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ABSTRACT

Tree-based multidimensional indexes are integral to efficient querying in multimedia and
GIS applications. These indexes frequently use shapes in internal tree nodes to describe the
data stored in a subtree below. We show that the standard Minimum Bounding Rectangle
descriptor can lead to significant inefficiency during tree traversal, due to false positives. We
also observe that there is often space in internal nodes for richer, more accurate descriptors than
rectangles. We propose exploiting this free space to form subtree predicates based on simple
boolean combinations of standard descriptors such as rectangles. Since the problem of choosing
these boolean bounding predicates is NP-complete, we implemented and tested several heuristics
for tuning the bounding predicates on an index node, and several heuristics for deciding which
nodes in the index to improve when available tuning time is limited. We present experiments
over a variety of real and synthetic data sets, examining the performance benefit of the various
tuning heuristics. Our experiments show that up to 30% or more of the total I/Os in a query
workload can be eliminated using the boolean bounding predicates chosen by our algorithms.

1 Introduction

Spatial and multimedia databases often make heavy use of search-tree indexes like R*-trees [3] to
provide efficient query processing. As an example, the Blobworld image search system [5] supports
nearest neighbor queries over an index built on color vectors, to answer queries of the form “find
me images like this one”. A wide variety of multimedia and GIS applications can be made more
efficient by reducing the number of I/Os performed in index search.

The internal nodes of tree-based indexes typically contain a sequence of pairs (p, ptr), where
ptr is a pointer to a subtree, and p is a descriptor – or “Bounding Predicate” (BP) – for the
subtree below, such that each datum found in the leaves below satisfies p. The popular R*-trees,
for example, use Minimum Bounding Rectangles (MBRs) as their BPs.

We will show that in many spatial and multimedia index scenarios, most of the I/O overhead
is caused by imprecise BPs misdirecting the tree traversal algorithm. In this paper we present a
simple but powerful BP representation that improves the accuracy of bounding predicates without
changing the tree structure – in particular, without expanding the height – of the index.

We achieve our performance benefits by exploiting unused space in the inner nodes of search-
tree indexes. Indexes often have some space on each node empty in order to accommodate future
insertions, or because of the structural effects of node splits [13]. We use this free space to store
more accurate versions of the inaccurate bounding predicates on the node.

Multidimensional bounding predicates can in principle be arbitrarily complex geometric shapes;
however, such complexity can consume much of the remaining free space on a node, and can
complicate basic search primitives like spatial overlap. Inspired by Constructive Solid Geometry [8],
we propose retaining the simplicity of basic shapes like rectangles, but combining them in boolean
expressions. For instance, we can replace a simple MBR with the union of two smaller rectangles
that, together, more tightly bound the same set of points. Alternately, we could describe a set
of data points with the original MBR minus some smaller rectangle, where the smaller rectangle
describes unpopulated space within the MBR. Generally, we refer to these combined descriptors
as boolean bounding predicates.
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Function Name Purpose

Consistent
Given a query predicate and an index node, returns true if
node satisfies predicate

Union
Constructs a new bounding predicate out of a given set of
points and/or bounding predicates

Penalty
Given a point and an index node, return penalty (a number)
for inserting point into that node

PickSplit
Split a set of node entries into two; used to handle page over-
flow during insertion

Table 1: Basic GiST API: The logic of the boolean bounding predicates functionality we added to GiST
mainly affects the performance of the Consistent function.

For a given BP, there are a variety of possible ways to tune it, resulting in different boolean
BPs. For a given node, there are a variety of choices in allocating the free space to tune the various
BPs on the node. For a given index tree, there may be nodes that greatly benefit from tuning
their BPs, and nodes that benefit less. These options lead to the set of design problems that we
study here. First, we provide a simple language for refining BPs via boolean connectors. Second,
we examine how to allocate free space to BPs on an individual internal node to minimize false
positives during index tree traversal, a process we call tuning a node. Finally, we investigate how
to prioritize nodes to tune, so that the tuning process need not visit the entire tree in cases where
doing so is prohibitively expensive.

