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Abstract

We propose the Robust Overlay Architecture for Mobility
(ROAM) to provide seamless mobility for Internet hosts.
This architecture uses an indirection infrastructure that pro-
vides a rendezvous communication abstraction: instead of
explicitly sending packets to a destination address, packets
are sent to an identifier. A receiver who wishes to receive
those packets uses the indirection infrastructure to associate
its address with the identifier.

ROAM allows end-hosts to avoid the inefficiency of triangle
routing by choosing nearby indirection points, and it is as
robust as the underlying IP network to node failure. In ad-
dition, it preserves location privacy and allows end hosts to
move simultaneously. We have developed a user-level pro-
totype system on Linux that provides transparent mobility
without modifying applications or the TCP/IP protocol stack.
We also present both simulation and experimental results.

1 Introduction

While the wired Internet reaches many homes and busi-
nesses, the wireless Internet has the potential to not just
reach, but encompass all the spaces that people use to
live, work, and travel. Wireless data services (e.g., 802.11b,
GPRS, 3G cellular) with differing bandwidth, latency, cost,
and coverage will soon provide the potential for seamless,
though heterogeneous, coverage. Users will also use wire-
less connectivity differently. Applications that are easier to
use while mobile (e.g., IP telephony, instant messaging, and
audio streaming) will be as popular as email and web brows-
ing. In this environment, people will want both seamless con-
nectivity (flows uninterrupted by mobility) and continuous
reachability (the ability of other hosts to contact the user’s
host despite mobility).

Unfortunately, the standard Internet cannot provide these ser-
vices. The fundamental problem is that the Internet uses IP
addresses to combine the notion of unique host identifier
with location in the network topology. For a mobile host
to have seamless connectivity and continuous reachability,
it must retain its identifier while changing its location. Previ-
ous mobility proposals decouple this binding by introducing
a fixed indirection point (e.g., Mobile IP [20]), redirecting

through the Domain Name System (e.g., TCP Migrate [24]),
or using indirection at the link layer (e.g., cellular mobility
schemes).

However, these proposals lack one or more of the following
properties that are highly desirable in the environment de-
scribed above:

� Efficient routing depends on routing packets on paths
with latency close to the shortest path provided by IP
routing. This is important for delay sensitive applica-
tions like IP telephony.

� Fault tolerance requires surviving the failure or over-
load of hosts and links. Communication between mo-
bile hosts should not be more vulnerable to faults than
communication between stationary hosts.

� Preservation of location privacy requires minimizing
the number of hosts trusted with knowing the mobile
host’s network topological location, assuming it corre-
lates with geographical location. Mobile users will usu-
ally not be anonymous with respect to their correspon-
dent user when using applications like IP telephony and
therefore may not wish to expose their geographic loca-
tion.

� Simultaneous mobility is the simultaneous movement
of both end points during or immediately prior to a
session. For person-to-person applications like IP tele-
phony, this is likely to happen at least occasionally.

� Link layer independenceallows operation across het-
erogeneous link layer technologies, not all of which
support the same link layer mobility scheme (e.g., GSM
mobility).

� Personal/session mobilityallows a user to redirect a
new session or migrate an active one from one applica-
tion or device to another when a better choice becomes
available [1] [16] [30]. Applications or devices may fail
(e.g., a cell phone may have poor coverage indoors) or a
better performance/price option may become available
(e.g., video conferencing on a laptop connected to a free
11Mb/s 802.11b network is preferable to a cell phone
connected to a 128Kb/s GPRS network).
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To provide these properties, we propose the Robust Over-
lay Architecture for Mobility (ROAM). Our approach is to
use the Internet Indirection Infrastructure (i3) [27]. i3 is im-
plemented as an overlay network on top of the existing IP
network, and provides arendezvous-based communication
abstraction. Ini3, each packet is sent to an identifier. To re-
ceive a packet, a receiver inserts a trigger, which is an as-
sociation between the packet’s identifier and the receiver’s
address. The trigger is stored at a server in thei3 overlay net-
work. Each packet is routed through the overlay network un-
til it reaches thei3 server which stores the trigger. Once the
matching trigger is found the packet is forwarded to the ad-
dress specified by the trigger. Thus, the trigger plays the role
of an indirectionpoint that relays packets from the sender to
the receiver.

