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Abstract

We describe the architecture, operational practices, and failure characteristics of three very
large-scale Internet services. Our research on architecture and operational practices took the
form of interviews with architects and operations staff at those (and several other) services.
Our research on component and service failure took the form of examining the operations
problem tracking databases from two of the services and a log of service failure post-mortem
reports from the third. 

Architecturally, we find convergence on a common structure: division of nodes into service
front-ends and back-ends, multiple levels of redundancy and load-balancing, and use of cus-
tom-written software for both production services and administrative tools. Operationally, we
find a thin line between service developers and operators, and a need to coordinate problem
detection and repair across administrative domains. With respect to failures, we find that
operator errors are their primary cause, operator error is the most difficult type of failure to
mask, service front-ends are responsible for more problems than service back-ends but fewer
minutes of unavailability, and that online testing and more thoroughly exposing and detecting
component failures could reduce system failure rates for at least one service.

1.This work was supported in part by the Defense Advanced Research Projects Agency of the Department of Defense,
contract no. DABT63-96-C-0056, the National Science Foundation, grant no. CCR-0085899, NSF infrastructure
grant no. EIA-9802069, Alocity, Microsoft, and the California State MICRO Program. The information presented
here does not necessarily reflect the position or the policy of the Government and no official endorsement should be
inferred.
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Section 1

Introduction

The number and popularity of large-scale Internet services such as Google, MSN, and
Yahoo! have grown significantly in recent years. Moreover, such services are poised to
increase in importance as they become the repository for data in ubiquitous computing
systems and the platform upon which new global-scale services and applications are built.
These services’ large scale and need for 24x7 operation have led their designers to incorpo-
rate a number of techniques for achieving high availability. Nonetheless, failures still
occur. 

The architects and operators of these services might see such problems as failures on
their part. But these system failures provide important lessons for the systems community
about why large-scale systems fail, and what techniques are or would be effective in pre-
venting component failures from causing user-visible service failures. To answer the ques-
tion “Why do Internet services fail and what can be done about it?”, we have studied both
the architecture and failure reports from three very large-scale Internet services. In this
report we describe the lessons we have learned from this study. We observe that services

• are generally housed in geographically distributed colocation facilities and use
mostly commodity hardware and networks;

• use multiple levels of redundancy and load balancing for performance and availabil-
ity;

• are built from a load-balancing tier, a stateless front-end tier, and a back-end tier
that stores persistent data;

• use primarily custom-written software to provide and administer the service;
• undergo frequent software upgrades and configuration updates;
• operate their own 24x7 Systems Operations Centers staffed by operators who moni-

tor the service and respond to problems.
Despite redundancy throughout the services and trained operations staff, the services

still experience end-user visible service failures. In studying these failures, we discover that
• operator errors are their primary cause;
• operator error is the most difficult type of failure to mask;
• contrary to conventional wisdom, service front-ends are responsible for more prob-

lems than service back-ends; and
• online testing and more thoroughly detecting and exposing component failures

could reduce system failure rates for at least one service.
Although software architecture, operational practices, and failures of various kinds

have been studied in the context of end-user and enterprise software, researchers have thus
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far paid much less attention to these attributes when it comes to large-scale Internet ser-
vices. Before presenting the results of our study, we briefly describe the important differ-
ences between the Internet service environment and more traditional platforms.

1.1 The emergence of a new application environment
The dominant software platform is evolving from one of shrink-wrapped applications

installed on end-user personal computers to one of Internet-based application services
deployed in large-scale, globally distributed clusters. Although they share some character-
istics with traditional desktop applications and traditional high-availability software,
Internet services are built from a unique combination of building blocks, they have differ-
ent requirements, and they are deployed in a different environment. Table 1 summarizes
these differences. 

Continuous 24x7 availability is demanded by a globally distributed user base that
increasingly sees these services as essential parts of the world's communications infrastruc-
ture. As suggested in Table 1, however, large-scale Internet services present an availability
challenge because they

Characteristic Traditional desktop 
applications

Traditional high- 
availability 
applications

Large-scale Internet 
service applications

Dominant application productivity applica-
tions, games

database, enterprise 
messaging

email, search, news, e-
commerce, data storage

Typical hardware 
platform

desktop PC fault-tolerant server or 
failover cluster

cluster of 100s-1000s 
of cheap PCs, often 
geographically distrib-
uted

Software model off-the-shelf, 
standalone

off-the-shelf, multi-tier custom-written, 
multi-tier

Frequency of new 
software releases

months months days or weeks

Networking 
environment

none (standalone) enterprise-scale within cluster, Internet 
among data centers, 
Internet to/from user 
clients

Who operates the 
software

end-user corporate IT staff service operations staff, 
datacenter/colocation 
site staff

Typical physical 
environment

home or office corporate machine 
room

colocation facility

Key metrics functionality, 
interactive latency

availability, throughput availability, functional-
ity, scalability, manage-
ability, throughput

Table 1: Internet services vs. traditional applications.
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• are typically built from large numbers of inexpensive PCs that lack expensive reli-
ability features; 

• undergo frequent scaling, reconfiguration, and functionality changes; 
• often run custom-written software with limited testing; 
• rely on networks within service clusters, among geographically distributed colloca-

tion facilities, and between collocation facilities and end-user clients; and 
• are expected to be available 24x7 for access by users around the globe, thus making

planned downtime undesirable or impossible. 
On the other hand, some features of large-scale services can be exploited to enhance

availability: 
• plentiful hardware allows for redundancy; 
• use of collocation facilities allows controlled environmental conditions and resil-

ience to large-scale disasters via geographic distribution; 
• operators can learn the software's inner workings from developers and thus more

quickly identify and correct problems, as compared to IT staffs running shrink-
wrapped software.

We will examine a number of techniques have been developed to exploit these charac-
teristics.

A challenge closely related to availability is maintainability. Not only are human oper-
ators essential to keeping a service running, but the same issues of scale, complexity, and
rate of change that makes these services prone to failure also makes them challenging for
human operators to manage. Yet existing tools and techniques for configuring systems,
visualizing system configurations and the changes made to them, partitioning and migrat-
ing persistent data, and detecting, diagnosing and fixing problems, are largely ad hoc and
often inadequate.

As a first step toward formalizing the principles for building highly available and
maintainable large-scale Internet services, we have conducted a survey of the architecture,
operational practices, and dependability of existing services. This report describes our
observations and is organized as follows. Section 2 describes in detail the architectures of
three representative large-scale Internet services. In Section 3 we describe some opera-
tional issues involved in maintaining Internet services, and Section 4 summarizes our
analysis of failure data from three of these services. In Section 5 we discuss related work,
and in Section 6 we conclude and discuss possible future directions. 



6



7

Section 2

Architecture

To demonstrate the general principles behind the construction of large-scale Internet
services, we examined the architectures of a number of representative services. Table 2
highlights some key characteristics of the three services we studied in detail: an online ser-
vice/internet portal (“Online”), a global content hosting service (“Content”), and a high-
traffic, read-mostly Internet service (“ReadMostly”). In keeping with these services' desires
to remain anonymous, we have intentionally abstracted some of the information to make
it more difficult to identify the individual services. 

Architecturally, these services 
• are housed in geographically distributed collocation facilities, 
• are built from largely commodity hardware but custom-written software, 
• use multiple levels of redundancy and load balancing to achieve improved perfor-

mance and availability, and
• contain a load-balancing tier, a stateless front-end tier, and a stateful back-end tier.
The primary differences among these services are load, read/write ratio, and whether

clients use special-purpose software or a standard web browser.

2.1 Geographic server distribution

At the highest level, many services distribute their servers geographically in collocation
facilities. For example, Online distributes its servers between its headquarters and a nearby
collocation facility, ReadMostly uses a pair of facilities on the east coast of the United States
and another pair on the west coast, and Content uses one facility in each of the United
States east coast, United States west coast, Asia, and Europe. All three services used this

 Characteristic Online Content ReadMostly

Hits per day ~100 million ~7 million ~100 million

# of machines ~500, 2 sites ~500, ~15 sites > 2000, 4 sites

Hardware SPARC + x86 x86 x86

Operating system Solaris open-source x86 OS open-source x86 OS

Relative read/write ratio medium medium very high (and very little 
data is updated by users)

Table 2: Differentiating characteristics of the services described in this study.
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geographic distribution for availability, and all but Content also used the redundant data-
centers to improve performance by sharing in the handling of user requests. 

Several mechanisms are available for directing user queries to the most appropriate site
when distributed datacenters are used for load sharing. The choice of site generally takes
into account the load on each site and its availability. In the case of Content, this function-
ality is pushed to the client, which is pointed to one primary site and one backup site. The
two sites work in redundant pairs to reduce administrative complexity--some clients are
pointed to one pair of sites, while others are pointed to the other pair. Updates are propa-
gated from a client's primary server site to its secondary server site on a nightly basis. In
the case of Online, a server at the company's headquarters is responsible for providing cli-
ents with an up-to-date list of the best servers to contact whenever the client connects;
these servers may be at the company's headquarters or at its collocation facility. Read-
Mostly uses its switch vendor's proprietary global load balancing mechanism, which
rewrites DNS responses based on load and health information about other sites collected
from the cooperating switches at those sites.

