
Turbo Recognition: An Approach to Decoding Page

Layout

Taku Andrew Tokuyasu

Report No. UCB/CSD-2-1172

January 2002

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Turbo Recognition: An Approach to Decoding Page Layout

by

Taku Andrew Tokuyasu

B.A. (Pomona College) 1984
Ph.D. (Princeton University) 1990

M.S. (University of California, Berkeley) 1995

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA, BERKELEY

Committee in charge:

Professor Richard A. Fateman, Chair
Professor Jitendra Malik
Professor Ray Larson

Fall 2001

This research was funded as part of the NSF/NASA/DARPA Digital Library Initiative, under
National Science Foundation grant number CA 98-17353

Turbo Recognition: An Approach to Decoding Page Layout

Copyright 2001
by

Taku Andrew Tokuyasu

1

Abstract

Turbo Recognition: An Approach to Decoding Page Layout

by

Taku Andrew Tokuyasu
Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Richard A. Fateman, Chair

Turbo recognition (TR) is an approach to layout analysis of scanned document images
inspired by turbo decoding from communication theory. The TR algorithm is based on
a generative model of image production in which two regular grammars simultaneously
describe structure in horizontal and vertical directions. The TR model thus embodies non-
local constraints while retaining many of the features of local statistical methods. This
grammatical basis allows TR to be quickly retargeted to new domains. While TR, like
turbo decoding, is not guaranteed to recover the statistically optimal solution, we present
experimental evidence of its ability to produce near-optimal results for a non-trivial syn-
thetic problem. We explore the expressiveness of TR for describing abstract structure in two
dimensions, and develop a hierarchy of grammars of increasing complexity. We demonstrate
the application of the TR framework to the analysis of simple text documents. We discuss
how TR can be applied to the analysis of composite documents and images corrupted with
extreme amounts of noise, and show how it can be applied to problems such as the layout
analysis of journal article title pages.

Professor Richard A. Fateman
Dissertation Committee Chair

iii

To my sister, Setsu

iv

Contents

Preface 1

1 Introduction to Page Layout Analysis 3

1.1 Overview . 4
1.2 Technical review . 6

1.2.1 Run-length smoothing . 7
1.2.2 Docstrum . 7
1.2.3 Whitespace . 7
1.2.4 Area Voronoi diagram . 8
1.2.5 XY cuts . 8
1.2.6 Textures . 8
1.2.7 Statistical model-based approaches 9
1.2.8 Encoding, acquiring knowledge, groundtruthing 10
1.2.9 Manual correction . 10
1.2.10 Applications of layout analysis . 11
1.2.11 DID . 11

2 Document Image Decoding 12

2.1 The DID framework . 12
2.2 DID models of layout . 15

2.2.1 Text lines . 16
2.2.2 Text block . 16
2.2.3 Other text-like structures . 16
2.2.4 Stochastic context-free grammars . 17

3 Introduction to Turbo Recognition 19

3.1 Relation to turbo codes . 19
3.2 A communication system view of TR . 21
3.3 TR image generation in detail . 23
3.4 TR in the context of DID . 26
3.5 TR operationally . 27
3.6 TR algorithmically . 30
3.7 Example run . 31

v

4 A Graphical Model Formulation of Turbo Recognition 35

4.1 The TR graphical model . 35
4.2 Derivation of the TR message passing equations 38

4.2.1 Global TR model, and more loops 39
4.2.2 Recursion relation for �(Z) . 41
4.2.3 Recursion relation for �(Z) . 42
4.2.4 The �Z(U) message . 44
4.2.5 P (U) update . 45
4.2.6 Deterministic annealing . 45

4.3 Summary . 46

5 Further details 47

5.1 Creating grammars and channels . 47
5.1.1 Grammars . 47
5.1.2 Channels . 48

5.2 Code implementation . 49
5.2.1 Inputs . 49
5.2.2 Java code . 49
5.2.3 Output . 50

6 Experimental Comparison with Maximum Likelihood 51

7 The Art of Turbo Recognition 55

7.1 An exploration of TR grammars . 56
7.1.1 One rectangle . 56
7.1.2 Generalizations using nonlocal grammars 58
7.1.3 Generalizations using one-layer grammars 58
7.1.4 Blob grammars . 58

7.2 Texture segmentation . 60

8 Applications of TR to text lines 63

8.1 A single text line . 64
8.2 Multiple text lines . 66
8.3 Word boxing . 68
8.4 One-layer grammars . 71

8.4.1 Single text line . 71
8.4.2 Text block . 71
8.4.3 Noisy text block . 74
8.4.4 Application . 74

8.5 Manhattan grammars . 75
8.6 Blob grammars applied to text . 78

vi

9 Further Applications of Turbo Recognition 80

9.1 Two columns . 80
9.2 Checkerboard . 82
9.3 Mathematical expression . 82
9.4 Complications . 83

9.4.1 Non-convergence . 83
9.4.2 Two-as-one grammars . 85

9.5 Mixed text and graphics . 86
9.6 Logical layout analysis . 88

10 Conclusion 91

A Finite State Machines 93

A.1 Introduction . 93
A.2 Finite state transducers . 94
A.3 Probabilistic FSTs . 95

A.3.1 Optimality . 97
A.3.2 Viterbi algorithm . 97
A.3.3 Forward-backward algorithm . 98

B Graphical Models 99

B.1 Introduction . 99
B.2 Message passing . 101

B.2.1 Summary . 104

Bibliography 107

vii

Acknowledgements

It is a great pleasure to thank my advisor, Richard Fateman, for guiding me through my
graduate career at U. C. Berkeley. His suggestions constantly opened up new perspectives
that I, narrowly focussed on my research, failed to consider. He has always been generous
with his time and wisdom, and especially so after I began the task of writing this thesis.
I am also grateful to him for showing by example that it is possible to maintain some
semblance of sanity in what can be an intensely hype-driven discipline.

I am deeply indebted to Phil Chou for generously sharing his idea that a new de-
velopment in communication theory called turbo codes could form the basis of an approach
to layout analysis. I had been aware for some time of the importance of Document Image
Decoding (DID) for optical character recognition, but the analysis within DID of even two-
column documents presented signi�cant diÆculties, which I had been struggling to remedy
with stochastic context-free grammars. Phil's idea brilliantly bridged the gap between the
complexity of two dimensions and the eÆciency of regular grammars. I am grateful to him
for patiently clarifying numerous points about DID.

I thank the other members of my committee (in addition to Richard Fateman),
Jitendra Malik and Ray Larson, for reading my thesis and providing feedback. Robert
Wilensky generously provided me with �nancial support for many years, and helped place
this work in a more general context, where scanned document images are just another
electronic document type, albeit a particularly inert one without further analysis.

Michael Jordan's lucid Statistics 242 course in
uenced my adoption of a graphical
model approach to TR. I thank him, Yair Weiss and Andrew Ng for several discussions
on graphical models and turbo codes. I thank Henry Baird, Kris Popat, Tom Breuel,
Dan Bloomberg, and Dan Greene at Xerox PARC for conversations and moral support. A
document image analysis course taught by Henry Baird and Richard Fateman helped clarify
my thinking on the topic. I thank Henry Baird and Dan Bloomberg at Xerox PARC, and
Jon Hull at Ricoh California Research Center, for hosting me during summer internships.

My erstwhile oÆcemates, who have included ByungHoon Kang, Tony Morosco,
Hao Chen, Tracy Riggs, and Shendong Zhao, have been consistently helpful and of good
humor. Je� Anderson-Lee, Ginger Ogle, Joyce Gross, Howard Foster, Tom Phelps, Loretta
Willis, and other members of the Digital Library Project at Berkeley have given me the ben-
e�t of their varied experiences, and provided important support on software and hardware
issues. Rich Martin, Drew Roselli, Sara McMains, Phil Liao, Brent Chun, Chad Yoshikawa,
Melody Ivory, Tina Wong, Bernd Pfrommer, Richie Vuduc, Nikunj Oza, S. P. Rahul, and
many others helped me survive and enjoy the computer science graduate experience. I
thank International House Berkeley for providing a stimulating residential environment,
while freeing me from having to wash dishes and supplying a fast T-1 network connection.

This thesis would not have happened were it not for Gary Kopec. He generously
showed me how document image analysis could be placed within a framework of rigor,
elegance, power and depth, and thereby in
uenced my entire way of thinking about research,
as well as the course of my graduate career. I am very grateful that I was able to work with
him through the auspices of the Berkeley Digital Library Project. I can only hope that
this thesis may help contribute to the further application of DID-based ideas to document
image analysis.

1

Preface

Turbo recognition (TR) is an approach to layout analysis of scanned document
images inspired by turbo decoding from communication theory. The TR algorithm is based
on a generative model of image production in which two �nite-state grammars simultane-
ously describe structure in horizontal and vertical directions. The TR model thus is able
to embody non-local constraints while retaining many of the features of local statistical
methods.

TR can be viewed as theoretical and practical progress in the the Document Image
Decoding (DID) approach to document image analysis (DIA). Previous work on DID layout
analysis [1] was based on stochastic context-free grammars (SCFGs). TR's basis in regular
grammars makes it considerably more eÆcient than SCFGs on the subclass of layouts to
which it is applicable.

The key contributions of this thesis include:

� The development of a decoding basis for layout analysis that is 1) statistical, 2) nearly
optimal, 3) eÆcient, 4) expressive in two dimensions, 5) quickly retargetable.

� Experiments which demonstrate the near-optimal behavior of the TR algorithm.

� The exploration of the space of layout structures that can be described using TR
grammars.

� The exploration of the use of TR for both physical segmentation and logical labeling
on scanned document images.

� The development of a freely available implementation to demonstrate and further
explore these ideas in practice.

In the following chapters, we introduce our problem domain, introduce the foun-
dations of TR, and discuss its application. In more detail, this thesis is organized as follows.

� Chapter 1: Introduction to page layout analysis (PLA). For readers who may be
unfamiliar with this topic, we describe PLA in some detail, placing it in the context
of the overall DIA task. We review previous work on PLA and other work related to
TR.

� Chapters 2 through 5: Foundations of the TR model. We begin by describing the
basics of DID [2], a general framework for document image analysis which forms
the background to our work. We describe the communication view of TR, which

2

frames the problem of page layout analysis as a decoding task. We discuss how the
underlying technologies for TR, �nite-state transducers and graphical models, are
applied to form a statistical model of two-dimensional image generation, and consider
the TR decoding process from several points of view. We then describe some details
of our current methodology, including our Java implementation of the TR decoding
algorithm.

� Chapters 6 through 10: Further exploration of TR. We turn to an investigation of the
optimality of the decoding results produced by TR. We explore the space of structures
that TR can describe, developing a hierarchy of grammars of increasing complexity.
We apply this to the analysis of simple text documents. We demonstrate the ability
of TR to handle levels of noise beyond the reach of alternative methods, and apply
it to the analysis of composite documents. We illustrate the application of TR to
logical layout analysis. We end with a summary and conclusions, and provide some
suggestions for future work.

� Appendices A and B: Finite state machines and graphical models. We provide an
overview of some background material, to introduce our notation and for general
reference.

We note here some aspects of the system used to perform this research and write
this thesis.

� Software: emacs, Sun JDK 1.2 and 1.3, IrfanView, Cygwin, MikTeX/AucTeX, x�g,
Adobe PhotoDeluxe, F-Secure SSH, Hummingbird Exceed.

� Hardware: Dell Dimension 4100 pc (900 MHz, 256 MB RAM, Windows 2000), Fujitsu
C-6320 notebook pc (333 MHz, 64MB RAM, Windows 98), Epson 1240U scanner.

I am particularly indebted to the Open Source and freeware developers whose freely available
software made this work possible.

3

Chapter 1

Introduction to Page Layout

Analysis

Research in document image analysis (DIA) is concerned with the development
of techniques which enable computers to \read." This has traditionally been viewed as a
subset of the general e�ort to enable computers to \see." The idea of digitally processing
images in general was given strong impetus in the 1960s by the need to analyze images
produced by the US space program. The range of techniques that were viable at that
time was strongly constrained by limited computing resources. Since then, the character of
computing has changed considerably, with powerful processors and large memories readily
available. The scope of DIA has also broadened considerably. While the standard input
type for DIA remains the single sheet document page image from a
atbed scanner, input
material now can come from a variety of devices, such as hand scanners (e.g. the HP
Capshare [3]), pen scanners (e.g. the C-Pen [4]), copiers [5], video cameras [6], fax machines,
and book scanners [7]. The source documents take many di�erent forms, such as business
letters, journal and magazine articles, books, bank checks, postal mail pieces, forms, and
tables. Even electronic documents such as email [8, 9] have become the subject of DIA
research. The document content can be machine printed or handwritten, and in addition to
standard text (which itself has a rich characterization), it can include more exotic content
such as mathematics, graphics, and logos. DIA has evolved from its early digital image
processing days and can now count a variety of in
uences and fellow disciplines, including
speech recognition, computer vision (the analysis of images of natural scenes), video, image
compression, communication theory, and linguistics. From a broader perspective, DIA is
concerned with the entire spectrum of information1 from low level details of the document
instance to high level semantic concerns within the purview of natural language processing
[11].

DIA has long been considered one of the simplest arti�cial vision tasks, no doubt
because text documents are human artifacts constructed speci�cally for the purpose of

1The set of tasks in this research area can be broadly characterized as document analysis, document

classi�cation, and document understanding (see for example Malerba et al. [10]). These are close equivalents
of what we will call physical layout analysis, page classi�cation, and logical layout analysis in the context of
page images.

4

communication. In practice, DIA has proven to be much harder than anticipated2. This
can be seen to have several causes: 1) noisy images; 2) a huge number of layouts, fonts,
etc.; 3) a large variety of conceivable applications, each with di�erent performance metrics,
4) tradeo�s between eÆciency, generality, availability and use of prior knowledge, and the
quality of retrieved (extracted) information. It is unlikely that a single general paradigm
will \solve" DIA. Rather, di�erent methods can be used, depending on the application and
the available resources.

A burgeoning area where DIA techniques can be of considerable value is digital
libraries [12, 13]. These often contain large collections of scanned paper images, which re-
quire processing if they are to be more than just static images, or even retrieved in the �rst
place. In the Berkeley Digital Library Project [14], scanned images constitute one possible
layer in a novel document type called Multivalent Documents (MVD) [15]. DIA can \en-
liven" static document images, to enable actions such as cutting and pasting, reformatting,
and searching. High quality DIA results can be critically important for applications such
as information retrieval and data mining. The desire to mesh with such applications also
help de�ne what the targets of DIA research should be.

A goal espoused since the advent of electronic publishing is the seamless integration
of paper and electronic documents. This requires that printing (from electronic to paper
media) and recognition (from paper to electronic form) be both fast and precise, so that the
two media are essentially interchangeable. This dream has yet to be realized in general, but
having the dream itself may help shape research and even the form that documents take in
the future.

1.1 Overview

Document image analysis3 has traditionally been divided into two separate tasks,
optical character recognition (OCR) and page layout analysis (PLA) [16]. In brief, OCR is
concerned with transcribing isolated glyphs or text lines into their corresponding symbolic
form, and PLA is concerned with analyzing the overall structure of the page image without
necessarily knowing what the characters are on the page. PLA is typically considered to be
a preprocessor for OCR, to �nd where the text zones are. Nevertheless, one can envision
situations where OCR and PLA are done independently, jointly, one before the other in
either order, applied iteratively, etc.

For example, OCR can be done largely in the absence of layout analysis when
the document is a simple succession of text lines. Similarly, PLA can be performed to
categorize documents without doing OCR. The availability of fast, general-purpose OCR
engines (e.g. Textbridge [17]) suggests work
ows where OCR is done �rst (where some
aspects of layout analysis are done implicitly by the OCR engine), and then application-
speci�c layout analysis is performed on the output [18].

2This is partially a matter of de�nition. There are many circumstances, such as recognition of clean
single-font text, where present systems perform quite well. Barcode reading is a related task where control
over the source domain enables outstanding performance.

3Here we consider documents to be composed largely of machine-printed text. Such documents can
include non-textual content, such as halftones, and graphics, and come in various types, such as articles,
letters, tables, forms, etc.

5

OCR is the more mature �eld of the two. It is sometimes considered to be a
solved problem for all practical purposes. Much of this maturity can be ascribed to its
characterization as a statistical classi�cation task. A recent book [19] illustrates how current
systems are nevertheless still brittle, sometimes surprisingly so. Innovative research with
applications to OCR (e.g. Belongie et al. [20]) continues to appear. We also note that OCR
is strongly dependent upon the performance of other tasks such as PLA.

PLA remains a less well-developed area than OCR. From a recognition (as op-
posed to authoring) standpoint, page layout is apparent only from the cumulative e�ect of
many lower level primitives, such as characters or foreground pixels. Simple combinatorics
suggests that page layout can exhibit great variety. It is also at the page layout level that
DIA truly re
ects the two-dimensional nature (and hence complexity) of the underlying
page image.

PLA itself is often separated into parts, which we will refer to generically as phys-
ical (structural, geometric) and logical (functional, syntactic) layout analysis4. Physical
layout analysis is concerned with analyzing the structure of a given page image, construed
as a two-dimensional array of pixels, without recourse to meta-information such as the type
of document the image represents. Its aims can include estimating page level properties
such as global noise or skew, �nding zones within the page such as halftone images, text
columns, text lines, and individual words, or estimating local properties such as the texture
class of individual pixels.

Logical layout analysis applies prior knowledge about a document to construe the
logical function of various parts in the page image. Some typical tasks include labeling text
zones in a journal article title page as the \title," \author," \abstract," or \body text,"
identifying the cells of a table according to data type, and identifying the address block on
an envelope given that it is a US mail piece. Read order determination is another signi�cant
logical layout analysis task. The distinction between physical and logical analysis is again
not hard and fast. For example, prior knowledge about logical structure can constrain the
way physical segmentation is performed.

As an example of the layout analysis task, consider the page image in Figure 1.1.
Despite the fact that we cannot decipher what is written on the page5, we still can have
much to say about its contents. One thing we notice from the outset is that the image is
two-dimensional. This is an obvious, yet often inadequately dealt with, feature of the image.
The arrangement of black (foreground) pixels on the page is not random, but shows clear
structure. Pixels that we identify as belonging to text and belonging to a halftone image
are segregated into di�erent regions of the page6. The text itself is highly organized into
parallel linear structures (text lines), re
ecting the requirements of human legibility and
centuries of typographic convention. These in turn are organized into two columns. The

4Other names for related tasks include page segmentation and page classi�cation.
5This statement itself is worth pondering further. Approaches which have demonstrated some OCR

capability even on documents that are illegible include word shapes [21, 22, 23] and DID [2, 6]. It is
probably true, though, that this particular example (Figure 1.1)is at too low a resolution for any technique
to have much success

6A strict classi�cation of this sort is not always readily made. Text can appear within graphics such as
maps or diagrams, and text itself can take on the character of graphics, as in highly decorated capital letters
in illuminated manuscripts.

6

Figure 1.1: Example of the page layout analysis task.

borders of the image are straight and orthogonal. Additional regular features, such as text
line spacing, word spacing, font size, etc., can also be discerned (and estimated). These are
features of the physical layout of the page. The logical layout of the page is comprised of
regions with functional roles such as the bibliography, �gure caption, page number, photo of
the author, etc. An intermediate step might be to classify the document according to type,
such as business letter, article from a speci�c journal, etc. Given the class of the document,
it might then be possible to assign logical meaning to physical elements that have been
identi�ed at an earlier stage. Alternatively, the classi�cation itself might be suÆcient for
some kinds of retrieval tasks.

1.2 Technical review

Here we review selected previous work in page layout analysis. The literature is
vast, and we focus on a few typical works. This selection is necessarily incomplete, for which
we apologize in advance. Reviews and article collections which cover some of the topics that
we touch upon include O'Gorman and Kasturi [16], Cattoni et al. [24], Tang et al. [25],
Bunke and Wang [26], and Baird et al. [27]. The current state of the art is represented in
a series of workshops on \document layout analysis and its interpretation" (DLIA) [28, 29],
with proceedings available online.

7

Desiderata for a robust page layout analysis system include the ability to handle
image skew, noise, arbitrary layouts, mixed content (text, graphics, halftones), and grayscale
or color images. Most systems in practice focus on a few of these dimensions while ignoring
the others. TR, for example, focuses on dealing with noise and Manhattan layouts, and can
potentially handle an arbitrary number of content types7.

1.2.1 Run-length smoothing

Early work on page segmentation was based on relatively straightforward process-
ing of the foreground pixels in the image, a stream of research that continues to this day.
A driving factor in the design of such methods is the desire for eÆciency in both space and
time. A prominent example is the method of run-length smoothing, which can be applied
to binary8 images. Each row (or column) of pixels is �rst represented as a list of intervals
(\runs") of black pixels, and then neighboring runs are merged together (\smoothed") if
the space between them is less than some pre-speci�ed threshold. This allows the physical
segmentation of a page image into regions (such as text columns) by a judicious choice of
the threshold values. Examples include Wahl et al. [30] and Fletcher and Kasturi [31].
Such methods work well on clean images with well-de�ned distance scales which separate
the di�erent types of content. However, due to their critical dependence on �xed thresholds,
they are generally brittle against noise.

1.2.2 Docstrum

O'Gorman [32] de�nes a \docstrum" representation to summarize the spatial re-
lationship between connected components and their k-nearest neighbors. This allows the
extraction of important layout parameters such as skew angle and the spacing between
words and between text lines. This information can then be applied to text line and text
block segmentation. The dependence on connected components implies a rather high sensi-
tivity to noise, since noise can merge or split components, and add new ones. The general
philosophy of accumulating local evidence to support making global decisions is echoed in
the TR formalism, though in a rather di�erent guise.

1.2.3 Whitespace

Baird et al. [33] concentrate on analyzing the structure of the white space back-
ground between regions, instead of recognizing the foreground regions per se. By sorting
maximal white rectangles by size, this approach implements a \global-to-local" strategy,
which utilizes as much information as possible before making segmentation decisions. Other
work includes Pavlidis and Zhou [34], Antonacopoulos and Ritchings [35, 36], and Kise and
Yanagida [37]. Baird [38] includes a review of work as of 1994.

7Each content type would correspond to a di�erent input symbol (see later chapters). At present, TR
can process text and halftones. In general, a preprocessing step would probably be required which yields
initial probabilities of each content type at each pixel.

8Other terms for such images where the pixels are either black or white include bitonal and bilevel.

8

1.2.4 Area Voronoi diagram

Kise et al. [39] propose a segmentation method based on the area Voronoi diagram,
a generalization of the usual \point" Voronoi diagram to extended objects such as connected
components. Judicious pruning of the derived edges segments the page image in a manner
reminiscent of background analysis (see above), and can be applied to skewed page images
and non-Manhattan layouts. This method has shown state-of-the-art performance in a
recent comparison of layout analysis methods by Mao and Kanungo [40]. One weakness is
again the dependence on connected components, which makes it vulnerable to noise.

1.2.5 XY cuts

XY trees were proposed by Nagy and Seth [41] as a data structure for describing
a large class of layouts, such as those used for technical journal articles. They proposed
creating the tree by recursively segmenting the page image based on alternating horizontal
and vertical projection pro�les on extracted subregions. The 2D analysis problem is thus
reduced to a series of 1D ones. This structure was exploited in later work [42], in which
ordinary 1D string grammars control the analysis process, thus allowing the integration of
physical segmentation with logical labeling.

The XY cut approach, with its emphasis on analysis of grammatical structure in
orthogonal directions, is similar in spirit to TR. It is however not explicitly based on a
stochastic imaging model. The segmentation decision is based on thresholding of projection
pro�les, which can be brittle. By eliminating information in one dimension, projection
pro�les wash out local information which could be useful in making segmentation decisions
(as we shall see). TR also can analyze some Manhattan layouts which cannot be segmented
using XY cuts (see Figure 1.2 for an example). On the other hand, the XY cut procedure
can proceed to an arbitrary depth of recursion, while TR is limited to at most a �xed depth
of recursion.

1.2.6 Textures

Humans can easily recognize and distinguish text regions from other types of page
content such as halftones, graphics, and the background, even from far away or while squint-
ing. This suggests that these various content types have di�ering characteristic textures.
Taking advantage of such texture di�erences for general image segmentation tasks is a stan-
dard topic in computer vision, with a voluminous literature. As an aside, the concept of
a text texture is reinforced by the possibility of synthesizing such textures, as proposed by
Efros and Leung [43].

In the context of DIA, three texture classes are typically targeted: text, halftones,
and graphics. A sampling of work in this area includes Dunn et al. [44]), who use Gabor
�lters, Jain and Zhong [45], who train neural network masks, and Suen et al. [46], who
de�ne a modi�ed fractal signature feature.

A large number of related techniques from the image processing and computer
vision communities have been applied to layout analysis. For example, wavelets and related
transform techniques are quite popular (some references are given in the next section). Mor-

9

Figure 1.2: Example of a layout which cannot be decomposed using XY cuts.

phological transform methods have in recent years become standard [47] and are possibly
used in some commercial OCR engines [17].

1.2.7 Statistical model-based approaches

One popular texture segmentation approach uses Markov Random Fields (MRFs).
This is a generalization of a Markov chain to a two-dimensional grid [48]. Each node on the
grid represents a pixel (or possibly a block of pixels) in the image. In a one-dimensional
Markov chain, the probability of a node having a given value is dependent only on the value
of its predecessor in the chain. Similarly, in an MRF, the value of a pixel depends only on
the values of its neighbors. This neighborhood is de�ned by the connectivity of the grid. In
order to make probabilistic inference tractable, the 1D \predecessor" relationship is often
(rather arbitrarily) generalized in 2D to \above and to the left," to form what is known as
a causal MRF. MRF methods are in common use for image segmentation and classi�cation
[49, 50]. Li et al. [51] apply a form of causal MRF known as a 2-D HMM to document
image segmentation.

The probabilistic dependence of each node in an MRF on the state of its neighbors
is a simple attempt to incorporate local context. The need to incorporate more context
beyond a �xed-size neighborhood has given rise to various \multi-scale" approaches [52, 53].
Li et al. [54] has further references to the general computer vision literature on this topic,
which has close ties to wavelet analysis.

A rather di�erent approach to introducing statistical models into DIA has been
developed by Haralick and coworkers [55]. Given the knowledge (or assumption) that doc-
ument layout can be described hierarchically as a tree-like structure, which starts with the
entire page image at the root and descends through substructures such as columns and text
lines down to words and characters, they develop a probabilistic approach designed to �t
the observed data to this expected structure. The observed data consists of the sizes and

10

the locations of connected components (bounding boxes) in the page image, and structures
such as text lines and text blocks are constructed bottom up. An iterative relaxation-like
method is then used to explore the space of partitions of the glyphs and their functional
labels, with the goal of maximizing the probability of a set of measurements, given the
partition. This method can perform simultaneous physical and logical layout analysis and,
amongst other things, process images with moderate amounts of skew.

We also mention here the work on pseudo-2d HMMs [23], which, while not ad-
dressed to layout analysis per se, has some resemblance to TR, in being a Markov model-
based approach to analyzing structure in two dimensions. A pseudo-2d HMM has a factor-
ized structure, in which a series of HMMs describing horizontal pixel patterns are stacked
together vertically, roughly speaking (the reverse situation, where a series of vertical HMMs
are connected together horizontally, is also a possibility). This forms an elastic shape
matcher, which is useful for identifying keywords in noisy text, for example. A pseudo-2d
HMM cannot capture non-local correlations, however, such as the fact that the top and
bottom row of a rectangle have the same length, which is something that is easily embodied
in a TR model.

We note in passing the paper by Freeman et al.[56] as an example of recent research
that treats image analysis problems in terms of graphical models (see Appendix B), in this
case as an undirected (two-dimensional) Markov network. We will �nd it useful to employ
related graphical model techniques in deriving the TR decoding equations.