Our experimental results show that up to 30% or more of the total I/Os for a set of queries
can be eliminated using boolean bounding predicates chosen with our tuning algorithms.

Section 2 provides background and motivation for the work presented here, and Section 3
outlines our approach. We elaborate on our boolean bounding predicates in Section 4. Sections 5
and 6 cover the tuning and prioritization algorithms we implemented and experimental results. We
cover related and future work in Sections 7 and 8 and conclude in Section 9.

2 Background and Motivation

We implemented boolean BPs in the libgist Generalized Search Tree (GiST) package [11], which
provides a convenient infrastructure for experimenting with new indexing schemes. We extended
the GiST framework (Table 1) with a small set of interfaces (covered in more detail in Section 4)
for generalized boolean BPs.

To get a feel for typical performance problems in multimedia search, we used GiST and its
companion profiling tool amdb [15, 19] to analyze sample queries for the Blobworld [5] image
retrieval application. We provide an intuitive overview of amdb’s profiling here. The only I/Os
that are necessary in traversing a search-tree index are those that lead the traversal algorithm to
data that must be returned to the user; other I/Os are performance losses due to index inefficiency.
The amdb analysis assigns each I/O to one of four causes: “retrieving useful data”, “utilization loss”
(under full index nodes), “clustering loss” (poor assignment of data items to leaves), or “excess
coverage loss” (imprecise bounding predicates). As Figure 1 shows, most of the losses in our
Blobworld experiments were attributed to imprecise BPs. Imprecise BPs lead to unnecessary I/Os
because they result in “false positives”, guiding the tree-traversal algorithm to leaf nodes that do
not contain answers to the query. Excess coverage loss I/Os constituted from 10% to over 50% of
the total I/Os performed by query workloads over R*-trees built on the various data sets we used
for experiments.

We note that Blobworld – like many GIS and multimedia applications – has a read-mostly
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Figure 1: I/Os performed during a query workload, broken down by underlying cause. Tests run on R-tree
[10], SR-tree [14] and SS-tree [20] spatial indexes built over sorted, bulkloaded Blobworld data set.

workload with very infrequent, batch updates. Because the data is largely static, it can be sorted
and the index intelligently bulk-loaded [16]; this explains the low utilization and clustering losses
in our experiments (Sections 5 and 6). In these scenarios, the key to good performance is to
improve the precision of BPs to minimize excess coverage loss – the focus of this paper. We
defer discussion of dynamic updates to future work (Section 8). However, we wish to stress here
that an understanding of our static BP tuning problem is both of practical importance in many
applications, and a prerequisite to addressing more dynamic environments.

3 Bounding Predicate Imprecision Problem

The crux of the boolean bounding predicate approach is to begin with a basic R*-tree1, select
a poorly performing inner node and use the free space on that node to store extra rectangular
components for some of the BPs on the node. We call this process tuning. Simple BPs are
transformed into combinations of basic rectangles, united using the boolean operators union and
minus.2

We have three problems to address in designing boolean bounding predicates:

1. Boolean BP Creation: Given a simple MBR, how should it be broken up into multiple
rectangles combined with boolean operators? (Section 4.)

2. Node Tuning: Given a fixed-size internal node containing <BP, ptr> pairs and some free
space, reallocate space to the BPs to generate boolean BPs that minimize false positives
during index traversal. (Section 5.)

3. Node Prioritization: In some environments it may not be possible or worthwhile to tune
every node in the index tree. So, given a search tree with k internal nodes and a budget B < k
of nodes to tune, select the best B-subset of the internal nodes for node tuning. (Section 6.)

1The R*-tree was selected for general familiarity; our ideas are applicable to many tree-based indexes.
2A third boolean operator would be intersection. However, the intersection of two overlapping rectangles is simply

one smaller rectangle so, for simplicity, we have not implemented intersection. As we shall see in Sections 5 and 6,
we do well even without it.
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Figure 2: Screen shots from the amdb tool, graphing the points stored on sample leaves of a 2D R*-tree
index.

