiBwef

tntegrslo(2 ScalaS

continuous time dredor

CTPeftodlcSamplerl

Remow EdtBtrias Canes)

Figure 28. CT inside DT

Discrete Time Dataflow Models for Visual Simulation in Ptolemy II

dnKrete time orector

itsraDORs:

wctorBationfacSM:

Dsrtod;

Commft 1 Add I etaSMes 1 Cancai

3.4 Continuous Time (CT) Domain

The Continuous-Time (CT) domain [11] in Ptolemy n pr
environment for representing and simulating systems governed b>
behavior. It is frequently used in control system and mixedsignal applic
refer the enthusiastic reader to the bibliography for more details.

Case#l: DT inside CT

The DT composite actor behaves like a clock actor. It requests the
it periodically. The period parameter of the DT director is used to
between firings. If the DT composite actor has input ports and thei|(
tokens on its input ports when it is fired, then it simply does not fire. If
actor has output ports, the times when tokens are produced are exactly
they show up on the token timeline chart of the DT dataflow graph.
DE director, the CT director needs to fire its actors at times even wh^
explicitly request for that firing. In view of this, if the DT composite
time that is not in its period intervals, it simply doesn't fire.

Case^: CT inside DT

The semantics of running a CT composite actor inside a DT
understood at this time. We are still doing research on this area. We
implementation, which we would describe here. The main problem we
do with static scheduling in DT. The CT composite actor needs to dyn
outside director to fire it at certain times. The DT director cannot han i

requests. We need the dynamic dataflow (DDE) or process networks
handle such unpredictability.

dvides a general
continuous-time

ations. Again, we

CT director to fire

determine the time
e are not enough
the DT composite
those times when

te that, unlike the
n the actor didn't

actor is fired at a

model is not well
do have a limited

^countered has to

qmically request its
le dynamic firing
(PN) domains to

The DT director executes the CT composite actor as if it were a homogeneous atomic
actor. The static DT schedule determines when the CT composite actor will be fired, so
the CT composite actor cannot explicitly request to be fired at a cer:ain time. The DT
director acts as a master that controls the progression of time. The CT composite actor
adjusts its time with respect to outside DT director. These restrictions dictate a limitation
on the CT subsystem. The general CT subsystem will not work in D
need to impose the restriction that the CTPeriodicSampler actor inside
has to have a sample period that matches the period of the DT directo:
figure 28.

3.5 Finite-State-Machine (FSM) Domain

The Finite-State-Machine (FSM) domain in Ptolemy n p
environment for representing control-flow graphs. It is frequently
oriented applications. Finite-state-machines are well studied and
general computer science community. In fact, it is the most basic mod
covered in an undergrad complexity theory class.

Discrete Time Dataflow Models for Visual Simulation in Ptolemy II

. In particular, we
the CT subsystem

K This is shown in

rbvides a general
used in control-

i|inderstood by the
el of computation

25

Case#l: FSM inside DT

Since FSM is an untimed domain, putting an FSM composite actor inside DT is
simple. The static DT schedule determines when the FSM composite actor will be fired.
Under DT, a FSM composite actor would behave like a homogeneous atomic actor. We
can think of the FSM composite actor as an actor capable of control-flow as well as
dataflow.

Case#2:DT inside FSM

This case is currently not implemented in Ptolemy n. This case is actually a special
case of *CHARTS which will be covered in case#3. It is the subject of future work.

Case#3: ^Charts

♦Charts [5] (pronounced as "star-charts") form one ofthe most important hierarchical
compositions in Ptolemy n. hi general, *charts are arbitrarily deep hierarchical
compositions ofmixed concurrency models (such as dataflow, CSP, SR, DE) with FSM*s
placed anywhere within it. This general case is currently not implemented in Ptolemy U.
There has been some work on heterochronous dataflow (HDF), whichis SDF insideFSM
inside SDF. There are plans toextend this to DT-HDF (DT inside FSM inside DT) inthe
future.

3.5 Graphics (GR) Domain
GR is a new experimental domain under development in Ptolemy n. Its primary

purpose is to provide an infrastructure for displaying three-dimensional graphics in
Ptolemy IL GR. is an untimed domain that follows loop-less synchronous/reactive (SR)
semantics. It is useful to hierarchically combine DT with GR to produce animated
simulations. Both domains work hand in hand to produce well-defined Ptolemy models
fora visual simulation. GRhandles thevisual display of information; and DT handles the
passage of time.