2.2 Single site architecture
Drilling down into the architecture of a single site, we see three tiers: load balancing,
front-end servers, and back-end servers. Figures 1, 2, and 3 depict the single-site architec-
ture of Online, Content, and ReadMostly, respectively.
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Figure 1: The architecture of one site of Online. Depending on the particular feature a user selects, the
request is routed to any one of the web proxy cache servers, any one of 50 servers for stateless servers, or any
one of eight servers from a user's “service group” (a partition of one sixth of all users of the service, each with
its own back-end data storage server). Persistent state is stored on Network Appliance servers and is accessed
by cluster nodes via NFS over UDP. This cluster is connected to a second site, at a collocation facility, via a
leased network connection. 
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2.2.1 Tier 1: Load balancing
A front-end network balanced load by distributing incoming requests to front-end servers
based on the load on those servers. Though many modern switches offer “layer 7" switch-
ing functionality, meaning they can route requests based on the contents of a user's
request, none of the sites we surveyed actually use this switch feature. Instead, they gener-
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Figure 2: The architecture of one site of Content. Stateless metadata servers provide file metadata and
route requests to the appropriate data storage servers. Persistent state is stored on commodity PC-based stor-
age servers and is accessed via a custom protocol over UDP. Each cluster is connected to its twin backup site
via the Internet.
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Figure 3: The architecture of one site of ReadMostly. A small number of web front-ends direct requests to
the appropriate back-end storage servers. Persistent state is stored on commodity PC-based storage servers
and is accessed via a custom protocol over TCP. A redundant pair of network switches connects the cluster
to the Internet and to a twin backup site via a leased network connection.
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ally use simple DNS round robin or level 3 (IP-level) load distribution to direct clients to
the least loaded front-end server. In DNS round robin, multiple IP addresses are adver-
tised for a service and are continuously reprioritized to spread load among the machines
corresponding to those addresses. In level 3 load distribution, clients connect to a single
IP address and the cluster's switch routes the request to any one of the front-end servers.

Content and ReadMostly use IP-level request distribution at each site, as does Online
for “stateless” parts of its service like the web proxy cache and content portals. Online uses
IP-level request distribution for the “stateful” parts of its service (e.g., email), but layers a
level of stateful front-end load balancing on top of it. In particular, Online uses a user's
identity (determined when the user “logs in” to the service) to map the user to one of sev-
eral clusters (called service groups). Each cluster is then further load balanced internally
using IP-level load balancing.

We found the theme of multiple levels of load balancing to be a general principle in
building sites - load is often balanced among geographically distributed sites, it is always
balanced among front-ends in a cluster, and one of multiple clusters at a site may be cho-
sen using a third load balancing decision.

2.2.2 Tier 2: Front-end

Once the load balancing decision is made at the cluster level for a request, the request is
sent to a front-end machine. The front-end servers run stateless code that answers incom-
ing user requests, contacts one or more back-end servers to obtain the data necessary to
satisfy the request, and in some cases returns that data to the user (after processing it and
rendering it into a format suitable for presentation). We say “in some cases” because some
sites, such as Content, return data to clients directly from the back-end server. The exact
ratio of back-end to front-end servers is highly dependent on the type of service and the
performance characteristics of the back-end and front-end machines; this ratio ranged
from 1:10 for Online to 50:1 for ReadMostly.

Depending on the needs of the service, the front-end machines may be partitioned
with respect to functionality and/or data. Content and ReadMostly are partitioned with
respect to neither characteristic; all front-end machines access data from all back-end
machines. Online, however, partitions front-end machines with respect to both attributes.
With respect to functionality, there are three different types of front-end machines (front-
ends for stateful services, front-ends for stateless services, and web proxy caches, which are
essentially front-ends to the Internet). With respect to data, the front-ends to the stateful
services are further partitioned into service groups, which were described earlier. In all
cases, the front-end machines were inexpensive PCs or workstations; the internal architec-
tures for the three sites we spotlight are depicted in Figures 4, 5, and 6. These three ser-
vices use custom-written front-end software rather than off-the-shelf web servers like
Apache or IIS. The services cite functionality and/or performance as reasons for not using
commodity software. 

2.2.3 Tier 3: Back-end storage
Data needed to satisfy a request is obtained from one or more back-end servers. These
servers store persistent data, such as files in the case of Content and ReadMostly, and email,
news articles, and user preferences in the case of Online. It is in the back-end that we see
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the greatest variability in node architecture--two sites use inexpensive PCs (Content and
ReadMostly), while one uses a file server designed especially for high availability (Online).
Likewise, there are a variety of filesystems used by these back-end servers, including cus-
tom filesystems (Content) and Unix-based filesystems (Online and ReadMostly).

In the back end, partitioning is key to overall service scalability, availability, and main-
tainability. Scalability takes the form of scale-out in which more back-end servers are
added to absorb growing demands for storage and aggregate throughput. The services we
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Figure 4: Architecture of worker nodes and proxy cache nodes in Online. Nodes contain two disks, two
CPUs (SPARC in the case of worker nodes, x86 in the case of proxy cache nodes), about 1 GB of memory,
and a 100 Mb/s Ethernet interface.
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Figure 5: Architecture of metadata server nodes and storage server nodes in Content. Metadata servers
contain one disk, two CPUs, a 100 Mb/s Ethernet interface, and 512 MB of memory. Storage servers con-
tain six disks, two CPUs, 256 MB of memory, and a 100 Mb/s Ethernet interface.
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highlight a represent spectrum of redundancy schemes used to improve availability or
both performance and availability. 

Online partitions users into “service groups” of approximately 65,000 users each, and
assigns each group to a single back-end Network Appliance filer. RAID-4 is used within
each filer, thereby allowing each service group to tolerate a single back-end disk failure.
The drawbacks of this scheme are that the failure of a single filer will cause all users in that
service group to lose access to their data, and that the scheme does not improve perfor-
mance, since only one copy of each piece of data is stored. 

Content partitions data among back-end storage nodes. Instead of using RAID within
each filer, it replicates each piece of data on a storage server at a twin data center. This
scheme offers higher theoretical availability than that used by Online, because single disk
failure, single storage server failure, and single site failure (due to networking problems,
environmental issues, and the like) are all masked. As in Online, however, this back-end
data redundancy scheme does not improve performance, because only one site is used as
the default for retrieving data to service user requests, with the backup twin site used only
in case of failure of the first storage server or its site. 

Finally, ReadMostly uses full replication of each piece of data to achieve high availabil-
ity and improved performance. Data is replicated among nodes in the cluster and among
geographically distributed clusters. Incoming requests from the front-end are load bal-
anced among redundant copies of data stored in the back end. Both back-end availability
and performance are improved by a factor proportional to the number of copies of each
piece of data stored. It is reasonable that we find this redundancy scheme used by the least
write-intensive of the services we studied - the main drawback to replicating data among
nodes in a cluster (as opposed to RAID storage attached to a single machine) is that
updates are slow since they must be propagated to all nodes storing a particular piece of
data. Also, we note that end-users rarely update ReadMostly's dataset, and that there is thus
no strong need for users to be able to see their own writes. This allows for data updates to
be propagated lazily to all the nodes storing replicas, mitigating the impact of update
propagation delays.

Disk: 2x~100 GBD D

P PCPU: 2x~750 MHz
x86

M

Memory: 512 MB

100 Mb/s Ethernet

Figure 6: Architecture of service nodes in ReadMostly. Nodes contain two disks, two CPUs, 512 MB of
memory, and a 100 Mb/s Ethernet interface.
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2.2.4 Networking

Finally, we note that while the structure of the wide-area networking among server sites
varied greatly among the services we surveyed, networking within a single site followed a
common pattern. In particular, a collocation facility's network is generally connected to a
service's first level switch, which is then connected by gigabit Ethernet to one or more
smaller second-level switches per machine room rack. These second-level switches are in
turn connected by 100 Mb/s Ethernet to individual nodes. Although it was common for
sites to use redundant connections between the first and second level switches, no sites
used redundant Ethernet connections between nodes and second-level switches, and only
one (ReadMostly) used redundant connections between the collocation facility's network
and the first-level of switches. 

We observed that despite the emergence during the past few years of industry-stan-
dard, low-latency, high-bandwidth, system-area networking technologies such as VIA and
Infiniband, all of the services use UDP over IP or TCP over IP within their clusters. This
is most likely due to cost-a 100BaseT NIC card costs less than $50 (and is often inte-
grated into modern motherboards), while the cost of a PCI card for VIA is on the order of
$1000.

2.3 Common principles

To review, the three services we highlight in this article, along with about a half-dozen
others that we surveyed is less detail, share a number of characteristics:

• They use large numbers of nodes, distributed geographically among clusters in col-
location facilities;

• they use multiple levels of load balancing to derive high throughput and high avail-
ability from this large number of nodes;

• they run on commodity PC-based front-end hardware and commodity networks;
• their production service and operations staff use custom-built software;
• they undergo frequent software updates and configuration changes; and
• they maintain a close relationship between operators and developers.