Vital to the first two of these problems is the issue of judging the “badness” of a particular
BP (BP badness), in order to determine if we have available a “better” BP to replace it with. The
third problem is based on judging the “badness” of the set of BPs on a node (node badness), in
order to determine how to prioritize nodes for tuning. Recall that our overall badness metric is
excess coverage loss: the number of tree traversal I/Os that lead to irrelevant leaves. Given two
different BPs and no other information, it is expensive to accurately determine which BP is going to
contribute more excess coverage loss: the only way to be sure is to run the relevant query workload
against both BPs. This measurement process is too expensive to perform in the inner loops of
our tuning algorithms. Hence for Node Tuning and Boolean BP creation, we compare potential
BPs using hyper-volume as our BP badness metric. This mirrors the heuristics used in many other
spatial data structure algorithms – e.g. the R-tree split algorithm. For Node Prioritization, the
node badness metric we use is amdb’s excess coverage loss metric, as gathered by running a single
characteristic workload over the untuned tree.

3.1 Aside: Why Rectangles?

Instead of constructing more precise bounding predicates out of simple rectangles, we did consider
using shapes, like the convex hull, designed to precisely bound point sets. Unfortunately, the
convex hull has a number of undesirable properties. For example, we would have little control
over the size of the hull description and, consequently, over the fanout of the index tree; many
algorithms exist to approximate convex hulls around data points in more than two dimensions, but
even sophisticated tools like QHull [2] allow users to control the precision of the resulting hull, not
the number of vertices. A Qhull user can manually merge hull surface facets to create hulls with a
user-selected number of vertices and facets, but that approach is impractical for our purpose.

In addition, calculating the containment of a point or another convex hull within a given convex
hull is a more complex process than tolerable for an operation performed many times per query.

Another important bar to the use of convex hulls is illustrated in Figure 2, which shows sets
of points from the leaves of a R*-tree [3] constructed over two dimensional color vector data. The
gaps in the lower left of the two different point sets suggest that concavity would be desirable in a
BP; convex hulls can not accomodate this desire.
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Function Name Purpose Called By

TuneIndex
Given an index, sort the nodes using the specified
node ordering algorithm – SS, SSC or CR – and call
TuneNode on each node in turn.

User

TuneNode
Given a node, tune it using the specified node-level
algorithm: NR, NG or NSA. TuneIndex

TuneMinus
Given a BP or BP component, split it into two com-
ponents to be combined with minus; return new BP
components and benefit of change.

TuneNode

TuneUnion
Given a BP or BP component, split into two BP
components to be combined using union; return new
BP components and benefit of change.

TuneNode

min space needed
Used in conjunction with the node management
function returning node free space, to calculate
whether there is space for another BP component
on the node.

TuneMinus
and
TuneUnion

bp badness
Return the value of some metric representing the
“badness” of the given BP; we used hyper-volume.

TuneMinus
and
TuneUnion

Table 2: Boolean Bounding Predicates Functions: These functions were added to the GiST API in
order to provide a means to experiment with index tuning.

4 Creating Boolean Bounding Predicates

We begin by addressing how we transform simple MBRs into boolean BPs. Our basic operations
are to replace a rectangle with either the union of two rectangles, or the difference of two rectangles.

TuneUnion essentially splits the rectangle into two; this is a common operation in most mul-
tidimensional search trees during node splitting. However, in our case we are not splitting up the
set of points in order to separate them onto different nodes in the tree; we just want to more
tightly circumscribe their extents, as in Figure 3. Hence our union split algorithm is a variant of
the R*-tree node splitting algorithm [3], with a different optimization goal. In particular, the R*-
tree splitting algorithm works to minimize overlap between the resulting two bounding rectangles,
which are intended to separate two subsets of points. In our case, overlap is perfectly acceptable,
because we are characterizing a single set of points; we simply wish to minimize hyper-volume. So
we take the R*-tree split algorithm and swap the calls to minimum “overlap-value” with minimum
“area-value” (hyper-volume) in the subroutine ChooseSplitIndex, as shown in Figure 5. We also
set the split imbalance parameter m, which controls the ratio of the number of data items in one
resulting rectangle to the number of data items in the other, to 5% of the number of data items on
the page, instead of the 40% recommended in [3], because it is perfectly acceptable in our scenario
for the proportion of points to bounding rectangles to be skewed.