Case^l: DT inside GR
The DT composite actor behaves like a domain-polymorphic actor. It fires when the

GR scheduler determines that it needs to be Bred. The period parameter of the DT
director isused to keep track oftime. Ifthe DT composite actor has input ports and there
are not enough tokens on its input ports when itis fired, then itsimply does not fire. Ifthe
DT composite actor has output ports, the times when tokens are produced are exactly
those times when they show up on the token timeline chart ofthe DT dataflow graph.

Case^: GR inside DT
Since GR is an untimed domain, hierarchical compositions with DT are simple.

Under DT, a GR composite actor would behave like a homogeneous atomic actor. We
can think of the GR composite actor as a glorified plotter that takes in data and produces
graphical output.

Discrete Time Dataflow Models for Visual Simulation in Ptolemy 11

4. Applications in 3D Simulation

4.1 GR Revisited

As mentioned previously, GR is a new experimental domain under development in
Ptolemy n. We will give more background information on GR in this section because it
plays a key role in the applications that we will discuss. The basic idea behind the GR
domain is to arrange geometry and transform actors in a directed-acyclic-graph to
represent the location and orientation of objects in a natural world scene. This topology
of connected GR actors form what is commonly called in computer graphics literature as
a scene graph. The GR director converts the GR scene graph into a JavaSD [1]
representation for rendering on the computer screen. It is convenient to talk about two
types of scene graphs at this point. The first type is the abstract scene graph. The second
type is the GR scene graph used in implementation. Abstract scene graphs provide simple
and intuitive view of the overall structure of a scene, but do not provide complete
information. GR scene graphs are verbose and hard to read, but contain all the
information needed by the computer to render a scene. We will talk about these later.
Meanwhile, let us discuss abstract scene graphs further. Figure 29 shows the abstract
scene graph of a robotic arm and a tower of Hanoi set on top of a table. The abstract
scene graph captures the parent-child relationship between different oh(jects in the scene.
For example, when the upper limb of the robotic arm moves, the ehd-effector of the
robotic arm moves with it. In other words, the upper limb is aparent ofthe end-effector.

C/

Figure 29. An example scene graph

Discrete Time Dataflow Models for Visual Simulation in Ptolemy 11

One key point about scene graphs is that the graph's topology may change over
time. Forexample, the abstract scene graph in figure 29 may change into the one in figure
30 when the robotic arm grabs the red ring. In this case, the red ring is no longer a child
of the tower of Hanoi set. In general, in a complex scene graph, there can be arbitrary
pruning and grafting of subgraphs during a simulation.

\

Figure 30.Scene graphs may change over time

4.2 Robotic arm model

Most of the 3D simulation applications that will be discussed in this paper will be
related to a particular robotic arm. We decided to work with a Lynxmotion 5-axis robotic
arm in the course of the development of the GR domain. In our opinion, robotic arms
offer a nicemixture of electromechanical complexity that makes it an ideal application of
our current research. Figure 31 shows a picture of the robotic arm on the left and its
simulated counterpart on the right. The robotic arm has four degrees of freedom and an
end-effector in the form of a gripper. Weused Ptolemy 11 to control the movement of the
robotic arm through serial communication with an embedded PIC16c620 microcontroller.
The microcontroller handles the low level PWM control of the arm's servomotors.
Ptolemy n handles high-level functions like motion planning and inverse kinematics. In
addition, Ptolemy II uses the GR domain to simulate the visual appearance and
movement of the robotic arm.

Discrete Time Dataflow Models for Visual Simulation in Ptolemy II

I !

i>:^fiIe;/C;/users/chf/pm/ptQleTny/dDmains/gr/Db/eKperimentai/simpfeArtiUCTni^obofcamt HEiP|
File View Edit Graph Help

shoulder base Rotate

Figure 32. The GR scenegraph for the robotic

Discrete Time Dataflow Models for Visual Simulation in Ptolemy 11

It is now convenient to return to our discussion about GR scene graphs. Scene graphs
are represented internally in the GR domain through geometry and transformation actors.
The geometry actors contain polygon vertices that represent the mechanical shape of the
object to be simulated. The transformation actors contain 4x4 matrices that are used to
transform the polygon vertices of the geometry actors. There are currently three
transformation actors in Ptolemy U- rotate, translate, and scale. The GR scene graph of
our robotic arm model is shown in figure 32. There are six geometry actors in the model
- robotic arm stand, shoulder base, lower limb,upper limb, wrist, and end-effector. These
actors actually refine to simpler geometry actors, but that is not important in this
discussion. Instead, it is important to note that there are transform actors that are used for
the pose and placement of the geometry actors. This is what differentiates the GR scene
graph from the abstract scene graph.