However, we observed differences in a few areas:
• Services sometimes use commodity PCs to store back-end data (as with ReadMostly

and Content), but many use high-end Unix systems or specialized high-availability
servers (as with Online);

• services sometimes write custom software for back-end data storage (as with Con-
tent), but most use databases or standard filesystems (as with Online and Read-
Mostly); and

• not all services have embraced geographic distribution and collocation facilities.
Indeed, two services that are not described in this article and that receive ~100 mil-
lion hits per day use a single site at their own headquarters. They argue that manage-
ability issues outweigh disaster tolerance and possibly improved performance to
some user locations.
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Section 3

Service operational issues

The need to develop, deploy, and upgrade services on “Internet time,” combined with the
size and complexity of service infrastructures, has placed unique pressures on the tradi-
tional software lifecycle. This pressure can be seen particularly in testing, deployment, and
operations. The amount of time available for testing has shrunk, the frequency and scale
of deployment and upgrade has expanded, and the importance of operational issues such
as monitoring, problem diagnosis and repair, configuration and reconfiguration, and gen-
eral system usability for human operators has grown. The services we studied are address-
ing these challenges in a variety of ways. 

3.1 Testing

All three of the services highlighted in this report test their software before releasing it to
their production cluster. They all have development quality assurance (QA) teams, of
varying sizes, that test the software before deployment. These groups use traditional test-
ing techniques such as unit tests and regression tests, using both single nodes and using
small-scale test clusters that reflect the architecture--though invariably not all of the
minute configuration details--of the production cluster. 

Although the operations team is involved in deployment to the production cluster in
the case of all three services, Online involves their operations team in the testing process
more than do the others and is therefore worth highlighting. That service uses a three-step
testing and deployment process for new software or software features after the unit devel-
opment QA tests are passed. In the first step, the candidate software is deployed on the
development group's test cluster and is run by the developers, but is configured by the
operations team. In the second step, the stable version of the software from the first step is
taken by the operations group, deployed, and operated on their test cluster. The final steps
of software release are alpha and beta releases to the production service; for major releases,
a new version of the software is released to just a subset of the users for a week or two
before it is rolled out to all customers. This testing and deployment methodology is note-
worthy because of the way in which it integrates the operations team from the very begin-
ning, considering operators as first-class users of the software as much as end-users.

3.2 Deployment
Deployment of software to large clusters is a difficult process that requires automation for
reasons of both efficiency and correctness. All three sites described here use tools devel-
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oped in-house to deploy and upgrade production software and configurations for applica-
tions and operating systems. All three sites used rolling upgrades [2] for deploying
software to their clusters. All three sites used version control during software development,
and Online and ReadMostly use it for configuration management. Online always keep two
versions of the service installed on every machine, thereby allowing them to revert to an
older version in less than five minutes if a new installation goes awry.

The three services differed with respect to the frequency with which they update
application software and operating system and application configurations. Back-end soft-
ware changed the least frequently, front-end software changed more frequently, and
machine configurations changed the most often. Of course, content changes on a daily
basis in all three services.

3.3 Daily operation
The tasks of service monitoring, problem diagnosis, and repair are significantly more chal-
lenging for large-scale Internet services than for traditional desktop applications or enter-
prise applications. Among the reasons for this are the frequency of software and
configuration changes, the scale of the services, and the unacceptability of taking the ser-
vice down for problem localization and repair. There are also complex interactions among

• application software and configuration,
• operating system software and configuration,
• networks at collocation sites,
• networks connecting customer sites to the main service site,
• networks connecting collocation sites, and
• operators at collocation sites, Internet service providers, and the service's operations

center.
Back-end data partitioning is a key maintainability challenge. Data must be distrib-

uted among back-end storage nodes so as to balance the load on them and so that no
server's storage capacity is exceeded. As the number of back-end machines grows, back-
end data must be repartitioned in order to incorporate the new machines into the service.
In the current state of the art, partitioning and repartitioning decisions are made by
humans, and the repartitioning process itself is automated by tools that are, at best, ad hoc.

The scale, complexity, and speed of evolution of Internet services makes operator tasks
such as installing, upgrading, diagnosing, and fixing system components frequent events.
These tasks require a deeper understanding of the internals of the application software
than is required to install and operate slowly evolving, thoroughly documented enterprise
or desktop software. There is frequent dialog between operators and developers during
upgrades, problem diagnosis, and repair. For example, distinguishing between an applica-
tion crash caused by a software bug--generally the responsibility of software developers--
and an application crash caused by a configuration error--generally the responsibility of
the operations team--can require discussion between both groups. As a result, these ser-
vices are organizationally structured so that the line between “operations” and “software
development” is blurry. 

Despite automation of some tasks such as low-level monitoring and deployment of
software to a cluster, human operators are key to service evolution and availability. More-
over, there is a growing realization that operators are as much a user of Internet service
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software as are end-users, and that usability by operators is a concern that should be inte-
grated throughout the software development process. Many operational tasks are not fully
automated or are not automated at all, such as scaling the service; configuring and recon-
figuring software and network equipment; partitioning and repartitioning users and data;
identifying the root cause of problems; tuning performance; and responding to hardware,
software, security, and networking issues. Conversely, there seems to be much more
opportunity for more sophisticated and standardized problem diagnosis and configuration
management tools, as all of the sites we surveyed used some combination of their own
custom-written tools and manual operator intervention for these tasks.

Unfortunately, building generic tools for these tasks that can be customized for a par-
ticular site is difficult. Even a seemingly simple activity such as finding the root cause of
an outage can be difficult. For example, in a large network, unreachability of twenty serv-
ers might be not be unusual. But if those twenty servers are exactly the set of nodes behind
a single switch, then most likely the cause of the problem is not the nodes themselves but
rather the switch them connects them to the rest of the network. Ideally the service opera-
tor would be told of the switch outage and the alarms for the twenty servers would be sup-
pressed, as they just lead to confusion about the root cause of the problem. But
performing even this simple filtering requires an understanding of the topology of the net-
work, which must be part of the monitoring system’s configuration. There is a tradeoff
between hiring sophisticated programmers to build and configure automated monitoring
and maintenance tools, and simply hiring a larger number of less skilled operators to
apply their human intelligence to system operation tasks using less sophisticated tools. As
the scale of deployed systems and the number of such systems grows, the advantage may
shift from the human-centric model to an automation-centric one. But the day of fully
automatic system operation seems a long way off, and the prevalent operational model
today is clearly that of many operators using relatively unsophisticated tools.

3.4 Common principles

All of the large-scale Internet services we studied are in a state of constant flux with respect
to hardware and software configuration. They are also under pressure to rapidly test and
deploy new software. In response, the services operate their own 24x7 Systems Operations
Centers staffed by operators who monitor the service and respond to problems. These
operators also work closely with developers when diagnosing, and sometimes when
responding to, problems.

Our architectural study reveals pervasive use of hardware and software redundancy at
the geographic, node, and component levels. Nonetheless, outages at large-scale Internet
services are frequent. Motivated by this observation, we set out to study the causes of fail-
ures in such services.
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Section 4

Dependability

This section describes the results of our study of the dependability of the three services
outlined in Section 2. We examine the root causes of component and user-visible service
failures, and the mean time to repair service failures. We also speculate on the potential
effectiveness of a number of techniques for mitigating failures, had they been applied to
the failure scenarios experienced by one of the services for which we have extensive data
(Online). 

Our primary conclusions in this section are that
• operator error is the leading contributor to user-visible failures;
• operator error is the most difficult type of component failure to mask;
• contrary to conventional wisdom, front-end software can be a significant cause of

user-visible failure, primarily due to configuration errors;
• back-end failures, while infrequent, take longer to repair than do front-end failures;
• more online testing, increased redundancy, and more thoroughly exposing and

reacting to software and hardware failures would have reduced service failures in one
service studied (Online); and

• automatic sanity checking of configuration files, and online fault and load injection,
would also offer some potential benefit to that service.

4.1 Survey methodology and terminology
Because we are interested in why and how large-scale Internet services fail, we studied

individual problem reports rather than aggregate availability statistics. The operations staff
of all three services use problem-tracking databases to record information about compo-
nent and service failures. Two of the services (Online and Content) gave us access to these
databases, and one of the services (ReadMostly) gave us access to the problem post-mortem
reports written after every major user-visible service failure. For Online and Content, we
defined a service failure as one that could (1) prevent an end-user from accessing the ser-
vice or a part of the service, even if the user is given a reasonable error message; or (2) sig-
nificantly degrade a user-visible aspect of system performance. We chose this definition of
failure because it most closely matched the criteria that ReadMostly used to select problems
that merited a post-mortem. Note that “user-visible” is implicit in our definition of service
failure.

“Significantly degrades a user-visible aspect of system performance” is admittedly a
vaguely-defined metric. A more precise definition of failure would involve correlating
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component failure reports with degradation in some aspect of externally observed system
Quality of Service such as response time. But even in those cases where these services mea-
sured and archived response times for the time period studied, we are not guaranteed to
detect all user-visible failures, due to the periodicity and placement in the network of the
probes. Thus our definition of user-visible is problems that were potentially user-visible,
i.e., service problems observed by operators and monitoring tools within the service infra-
structure, that would have been visible externally if a user had tried to access the service
during the failure.

We classified 85 reports of component failures from Online and 99 component fail-
ures from Content. These component failures turned into 18 service failures in Online and
20 service failures in Content. ReadMostly supplied us with 21 service failures (and two
additional failures that we considered to be below the threshold to be deemed a service
failure). These problems corresponded to four months at Online, one month at Content,
and six months at ReadMostly. Table 3 summarizes these characteristics for the data set we
examined. In classifying problems, we consider operators to be just another type of com-
ponent of the system; when they fail, their failure may or may not result in a service fail-
ure.