Our minus split algorithm, TuneMinus, does not have an obvious analogy in prior work. It is
NP-complete to choose the best rectangle to subtract; indeed, it is NP-complete even under the
constraint that the subtrahend is a corner of the original rectangle [12]. Intuitively, this corner
constraint is attractive because MBR corners “stick out”, and are likely parts of the MBR to un-
necessarily overlap a large number of queries. Since even this constrained problem is NP-complete,
we use a greedy heuristic, presented in Figure 6, that subtracts the largest corner rectangle the
heuristic can find from the MBR. An example is pictured in Figure 4.

Both operations can be applied recursively using the logic laid out in Figure 7. The structure
of a boolean BP is stored in a header byte which every BP in an index implementing tuning must
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Figure 3: Point Set Bounded by Two Unioned
Rectangles

Figure 4: Point Set Bounded by a Rectangle Mi-
nus a Second Rectangle

Descriptor Num. Tuples Dimensions Height Nature Comment
Blobworld 223105 5 3 real color histogram data
Colorado [7] 750000 2 3 real road coordinates in Col-

orado, USA
Forest
Coverage [1]

100000 8 4 real elevation, slope, shading,
etc

Clustered 300000 2, 5 3 synthetic 10000 clusters
Clustered 100000 8 4 synthetic 3333 clusters
Fractal 300000 2 3 synthetic Sierpinski IFS fractal
Uniform 300000 2, 5 3 synthetic
Uniform 100000 8 4 synthetic

Table 3: Experimental Data Sets

have. The addition of a boolean BP component to a BP requires setting two bits in the header,
one to indicate that there is another BPC and one to indicate whether the new BP component’s
relationship with its “partner” BP component is union or minus.

Note that boolean combinations of other shapes could be used analogously if they were more
appropriate for a particular application. For example, boolean BPs are a generalization of the idea
behind SR-trees [14]. From our perspective, every SR-tree BP is simply a rectangle and a sphere
combined by an intersection operator.

5 Node Tuning

Given a particular index node to tune, we must decide which BPs in the node are most deserving of
extra bytes, i.e., to which BPs we should allocate some free space to store an extra rectangle. We
experimented with three different heuristics to handle node level tuning, which we call NR (Node
Random), NG (Node Greedy) and NSA (Node Simulated Annealing).

NR selects a BP to tune by simply picking one BP at random from the set of BPs on the node
and tuning it. If the BP has already been tuned into more than one rectangle, randomly select
one of the two BP components to tune further, obeying the rules laid out in Figure 7. Once a BP
(or BP component rectangle) to tune has been selected, randomly select the operation, TuneMinus
or TuneUnion, to attempt. The return value from the TuneMinus or TuneUnion operation will be
the change in BP badness between the new BP and the old. If the change is zero or negative, the
new BP is discarded. In either case, the process of selecting and attempting to improve a BP is
repeated until we run out of sufficient free space to store another BP component.
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TuneUnion

Input: set of data items to describe

Definitions

• bb = the bounding box of the set of data items

• area-value = area[bb(first set)] + area[bb(second set)]

• margin-value = margin[bb(first set)] + margin[bb(second set)]

• overlap-value = area[bb(first set) ∩ bb(second set)]

Algorithm TuneUnion

• Invoke Algorithm Split to split the data items into two sets.

• Calculate the bounding box of each new set.

• Calculate the difference between the hyper-volume of bb(input set) and the
hyper-volume of [bb(first set) ∪ bb(second set)] (overlapping regions only
count once towards total hyper-volume).

• Return two new bounding boxes and the calculated difference.