4.3 DT & CT: Pendulum Model

Up to now, DT has been largely missing in our applications discussions. It is time to
show applications that use DT. The GR domain by itself is not enough for producing
interesting simulations in Ptolemy II. It is necessary to bring other Ptolemy n domains to
the forefront to drive the 3D simulations in GR. Figure 33 shows a top-level
representation of a simple pendulum model. The discrete-time model refines to a CT
subsystem and a GR subsystem. The CT subsystem models the physical characteristics of
the pendulum. The GR subsystem models the visual appearance of the pendulum. The
top-level DT system actsas the overall coordinator and timekeeper.

filei/D/users/chf/pm/ptolemY/domatns/dt/kemeiAest/cW/penihilum.

File View Edit Graph Help

utillties

director libraiy
actor library

Graphics

Discrete-time Director

damped_pendulum_ODE pendulum_view

Figure 33. Top-level representation of the pendulum model

Discrete Time Dataflow Models for Visual Simulation in Ptolemy II

Director parameters;

Iterations: Jo
Iteration time upper bound; |so~

ausing execution

••

'•'1

Pendulum

-1.^^ m

Figure 34. Vergil screenshot of the pendulum animatic

11 ile:/C;/ufer8/cl>f/pm/ptotemy/dofnains/y/(temo/penchihim/pendiJi«uai>l#dainped pendiAimOl70
File ^ew Edit Orapn Help

putllltiee
"'I directorlibrary
2J actor library

Oraphics

CTPenodicSampler

Inteofwor IrtlMrelor TrlgFunctlon Scale

Figure 35. Continuous-time model for the pendulum

Discrete Time Dataflow Models for Visual Simulation in Ptolemy II

AddSublract

The CT subsystem drives the angular displacement of thependulum as time proceeds.
Figure 35 shows the CT subsystem that characterizes damped pendulum dynamics. For
those of you familiar with Simulink, this diagram will look like with Simulink .mdl
model. This diagram is actually equivalent to thesecond order differential equation:

d^6 de g ri A—-+ q—+ ^smd = 0
dt^ dt I

where ^is the angular displacement of the pendulum; t is the time; q is the damping
factor; g isearth's gravitational acceleration; and I is the length of the pendulum string.

/users/chf/pen

File View Edit Graph Help

wall left side
Translate

crate wall right side
Translate

crate top
Translate

crate bottom
ViewscreenTranslate

text message

Tran^ate

pendulum bob
Translate

pendulum ^ring

Rotate

Figure 36.TheGRscene graph for pendulum model

Discrete Time Dataflow Models for Visual Simulation in Ptolemy II

The GR scene graph for this pendulum model is verysimple. It is s
Box-shaped geometry actors represent the four walls of the crate. The
actor represents the pendulum string. The spheregeometryactor repre
bob. It is important to note that the pendulum bob is a child of the pe
rotate transform actor gets angular displacement values from
determines how the pendulum should be rendered. The Viewscreen
root of the GR scene graph.

lown in figure 36.
cylinder geometry

s mts the pendulum
qdulum string. The

input port and
tor is used as the

the

ac

4.4 DT & D£: Inverse Kinematics

has to do with the

(j esired position for
explicitly specify

i^ammer wants an
oblem is called the

d well-understood

algorithms in the
, we just want to
our robotic arm

more complicated
Lvo an unscripted

to specify a space

One of the most important aspects of controlling a robotic arm
positioning of the end-effector of the robotic arm. In general, given a
the end-effector, the programmer of a robotic system does not want
the joint torques for each motor of a robotic arm. Instead, the pro
algorithm that would automatically calculate the joint torques. This pr
inverse kinematics problem. Inverse kinematics is a well-studied an
area of robotics. There are numerous standard inverse kinematics
robotics and computer graphics literature [6][7][17]. For our purposes
pick an off-the-shelf inverse kinematics algorithm and use it in
simulations. Inverse kinematics is a vital prerequisite to building
simulation models of robotic arms. For example, if we want to
animation of the autonomous movement of a robotic arm, we need
curve and apply inverse kinematics at key points in that space curve.