We note that it is not fair to compare these three services directly, as the functionality
of the custom-written software at Online is richer than that at ReadMostly, and Content is
more complicated than either of the other two services. For example, Content counts as
service failures not only failures of equipment in its colocation sites, but also failures of cli-
ent proxy nodes it distributes to its users, including situations in which those client prox-
ies cannot communicate with the colocation facilities. But because we studied all user-
visible failures for each service over a given time period, and we used approximately the
same definition of failure for choosing the problems to examine from each of the services,
we believe our conclusions as to relative failure causes are meaningful.

We attributed the cause of a service failure to the first component that failed in the
chain of events leading up to the service failure. The type of the cause of the failure--its
root cause--was categorized as node hardware, network hardware, node software, network
software (i.e., router or switch firmware), environment, operator error, overload/disk full,
or unknown. The location of that component was categorized as front-end node, back-end
node, or network. Note that the underlying flaw may have remained latent for a long
time, only to cause a component to fail when another component subsequently failed or
the service was used in a particular way for the first time. 

Front-end nodes are those initially contacted by end-user clients, as well as the client
proxy nodes used by Content. Using this definition, front-end nodes do not store persis-
tent data, although they may cache or temporarily queue data. Back-end nodes do store

Service # of component 
failures

# of resulting 
service failures

Period covered in 
problem reports

Online 85 18 4 months

Content 99 20 1 month

ReadMostly N/A 21 6 months

Table 3: Characteristics of the failure data problem set examined.
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persistent data. The “business logic” of traditional three-tier systems terminology is there-
fore part of our definition of front-end, a reasonable decision because these services inte-
grate their service logic with the code that receives and replies to client requests.

Most problems were relatively easy to map into this two-dimensional location-type
space, except for wide-area network problems. Network problems affected the links
between colocation facilities for all services, and, in the case of Content, also between cus-
tomer sites and colocation facilities. Because the root cause of such problems often lay
somewhere in the network of an Internet Service Provider to whose records we did not
have access, the best we could do with such problems was to label the location as network
and the cause as unknown.

4.2 Analysis of component and service failure causes
We analyze our data on component and service failure with respect to three properties:
how many component failures turned into service failures, categorized by location and
type (Section 4.2.1); the relative frequency of each component and service failure root
cause, categorized by location and type (Section 4.2.2); and the Mean Time To Repair
(MTTR) of each root cause location and type (Section 4.2.2)

4.2.1 Component failures resulting in service failures

As described in Section 2, the services we studied use redundancy in an attempt to mask
component failures. That is, they try to prevent component failures from turning into ser-
vice failures. As indicated by Figure 7 and Figure 8, these techniques generally do a good
job of preventing hardware, software, and network component failures from turning into
service failures, but they are much less effective at preventing operator failures from
becoming service failures. A qualitative analysis of the failure data suggests that this is
because operator actions tend to be performed on files that affect the operation of the
entire service or of a partition of the service, e.g., configuration files or content files. Node
hardware and software failures are masked relatively well. Network failures generally are
not masked as effectively because of the smaller degree of network redundancy as com-
pared to node redundancy. This masking issue is discussed in more detail in the next sec-
tion.

4.2.2 Failure root causes and time to repair

Next we examine the source and magnitude of service failures, categorized by the root
cause location and type of component failure. Table 4 shows that contrary to conventional
wisdom, front-end machines are a significant source of failure--in fact, they are responsi-
ble for more than half of the service failures in Online and Content. This fact was largely
due to operator error in configuration and administration of front-end software (both
application and operating system). Almost all of the problems in ReadMostly were net-
work-related; this was likely due to simpler and better-tested application software at that
service, less operator “futzing” with the service on a day-to-day basis, and a higher degree
of hardware redundancy than is used at Online and Content.

Table 5 shows that operator error is the largest single cause of service failures in Online
and Content. Operator error in all three services tended to take the form of configuration
errors (errors in setting up configuration files) rather than procedural errors made during
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an interactive session (e.g., moving files or users). Indeed, 100%, 89%, and 50% of the
operator errors that led to service failures in Online, Content, and ReadMostly, respectively,
were due to configuration errors. In general, these failures arose when operators were mak-
ing changes to the system, e.g., changing software configurations, scaling or replacing
hardware, or deploying or upgrading software. A few failures were caused by operator
errors during the process of fixing another problem, but those were in the minority--most
operator errors, at least those recorded in the problem tracking database, arose during the
course of normal maintenance. 

Component failure to system failure: Content
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Figure 7: Number of component failures and resulting service failures for Content. Only those categories
for which we classified at least three component failures (operator error related to node operation, node
hardware failure, node software failure, and network failure of unknown cause) are listed. The vast majority
of network failures in Content were of unknown cause because most network failures were problems with
Internet connections between colocation facilities or between customer proxy sites and colocation facilities.
For all but the “node operator” case, 11% or fewer component failures became service failures. Fully half of
the 18 operator errors resulted in service failure, suggesting that operator errors are significantly more diffi-
cult to mask using the service’s existing redundancy mechanisms.

Front-end Back-end Network Unknown

Online 72% 0% 28% 0%

Content 55% 20% 20% 5%

ReadMostly 0% 10% 81% 9%

Table 4: Failure cause by location.Contrary to conventional wisdom, most failure root causes were compo-
nents in the service front-end.
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Networking problems were the largest cause of failure in ReadMostly and, as men-
tioned in Section 4.2.1, somewhat more difficult to mask than node hardware or software
component failures. An important reason for these facts is that networks are often a single
point of failure. For example, ReadMostly was the only site we examined that used redun-
dant first and second-level switches within clusters. Also, consolidation in the collocation
and network provider industries has increased the likelihood that “redundant” network
links out of a collocation facility will actually share a physical link fairly close (in terms of
Internet topology) to the data center. Moreover, network failure modes tend to be com-
plex: networking hardware and software can fail outright or become overloaded and start
dropping packets. Combined with the inherent redundancy of the Internet, these failure
modes generally lead to increased latency and decreased throughput, often experienced
intermittently--far from the “fail stop” behavior that high-reliability hardware and soft-
ware aims to achieve. Finally, because most services use a single network operations center,
operators sometimes cannot see the network problems among their collocation sites or
between their collocation sites and customers; these problems may thus be at the root of a
mysterious performance problem or outage. 

Colocation facilities did appear effective in eliminating “environmental” problems--no
environmental problems, such as power, temperature, and so forth, led to service failure. 

Figure 8: Number of component failures and resulting service failures for Online. Only those categories
for which we classified at least three component failures (operator error related to node operation, node
hardware failure, node software failure, and various types of network failure) are listed. As with Content,
operator error was difficult to mask using the service’s existing redundancy and recovery schemes. Unlike
content, a significant percentage of node software and network hardware failures became service failures.
There is no single explanation for this, as the three customer-impacting network hardware problems affected
different pieces of equipment.
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We next analyze the average Time to Repair (TTR) for service failures: time from
problem detection to restoration of the service to its pre-failure Quality of Service. We
have categorized TTR by the problem root cause location and type2. Table 6 shows that
although front-end problems vastly outnumber back-end problems in Online and Content
in terms of causing service failures, the time needed to repair problems with the front-end
is smaller than the time needed to repair problems with the back-end. There are different

2. The Time to Repair statistics for Online and the data for the tables in Section 4.3 were taken from a different set of
problems than were used to generate the previous tables and graphs in this section. We have no reason to believe
these problems are any different from the other problems we analyzed. For the other services, a subset of the reports
used in the other tables and graphs in this section were used to compute average TTR. In particular, only problem
reports from which an accurate estimate of service interruption time could be estimated, were used.

Node
op

Net op
Node
hw

Net
hw

Node
sw

Net
sw

Node
unk

Net
unk

Env

Online 33% 0% 6% 17% 22% 0% 0% 6% 0%

Con-
tent 45% 5% 0% 0% 25% 0% 0% 15% 0%

Read-
Mostly 5% 14% 0% 10% 5% 19% 0% 33% 0%

Table 5: Failure cause by component and type of cause.The component is described as node or network
(net), and type is described as operator error (op), hardware (hw), software (sw), unknown (unk), or envi-
ronment (env). We have excluded the “disk full/overload” category because of the very small number of fail-
ures caused.

Front-end Back-end Network

Online 9.7 (10) 10.2 (3) 0.75 (2)

Content 2.5 (10) 14 (3) 1.2 (2)

RdMostly N/A (0) 0.17 (1) 1.17 (16)

Table 6: Average TTR by part of service, in hours.The number in parentheses is the number of service fail-
ures used to compute that average. This number is provided to give a general notion of the accuracy of the
corresponding average.

Node
op

Net op
Node
hw

Net hw
Node

sw
Net sw

Node
unk

Net
unk

Online 15 (7) N/A (0) 1.7 (2) 0.50 (1) 3.7 (4) N/A (0) N/A (0) N/A (0)

Content 1.2 (8) N/A (0) N/A (0) N/A (0) 0.23 (4) N/A (0) N/A (0) 1.2 (2)

Read-
Mostly 0.17 (1) 0.13 (3) N/A (0) 6.0 (2) N/A (0) 1.0 (4) N/A (0) 0.11 (6)

Table 7: Average TTR for failures by component and type of cause, in hours.The component is described
as node or network (net), and fault type is described as operator error (op), hardware (hw), software (sw),
unknown (unk), or environment. The number in parentheses is the number of service failures used to com-
pute that average. This number is provided to give a general notion of the accuracy of the corresponding
average. We have excluded the “disk full/overload” category because of the very small number of failures
caused.
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reasons for the two services: for Content this was due to incidents involving serious back-
end software bugs that were difficult to isolate and fix, while in Online this was due to an
operator error that was extremely difficult to undo (a repartition of users that was per-
formed incorrectly).