Algorithm Split

1. Invoke ChooseSplitAxis to determine the axis perpendicular to which the split
is performed.

2. Invoke ChooseSplitIndex to determine the best distribution into two sets along
that axis.

3. Distribute the data items into two sets.

Algorithm ChooseSplitAxis

1. For each axis, sort the data items by the lower then by the upper value of
their rectangles and determine all distributions as follows:

(a) Along each axis, sort the M data items by the lowest dimension, then by
the next higher, and so on.

(b) For each sort M − 2m + 2 distributions of the M data items into two groups
are determined, where the k-th distribution (k = 1, . . . , (M − 2m + 2)) has the
first (m−1)+k) entries in the first group and the remaining entries in the
second group.

2. Compute S, the sum of all margin-values of the different distributions.

3. Choose the axis with the minimum S as split axis.

Algorithm ChooseSplitIndex

1. Along the chosen split axis, choose the distribution with the minimum
area-value. Resolve ties by choosing the distribution with the minimum
overlap-value.

Figure 5: TuneUnion Algorithm. Most of the logic is copied from [3]; logic altered for TuneUnion is in
italics.
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TuneMinus

Input: set of data items to describe

1. If the input set is of BPs rather than points, create a set of data points

• add the corner points of the rectangles in each BP

• remove the outer corner point of the subtrahend rectangles in minus
pairings (i.e., the corner point shared with the minuend)

• replace removed points with corner points on the subtrahend rectangle
which are on the bounding surfaces of the minuend but are not the removed
point. For examples, see the x-marked points in Figure 4.

2. Find the minimum bounding rectangle of the data points, MBR

3. Set biggest volume to zero and max minus rectangle = null

4. For each corner of the MBR

• For each data point

(a) Start constructing a sample subtrahend-rectangle apex point, try point,
by setting dimension 0 of try point to the value of dimension 0 of the
current data point.

(b) Find all the points, the sub set, whose dimension 0 values are between
try point dimension 0 and the MBR value of dimension 0; if this corner
is low in dimension 0, this means points lower than try point, if the
corner is high, this means points higher than try point.

(c) Set the other dimensions of try point to each equal the lowest (if the
current corner is high in this dimension, the highest) value in each
dimension of the points in sub set.

(d) Find the hyper-volume of the space between try point and the current
MBR corner point.

(e) If the hyper-volume > biggest volume, set biggest volume = the
hyper-volume, and max minus rectangle = a subtrahend-rectangle
stretching between try point and the current MBR corner.

5. Calculate the difference between the hyper-volume of the MBR and the
hyper-volume of [MBR − max minus rectangle].

6. Return the MBR and max minus rectangle as the new BP, and the calculated
hyper-volume difference.

Figure 6: The TuneMinus heuristic for constructing a pair of rectangles, the first minus the second, from
a set of points.

S ⇒ <fullrect> | (<union>) | (<minus>)
<union> ⇒ S ∪ S
<minus> ⇒ (<fullrect> − <emptyrect>) |

(<minus> − <emptyrect>) | (<union>) − <emptyrect>
<fullrect> ⇒ MBR of some set of data items
<emptyrect> ⇒ rectangle bounding empty space

Figure 7: Context-Free Grammar for Boolean Bounding Predicate Rectangle Combinations. Note that the
< emptyrect > is always a simple rectangle, because there is no benefit in refining rectangles that enclose
empty space. The initial S is the minimum bounding rectangle.
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A → (B ∪ C), where B, C are contained in A

A → (A − B), where B is an empty corner of A

A ∪ B → C, where C is the MBR bounding A and B

A − B → A

Figure 8: State Transitions Used for A Single Step of Bounding Predicate Refinement In the Node Simulated
Annealing (NSA) Algorithm: A can be either a single rectangle or a combination thereof.

NG tries both TuneMinus and TuneUnion on every existing BP (or component rectangle) on
the node and selects the new BP which provides the greatest improvement in BP badness over its
corresponding old BP to replace. NG then repeats this procedure until it runs out of free space.