tc»

ha

atics algorithm. It
dataflow models,

sing DT. We opted
ith DT in our final

[)deled using static
products, saturated

We chose to implement the cyclic-coordinate descent inversekineii:
is a relatively simple iterative algorithm that can be implemented usinj^
However, it requires somecontrol flow parts that cannot be modeledu
to use the discrete event (DE) domain and hierarchically compose it w
implementation. DT handles the parts of the algorithm that can be m
dataflow. These include calculation of dot products & cross
arithmetic, and vector rotations.

We will notdiscuss the algorithmic details of the cyclic-coordinat^
here. Instead, we would like to give screenshots of the implementation
37 shows a DE subsystem that further refines to several DT subsysteni|s
a screenshot of a demo that uses our implementation of the cyclic
algorithm. One minor side note here - although the block diagi
coordinate descent algorithm implementation looks very complicated
simple. We did not vectorize the connections in our model. We c
model less cluttered by using the RecordAssembler and RecordDis
Ptolemy n.

Discrete Time Dataflow Models for Visual Simulation in Ptolemy II

descent algorithm
and results. Figure
. Figure 38 shows

-Icoordinate descent

am of the cyclic-
it is actually very

easily make the
Assembler actors in

33

:/D/U4er9/chr/ptU/ptolemy/domftlnf/gr/llb/eKpertnefitdl/lirC[i>«Mml#CQmpiiteC£D

Fils Vltw Edit Orapn Help

Discrcte-cNcnt director

TnoFunctionS

Figure 37. Ptolemy n screenshot ofcyclic-coordinate-descent
algorithm implementation using a hierarchical composition ofDT and DE

|>^file:,/C:/users
File ^ew Debug Help

I Oo I Pause I Resume
Director parameters:

Iterations: |o
Iteration timeupper bound: I33

Figure 38.A screenshot of theinverse kinematics demo

Discrete Time Dataflow Models for Visual Simulation in Ptolemy II

i

4.5 DT & FSM: Picking Objects

We used the *charts formalism [5] to represent the way a robotic arm would pick and
drop objects. Recall from figures 29 and 30 that the scene graph of a simulation may
change over time. For a simple system like a tower ofHanoi set with two rings, there are
three possible scene graphs. These scene graphs correspond to three states in the robotic
arm simulation. The states are shown in figure 39. The *chart represe nation enabled us
to animate the robotic arm picking and moving rings around in the towdr of Hanoi set.

state #1:

holding
red ring

O:

state #2:
holding
nothing

o;

Figure 39. Three states for the robotic arm animation

state #3:

holding
green ring

:o

Figure 40 shows the diagram for our robotic arm animation. In particular, it shows the
hierarchical composition of DT with FSM and with GR. The FSM subsystem stores the
internal state of the robotic arm. As mentioned previously, there are three states in this
subsystem. The GR subsystem stores the scene graph for the roboi ic arm model and
renders the animation on the computer screen. The top-level DT system controls the
overall progression of time.

To sum up this section, we would like to reiterate that DT is useful in acting as a
timekeeper in our 3D simulations. DT does not have the run-time overhead of DE and
CT, so it is beneficial to use it in producing real-time animations.

Discrete Time Dataflow Models for Visual Simulation in Ptolemy II

I^^Mg/Ci/usets/chf/ptn/ptQlemy/domakw/qt/lib/experimei^al/deroo/liMWt/haocC.'^t.xn

File View EdH Oraph Help

jsclorllbraiy
S CJ sources
I SemotJiU

t Cigrenfflme

fsminput! V "«iransiuonl

rsminputl V >• transitioiu

discme Wna areetor

P(Mw keylramee

nputl V <= traitsilionJ

fsminputl V >*°tninsiliuii3

mbollc arm view

Figure 40. Nested hierarchies: DTrefining to FSM andGR

Discrete Time Dataflow Models for Visual Simulation in Ptolemy II

T
\

FSM 6R

5. Conclusion & Future Work

DT is a timed-extensicai of SDF with mandatory latencies for actors with non-
homogeneous input ports. DT provides temporal semantics to SDF, which makes DT
better suited for hierarchical composition with DEandCT.The main application of DT is
the areaof systems andsignals. However, we have competently used it for 3Dsimulation
applications. DT, when hierarchically combined with GR, is useful for providing
temporal semantics to interactivecomputeranimations.