Table 6 and Table 7 indicate that networking problems generally have the smallest
Time to Repair. This is because the locus of a network problem is usually easy to deter-
mine, and the fix is generally rebooting, rebooting and reloading (possibly updated) firm-
ware, or switching out a failed component with another identical one.

Finally, Table 8 and Table 9 show the source location and type of component failures
in Online and Content. As with service failures, component failures arise primary in the
front-end. However, hardware and/or software problems dominate operator error. It is
therefore not the case that operator error is more frequent than hardware or software
problems, just that it is less frequently masked and therefore more often results in a service
failure.

4.3 Techniques for mitigating failure

Given that user-visible failures are inevitable despite these services’ attempts to prevent
them, how could the service failures have been avoided, or their impact reduced? To
answer this question, we analyzed the set of problem reports from Online that were used
to generate the tables on Time to Repair, asking whether any of a number of techniques
that have been suggested for improving availability could potentially

• prevent the original component fault
• prevent a component fault from turning into a component failure
• reduce the severity of degradation in user-perceived system quality of service (QoS)

due to a component failure (i.e., reduce the degree to which a service failure is
observed)

• decrease the Time to Detection (TTD): time from component failure to detection
of the failure

Front-end Back-end Network

Online 76% 5% 19%

Content 34% 34% 30%

Table 8: Component failure cause by location in the service.

Node 
op Net op Node 

hw Net hw Node 
sw Net sw Node 

unk
Net 
unk Env

Online 12% 5% 38% 5% 12% 4% 4% 5% 0%

Content 18% 1% 4% 1% 41% 1% 1% 27% 1%

Table 9: Component failure cause by type.The component is described as node or network (net), and type
is described as operator error (op), hardware (hw), software (sw), unknown (unk), or environment. We have
excluded the “disk full/overload” category because of the very small number of failures caused.
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• decrease the Time to Repair (TTR): time from component failure detection to com-
ponent repair. (This corresponds to the time during which system QoS is degraded.)

Figure 9 shows how the above categories can be viewed as a state machine or timeline,
with component fault leading to component failure, causing a user-visible service failure;
the component failure is eventually detected and repaired, returning the system to its fail-
ure-free QoS.

The techniques we investigated for their potential effectiveness were
• testing (pre-test or online-test): testing the system for correct behavior given nor-

mal inputs, either in components before deployment or in the production system.
Pre-deployment testing prevents component faults in the deployed system, and
online testing detects faulty components before they fail under normal operation.

• redundancy (red): replicating data, computational functionality, and/or networking
functionality [10]. Using sufficient redundancy prevents component failures from
turning into service failures.

• fault injection and load testing (pre-flt/ld or online-flt/ld): explicitly testing fail-
ure-handling code and system response to overload by artificially introducing failure
and overload scenarios, either into components before deployment or into the pro-
duction system [26]. Pre-deployment fault injection and load testing prevents com-
ponents from being deployed that are faulty in their error-handling or load-
handling capabilities, and online fault injection and load testing detects components
that are faulty in their error-handling or load-handling capabilities before they fail to
handle anticipated faults and loads.

• configuration checking (config): using tools to check that low-level configuration
files meet sanity constraints. Such tools could prevent faulty configuration files in
deployed systems.

• isolation (isol): increasing isolation between software components, to reduce failure
propagation [10]. Isolation can prevent a component failure from turning into a ser-
vice failure.

• restart (restart): periodic prophylactic rebooting of hardware and restarting of soft-
ware [13]. Periodic component restarts can prevent faulty components with latent
errors (e.g., resource leaks such as memory leaks) from failing in the deployed sys-

Figure 9: Timeline of a failure. The system starts out in normal operation. A component fault, such as an
operator configuration error, a software bug, or an alpha particle flipping a memory bit, may or may not
eventually lead the affected component to fail. If the component fails, recovery may be initiated automati-
cally (as in the case of a CPU panic causing a node to automatically reboot), and/or the service’s monitoring
system may notify an operator. The component failure may cause a service failure if it is not sufficiently
masked. Eventually the component failure will be noticed and repaired, returning the system to normal
operation. “Time to Repair” is therefore the time between “service or component failure detected” and
“component failure repaired.”
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tem. For example, periodically rebooting a node that is running software that has a
memory leak can prevent the leak from growing large enough to cause the node to
exhaust its available swap space and thereby crash.

• exposing (exp/mon): better exposing software and hardware component failure to
other modules and/or to a monitoring system, or using better tools to diagnose
problems. This technique can reduce time to detect and repair component failures.

Table 10 shows the number of problems from Online’s problem tracking database for
which use, or more use, of each technique could potentially have prevented the problem
that directly caused the system to enter the failure state described in the previous para-
graph as corresponding to that failure mitigation technique. Table 11 does the same, but
shows how each technique could reduce Time to Repair and Time to Detection. 

Note that if a technique prevents a problem from causing the system to enter some
failure state, it also necessarily prevents the problem from causing the system to enter a
subsequent failure state. For example, checking a configuration file might prevent a com-
ponent fault, which therefore prevents the fault from turning into a system-level failure, a
degradation in QoS, a need to detect the failure, and a need to repair the failure. Also,
note that techniques that reduce time to detect or time to repair component failure reduce
the overall service loss experienced (we define the loose notion of “overall service loss” as
the amount of QoS lost during the failure, multiplied by the duration of the failure).

From Table 10 and Table 11 we observe that just increasing the degree of redundancy
and using online testing would have mitigated 8 and 11 service failures in Online, respec-
tively. Furthermore, more thoroughly exposing and reacting to software and hardware fail-
ures would have decreased TTR and/or TTD in 8 instances. Automatic sanity checking of
configuration files, and online fault and load injection, also appear to offer significant
potential benefit. Note that of the techniques, Online already uses redundancy, isolation,
restart, and pre-deployment and online testing, so Table 10 and Table 11 underestimate
the effectiveness of adding those techniques to a system that does not already use them. 

All of the failure mitigation techniques described in this section have not only benefits
(which we have just analyzed), but also costs. These costs may be financial or technical.
Technical costs may come in the form of a performance degradation (e.g., by increasing
service response time or reducing throughput) or in the potential to actually reduce reli-
ability (if the complexity of the technique means bugs are likely in the technique’s imple-
mentation). We analyze the proposed failure mitigation techniques with respect to their
costs in Table 12. With this cost tradeoff in mind, we observe that two techniques of add-
ing additional redundancy and better exposing failures offer significant “bang for the
buck” in the sense that they would have helped mitigate a relatively large number of fail-
ure scenarios (as indicated in Table 10 and Table 11) while incurring relatively low cost.

4.4 Case studies

In this section we examine in detail a few of the more interesting service failures from
Online.

One interesting case study is “problem #3” from Section 4.5; only one technique we
examined, redundancy, would have mitigated the service failure in that case. In that prob-
lem, an operator at Online accidentally brought down half of the front-end servers using
the same administrative shutdown command issued individually to three of the six servers
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in one of the service groups. Because the service had neither a remote console nor remote
power supply control to those servers, an operator had to physically travel to the coloca-

#
Prob
type

Online
-test Red Online

-flt/ld Config Isol Pre-
flt/ld Restrt Pre-

test-

1 FE-OP X X X

2 FE-OP X

3 FE-OP X

4 FE-OP X

5 BE-OP X X

6 BE-SW X X

7 EXT-
SW

X

8 NET-
HW

X X

9 EXT-OP X

10 FE-SW X X

11 BE-HW X

12 FE-SW X X X X

13 FE-OP X

14 FE-SW X

15 FE-HW X

16 FE-HW X X X

17 FE-SW X

18 NET-
OL

X X X

19 BE-HW X

TOTAL 11 9 3 3 2 2 1 1

Table 10: Potential benefit from using inOnline various proposed techniques for avoiding or mitigating ser-
vice failures.Nineteen problems were examined (rather than sixteen as in Section 4.2) because here we have
also included problems whose sources were external to the services (i.e., due to failure at an Internet site that
Online uses to provide part of its service). “Pre-fault/load” refers to fault injection and load testing prior to
system deployment, while “online fault/load” refers to such testing conducted in a production environment.
Pre-testing and online testing refer to correctness testing before and after component deployment, respec-
tively. Those techniques that Online is already using are indicated in italics; in those cases we evaluate the
benefit from using the technique more extensively. We also use the following abbreviations: FE = front-end,
BE = back-end, EXT = external, NET = network, OP = operator failure, SW = software, HW = hardware,
OL = overload.
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tion site and reboot the machines, leading to 37 minutes during which users in the
affected service group experienced 50% performance degradation when using “stateful”
services. Remote console and remote power supply control are a redundant control path
to the machine, and hence a form of redundancy in the control path of the service. The
lesson to be learned here is that improving the redundancy of a service sometimes cannot
be accomplished by further replicating or partitioning existing data or service code. Some-
times redundancy must come in the form of orthogonal redundancy mechanisms, such as
an alternate path to controlling an existing set of machines.