NSA uses a simulated annealing algorithm [18] to explore the space of BP possibilities. Fig-
ure 8 defines the state transitions each BP is allowed. Each step in the simulated annealing process
consists of selecting a BP at random from those on the node and attempting a state transition. If
the BP has already been tuned into multiple components, one of the subcomponent rectangles is
randomly selected, excluding the emptyrect rectangles in a minus operation. Once a BP or combi-
nation of BP components has been selected, a state transition from Figure 8 is selected and applied.
If the transition results in a reduction of BP hyper-volume, it is saved. If it does not, the simulated
annealing oracle is consulted, and the new BP is saved with probability e(−∆V/Temperature).

The difficulty with NSA is tuning it. If the initial temperature is too high and the cooling
rate too slow, it becomes, effectively, an inefficient exhaustive search. Because the number fed to
the simulated annealing oracle is the change in hyper-volume between an existing and a proposed
BP, the proper initial temperature is dependent upon the data set. We chose to set the initial
temperatures to be .00096×∏d

i=1(max(i)−min(i)) where d is the dimensionality of the data set,
max(i) is the maximum value in that dimension and min(i) is the minimum value. Examination
of the return values from the simulated annealing oracle showed that these temperatures resulted
in reasonable cooling; the oracle started by returning true frequently and ended by returning false
frequently.

For each combination of tuning algorithm and node prioritization algorithm, we ran experiments
over all of the data sets listed in Table 3. Each data set was sorted using the Sort-Tile-Recursive
algorithm from [16] and bulk-loaded into an R*-tree. For each data set we ran and analyzed nearest
neighbor queries centered around ten percent of the total data points, selected at random from the
data set, before we altered anything in the R*-trees, and analyzed the same query workload again
after tuning nodes.

Figures 9 and 10 show the results of these experiments comparing the performance of the node
level algorithms over various data sets; graphs generated from experiments over the other data
sets (shown in Appendix A) show similar results. These graphs reflect the extent to which our
techniques brought R*-tree performance toward ideal performance by eliminating wasted excess
coverage loss I/Os. Figure 9 directly examines the effects of tuning on excess coverage loss I/Os;
Figure 10 shows how that translates to effects on total I/Os performed while running the test
queries. As you can see, 30% or more of total I/Os are eliminated for both of the eight-dimensional
data sets (Forest Coverage and Clustered 8D).

NSA outperforms NG and NR for this data set and for most of the other data sets, with the
differences growing more pronounced as the dimensionality of the data grows. NSA can take more
than three times as long to tune a single node as NR (on a lightly loaded Sun Sparc Ultra 10
station, 256 MB of memory); NG is slower than NSA. The choice between NSA and NR is one of
quality vs. tuning time. We will see in the next section that doing a good job tuning only a few
nodes in the tree is often sufficient. Hence the quality benefits of NSA are probably affordable in
practice.
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Figure 9: Performance of Node Tuning: Percent change in excess coverage loss I/Os. Results after all nodes
of indices over various data sets have been tuned. As you can see, NSA consistently outperforms the other
algorithms at reducing the number of query workload I/Os. The differences in percentage improvement
between NG and NSA range from 12 to 39%; between NR and NSA the differences range from 12 to 41%.
In both cases, the greatest difference was in experiments with the 8-dimensional, real-world Forest Coverage
data set; the least difference was in the 2-dimensional, real-world Colorado road data.
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Figure 10: Performance of Node Tuning: Percent change in total I/Os. Results after all nodes of indices
over various data sets have been tuned. As you can see, NSA consistently outperforms the other algorithms
at reducing the number of query workload I/Os. The differences in percentage improvement between NG
and NSA range from 4 to 30%; between NR and NSA the differences range from 4 to 31%. In both cases,
the greatest difference was in experiments with the 8-dimensional, real-world Forest Coverage data set; the
least difference was in the 2-dimensional, real-world Colorado road data.
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Figure 11: Performance of Node Tuning: Change in approximate query workload runtimes (seconds) for
various data sets, after all nodes have been tuned using NSA.