ROAM addresses each of the properties described above. To
provide efficient routing, receivers can choose trigger identi-
fiers that map to nearby servers. Senders can avoid the over-
head of overlay network routing by caching the addresses
of trigger servers. Because the overlay network is inherently
robust against failures,i3 preserves connectivity in the pres-
ence of multiple overlay node failures. Our solution achieves
location privacy because it provides end host identifiers in-
dependent of end hosts’ network attachment points, which
reveal location. Only knowledge of the the trigger identifier
is required to communicate. ROAM provides simultaneous
mobility because thei3 network serves as an anchor point
for the two communication end points. Unlike GSM mobil-
ity, ROAM is not specific to a particular network technology
and allows roaming to any network that delivers IP pack-
ets. Since ani3 identifier can be bound to a host, session, or
person (unlike Mobile IP, where an IP address can only be
bound to a host), personal/session mobility applications can
leverage the ROAM infrastructure for efficiency, fault toler-
ance, and privacy. Leveraging a single ROAM infrastructure
across link layer technologies and mobility models (network
vs. personal/session) significantly reduces the total cost of
deployment.

This paper makes several contributions. First, it demonstrates
the natural fit between a rendezvous-based communication
abstraction and mobility. Second, it demonstrates the bene-
fits of a mobility architecture based on a shared overlay net-
work. Such a solution leverages the robustness and efficient
routing of overlay networks. Finally, it proposes an efficient
and robust IP mobility solution that does not require changes
of either the applications running on mobile hosts or the op-
erating system.

We simulate ROAM and Mobile IP using a variety of net-
work topologies, host mobility models, and communication
models. We show that as the number of servers increases
in a transit-stub network, ROAM’s latency decreases until
it reaches 0.25-40% that of Mobile IP, depending on the mo-
bility and communication model. In addition, ROAM is as

robust to fail-stop faults as the underlying IP network, while
Mobile IP fails to provide connectivity to 50% of communi-
cation pairs when only 15% of network nodes fail.

We use a proxy based solution to transparently support un-
modified applications on an unmodified Linux kernel. Using
our prototype implementation, we show that our solution can
perform rapid soft handoffs with no noticeable disruption of
TCP throughput.

The paper is organized as follows. We review related work
in Section 2, and provide an overview ofi3 in Section 3.
In Section 4 we discuss the design of our ROAM solution,
and in Section 5 we present some implementation details. In
Section 6 we present the results of our simulation and imple-
mentation performance experiments to evaluate ROAM. We
discuss some open issues in Section 7, and conclude with a
summary in Section 8.

2 Related Work

In this section we review the main mobility proposals.

Several link layer technologies provide mobility at the link
layer (e.g., as in Ricochet [22], 802.11b, or GSM). However,
these solutions preclude mobility across link layer technolo-
gies. In addition, hiding mobility at the link layer results in a
reinvention of mobility support in each new wireless system;
solving the mobility problem at the network layer results in
a reusable mobility infrastructure for all link technologies.

One proposal to achieve mobility in the Internet is Mobile IP
(MIP). MIP in IPv4 [20] and IPv6 [13] uses an explicit in-
direction point, called the Home Agent (HA), to encapsulate
and relay the Correspondent Host’s (CH) initial packet to the
mobile host (MH). MIP provides the following options that
determine how the following packets are routed: 1) triangle
routing, 2) bidirectional tunneling, and 3) route optimization.