a. We have barely
lications. Here is a

There is certainly a lot of room for future work in this research are
scratched the surface in our study of discrete-time models and its app
sampling of research directions that are worthpursuing in the future:

The current implementation of the discrete-time domain in
optimized for speed. A lot of the code was written
understanding of the powerful features and quirks of the Pt«
quite possible that a rewrite of the major portions of DT is
improvements in simulation speeds.
There is a code-generation framework for the SDF domain
framework compiles SDF models into Java programs. Extendijn
to work with DT shouldn't be very difficult.

There are several domains in Ptolemy n that are left unexplorejd
hierarchical compositions with DT.* These domains include
Also, there is still a lot of work to be done in the general cas
linking FSM with DT.

On the applications side, we can implement inverse kinematicjs
Jacobian matrix methods. This method of doing inverse kine:
better suited for the discrete-time domain.

Ptolemy n is not
without thorough

xiemy kernel. It is
necessary to gain

m Ptolemy H. This
ig this framework

Discrete Time Dataflow Models for Visual Simulation in Ptolemy 11

in the context of

P, DDE, and PN.
e of hierarchically

algorithms using
inatics may be the

37

6. References

[1] D. Bouvier, "Getting Started with the Java 3D APT", Sun Microsystems. Mountain
View, CA. 1999

[2] J.T. Buck, S. Ha, B.A. Lee, and D.G. Messerschmitt, "Ptolemy: a Framework for
Simulating and Prototyping Heterogeneous Systems," Int. Journal of Computer
Simulation, special issue on "Simulation Software Development", vol. 4, pp. 155-182,
April, 1994.

[3] C. Cassandras, "Discrete Event Systems: Modeling and Performance Analysis",
Aksen Associates Incorporated Publishers. Boston, MA. 1993

[4] J. Davis, M. Goel, C. Hylands, B. Kienhuis, E.A. Lee, J. Liu, X. Liu, L. Muliadi, S.
Neuendorffer, J. Reekie, N. Smyth, J. Tsay, and Y. Xiong. "Ptolemy H: Heterogeneous
Concurrent Modeling and Design in Java". Memorandum UCB/ERL M99/44, EECS,
University of California, Berkeley, July 19,1999.

[5] A. Girault, B. Lee, and E.A. Lee, "Hierarchical Finite State Machines with Multiple
Concurrency Models", IEEE Transactions on Computer-Aided Design of Integrated
circuits andSystems, vol. 18,no. 6, June 1999.

[6] J. Lander, "Oh My God, I Inverted Kine! ", Game Developer magazine, pp. 9-14,
September 1998.

[7] J. Lander, "Making Kine More Flexible", Game Developer magazine, pp. 15-22,
November 1998.

[8] E.A. Lee and A. Sangiovanni-Vincentelli, "A Framework for Comparing Models of
Computation". TF.FF Transactions on Computer-aided Design of Integrated Circuits and
Systems. Vol. 17, No. 12, December 1998

[9] E.A. Lee and D.G. Messerschmitt, "Static Scheduling of Synchronous Data Flow
Programs for Digital Signal Processing", IEEE Trans. On Computers, January 1987

[10] E.A. Lee and D.G. Messerschmitt, "Synchronous Data Flow", Proceedings of the
IEEE, vol.75, no. 9, pp. 1235-1245, September 1987.

[11] E.A. Lee and T.M. Parks, "Dataflow Process Networks", Proceedings ofthe IEEE,
vol. 83, no. 5, pp. 773-801,May 1995

[12] J. Liu, "Continuous Time and Mixed-Signal Simulation in Ptolemy H", MS Report,
UCB/ERL Memorandum M98/74, Dept. of EECS, University of California, Berkeley,
CA 94720, December 1998

Discrete Time Dataflow Models for Visual Simulation in Ptolemy n 38

[13] B. Mirtich, *Timewarp Rigid Body Simulation", SIGGRAPH Computer Graphics
Proceedings 2000, pp. 193-200,July 2000.