# problem type exp/mon-TTR exp/mon-TTD

1 FE-OP

2 FE-OP X

3 FE-OP

4 FE-OP X

5 BE-OP

6 BE-SW X X

7 EXT-SW X

8 NET-HW X X

9 EXT-OP X

10 FE-SW X

11 BE-HW

12 FE-SW

13 FE-OP X

14 FE-SW X X

15 FE-HW

16 FE-HW X X

17 FE-SW X X

18 NET-OL

19 BE-HW

TOTAL 8 8

Table 11: How better exposing component failures and better monitoring would have improved
Time to Detection and Time to Repair for nineteen service failures fromOnline. These are the
same problems as in Table 10.
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Another interesting case study is “problem #10,” which provides a good example of a
cascading failure. In that problem a software upgrade to the front-end daemon that han-
dles username and alias lookups for email delivery incorrectly changed the format of the
string used by that daemon to query the back-end database that actually stores usernames
and aliases. The daemon continually retried all lookups, eventually overloading the back-
end database, and thus bringing down all services that use the database. The email servers
became overloaded because they could not perform the necessary username/alias lookups.
The problem was finally fixed by rolling back the software upgrade and rebooting the
database and front-end nodes, thus relieving the database overload problem and prevent-
ing it from recurring. Online testing could have caught this problem, though pre-deploy-
ment testing did not, because the failure scenario was dependent on the interaction
between the new software module and the unchanged back-end database that serves the
module’s requests. 

Isolation in the form of throttling back username/alias lookups when they start failing
repeatedly during a short period of time would have mitigated this failure, by preventing
the database from becoming overloaded and hence unusable for providing services other
than username/alias lookups.

A third interesting case study is “problem #13,” which provides a good example of
how lack of a high-level understanding of how software components interact can lead to
service failure. In that situation, it was noticed that users’ news postings were sometimes
not showing up on the service’s newsgroups. News postings to local moderated news-
groups are received from users by the front-end news daemon, converted to email, and
then sent to a special email server. Delivery of the email on that server triggers execution
of a script that verifies the validity of the user posting the message; if the sender is not a

Technique
Implementation

cost
Potential

reliability cost
Performance

impact

Redundancy low low very low

Isolation moderate low moderate

Restart low low low

Pre-deployment
fault/load test high zero zero

Pre-deployment
correctness testing medium to high zero zero

Online fault/load
testing high high moderate to high

Online correctness
testing medium to high low to moderate low to moderate

Tools for checking
configurations medium zero zero

Better exposing
failures/monitoring medium low (false alarms) low

Table 12: Costs of implementing the failure mitigation techniques described in this section.
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valid Online user, the server silently drops the message. The service operators at some
point had configured that email server not to run the daemon that looks up usernames
and aliases (the same daemon as is described in problem #10 above), so the server was
silently dropping all news-postings-converted-into-email-messages that it was receiving.
The operators accidentally configured that special email server not to run the user-
name/alias lookup daemon because they did not realize that proper operation of that mail
server depended on its running the username/alias lookup daemon. 

The lessons to be learned here are that operators need an understanding of the high-
level dependencies among the software modules that comprise the service, and that soft-
ware should never silently drop messages or other data in response to an error condition.
Online testing would have detected this dependency, while better exposing failures, and
improved techniques for diagnosing failures, would have decreased the amount of time
needed to detect and localize this problem.

Finally, “problem #9“is representative of the occasional failures Online experienced
because of problems with external services. In this case, Online used an external provider
for one of its services3. That external provider made a configuration change to its service
to restrict the IP addresses from which users could connect. In the process, they acciden-
tally blocked clients of Online. This problem was difficult to identify because of a lack of
thorough error reporting in Online’s software and a lack of communication between
Online and the external service when the external service made the change. Online testing
of the security changes would have detected this problem. 

Although problems with external providers were rare during the time period of prob-
lem tickets we examined from Online, this type of problem is likely to become increas-
ingly common as composed network services become more common. Indeed, techniques
that could have prevented several failures described in this section--orthogonal redun-
dancy, isolation, and understanding the high-level dependencies among software mod-
ules--are likely to become more difficult, and yet essential to reliability, in a world of
planetary-scale ecologies of networked services.

Our data argues for the importance of including techniques such as online testing,
exposing and logging of operator actions, thorough reporting of errors, good distributed
diagnosis tools, and communication among service providers. We believe it is important
that APIs for these emerging services allow for easy online testing, automatic propagation
of errors to code modules and/or operators that can handle them, and distributed control-
flow and data-flow tracing to help detecting, diagnosing, and debugging performance,
functionality, and security failures.

4.5 Comments on data collection and analysis

The process of collecting and analyzing failure data from Online, Content, and ReadMostly,
and attempting to collect and/or analyze failure data from a number of other organiza-
tions, has led us to several observations about the data collection and analysis process
itself.

First, our use of operations problem tracking databases may have skewed our results.
At both Online and Content, entries are made in the database both automatically and
manually. A new problem ticket is opened automatically when the monitoring software

3. We do not indicate the nature of the outsourced service because it might help to reveal the actual identity of Online.
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detects a that a monitored component (e.g., a node) is not responding properly. A new
problem ticket is opened manually when an operator detects a problem or is notified of a
problem by a customer. Therefore an operator can “cover up” an error he or she made if it
does not cause a problem that anyone notices. This may happen if the operator fixes the
error before it causes an observable component or service failure, or if the operator makes
the error in the course of fixing another failure but does not cause a different component
or service failure. This imprecision has two important impacts. First, by leaving out oper-
ator failures that are “covered up,” we are underestimating the operator failure percentage
of total component and service failure causes. Second, our observation in Section 4.2.2
that most operator errors were made during the course of normal maintenance (not while
fixing a problem) may simply be because operators were reluctant to record errors they
made, but were able to correct, while fixing a problem.

Second, the contents of most problem reports were useless except for the name of the
component that failed and the human operator narrative log. Both Online and Content
used customized failure tracking databases (based on software by Remedy, Inc.), but vital
fields such as problem type, problem cause, whether the problem affected customers, and
problem duration, were often filled in wrong. We extracted this information by reading
the operator log; because it is timestamped, we could extract problem duration for most
problems.

Third, even if operators were forced to fill in the existing problem type and problem
cause fields correctly, the problem forms used by the problem tracking databases (1) use
nonstandard, and often insufficiently sufficient, categories; and (2) do not allow for mul-
tiple causes of a problem to be expressed. The first problem could be addressed by insti-
tuting a standard taxonomy for problem causes. We used an ad hoc taxonomy in this
section, based on dividing root cause location into front-end, back-end, or network, and
root cause type into the cross-product of <node or network> and <hardware, software,
operator, or unknown>. An additional improvement would be to allow multiple failure
causes to be indicated, with the rule that the components contributing to the failure
(starting with the root cause) be listed in the temporal order in which they contributed to
the problem. This listing of all contributors to a failure would allow a variety of informa-
tion to be computed automatically, such as the frequency and magnitude of cascading fail-
ures, the number of components typically involved in cascades, which types of failures are
most likely to be part of a cascade (and hence suggestions where failure isolation bound-
aries needed to be strengthened), and the like.

Fourth, even if operators were forced to fill in the existing problem duration field
accurately, the services do not measure true customer impact by computing a metric like
customer-minutes [16]. Computing this metric would require knowing the number of
customers who were using the service or the portion of the service that is affected during
the service failure. Alternatively, customer-minutes could be estimated by using historical
data about the number of customers who are generally using the service, or the portion of
the service that is affected, at about the time and day of the week of the failure.

Finally, we note that we used a combination of text files and spreadsheets to record
and tabulate the data presented in this section. This was a mistake--we should have kept
the data in a database of our own. Using text files and spreadsheets, we had to make a new
pass over the entire dataset each time we wanted to try a different categorization of the
data or ask a new “question” about it. The flexible querying enabled by databases would
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have allowed us to avoid numerous passes over the source data. Certainly we now know
what the appropriate database schema would look like for future failure analysis data col-
lection.

4.6 Conclusion
From our examination of the failure data from Online, Content, and ReadMostly, we con-
clude that

• operator error is the leading contributor to user-visible failures;
• operator error is the most difficult type of failure to mask, and generally comes in

the form of configuration mistakes;
• contrary to conventional wisdom, front-end software can be a significant cause of

user-visible failure, primarily due to operator configuration mistakes;
• back-end failures, while infrequent, take longer to repair than do front-end failures;

and
So, as we ask in the title of this report, what can be done to avoid or mitigate failures? 
Clearly, better online testing would have mitigated a large number of system failures

in Online. The kind of online testing that would have helped is fairly high-level tests that
require application semantic information (e.g., posting a news article and checking to see
that it showed up in the newsgroup, or sending email and checking to see that it is
received correctly and in a timely fashion). Unfortunately these kinds of tests are hard to
write and need to be changed every time the service functionality or interface changes.
But, qualitatively we can say that this kind of testing would have helped with the other
services we examined as well, so it seems worth pursuing in real systems.