1.2.8 Encoding, acquiring knowledge, groundtruthing

An important issue in logical layout analysis is how to incorporate document
knowledge. The ability to tag zones with metadata such as title, author, abstract, sender,
addressee, etc., clearly requires some form of domain-speci�c knowledge. Languages and
data formats for encoding such knowledge include ODA [57] and SGML [58]. A number
of formats, such as DAFS [59] and XDOC [60], are aimed speci�cally at DIA tasks. The
possibility of interactively developing layout models in terms of stylesheets encoded in XML
[61] has been explored by Spitz [62]. A system which utilizes a database of decision trees
and learned rules for document analysis, understanding, and classi�cation is described by
Esposito et al. [63]. Lee and Kanungo [64] have developed a
exible document layout data
format encoded in XML to support the visualization and editing groundtruth data. A re-
lated toolkit for performance evaluation is described by Mao and Kanungo [40]. Commercial
products and formats such as Adobe Capture [65] and DjVu [66] allow the incorporation of
OCR data (and possibly rudimentary zone information) in documents meant for distribution
on the World Wide Web.

1.2.9 Manual correction

Modern consumer-oriented commercial OCR systems provide a facility for per-
forming manual zoning, which can be used to augment or substitute for automatic meth-
ods. This is often suÆcient for casual users who need to process just a few pages. In the
comprehensive document analysis system proposed in the early 80's by Wahl et al. [67],
manual editing of scanned documents was an integral part of the design. In large service

11

bureau contexts devoted to the processing of forms, checks, postal mail pieces, etc., OCR is
often just one part of an extended work
ow involving many human operators [68]. Here it
is again possible to rely upon human feedback, although this may simply involve processing
the pieces that the OCR system rejects. Recent research has generally avoided incorporat-
ing the user explicitly into the system. Interactive feedback has been used for training and
retargeting of model-based recognition systems, such as those of Spitz [69] and Shamilian
et al. [70]. In general, research systems have a wide variety of di�erent expectations of
their users. The extent to which DIA systems can rely on the user expertise and make the
feedback process easier are largely unsettled issues within the DIA community.

1.2.10 Applications of layout analysis

Here we mention some applications of layout analysis, both physical and logical.
A sampling includes extraction of metadata from journal article title pages (Kim et al [18]),
document classi�cation by genre [71], labeling of forms and oÆce documents [72], �nding
zones in bank checks (Kornai and Connell [73]), postal address block location (Jain and
Chen [74]), table detection and understanding (Hu et al [71], Baird et al [70]), newspaper
segmentation and understanding [75, 76, 77], and document image compression [78, 79, 80,
81, 6].

The development of systems which can automatically convert printed documents
into marked up electronic documents has generated much interest in the context of digital
libraries [82, 83]. A system which uses document structure analysis to support logical queries
directly on document images stored in digital libraries is described by Niyogi and Srihari
[84]. The distinction between paper and electronic documents is being blurred by e�orts
to \enliven" static page images with functionality such as cut and paste, search, clickable
hyperlinks, annotations, etc. [15, 85]

1.2.11 DID

Document image decoding is unique as a framework in that it spans the entire
range of DIA. It is unusual in that it confounds many of the above method classi�cations.
This is because it takes a di�erent approach than most other methods. We discuss it in
more detail in the next chapter.

TR is an approach within the general DID framework, which is statistical, struc-
tural/syntactic, local (it inspects local evidence directly, as opposed to, e.g., taking projec-
tion pro�les) and global (it seeks a globally optimal estimate). It can be top-down (in the
sense of requiring high-level constraints on, e.g., the number of columns), and bottom-up
(both in terms of the decoding process, which as mentioned previously proceeds from the
pixel level, and in the sense that less restrictive TR grammars can be designed to segment
word boxes, for example). At present, TR is primarily a physical and logical layout analysis
technique. In principle, it can be integrated with OCR to make a single system optimized
from top to bottom (without hard decisions made in between). It naturally transcends
many of the previous categorizations of layout analysis techniques, as will be elucidated in
the following chapters.

12

Chapter 2

Document Image Decoding

Document Image Decoding (DID) is a general framework for document image
analysis proposed by Kopec and Chou in 1994 [2]. DID forms the basis for the work in
the following chapters, and here we introduce its technical and historical background for
reference purposes and to describe the context in which TR arose.

2.1 The DID framework

DID is based on the theory of communication, and we brie
y mention some ele-
ments this theory here in order to clarify this connection. Modern communication theory
is founded on the work of Shannon [86], who showed that the problem of digital communi-
cation over a noisy channel can be divided, without sacri�cing optimality, into two parts,
source coding and channel coding [87]. Source coding deals with encoding an analog or
digital signal into a �nite-length string of symbols. The symbol alphabet is often taken to
be binary (without loss of generality). Data compression, for example, is naturally framed
within this aspect of communication theory. Channel coding is concerned with transmission
of a sequence of bits over a noisy channel. Typically some sort of redundancy is added,
in order to make the transmission process more robust against noise. This is the subject
of error-control coding, which comes in two main
avors, block coding and convolutional
coding. DID, especially in its Markov model formulation, is most closely related to con-
volutional coding, and inherits from it a dynamic programming decoding approach for the
purpose of recognition.1 DID is also closely related to hidden Markov model approaches to
speech recognition [88, 89].

The communication theory view of DID is shown in Figure 2.1. This is intended
as a general framework for modeling the generation, transmission, and subsequent recog-
nition of document images. The �rst three modules in Figure 2.1 constitute a stochastic
model of image generation. The source selects an input message U from a set of candidates
according to some prior probability distribution. Under the control of this message, the en-
coder formats two-dimensional output image X. This image is degraded upon transmission
through the channel, resulting in an observed image Y . The objective of the decoder is to

1In typical document applications, there is no formal error control coding step per se, of course. Product
bar codes are an interesting exception.

13

Source Encoder Channel Decoder
U X Y Û

Figure 2.1: Communication theory view of DID.

recover the message U , given the observed data Y and prior knowledge (i.e., parameters)
embodied in the generative model. The minimum probability of error2 is achieved when
the decoder returns the maximum a posteriori (MAP) message Û = argmaxU P (U jY). In
this manner, document recognition is rephrased as the optimal decoding of a signal that
has been generated and transmitted in a particular way.

This framework is meant to abstract the essential features of some real world
process. For example, the input message U , the output image X, and the observed image
Y could represent a TeX �le, the resulting dvi �le, and the ti� �le produced after printing
and scanning, respectively.

More generally, the input message U can be viewed as an ascii string, which could
include embedded logical tags (as in XML). The pixels in the output image X assume values
from a binary alphabet 3 f00; 10g in the most straightforward case, but larger alphabets are
also common [91]. These output image symbols in general label di�erent pixel types, which
could designate any number of attributes, such as color, texture class, or susceptibility to
noise. In most work on DID to date, the observed image Y has been binary, although
research has recently begun on treating grayscale images [6].

The source and the encoder are jointly described by a Markov source, or equiv-
alently, a stochastic �nite state machine (FSM) with labeled arcs4. The FSM arcs are
attributed with a transition probability, an ascii transcription (for the input message) a
character template (for the output image), and a two-dimensional displacement (denoting
where the next character should be placed). The stochastic evolution of the machine in-
duces a probability distribution over the space of machine histories (of a given length), or
alternatively, paths in a trellis (see e.g. Rabiner and Juang [88] or Manning and Sch�utze
[92]). This in turn induces a joint probability distribution over input messages and output
images via the labels. The channel in its simplest (and most commonly used) form is a
stochastic mapping from output symbols to observed symbols, on a per-pixel basis (bit-
ip
noise).

The overall imaging process can be visualized as a cursor (or \turtle" [93]) which
moves from point to point on the page, starting from the top-left corner of the page and
ending in the bottom-right corner, meanwhile laying down templates on the page. The
resulting output image is then passed through the channel to yield the actual observed
image. We refer to the original paper for details [2].

The decoder uses a form of the Viterbi algorithm (dynamic programming) to �nd
the MAP estimate Û . The general form of this algorithm is brie
y described in Appendix A.
We again refer to the original paper [2] for the speci�c algorithm used by DID. Elaborations

2This can also be phrased as \minimum risk under a 0-1 loss function." For details, see Duda and Hart
[90].

3We use primes on symbols to signify that they are from the output image pixel alphabet.
4A brief overview of �nite state machines is given in Appendix A.

14

of the generative model and optimizations of the decoding algorithm have been developed
by Kam and Kopec [94], Kopec and Lomelin [95], Minka et al. [96], and Popat et al. [97],
amongst others.

This framework plays several important roles. First, it organizes DIA processes in
a modular fashion, enabling researchers to concentrate their modeling e�orts on each part
separately. By incorporating an explicit (stochastic) model of the document production
process in the decoder, it becomes possible to de�ne the notion of an optimal decoder.
The basis in communication theory implies that we can immediately take advantage of
the decades of research in this area. It also means that we can often apply innovations in
communication theory to DIA with little modi�cation. The framework is general enough
that essentially any DIA task of interest can be placed within it. Much work remains to be
done, however, to supply methods that can fully exploit the power of this framework. This
thesis can viewed as further exploration of this idea.

It is worth pointing out that, despite the emphasis in DID on carefully crafted
models of the imaging process, we are never concerned with actually generating images in
this manner. We are only concerned with the inverse process, i.e. recognition. In addition,
experience with DID (and related experience from speech recognition) shows that, while
the connection of such generative models to reality is often tenuous at best, recognition
performance is nevertheless robust against many details of their speci�cation.

There are several aspects of the DIA task that make DID more than just a straight-
forward application of communication theory. Chief among these is the fact that the ob-
served signal that the decoder receives occupies two dimensions instead of one. This poten-
tially changes the character of the problem considerably from traditional one-dimensional
decoding problems such as speech recognition (where the time dimension provides a natural
linear ordering to the data). In general, it has proven to be diÆcult to make the jump from
one to two dimensions, both in terms of forming models that are expressive enough, and in
developing decoding algorithms that are eÆcient enough to be used in practice. We brie
y
discuss current DID approaches to layout below.

Some of the most thorough demonstrations of the e�ectiveness of the DID frame-
work were a set of recognition experiments [82, 98] done in conjunction with the Berkeley
Digital Library Project [14]. DID processing of one document in particular, a compilation of
California state water district acts [99], exhibited a reduction in OCR error rate by a factor
of ten, relative to a commercial OCR engine. These examples also demonstrate the ability
of DID to perform logical analysis, which adds considerably to the value of the electronic
version of the document beyond that which is provided by the ascii OCR stream alone.

A number of objections have been raised regarding the use of DID for DIA applica-
tions. Chief amongst these has been the criticism that DID is too slow to be of practical use.
There are a number of aspects to this issue. One is that DID research has until relatively
recently been focussed on simply establishing how to base DIA on a communication theory
framework and examining some of the bene�ts that thereby accrue, not raw speed per se.
In terms of computational complexity, DID text line decoding is linear in the number of
image pixels, and hence in the theoretical sense, DID is quite eÆcient. In addition, this
criticism is now largely invalid, at least in the realm of OCR. Optimizations have closed the
gap between DID and commercial systems to roughly a factor of �ve or less [96], depending

15

on the size of the character template library.
Another criticism leveled against DID is that it requires too much prior knowledge.

This issue partially re
ects di�erences in opinion on how a DIA system should be designed.
The emphasis in commercial systems has largely been on developing general purpose engines
which can recognize arbitrary document images. In practice, this is an extremely diÆcult
task, and constraints of some kind, e.g. as to language, levels of noise, document type, and
desired output have to be added in order to maintain a reasonable level of performance.
When faced with a specialized task (e.g. retargetable high accuracy table reading [70]),
unusual formatting (e.g. mathematical expressions [100, 101, 102, 103]), or new low-level
primitives (e.g. printed music [104]), general purpose OCR engines can fail completely, with
little recourse for adapting their performance to the data. DID advocates the development
of custom recognizers tailored to the document and task at hand. It is possible, for example,
that DID recognizers will be eventually generated by tools akin to lex and yacc [105]. The
hope is that DID decoders can be speci�ed and retargeted eÆciently by users with relatively
little knowledge of DIA and DID technology. This mode of operation is particularly well
suited to batch processing of large sets of similar (and possibly unusual) documents which
require conversion to high-value electronic form. In what follows, we try to be explicit about
the prior knowledge that is required in order for our programs to work, and leave it to the
reader to decide whether it is overly burdensome.

2.2 DID models of layout

DID has traditionally been focussed on performing OCR, as broadly construed.
In pursuit of this task, DID has developed a variety of models of page layout which form
an important background for the development of TR. We review this work brie
y here.

As described in the previous section, DID source models of text describe the place-
ment of character templates within the con�nes of a page. Each of these templates has a
�nite region of support where the pixels are nonzero (foreground). At present, the only
hard constraint on the form of these models is the requirement that separate templates
have disjoint support (i.e. have no overlapping foreground pixels) when placed on the page.
This template disjointness constraint is perhaps easily misconstrued, so we elaborate on it
a bit further. The key point is that the constraint only applies to the generative model,
not to the glyphs that appear in a given observed image. A related point is that template
pixel overlap is distinct from pixel connectedness in an observed image (it is not clear that
pixel overlap makes any sense in the observed image). Indeed, images in which glyphs are
connected to each other, either by design (as in cursive scripts) or due to noise, are some
of the most interesting targets for decoding by DID methods. Similarly, bounding boxes of
adjacent characters are allowed to overlap. The disjointness constraint means only that in
the decoding output of DID, foreground pixels from neighboring glyphs will not overwrite
each other. Theoretically, this constraint stems from the straightforward requirement that
the observed evidence (in the form of foreground pixels) not be double-counted in evaluating
likelihoods [2, 95].

16

2.2.1 Text lines

DID source models can be classi�ed according to the layout complexity of the
template placement in the model. Probably the simplest DID model is that for a single text
line, which consists of putting down character templates one after another along a baseline,
in accordance with a Postscript-like sidebearing model of character positioning [2]. DID
currently does not incorporate a model of baseline skew, and it is customary to rely on
external pre-processing to remove large amounts of skew prior to decoding5. A vertical
jitter of �1 or more pixels around the baseline is often allowed in scoring templates during
text line decoding.

2.2.2 Text block

The obvious generalization, a text block consisting of several text lines, can be
described as a vertical sequence of text lines, each of which is a horizontal sequence of
characters. Text block decoding consists for the most part of repetitions of the text line
decoding algorithm, with the addition of a \carriage return" at the end of each horizontal
pass to prevent the same pixels from being decoded twice. A search over all possible paths
through the model is in principle still required to ensure optimality, which means every
row of the image must be tested as a possible text baseline. A variation which allows the
decoding process to be sped up considerably without loss of optimality is described in Kam
and Kopec [107]. This takes advantage of the factorization into horizontal and vertical
image structure to form separable models of text blocks. Together with the introduction
of admissible heuristics, this allows the formulation of the iterated complete path (ICP)
algorithm [108], which reduces the amount of processing required by applying text line
decoding only along rows where there is likely to be a text line, in a manner that rigorously
maintains optimality. These DID text block (\text column") models represent one approach
to dealing with two dimensions in a \1 + 1" dimensional fashion.

2.2.3 Other text-like structures

DID models of a single text block, as developed by Kam and Kopec [94], set
a standard for handling text layout within DID. Text images with more complex layouts,
such as multiple columns, have as a practical matter been analyzed by �rst segmenting them
into blocks by other means, prior to text block decoding (for instance, see the yellow pages
example discussed in Kopec and Chou [2]). While DID clearly has the ability to analyze
multiple column text directly by constructing more elaborate models, this approach quickly
becomes cumbersome as the complexity of the layout increases. We note, though, that even
within the context of a simple text column, sophisticated DID models can be developed in
order to perform logical analysis, as shown again by the yellow pages example.

The advanced structured documents [98] included as part of the Berkeley Digital
Library Project [14] demonstrate some of the sophisticated analysis possibilities inherent
in the DID approach. As described by Kopec [106], these results were obtained using a

5Some of the best OCR performance exhibited thus far by DID resulted from the use of a third order
polynomial �t to the base \line" [106].

17

combination of hand-crafted routines for layout analysis and automatically generated line
decoders for text transcription. This was intended as a provisional methodology, while
awaiting the development of DID technology that could eÆciently decode common text
layouts. This division of labor between scripts and line decoders had distinct advantages.
It allowed Kopec to concentrate on the design of line decoders, which due to their simplicity
is a relatively easy task. The use of scripts, meanwhile, allowed the addition of functionality
such as cross referencing (hyperlinking), which would be extremely cumbersome to analyze
within DID. Overall, these examples reinforce the idea that very high quality OCR is key
to enabling advanced functionality from scanned document images.

Kopec was not clearly not satis�ed with this state of a�airs, however. He died in
1998 before being able to follow up on these ideas. This dissertation can be considered an
outgrowth of his desire to expand the repertoire of DID-based methods for decoding page
layout. Before turning to this work, however, we �rst brie
y describe a di�erent basis for
DID which in fact generalizes all of the DID framework described so far.

2.2.4 Stochastic context-free grammars

The DID models presented up to this point have been based on stochastic �nite
state machines (i.e., a form of hidden Markov model). As mentioned earlier, image pro-
duction can be viewed as resulting from the action of a cursor moving along a single path,
down and across the page. The associated decoding algorithms retain much of the char-
acter of one-dimensional methods. While this allows for a surprisingly broad treatment of
two-dimensions (e.g. printed music) [109], such an approach in general is quite cumbersome
for describing the spatial relationship of regions in two dimensions.

Chou and Kopec [1], building on earlier work by Chou [100], established a more
general framework that is based on stochastic context-free (instead of regular) grammars
(SCFGs). This constitutes the most general formulation of DID at present. The source
and encoder are now jointly described by a stochastic context-free attribute grammar. This
generates a parse tree at random (which in the case of regular grammars means that a
stochastic �nite state machine generates a path at random). The tree is deterministically
\walked" or annotated to produce a message string, and then is deterministically walked
again to produce an encoding. Each nonterminal symbol can be thought of as denoting a
subimage, which upon translation and rescaling is placed on the page. The terminal symbols
at the leaves are character glyphs with the usual font metric information as attributes. Each
rule of the grammar is attributed with functions describing the coordinate transformation
between symbols on the left and right sides of the rule. Noise can in fact be incorporated
within this generative process. The imaging model is completed by the addition of a channel,
which can be a bit-
ip noise as before.

Due to the coordinate functions which adorn each grammatical rule, this frame-
work is quite general, essentially equivalent to many document formatters [1]. This SCFG
formulation is likely to be suÆciently powerful to handle any layout analysis task of interest
within the context of DID.

Decoding algorithms within this framework are derived from methods for parsing
SCFGs, which in turn are closely related to standard methods for parsing CFGs. Back-
ground material on regular and context-free grammars can be found in Hopcroft and Ullman

18

[110], Grune and Jacobs [111], and R�ev�esz [112], and the stochastic versions are described
by Charniak [113], and Manning and Sch�utze [92]. In brief, chart-like parsing methods
which have a dynamic programming basis are typically used. The use of probabilities in
addition provides a natural means of dealing with possible ambiguity of the parse.

The extra power o�ered by this SCFG basis for DID has been demonstrated chie
y
in the realm of recognition of mathematical expressions [100, 114]. The main drawback of
these methods is their computational complexity, which grows as N5=2, where N is the
number of image pixels6. Their utility for general page layout analysis tasks has thus been
limited. The possibility of using heuristics as in the work by Kam and Kopec [94] has yet
to be explored. One of our key contributions in this thesis is to provide a
exible layout
analysis method within the DID framework that nevertheless has linear time complexity.

6The exponent varies with the number of attributes, so N5=2 is in fact a lower bound.

19

Chapter 3

Introduction to Turbo Recognition

Turbo recognition (TR) is a communication theory based approach to page lay-
out analysis in the tradition of Document Image Decoding (DID), which was described in
the preceding chapter. As in the most common implementations of DID, TR is based on
stochastic �nite state machines (Markov sources). TR di�ers from this prior work in fo-
cussing on page layout rather than character recognition. As described below, this entails a
slight modi�cation of the DID communication channel framework, and the character of the
decoding algorithm changes from being a single pass algorithm to an iterative one. Among
its prominent features, TR is

� EÆcient (linear complexity)

� Nearly optimal

� Rapidly retargetable

The linear time complexity is achieved at the cost of some loss in generality, relative for ex-
ample to two-dimensional stochastic context free grammars. Nevertheless, TR is applicable
to many common layouts, and it is hoped that its eÆciency and relative ease of use may
spur the further development of such DID-based methods for layout analysis.

In this chapter, we introduce turbo recognition from several points of view. We
begin with a brief discussion of turbo decoding, a recent development in communication
theory, and describe its relation to TR. We review the communication system view of
TR, before turning to a description of the image generation process in more detail. We
then describe TR decoding in general terms, both operationally and algorithmically. We
illustrate the decoding process by tracing through a run of TR on a simple example. The
decoding algorithm is most easily derived using the message-passing formalism of graphical
models (Appendix B), as we describe in the next chapter.

3.1 Relation to turbo codes

Turbo recognition is closely related to turbo decoding1, and we brie
y describe
turbo codes here. The connection appears most explicitly in the decoding algorithms,

1TR can in fact be viewed as a highly specialized form of turbo decoding.

20

which we discuss in Chapter 4.
Turbo coding for the communication problem was discovered in 1993 by Berrou et

al. [115]. Compared to state-of-the-art convolutional codes, turbo codes can achieve a far
lower bit error rate on channels with a given signal-to-noise ratio (10�5 vs. 10�2, at 1.7 dB),
or conversely, reliable coding on channels with a far worse signal-to-noise ratio (bit error
rate 10�5 at 1.7 dB | within 0.5 dB of the Shannon limit of 1.2 dB | vs. 4.0 dB). Turbo
codes consist of two parallel convolutional codes (Frey [116], Heegard and Wicker [117]).
The �rst convolutional code encodes the bit sequence as usual, while the second encodes a
permutation of the original sequence. In this way, error patterns which are diÆcult for one
of the codes to correct may be easy for the other code to correct. For example, burst errors
with respect to one code appear as isolated errors to the other.

In TR, we apply this insight and the general methodology of turbo coding to the
recognition of layout structure in document images. Transposition of the image, horizontal
to vertical, plays the role of the permutation in turbo coding. To make the analogy explicit,
consider two ways of ordering image pixels into a one-dimensional sequence. The �rst is
row-wise, with the pixels ordered left-to-right within a row, starting from the top row and
ending with the bottom row. The second is column-wise, with the pixels ordered from
top-to-bottom within a column, starting with the left-hand column and ending with right-
hand column. These two sequences provide \orthogonal" views of the source data, in close
analogy to turbo codes. This enhances the noise robustness of TR, since information in
the horizontal direction can be brought to bear on the interpretation of structure in the
vertical direction, and vice versa. The precise manner in which this feedback occurs will be
described further below.

Figure 3.1: Examples of Manhattan layouts.

Layout structure in TR is described by two grammars, corresponding to the two
convolutional encoders in turbo coding. Since these grammars act independently in orthog-
onal directions, TR is targeted principally at Manhattan layouts (see Figures 3.1 and 1.2),
although TR may be useful in analyzing more general layouts as well. As a result, a typical
application of TR requires that the input (\observed") image is approximately aligned on
a rectangular grid. We take the point of view that it is easier to deskew an image than it
is to decode detailed structure within it. For the time being, existing techniques should be
suÆcient to accomplish the necessary alignment.

21

Encoder
(h)

Channel
(h)

Channel
(v)

Encoder
(v)

U

U

Source Reconciler Decoder
Y Û

X
(h)

X
(v)

Y

Y

(h)

(v)

Figure 3.2: A communication system view of turbo recognition.

3.2 A communication system view of TR

The communication system view of TR is shown in Figure 3.2. This can be viewed
as a specialization of the general DID framework given in the previous chapter (Figure 2.1),
targeted to a particular class of page layouts. As in DID, all of the elements in this �gure
except for the decoder amount to a generative model for images. A single source message
U , viewed now as a two-dimensional �eld, is encoded into two ideal images X(h) and X(v)

(where the superscripts h and v stand for \horizontal" and \vertical," respectively). These
images are transmitted through separate noise channels, resulting in two corrupted images
Y (h) and Y (v). The reconciler passes Y (h) and Y (v) to the decoder as a single image Y if and
only if they are identical. Otherwise the reconciler passes a null image to the decoder. The
objective of the decoder is to recover the message �eld U , given the observed data Y and
prior knowledge (parameters) embodied in the generative model. As before, the minimum
probability of error is achieved when the decoder returns the �eld Û that maximizes the
posterior, Û = argmaxU P (U jY). We will call U the input �eld, X (generically) the output
�eld, and Y the observed �eld.

The redundancy implied by encoding the U image �eld twice, horizontally and
vertically, is in fact a hallmark of turbo coding. If we eliminated the reconciler, and instead
transmitted U , X(h), and X(v) through a single noisy channel (resulting in the receipt of
three images-worth of data at the decoder input2), then the TR image generation scheme
would be a simple form of turbo coding.

Of course, what the decoder receives in practice is a single observed image, not
three images, and this motivates the introduction of the reconciler. As a consequence, the
generative scheme is very ineÆcient, since in the presence of noise, it is quite unlikely that
Y (h) and Y (v) will be identical. Fortunately, our concern is not in generating images. From

2In a typical turbo code, X(h) and X(v) would be \punctured" for eÆciency reasons, reducing the total
amount of data to two times the original amount, instead of three. The convolutional encoders would also
be selected for their error-correcting properties, rather than their ability to describe image layout. Further
details can be found in Frey [116].

22

the decoding point of view, we are only interested in the population of images that succeed
in being produced. The reconciler is a mathematical arti�ce which is necessary for us to
construct a joint probability model for U , X(h), X(v), and Y . It does not appear explicitly
in the decoding algorithm itself.3

The decoding algorithms used by TR are derived from graphical models [118],
as applied in particular to turbo codes [116]. For those readers familiar with the HMM
literature, decoding consists of applications of the forward-backward algorithm, once per
row and once per column, iterated to convergence. As in the case of turbo codes, while
TR is not guaranteed to recover the optimal result, 4 TR produces results that are nearly
statistically optimal. These points will be described in detail in following chapters.

We now consider the decoding problem in more detail to gain some intuition into
the problem. Note that a valid input message U must now satisfy (i.e. be accepted by) two
transducers instead of the usual one. Let LH (LV) denote the set of images whose rows
(columns) all drive the horizontal (vertical) transducer into its accepting state(s). The prior
distribution on U , P (U jLH ; LV), can then be considered as a distribution P (U) restricted
to the intersection of LH and LV .

The decoding problem is to �nd the message image Û maximizing the posterior
distribution P (U jY;LH ; LV). This is a hard problem in general, but if Y is not the null
image (which of course is always the case in practice) then we have e�ectively observed Y H

and Y V (since Y H = Y V = Y), so that Y H ! XH ! U ! XV ! Y V is a Markov chain.
Then the problem is to �nd the message image Û maximizing the posterior distribution
P (U jY H ; Y V ; LH ; LV) in

P (U jY H ; Y V ; LH ; LV)P (Y V ; LV jY H ; LH)

= P (U; Y V ; LV jY H ; LH)

= P (Y V ; LV jU)P (U jY H ; LH)

=
Y

j

P (Y V
j ; LVj jUj)

�P (Uj jU1; : : : ; Uj�1; Y
H ; LH)

=
Y

j

P (Y V
j ; LVj jUj)

�
Y

i

P (Ui;jjUi;1; : : : ; Ui;j�1; Y
H
i ; LHi)

�
Y

j

P (Y V
j ; LVj jUj)

�
Y

i

P (Ui;jjY
H
i ; LHi): (3.1)

Here, j is a column index, Uj is the jth column of the image U , LVj is the event that Uj
drives the vertical transducer into an accepting state, and Y V

j is the jth column of the

3A similar modeling philosophy applies in the use of HMMs for speech recognition. Few speech researchers
would suggest that Markov models are faithful representations of human speakers, and yet such models have
proven to be adequate for many recognition tasks.

4See Weiss and Freeman [119] for theoretical progress on this point.