6 Node Prioritization

To accomodate the situations where there is not enough time to tune all the nodes in an index, we
require a means of selecting the index nodes whose tuning will result in the greatest reduction in
overall workload I/Os. When we do not know our tuning time budget in advance, we are interested
in the differential benefit of tuning a single node – i.e., we want to maximize the slope of the graph
where the x-axis is the number of nodes tuned so far and the y-axis is the number of I/Os saved.

Perfect node prioritization would require knowledge of the number of I/Os performed for a
query workload before and after each possible set of nodes has been tuned. While it is possible to
collect such knowledge by tuning each possible set of nodes and analyzing a test query workload,
that would be prohibitively expensive. Therefore, we use heuristics to maximize the benefit of each
node tuning step. We tested the performance of three heuristics that order nodes for tuning: Strict
Sort (SS), Strict Sort and Climb (SSC) and Crop Root (CR).

For SS (Strict Sort), we tune the nodes in descending order of node badness. SS does not
require that the number of nodes to be tuned be known in advance – this is useful if, for example,
a total tuning time is specified, but per-node tuning time is not well calibrated.

Our next heuristic, SSC (Strict Sort and Climb), requires a fixed budget to work correctly.
Given a budget of B nodes to tune, SSC picks b < B nodes with highest node badness such that
they have at most B− b distinct ancestors and b is as large as possible. There may be a small (less
than the height of the tree) number of unallocated tuning operations left if there is not enough
room in the budget to make it from the node with the next highest node badness all the way to the
root. These remainder tunings are allocated to the nodes with the highest excess coverage losses
not already in the set to be tuned. The B selected nodes are sorted by height in the index and
tuned from the bottom of the index tree up, in order to allow the increased precision of BPs lower
in the tree to be reflected when the BPs higher up are tuned.

Because we noted that sharp drops in the number of I/Os performed over a workload frequently
occurred just after the root node had been tuned, we tried the Crop Root (CR) ordering, which
simply tunes the root node of the index tree. CR and SS have an advantage over SSC in that they
do not require a budget B of nodes to be known in advance.

Figures 12 and 13 show the results of experiments comparing the performance of these heuris-
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Figure 13: Performance of Node Prioritization: Per-
cent change in excess coverage loss I/Os. Results af-
ter all nodes of Clustered 5D data set tuned using
NSA algorithm

tics.3 The algorithm which performs the least amount of work, CR, achieves almost as great I/O
savings as SS and SSC achieve. The sharp rise in the SS line occurs after the root is tuned. In view
of the fact that 13+% of the total I/Os (21% of the excess coverage loss I/Os) in the Blobworld
query workload are eliminated through only tuning one node, the root, and that similar results
were achieved for the other data sets, we believe the Crop Root algorithm is the best to use in the
absence of time to tune all of the nodes.

7 Related Work

The traditional way to improve the query performance of an index is to drop and rebuild it. We
have introduced a new index operation, tuning, which improves the performance of even a freshly
built index, and which could be applied to many varieties of tree-based multi-dimensional indexes,
examples of which can be found in [6, 9].

Similar work has been performed for B-trees [21], though that research focused on compacting
and moving data items between leaf-level nodes, then updating the upper levels of the tree. Our
work focuses on modifying the upper levels of the index tree without, at present, touching the leaf
level. In terms of the vocabulary presented in Section 2, the work of [21] focussed on utilization loss,
while we chose to address excess coverage loss because our experiments showed that utilization loss
was not the most pressing problem with bulk-loaded multidimensional indexes. Also, their work is
only applicable to inherently one-dimensional B-trees; our work is only applicable to indexes with
data dimensionality greater than one.

The hB-tree [17] index is related to our tuning work in that it, too, explicitly represents empty
data space within an index node by subtracting (“extracting”) it from the data space covered by
subtree, though they do so by describing all the children of a given inner node through a kd-tree [4]
stored on each inner node.