Online fault injection and load testing would also have been helpful in Online and
other services. This observation goes hand-in-hand with the need for better exposing fail-
ures and monitoring for those failures--online fault injection and load testing are ways to
ensure that component failure monitoring mechanisms are correct and sufficient. Choos-
ing a set of representative faults and error conditions, instrumenting code to inject those
faults and error conditions, and then monitoring for a response, requires potentially even
more work than does online testing. Moreover, online fault injection and load testing
essentially require an isolated subset of the production service to be used, because of the
threat to reliability and performance that they pose if used in the standard production
cluster. But we found that, despite the best intentions, test clusters tend to be set up
slightly differently than the production cluster, so any partitioning mechanism needs to be
extremely transparent, perturbing the configuration of the system being tested as little as
possible.

Despite the huge contribution of operator error to service failures, operator error is
almost completely overlooked in designing high-dependability systems and the tools used
to monitor and control them. This oversight is particularly problematic because as our
data shows, operator error is the most difficult component failure to mask through tradi-
tional redundancy. We found that tools to sanity check configuration files against actual
system configuration and operator intent would have helped to avoid most operators
errors. A high-level specification of operator intent is a form of semantic redundancy, a
technique that is useful for catching errors in other contexts (types in programming lan-
guages, data structure invariants, and so on). Unfortunately there are no widely used
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generic tools to allow an operator to specify in a high-level way how the service’s architec-
ture should appear and how the service it should work functionally, such that the specifi-
cation could be checked against the existing configuration.

An overarching difficulty related to diagnosing and fixing problems relates to problem
solving with multiple entities. Even single-function Internet services like Content and
ReadMostly require coordinated activity by multiple administrative entities for diagnosing
and solving some problems. These entities include the network operations staff of the ser-
vice, the service's software developers, the operators of the collocation facilities that the
service uses, the network providers between the service and its collocation facilities, and
sometimes the customers (in cases where customer problems are escalated to the service's
operations staff). Today, this coordination is almost entirely handled manually, via tele-
phone calls to contacts at the various services. Tools for determining the root cause of
problems across administrative domains are rudimentary, e.g., traceroute, and the tools
generally cannot distinguish between certain types of problems, such as end-host failures
from network problems on the network segment where a node is located. Moreover, tools
for fixing a problem once its source is located are controlled by the administrative entity
that owns the broken hardware or software, not by the site that determines that the prob-
lem exists, and that may be the most affected by it. These problems lead to increased
Mean Time to Repair for problems. 

Clearly, improvements could be made in the area of tools and techniques for problem
diagnosis and repair across administrative boundaries. This issue is likely to become even
more important in the age of composed network services built on top of emerging plat-
forms such as Microsoft's .NET and Sun's SunOne.

Qualitatively we can say that redundancy, isolation through partitioning into stateless
front-ends and stateful back-ends, incremental rollout of code, integrating operations and
development roles, periodic component restart, and offline component testing, are all
important, and already widely-used, techniques for achieving high availability in large-
scale Internet services. We note that the observed need for more redundancy in Online
was more an artifact of Online’s architecture than a valid generalization across multiple
services. In particular, their use of a single back-end database to store information about
customer billing, passwords, and so on, represented a single point of failure that caused
many service failures. Similarly, the use of only six “storefull” machines per service group
frequently led to service failure in the face of correlated failures on a few of those
machines. The other services we examined generally used sufficient redundancy.
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Section 5

Related work

Because large-scale commercial Internet services are a relatively new phenomenon, their
architecture, operational practices, and failure causes are relatively unstudied. Some have
studied or made suggestions for appropriate architectures of such sites [2] [21] but we are
not aware of any studies of operational practices or failure causes.

A number of studies have been published on the causes of failure in various types of
computer systems that are not commonly used for running Internet sites, and in opera-
tional environments unlike those of Internet services. Gray [10] [11] is responsible for the
most widely cited studies of reliable computer system failure data. In 1986 he found that
human error was the largest single cause of failure in deployed Tandem systems, account-
ing for 42% of failures, with software the runner-up at 25%. Somewhat amusingly, we
found almost identical percentages at Online and Content (an average of 39% for node
operator error and 24% for node software). He found hardware to be responsible for 18%
of failures and environmental problems to be responsible for 14%; we found that node
hardware and environmental problems contributed negligibly to failures in Online and
Content, but that networking problems largely replaced those two categories in causing
problems (responsible for about 20% of failures). In 1989, however, he found that soft-
ware had become the major source of outages (55%), swamping the second largest con-
tributor, system operations (15%). He found that hardware and software outages have an
MTTR of 4 hours and operations outages an MTTR of 10 hours, but that these distribu-
tions have very high variance. We are wary to compare the results in Table 7 to our results
because we found hardware TTR was so much smaller than software TTR, and operations
TTR was so widely varying. Finally, Gray also looked at the length of fault chains; though
we did not analyze this quantitatively, he found longer fault chains than we did (Gray
found 20% of fault chains were of length three or more, with only 20% of length one,
whereas we found that almost all chains were of length two (the system was designed to
mask a component failure but some other problem caused it not to) or one (the system
was not designed to mask a particular failure mode).

Kuhn [16] examined two years of data on failures in the Public Switched Telephone
Network as reported to the FCC by telephone companies. He concluded that human
error was responsible for more than 50% of failure incidents, and about 30% (still the
largest single cause of failure) in terms of customer impact (measuring in customer min-
utes, i.e.., number of customers impacted multiplied by number of minutes the failure
lasted). Enriquez [9] extended this study by examining a year’s worth of more recent data
and also considering the blocked calls metric collected on the outage reports. She came to
a similar conclusion--human error was responsible for more than 50% of outages, cus-
tomer-minutes, and blocked calls. 
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Several studies have examined failures in networks of workstations. Thakur et al. [32]
examined failures in a network of 69 SunOS workstations but only divided problem root
cause into network, non-disk machine problems, and disk-related machine problems.
Kalyanakrishnam et al. [15] studied six months of event logs from a LAN of Windows
NT workstations used for mail delivery, to determine the causes of machines rebooting.
They found that most problems are software-related, and that average downtime is two
hours. They used a state machine model of system failure states similar in spirit to, though
more detailed than, our Figure 9 to describe failure timelines on a single node. In a closely
related study, Xu et al. [34] studied a network of Windows NT workstations used for
24x7 enterprise infrastructure services, again by studying the Windows NT event log
entries related to system reboots. Unlike the Thakur or Kalyanakrishnam studies, this one
allowed operators to annotate the event log to indicate the reason for reboot; thus the
authors were able to draw conclusions about the contribution of operator failure to system
outages. They found that planned maintenance and software installation and configura-
tion caused the largest number of outages (18% and 8%, respectively), and that system
software and planned maintenance caused the largest amount of total downtime (22%
and 13%, respectively). They were unable to classify a large percentage of the problems
(58%). We note that they counted reboots after installation or patching of software as a
“failure.” Their software installation/configuration category therefore is not comparable to
our operator failure category, despite its being named somewhat similarly.

A number of researchers have examined the causes of failures in enterprise-class server
environments. Sullivan and Chillarege [28] [29] examined software defects in MVS, DB2,
and IMS. Tang and Iyer [31] did the same for the VAX/VMS operating system in two
VAXclusters. Lee and Iyer [18] categorized software faults in the Tandem GUARDIAN
operating system. Murphy and Gent [23] examined causes of system crashes in VAX sys-
tems between 1985 and 1993; in 1993 they found that hardware was responsible for
about 10% of failures, software for about 20% of failures, and system management for a
bit over 50% of failures. Lancaster and Rowe [17] recently examined NFS data availability
in Network Appliance’s NetApp filers. They found that power failures and software fail-
ures were the largest contributors to downtime, with operator failures contributing negli-
gibly.

Finally, there is a large body of existing work in the areas of system monitoring, diag-
nosis, and configuration. SNMP is the most commonly used protocol for remote moni-
toring of networked devices [6]. A number of free and commercial products use SNMP
alerts as the basis of their monitoring systems; examples include Netcool [20], OpenView
[12], and various offerings from Tivoli [14]. 

True root cause analysis and problem diagnosis are significantly more complicated
than simple monitoring. Among the most sophisticated systems recently developed is the
auto-diagnosis subsystem that comprises part of Network Appliance’s Data ONTAP oper-
ating system [1]. It combines continuous monitoring, protocol augmentation, cross-layer
analysis, active probing, and automatic configuration change tracking to detect and local-
ize hardware and software problems in NetApp fileservers.

Tools for automating the configuration of computer systems date back at least to the
early 1980’s, with McDermott’s R1, which was used to suggest how to physically config-
ure VAX 11/780 systems given a customer’s order [19]. Recent tools for deploying and
configuring software include Sun’s JumpStart [30] and Burgess’s Cfengine [5]. 
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Section 6

Conclusion and future work

We have studied the architecture, operational practices, and failure data of three large-
scale Internet services. Despite differences in number of users, number of machines, and
workload, these service, and others we surveyed but did not describe in this report, share a
number of similarities with respect to their node, site, and geographic structure and build-
ing blocks, as well as many of their operational practices. From a study of approximately
200 component failures and approximately 60 user-visible service failures, we draw con-
clusions about failure distribution across parts of the service, the primary contributors to
failure and their associated Times to Repair, and the effectiveness of redundancy tech-
niques at preventing component failure from turning into service-level failure. Finally, we
describe a “thought experiment” in which we explore how various failure mitigation tech-
niques might have prevented component faults from occurring, component faults from
turning into component failures, component failures from turning into service failures,
and might have reduced time to detect and time to repair failures.

This work suggests a number of future directions, in the areas of both failure data col-
lection and analysis, and benchmarking.