As noted by Cheshire and Baker [5] no MIP routing option
is clearly better than the others; instead, different options are
suitable for different circumstances. Options (1) and (2) pre-
serve location privacy, but routing can be inefficient when
the MH and CH are close relative to their distance from the
HA. With route optimization (an extension in MIPv4 [21],
but standard in MIPv6), the MH conveys its care-of IP ad-
dress to the CH using a Binding Update (BU). Routing is ef-
ficient because the ratio of the latency of the optimized route
to the latency of the shortest IP path (orstretch) is 1.0. How-
ever, the CH must be modified to support MIPv4 with route
optimization or IPv6. This also exposes the MH’s current
care-of address (and therefore its location) to the CH, thus
compromising location privacy. In certain delay-sensitive or
real-time applications, the latency involved in handoffs can
be above the threshold if the MH is far away from the CH.

In general, the dependence in MIP on a fixed HA reduces
fault tolerance. If the HA or its network fails or is overloaded,
then the MH will be unreachable.
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In order to address routing anomalies and robustness issues
associated with a fixed HA, researchers are starting to pro-
pose the notion of dynamic home agents in MIPv4 [4]. How-
ever, the actual algorithm used to discover and allocate a
nearby home agent is still under investigation. MIPv6 pro-
vides adynamic home agent address discoverymechanism
[13] that allows a MH to dynamically discover the IP address
of a HA on its home network. This scheme increases the ro-
bustness of MIPv6 as the HA is no longer a statically fixed
entity, but it does not address routing inefficiencies caused
by routing through the HA when the MH is far away from its
home network.

Supporting Mobility for TCP with SIP [29] spoofs constant
TCP endpoints in a similar way to MIP with route optimiza-
tion. Realization of this requires modifying the IP stack of
the CH.

The Mobility Support using Multicasting in IP (MSM-IP)
architecture [17, 18] implements mobility using IP Multicast
[7]. The main advantages of MSM-IP are that it can have
low routing stretch and do handoffs with little or no packet
loss. Several studies [18] [11] [12] have shown that multicast
mobility can cut the routing stretch of Mobile IP in half and
significantly reduce packet loss due to handoffs. However,
the MSM-IP location service is a single point of failure and
is vulnerable to overload, network faults, and host faults.

In TCP Migrate [24], both the MH and CH use a modified
form of TCP which can tolerate a change in IP address during
a connection. The CH uses DNS to learn the current address
of the MH, who updates DNS every time it moves. Since
TCP Migrate does not use an indirection point, it can achieve
an optimal latency stretch of 1.0 and is as fault tolerant as
IP routing. On the downside, it lacks simultaneous mobility
support, requires modification of the TCP implementations
on both the MH and the CH, and does not preserve location
privacy. TCP Migrate is well suited for person-to-server ap-
plications with short-lived flows like email and web brows-
ing.

The mobility schemes previously described in this section
track mobile hosts. In contrast, personal and session mobility
schemes (e.g., The Mobile People Architecture (MPA) [16]
ICEBERG [30], and Telephony Over Packet networkS [1])
track people or sessions. This allows redirection of new ses-
sions or migration of active sessions to a completely differ-
ent application or device according to user connectivity (e.g.,
which devices are currently accessible to the user) and user
preferences (e.g., less expensive or higher performance). In
contrast, Mobile IP redirects flows to the same device regard-
less of whether the user can actually use the device (e.g.,
the user may have left it somewhere or it may not have
power or connectivity). The costs of personal/session mobil-
ity schemes are modifications to applications (unlike Mobile
IP) and an indirection infrastructure (e.g., the Personal Proxy
in MPA).

i3’s Application Programming Interface (API)
sendPacket(p) send packet
insertTrigger(t) insert trigger
removeTrigger(t) remove trigger

(a)
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sender (S)

receiver (R)
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sender (S)

receiver (R)

(id, data)
(R, data)

(c)

Figure 1:(a) i3’s API. Example illustrating communication be-
tween two nodes: (b) The receiverR inserts trigger(id; R). (c) The
sender sends packet(id; data).