23

observed image Y V . Likewise, i is a row index, Ui is the ith row of the image U , LHi is the
event that Ui drives the horizontal transducer into an accepting state, and Y H

i is the ith
row of the observed image Y H . Finally, Ui;j is the (i; j)th pixel of the image U . Now, (3.1)
is maximized over U by maximizing

P (Y V
j ; LVj jUj)

Y

i

P (Ui;j jY
H
i ; LHi)

independently for each column Uj of U . For this purpose, the product distribution
Q

i P (Ui;jjY
H
i ; LHi)

provides a prior on the column Uj . Each factor in this product is the marginal posterior dis-
tribution P (Ui;jjY

H
i ; LHi), which can be found by the forward-backward algorithm through

the horizontal trellis for row i.
The approximation in (3.1) is exact when Ui;j is conditionally independent of

Ui;1; : : : ; Ui;j�1 given Y H
i ; LHi . This will be true if paths through the trellis beginning

Ui;1; : : : ; Ui;j�1 have probability one, i.e., if one path takes all the probability. Thus the
approximation will be good if the posterior distribution of U given Y H ; LH is sharply peaked.
Intuitively, by feeding in the posterior distribution of the horizontal decoding as the prior
distribution of the vertical decoding, the posterior distribution becomes more peaked. This
leads to the iterative algorithm, in which the posterior distribution of the vertical decoding
is then fed in as the prior distribution of the horizontal decoding, whereupon the process is
repeated until convergence.

As mentioned previously, the convergence properties of the turbo decoding algo-
rithm itself have yet to be fully understood. The empirical success of turbo codes encourages
us to believe that this framework achieves high performance in the image recognition context
as well.

3.3 TR image generation in detail

We now turn to a more detailed description of the encoder and channel which form
the core of the TR generative model. These components will be combined to form a uni�ed
probabilistic model in Chapter 4.

The encoders are modeled as �nite-state transducers (FSTs)5, which can be thought
of as translating a one-dimensional sequence of symbols in some input alphabet to a corre-
sponding sequence in an output alphabet. A more detailed treatment of FSTs is given in
Appendix A. For example, the horizontal FST in Figure 3.3a accepts input sequences,
construed as coming from an image row, that are described by the regular expression
a+ j b+c+b+, and it emits corresponding output sequences 0+ j 0+1+0+. Similarly, the
vertical FST in Figure 3.3b accepts input sequences a+(b+jc+) a+ , construed as coming
from an image column, and it also emits output sequences 0+ j 0+1+0+ .

We now imagine having one horizontal FST on each image row, and similarly one
vertical FST on each image column. The only two-dimensional input images (thought of as
generalizing one-dimensional sequences) that are consistent with both collections of FSTs
are those having the layout shown in Figure 3.4. If we interpret the output symbol \1"

5Non-�nite state machines, such as recursive transition networks, could also be used in principle, although
a di�erent decoding algorithm would be required.

24

0

b/0

a/0

b/0

a/0

b/0 c/1 b/0

c/1

1

2 3 4

0
a/0

c/1

3

b/0

2 a/0

4

a/0

1

a/0b/0

a/0c/1

(a) (b)

Figure 3.3: Finite state transducers: (a) horizontal; (b) vertical. The start state is labeled 0 in both
instances, and accepting states are marked with double circles. Transitions are labeled with an input and
output symbol in the format \input/output".

A

B C B

A

Figure 3.4: Sample layout described by the FSTs in Figure 3.3. All of the pixels in a given rectangular
region are meant to be labeled by the symbol in its center.

as \black" and the symbol \0" as \white," we see that the FSTs translate such an input
image into a single black rectangle on a white background. Note that while a and b are
both mapped to the output symbol 0, they are not redundant. If, for example, all instances
of b were replaced by a in the above grammars, then an amorphous shape, and not just
rectangles, would be considered grammatical6.

To summarize, the horizontal encoder in the communication system view of TR
(Figure 3.2) is a collection of identical horizontal FSTs, one per row. Similarly, the vertical
encoder is a collection of identical vertical FSTs, one per column. The two sets of FSTs
taken together de�ne the class of layouts that can be generated (and conversely, decoded)
by the given TR model.

Figure 3.5 illustrates explicitly how the 2D message �eld U is encoded into the
noise-free output image X7. Each horizontal FST converts a row of the input �eld U into

6Such simple \blob" grammars in fact exhibit some nice properties, as described in Sections 7.1.4 and
8.6.

7Strictly speaking, we should be referring to two images X(h) and X(v), and these two images in fact
need not be identical (only Y (h) and Y (v) must be identical). For pedagogical purposes, it is simpler to just
treat X(h) and X(v) as identical for now.

25

aaaaaaaaaaaaaa
aaaaaaaaaaaaaa

bbbccccccccbbb
bbbccccccccbbb
bbbccccccccbbb
bbbccccccccbbb
bbbccccccccbbb
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa

bbbccccccccbbb
bbbccccccccbbb

00000000000000
00000000000000
00011111111000
00011111111000
00011111111000
00011111111000
00011111111000
00011111111000
00011111111000
00000000000000
00000000000000

U X
Figure 3.5: The two-dimensional input message �eld U is encoded by the horizontal and vertical FSTs
row-by-row and column-by-column into separate copies of the output image X.

(a) (b)

Figure 3.6: (a) Source image with one rectangle; (b) a sample noisy version.

a corresponding row of X, and each vertical FST converts a column of the input �eld U
into a column of X. The encoding redundancy is again clear. Note that each FST is acting
independently of the others. The reconciler (two steps later in the generation process) is
the only part of the process that enforces consistency of the horizontal and vertical outputs.
The decoding algorithm deals with this independence through an iterative process, as we
shall see.

Image encoding is thus largely a deterministic process. A stochastic element is
introduced into encoding only when two or more outgoing edges from a given state are
labeled with the same input symbol. This is described more fully in Chapter 4.

As in DID, the main stochastic element in the TR model is the channel (or hori-
zontal and vertical channels, to be more precise). We follow typical DID practice and take
the channel to be simple independent bit-
ip noise, in which each output image pixel is

26

0

1

0’

1’

b10

b01

b00

b11

(a)

c

a

b

0’

1’

(b)

Figure 3.7: (a) Deterministic relation between U and X; (b) Noise channel between X and Y .

stochastically mapped to an observed image pixel. The e�ect of the channel is illustrated in
Figure 3.6. The channel is speci�ed completely by the conditional probability distribution
P (Y jX), which factorizes in this case into a product over pixels. For example, suppose both
X and Y are binary images, and the noise process is a simple symmetric bit-
ip channel.
Then the conditional probability of Y given the ideal image X is

P (Y jX) =
Y

i

(yi(1� �)xi�(1�xi) + (1� yi)�
xi(1� �)(1�xi))

where � is the bit-
ip probability (i.e. � = P (1j0) = P (0j1)), xi and yi take on the values
0 or 1, and i is an index which runs over all pixels in the image.

In general, the channel can be speci�ed by an n�m array bkl � P (Y = ljX = k),
where n is the size of the output alphabet, m is the size of the observed alphabet, and
(in a slight abuse of notation) l indexes the observed alphabet, and k indexes the output
alphabet. b thus satis�es the constraint

P
l bkl = 1. At present, we set b manually, based

roughly on the density of black pixels we expect to see in the image.
The channel adds considerably to the expressive power of TR models. We will in

fact exploit the capabilities of the channel to model clean images of text in Chapter 8.
We can summarize the encoding and channel transmission steps with Figure 3.7.

The input image U is encoded in a largely deterministic manner into the output image X
(Figure 3.7a). X is then subjected to a stochastic noise process (Figure 3.7b), to appear as
the observed image Y . Given such a generative framework, a key question that remains is
its expressiveness in describing layout. We consider this in detail in Chapter 7 and following
chapters.

3.4 TR in the context of DID

Here we brie
y attempt to place TR within the larger context of DID. DID is
meant to be a framework for DIA tasks in general. In principle, massive DID models could

27

be developed that incorporate knowledge of the physical and logical processes underlying the
formation of page images, at the level of pixels, characters, words, lines, pages, documents,
natural language, etc. At the same time, specialized DID models could be developed to
handle small snippets of such a massive scheme, such as the analysis of image skew8.

TR is intermediate between the massive and the specialized, and aims to be a
reasonably general purpose layout analysis method. It is targeted mainly at analyzing
structure on the scale of the full page image, although the length scale of interest in TR
can vary with image resolution, amongst other things. At the low end, TR models could
be extended by incorporating DID character models, and at the other end, TR models
could themselves be embedded in higher-level models of document structure, where the
grammatical basis of TR may be useful in this regard.

As mentioned earlier in Section 2.2.4, powerful DID layout analysis techniques
have been developed based on stochastic context free grammars [1]. These have been ap-
plied primarily to recognition of mathematical expressions [100, 114], which provides a
particularly challenging 2D layout analysis problem. Related work has also been done by
the author [120] using two-dimensional rectangular grammars [121]. The time complexity
of these methods is relatively high (at least O(N5=2)), preventing them from seeing much
practical use. Similar sentiments about the diÆculty of using context-free (and context-
sensitive) grammars for layout analysis have been expressed by Conway [122]. The linear
time complexity of TR makes it considerably more attractive as a layout analysis method.

In previous applications of DID, such as the character recognition of text lines, the
source message has been conceived of as a linear sequence of symbols. The description in
terms of parse trees of more complex structures such as mathematical expressions is arguably
also naturally linearizable. TR focuses on decoding two-dimensional regions (\shapes"), and
the source message in this case is much more naturally thought of as a two-dimensional �eld
instead of a one-dimensional sequence.

On a related note, previous work in DID concentrated on decoding to the level of
characters. There was no direct way to extract higher level physical and logical concepts
such as \text column" and \title zone." Such structural concepts emerged only as a side
e�ect of decoding a page at the character level (cf. the yellow pages example in the original
DID paper [2]). While TR is in a sense lower level than such previous work, in that the
symbols that make up the source message are at the pixel level, an important contribution
of TR is to provide a way of introducing language appropriate to the page layout analysis
task into the DID framework, through its imaging model based on two regular grammars.

3.5 TR operationally

In this section we summarize TR operationally by describing the input and output
of a typical TR decoding run. The inputs are the prior probability of the input �eld U ,
the �nite state transducers (grammars), the noise channel, and the observed image. The
output typically is the estimate Û represented as a 2D image. We now go through each of
these in turn.

8The work of Kam and Kopec [94] on baseline �nding points to some of the possibilities in this direction.

28

% One column horizontal grammar

% 0 | 121, where 2 is the only printing symbol.

%

NTRANSITIONS 8

NINSYMBOLS 3

NOUTSYMBOLS 2

FROM S0 TO A1 IN 0 OUT 0 PROB 1.0

FROM A1 TO A1 IN 0 OUT 0 PROB 1.0

FROM S0 TO B1 IN 1 OUT 0 PROB 1.0

FROM B1 TO B1 IN 1 OUT 0 PROB 1.0

FROM B1 TO B2 IN 2 OUT 1 PROB 1.0

FROM B2 TO B2 IN 2 OUT 1 PROB 1.0

FROM B2 TO B3 IN 1 OUT 0 PROB 1.0

FROM B3 TO B3 IN 1 OUT 0 PROB 1.0

START S0

FINAL A1 B3

Figure 3.8: File representation of the FST corresponding to the standard one-column grammar,
0+j1+2+1+.

% One row vertical grammar

% 010 | 020, where 2 is the only printing symbol.

%

NTRANSITIONS 12

NINSYMBOLS 3

NOUTSYMBOLS 2

FROM S0 TO A1 IN 0 OUT 0 PROB 0.5

FROM A1 TO A1 IN 0 OUT 0 PROB 1.0

FROM A1 TO A2 IN 1 OUT 0 PROB 1.0

FROM A2 TO A2 IN 1 OUT 0 PROB 1.0

FROM A2 TO A3 IN 0 OUT 0 PROB 1.0

FROM A3 TO A3 IN 0 OUT 0 PROB 1.0

FROM S0 TO B1 IN 0 OUT 0 PROB 0.5

FROM B1 TO B1 IN 0 OUT 0 PROB 1.0

FROM B1 TO B2 IN 2 OUT 1 PROB 1.0

FROM B2 TO B2 IN 2 OUT 1 PROB 1.0

FROM B2 TO B3 IN 0 OUT 0 PROB 1.0

FROM B3 TO B3 IN 0 OUT 0 PROB 1.0

START S0

FINAL A3 B3

Figure 3.9: File representation of the FST corresponding to the standard one-row grammar,
0+1+0+j1+2+1+.

29

% Stochastic mapping from two output symbols to two observed symbols.

NOUTSYMBOLS 2

NOBSSYMBOLS 2

0.999 0.001 0.1 0.9

Figure 3.10: Sample channel �le describing the stochastic mapping from output symbols to observed
symbols, where the �rst two entries correspond to the �rst output symbol, and the following two entries
correspond to the second.

We take the prior probability of the input �eld U to factorize into a product of
pixel-wise probabilities, equal to the uniform distribution P (uij) = 1=n, where i and j are
image row and column indices, uij is the input symbol at pixel position (i; j), and n is
the size of the input alphabet. Other possibilities such as the incorporation of \linguistic"
constraints can often be accomplished simply within the formalism.

The horizontal and vertical FSTs are speci�ed in two separate �les, examples of
which are shown in Figures 3.8 and 3.9. Each �le gives the total number of transitions in
the FST, the size of the input and output alphabets, and a list of transitions, each described
by its begin and exit states, the input and output labels, and a transition probability. This
probability is for the most part equal to one, for reasons described in the next chapter.
The regular expression at the top of each �le gives the the grammar on the input alphabet
which is satis�ed by each machine (where for coding convenience we have remapped the
input alphabet from alphabetic fa; b; c; : : :g to numeric f0; 1; 2; : : :g).

The noise channel is speci�ed by an array of bit-
ip probabilities where each entry
pkl is the probability that output symbol k appears as observed symbol l. These probabilities
satisfy the constraint

P
l pkl = 1. An example channel �le is shown in Figure 3.10, where

we sweep through the array of probabilities in row-major order. At present we set these
parameters manually, based roughly on the level of noise we expect to see in the image. We
will have more to say about this aspect of TR modeling in a later chapter.

In our present implementation, the observed image is a binary image. For layout
analysis purposes, it is often suÆcient to use low-resolution versions of the original images.
The dimensions of these images are typically 100 to 300 pixels across, corresponding to a
(linear) reduction of about 10 times in size. As mentioned earlier, we assume the image has
been preprocessed to remove any skew.

Our policy for stopping the turbo iterations is to simply inspect the current best
estimate Û = argmaxU P (U) and stop when this reaches a stable value. In runs with a large
number of images, we stop after a number of iterations which has been �xed by inspecting
the performance of TR on similar images. In all cases so far, the number of iterations ranges
from two to seven. More sophisticated policies, such as keeping track of the likelihood of
the current Û , are easily envisioned.

We have found two failure modes for our current TR implementation. One is the
presence of oscillations, in which the horizontal and vertical passes alternate between two
di�erent Û con�gurations. This is theoretically allowed9, although in our experience, this
happens rarely, and only on very small images. The second failure mode is the occurrence
of non-normalizable probabilities. Normally the decoding algorithm evaluates quantities at

9See the next section, and the following chapter.

30

each pixel which can be interpreted as probabilities (see Chapter 4), which in particular can
be normalized to sum to one. However, if all of the quantities evaluate to zero, then this
correspondence no longer holds, and the algorithm fails. This is most likely a computational
issue (under
ow), which we are presently investigating. This failure mode tends to occur
on larger images with complex layouts.

An additional subtlety in our present formulation is the use of deterministic an-
nealing, which helps to damp out both of the failure modes mentioned above. This requires
the speci�cation of a single parameter �, as discussed further in Sections 4.2.6 and 9.4.

The result of the TR algorithm is a quantity termed a belief by Pearl [118], which
can be thought of as a probability distribution over input symbols at each pixel. This result
is typically post-processed to choose the input symbol of maximum belief at each pixel,
resulting in a two-dimensional �eld Û of the same dimensions as the observed image. This
can be considered to be the �nal result of TR decoding.

In summary, the inputs to TR are �les representing the horizontal and vertical
FSTs and the noise channel, plus the observed (scanned) image. Additionally, a prior
probability onU (typically uniform) and a stopping policy (manually determined at present)
must be speci�ed. The output of TR is an image Û, equal in size to the observed image, that
gives the input symbol of maximum belief at each pixel. This image in general summarizes
both the physical and logical layout analysis results of TR.

3.6 TR algorithmically

In this section, we presume familiarity with HMM techniques, as described in stan-
dard textbooks such as Rabiner and Juang [88]. Given this background, the TR algorithm
can be summarized as follows. The algorithm begins with the probability on U initialized
in some fashion (typically to a uniform prior distribution). The P (U) array plays the role
of the transition probabilities in HMMs10. The forward-backward algorithm is then ap-
plied (independently) along each row, which has the result of updating P (U). We call this
one horizontal pass of the TR algorithm. This is followed by a vertical pass, in which the
forward-backward algorithm is applied along each column, using the updated value of P (U).
This then results in a further update to P (U). We call the combination of a horizontal and
a vertical pass one iteration of the TR algorithm. These iterations are continued until P (U)
settles down to some constant value (typically one or zero at each pixel). As mentioned
in the previous section, this convergence is not guaranteed. The horizontal and vertical
passes can cause P (U) to oscillate between two values, though empirically this happens
only rarely.

In summary, the TR algorithm consists of iterative horizontal and vertical passes
of the forward-backward algorithm, which communicate with each other through updates
on P (U), this having the e�ect of biasing the transition probabilities for the orthogonal

10More precisely, P (U) plays the role of a transition probability at each pixel. If P (U) varies spatially,
then the model becomes akin to an inhomogeneous Markov chain, rather than a static HMM per se. For
completeness, we also mention that the stochastic FSTs used in TR have transition probabilities, just like
HMMs, but typically these are uninteresting, having a (static) value of one for the most part, as described
elsewhere.

31

Figure 3.11: Noisy observed image.

pass.

3.7 Example run

Here we illustrate the progress of a TR run in a visual manner. Suppose we are
given the noisy image shown in Figure 3.11. We attempt to decode this image using a
standard one-rectangle grammar, a+ j b+c+b+ horizontally, and a+(b+ j c+)a+ vertically.
Suppose we begin with a column pass. In this case, decoding along each column corresponds
to �nding the (at most) one best interval of black which explains the observed data along
that column.

The result after applying the forward-backward algorithm to all the columns in
the image is shown in Figure 3.12a. Intuitively, the TR algorithm is \denoising" the image
by �nding either zero or one interval of black pixels within each column. While from a
pedagogical standpoint, this is quite adequate, we point out some subtleties to prevent mis-
understanding. First of all, we emphasize that the TR algorithm is updating a probability
distribution, so in fact using a single image to represent the progress of the algorithm is
somewhat misleading. TR proceeds iteratively without making any hard decisions about
which image is \best" at any intermediate step. The image that we present is for illus-
trative purposes only, and is the maximum of the calculated posterior probability (or the
maxproduct analog thereof) at every pixel. This is shown in two ways, in terms of the input
alphabet fa; b; cg on the left, and then as a binary image on the right, where the c pixels
are shown in black, and the remaining pixels are shown in white (see Figure 3.12a). Finally,
we note that some of the columns are solid white, although it would appear that a single
interval of black pixels somewhere in the column would better describe the observed data.
This arises because more than one optimal decoding exists, so when combined together,
neither dominates, and in fact the \blank" column solution wins out11.

After the vertical pass is completed, the posterior probability P (U) is updated
(where again U is a 2D collection of variables, one at each image pixel, whose domain
is the set of input symbols). This e�ectively changes the transition probabilities for the

11This is related to the fact that the maxproduct algorithm (see Chapter 4 and Appendix B) does not
necessarily produce a grammatical result when there are two U �elds which are equally likely (i.e. there are
\ties" in the probability score).

32

a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a
a a a a c a a a a a a a a a a a
a a a a a c c c c a c c a a a a
a a a a a c c c c c c c a a c a
a a a c a c c c c c c c a a c a
a a a a a c c c a c c c a a a a
a a a a a c c c a c c c a a a a
a a c a a c c c a c c c a a a a
a a c a a c c c a a c c a a a a
a a a a a a a a a a c a a a a a
a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a

(a)

a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a
b b b c c c c c c c c c b b b b
b b b b b c c c c c c c b b b b
b b c c c c c c c c c c c c c b
b b b b b b c c c c c c b b b b
b c c c c c c c c c c c b b b b
b b b b b c c c c c c c b b b b
b c c c c c c c c c c c b b b b
a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a

(b)

Figure 3.12: Representation of the TR result after the �rst (a) vertical and (b) horizontal pass.

transducers involved in the horizontal pass. The result of the horizontal pass is illustrated
in Figure 3.12b (subject to the same caveats as mentioned above for the vertical pass).

The results for the vertical and horizontal passes in the second TR iteration are
illustrated in Figure 3.13. This shows the algorithm has proceeded quite far in producing
a one-rectangle interpretation of the original image, although there remain some features
which satisfy the grammar in one direction but not in the orthogonal one.

In this case, four TR iterations are required to converge to a stable solution, which
is illustrated in Figure 3.14. This indeed turns out to equal the ground truth rectangle which
was corrupted to produce Figure 3.11.

33

a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a
b b b b b c c c c a c c b b b b
b b b b b c c c c c c c b b b b
b b b b b c c c c c c c b b b b
b b b b b c c c c c c c b b b b
b b b b b c c c c c c c b b b b
b b b b b c c c c c c c b b b b
b b b b b c c c c a a c b b b b
a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a

(a)

a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a
b b b b b c c c c c c c b b b b
b b b b b c c c c c c c b b b b
b b b b b c c c c c c c c c c b
b b b b b c c c c c c c b b b b
b b b b b c c c c c c c b b b b
b b b b b c c c c c c c b b b b
b b b b b c c c c c c c b b b b
a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a

(b)

Figure 3.13: TR result after the second (a) vertical and (b) horizontal pass.

34

a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a
b b b b b c c c c c c c b b b b
b b b b b c c c c c c c b b b b
b b b b b c c c c c c c b b b b
b b b b b c c c c c c c b b b b
b b b b b c c c c c c c b b b b
b b b b b c c c c c c c b b b b
b b b b b c c c c c c c b b b b
a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a

(a)

a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a
b b b b b c c c c c c c b b b b
b b b b b c c c c c c c b b b b
b b b b b c c c c c c c b b b b
b b b b b c c c c c c c b b b b
b b b b b c c c c c c c b b b b
b b b b b c c c c c c c b b b b
b b b b b c c c c c c c b b b b
a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a

(b)

Figure 3.14: TR result after the fourth (a) vertical and (b) horizontal pass.

35

Chapter 4

A Graphical Model Formulation of

Turbo Recognition

In this chapter, we treat turbo recognition within the framework of graphical
models, an approach to statistical modeling that recently has attracted much interest in
the statistics, arti�cial intelligence, and communication theory communities, amongst others
[118, 116]. Although long-standing methods exist for performing probabilistic inference for
HMMs [88], for example, which are closely related to the TR model, we have found that
TR is suÆciently subtle that it is worthwhile to invoke graphical model techniques. In
particular, we follow a straightforward recipe known as message passing in order to derive
the TR decoding equations, which form the basis for our software. We are aided in this by
the fact that essentially the same methods have already been used to treat turbo decoding, as
developed by Kschischang and Frey [123] and McEliece et al. [124]. Our formulation follows
the one given in the book by Frey [116]. We assume some familiarity with prerequisite work
in this area in order to keep this chapter brief. Appendix B provides a succinct summary
of graphical models.

4.1 The TR graphical model

The TR graphical model is a set of nodes and arcs, where the nodes represent
probabilistic variables and the arcs denote conditional probability relationships between
them. While graphical models look quite similar to other graphical objects that appear in
this thesis1, in particular FSTs (see Section 3.3 and Appendix A), they are in fact quite
di�erent. For example, a node in an FST represents a single distinct state. In contrast, a
state node in the TR graphical model is a probabilistic variable whose domain is the set

of FST states. We can think of one state node as roughly equivalent to the FST nodes all
\collapsed" into one.

The ingredients of the TR graphical model are illustrated schematically in Figure
4.1. These include the input �eld U, the horizontal output �eld X(h), and the horizontal

1A third graphical representation that often appears in the literature is known as a trellis, which is
described in Appendix A.

36

aaaaaaaaaaaaaa
aaaaaaaaaaaaaa

bbbccccccccbbb
bbbccccccccbbb
bbbccccccccbbb
bbbccccccccbbb
bbbccccccccbbb
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa

bbbccccccccbbb
bbbccccccccbbb

U

00000000000000
00000000000000

00011111111000
00011111111000
00011111111000
00011111111000
00011111111000
00000000000000
00000000000000

00011111111000
00011111111000

Y
(h)

X
(h)

00001010000000
01000000010000
00011100111000

00001110101000
00011011111000

00011101101000
00010111110000
00000010000000

00010111110010

00011111111100

00000110010000

(a)

0

b/0

a/0

b/0

a/0

b/0 c/1 b/0

c/1

1

2 3 4011111111111111
011111111111111

022233333333444
022233333333444
022233333333444
022233333333444
022233333333444
011111111111111
011111111111111

022233333333444
022233333333444

S
(h)

(b)

Figure 4.1: The ingredients of the TR graphical model. (a) Sample con�gurations of the input �eld U, the
horizontal output �eld X(h), and the horizontal observed �eld Y(h). A separate probabilistic variable resides
at each pixel position, whose domain is the alphabet (input, output, observed) associated with the type of
�eld to which it belongs. (b) Sample con�guration of the horizontal state �eld S(h), where the numbers refer
to the node labels of the FST shown on the right. The vertical �elds X(v), Y(v) and S(v) are not shown in
this �gure.

37

0S S1 S 2

0U U1

0X

0Y

X 1

Y 1

... ...
S i

Y i

X i

S i+1

U i

S L−1

UL−1

S L

X L−1

Y L−1

Figure 4.2: Initial TR graphical model for one row.

observed �eld Y(h), all of which are equal size two-dimensional arrays of variables, whose
domains are their respective alphabets (the vertical �elds X(v) and Y(v) are not shown).
In addition, there is a horizontal state �eld S(h) (and corresponding vertical version S(v)),
which is a two-dimensional collection of variables, each of whose domain is the set of FST
states. We are guided in this choice of variables by previous work in the literature on HMMs
and turbo codes. Alternative choices can be made, such as using the FST transitions instead
states as random variables, and it may be of interest to explore such options in future work,
for clarity of presentation and possible generalizations.

In the previous chapter (Section 3.3), we described the relationship between U

and X(h) as being mediated by a set of FSTs (one per row). In the present graphical model
formulation, this relationship is mediated by the �eld S(h), which indicates the (horizontal)
FST state at each pixel. The relationship between X(h) and Y(h) is mediated by a noise
channel, which acts independently at each pixel. Analogous statements hold in the vertical
direction.

We note that the U, X, and Y �elds that appear in Figure 4.1a are just sample
con�gurations of those �elds. The total number of con�gurations that the U �eld can take
(and hence the size of the space on which P (U) is de�ned), for example, is j�U j

N , where
j�U j is the size of the input alphabet, and N is the number of pixels in the image.

The complete TR graphical model is diÆcult to visualize. For descriptive purposes,
we focus instead on a one-dimensional slice of the full model2, say that part corresponding
to the image row that is outlined in Figure 4.1a. The corresponding submodel is shown
in Figure 4.2. For convenience, we refer to node variables collectively as ~U , ~S, ~X, and ~Y ,
and to the individual nodes generically as Ui, Si, Xi, and Yi, where i indexes pixel position
within the row. Since ~Y corresponds to the observed image pixels, i ranges from 0 to L� 1
for the Ui, Xi, and Yi variables, where L is the width of the image. For the state variables
~S, i ranges from 0 to L (i.e. one more than the other variables), since the variables Ui

2TR however cannot be said to decompose into these 1D components, since they are highly connected to
each other.

38

and Xi (and correspondingly the observed image pixels Yi) are emitted on the transitions
between states3.

The graph in Figure 4.2 is a shorthand notation that describes the probability
distribution of the node variables, P (~U; ~X; ~Y ; ~S)4. The arrows can be thought of roughly
as describing cause-and-e�ect relationships. The variables Si and Ui jointly in
uence (and
largely determine) both Si+1 and Xi, re
ecting the operation of the stochastic FST. The
observed symbol Yi is a stochastic function of Xi alone.