The hB-tree approach and our approach to indexes are different in many ways. hB-trees use
a single data structure, a kd-tree, on each inner node to describe all the children of that node;
we use list of small structures, the bounding predicates, one per child node. The hB-tree kd-tree
node structures’ efficiency depends on the shape of the child nodes and the order in which data
was inserted; in this paper we bulk-load our indices so that the data on each node is well-grouped
and large gaps have been minimized.

3Appendix B contains more result graphs.
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In our terminology, hB-trees use minus to describe empty regions in the data space an inner
node covers, though they allow minus anywhere within that space instead of restricting it to the
corners. (However, their proof that hB-trees achieve good space utilization only applies to the case
where all extracted regions are at corners.) We allow the use of both minus and union operations.

We use the operators union and minus to build bounding predicates that describe child nodes.
The kd-trees at hB-tree inner nodes have “holes” in their descriptors that are like our minus. Since
hB-trees are actually directed acyclic graphs, rather than true trees, multiple inner nodes can point
to the same child node; the union of the regions in each of those inner nodes can be used to describe
the child node data, so hB-trees have union capabilities, in a roundabout fashion. hB-trees do not
allow data in leaf-level nodes to overlap. While boolean bounding predicate logic does not concern
itself with leaf node data overlapping or not, the R*-tree we implemented BBP logic in does allow
leaf-level overlap.

The greatest difference between the two approaches is that boolean bounding predicate indexes
actively perform tuning on inner nodes in order to shape the bounding predicates to correspond
precisely to the shape of the existing data on the child nodes. hB-trees rely on splitting well when
new data is inserted for their kd-tree inner node structures to develop accuracy.

8 Future Work

As future work, we plan to address the issues surrounding:

• Dynamic data: When a new data item is inserted onto a tuned – and therefore “full” node
– should we “un-tune” a bounding predicate to make space, or split the node?

• The “Badness” Metric: We use hyper-volume as an approximation to the change in I/Os to
perform queries. Is there a more intelligent, yet still computationally efficient, alternative?

• Data Movement: We currently do not alter anything other than the BPs of an index. How-
ever, situations may exist where minor movements of data items from one leaf node to another
would lead to significant improvements in a boolean bounding predicate’s precision. Is this
the case? If so, how can we efficiently take advantage of that?

• Intersection: Our boolean BPs currently only use minus and union operators. Would adding
intersection improve their performance?

• Auto-tuning: We have been triggering tuning operations manually. We would like to develop
techniques whereby an index could detect “quiet times” and use them to prioritize and tune
nodes without database administrator involvement.

9 Conclusions

We have presented new algorithms for spatial indexes, aimed at reducing the number of unnecessary
I/Os an index performs during queries by making use of what free space may exist on index nodes
to store more precise bounding predicates. We tested our algorithms using predicates that had
simple rectangles as their building blocks, combined with the boolean operators union and minus.
Tests show that 30% or more of the I/Os performed by a query workload can be eliminated, with
most of the benefit achieved through simply tuning the root node.
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A Node Tuning Algorithm Performance

These graphs compare the performance of the node tuning algorithms NR, NG and NSA, showing
how well they reduce the number of query workload I/Os lost to excess coverage loss. The results
shown here are all from experiments performed using the SS (Strict Sort) ordering. The sharp
upward jags many of the lines make towards the high end of the x-axis reflect the point at which
the root node of the index is tuned.
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Real Data Sets:
Note that the results of experiments run over real data sets correspond quite closely with the

results of experiments over synthetic data sets of corresponding dimensionality.
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B Node Prioritization Algorithm Performance

These graphs compare the performance of the node prioritization algorithms SS, SSC, and CR,
showing how well they reduce the number of query workload I/Os lost to excess coverage loss. The
results shown here are all from experiments performed using the NSA (Node Simulated Annealing)
node tuning algorithm.
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Real Data Sets:
Note that the results of experiments run over real data sets correspond quite closely with the

results of experiments over synthetic data sets of corresponding dimensionality.
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