6.1 Future directions for failure data collection and analysis

There are a number of avenues for expanding the data collection and analysis work
described in this paper. First, it would be interesting to examine data from a broader spec-
trum of services, particularly over a range of service type (e.g., including e-commerce, an
important category of service that we did not examine in this study), maturity, rate of
change, architecture, and operational practices. In doing so, one could attempt to corre-
late some of these service characteristics to overall service dependability. Also, more ser-
vices means more data, which would increase the statistical validity of our results.

Second, it would be interesting to collect more data from the three services we have
already examined, both to increase the statistical significance of the data, and as part of a
longitudinal study of one or more services. A longitudinal study might address questions
such as whether a service becomes more reliable over time (because software quality
improves, operators learn from their mistakes, etc.). While Online and ReadMostly are rela-
tively mature services, Content would be an excellent candidate for such a study, because it
did mature in both software and operational practices over the time period of the dataset
to which we have access (although not the single month we examined in this study). Also,
with more data (from the services we have already examined or from new ones) we would
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be able to examine the role of failure propagation in causing service failures, something we
were not able to do because there simply were not enough problem reports that actually
involved multiple component failures leading to a larger failure. It would be interesting to
see what components are most often involved in such cascading failure scenarios, to
inform the implementation of better isolation boundaries or to otherwise decorrelate cor-
related failures.

A third avenue for expanding the work described in this paper is to broaden the range
of quantitative metrics we are collecting. Among the possibilities are

• the time between the events of fault occurrence, component failure, service failure
(or masking of the component failure), problem detection, service recovery (i.e.,
original pre-failure service QoS restored), service restored to being fully redundant,
and fixing the original flaw (by repairing a software bug, fixing a maintenance pro-
cess, and the like)

• metrics that take into account the number of customers impacted, e.g., “customer-
minutes” or an Internet service analog of “blocked calls,” both of which are used to
characterize failures in the Public Switched Telephone Network [16]

• instead of treating service failure impact as binary (either a failure was severe enough
to be considered a service failure or it was not), metrics that take into account the
type and degree of Quality of Service degradation, e.g., the fraction of the service
that is unavailable or the percent reduction in service response time or throughput

• metrics that take into account revenue lost to the service itself and/or its customers,
as well as the cost of repairing failures

• metrics internal to the service, as opposed to purely user-visible ones (e.g., number
of false alarms relative to true alarms)

• number of operators needed to repair different types of problems
• number of components involved in cascading failure scenarios
• number of problems that are automatically repaired (e.g., a RAID system recon-

structing onto a spare disk) as opposed to simple masked through redundancy
Fourth, it would be useful to investigate additional qualitative information related to

problems, possibly leading to additional taxonomies for classifying them. We have implic-
itly used two taxonomies in this study to describe root cause: “location” of the failure
(front-end, back-end, network) and “type” of the failure (the two-dimensional cross prod-
uct of <node, network> x <hardware, software, operator, overload/disk full, unknown>).
But there are other ways to classify failures. For example, one could look at the scope of
the impact--a single component, a node, a rack of servers, a datacenter, or the entire ser-
vice. Or, one could try to trace problems back to the fault rather than just the type of
component failure, and then describe the fault using a taxonomy like that in [25] (e.g.,
physical vs. logical, manufacturing vs. design vs. operation, and so on). Additional inter-
esting attributes for partitioning problems include whether the fault originated in the ser-
vice or with a vendor, whether a particular failure mode was anticipated or not, and what
the exact causes of operator errors were (configuration vs. procedural, initial deployment
vs. routine maintenance vs. responding to an existing problem, and so on). Finally, it
would be interesting to classify problems according to what actions the services took in
response to the problems (e.g., using a short-term fix versus fixing the root cause); what
type of fix, if any, was used (software vs. process vs. architectural), and whether the fix pre-
vented the problem from recurring.
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Fifth, it would be interesting to correlate the failures we observed to actual changes in
Quality of Service as observed by end-users (or simulated end-users, e.g., using a globally
distributed testing service such as Keynote). As noted in Section 4.1, the study we con-
ducted looked at failures only from a vantage point within the service; we did not actually
verify our intuition about which component failures had “significant” end-user visible
impacts (in degradation of performance or service functionality or fidelity) and which
were truly masked by redundancy.

Sixth, it would be interesting to examine the potential benefit of other failure mitiga-
tion techniques that have been proposed, including improvements in operations pro-
cesses, and to investigate ways to quantify the benefits of potential mitigation techniques.

We have only begun to explore the potential value of mining failure data. Only by
allowing many researchers to access failure datasets can the full potential of this data be
explored. Our experience was that companies are extremely reluctant to release this data,
especially for examination off-site, out of concern for their own privacy and that of ven-
dors and customers who may be mentioned in problem reports. The solution to this prob-
lem is to develop a standard for anonymizing failure data. Such a system requires a
standard schema for problem reports, including a taxonomy of underlying fault causes
and failed component locations and types. Of course, the accuracy of such a dataset
hinges on operators’ filling out the multiple-choice part of problem report forms much
more accurately than they did at the two services we examined that use problem tracking
databases. Alternatively, a human researcher could read the operator narratives from the
problem reports, ignoring the fields that we found were often filled out incorrectly, such
as root cause, whether customers were affected, problem duration, and so on, and coerce
this data into a standard format. Either way, such data then could be put into a database
accessible by researchers either for downloading or through interactive querying via the
web. We believe that this dataset would be of similar value as existing datasets of CPU
instruction traces in the architecture community, network intrusion traces in the security
community, and SQL workloads in the database community. Of course, one common use
of such datasets is benchmarking (new CPU and system architecture designs, new intru-
sion detection techniques, and new database architectures and implementations, in the
previous examples), so we next discuss how the data we have collected could be used to
drive dependability and recoverability benchmarks.

6.2 Making use of failure data: benchmarks

In this report we have examined failure data to learn why systems fail. In addition to
studying this data to point to how individual services and services as a whole can improve
their dependability, we can use the data to drive service-level dependability or recovery
benchmarks akin to the availability benchmarks described in [4]. Such benchmarks
require a faultload, and the data we have collected, including that related to relatively
under-studied failure causes such as those induced by humans and those occurring in net-
works among geographically distributed sites, could be turned into a stochastic fault
model to drive dependability or recoverability benchmarks. Non-binary Quality of Service
metrics such as throughput, fraction of service functionality available, response time,
financial cost of unavailability, and the like could be used to measure the impact of failures
and subsequent recovery (be it automatic or human-controlled) while a workload is pre-
sented the system.
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To perform a recoverability benchmark, the data presented in this report, perhaps aug-
mented with data from other services, could be used to establish the set of component
failures that services experience. The simplest way to evaluate a service is to inject each of
the component failure modes we have observed (including operator failures) one at a time
and to measure the service’s Quality of Service response. The Quality of Service decrease
while the service is affected is an inverse measure of its “recoverability.” These responses to
component failures can be reported individually, to indicate how a service could improve
its recoverability. A somewhat more sophisticated evaluation would weight the responses
to these individual recovery events by the relative frequency with which the different
classes of failures occur in the service being benchmarked, to indicate an aggregate mea-
sure of the service’s recoverability. Finally, one could test multi-failure scenarios, as
described in [4], to test system response to cascading failures and human repair activity
following an initial failure.

Benchmarking dependability is similar to benchmarking recoverability, but it requires
information about the absolute frequency with which the failures occur. In other words,
for dependability benchmarks, we need to know the MTTF for each component that will
fail, whereas a service’s “recoverability” depends only on the mix of component failures it
is likely to experience. The recoverability benchmark described above can be turned into a
dependability benchmark by weighting the QoS responses to the recovery events by the
frequencies of the component failures computed from their MTTF.

We must also address the issue of what workload should be presented to the system
while it is being benchmarked. In this respect, Internet service benchmarks are more diffi-
cult to design than are benchmarks for traditional applications, e.g., SPECweb and SPEC-
mail [27], because for Internet services the workload is very site-specific. Among existing
benchmarks, TPC-W [33] comes closest to approximating what the workload for an
Internet service benchmark might look like, in the sense that it specifies a mixture of high-
level user tasks rather than a protocol-level workload (as in SPECweb and SPECmail). It
may be possible to formulate a taxonomy of Internet service functionality (email, news,
instant messenger, web search, retrieving static web content, auctions, traditional web-
based product ordering, and so on), and then to develop an application-level workload
similar to TPC-W’s but targeted to each of these services. Then, an Internet service could
be benchmarked for the particular mixture of services it provides.

Note that not only user activities, but also operator activities, are a vital component of
a service-level benchmark workload. Because Internet services operate 24x7, administra-
tive tasks such as preventative hardware maintenance, software upgrades, scaling, rebal-
ancing data across back-end machines, and the like should be considered a standard part
of the workload. The data we collected for this report did not include routine administra-
tive tasks (except when they resulted in a component or service failure), but one could ask
the administrators of these or similar services to record their daily activities over a period
of several months. This data could then be used to build a stochastic model of operator
activities (similar to the stochastic failure model described above and the stochastic work-
load mixture utilized in TPC-W) to be used as part of the service workload.

Finally, one can imagine developing languages to specify user dependability require-
ments and failure models of system components (hardware, software, networking, and
human operators) so that tools can be developed (1) to match user performance and
dependability requirements to system capabilities, and (2) to automate benchmark gener-
ation and the fault injection process.
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