Since the root nodes S0 and ~U have no incoming arrows, they enter the overall
probability distribution via a product of priors for each one. The remaining variables then
enter via conditional probabilities determined by the directed arrows in the graph. The
structure of the overall probability distribution implied by the graphical model in Figure
4.2 is then of the following form:

P (~S; ~U; ~X; ~Y) � P (S0; U0;X0; Y0; : : : ; SL�1; UL�1;XL�1; YL�1; SL)

= P (S0)P (U0)P (S1jS0; U0)P (X0jS0; U0)P (Y0jX0) : : : P (UL�1) �

P (SLjSL�1; UL�1)P (XL�1jSL�1; UL�1)P (YL�1jXL�1)

It turns out that in all of our TR models so far, Si and Ui together determine
a unique value of Xi (although not necessarily the FST transition per se). Therefore, to
streamline the presentation somewhat, we subsume the noise channel into a direct relation-
ship between the pair (Si; Ui) with Yi, in e�ect removing Xi from the model5.

An eÆcient method for performing inference (i.e., updating the probability model
when some variables have been observed) in graphical models is known as message passing.
In order for message passing to be guaranteed to work, the graphical model should have
no loops, when the directions of the arrows are ignored [118]. This is to ensure both the
convergence and the correctness of the message passing algorithm. In order to eliminate
the loops in Figure 4.2, we use a trick called \node duplication" [116]. This is shown in
Figure 4.3 for the loop involving U0, S0, S1 and X0. We add a redundant node U 0

0, which is
understood to be identical to U0, i.e., P (u

0

0ju0) = Æ(u00ju0), where Æ(u
0

0ju0) is the Kronecker
delta function. If we combine the pair of variables (S0; U

0

0) to form a new random variable
Z0, the small loop in the model is eliminated. When the same transformation is done for
each pair of variables (Si; Ui)

6, then the TR graphical model becomes that shown in Figure
4.4. It is on this model that we will do message passing.

4.2 Derivation of the TR message passing equations

Given the graphical model shown in Figure 4.4, the TR decoding algorithm can be
derived straightforwardly as an application of the message passing formalism. The general

3It is thus a slight misstatement to say that \S represents the FST state at each pixel." Rather, it
represents the FST state between pixels.

4As mentioned in Appendix B, the graph is more accurately a shorthand for a whole family of probability
distributions, whose structure is constrained by the connectivity of the graph.

5More formally, we can marginalize Xi away:
P

xi
P (xijsi; ui)P (yijxi) = P (yijsi; ui).

6This is not done for i = L, since there is no UL variable, so that ZL is simply SL, the state of the FST
at the end of the row.

39

0S S 1

0X

0U

0X

S 1

0U

0Z

0X

0S S 1

0U

0Z

0U’

Figure 4.3: The duplicating node trick to get rid of a loop.

Z 0 Z 1 Z 2

0U U U1 2

X X X0 1 2

... ...

U

Z i

X i

i

X L−1

Z L−1

UL−1

Z L

Figure 4.4: Final TR graphical model for one row, where Z � (S; U 0).

form of message passing is described in Appendix B. Here we concentrate on applying the
general equations to the TR context.

4.2.1 Global TR model, and more loops

Up to this point, we have focussed on treating one-dimensional slices of the TR
model, and for the most part we will continue to do so. In this section, we brie
y step back
to describe the TR model in its entirety.

Figure 4.5 summarizes schematically the entire TR graphical model7 (where again
the X nodes have been marginalized away, as described in the previous section). The
Y (h) node represents the observed image (or more precisely, the set of random variables
corresponding to the observed image pixels), as viewed by the horizontal FSTs. Similarly,
Y (v) (which when instantiated happens to equal Y (h)) represents the observed image pixels
as seen by the vertical FSTs. Z(h) and Z(v) represent the collection of horizontal and

7The book by Frey [116] gives a more detailed representation of essentially the same graphical model for
turbo codes, and the reader may �nd it interesting to compare the two.

40

Z
(h)

(v)
Y

(v)
Z

Y
(h)

U

Figure 4.5: Schematic representation of the entire TR graphical model.

vertical FST state variables at all pixel positions, respectively. The U node represents the
set of input symbol (message) variables, which are in one-to-one correspondence with the
observed image pixels. The horizontal and vertical passes in TR are chie
y concerned with
updating P (U). In so doing, they permit the two portions of the graph, corresponding to
the horizontal and vertical transducers, to communicate with each other (roughly speaking).

Given that the U node has two children, Z(h) and Z(v), the belief update at U has
the following form,

BEL(U) = �(U) �(U) (4.1)

= �(U) �Z(h)(U) �Z(v)(U) : (4.2)

This relation also holds on a per-pixel basis. The value of �(U) is simply the current value
of P (U). So our main concern here is to �nd expressions for the quantities �Z(h)(U) and
�Z(v)(U). These have the same form for both the horizontal and vertical halves, so we will
drop the h and v subscripts below and concentrate on deriving �Z(U) for a generic Markov
chain. This requires that we consider the quantities �(Z) and �(Z) in addition.

Before turning to these, we make an important observation. Although it is not
obvious from Figure 4.5, there is in fact another class of loopy structures in the TR graphical
model that become evident when Figure 4.5 is \unrolled" to show the nodes at each pixel.
We do not represent this graphically here, instead choosing to attempt a verbal description
of one such loop. It is not necessary to understand this to follow the rest of this thesis.

We �rst extend our notation somewhat. Let Z
(h)
i;j denote the Z node at position

(i.e. column) j, in row i, in the horizontal half of the graph (so relative to Figure 4.4, we
have switched from indices from i to j for labeling position within a row). Starting our

loop from Z
(h)
i;j , we move one step along the chain (depicted in Figure 4.4) to Z

(h)
i;j+1. Then

we follow one of the arrows in the graph to node Ui;j+1 (the input variable at row i and
column j + 1), where again, we note that the directions of arrows are to be ignored. We

then can move down from Ui;j+1 to Z
(v)
i;j+1, the Z node at position (row) i, in column j +1,

41

in the vertical half of the graph. We thus can hop from a Z(h) node to a Z(v) node at
the same pixel position, through the intermediary of the U node at that position. Now we

move along a vertical chain to a node at a position one row down, Z
(v)
i+1;j+1. We then hop

to Z
(h)
i+1;j+1 through the intermediary of Ui+1;j+1. We move along a horizontal chain to a

node one column back Z
(h)
i+1;j and hop to Z

(v)
i+1;j through Ui+1;j. Finally, we move up a row

to Z
(v)
i;j and reach Z

(h)
i;j through Ui;j. In summary, we have moved around in a small loop in

terms of image coordinates, using U as an intermediary to switch between horizontal and
vertical steps on 4 di�erent Z-chains. In this way, we have traced out one of many loops in
the TR graphical model.

The consequence of having such loops is that message passing does not terminate
with Equation 4.2. Rather, we can imagine message passing starting in the horizontal part
of the graph (forward-backward along a Z-chain), with P (U) being updated according to
P (U) = �(U) �Z(h)(U) (where �(U) is the previous value of P (U)). This updated P (U)
is then used in message passing in the vertical half, leading to another P (U) update. The
TR algorithm proceeds in this fashion, with messages passing back and forth between the
horizontal and vertical halves of the network through U , until P (U) converges.

Given this outline of the global TR algorithm, we now focus on deriving the mes-
sage passing equations along a single row or column.

4.2.2 Recursion relation for �(Z)

Figure 4.6 shows the situation for the \forward" message pass for � at the node
Zi+1. The nodes are shown in a slanted orientation, relative to Figure 4.4, in order to
show the parent-child relationships clearly. We note again for reference that the variable Zi
generically is a composite variable (Si; U

0

i), where U
0

i is a duplicate of the variable Ui.
Following the rules of message passing in graphical models (Appendix B),

iX Z i+1

Z i U i+1

Figure 4.6: Nodes involved in message passing for �(Zi+1).

42

�(zi+1) =
X

zi;ui+1

P (zi+1 j zi; ui+1) �zi+1(zi) �zi+1(ui+1)

=
X

zi;ui+1

[P (si+1 j si; u
0

i) Æ(u
0

i+1; ui+1)] [�(zi) �yi(zi)] P (ui+1)

=
X

zi

P (si+1 j si; u
0

i) �(zi) P (�yi j zi) P (u
0

i+1) ;

where in the last line, the sum over ui+1 has already been performed.
The quantity P (�yi j zi) is given by the noise channel, where �yi denotes the value

of the observed image pixel at position i. P (ui+1) is the prior on ui+1 (which gets updated
upon each TR pass). As mentioned previously, the conditional probability P (si+1 j si; ui) is
typically deterministic (i.e. equal to zero or one), and this is not the case only when there is
more than one FST transition out of state si labeled with ui. In any case, this term ensures
that the sum is e�ectively only over \allowed" (si; ui

0) pairs which correspond to transitions
into si+1 (which is �xed by the left hand side of the equation). Rearranging, the recursive
relation for �(Z) becomes8,

�(zi+1) = P (u0i+1)
X

allowed
(si,ui') pairs

P (si+1 j si; u
0

i) P (�yi j zi) �(zi) (4.3)

The base case at i = 0 can be treated similarly:

�(z0) =
X

u0

P (z0 j u0) �z0(u0) (4.4)

=
X

u0

P (s0) Æ(u
0

0; u0) �(u0) (4.5)

= P (s0) P (u
0

0) : (4.6)

The message pass into the �nal Z node (at the end of the chain) also di�ers from the general
expression above. However, since the posterior probability of that node does not enter into
the calculation of P (U), we ignore it here.

4.2.3 Recursion relation for �(Z)

Message passing for �(Z) proceeds from children to parent, as follows.

8Note for experts: This relation is essentially the forward recursion for the quantity � which appears
in standard treatments of the forward-backward algorithm [88]. The correspondence is even more direct
between �(zi)=P (ui) and �, in which case the expression P (ui)P (si+1 j si; ui) plays the role of the \transition
probability" (often denoted aij) in an HMM. In TR, P (si+1 j si; ui) is just a constant (typically 1 or 0),
while P (ui) is updated in each TR pass. Thus to a �rst approximation, we can say P (ui) is the probability
of a transition between states. This would accord with the view of a �nite state transducer where the
input U �eld \drives" transitions between states. The (iterative) update of P (U) in turbo recognition then
amounts to updating the transition probabilities of an HMM, based on the observed evidence. Nevertheless,
we choose to continue to work with the quantity �(zi) (and �(zi), which up to a factor P (ui) corresponds
to the quantity � for HMMs), in order to maintain the connection to the well-developed graphical model
formalism.

43

U 0

Z 0

Figure 4.7: The base case at i = 0 for � message passing.

�(zi) = �yi(zi) �zi+1(zi) ;

where the factors on the RHS take the following form,

�yi(zi) = P (�yi j zi)

�zi+1(zi) =
X

zi+1;ui+1

P (zi+1 j zi; ui+1) �(zi+1) �zi+1(ui+1)

=
X

zi+1;ui+1

[P (si+1 j si; u
0

i) Æ(u
0

i+1; ui+1)] �(zi+1) �(ui+1)

=
X

zi+1

P (si+1 j si; u
0

i) �(zi+1) P (u
0

i+1):

Therefore,

�(zi) = P (�yi j zi)
X

zi+1

P (si+1 j si; u
0

i) P (u
0

i+1) �(zi+1) (4.7)

iX Z i+1

Z i U i+1

Figure 4.8: Nodes involved in forming �(Zi).

44

X L−1 Z L

Z L−1

Figure 4.9: Nodes involved in the �rst message pass for � at the end of the chain.

The �rst message pass for �(Z), at the end of the chain, also needs to be treated
separately from the general case.

�(zL�1) = �yL�1
(zL�1) �zL(zL�1) (4.8)

= P (�yL�1 j zL�1)
X

zL

P (zL j zL�1) �(zL) (4.9)

Note that the last node zL di�ers from the other Z nodes in the chain, in that it does not
have a U node as a parent, and it ranges only over accepting (\�nal") states in the FST. I.e.,
zL amounts to a bookkeeping device to ensure that the system terminates in an accepting
state. Accordingly, P (zL j zL�1) can be nonzero only if zL�1 (which is �xed on the LHS
of the equation) is associated with a transition into an accepting state. In addition, for
the FSTs that we have used, a given zL�1 corresponds to at most one transition into an
accepting state. Hence, the sum in Eq. 4.9 reduces to a single term,

�(zL�1) = P (�yL�1 j zL�1) �(zL);

when an accepting state zL corresponding to the pair (sL�1; uL�1) exists, and equals zero
otherwise.

4.2.4 The �Z(U) message

The expression for �Z(U) (the message from Zi to Ui) is the following.

�zi(ui) =
X

zi;zi�1

P (zi j zi�1; ui) �(zi) �zi(zi�1)

=
X

zi;zi�1

P (si j si�1; ui�1) Æ(ui; u
0

i) �(zi) �zi(zi�1)

Now,

�zi(zi�1) = �(zi�1) �yi�1(zi�1) = �(zi�1) P (�yi�1 j zi�1)

45

Z i

Z i−1 U i

X i−1

Figure 4.10: Nodes involved in forming the �Z(U) message.

So,

�zi(ui) =
X

si;zi�1

P (si j si�1; ui�1) �(si; ui) �(zi�1) P (�yi�1 j zi�1) (4.10)

=
X

si

X

si�1

ui�1

P (si j si�1; ui�1) �(si; u
0

i) �(zi�1) P (�yi�1 j zi�1) (4.11)

4.2.5 P (U) update

Finally, P (U) is updated via

P (ui) = �(ui)�Zi(ui) ; i = 0; : : : ; L� 1

where �(ui) is the current value of P (ui).

4.2.6 Deterministic annealing

For reasons that are described later, we also employ a technique known as de-
terministic annealing [125] to control the convergence of the TR decoding process. This
involves modifying the P (U) update equations to the following form,

P (ui) = �(ui)(�Zi(ui))
� ;

in which the �Zi(ui)) message is raised to a power � before updating P (U). The exponent
� initially has a small value such as 0.15 and is modi�ed over the course of the TR run
according to some annealing schedule, such as being increased by a constant factor (e.g.
1.4) upon each turbo iteration, which using a physical analogy is akin to lowering the
temperature. This has the e�ect of moderating the tendency of TR to get trapped in
ungrammatical con�gurations, as described in Section 9.4.

46

4.3 Summary

To summarize, the TR decoding equations take the form of recursion relations for
�(Z), �(Z), and �Zi(U), plus update and boundary equations.

�(zi+1) = P (u0i+1)
X

zi

P (si+1 j zi) P (�yi j zi) �(zi) (4.12)

�(zi) = P (�yi j zi)
X

zi+1

P (si+1 j si; u
0

i) P (u
0

i+1) �(zi+1) (4.13)

�Zi(u
0

i) =
X

si

X

si�1

ui�1

P (si j si�1; ui�1) �(si; u
0

i) �(zi�1) P (�yi�1 j zi�1) (4.14)

P (new)(ui) = P (curr)(ui) (�Zi(ui))
� (4.15)

where in the P (U) update equation, we have made a distinction between the current and
updated values of P (U). At the boundaries, we have the following expressions for �(z0)
and �(zL�1):

�(z0) = P (s0) P (u
0

0) (4.16)

�(zL�1) = P (�yL�1 j zL�1)
X

zL

P (zL j zL�1) �(zL) (4.17)

The following quantities also enter the decoding equations.

� FST transition probability: P (si+1 j si; u
0

i)

� noise channel (bit-
ip) probability: P (�yi j zi)

The software programs described in Section 5.2 and available on our website9

e�ectively encode Equations 4.12 - 4.17 as the TR algorithm.

9UCB Digital Library Project, Source Code, http://elib.cs.berkeley.edu/src/.

47

Chapter 5

Further details

We complete our introduction to TR with a discussion of some topics that we have
left open so far, in particular the issue of actually creating grammars and channels, and
some details of our TR implementation.

5.1 Creating grammars and channels

As described in previous chapters, the TR framework describes an image genera-
tion process with a pair of grammars and channels, and this leads to a recognition (decoding)
algorithm. However, it does not tell us how to create the grammars and channels in the
�rst place. We discuss this issue brie
y here.

5.1.1 Grammars

The TR encoding model, which uses independent horizontal and vertical grammars
to describe image structure, does not appear to be a very intuitive way to reason about
two dimensions. Concepts such as \above," \to the right," \may or may not overlap," etc.,
do not translate directly into grammars, and a certain amount of modeling experience is
required to develop intuition on how to perform such translations

One approach to manually create grammars is to �rst partition the image plane
into regions, based on the primary structure of interest. An example is shown in Figure 3.4
for the case of a rectangle. Once such a partition is formed, it is straightforward to read o�
the relevant regular expressions, which lead to the FSTs shown in Figure 3.3.

This method works well for layouts where the structures of interest, typically
rectangles, are aligned in either the horizontal or vertical direction. This leads in general
to compact grammars. As the layout becomes more complex, it becomes more diÆcult to
form a clean partition of the image plane in this manner. This led to the development of
\one-layer" grammars, which are introduced in Section 7.1.1. This class of grammars allows
the description of more complex layouts. Further classes of grammars will undoubtedly be
created in the future.

Since many grammars can describe the same structure, as shown for example in
Section 7.1.1, the choice of grammar depends on other factors, such as the size of the

48

grammar (which a�ects speed of the decoding algorithm),
exibility, convenience, or simply
personal preference. The author at present favors the use of one-layer grammars, although
these grammars can exhibit a tendency to produce overly complex solutions.

The simplest approach for manually creating grammars is probably by modifying
existing grammars. We have created a small library of grammars for this purpose, part of
which is described in Chapter 7. This is available online at the UCB Digital Library website
[126]. It is certainly conceivable that some aspects of the grammar construction process
will be automated in the future, for instance through the use of a tool which manipulates
regions within a prototypical page to create grammars by example. The work by Spitz [62]
on interactively producing style sheets may be useful for this purpose. While we do not
dwell on issues of minimization [110] here, techniques for doing so would undoubtedly be
useful from an eÆciency standpoint, since the runtime is linearly related to the number
of FST states and transitions. This suggests the use of tools such as lex. We have found
that juggling regular expressions can itself be an onerous task, and sometimes the simplest
alternative is to write down the FST graph directly.

5.1.2 Channels

We follow DID tradition in treating channel noise as a straightforward bit-
ip
process at each pixel. The decoding process has proven to be remarkably robust to such
simple channel descriptions of noise. In the OCR context, the actual noise in the image can
rarely be characterized as bit-
ip noise, yet the performance of DID can be outstanding.
In the case of TR, we have also found such channels to be suÆcient to successfully decode
images with extended noise patterns, as shown for example in Section 9.1.

Geometric distortions such as local aÆne transformations may be less of an issue
in the case of layout analysis, as opposed to OCR, since for example a bounding box can be
placed (perhaps approximately) around a given region relatively easily, despite such distor-
tions. The importance of such problems is probably application-dependent. We currently
take the channel to be spatially invariant, although we do allow for separate horizontal and
vertical channels. We also that images have been deskewed by other methods, although it
may be of interest to develop a model of skew within the DID framework in the future.

We currently set the channel parameters manually, by inspection or prior knowl-
edge of the level of noise in the image. An automatic procedure for estimating such pa-
rameters is left to future work. This issue is complicated by the fact that we also use the
channel itself to model document content, as described in Chapters 8 and 9. Parameter
setting in this case proceeds by trial and error, in which TR decoding is run several times
with di�erent channel settings on a small sample image, before batch processing of a larger
set of similar documents can proceed. Automatic parameter estimation in this case would
likely be quite similar to the case of real noise in the image. This step would become
less important if other methods of characterizing document content, such as local texture
analysis, were to be employed as a preprocessing step.

49

5.2 Code implementation

5.2.1 Inputs

The primary inputs to our current TR implementation are an observed image �le,
two grammar �les (horizontal and vertical), a channel �le, and the desired number of TR
iterations. The format of the observed image �le is simply a space-delimited ascii array of
zeros and ones. Such a �le can be created by saving the image in (ascii) portable bitmap
(pbm) format, and stripping o� the two line header1. Examples of the grammar and channel
�les were given previously (in Section 3.5).

Additional choices to be considered by the user are whether to use maxproduct
or sumproduct message passing, the initial value of beta and its annealing schedule, and
whether to start each TR iteration with a column pass or a row pass. We recommend
using maxproduct message passing, which appears to be more robust than the sumproduct
version and gives feedback on the state of the code (and potential bugs!), since the converged
output results should satisfy the grammars (except in the case of degenerate maxima or
oscillations, both of which occur rarely). We have largely settled on an initial value of
0.15 for beta, which is raised by a factor of 1.4 (i.e., roughly the square root of 2) on each
iteration, although it is occasionally useful to experiment with these values. We also have
had better success running our TR iterations \column-�rst." It is somewhat disconcerting
at times to �nd that the output results depend on whether the column pass or row pass is
done �rst in each TR iteration. In retrospect, this is probably related to the orientation of
text lines (so that some Asian layouts, for example, may be best processed row-�rst). Our
attempts so far to make our code insensitive to the order of the passes (by performing both
vertical and horizontal passes \in parallel" before updating P (U), for example) have not
yielded good results2.

5.2.2 Java code

The code is organized quite simply. The core decoding routines are encapsulated
as methods within a Decoder object. The Decoder includes horizontal and vertical FST
objects and an Observed image object as members. Each FST object in turn includes
State[], Transition[], and Channel objects, as speci�ed by the relevant grammar and
channel �les. The Observed object simply encapsulates the observed image data (i.e., the
data to be decoded), together with height and width �elds.

As mentioned previously, each TR iteration is composed of a vertical and a hor-
izontal decoding pass. Each pass amounts to performing the forward-backward algorithm
over each row or each column in the image. In particular, the \forward" algorithm is run by
calling the getpi() method, and the \backward" algorithm by the getlambda() method.

1This format has been suÆcient for prototyping purposes. We use a freeware utility called IrfanView
[127] to create the requisite pbm �les. The use of alternative formats such as ti� has been recently facilitated
by the advent of the Java Advanced Imaging (JAI) class library [128].

2It appears, roughly speaking, that the decoding algorithm is more e�ective at producing a solution that
is grammatical in both directions when each pass is allowed the full bene�t of feedback from the orthogonal
pass. When the passes are done in parallel, the solution appears to evolve in a way in which neither grammar
is satis�ed.

50

Each of these methods assigns values to local data structures (localpi and locallambda,
respectively) where their action depends prominently on localprobU, the value of P (U)
over the given row or column. The values contained in localpi and locallambda are then
used in getlambdazu() to evaluate the locallambdazu data structure. The names of these
methods and data structures refer, naturally enough, to the quantities �(Z), �(Z), and
�Z(U) that appear in the TR decoding equations (see the previous chapter). Finally, the
method updatePU() is called to update the value of localprobU. This (when done for all
rows or all columns) constitutes one pass of the TR algorithm

The main() driver routine (in TRMain.java) instantiates a Decoder using the
command line arguments. It also contains the control structures governing the TR iterations
(the forward-backward calls), including deterministic annealing (which as mentioned above
simply amounts to multiplying beta by a constant factor after each iteration).

5.2.3 Output

The code terminates with a converged value of the posterior P (U) as the basic
output result. As described elsewhere in this thesis, this is not guaranteed to be the true
posterior, although we treat it as such as a practical matter. In particular, we typically
perform post-processing on this result, such as choosing the input symbol with the maximum
probability at each pixel to form the (approximate) MAP image. This can be output to a
�le in portable graymap (pgm) format, for easy visualization. This can be considered as
the TR decoding output.

51

Chapter 6

Experimental Comparison with

Maximum Likelihood

In this chapter, we consider the question of the optimality of TR decoding. The
TR algorithm, which can be viewed as a specialized form of turbo decoding [117], is subject
to the same caveats as in the coding theory context. Namely, it is not yet understood in
what situations the decoding algorithm produces the optimal result, and there are de�nitely
situations where the optimal result is not obtained. Nevertheless, as described in Section
3.1, the overall empirical performance of turbo codes is outstanding, and it is reasonable to
expect that such performance will translate to the image recognition context as well. We
investigate this question in detail in this chapter.

We make the issue concrete by considering the following problem: Given a noisy
image such as Figure 6.1a, �nd the single (�lled) rectangle such as Figure 6.1b which is most
likely to have produced it, assuming a bit-
ip noise process (this is the reverse of Figure
3.6). We can term this the \one-rectangle" problem. It is a simple matter to frame this as
a TR decoding problem using one-rectangle grammars, and it also has the feature that the
optimal estimate can be found independently in a straightforward manner.

In one dimension, the corresponding \one-interval" problem is, given a noisy bit
sequence such as 001101101000, �nd the single interval of ones which best \explains" the
data, such as 0011111110001 . This problem is a straightforward application of hidden
Markov models. In particular, using dynamic programming approach such as the Viterbi
algorithm, we can eÆciently recover the sequence which has minimum probability of error
(the MAP estimate).

Unfortunately, there does not appear to be a correspondingly eÆcient dynamic
programming solution to the one-rectangle problem.2 This is further evidence that two

1This example is somewhat unusual in having two possible optimal solutions, the other one being
001111100000 (under a symmetric bit-
ip noise model). This is an example of degenerate maxima, which
occasionally plagues TR also. As an aside, such cases are one of the few situations where TR maxproduct
message passing does not necessarily converge to a grammatical result (i.e., one that satis�es both the hori-
zontal and vertical grammar simultaneously). The analog of this in the one-interval case might be a solution
with two intervals of ones, even though the grammar only speci�es one.

2A dynamic programming approach can be de�ned, but this requires an exponential explosion in the size
of the state space.

52

(a) (b)

Figure 6.1: (a) Noisy observed image; (b) proposed source image which produced it.

dimensions is in some sense inherently di�erent from one dimension. This is related to the
fact that there is no natural notion of \before" and \after" (i.e. linear ordering) of pixels
in two dimensions.

Thus even for this simple two-dimensional problem, we are reduced to doing an
exhaustive search in order to be guaranteed of recovering the optimal (maximum likelihood)
solution. This scales as N2, where N is the number of pixels in the image.3 In contrast,
since the heart of the TR algorithm is a collection of 1D dynamic programming problems,
it scales linearly in the number of pixels in the image (times the number of iterations). We
thus investigate the optimality of TR decoding for this problem by comparing it with the
maximum likelihood (ML) estimate obtained by exhaustive search, which is equivalent to
the MAP estimate when the prior on U is uniform, which is what we will use.

The experiment in more detail goes as follows. The original source image is the
27 by 27 bitmap shown in Figure 6.1b. This is corrupted with symmetric bit-
ip noise
at noise levels (bit-
ip probabilities) ranging from 0.1 to 0.3, in increments of 0.05, with
500 samples produced at each noise level. The ML estimates are found by an exhaustive
search over all possible sizes and locations of the �lled rectangle. The TR solutions were
obtained using seven iterations of maxproduct message passing, done column-�rst (i.e. each
iteration consists of a column pass followed by a row pass). The annealing schedule starts
with � = 0:15, which is raised by a factor 1.2 on each iteration (this is slightly lower than
our usual value of 1.4). The channel is tuned to the noise level (i.e. we presume to know
the noise level beforehand)4.

The results for a range of noise levels from p = 0 to 0.3 are summarized in Figure
6.2. This shows two curves that describe the probabilities that the TR and ML estimates
each match the original image. The two curves are diÆcult to distinguish at this resolution,
and we conclude that TR and ML are essentially equivalent in their ability to recover the
original image.

The extent to which the TR solutions match the corresponding ML estimates for

3The complexity is given by the number of rectangles that can be de�ned within an image of size N .
Each rectangle can be speci�ed by its top-left and bottom-right corner, each of which has N possible values
(up to double counting), and hence the number of rectangles scales as N2

4This is fair in the present case, where the aim is to test the ability of TR to �nd the optimal solution for
a given model. In general, a preprocessing step could be employed beforehand to estimate the noise level.