In contrast to all of the above schemes, the novelty of our
approach is the use of an overlay infrastructure that supports
a rendezvous-based communication abstraction. As a result,
ROAM is able to achieve efficiency, robustness, location pri-
vacy, and simultaneous mobility. In addition, the flexibility
of i3 identifiers allows ROAM to support mobility at any
layer. i3 identifiers can be bound to hosts (the focus of our
design in Section 4, as in Mobile IP, so ROAM can support
mobility without modifications to applications.i3 identifiers
can also be bound to sessions and people (discussed briefly
in Section 7), as in ICEBERG and the Mobile People Archi-
tecture, thus serving as an enhanced infrastructure for per-
sonal/session mobility-aware applications.

The cost of using ROAM is the deployment ofi3 servers
in the Internet and ROAM proxies on both the mobile and
correspondent hosts. We quantify the trade off between in-
frastructure deployment and routing efficiency in Section 6
and describe operation without the CH’s proxy in Section 7.

3 Background

In this section we present a brief overview of an Internet in-
direction infrastructure,i3 [27], which forms the foundation
for our mobility solution. The purpose ofi3 is to provide in-
direction; that is, it decouples the act of sending from the act
of receiving. Thei3 service model is simple: sources send
packets to a logicalidentifier, and receivers express interest
in packets sent to an identifier. Delivery is best-effort like in
today’s Internet, with no guarantees about packet delivery.
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3.1 Rendezvous-based Communication

The service model is instantiated as a rendezvous-based
communication abstraction. In their simplest form, pack-
ets are pairs(id; data) whereid is anm-bit identifier1 and
data is the payload (typically a normal IP packet payload).
Receivers usetriggers to indicate their interest in packets.
In their simplest form, triggers are pairs(id; addr), where
id is the trigger identifier, andaddr is a node’s address,
consisting of an IP address and UDP port number. A trig-
ger (id; addr) indicates that all packets sent to identifier
id should be forwarded (at the IP layer) by thei3 infras-
tructure to the node with addressaddr. More specifically,
the rendezvous-based communication abstraction exports the
three primitives shown in Figure 1(a).

Figure 1(b) illustrates the communication between two
nodes, where receiverR wants to receive packets sent to
id. The receiver inserts the trigger(id; R) into the network.
When a packet is sent to identifierid, the trigger causes it to
be forwarded via IP toR.

The above description was of the simplest form of the ab-
straction.i3 also provides a generalization that allows inex-
act matching between identifiers. We assume identifiers are
m bits and that there is someexact-match thresholdk with
k < m. Thus, a trigger identifieridt matches a packet identi-
fier id if and only if idt is a longest prefix match (among all
other trigger identifiers) and this prefix match is at least as
long as the exact-match thresholdk. The valuek is chosen
to be large enough so that the probability that two randomly
chosen identifiers match is negligible.2

Thus, as in IP multicast, the identifierid represents a logical
rendezvous between the sender’s packets and the receiver’s
trigger. This level of indirection decouples the sender from
the receiver and enables them to be oblivious to the other’s
location. However, unlike IP multicast, hosts ini3 are free
to place their triggers. This can alleviate the triangle rout-
ing problem in Mobile IP. In addition,i3 can be generalized
to support multicast, anycast, and service composition. For
more details refer to [27].

3.2 i3 Implementation

i3 is implemented as an overlay network which consists of a
set of servers that store triggers and forward packets (using
IP) betweeni3 nodes and to end hosts.

To maintain this overlay network and to route packets ini3,
we use the Chord lookup protocol [6]. Chord assumes a cir-

1In the implementation presented in this paper, we usem =
256. Such a large value ofm allows end hosts to choose trigger
identifiers independently since the chance of collision is minimal.
In addition, a largem makes it very hard for an attacker to guess a
particular trigger identifier.

2In our implementation we choosem = 256 andk = 128, and
triggers with the same k-bit prefix are stored on the samei3 server.

cular identifier space of integers[0; 2m), where0 follows
2m�1. Everyi3 server has an identifier in this space, and all
trigger identifiers belong to the same identifier space. Thei3
server with identifiern is responsible for all identifiers in the
interval(np; n], wherenp is the identifier of the node preced-
ing n on the identifier circle. Figure 2(a) shows an identifier
circle form = 6. There are fivei3 servers in the system with
identifiers 5, 16, 24, 36, and 50, respectively. All identifiers
in the range (5, 16] are mapped on server 16, identifiers in
(17, 24] are mapped on server 24, and so on.