[14] L. Muliadi, "Discrete Event Modeling in Ptolemy H", MS Repori, Dept. of BEGS,
University of Califomia, Berkeley, CA94720. May 1999.

[15] P. Murthy, S. Bhattacharyya, and E.A. Lee. "Joint Minimization of Code and Data
for Synchronous Dataflow Programs", Journal of Formal Methods in System Design,
Vol. 11, No. 1, July 1997.

[16] J. Pino. "Cosimulating Synchronous DSP Designs with Analog RF Circuits".
Ptolemy miniconference 1999, http://ptolemy.eecs.berkeley.edu/conferences/99/pino.pdf

[17] C. Welman, "Inverse Kinematics and Geometric Constraints for
Manipulation". Master's Thesis, Simon Fraser University. 1993.

Discrete Time Dataflow Models for Visual Simulation in Ptolemy II

Articulated Figure

39

Appendix: Non-homogeneous DT actors

In Section 2.8, we discussed a necessary criterion for all non-homogeneous actors.
Specifically, we imposed that initial tokens should beinserted on the output ports ofnon-
homogeneous actors. Consider the non-homogeneous actor shown in figure 41. It has an
input port consumption rate of value mand anoutput port production rate ofvalue n.

m
4

ill

Figure 41. An SDF actor

The number of initial tokens needed for this actor should at least be

n (m -1)

m

where the half-brackets stand for the integer ceiling function. We will now discuss how
we arrived at this value.

As a matter of convenience, we enlarge thetopology in figure 41 into the-one shown
in figure 42. Figure 42 shows the same actor Awith the same port rates. However, we've
added some dummy actors C and B to act as the actors that feed and get fed by actor A.
With this we can talk about arcs CA and AB. Note that it doesn't matter what the port
rates of actors C andB are. It also doesn't matter whether actors C and B areconnected
to other actors as part of a larger graph (shown as wavy orange curves). We are really
only interested in actor Aand the tokens that flow across arcs CA and AB. Essentially,
we want tokens flowing across arc AB to have a causal relationship with the tokens
flowing ^ross arc CA.

m
A 1

n

i\ *C i'

'CA AB

Figure 42: anSDF actor £is partof anSDF graph

Before we continue, let us define some important variables thatweneed to use in our
discussion. Let P denote the period parameter of the DT system. Let R denote the
repetitions of actor A in the schedule. Now we can calculate the time interval between
tokens in arc CA, which we shall call 7ca« Likewise, we can calculate the time interval

Discrete Time Dataflow Models for Visual Simulation in Ptolemy n 40

between tokens in arcAB, which weshall call Tab- These equations fol|low straight from
sections 2.4 and 2.7

T =
'CA mR

T =
*AB nR

In order to ensure causality, we have to put initial tokens (also called latency) on actor
A. These initial tokens enable actor A to produce tokens at the stait of an iteration,
thereby eliminating the need for explicit initial time lags (discussec in section 2.7).
However, we need to determine how many initial tokens are enough tc ensure causality.
Let us denote this number of initial tokens as k. Each initial token on the output port of
actor A essentially causes an implicit initial time lag on when computed tokens will be
produced. The time lag introduced by placing k initial tokens on the output port of actor
A is k'̂ TAB- On the oUier hand, the amount of time needed by actor
tokens on its input portis (m-J)*TcA' Hence, to ensure causality, wewaijt to have:

k * Tab > (m-1) * Tca

^ k SKI)*Tca
Tab

^ k S(«n-1)* n
m

This means that the minimum k to ensure causality is:

-

k =
nm

It is interesting to note that this equation simplifies to k = 0 for
which means initial tokens are not needed for homogeneous actors,
implementation of DT, we actually use the value k = n for non-homog^ni
design simplification.

A to consume m

hoiKogeneous actors.
In the Ptolemy n

eous actors, as a

ph shown in figure
V^e calculate k = 2,

We conclude this appendix with an example. Consider the SDF gra]
43. We have m = 3, n =2, P = 7, P = 7, Tca = 7/5, and, Tab = 7/2.
Hence we need at least two initial tokens on actor A.

r* 1
3

• A 1
2

Bim 1

set Period = 1.0

Figure 43: an example

Discrete Time Dataflow Models for Visual Simulation in Ptolemy n 41

	Copyright notice 2001
	ERL-01-9