53

0 0.05 0.1 0.15 0.2 0.25 0.3
0

20

40

60

80

100

noise level p

pe
rc

en
t e

xa
ct

ly
 c

or
re

ct
ML
TR

Figure 6.2: Recognition results for the one-rectangle problem. The dotted and dash-dotted lines, which
nearly overlay each other, describe the probabilities with which the ML and TR solutions, respectively,
match the original clean image.

each image is summarized in Figure 6.3. If the TR results were always �nding the optimal
estimate, we would expect the curve to remain at 1.0 for all noise levels. It is possible that
TR is �nding the optimal estimate at a rate better than is implied by this curve, if there
are in fact several degenerate maxima, which is quite likely. In any case, the match between
TR and ML begins to degrade at a noise level where ML itself starts to fail signi�cantly in
recovering the original image, so the question of how well TR matches ML is in some sense
moot from a practical point of view.

Future work includes analyzing the cases where TR and ML fail to match. Recent
work by Freeman and Weiss [119], for instance, shows that maxproduct message passing
(also known as belief revision [118]) in loopy graphical models such as TR produces solutions
that are optimal over an extended neighborhood of that solution.

For this small experimental image, TR is about twice as fast as ML exhaustive
search, taking about 0.8 seconds per image (with �ve turbo iterations each). The di�erence
in complexity scaling rapidly makes the speed di�erential more signi�cant when applied to
larger or more complex images.

54

0 0.05 0.1 0.15 0.2 0.25 0.3
0

20

40

60

80

100

noise level p

pe
rc

en
ta

ge
 m

at
ch

Figure 6.3: The solid line describes the probabilities with which the TR solutions match the ML solutions.

55

Chapter 7

The Art of Turbo Recognition

One of the strengths of TR is its foundation on statistical principles. This by itself,
however, does not guarantee good performance and in particular is not suÆcient to build
a working system. The TR model degrees of freedom, primarily the horizontal and vertical
grammars and the noise channels, need to be speci�ed. This is both a strength, in that it
allows the TR decoding approach to be tailored to a wide variety of tasks, and a potential
weakness, in that such models need to be speci�ed beforehand. In essence, TR provides a
language for describing layout, but the best ways to speak this language are not yet clear.
In this chapter we begin the investigation of the art of TR.

There are a number of considerations which enter into selecting a grammar. A
primary consideration is to choose one that can decode the layout structures of interest.
Another is that several grammars may describe the same physical structure, such as a single
rectangle, or one grammar may generalize several others. Indeed, simpler grammars (such as
the \blob" grammars described later) that supply only weak constraints on image structure
could be used in place of a large class of other grammars that are more restrictive1. The
choice of grammar must then be based on other considerations, such as noise-robustness,
speed, or ease of post-processing. For example, grammars tuned to the class of structures
of interest tend to produce results which are more robust against noise.

Here we explore the space of TR grammars with the aim of better understanding
how expressive these grammars can be. We are thus primarily concerned with the ability of
TR to describe abstract shapes, or more generally, image structure. In later chapters, we
will turn to applications more directly related to the analysis of document images.

At present, we are exploring the space of grammars by constructing models by
hand. We note that, in principle, TR grammars could be speci�ed using some externally
de�ned standard, e.g. by an SGML document type de�nition2, or they could be learned,
by training on a database of documents with similar structure and noise characteristics.
Automatic grammar selection is also of interest, in which for example a number of di�erent
grammars are applied to an image, and a re�nement of the one that �ts best is used to

1This is akin (though clearly not identical) to saying that a regular grammar can be constructed whose
language forms a superset of the language for any given context-free grammar.

2This would probably need to be augmented by description of the physical, as opposed to just logical,
structure of the page, e.g. in a language such as DSSSL

56

actually process the page image. Such topics will undoubtedly be the subject of future
research. Our current work provides the foundations for a toolkit of grammars that can be
referenced according to the needs of speci�c applications, and we hope it will help inform
the future e�orts of researchers and users.

At present, the choice of channel is made on an ad hoc basis. This is typically a
matter of choosing four or six parameters, the total number being equal to the number of
output symbols times the number of observed symbols. Since these parameters represent
bit-
ip probabilities, this actually amounts to choosing only two or three numbers. We
set these manually according to the percentage of black pixels per unit area (\black pixel
density") that we expect to see in the regions corresponding to each output symbol. Further
details are given below.

7.1 An exploration of TR grammars

In this section we begin exploring the space of structures that can be parsed by
TR, starting with simple cases and growing more complex. This can be thought of as
progressively making the TR generative model more expressive. The fact that TR models
are based on regular grammars de�nes a fundamental limit on their expressiveness. Never-
theless, there is much room to explore, and we do not claim to have exhausted the design
space by any means. As mentioned earlier, we focus here on the description of ideal shapes,
with the expectation that such work can form the core of later work in both physical and
logical layout analysis. In particular, we defer questions about the noise robustness of such
descriptions to later chapters.

7.1.1 One rectangle

As mentioned in Section 3.3, the following grammars can be used to describe a
rectangle:

horizontal : a+ j b+c+b+

vertical : a+(b+ j c+)a+ :

When both a and b are mapped to white (i.e., a bitmap value of 0) and c is mapped
to black (i.e., a bitmap value of 1), these grammars describe a single black rectangle on a
white background. Given this grammar, TR parses the image shown in Figure 7.1a with the
partition given in Figure 7.1b. For historical reasons, we will refer to this as the \standard"
one-rectangle grammar.

This manner of describing a rectangle is by no means unique. For example, a
grammar such as the following,

horizontal : a+b+a+ j c+d+c+

vertical : a+c+a+ j b+d+b+ ;

where a, b, and c are background symbols, and d is the sole foreground symbol, is aesthet-
ically pleasing because, unlike the previous grammar, it treats the horizontal and vertical
directions on an equal footing. The partition of the canvas induced by this grammar is
illustrated in Figure 7.1c.

57

(a) (b) (c)

Figure 7.1: (a) Image containing a single black rectangle; (b) the image partition induced by the standard
one-rectangle grammar; (c) the partition induced by the symmetric version of the grammar.

(a) (b)

Figure 7.2: One-layer descriptions of a rectangle: (a) asymmetric version using four symbols; (b) symmetric
version using �ve symbols.

For both cases above, information about the location of the rectangle is propagated
far away from the rectangle itself, namely out to the edges of the image canvas. We will call
grammars with this characteristic \nonlocal" grammars. Such grammars often are easy to
design and use a relatively small number of input symbols.

While this nonlocal character is sometimes useful (for example for postprocessing
or visualization purposes), it can also become a signi�cant nuisance when trying to design
grammars for more complex structures. The following one-layer grammar gets around this
problem:

horizontal : a+ j (a+(b+ j c d+c))+a+

vertical : a+ j (a+b (c+ j d+) b)+a+ ;

where a represents the background that extends (�guratively) to in�nity, d represents the
foreground (the black rectangle), and b and c form a \protective layer" one pixel thick which
surrounds the rectangle, as shown in Figure 7.2a. The role of b and c above is quite similar
to that of a and b in the standard one-rectangle grammar. The fact that the symbols that
enforce rectangularity are localized to the immediate vicinity of the rectangle will prove to
be useful feature.

There is again a choice in the design of one-layer grammars, which mirrors that
for the standard grammars. The partition induced by a symmetric one-layer grammar,
in analogy with Figure 7.1c, is shown in Figure 7.2b. This also exhibits a version of the

58

grammar where the layer symbols correspond to printing (black) output, so that the layer
is included as part of the rectangle, rather than wrapping around the outside of it.

7.1.2 Generalizations using nonlocal grammars

The standard one-rectangle grammar can be generalized to a grid structure with
an arbitrary number of columns and/ or rows with the addition of a few Kleene + symbols:

horizontal : a+ j (b+c+)+b+

vertical : (a+b+)+a+ j (a+c+)+a+

This describes rectangular blocks whose edges are perfectly aligned, both horizontally and
vertically. Variations on this theme, where some cells in the grid are blank, for example,
are easily produced.

The alignment between blocks across rows can be relaxed using a generic \multi-
row" grammar:

horizontal : a+ j (b+c+)+b+

vertical : (a+(b+ j c+))+a+

In the horizontal grammar, the strict separation between a+ and (b+c+)+b+ implies that the
rectangles in the image form into rows, with their top and bottom edges aligned. However,
the vertical grammar, in comparison to the previous version, now allows runs of b+ and
c+ (separated by runs of a+) to be freely mixed, implying that the vertical edges of the
rectangles in the image need not be aligned.

7.1.3 Generalizations using one-layer grammars

When alignment between blocks is not pertinent at all, it is convenient to switch
to the above-mentioned one-layer description of rectangles. This allows the rectangles to
be freely aligned relative to each other, as shown in Figure 7.3. If a nonlocal grammar
were used in such a situation, the regions extending to the edges of the image (see Figure
7.1) would interfere with each other, requiring the use of more input symbols and regular
expressions to handle the di�erent possible alignments. Such an approach would not be
scalable to a large number of rectangles with arbitrary alignments.

A general Manhattan layout can be described using one-layer grammars with the
addition of an input symbol that denotes the corner points. An application of such a
grammar is shown in Figure 7.4. We note in particular that this layout cannot be analyzed
using XY cuts (cf. Section 1.2.5 and Figure 1.2). The input alphabet in this case has
�ve symbols, and the horizontal and vertical transducers each have eight states and �fteen
transitions (Figure 7.5).

7.1.4 Blob grammars

While we have emphasized the ability of TR to parse Manhattan layouts, it can
be applied to more general layouts as well. Consider for example the following \single blob"
grammar:

horizontal : a+ j a+b+a+

vertical : a+ j a+b+a+ :

59

(a) (b)

Figure 7.3: (a) Freely aligned rectangles; (b) TR decoding using a one-layer grammar.

(a) (b)

Figure 7.4: (a) Original image with Manhattan layout; (b) TR decoding using a one-layer Manhattan
grammar.

The horizontal and vertical grammars are identical, and describe a run of a's which is
interrupted by at most one run of b's. If we associate a with background (0) and b with
foreground (1), we see that this grammar describes an arbitrary shape, subject only to
the one-interval constraint (in both directions). Note that this grammar is very similar to
the standard one-rectangle one, except we have now eliminated the seemingly redundant
background symbol (called b in that case) that was required to enforce rectangularity. This
grammar is easily generalized to multiple blobs in the usual manner, by the addition of a
Kleene + symbol:

horizontal : a+ j (a+b+)+a+

vertical : a+ j (a+b+)+a+ :

We will call this a \blobs" grammar.
We demonstrate the character of the solutions produced with these blob grammars

by applying them to the arch-shaped blob shown in Figure 7.6a. Using a blobs grammar,
we get the result shown in Figure 7.6b, which in fact is identical to Figure 7.6a, as one

60

a/0

2

b/0

a/0 d/1

6

0
b/0

3

d/1
5

1

4

e/0e/0

7

a/0

a/0

a/0

e/0

c/0

c/0

e/0

Figure 7.5: Horizontal FST used in decoding Figure 7.4. The vertical FST is identical with a switch of
the b and c symbols.

might expect, given the
exibility of the grammar. Using a single-blob grammar yields the
result shown in Figure 7.6c. The decoder output now satis�es the constraint that there be
at most one interval of black (i.e. of the input symbol b) in either direction. As an aside,
careful viewers may notice that the left lobe protrudes slightly from the
at bottom along
most of the blob, implying that the left lobe of the original image is slightly lower than the
right.

(a) (b) (c)

Figure 7.6: (a) A two-lobed blob; (b) TR decoding using a multi-blob grammar; (c) TR decoding using a
single blob grammar.

7.2 Texture segmentation

Up to this point, we have been concerned with the
exibility o�ered by the choice of
grammar. This section now considers a way of exploiting the channel for modeling purposes.
To recap, TR views the image generation process as having two stages, in which a source
message is �rst encoded into an ideal output image and then transmitted through a noisy
channel to produce an observed image. Such a description suggests that the output and
observed image pixels are derived from the same (e.g. binary) alphabet, but this need not

61

be the case. In addition, rather than viewing the transmission process as simply corrupting
the image, we can consider it to be an aspect of the modeling process in general, even for
clean images.

0

1

2

0

1

b00

b10

b11

b21

b20

b01

0

1

2

f

e

c

a

b

d

(a) (b)

Figure 7.7: Image generation model used in decoding Figure 7.8, which utilizes more output symbols
to allow a simple form of texture discrimination. (a) Input to output symbol translation; (b) stochastic
mapping from output to observed symbols.

Figure 7.7 gives an example of an encoding and channel model which maps from
six input symbols to three output symbols, and then to two observed symbols3. Each output
symbol represents a zone with its own characteristic density of black pixels. We can apply
such a model to decode an image such as Figure 7.8 (a). Here the observed image (which
can be considered uncorrupted) has three types of regions, which we term \background,"
\sparse black," and \dense black." The sparse and dense regions were created by applying
20% and 80% bit-
ip noise, respectively, to a blank rectangle. This image can be classi�ed
into zones using the following TR model. The grammar is a one-layer grammar which
describes an arbitrary number of rectangles, which has been modi�ed to so that both d and
f are \foreground" symbols:

a+j(a+(e b+ e)j(c d+ c)j(c f+ c))+a+

horizontally, and
a+ja+((e c+ e)j(b d+ b)j(b f+ b)) + a+

3In this thesis, we limit ourselves to binary (bitonal) observed images, but the number of output symbols
can be arbitrarily large, depending on the application.

62

vertically. The channel parameters in this case are ff0:9990:001g; f0:80:2g; f0:10:9gg. The
resulting TR decoding in Figure 7.8. This can be viewed as a simple form of texture
discrimination.

(a) (b)

Figure 7.8: (a) Image having zones with two di�erent black pixel densities; (b) TR decoding result with a
rectangular grammar that uses three output symbols to represent background and two di�erent foreground
textures, as described in Figure 7.7. White, gray, and black correspond to the input symbols a, d and f ,
respectively. The b, c, and e symbols are not shown, and would form a one-pixel wide boundary layer around
each rectangle, similar to that shown in Figure 7.4.

63

Chapter 8

Applications of TR to text lines

In order to develop TR as a page layout analysis method, we consider text images
as an important �rst application. As mentioned previously, it is possible for humans to
recognize the layout of a page, and recognize that certain zones within a page contain text,
without necessarily being able to recognize individual characters. This implies that it is
fruitful to consider page layout analysis directly as a shape recognition task, which abstracts
away from the level of individual characters. Nevertheless, as the reader may have noted in
Chapter 3, it is unclear exactly in what sense that we may treat a text column as a single
black rectangle, for example. In this section, we investigate this issue and develop some
methods for bridging this gap in abstraction.

Before doing so, we step back for a moment to take a more global perspective.
TR is one point in a spectrum of DID methods, and we have treated it as largely divorced
from previous DID techniques for the purposes of this thesis. However, a more elegant (if
more compute-intensive) solution to the problems of text modeling discussed below would
be to combine TR with a DID OCR model having trained character templates. This would
create an integrated probability model for both layout and character recognition. Relative
to such a grand model, what follows is a \poor man's" approach to dealing with text in the
TR framework. This has the advantage of being relatively quick and easy to use. A variety
of layers of sophistication could be added, however, and it would be of interest to do so in
the future.

On a more practical note, an important issue for present DID OCR decoders is
eÆciently locating text on the page. Previous work by Kam and Kopec [129] integrated
text line �nding into the character decoding process (in a manner akin to what is being
advocated in the previous paragraph) by using separable models and admissible heuristics
to speed up decoding. This approach, however, is limited to a single column of text and is
somewhat heavyweight in its formulation, requiring training of text line projections pro�les,
for example. In practice, this has resulted in the reliance on non-DID methods to �nd
baselines or extract columns. Finding text line or text block regions (and the relations
between them) is also of interest in and of itself, and it would valuable to have methods
addressed to such tasks without requiring a full OCR decoding to be done at the same time.
The following can be viewed as the beginnings of an e�ort to develop such methods within
the framework of DID.

64

8.1 A single text line

We begin our investigation by considering a single text line. We can illustrate
many features of our current TR approach by using such simple examples. While one of
the main advantages of TR is its ability to deal with noise, in the next few sections we will
be primarily concerned with its behavior on clean images.

Figure 8.1a shows a single text line imaged at 100 dpi (roughly 400 by 70 pixels)1.
We consider decoding this image using the standard one-rectangle grammar, a+ j b+c+b+

horizontally and a+(b+ j c+)a+ vertically, where again a and b are considered background
symbols and c is a foreground symbol. It is quite evident that a text line is not simply a
black rectangle. In order to proceed, we view the text line as having arisen from a single
�lled rectangle, which upon transmission through the channel became \corrupted" to yield
the rather sparse arrangement of black pixels forming the text line. In other words, we treat
the text as bit-
ip noise. It may strike the reader as unusual to model what is presumably
the \signal" (the text) as \noise," and in any case it hardly needs to be said that this is a
very impoverished model of text. Nevertheless, bit-
ip noise models have proven to be quite
useful in the DID OCR context [95], and our work here can be taken as further evidence of
the mileage that can be gained even from such simple models2.

The overall image generation process can be sketched out as follows. A symbol
�eld in an input alphabet fa; b; cg is translated by the FSTs (grammars) into a �eld in the
output alphabet f00; 10g, where we can call 00 the background symbol and 10 the foreground
symbol (where we now use primes to distinguish the output from the observed alphabet).
This output �eld is mapped stochastically (independently at each pixel) by the channel to
an observed �eld in the alphabet f0; 1g, which represents the actual white and black pixels
in the image we are decoding.

We �rst consider decoding the image with the following channel3,

0:99 0:01
0:5 0:5 :

The top row of channel parameters says that the output 00 symbol (and by extension a and
b) are very likely to produce an observed 0 (white pixel), while the bottom row says that
the output 10 symbol (and hence c) has a 50-50 chance of producing either an observed
0 or 1 (white or black pixel). We will denote such channels using the linearized notation
ff0:99; 0:01g; f0:5; 0:5gg from now on.

The resultant TR decoding obtained after three iterations using maxproduct mes-
sage passing is shown in Figure 8.1b. The black region associated with c �nds the body
of the text line, while cutting o� both ascenders and descenders. Colorfully speaking, TR
is trying to surround a high concentration of black pixels with a single rectangle, while
leaving as few black pixels out as possible. This \clumping" behavior is often a useful way
to understand TR output.

1This �gure was generated electronically using TeX, dvips, and �nally ghostscript to produce a pbm �le.
2More sophisticated alternatives that come to mind include using a set of texture features to model

the probability that a given local region represents text, and detailed DID character template models as
mentioned above.

3We choose the horizontal and vertical channels to be identical in what follows.

65

(a)

(b)

(c)

(d)

Figure 8.1: (a) Image with one text line at 100dpi. (b) Sample TR decoding with a standard one-rectangle
grammar, where white = a, grey = b, and black = c. (c) TR decoding using a \brighter" channel in which
foreground output pixels are mapped with high noise onto the output pixels; (d) TR decoding using a
\darker" channel in which foreground pixels are required to nearly always be black.

66

For Figure 8.1c, the channel has been skewed strongly towards producing white
(0) observed symbol, ff0:999; 0:001g; f0:99; 0:01gg. This allows TR to be more generous in
what it includes within the foreground region. The rectangle returned by TR now covers
most of the text pixels, though it does not quite extend to the full height and depth of the
text line.

Figure 8.1d illustrates the e�ects of using a \darker" channel, ff0:95; 0:05g; f0:05; 0:95gg,
on this example. This channel requires the foreground (10) symbol to appear only in regions
with very high black (1) pixel density. Indeed, if the grammar permitted it, a solution with
no foreground pixels at all (an \empty rectangle") might be optimal, since in general the
black pixel density of text is quite low. However, the grammar forces TR to place a rectan-
gle somewhere, and Figure 8.1c shows that its choice is a rectangle only 1 pixel high. This
happens to be a reasonable estimate of the text baseline. This is probably a consequence of
the presence of serifs in the Times-Roman font, and it is hence unlikely that this approach
would produce a robust baseline �nder. It is nevertheless indicative of the kind of freedom
the user of TR has to design the algorithm to take advantage of features of interest.

In summary, this example shows that the TR apparatus as presented so far is
suÆcient to segment a line of text from background, using a one-rectangle grammar and
the simple arti�ce of treating text as bit-
ip noise. The exact form of the TR output shows
some sensitivity to the channel parameters, as might be expected with this model. In a
practical application, the result shown in Figure 8.1b would perhaps be the most useful,
since it focuses on the body of the text line (with the ascenders and descenders stripped o�),
which is a relatively robust feature. Measurements such as font size and baseline position
could then be extracted. While the extent to which such features can be reliably found has
yet to be investigated, the ability of TR to provide simple summaries of \where the text is"
may be one of its most useful features.

8.2 Multiple text lines

We now consider a straightforward generalization of the previous example, namely
a text block containing several text lines, as shown in Figure 8.2. The image resolution
for this example is again 100 dpi4. We decode this image using a simple modi�cation of
the one-rectangle grammar. The horizontal grammar remains the same, a+ j b+c+b+, and
allows at most one interval of black (c) pixels. The vertical grammar is modi�ed to allow
multiple occurrences of b or c, ((a+b+)+ j (a+c+)+)a+. The grammar does not allow b and
c to be mixed within a column, however, which forces the left and right ends of all decoded
rectangles to be the same.

Figure 8.2b shows the TR result using this grammar with the following channel,
ff0:95; 0:05g; f0:5; 0:5gg As advertised, the left and right edges of all of the rectangles
are aligned. In most respects, we can characterize the individual rectangles in this TR
decoding as simply repetitions of the one found in the single text line example (Figure 8.1b
in particular). However, the �rst and last text lines in the original image are clearly shorter
than the others, so it may be objectionable to represent these with rectangles that extend

4As the reader may have surmised, the (spurious) di�erence in size of the text glyphs, for example, in
Figure 8.1 and 8.2 is due simply to the fact that they are scaled di�erently.

67

(a)

(b)

(c)

(d)

Figure 8.2: (a) Text block imaged at 100 dpi; (b) TR decoding using a multi-line grammar, where the left
and right edges are aligned; (c) TR decoding using a di�erent channel which recovers the full text block. (d)
TR decoding using a multi-line grammar with no constraint on the left and right edges of each rectangle.

68

over the full width of the text block. We remedy this with a slightly di�erent grammar
below.

Figure 8.2c shows that the text block as a whole can be recovered as a single
rectangle, even though we are using a multi-line grammar5. This results from using a very
\bright" channel that models a sparse density of black pixels, ff0:999; 0:001g; f0:99; 0:01gg
We thus can focus on di�erent levels of the document layout hierarchy by choosing di�erent
channel parameters.

To provide a more faithful representation of \ragged" text lines, we modify the
vertical grammar to allow b and c to be mixed within a column: (a+(b+ j c+))+a+. The
resulting TR decoding is shown in Figure 8.2d, where the channel is ff0:95; 0:05g; f0:5; 0:5gg

As a brief diversion from our investigation of TR on clean images, we consider the
noisy image shown in Figure 8.3a, in which 20% bit-
ip noise has been added to Figure
8.2a. Using a standard ff0:95; 0:05g; f0:5; 0:5gg channel, we get the result shown in Figure
8.3b. If we use knowledge of the amount of noise in the image (which could be estimated in
some way), we get the result shown in 8.3c. The channel in this case is ff0:8 0:2g; f0:5 0:5g.
This result is nearly indistinguishable from the TR result on the clean image (Figure 8.2).
Simple text line �nding remains a nontrivial problem in DIA, and behavior of this sort
could be useful, e.g., as a preprocessing step in script identi�cation [130], especially in the
presence of noise.

8.3 Word boxing

We now consider going one step further down the layout hierarchy, to �nd indi-
vidual words. This task has a variety of applications, one being the \enlivening" of scanned
documents in a multivalent document browser [131]. The modi�cation required to the gram-
mar for this task is again a simple one. We now allow an arbitrary number of black intervals
(c+) within a row: a+ j (b+c+)+b+. The vertical grammar is the same as the one used in
the previous section, (a+(b+ j c+))+a+, which does not require rectangles in di�erent rows
to be aligned with each other.

For convenience, we show the original text block image in Figure 8.4a. The TR de-
coding on this image with the above grammar and a sparse channel ff0:999; 0:001g; f0:9; 0:1gg
is shown in Figure 8.4b. There is a unique rectangle for every word in the text block, and
naturally each text line is segmented out at the same time. There are some additional
features, such as \splinter" lines which correspond to character descenders, and separate
boxes for three out of the four periods at the end of a sentence. An application of this
technique to word boxing would thus have to deal with such noisy (from the point of view
of word boxing) results6.

Recovering word boxes in the presence of noise is more diÆcult. Figure 8.5b shows
the TR decoding of the noisy text block image given previously (shown again in Figure 8.5a
for convenience), using the above grammar and a channel which has been \dialed down"
carefully to take account of the noise, ff0:7; 0:3g; f0:6; 0:4gg. Some word boxes span two
words, and others split a single word. Nevertheless, this result can be considered reasonably

5A one-rectangle grammar would also serve well for this purpose.
6This seems to not pose much diÆculty, though we have not investigated the problem in detail.

69

(a)

(b)

(c)

Figure 8.3: (a) Text block image corrupted with 20 % noise; (b) TR decoding using a channel which is
not a good match to the image; (c) TR decoding using a better channel.

70

(a)

(b)

Figure 8.4: (a) Text block image (repeated for convenience); (b) TR decoding using a grammar and
channel which approximates word boxing.

good, given the rather extreme noise conditions. In addition, the text lines themselves have
all been located. This decoding is the result after seven TR iterations (as opposed to 3
for the clean image runs), and in fact it is not yet fully converged, as evidenced by small
one pixel \stubs" which protrude from some rectangles. In general, decoding such noisy
images require a greater number of iterations before converging. The overall character of
the decoding, however, can be said to appear much earlier. The location of the text lines,
for example, appears after the �rst iteration, and indeed the text line segmentation appears
to be a more robust feature of the decoding output than word boxes per se. A robust word
boxing algorithm would probably need to incorporate more knowledge about words than
is used by the present algorithm, which mainly utilizes the fact that words have a higher
black pixel density than their surroundings (and that they are arranged in lines). A DID
OCR engine with trained character templates built on top of a TR line segmenter might be
able to serve this purpose.

Figures 8.5c and d show what can happen when the channel is not matched well
to the observed image. In the �rst case (Figure 8.5c), the channel is the same as that used
for Figure 8.4b, namely ff0:999; 0:001g; f0:9; 0:1gg. Since the foreground for this channel
corresponds to a sparse density of black pixels (approximately 10%), the entire image is
treated as foreground. Figure 8.5d exhibits the opposite extreme, where the foreground is
expected to be nearly solid (90 %) black, ff0:9; 0:1g; f0:1; 0:9gg. TR in this case treats most
of the image as background, with the foreground reduced to a small vertical sliver of black
pixels in order to satisfy grammatical constraints.

71

(a) (b)

(c) (d)

Figure 8.5: (a) Noisy text block image (shown earlier in Figure 8.3); (b) a well-tuned grammar and channel
that yields a result (approximate word boxing) similar to that obtained in the noise-free case; (c) example
decoding when the channel is too \bright"; (d) example decoding when the channel is too \dark."

8.4 One-layer grammars

The results in the previous sections show that the TR framework is able to perform
tasks such as �nding text lines and possibly words, even in noisy conditions, by simply
treating text as bit-
ip noise. Due to the straightforward layout of the text in these images,
we have employed \nonlocal" grammars thus far. Nonlocal grammars have some important
limitations, however, as described previously in Section 7.1.1. It is of interest therefore to
check whether one-layer grammars, mentioned previously as a more
exible alternative to
nonlocal grammars, can also be applied to text images. We brie
y summarize the results
in this section.

8.4.1 Single text line

Given the single text line image shown in Figure 8.6a (which is identical to Figure
8.1a), the TR decoding output using a one-rectangle one-layer grammar and a channel set
to ff0:99; 0:01g; f0:5; 0:5gg is shown in Figure 8.6b. Only the pixels in the \protective layer"
are shown. The text line is cleanly segmented in the by now expected manner, concentrating
on the body of the text line, with ascenders and descenders cut o� (cf. Figure 8.1b). As
before, the character of the decoding varies somewhat with the choice of channel parameters.