When a trigger(id; addr) is inserted, it is stored on thei3
node responsible forid. When a packet is sent toid it is
routed byi3 to the node responsible for itsid; there it is
matched against (any) triggers for thatid and forwarded (us-
ing IP) to all hosts interested in packets sent to that identi-
fier. Chord ensures that the server responsible for a identifier
is found after visiting at mostO(logn) otheri3 servers ir-
respective of the starting server (n represents the total num-
ber of servers in the system). To achieve this, Chord requires
each node to maintain onlyO(logn) routing state. Chord al-
lows servers to leave and join dynamically, and it is highly
robust against failures. For more details refer to [6]. Fig-
ure 2(b) shows an example in which trigger(30; R) is in-
serted at node 36 (i.e., the node that maps(24; 36], and thus is
responsible for identifier 30). Packet(30; data) is forwarded
to server 30, matched against trigger(30; R), and then for-
warded via IP toR.

Note that packets are not stored ini3; they are only for-
warded. End hosts use periodic refreshing to maintain their
triggers ini3. Hosts need only know onei3 node to use the
i3 infrastructure. This can be done through a static config-
uration file, or by a DNS lookup assumingi3 is associated
with a DNS domain name. In Figure 2(b), the sender knows
only server 16, and the receiver knows only server 5.

4 ROAM Design

In this section, we describe ROAM, which provides an end-
to-end architecture for Internet host mobility using thei3
network as a level of indirection.

Achieving host mobility on top of the basici3 architecture
is straightforward. A mobile host that changes its address
from R to R0 as a result of moving from one subnetwork
to another can preserve end-to-end connectivity by simply
updating each of its existing triggers from(id; R) to (id; R0),
as shown in Figure 3. ROAM exhibits the following desirable
properties:

Efficiency:

� Efficient routing: By caching trigger server addresses
and carefully selecting low latency trigger servers as
described below, we can reduce the stretch from using
ROAM to below 1.5 (see Section 6.1).
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Figure 2:(a) A Chord identifier circle form = 6, with 5 servers identified by 5, 16, 24, 36, and 50, respectively. Each server is responsible
for all identifiers between its identifier and the identifier of the node that precedes it on the circle. (b) Receiver R inserts trigger(30; R), and
the trigger is forwarded viai3 to server 36 which is responsible for identifier 30. The trigger is stored there (shown in the white box) until
explicitly removed or timed out. When sender S sends packet(30; data), it is also forwarded viai3 to server 36. Servers identifiers are in
bold. The interval of identifiers for which each server is responsible are also shown.
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Figure 3:Upon changing its address fromR toR0, a receiver needs
only to update its trigger. This change is transparent to the sender.
Also, any change of the sender’s location is transparent to the re-
ceiver.

� Fast handoff: Since the MH sends trigger updates to
its nearby trigger server, it can perform lower latency
handoffs than mobility systems such as Mobile IP or
TCP Migrate.

Robustness:

� Infrastructure: Since triggers are periodically re-
freshed, ROAM recovers gracefully from server failure.
If a server fails, the triggers stored at that server are in-
serted at another server the next time they are refreshed.
To makei3 server failure completely transparent to end-
hosts, one possibility is to havei3 replicate triggers. For
more details refer to [27].

� Multicast-based soft handoff:A MH can set triggers
pointing to two network addresses that it may have ac-
cess to during handoff, and usei3 multicast to receive

packets on both addresses, thereby eliminating packet
loss.

Privacy:

� Location privacy: The sending host need not be aware
of the MH’s current IP address, thus preserving loca-
tion privacy. Since two hosts need only know the other’s
trigger to communicate, and triggers can be chosen to
not reveal any location information, the exact location
of the end hosts can be completely hidden.3

� Restricted eavesdropping:By using both public and
private triggers (described in Section 4.4), we can limit
the possibility for eavesdropping in ROAM to the same
as in the Internet.