8.4.2 Text block

Figure 8.7a shows the segmentation of a clean text block image (Figure 8.2a)
using a single-column, multi-row grammar. This grammar limits the number of rectangles
in any given row to be at most one. Figure 8.7b shows this result overlaid on the original
observed image. In addition to the larger rectangles that correspond to the text line bodies,

72

(a)

(b)

Figure 8.6: (a) One text line imaged at 100dpi (same as Figure 8.1); (b) TR decoding using a one-rectangle
one-layer grammar.

TR returns small rectangles at the locations of a few ascenders and descenders. This is an
example of how TR decoding behavior can di�er somewhat from what one might �rst expect.
Sometimes TR displays such an amazing capacity for unexpected interpretations of the
observed data that managing its behavior is akin to \herding cats." This probably re
ects
the inadequacies of the bit-
ip model of text, suggesting that it might be fruitful to augment
or replace it in some cases (some possibilities are discussed in the next chapter). There may
also be an inherent ambiguity in the concept of a \shape" of a text line, for example. In
any case, the small rectangles in Figure 8.7b could be removed with postprocessing if they
are not of interest.

Using a multi-column, multi-row one-layer grammar on the text block image results
in approximate word boxing, as shown in Figure 8.7c. This segmentation is evidently not
ideal, with some words split into two pieces, although these splits do occur in natural places,
namely where the character spacing is abnormally large within a word. It is also of interest
that three of four periods are found as separate rectangles (as before). Increasing the image
resolution would doubtless improve the results, although at a concomitant cost in speed.

We note that similar results on such clean images could be obtained using faster,
and in some sense simpler, methods such as run-length smearing. We personally �nd that
experimenting with TR models (such as adjusting channel parameters) is relatively simple
and intuitive. The future role of TR in both research and practical application may come
down to a matter of useability, as opposed to pure speed per se, and this is a topic we have
yet to explore.

As noted earlier (in Section 8.3), if it were essential to accurately �nd word boxes, it
would probably be best to call upon a character recognition engine (perhaps in conjunction
with such TR results), rather than rely solely on this segmentation method which has no
concept of words per se. The result shown in Figure 8.7c may nevertheless be useful for
tasks such as estimating the setwidth of the \whitespace" character, which is an important

73

(a)

(b)

(c)

Figure 8.7: TR decoding output using one-layer grammars on a clean text block image. (a) Segmentation
of a text block (Figure 8.2a) using a single-column, multi-row grammar; (b) the result in (a) overlaid on the
original observed image; (c) Segmentation of the same block using a multi-column, multi-row grammar.

74

step in the initial training of a DID OCR decoder. The vertical edges of the (approximate)
word boxes simpli�es the measurement of the distance between them.

8.4.3 Noisy text block

The TR decoding behavior using one-layer rectangular grammars on the noisy
text block image (Figure 8.3a) is described in Figure 8.8. Figure 8.8a is the output using
the multi-column/multi-row grammar used in Figure 8.7 above. The noise has made word
boxing largely infeasible using this method. Given the large amount of noise, this is not too
surprising. It is interesting to note that the result using nonlocal grammars (Figure 8.5b
is superior, suggesting that nonlocal grammars may be more robust against noise for those
structures for which they apply7. Figure 8.8b shows the segmentation of the noisy text
block image obtained using a single-column, multiple-row one-layer grammar. This result
is similar to Figure 8.5c, and

(a)

(b)

Figure 8.8: TR decoding output using one-layer rectangular grammars on a noisy image. (a) Output using
the multi-column/multi-row grammar used in Figure 8.7 above. The noise has made word boxing infeasible
using this method. (b) Segmentation of the same image using a single-column, multiple-row grammar.

8.4.4 Application

As a mild proof of concept, we apply our current approach to analyzing text lines
to the title page of this thesis, shown in Figure 8.9a. The result shown in Figure 8.9b

7We have not examined why the decoding results di�er in the two cases. The nonlocal and one-layer
grammars are apparently describing the same grammatical structures, but di�erences in the FST transition
probabilities may at least partially explain the di�erence.

75

was obtained using a one-column, multi-row one-layer grammar, with the channel given by
ff0:999; 0:001g; f0:5; 0:5gg. Such output could be used with minimal postprocessing to �nd
baselines, for subsequent use by a DID OCR engine, for example.

(a) (b)

Figure 8.9: Proof of concept: (a) The title page of this thesis; (b) TR result using a one-column/multi-row
one-layer grammar.

8.5 Manhattan grammars

For the sake of completeness, we consider the use of Manhattan grammars on the
same set of text images discussed previously. It is unlikely that the
exibility o�ered by
Manhattan grammars would be of much use for simple text layouts, but in any case it is of
interest to examine the range of behaviors exhibited by TR using Manhattan grammars in
this context, which is somewhat surprising. We note that most of the output results shown
in this section are not fully converged, for reasons that are discussed in detail elsewhere.

We �rst consider using the Manhattan grammar corresponding to Figure 7.5 on
the clean single text line image used previously (Figure 8.6), which is 413 by 68 pixels
in size. The channel is given by ff0:999; 0:001g; f0:7; 0:3gg. Seven turbo iterations were
applied, with a runtime of approximately 22 seconds on a 900MHz PC. Figure 8.10a shows
the TR decoding result. This almost appears like the original text line re-typeset in a
strange font. The careful viewer may note that this is not a fully converged result. The
decoding algorithm evidently has diÆculties (due partially to the design of the grammar)

76

(a)

(b)

Figure 8.10: Application of the Manhattan grammar to a clean single text line. (a) Approximate word
boxing; (b) Outline of the entire text line, produced by attempting to suppress the number of corner points.

in following bumps and other detailed image structure that are only one pixel wide, for
example.

The result shown in Figure 8.10a has a rather complex appearance, and one might
wonder if it might be possible to reduce this complexity by somehow suppressing the num-
ber of edges, to produce results akin to those in previous sections. One possible way to
accomplish this is to change some of the transition probabilities in the FSTs. As mentioned
previously in Chapter 4, the quantity that plays the role of a \transition probability"
that is familiar from the HMM literature is the expression P (ui)P (si+1 j si; ui), where
P (si+1 j si; ui) corresponds to the FST transition probabilities speci�ed in our grammars
(see Chapter 4 and the footnote in Section 4.2.2 for further details and explanation of the
notation). P (ui) is being updated by the TR turbo iterations, and hence we can view the
progress of the TR algorithm as updating such HMM-equivalent transition probabilities.
P (ui) is initially just a �xed constant for all i, however, so we can provide an initial bias
on the TR algorithm by manipulating P (si+1 j si; ui). Namely by drastically lowering the
probability of some transitions, say from 1.0 down to 0.01, we can a�ect the character of the
TR decoding output8. Figure 8.10b shows the result obtained by lowering the probability
of transitions labeled with the input symbol b in the vertical grammar (to reduce the num-
ber of horizontal edges) and similarly lowering the probability of transitions labeled with
c in the horizontal grammar (to reduce the number of vertical edges). Paradoxically, the
number of edges seems to increase using the modi�ed grammar, although the fact that the
text line is segmented as one connected component could be taken as a form of reduction
in complexity. The general issue of how best to manage the complexity of TR decoding
results remains an open research question.

8Additional transitions, to the accepting state for example, need to be added so that the transition
probabilities from each state continue to add up to one.

77

Figure 8.11 shows the application of Manhattan grammars to the text block im-
ages. Figure 8.11a shows the result of using the \suppressed" Manhattan grammar men-
tioned above (i.e., the one with modi�ed transition probabilities) and a channel equal to
ff0:999; 0:001g; f0:5; 0:5gg. This time only the foreground pixels are shown. The TR de-
coding is approximately returning words. The penchant of TR for complex decoding output
when using Manhattan grammars is clearly seen.

(a)

(b)

(c)

Figure 8.11: Application of the Manhattan grammar to a text block. (a) Approximate word boxing on a
clean text block; (b) complex decoding of a text block; (c) approximate word boxing of the noisy image.

Using the same grammar on the noisy text block image results in Figure 8.11b.

78

The channel in this case is ff0:8; 0:2g; f0:5; 0:5gg. The result is pretty much unuseable,
except perhaps as a vague description of where the text is located. It is amusing that
since the Manhattan grammar allows the formation of \holes," Figure 8.11b takes on the
character of \Swiss cheese."

If the channel is modi�ed to ff0:8; 0:2g; f0:2; 0:8gg, we obtain the result shown
in Figure 8.11c, which roughly approximates word segmentation. Again, although we are
trying to reduce the complexity of the TR decoding output by \suppressing" certain tran-
sitions, this approach clearly has not succeeded as well as one might like.

These are just examples of the TR decoding behavior using Manhattan grammars.
A basic theme is the tendency of TR to produce complex patterns in an attempt to closely
mimic the observed, perhaps more closely than one would like. Further applications of
Manhattan grammars are given in the next chapter.

8.6 Blob grammars applied to text

In this section, we apply the blob grammars introduced in Section 7.1.4 to text
lines. These grammars only minimally constrain image structure. They nevertheless may
be useful, especially on clean text images.

Figure 8.12 shows the application of a progression of di�erent blob grammars and
channels to the single text line image given in Figure 8.1a. In Figure 8.12a the text line has
been segmented using a single-blob grammar and a channel set to ff0:999; 0:001g; f0:9; 0:1gg.
The only constraint provided by this grammar, which is nevertheless a powerful one, is that
any row or column have at most one run of black pixels. While we have not extensively
tested the use of this grammar, its simplicity is compelling and the results appear promis-
ing. Figure 8.12b shows the segmentation obtained using the same grammar with a slightly
di�erent channel ff0:99; 0:01g; f0:5; 0:5gg. The foreground pixels now expected to have a
higher black pixel density, so that the segmentation \blob" tends to squeeze down into the
higher density regions of the text line.

Figure 8.12c uses a single-blob (perhaps better termed as a single-interval) gram-
mar vertically, but a blobs (multiple-interval) grammar horizontally, together with a channel
equal to ff0:999; 0:001g; f0:9; 0:1gg. This results in segmenting each of the words in a man-
ner somewhat akin to run-length smearing, with at most one black interval in each vertical
slice.

Figure 8.12c shows the result with the obtained when a blobs (multiple-interval)
grammar is used in both directions, with a channel equal to ff0:99; 0:01g; f0:5; 0:5gg. As
might be expected, the TR result is identical to the original text line image, given in Figure
8.1a.

79

(a)

(b)

(c)

Figure 8.12: Application of the blob grammars to a single clean text line. (a) TR segmentation using
a single blob grammar; (b) approximate \word boxing" using a blobs grammar horizontally and a blob
grammar vertically; (c) decoding result using a multi-blob grammar with a dense channel, which in fact is
the same as the original image.

80

Chapter 9

Further Applications of Turbo

Recognition

In the previous chapter, we veri�ed that the TR model, developed originally for
recognizing grammatical structures in two dimensions, can be fruitfully applied to the doc-
ument domain, in particular the physical layout analysis of text lines and text blocks. This
involved the rather unusual step of modeling text as a form of noise. In this chapter, we
elaborate further on this idea to treat a number of more complex examples. We also describe
an application of TR to logical layout analysis. We then demonstrate an alternative method
of modeling document content which does not treat it as noise. We close the chapter with
a discussion of the noise robustness of TR.1

9.1 Two columns

We �rst turn to a variation on an old theme. Figure 9.1a shows a text document
image 153 by 184 pixels in size, corresponding to roughly 20 dpi. To make the decoding
more challenging, we add 10% bit-
ip noise and some pen marks that would foil a projection
pro�le approach, resulting in Figure 9.1b. We propose that the layout of this document
can be described with the two column structure shown in Figure 9.1c. This leads to a two-
column TR grammar that is a simple modi�cation of the standard one-rectangle grammar
described in Section 3.3, namely a+ j b+c+b+c+b+ horizontally and a+(b+ j c+)a+ vertically,
where now we �nd it convenient to say b and c are separate foreground symbols. With the
channel equal to ff0:5; 0:5g; f0:88; 0:12g; f0:8; 0:2gg, we obtain the result shown in Figure
9.1d, where only the c symbol is displayed, showing that the two column structure can
be successfully extracted. This highlights the ability of TR to accumulate local evidence
over long distances, in a manner that enforces non-local constraints, without making hard
decisions at an intermediate step. This distinguishes it from methods that rely on local
statistics or metrics alone such as most connected component and Markov random �eld
methods.

1In some of the following �gures, we use di�erent shades of gray to denote di�erent symbols in the TR
output. In the printed version of this document, the di�erent grayscale values are not apparent (i.e. the
medium gray values look black). We apologize for this in advance.

81

(a) (b)

A

B C B C B

A

(c) (d)

Figure 9.1: (a) Original two-column text image; (b) noisy observed version of (a); (c) layout structure
described by a TR two-column grammar; (d) TR decoding result.

82

(a) (b)

Figure 9.2: (a) Checkerboard image with 30% bit
ip noise; (b) TR result with a checkerboard grammar
with no constraint on size or number of blocks.

9.2 Checkerboard

To further explicate some of TR capabilities, we consider the noisy checkerboard
image given in Figure 9.2a, which has been corrupted with thirty percent bit-
ip noise
and an extended pencil scrawl. Using a grammar for such patterns, which does not �x
either the number or size of the individual blocks, TR easily recovers2 the original clean
image. This shows the ability of TR to integrate information over two dimensions (the entire
image) before returning an estimate of the global optimum. Note that local estimates of the
individual checkerboard blocks are unlikely to result in a pattern which is globally optimal
or even consistent.

9.3 Mathematical expression

A somewhat unusual application of TR is shown in Figure 9.3a. This shows a
mathematical expression taken from an integral table and imaged at very low resolution.
We can extract structure from this rather chaotic collection of components by using the
following multi-row grammar:

horizontal : a+ j (b+c+)+b+

vertical : (a+(b+ j c+))+a+

TR in this case is focussed on \clumping" black pixels into rectangles in a manner con-
sistent with the grammar. This is largely in accord with typesetting conventions implicit
in Figure 9.3a, allowing TR to summarize the image as a readily interpretable structure.
For instance, the fact that this expression consists of two linear sequences, a large one on
top and a smaller one below, can be extracted with minor postprocessing. The centerline,

2Run time in Java with no attempt at optimization is about four seconds on a 900 MHz Pentium PC.
The image is 156 by 136 pixels and requires three turbo iterations. Typically three to seven iterations are
required for convergence.

83

a hypothetical reference line passing horizontally through the center of the formula, can
then be determined, which is crucial for any subsequent parsing [103]. In addition, the two
fractions appear as prominent blocks, and the summation symbol with limits above and
below is easily identi�ed. While this does not demonstrate that TR is suitable for an actual
mathematical parsing task, it is gratifying that such a summarization of image structure
comes about with very little e�ort, with no need to build in application-speci�c knowledge
via thresholds, etc.3

(a)

(b)

Figure 9.3: (a) Mathematical expression at low resolution; (b) TR decoding (c-symbol only).

9.4 Complications

In this section, we brie
y discuss some of the problems we have encountered in
using TR. At the end of this section, we introduce an innovation that holds some promise
in dealing with many of these problems.

9.4.1 Non-convergence

One prominent diÆculty is the failure of the TR decoding algorithm, or more
precisely, our current implementation of it, to properly converge. This has become more
noticeable as we deal with more complicated examples. The problem can be illustrated
using the image shown in Figure 9.4a. This is a simple text image, but nevertheless it
can o�er a complex problem of \shape" recognition in its own right. Here we take shape
to mean \a collection of rectangles." Figures 9.4b and c show intermediate TR results
after one and two turbo iterations, respectively, without the use of deterministic annealing
(see Section 4.3 for a description), and using a channel equal to ff0:999; 0:001g; f0:1; 0:9gg.
We emphasize for clarity that these �gures are just snapshots of the decoding process,
displaying the most likely input symbols at each pixel at a given time, and in particular,
no hard decision is made about the con�guration of U at any point, except when the

3This result is reminiscent of run-length smoothing (RLS) [67] in either the horizontal or vertical direction
(or both). It is unlikely that an RLS approach could exactly reproduce the structure in Figure 9.3, since the
amount of smoothing required would vary across the image.

84

algorithm terminates. Having said this, we also note that the TR update process often
rapidly drives the probabilities at each pixel to very close to zero or one. This can be a
problem, since the P (U) updates are the only means for the FSTs in the horizontal and
vertical directions to communicate with each other. If the vertical FSTs, say, drive P (U)
too rapidly to zero or one, this may force critical transition probabilities for the horizontal
FSTs (where \transition probability" is understood here in the HMM sense, as described in
the footnote to Section 4.2.2) to zero, with the result that the horizontal FSTs are prevented
from reaching the �nal state(s). Loosely speaking, \overcon�dence in one direction yields
problems in the orthogonal direction." Such problems should not arise in principle but do
in practice, due to the lack of in�nite numerical precision.

In the case of Figure 9.4, such problems arise on the next iteration. Speci�cally,
during the backward pass for one of the image rows, the value of �(Z) evaluates to zero for
all the values of Z, implying that P (U) itself would evaluate to zero for all input symbols
at the given pixel (and subsequent pixels on that row).

In order to deal with such images that are in a sense \far from grammatical,"
we use deterministic annealing [125]. Here we do not use the �Z(U) message directly, but
rather raise it to a power � �rst, before updating P (U) (see Section 4.3). We typically start
with � = 0:15 and increase it by a factor of 1.4 on each turbo iteration. The result of using
deterministic annealing in this fashion is shown in Figure 9.4d. This is the result after six
iterations, after which TR in fact again fails. We note though that the algorithm has made
some progress towards a grammatical solution. Figure 9.4d shows the result when we start
with � = 0:15 (as before) and increase it by a smaller factor of 1.2 on each iteration. This
\slow" annealing process �nally gives the TR algorithm enough room to �nd a grammatical
solution.

Lest the reader get the impression that this problem is pervasive, even on such
small images, we mention that this behavior can be moderated or eliminated entirely by
the proper choice of channel. As shown in Figure 9.4f, TR has no diÆculty segmenting
this image using a moderately di�erent channel, ff0:999; 0:001g; f0:5; 0:5gg, where we now
employ our standard deterministic annealing schedule (� initially equal to 0.15 and increased
by a factor of 1.4 on each iteration), and convergence is achieved in six iterations.

We note here that non-local grammars of the sort used in Figure 8.4, for exam-
ple, are able to deal with this example with relative ease, over a wide range of channel
parameters. Therefore, currently we are faced with a tradeo� of
exibility versus robust-
ness. Simple grammars that are relatively in
exible exhibit better robustness, while
exible
grammars that have the ability to encompass layouts of nearly arbitrary complexity seem to
break more easily. Fundamental to this issue may be the lack of a characteristic length scale
(besides the pixel spacing) in the TR model. One-layer Manhattan grammars, for example,
have the ability to capture almost \fractal-like" aspects of the observed data. What seems
to be required is some way to control this sensitivity to detail, by penalizing the number of
corner points, for example, or inventing new classes of grammars. We leave this to future
work.

85

(a) (b) (c)

(d) (e) (f)

Figure 9.4: (a) Text image at 100 dpi; (b) result after one turbo iteration, without deterministic annealing;
(c) result after two iterations; (d) result after six iterations using an annealing parameter of 1.4; (e) result
after 10 iterations using an annealing parameter of 1.2; (f) result after six iterations using a slightly di�erent
channel.

9.4.2 Two-as-one grammars

We introduce here what we call, for lack of a better name, \two-as-one" grammars,
as a di�erent approach to dealing with the above problems. The name arises since two input
symbols together play a role akin to a single symbol in the previous grammars. We are
motivated by the impression that currently we are forcing TR to model document content
in some detail, which is not what TR is designed to do. Instead, we note for example that
it is simple for us as humans to ignore details of a printed word, such as its font, presence
of serifs, etc., to view it simply as a rectangle within which black pixels are compactly
arranged. It thus may be fruitful if our recognition algorithm can similarly ignore such
details and simply concentrate on forming grammatical regions, within which black and
white pixels are arbitrarily distributed.

An implementation of this idea is shown in Figure 9.5, which shows a one-layer hor-
izontal multi-column FST along the lines of the general Manhattan FST shown in Figure 7.5.
The transitions for input symbols d and f now come in pairs, so that in any location where
d can appear, f can also legally appear, and vice versa. Hence, the columnar constraints
implied by this FST (when used in conjunction with a corresponding vertical multi-row
FST, for example) are satis�ed by regions within which d and f are freely intermixed.

We demonstrate how such grammars work by returning to the image of the word
\the" used in the previous section (reproduced in Figure 9.6a for convenience). There are
now two foreground symbols, 10 and 20, and the channel we use is a modi�cation of the one
used previously, ff0:999; 0:001g; f0:5; 0:5g; f0:1; 0:9gg. The result is shown in Figure 9.6b,

86

0 6

a/0’
b/0’

3

a/0’

2

4

a/0’

5
d/1’

d/1’

f/2’

f/2’

1

b/0’

c/0’

e/0’

c/0’

e/0’

Figure 9.5: Example of an FST where the transitions for input symbol f duplicate those for d. The d and
f symbols can thus appear freely intermixed within overall regions that satisfy the TR layout constraints.
This �gure shows a horizontal multi-column FST. The corresponding vertical multi-row FST is identical,
except the b and c symbols are interchanged.

where grey corresponds to input symbol d and black to symbol f . As such, the black pixels
in Figure 9.6b are not simply identical to the ones in Figure 9.4a, though they happen to be
the same in this case. It is rather remarkable, given the experience in the previous section,
that this result is achieved in only four iterations and without using deterministic annealing.

(a) (b)

Figure 9.6: (a) Observed text image used in the previous section (shown again here for convenience); (b)
segmentation obtained using a multiple-row, multiple-column two-as-one grammar.

This result shows that, when TR is relieved of the responsibility of modeling text in any
detail, many of the above-mentioned diÆculties are at least alleviated. The use of two-as-
one grammars by itself is not enough to solve all of our problems, on several counts, as will
be seen in the following section. Nevertheless, this points at the sort of innovations that
will be required in order to make TR more generally applicable to the document domain.

9.5 Mixed text and graphics

A natural generalization of the work on text-only content in the previous chapter
is to consider images which contain both text and halftones. As suggested above, we have
been developing two approaches to the analysis of composite documents of this kind. In
the �rst approach, we extend the grammars introduced in the previous chapter to use two
foreground symbols instead of just one, in essence allowing the grammatical regions to come

87

in two types, which di�er in their characteristic black pixel densities. This is an application
of the \texture discrimination" approach described in Section 7.2. In the second approach,
we again use two foreground symbols, but this time we allow them to be freely intermixed
within grammatical regions, as described in the Section 9.4.2 above.

Figure 9.7a shows a multi-column image, 300 by 400 pixels in size (roughly 40
dpi), that includes both textual and graphical content in the form of binarized grayscale
images. We �rst attempt to analyze this image with a one-layer multiple rectangle gram-
mar with two foreground symbols, which was used previously for the synthetic exam-
ple in Figure 7.8. In other words, we attempt to segment the image using two kinds
of rectangles having di�erent \textures." The channel has the reasonably standard form
ff0:999; 0:001g; f0:7; 0:3g; f0:1; 0:9gg. After four iterations, we obtain the result shown in
Figure 9.7b. This is mildly successful in forming a segmentation of the image according to
texture. We note that the pixels making up the title text regions in the larger fonts towards
the top of the page are placed in the same class as the graphics. This is natural, given that
on the scale of a few pixels, such large characters indeed have a high black pixel density.
The regions are not rectangular since the algorithm in fact has not converged, which is
representative of a general phenomenon described in the previous section. These results
nevertheless demonstrate how it is possible to bring some measure of texture segmentation
capability within the TR framework, using simple bit-
ip noise as a modeling tool.

The focus of the above approach on modeling document content as bit-
ip noise is
in a sense too low-level. For example, both extended regions of black and extended regions
of white might be indicative of the presence of a graphic, as opposed to text, but it is
impossible to capture both possibilities using a single level of noise.

This suggests that TR could bene�t from a pre-processing phase, in which such
knowledge about local correlations (at the level of a few pixels) is incorporated into the
\observed evidence" that is input to the TR algorithm. The large body of research on
texture analysis methods, including work cited in Chapter 1 for example, could undoubtedly
be drawn upon in this regard, to allow TR to take one step back from the low-level details
of the observed image.

For now, we consider taking the opposite tack from the above approach of in-
corporating more knowledge, in order to incorporate less. Thus, we employ the method
described in Section 9.4.2, in which content regions are modeled by two symbols that are
allowed to be arbitrarily mixed together. We can view this as a workaround within TR to
eliminate the need to model textures directly. If we use essentially the same grammar as
that used in Figure 9.7b, namely one which allows for an arbitrary number of rectangles,
but instantiated as a two-as-one grammar, we obtain for example the result shown in Fig-
ure 9.7c. The channel in this case equals ff0:999; 0:001g; f0:6; 0:4g; f0:1; 0:9gg, and �ve TR
iterations were applied. With simple postprocessing, such a result might be suÆcient to
�nd most of the text regions and text baselines, which could then be input for example to a
DID OCR decoder. Figure 9.7d shows the result using the same two-as-one grammar, with
the channel now equal to ff0:999; 0:001g; f0:99; 0:01g; f0:1; 0:9gg and again with �ve TR
iterations applied. The decoding has merged the components in Figure 9.7c into coherent
regions. We note as before that the black pixels in this �gure represent decoded regions of
high black pixel density, rather than the original black image pixels per se. The extracted

88

regions generally have a cleaner appearance than those in Figure 9.7b. Although these
two-as-one grammar runs exhibit good progress towards reaching a grammatical solution,
they both do not converge completely. Such output results nevertheless demonstrate the
potential of such methods, and could be useful as they stand.

Given the above two approaches, which could be termed \texture segmentation"
and \two-as-one," it is natural to consider whether it is possible to merge the two somehow.
We have not yet been able to do so, although we believe such integration should be possible
by increasing the size of the input and output alphabets.

9.6 Logical layout analysis

Much of this thesis has been devoted to understanding how to use TR to describe
shapes and regions, and how to apply this knowledge to the document domain. Our ex-
ploration of the use of TR to analyze relationships between regions has been rudimentary.
We have, for example, described structures such as multiple rows, multiple columns, and
checkerboards, and also relatively unconstrained structures such as rectangles with arbitrary
relative alignments and general Manhattan layouts. In many problem domains, however,
such as table reading and understanding of business letters, more detailed knowledge is of-
ten available about the structure of such documents (see Sections 1.2.8 and 1.2.10 for some
pointers to the literature). A TR grammar can be an e�ective medium for incorporating
such knowledge. This shifts the focus of TR from purely physical layout analysis concerns
to parsing the two-dimensional structure of a document into meaningful components.

As an example, we consider the journal article title page shown in Figure 9.8a.
Metadata extraction from such pages is an important application of layout analysis [18]. We
use a TR grammar that describes the structure of the page as the article title, followed by the
abstract, followed by body text, where the �rst two components are single column and the
last has two columns. The TR result is shown in Figure 9.8b. Here four TR iterations were
applied, and a somewhat unusual channel was used, ff0:999; 0:001g; f0:5; 0:5gg horizontally,
and ff0:999; 0:001g; f0:9; 0:1gg vertically.

The di�erent shades of gray in the top two blocks denotes the fact that they have
been decoded by di�erent input symbols. The TR insistence on grammatical interpretations
suggests that it can boost overall zoning performance, even on such clean images.

89

(a) (b)

(c) (d)

Figure 9.7: (a) Binary image of a composite multi-column document; (b) segmentation into regions
re
ecting di�erent textures, using a channel equal to ff0:999; 0:001g; f0:7; 0:3g; f0:1; 0:9gg; (c) decoding
using a two-as-one grammar with the channel equal to ff0:999; 0:001g; f0:6; 0:4g; f0:1; 0:9gg; (d) decoding
with the channel now equal to ff0:999; 0:001g; f0:99; 0:01g; f0:1; 0:9gg.

90

(a) (b)

Figure 9.8: a) Journal article title page; b) TR decoding into several logical zones.

91

Chapter 10

Conclusion

This dissertation describes turbo recognition (TR), a statistical page layout anal-
ysis approach based on communication theory. A TR model is based on two �nite state
machines, which describe image structure in the horizontal and vertical direction simulta-
neously. In this way, the model de�nes a set of grammatical images, corresponding to the
usual one-dimensional notion of grammatical strings in a language. When combined with
a noise channel, this forms a stochastic image generation process with an accompanying
probability distribution over images. A TR decoder then seeks the optimal decoding of an
observed image, consistent with the image grammars.

The TR decoding equations are essentially those used for turbo decoding, which
are in turn closely related to techniques used for analyzing hidden Markov models. We
borrow techniques from the the graphical model literature to derive the speci�c form of
these equations. This results in an iterative decoding process which is linear in the size of
the observed image. To improve the convergence properties of the algorithm, we employ
deterministic annealing.

Since TR (as in turbo decoding) is not guaranteed to produce optimal results, we
investigate the optimality of TR solutions with a simple experiment. The results show that
TR indeed performs very close to optimally in extracting a single black rectangle from a
noisy image, while remaining linear in complexity. This problem in two-dimensional recog-
nition is suÆciently diÆcult that exhaustive search is the only method that can guarantee
optimality, at the cost of quadratic complexity.

We demonstrate how TR can be used in the analysis of abstract image structure,
and have explored the expressiveness of the TR formulation by developing a hierarchy of
grammars of increasing complexity. We show how this framework can be applied to images
of text lines, which shows promise for possible integration with OCR methods such as
those previously developed within DID. We propose that the layout analysis of composite
documents made up of text and graphics be treated as texture segmentation together with
grammatical constraints. We show how the TR model as it stands is suÆciently
exible to
make signi�cant headway on this problem. The exploitation of the grammatical basis of
TR to integrate physical and logical layout analysis has only just begun.

We have thus far limited ourselves to relatively simple regular grammars. With the
work described here as a basis, there is a large variety of applications, such as the analysis

92

of tables, forms, business letters, and articles, layout classi�cation of documents, etc., that
represent attractive avenues for future research. It may also be of interest to explore more
powerful grammars, such as those having a �xed level of recursion. Such a grammar could
describe a multi-column table within a multi-column document, for example. In general,
it would be of interest to investigate if grammars could be combined in a modular fashion,
and if so, to develop a formalism for hooking them together. The adoption of tools like
lex could help automate the grammar generation process. This may also be useful from
a performance standpoint, by automatically minimizing the �nite state machines to be as
small as possible.

We have yet to attempt large scale comparisons with other layout analysis methods,
one reason being that TR can be targeted at regimes where other methods simply fail, such
as when connected components yield a highly corrupted signal. TR also has much room
to evolve. For example, our model of text is essentially bit-
ip noise, which is clearly very
impoverished. A form of TR operating on the results of even very simple local texture
analysis methods could be quite powerful.

Whether or not TR proves to be the best layout analysis method according to any
given performance metric, it remains attractive as a longer-range research target because
of the possibility of integrating it with DID OCR models. In other words, rather than
employing TR for layout analysis on its own, it could become part of a larger probabilistic
model of a document page which encompasses both the layout and character levels. This
would further reveal the depth available in the DID approach. We also hope our work in
general fosters the further development of probabilistic models of layout, both within DID
and in the DIA community at large.

93

Appendix A

Finite State Machines

This appendix provides an overview of �nite state machines (FSMs). FSMs are
the basis of TR encoding models and, amongst other things, control the complexity of
the structures that can be decoded by TR. We collect some information about them and
introduce our terminology here for reference purposes. We note in passing that the FSM
nodes and arcs that appear below have a completely di�erent meaning from those that
appear in graphical models (which are described in Appendix B).

A.1 Introduction

A �nite state machine is a dynamical system that can reside in one of a �nite
number of states at any given time. It evolves by taking one of a set of allowed transitions
between states at discrete time steps. We note that in place of discrete time, any linear
index can play the same role, such as a discrete spatial coordinate along a line.

The structure of an FSM can be illustrated diagrammatically as in Figure A.1,
where each node represents a state of the system, and each directed arc denotes an allowed
transition. The system begins in the distinguished initial (\start") state 0, marked by the

b

a c
0 1 2

Figure A.1: Deterministic �nite state automaton (DFA)

curved arrow.1 It then evolves by following directed arcs between states. This evolution is
allowed to terminate only in the \�nal" or \accepting" state, represented by the doubly-
circled node 2. In general, an FSM can have multiple accepting states, and also transitions
that exit them, allowing for further time evolution of the machine.

1We always display the initial state on the left, so we dispense with this arrow elsewhere.

94

Such machines are related to string grammars through labels on the arcs that are
drawn from some input alphabet �. The machine processes a string by consuming it one
character at a time, meanwhile following an arc corresponding to the character at hand (if
such an arc exists). If there is more than one such transition, then the machine chooses one
\non-deterministically."2 If the machine terminates in the accepting state3, the machine
is said to accept the string, in which case we term the input string grammatical or legal.
Otherwise, the machine rejects4 the string as ungrammatical or illegal. Such a machine with
two possible outputs (accept/reject) is called a �nite state automaton (FSA). The language
that an FSA accepts is de�ned to be the set of strings that drive the FSA in this manner
to an accepting state. For instance, the FSA in Figure A.1 accepts exactly those strings in
the language denoted by the regular expression ���
, where � = fag � = fbg,
 = fcg. By
an abuse of notation we will denote this as ab�c.

Formally, a deterministic �nite automaton (DFA) can be speci�ed as a 5-tuple
M = (�; S; s0; F; Æ), where � is the input alphabet, S is the set of states, s0 is the initial
or start state, F � S is the set of �nal states, and Æ : �� S ! S is the transition function.
The function Æ is typically viewed as a partial function, i.e. it does not necessarily yield a
result for all values in its domain.5 The same machine can also be thought of as a generator
of strings in ab�c, by emitting (as opposed to \recognizing") the symbols that adorn its
transitions.

A.2 Finite state transducers

FSMs can be made more expressive by labeling the transitions with both input
and output labels, in which case we call the machine a �nite state transducer (FST). For
example, the FST in Figure A.2 is a transducer from the input alphabet fa; b; cg to the
output alphabet f0; 1g6. We again imagine the FST consuming an input symbol stream,

b / 1

c / 0a / 0
0 1 2

Figure A.2: A deterministic �nite state transducer.

2This description may be objectionable to a purist, for whom non-determinism is simply a shorthand for an
equivalent deterministic process. The algorithm for converting a non-deterministic FSM into a deterministic
one is given for example by Hopcroft and Ullman [110].

3Formally, this requires that the input string be terminated by a special character which informs the
machine that it has reached the end of the string.

4 Strictly speaking, the machine as drawn in Figure A.1 cannot reject strings. An additional reject state
can be added, with transitions constructed to it from all the other states, corresponding to input symbols
which do not appear on the \legal" transitions.

5The addition of a reject state, as in Footnote 4, would remedy this situation.
6The arc labels in a transducer can be considered to be ordered pairs of symbols, in which case we can

say the transducer encodes a regular relation between the input and output labels ([132]).

95

taking transitions according to each input symbol that it sees. The FST now also emits
an output symbol for each transition that it takes, thus e�ecting a translation between
the input and output streams. If no allowed transition exists, the input stream is declared
illegal, and the output stream is thrown out.7 For example, the FST in Figure A.2 accepts
input strings ab�c and emits output strings 01�0.

Alternatively, an FST can be thought of as nondeterministically wending its way
from the start state to the accepting state (or states), meanwhile generating both input and
output streams in parallel. In particular, the FSA in Figure A.1, viewed as a generator of
strings, can be considered a special case of this, where there are no input symbols8.

In passing, we note that a nondeterministic machine with N states can be trans-
formed into an equivalent deterministic machine with at most 2N states [110] which accepts
the same language. It could even be said more emphatically that a nondeterministic machine
is precisely a shorthand for its deterministic counterpart. While such a transformation may
be necessary for a non-deterministic machine to be well-de�ned, this not true in the case
of probabilistic machines. Indeed, probabilities are often introduced exactly in situations
which would otherwise be described as nondeterministic.

Finite state machines can be viewed in terms of the Chomsky hierarchy of formal
languages, where they are equivalent to regular grammars, the lowest rung of the hierarchy.
They are distinctly less powerful than context-free grammars, the next rung in the hierarchy.
However, FSMs have the advantage in terms of parsing eÆciency.

A.3 Probabilistic FSTs

So far, we have discussed deterministic FSMs (or their non-deterministic coun-
terparts). In either case, for a given FSM, it is always clear whether a given sequence
is grammatical or not, i.e. if it could have been produced (or accepted) by the machine.
In many applications, however, it is useful to allow for relative judgments, rather than
categorical declarations regarding grammaticality.

By way of motivation, consider the slightly more complicated FSM (Figure A.3).
which describes a sequence a+bb+, with one or more a's, followed by two or more b's. The

2 3
a b

ba

0 1
b

Figure A.3: Deterministic version of an FSM for recognizing sequences given by the regular expression
a+bb+ in the presence of noise.

question arises, can we use this machine to help us interpret a sequence such as aabbabb?
We could declare the sequence ungrammatical and simply ignore it. Clearly, for recognition

7A more careful statement would be, \If no legal transition exists, the FST makes a transition to a 'reject'
state, and the translation fails."

8The labels on the arc in this generative mode can be represented as �=x, where � is the null input symbol,
and x is a symbol from the output alphabet.

96

purposes, where the whole purpose is to analyze what we see, this is not very productive.
Instead, we may note that the above sequence is \close" to the grammatical sequence
aabbbbb, up to noise in the �fth bit, and hence we may consider this the best interpretation
of the observed evidence within the model.

We formalize this notion by introducing probabilities into the model. First consider
adding probabilities to the transitions (Figure A.4). The machine now randomly takes

2 30 1

a:0.9 b:0.5

b:0.1 b:0.5a:1.0

Figure A.4: Stochastic FSM for recognizing a+bb+ in the presence of noise. The �nal version (not shown)
replaces each transition label (�guratively speaking) by a distribution over symbols in the alphabet, resulting
in a type of hidden Markov model (HMM).

transitions from state to state, according to the probabilities on each arc9. The probabilities
of the transitions exiting each state thus sum up to one. The probability of a given \path"
from initial state to �nal state is the product of the transition probabilities along the path.
We take this probability to also be the probability of the symbol sequence output by the
machine. I.e., the machine naturally induces a probability distribution over the symbol
sequences.10

This however is still not suÆcient to solve our problem. We now add probability
into the model in a second way. We replace, �guratively speaking, the single output symbol
on an arc with a probability distribution over symbols. With a view to future applications,
we maintain the deterministic relation between the input u and output symbol x on each arc,
and now imagine the output symbol as being corrupted by random noise, before obtaining
the observed symbol y. We assume a particular form for this noise process, where the
probability of \bit-
ip" for a given output symbol is constant (i.e. the same for a given
output symbol, wherever it appears in the machine) and independent of the other symbols
in the sequence. This de�nes a memoryless channel, speci�ed by P (yjx).

The general subject of probabilistic automata is treated in e.g. the book by Paz
[133]. Probabilistic automata have been used in many contexts, such as chip design, com-
munication theory, linguistics, speech recognition, and machine learning, to name a few.
There is a discernible convergence of these disparate �elds, but a standard terminology has
yet to emerge. A summary of the main varieties of PFAs, which at least attempts to give
them standard names, is provided by Murphy [134].11

9We note again that this is distinct from non-determinism.
10To be precise, the machine induces a probability distribution for states at a given time. Hence, it is

customary to view the machine as inducing a probability distribution over strings of a �xed length (i.e. each
string of a di�erent length is a new event). Since we will be concerned with recognition (which is in a sense
the reverse of generation), we will only be dealing with �xed-length strings in any case.

11In these terms, HMMs that we use as an example are output-NPFAs, and the probabilistic transducers
that we use later are input-NPFAs.

97

A.3.1 Optimality

As mentioned previously, probabilistic automata give us relative judgments about
di�ering interpretations of the observed data. We now describe methods for determining the
best such interpretation. There are (at least) three standard conceptions of the word \best."
For concreteness, we imagine having a string in hand, such as aabbabc above. The maximum

a posteriori (MAP) solution maximizes the probability of all unobserved variables, given
the evidence,

argmax
~s

P (~s j ~x)

where ~s denotes the set of all unobserved (\hidden") variables, which in this case are the
states. This is equivalent to maximizing the joint probability distribution for the entire
model, since P (~sj~x) = P (~s; ~x)=P (~x); where P (~x) =

P
~s P (~s; ~x) is simply a constant, once ~x

is �xed.
A closely related solution is themaximum likelihood estimate, ~sML = argmaxs P (xjs).

This is identical to the MAP solution when the prior probability P (s) is the uniform dis-
tribution (i.e. a constant).

We can also maximize the probability of each unobserved (hidden) variable sepa-
rately, argmaxui P (ui j ~x), where a marginalization over all the other unobserved variables
uj ; j 6= i is implied. We note that the system con�guration given by the set of maximum
marginal values may actually have low, or even zero, probability, since memory about
correlations that were present in the joint distribution were e�ectively lost in doing the
marginalization. On the other hand, the MM solution minimizes the per-symbol error, i.e.
the expected number of symbols which di�er from the original values of ~u.

We now turn to methods for obtaining such solutions. As these are described in
many textbooks [88, 116], we simply summarize them here.

A.3.2 Viterbi algorithm

The Viterbi algorithm is a dynamic programming method for obtaining the best
state sequence given the evidence (i.e. the MAP solution). We illustrate the algorithm
for an HMM, where the observed symbols are emitted by the states as opposed to on the
transitions. The algorithm proceeds by evaluating a quantity called, perhaps confusingly,
the likelihood L, which is de�ned on a trellis (see Figure A.5). The algorithm proceeds from
left to right in the trellis, according to the recurrence relation

L(sj; t+ 1) = max aijbj(ot+1)L(si; t) ;

where aij is the transition probability and bj(ot+1) is the probability for the observed symbol
ot+1) when the HMM is in state j.

L keeps track of the highest probability for reaching a given point of the trellis,
starting from the initial state. If we maintain backpointers to the previous state from which
the best path came, at each point in the trellis, then we can recover the overall best path by
�nding the trellis node with maximum L at t = T�1 (using a 0-based indexing convention),
and following backpointers recursively until we reach the initial state.

98

0 0 0 0 0

...
1 1 1

2 2 2 2

3 3 3 3 3

1 1

2

Figure A.5: Trellis for a four-state HMM.

A.3.3 Forward-backward algorithm

Whereas the Viterbi algorithm seeks to �nd a single optimal path through the
model, the forward-backward algorithm is a means for calculating marginal probabilities
for each unobserved node in the model. A quantity �(s; t) is de�ned using a recurrence
which proceeds forward in time:

�(si; t = 0) = �(si)bi(ot)

�(sj ; t+ 1) =
X

i

aij bj(ot+1) �(si; t)

�(sj ; t + 1) is the probability of emitting the observed symbol at time t + 1 and reaching
state sj. Note the similarity to the Viterbi algorithm. Instead of maximizing over incoming
paths, we take the sum. Otherwise the algorithms are the same.

Similarly, a quantity �(s; t) is de�ned going backwards in time:

�(si; t = T � 1) = 1:

�(si; t� 1) =
X

j

aijb(ot)�(sj ; t)

This is the probability of being in state i at time t� 1, given that you emit the remaining
observed symbols, beginning at time t. Taking the product of �(si; t) and �(si; t) at each
node in the trellis yields a quantity
(si; t) = �(si; t) � �(si; t), which is (proportional to)
the probability P (si j ~x). Taking the maximum of
(si; t) at each time instant then yields
the MM solution.

The reader may �nd it interesting to compare these equations with Sections 4.2.2
and 4.2.3. We note that there are slight di�erences, due to the fact that HMMs emit
symbols from the nodes, whereas FSTs emit symbols on the transitions. The Viterbi and
forward-backward algorithms are prominent examples of the maxproduct and sumproduct
algorithms discussed in Appendix B.

99

Appendix B

Graphical Models

In Chapter 4, we employ methods from the �eld of graphical models to derive
the TR decoding equations. Here we outline some basic background material on graphical
models for reference purposes. For further details, the reader is referred to the in
uential
work of Pearl [118] and also the book by Frey [116].

B.1 Introduction

A graphical model describes the probability distribution for a set of random vari-
ables by a graph, where the nodes represent the variables, and the arcs represent their
statistical relationship. While both directed and undirected versions of graphical models
exist, here we are only concerned with directed graphs.1 Roughly speaking, a directed arc
connotes the existence of a cause-and-e�ect relationship between the nodes at the tail and
head of the arrow. It turns out that it is actually the absence of an arc between two nodes
which is more signi�cant, as it denotes their conditional independence. We also note that,
strictly speaking, the graph does not describe a speci�c probabilistic model, but rather a
whole family of distributions consistent with the constraints described by the graph.

For example, in the graph shown in Figure B.1, we can speak informally of the
variable A as being the cause of the e�ects B and C. Speci�cally, the structure of the graph
implies that the joint probability distribution P (A;B;C) can be decomposed as follows:

P (A;B;C) = P (A)P (BjA)P (CjA;B) = P (A)P (BjA)P (CjA) ;

where the �rst equation is the chain rule decomposition of the probability (i.e. is completely
general), and the second follows from the above-mentioned conditional independence of B
and C, given A. The form on the right-hand side can be read o� directly from the graph
as a product of factors, each being the conditional probability of a node given its parents.

In order for a directed graph to be a consistent probabilistic model, it cannot
contain a directed loop, i.e., a cycle of nodes obtained by following directed arcs in the

1Undirected versions of graphical models di�er somewhat from directed models in their semantics, and
o�er a di�erent set of methods for describing probability distributions and doing inference. They may turn
out to be of utility for turbo recognition, but we do not use them in this thesis.

100

B

A

C

Figure B.1: Graphical model depicting the probabilistic relationship between three variables A, B, and
C.

graph. The message passing methods described below require the stricter condition that
the graph not contain any loops, even when the direction of the arcs is ignored. A graph
consistent with this constraint takes the form of a causal polytree [118], as exempli�ed by
Figure B.2. A causal polytree generalizes the notion of a tree, in that each node can have

U V W

X

A B C

Figure B.2: Environment around a given node X in a causal polytree

multiple parents, in addition to multiple children. Thus there can be multiple root nodes,
but loops are still not allowed, and the structure as a whole must be connected. Hence,
causal polytrees retain the property that, between any two nodes, there is only one path.
This implies that, by traveling \up" from a given node X to one of its parents, any path
beyond that point leads to nodes which are not reachable by going \down" from X towards
one of its children. X thus separates the graph into nodes \above" it and those \below" it.
Following Pearl, we will use plus (+) and minus (�) to denote these portions of the graph,
although we will also continue to use the informal terms up and down.

A basic task performed with such models is that of inference, i.e. determining how
probabilities in the model change when new evidence is obtained. Suppose we have a graph-
ical model which describes a set of variables A [B = fA1; A2; :::; ANg [fB1; B2; :::; BMg,
with a corresponding probability distribution P (A[B). Suppose now that the variables in
set B are observed to have speci�c values B = b, where this is construed as a vector equa-
tion, Bi = bi ; i 2 f1; : : : ;Mg. We would like to know how this in
uences the probability
model for the remaining variables A. For instance, we may be interested in the quantity

101

P (Ai = ai j b). This leads to the maximum marginal (MM) assignment, in which the prob-
ability for each variable Ai is maximized separately, a�i = argmaxai P (Ai = ai j b); i 2
f1; : : : ; Ng. Note that this implies a marginalization over all the other unobserved variables,
and hence the MM assignment taken as a whole may have low or even zero probability in
the original model.2 Another quantity of interest is the maximum a posteriori (MAP) as-
signment A = a�, where a� = argmaxa P (a j b). A general method for producing such
inferences in causal polytrees is known as message passing.

B.2 Message passing

In this thesis and DID in general, recognition is framed as a problem in statistical
optimization, such as �nding the maximum marginal or the MAP estimate. In the context
of graphical models, the pioneering work by Pearl [118] describes such problems in terms
of the belief, BEL(x) � P (xje); i.e. the posterior distribution for the variable X, given the
observed evidence e.3 By evidence, we mean variables that have been instantiated to speci�c
values. This results from the system having been observed in some way. A key feature of
graphical models (subject to the above restrictions on the absence of loops) is the existence
of a formal message passing algorithm for performing inference given such observations.
We point out here that message passing comes in two varieties, known variously as belief
updating and belief revision, or the sumproduct and maxproduct algorithms. We discuss
the sumproduct version here, since in some ways it is more intuitive. The maxproduct
algorithm is exactly the same, with the sums over a given set of variables replaced by
maximizations over the same set of variables. The results described in this thesis were
mostly obtained using the maxproduct algorithm.

We now sketch the derivation of the general (sumproduct) message passing equa-
tions, leaving technical details to the literature. We follow the treatment given in Pearl
[118]. Consider a generic variable X embedded in a causal polytree, as shown in Figure
B.3. Observed evidence in the form of instantiated variables will be distributed throughout
the graph in some manner, and this can be divided up into two parts, the evidence e+ that is
embedded in the graph above X, and the evidence e� in graph below X, feg = fe+g[fe�g.
We often drop the set notation in what follows for convenience.

We can separate out the e�ects of e+ and e� on P (xje) in the following way:

P (xje) = P (x; e)=P (e)

= P (x; e�; e+)=P (e)

= P (x; e�je+)P (e+)=P (e)

= P (e�jx; e+)P (xje+)P (e+)=P (e)

= P (e�jx)P (xje+)P (e+)=P (e) ;

where the third and fourth equations follow from the de�nition of conditional probability,
and the last equation follows from the fact that X separates e+ from e�. Since P (e+) and

2In the case of turbo recognition, this means that the MM image does not necessarily satisfy the FST
grammar.

3We note again that the belief P (xje) entails a marginalization over the hidden variables besides X,
taking into account all observed evidence.

102

U V W

X

A B C

Figure B.3: Environment around a given node X in a causal polytree. All other nodes in the �gure should
be considered to be embedded in a similar environment, namely one with one or more parents, and one or
more children (except of course at root and leaf nodes).

P (e) are just constants, the x-dependence of P (xje) is captured by the following relation,

P (xje) / �(x) � �(x) ;

where �(x) , P (e�jx) and �(x) , P (xje+). The belief for X is thus the product of a
likelihood from the evidence below X and a prior from the evidence above X, up to constant
factors. We now focus on the two terms on the RHS in turn.

In the generic situation illustrated in Figure B.3, X has three children A, B, and
C, which each make a separate contribution to �(x),

�(x) = P (e�jx) = P (e�XA; e
�

XB ; e
�

XC jx) = P (e�XAjx)P (e
�

XB jx)P (e
�

XC jx) = �A(x)�B(x)�C(x) ;

where e�XA is the evidence embedded in the sub-polytree obtained by following the edge
XA, �A(x) , P (e�XAjx), etc. This relation holds since X separates the subgraphs formed
by following XA, XB, and XC into disjoint polytrees. The likelihood �(x) thus factorizes
into a product of likelihoods coming from each of the child branches.

As for �(x), the evidence e+ divides up into parts stored in each of the component
branches that come into X from above. For the situation displayed in Figure B.3, we have
e+ = e+UX [e+V X [e+WX , where e

+
UX is the evidence embedded in the portion of the graph

obtained by following the edge UX upwards, etc. The contribution from each of these
branches to �(x) can be accumulated as follows:

�(x) = P (xje+)

= P (xje+UX ; e
+
V X ; e

+
WX)

=
X

u;v;w

P (x; u; v; wje+UX ; e
+
V X ; e

+
WX)

=
X

u;v;w

P (xju; v; w)P (u; v; wje+UX ; e
+
V X ; e

+
WX)

=
X

u;v;w

P (xju; v; w)P (uje+UX)P (vje
+
V X)P (wje

+
WX) :

103

The last step follows from the fact that, when marginalized, parents of a given node are
mutually independent.4 Introducing some more notation, we summarize the above relation
as

�(x) =
X

u;v;w

P (xju; v; w)�X (u)�X(v)�X(w)

where �X(u) , P (uje+UX) is the \prior" on U coming from evidence stored in the UX sub-
tree, and �X(v) and �X(w) are de�ned similarly. Unlike the case of �(x), the contributions
from each branch to �(x) are not simply multiplied together, but must be \linked in" via
the conditional probability P (xju; v; w) and a sum over the parental variables. In general,
in situations where all the children of a given node are involved, the corresponding expres-
sion is simply a product of factors from each child branch, whereas when all the parents
of a node are involved, the corresponding expression requires linking the factors from each
parent branch together with a conditional probability and a summation.

To summarize our progress so far, we have shown that the belief BEL(x) at node
X is proportional to the product of a prior �(x) and a likelihood �(x). Each of these factors
in turn can be derived from messages such as �A(x) and �X(u) coming from the children
and parents of X, respectively, in accordance with the formulas given above.

To complete the picture, we need to specify recursively how the messages are
constructed from � and � at other nodes, and the messages coming into those nodes.
Consider for example what X should send upwards to a parent U , in support of the belief
calculation at U . From U 's point of view, the message that it expects to receive from X is
the likelihood �X(u) , P (e�UX ju) that describes the evidence in the UX sub-polytree. As
before, we can develop an expression for �X(u) by �rst examining how di�erent portions
of the evidence contribute to it. Note that the evidence e�UX is not simply stored in the
children of X, but also in the portions of the graph accessible by going up through other
parents of X. In the situation given in Figure B.3, the evidence e�UX can be divided up into
the portions stored above V and W and that stored below X,

e�UX = e+V X [e+WX [e�X :

It follows that

P (e�UX ju) = P (e+V X ; e
+
WX ; e

�

X ju)

=
X

x;v;w

P (x; v; w; e+V X ; e
+
WX ; e

�

X ju)

=
X

x;v;w

P (x; e+V X ; e
+
WX ; e

�

X ju; v; w)P (v; wju)

=
X

x;v;w

P (e+V X ; e
+
WX ; e

�

X jx; u; v; w)P (xju; v; w)P (v)P (w)

=
X

x;v;w

P (e+V X jv)P (e
+
WX jw)P (e

�

X jx)P (xju; v; w)P (v)P (w) :

4A general algorithm for determining such independence judgments is known as the \Bayes' Ball" algo-
rithm. We refer to the graphical literature for details.

104

Since P (e+V X jv)P (v) = P (vje+V X)P (e
+
V X) and similarlyP (e

+
WX jw)P (w) = P (wje+WX)P (e

+
WX)

by Bayes' Rule, we get upon rearranging terms,

�X(u) =
X

x;v;w

P (xju; v; w)P (vje+V X)P (wje
+
WX)P (e

�

X jx)P (e
+
V X)P (e

+
WX)

/
X

x;v;w

P (xju; v; w)�X (v)�X(w)�(x) :

The message that X sends to U can thus itself be constructed from the messages �X(v)
and �X(w) coming from the siblings of U and the � messages from the children of X that
form �(x). In e�ect, we have pushed the recursion for message passing one step further out
towards the roots and leaves of the polytree.

We now consider the message that X has to send to its child A. The evidence e+XA

can be decomposed as follows, e+XA = e+X [e�XB [e�XC , i.e. into the evidence above X and
the evidence stored below the siblings of A. The message �A(x) then is

�A(x) = P (xje+XA)

= P (xje+X ; e
�

XB ; e
�

XC) :

We �nd it more convenient to work with a quantity that is proportional to �A(x), namely
P (x; e�XB ; e

�

XC je
+
X) = P (xje�XB ; e

�

XC ; e
+
X)P (e

�

XB ; e
�

XC je
+
X) where the last factor is a constant.

Applying the de�nition of conditional probability to pull out x, we get

P (x; e�XB ; e
�

XC je
+
X) = P (e�XB ; e

�

XC jx; e
+
X)P (xje

+
X)

= P (e�XB jx)P (e
�

XC jx)P (xje
+
X)

= �B(x)�C(x)�(x) :

where the second line follows from the fact that X separates the subgraphs containing the
evidence e�XB and e�XC .

B.2.1 Summary

We summarize the message passing algorithm as follows. The belief at a node X
is the product of a likelihood � and a prior �,

BEL(x) , P (xje)

= P (x; e)=P (e)

= P (x; e�; e+)=P (e)

= P (x; e�je+)P (e+)=P (e)

= P (e�jx; e+)P (xje+)P (e+)=P (e)

= P (e�jx)P (xje+)P (e+)=P (e)

/ �(x) � �(x) :

105

The quantity �(x) is a product of � messages from each of the children, which for the
situation shown in Figure B.3 takes the following form,

�(x) = P (e�jx) = P (e�XA; e
�

XB ; e
�

XC jx)

= P (e�XAjx)P (e
�

XB jx)P (e
�

XC jx)

= �A(x)�B(x)�C(x) :

�(x) is a product of � messages from each of the parents, linked in with a conditional
probability,

�(x) = P (xje+)

= P (xje+UX ; e
+
V X ; e

+
WX)

=
X

u;v;w

P (x; u; v; wje+UX ; e
+
V X ; e

+
WX)

=
X

u;v;w

P (xju; v; w)P (u; v; wje+UX ; e
+
V X ; e

+
WX)

=
X

u;v;w

P (xju; v; w)P (uje+UX)P (vje
+
V X)P (wje

+
WX)

=
X

u;v;w

P (xju; v; w)�X (u)�X(v)�X (w) :

The messages that appear in the above equations can be formed recursively from messages
coming from further out in the graph. For example, the message produced by X for its
parent U has the following form,

�X(u) = P (e�UX ju)

= P (e+V X ; e
+
WX ; e

�

X ju)

=
X

x;v;w

P (x; v; w; e+V X ; e
+
WX ; e

�

X ju)

=
X

x;v;w

P (x; e+V X ; e
+
WX ; e

�

X ju; v; w)P (v; wju)

=
X

x;v;w

P (e+V X ; e
+
WX ; e

�

X jx; u; v; w)P (xju; v; w)P (v)P (w)

=
X

x;v;w

P (e+V X jv)P (e
+
WX jw)P (e

�

X jx)P (xju; v; w)P (v)P (w)

=
X

x;v;w

P (xju; v; w)P (vje+V X)P (wje
+
WX)P (e

�

X jx)P (e
+
V X)P (e

+
WX)

/
X

x;v;w

P (xju; v; w)�X (v)�X(w)�(x) :

106

The message created by X for each of its children is a simple product of factors, as exem-
pli�ed by the following expression,

�A(x) = P (xje+XA)

= P (xje+X ; e
�

XB ; e
�

XC)

/ P (e�XB ; e
�

XC jx; e
+
X)P (xje

+
X)

= P (e�XB jx)P (e
�

XC jx)P (xje
+
X)

= �B(x)�C(x)�(x) :

In this way, messages are passed recursively through the graph from the borders towards
the interior and then back out to the borders.

The message passing algorithm is initialized as follows. At each root node, the
quantity � is replaced by the prior on that node. For each uninstantiated leaf node, the
quantity � is set equal to one, � = f1; 1; : : : ; 1g. If a node is observed to have its jth
value, then � is set equal to f0; 0; : : : ; 1; 0; : : : ; 0g, where the jth component is equal to one.
Alternatively, observing a node X is equivalent to adding a dummy child node whose sole
purpose is to propagate a � message to X that equals a delta function at its observed value.
Termination of the message passing algorithm can be guaranteed in causal polytrees. For
details, the reader is referred to Chapter 4 of Pearl [118].

107

Bibliography

[1] P.A. Chou and G.E. Kopec. A stochastic attribute grammar model of document
production and its use in document image decoding. In Document Recognition II,
Proc. of the SPIE, volume 2422, pages 66{73, 1995.

[2] G.E. Kopec and P.A. Chou. Document image decoding using Markov source models.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 16(6):602{17, June 1994.

[3] Hewlett-Packard Company. Capshare 920 portable e-copier. http://www.
capshare.com/product/.

[4] C Technologies AB. C-pen 800. http://www.cpen.com/product/cpen800.shtml.

[5] Jonathan J. Hull and Peter E. Hart. Towards zero-e�ort personal document man-
agement: A new paradigm for users. Ricoh Technical Report No. 26, pages 61{68,
November 2000. http://www.ricoh.co.jp/rdc/techreport/No26/Ronbun/A07.pdf. See
also http://www.ricoh-usa.com/prodshw/solutions/ecabinet.htm.

[6] Kris Popat. Decoding of text lines in grayscale document images. In Proceedings of the
2001 International Conference on Acoustics, Speech, and Signal Processing (ICASSP

2001), Salt Lake City, Utah, May 2001. IEEE. To appear.

[7] Steve Ready et al. Xerox PARC Bookscanner. http://www.parc.xerox.com/
eml/members/ready/parc bookscanner.htm.

[8] Hao Chen, Jianying Hu, and Richard W. Sproat. Integrating geometrical and lin-
guistic analysis for email signature block parsing. ACM Transactions on Information
Systems, 17(4):343{366, 1999.

[9] J. Hu, R. Kashi, D. Lopresti, and G. Wilfong. Table structure recognition and its
evaluation. In Document Recognition and Retrieval VIII, Proc. of the SPIE, volume
4307, pages 44{55, 2001.

[10] G. Semeraro, F. Esposito, and D. Malerba. Learning contextual rules for document
understanding. In Proceedings of the Tenth Conference on Arti�cial Intelligence for

Applications, pages 108{15, Los Alamitos, CA, 1994. IEEE Comput. Soc.

[11] Richard Power and Donia Scott, editors. Using Layout for the Generation, Under-

standing, or Retrieval of Documents. AAAI Fall Symposium, November, 1999. Tech-
nical Report FS-99-04.

108

[12] Digital Libraries Initiative. Sponsored by the National Science Foundation and other
federal agencies. http://www.dli2.nsf.gov/.

[13] Joint Conference on Digital Libraries, JCDL '01, Roanoke, VA, 24-28 June 2001.
Sponsored by ACM and IEEE. http://www.jcdl.org/.

[14] UC Berkeley Digital Library Project. Part of the Digital Libraries Initiative,
Phase 2, sponsored by the National Science Foundation and other federal agencies.
http://elib.cs.berkeley.edu.

[15] Robert Wilensky and Thomas A. Phelps. Multivalent documents: A new
model for digital documents. Technical Report CSD-98-999, University of
California, Berkeley, March 1998. See also http://www.cs.berkeley.edu/~ wilensky/MVD.html
?lexical-signature=multivalent+copyeditor+dlib+annotating+enlivened.

[16] Lawrence O'Gorman and Rangachar Kasturi, editors. Document image analysis. IEEE
Computer Society Press, Los Alamitos, CA, 1995.

[17] ScanSoft Inc. TextBridge Pro Millennium. http://www.scansoft.com/.

[18] Jongwoo Kim, Daniel X. Le, and George R. Thoma. Automated labeling in document
images. In Document Recognition VIII, Proceedings of the SPIE, volume 4307, pages
111{122, 2001.

[19] Stephen V. Rice, George Nagy, and Thomas A. Nartker. Optical character recognition
: an illustrated guide to the frontier. Kluwer Academic Publishers, Boston, c1999.

[20] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape matching and object recog-
nition using shape contexts. Accepted for publication in PAMI.

[21] T.K. Ho, J.J. Hull, and S.N. Srihari. A word shape analysis approach to lexicon based
word recognition. Pattern Recognition Letters, 13(11):821{826, 1992.

[22] A. L. Spitz. Shape-based word recognition. International Journal on Document Anal-

ysis and Recognition, 1(4):178{90, May 1999.

[23] Shyh-Shiaw Kuo Kuo and O.E Agazzi. Keyword spotting in poorly printed documents
using pseudo 2-d hidden markov models. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 16(8):842{8, August 1994.

[24] R. Cattoni, T. Coianiz, S. Messelodi, and C. M. Modena. Geometric layout analysis
techniques for document image understanding: a review. January 1998. ITC-irst
Technical Report #9703-09.

[25] Y. Y. Tang, M. Cheriet, Jiming Liu, J. Said, and Ching Y. Suen. Document analysis
and recognition by computers. In C.H. Chen, L.F. Pau, and P.S.P. Wang, editors,
Handbook of Pattern Recognition and Computer Vision, chapter 8. World Scienti�c,
Singapore, second edition, 1999.

109

[26] H. Bunke and P.S.P. Wang, editors. Handbook of character recognition and document
image analysis. World Scienti�c, Singapore, 1997.

[27] H.S. Baird, H. Bunke, and K. Yamamoto, editors. Structured document image analy-

sis. Springer-Verlag, Berlin, 1992.

[28] Document Layout Interpretation and its Applications (DLIA99), online proceedings.
http://www.science.uva.nl/events/dlia99/.

[29] Document Layout Interpretation and its Applications (DLIA2001).
http://www.science.uva.nl/events/dlia2001/.

[30] F. M. Wahl, K. Y. Wong, and R. G. Casey. Block segmentation and text extraction
in mixed text/image documents. Computer graphics and image processing, 20(4):375{
390, 1982.

[31] L.A. Fletcher and R. Kasturi. A robust algorithm for text string separation from
mixed text/graphics images. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 10(6):910{18, Nov. 1988.

[32] L. O'Gorman. The document spectrum for page layout analysis. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 15(11):1162{73, November 1993.

[33] H.S. Baird, S.E. Jones, and S.J. Fortune. Image segmentation by shape-directed
covers. In Proc. 10th International Conference on Pattern Recognition, volume 1,
pages 820{5. IEEE Comput. Soc. Press, 1990.

[34] T. Pavlidis and J. Zhou. Page segmentation by white streams. In Proc. of the First

International Conference on Document Analysis and Recognition, pages 611{619, Los
Alamitos, CA, 1991. IEEE Comput. Soc. Press.

[35] A. Antonacopoulos and R.T. Ritchings. Segmentation and classi�cation of document
images. In IEE Colloquium on Document Image Processing and Multimedia Environ-

ments, pages 16/1{7, 1995.

[36] A. Antonacopoulos. Page segmentation using the description of the background.
Computer Vision and Image Understanding, 70(3):350{69, June 1998.

[37] K. Kise and O. Yanagida. Page segmentation using thinning of white areas. Systems

and Computers in Japan, 29(3):59{68, March 1998.

[38] H.S. Baird. Background structure in document images. International Journal of

Pattern Recognition and Arti�cial Intelligence, 8(5):1013{30, Oct. 1994.

[39] K. Kise, A. Sato, and M. Iwata. Segmentation of page images using the area voronoi
diagram. Computer Vision and Image Understanding, 70(3):370{82, June 1998.

[40] S. Mao and T. Kanungo. Empirical performance evaluation methodology and its
application to page segmentation algorithms. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 23(3):242{256, March 2001.

110

[41] G. Nagy and S. Seth. Hierarchical representation of optically scanned documents. In
Seventh International Conference on Pattern Recognition, volume 1, pages 347{9, Los
Angeles, CA, 1984. IEEE Comput. Soc. Press.

[42] M. Krishnamoorthy, G. Nagy, S. Seth, and M. Viswanathan. Syntactic segmentation
and labeling of digitized pages from technical journals. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 15(7):737{47, July 1993.

[43] A.A. Efros and T.K. Leung. Texture synthesis by non-parametric sampling. In Proc.

of the Seventh IEEE International Conference on Computer Vision, volume 2, pages
1033{8, Los Alamitos, CA, 1999. IEEE Comput. Soc.

[44] D.F. Dunn, T.P. Weldon, and W.E. Higgins. Extracting halftones from printed doc-
uments using texture analysis. Optical Engineering, 36(4):1044{52, April 1997.

[45] Anil K. Jain and Yu Zhong. Page layout segmentation based on texture analysis.
Pattern Recognition, 29(5):743{70, 1996.

[46] Y.Y. Tang, Hong Ma, Dihua Xi, Xiaogang Mao, and C.Y. Suen. Modi�ed fractal
signature (MFS): a new approach to document analysis for automatic knowledge
acquisition. IEEE Transactions on Knowledge and Data Engineering, 9(5):747{62,
Sept-Oct 1997.

[47] D. S. Bloomberg. Textured reductions for document image analysis. In Document
Recognition III, Proc. of the SPIE, volume 2660, pages 160{74, 1996.

[48] Ross Kindermann and J. Laurie Snell. Markov random �elds and their applications.
American Mathematical Society, Providence, R.I., 1980.

[49] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, PAMI-6(6):721{41, Nov 1984.

[50] Rama Chellappa and Anil Jain, editors. Markov random �elds : theory and applica-

tion. Academic Press, Boston, 1993.

[51] Jia Li, A. Najmi, and R.M. Gray. Image classi�cation by a two-dimensional hidden
markov model. IEEE Transactions on Signal Processing, 48(2):517{33, Feb 2000.

[52] K. Etemad, D. Doermann, and R. Chellappa. Page segmentation using decision inte-
gration and wavelet packets. In Proceedings of 12th IAPR International Conference

on Pattern Recognition, volume 2, pages 345{9. IEEE Comput. Soc. Press, 1994.

[53] H. Choi and R. Baraniuk. Multiscale document segmentation using wavelet-domain
hidden markov models. In Document Recognition VII, Proc. of the SPIE, volume
3967, pages 234{47, 2000.

[54] Jia Li and R.M. Gray. Context-based multiscale classi�cation of document images
using wavelet coeÆcient distributions. IEEE Transactions on Image Processing,
9(9):1604{16, Sept 2000.

111

[55] J. Liang, J. Ha, R.M. Haralick, and I.T. Phillips. Document layout structure ex-
traction using bounding boxes of di�erent entitles. In Proceedings of the Third IEEE

Workshop on Applications of Computer Vision. WACV'96, pages 278{83. IEEE Com-
put. Soc. Press, 1996.

[56] W.T. Freeman, E.C. Pasztor, and O.T. Carmichael. Learning low-level vision. Inter-
national Journal of Computer Vision, 40(1):25{47, 2000.

[57] International Organization for Standardization. Information technology { Open Doc-
ument Architecture (ODA) and interchange format, 1994. ISO/IEC 8613.

[58] International Organization for Standardization. Information processing { text and of-
�ce systems { Standard Generalized Markup Language (SGML), 1986. ISO 8879:1986.

[59] T. Fruchterman. DAFS: A standard for document and image understanding. In
Symposium on Document Image Understanding Technology, Bowie, MD, pages 94{
100, Oct. 1995.

[60] Xerox Imaging Systems. Xdoc data format: Technical speci�cation. part no. 00-
07571-00.

[61] Tim Bray, Jean Paoli, and C.M. Sperberg-MacQueen, Oct. 2000.
http://www.w3.org/TR/REC-xml.

[62] A. Lawrence Spitz. Style-directed document segmentation. In Symposium on Docu-

ment Image Understanding Technology (SDIUT01), pages 195{199, College Park, MD,
2001. UMIACS. Available online at http://lamp.cfar.umd.edu/sdiut01/SDIUT2001-
Proceedings/.

[63] F. Esposito, D. Malerba, and F.A. Lisi. Machine learning for intelligent processing
of printed documents. J. of Intelligent Information Systems, 14(2-3):175{98, March-
June 2000.

[64] Chang Ha Lee and Tapas Kanungo. The architecture of TRUEVIZ: A
groundTRUth/metadata Editing and VIsualiZing toolkit. In Symposium on Docu-

ment Image Understanding Technology (SDIUT01), pages 299{319, College Park, MD,
2001. UMIACS. Available online at http://lamp.cfar.umd.edu/sdiut01/SDIUT2001-
Proceedings/.

[65] R.J. Boeri. Adobe Acrobat Capture 2.0. EMedia Professional, 11(4):82, 84, April
1998.

[66] Yann LeCun, Leon Bottou, Patrick Ha�ner, and Je�ery Triggs. Overview of the djvu
document compression technology. In Symposium on Document Image Understanding

Technology (SDIUT01), pages 119{122, College Park, MD, 2001. UMIACS. Available
online at http://lamp.cfar.umd.edu/sdiut01/SDIUT2001-Proceedings/.

[67] K.Y. Wong, R.G. Casey, and F.M. Wahl. Document analysis system. IBM Journal
of Research and Development, 26(6):647{56, Nov 1982.

112

[68] H.R. Stabler. Experiences with high-volume, high-accuracy document capture. In
A.L. Spitz and A. Dengel, editors, Proc. of IAPR Workshop on Document Analysis

Systems, pages 38{51, Singapore, 1995. World Scienti�c.

[69] A.L. Spitz. Style directed document recognition. In Proc. of the First International

Conference on Document Analysis and Recognition, pages 611{619, Los Alamitos,
CA, 1991. IEEE Comput. Soc. Press.

[70] J.H. Shamilian, H.S. Baird, and T.L. Wood. A retargetable table reader. In Proc.

of the Fourth International Conference on Document Analysis and Recognition, vol-
ume 1, pages 158{63. IEEE Comput. Soc. Press, 1997.

[71] J. Hu, R. Kashi, and G. Wilfong. Comparison and classi�cation of documents based
on layout similarity. Information Retrieval, 2(2-3):227{43, 2000.

[72] A. Dengel and F. Dubiel. Logical labeling of document images based on form layout
features. In Proc. Workshop on Document Image Analysis (DIA'97), pages 26{31,
Los Alamitos, CA, 1997. IEEE Comput. Soc. Press.

[73] A. Kornai and S.D. Connell. Statistical zone �nding. In Proceedings of 13th Inter-

national Conference on Pattern Recognition, volume 3, pages 818{22, Los Alamitos,
CA, 1996. IEEE Comput. Soc. Press.

[74] A.K. Jain and Yao Chen. Address block location using color and texture analysis.
CVGIP: Image Understanding, 60(2):179{90, Sept. 1994.

[75] Paul Stefan Williams and Mike D. Alder. Generic texture anal-
ysis applied to newspaper segmentation. preprint available at
http://ciips.ee.uwa.edu.au/Papers/Conference Papers/1996/04/Index.html.

[76] P.S. Williams and M.D. Alder. Generic texture analysis applied to newspaper segmen-
tation. In Proceedings of International Conference on Neural Networks (ICNN'96),
volume 3, pages 1664{9, New York, 1996. IEEE.

[77] Dacheng Wang and S. N. Srihari. Classi�cation of newspaper image blocks using
texture analysis. Computer Vision, Graphics, and Image Processing, 47(3):327{52,
Sept. 1989.

[78] O.E. Kia and D.S. Doermann. Residual coding in document image compression. IEEE
Transactions on Image Processing, 9(6):961{9, June 2000.

[79] Qin Zhang, J.M. Danskin, and N.E. Young. A codebook generation algorithm for
document image compression. In J.A. Storer and M. Cohn, editors, Procs. DCC '97,

Data Compression Conference, pages 300{9, Los Alamitos, CA, 1997. IEEE Comput.
Soc. Press.

[80] S.J. Inglis and I.H. Witten. Bi-level document image compression using layout in-
formation. In J.A. Storer and M. Cohn, editors, Procs. DCC'96, Data Compression
Conference, page 442, Los Alamitos, CA, 1996. IEEE Comput. Soc. Press.

113

[81] P. Ha�ner, L. Bottou, P.G. Howard, and Y. LeCun. DjVu: analyzing and compress-
ing scanned documents for Internet distribution. In Proc. of the Fifth International

Conference on Document Analysis and Recognition - ICDAR '99, pages 625{8, Los
Alamitos, CA, 1999. IEEE Comput. Soc.

[82] G.E. Kopec. Document image decoding in the Berkeley Digital Library. In Proc. 3rd

IEEE International Conference on Image Processing, volume 2, pages 769{72, New
York, 1996. IEEE.

[83] Casey Palowitch and Darin Stewart. Automating the structural markup process
in the conversion of print documents to electronic text. In Proc. of The Second

International Conference on the Theory and Practice of Digital Libraries, 1995.
http://www.csdl.tamu.edu/DL95/papers/palowitc/palowitc.html.

[84] D. Niyogi and S.N. Srihari. The use of document structure analysis to retrieve infor-
mation from documents in digital libraries. In Document Recognition IV, Proc. of the
SPIE, volume 3027, pages 207{18, 1997.

[85] Eytan Adar and Jeremy Hylton. On-the-
y hyperlink creation for page images. In
Frank M. Shipman, Richard Furuta, and David M. Levy, editors, Digital Libraries
'95. Proc. of The Second Annual Conference on the Theory and Practice of Digital

Libraries, 1995. http://www.csdl.tamu.edu/DL95/papers/adar/adar.html.

[86] Claude E. Shannon and Warren Weaver. The Mathematical Theory of Communica-

tion. University of Illinois Press, Urbana, IL, 1949.

[87] Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley, New
York, 1991.

[88] Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of speech recognition. Pren-
tice Hall, Englewood Cli�s, N.J., 1993.

[89] Frederick Jelinek. Statistical methods for speech recognition. MIT Press, Cambridge,
MA, 1997.

[90] Richard O. Duda and Peter E. Hart. Pattern classi�cation and scene analysis. Wiley,
New York, 1973.

[91] G.E. Kopec. Multilevel character templates for document image decoding. In Docu-

ment Recognition IV, Proc. of the SPIE, volume 3027, pages 168{77, February 1997.

[92] Christopher D. Manning and Hinrich Sch�utze. Foundations of Statistical Natural

Language Processing. The MIT Press, Cambridge, MA, 1999.

[93] H. Abelson and A. diSessa. Turtle Geometry. The MIT Press, Cambridge, MA, 1980.

[94] A.C. Kam and G.E. Kopec. Document image decoding by heuristic search. IEEE

Trans. on Pattern Analysis and Machine Intelligence, 18(9):945{50, Sept. 1996.

114

[95] G.E. Kopec and M. Lomelin. Supervised template estimation for document im-
age decoding. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(12):1313{24, December 1997.

[96] Thomas P. Minka, Dan S. Bloomberg, and Kris Popat. Document Image Decoding
using iterated complete path search. In Document Recognition and Retrieval VIII,

Proceedings of the SPIE, volume 4307, pages 250{258, 2001.

[97] Kris Popat, Dan Greene, Justin Romberg, and Dan S. Bloomberg. Adding linguistic
constraints to document image decoding: Comparing the iterated complete path and
stack algorithms. In Document Recognition and Retrieval VIII, Proceedings of the

SPIE, January 2001.

[98] G.E. Kopec. Advanced structured document examples. http://elib.cs.berkeley.edu/
kopec/.

[99] G.E. Kopec. \General Comparison of Water District Acts", an advanced struc-
tured document created using a document-speci�c image decoder. http://elib.
cs.berkeley.edu/kopec/b155/html/home.html.

[100] P.A. Chou. Recognition of equations using a two-dimensional stochastic context-free
grammar. In Visual Communications and Image Processing IV, Proc. of the SPIE,
volume 1199, pages pt.2:852{63, 1989.

[101] H.M. Twaakyondo and M. Okamoto. Structure analysis and recognition of mathemat-
ical expressions. In Proc. of the Third International Conference on Document Analysis

and Recognition, volume 1, pages 430{7, Los Alamitos, CA, 1995. IEEE Comput. Soc.
Press.

[102] D. Blostein and A. Grbavec. Recognition of mathematical notation. In H. Bunke and
P. Wang, editors, Handbook of Character Recognition and Document Image Analysis,
pages 557{582, Singapore, 1997. World Scienti�c.

[103] R.J. Fateman, T. Tokuyasu, B.P. Berman, and N. Mitchell. Optical character recog-
nition and parsing of typeset mathematics. J. of Visual Communication and Image

Representation, 7(1):2{15, March 1996.

[104] G.E. Kopec, P.A. Chou, and D.A. Maltz. Markov source model for printed music
decoding. In Document Recognition II, Proc. of the SPIE, volume 2422, pages 115{
25, 1995.

[105] G.E. Kopec and P.A. Chou. Automatic generation of custom document image de-
coders. In Proc. of the Second International Conference on Document Analysis and

Recognition, pages 684{7, Los Alamitos, CA, 1993. IEEE Comput. Soc. Press.

[106] G.E. Kopec. Document image decoding in the UC Berkeley digital library. In Docu-

ment Recognition III, Proc. of the SPIE, volume 2660, pages 2{13, 1996.

115

[107] A.C. Kam and G.E. Kopec. Separable source models for document image decoding.
In Document Recognition II, Proc. of the SPIE, volume 2422, pages 84{97, 6-7 Feb.
1995.

[108] A.C. Kam and G.E. Kopec. The iterated complete path algorithm. In Proc. of the

Third International Conference on Document Analysis and Recognition, volume 2,
pages 1088{91. IEEE, 14-16 Aug. 1995.

[109] G.E. Kopec, P.A. Chou, and D.A. Maltz. Markov source model for printed music
decoding. Journal of Electronic Imaging, 5(1):7{14, Jan. 1996.

[110] John E. Hopcroft and Je�rey D. Ullman. Introduction to automata theory, languages,

and computation. Addison-Wesley, Reading, MA, 1979.

[111] Dick Grune and Ceriel J.H. Jacobs. Parsing techniques : a practical guide. Ellis
Horwood, New York, 1990.

[112] Gy�orgy E. R�ev�esz. Introduction to formal languages. McGraw-Hill, New York, 1983.

[113] Eugene Charniak. Statistical language learning. MIT Press, Cambridge, MA, 1993.

[114] Jesse F. Hull. Recognition of mathematics using a two-dimensional trainable context-
free grammar. Master's thesis, MIT, Cambridge, MA, June 1996.

[115] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-correcting
coding and decoding: Turbo codes. 1. In Proc. of ICC' 93, volume 2, pages 1064{70,
New York, 1993. IEEE.

[116] Brendan J. Frey. Graphical models for machine learning and digital communication.
The MIT Press, Cambridge, MA, 1998.

[117] Chris Heegard and Stephen B. Wicker. Turbo coding. Kluwer Academic Publishers,
Boston, 1999.

[118] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible in-

ference. Morgan Kaufmann, San Francisco, 1988.

[119] Y. Weiss and W.T. Freeman. On the optimality of solutions of the max-product
belief propagation algorithm in arbitrary graphs. IEEE Transactions on Information

Theory, 47(2):736{44, Feb 2001.

[120] T. A. Tokuyasu. unpublished.

[121] M. Tomita. Parsing 2-dimensional language. In International Workshop on Parsing

Technologies, Pittsburgh, PA, USA, 28-31 Aug. 1989, pages 414{24. Carnegie Mellon
Univ, 1989.

[122] Alan Conway. Page grammars and page parsing. a syntactic approach to document
layout recognition. In Proc. of 2nd International Conference on Document Analysis

and Recognition - ICDAR '93, pages 761{4, Los Alamitos, CA, 1993. IEEE Comput.
Soc. Press.

116

[123] F.R. Kschischang and B.J. Frey. Iterative decoding of compound codes by probability
propagation in graphical models. IEEE Journal on Selected Areas in Communications,
16(2):219{30, February 1998.

[124] R.J. McEliece, D.J.C. MacKay, and Jung-Fu Cheng. Turbo decoding as an instance
of pearl's belief propagation algorithm. IEEE Journal on Selected Areas in Commu-

nications, 16(2):140{52, February 1998.

[125] D. Miller, K. Rose, and P.A. Chou. Deterministic annealing for trellis quantizer and
hmm design using baum-welch re-estimation. In Proc. of the International Conference
on Acoustics, Speech, and Signal Processing (ICASSP '94), volume 5, pages V/261{4.
IEEE, 1994.

[126] UC Berkeley Digital Library Project Source Code. http://elib.cs.berkeley.edu/src.

[127] Irfan Skiljan. Irfanview32 freeware graphic viewer. http://www.irfanview.com/.

[128] Sun Microsystems Inc. et al. Java Advanced Imaging API. http://java.sun.com/
products/java-media/jai/.

[129] A.C. Kam and G.E. Kopec. Heuristic image decoding using separable source mod-
els. In IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP '94), volume 5, pages V/145{8, 19-22 April 1994.

[130] Carson Cumbee. Line by line script identi�cation. In Proc. of the Symposium on

Document Image Understanding Technology (SDUIT01), pages 23{29, College Park,
MD, 2001. UMIACS.

[131] R. Phelps, T.A.and Wilensky. Multivalent documents. Communications of the ACM,
43(6):82{90, June 2000.

[132] Xerox Research Centre Europe MLTT. Finite state networks. http://www.xrce.xerox.
com/research/mltt/fst/fsnetwork.html.

[133] Azaria Paz. Introduction to probabilistic automata. Academic Press, New York, 1971.

[134] Kevin Murphy. Learning �nite automata. Technical Report 96-04-017, Santa Fe
Institute, 1996.