Simultaneous mobility: The sending and receiving hosts
can move simultaneously while thei3 network serves as an
anchor point for the two sides of the communication channel.

In the following sections, we describe efficient routing, fast
handoff, multicast-based soft handoff, and restricted eaves-
dropping in more detail. We then discuss how ROAM sup-
ports native and legacy applications.

4.1 Efficient Routing

Although the Chord lookup protocol limits the number of
hops traversed in thei3 overlay network toO(logn), the de-
lay on each hop may be comparable or even larger than the IP
shortest path between the MH and the CH. This can result in
unacceptably high delay. We reduce this delay by using the
following techniques: 1) end hosts cache the mapping from
triggers toi3 server IP addresses, 2) end hosts sample the de-
lay to randomi3 servers to find a close one, and 3) a mobile

3However, choosing a trigger that is far away may have a nega-
tive impact on routing efficiency.
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host (MH) usesmobility-awarecaching of past close triggers
to increase the effectiveness and lower the cost of sampling.

4.1.1 Caching the Trigger-to-Address Mapping

Although an end host must traverseO(log n) hops initially
to lookup a trigger, it can then cache the mapping of that trig-
ger to the IP address of thei3 server which stores that trig-
ger. As long as that server continues to store that trigger, the
end host can then send trigger refreshes and packets with the
same identifiers directly to that server. For example, in Fig-
ure 2, both the sender (S) and the receiver (R) would cache
server 36. Since the trigger can be reused across flows and
applications, theO(logn) traversal only needs to be done
wheni3 servers fail or when using a trigger for the first time
(e.g. when sampling the delay for new triggers as described
below).

4.1.2 Sampling

While the above scheme ensures that subsequent packets will
only have to traverse one hop in the overlay network, the
delay can still be large if thei3 server storing the match-
ing trigger is far from both end-hosts. To address this, after
moving to a new location, an end host picks triggers with
random identifiers and then measures the round trip delay to
the servers that store those triggers. The end host then sim-
ply uses the trigger with the lowest delay. The total amount
of data required for setting a trigger, acknowledging the set-
ting of a trigger, sending an empty packet to a trigger, and
receiving that empty packet is an average of 4 * 45.8 bytes
* 8 bits/byte = 1466 bits (assuming header compression, see
Section 7). Even for a system with16;384 i3 servers, only
32 samples results in a 90th percentile latency stretch of 1.5
[27]. A MH taking 32 samples at a rate of once per sec-
ond uses 1.466 Kb/s of bandwidth for 32 seconds after each
move. This probing can occur in parallel with the MH’s other
communication because end-hosts can dynamically change
triggers without disrupting end-to-end connectivity.

4.1.3 Mobility-Aware Trigger Caching

We can further optimize routing by usingmobility-aware
caching of past close triggers to increase the effective-
ness and lower the cost of the sampling. An alternative to
mobility-aware caching would be to increase the number
of samples taken, which would further reduce the stretch.
However, this would also increase the overhead. Instead, by
caching past close triggers which are likely to be close again,
we gain the benefit of having sampled more triggers without
the cost.

We assume that mobile hosts are likely to move in a pattern
where most moves are short (in geographic distance and net-
work latency), but some moves are very far [28]. This pattern
corresponds to a person who drives around a metropolitan

area which is a few 10’s of miles in diameter, but occasion-
ally flies hundreds or thousands of miles to another location.

We cache sampled triggers to take advantage of this pattern.
The goal is to create diversity in the cache so that a trigger in
the cache is near each of the remote locations that a mobile
host visits (perhaps infrequently), while preventing the fre-
quent local moves from polluting the cache. When the mo-
bile host changes its network address, it randomly samplesi3
servers as described above, caches the result, and measures
the delay to every trigger in the cache. When the cache is
full, and the new sample is closer than any in the cache, then
we must select a cache entry to evict. If the new sample is
much closer than the next closest cache entry (e.g., the new
sample’s latency is less than 50% of the latency of lowest
latency cache entry), then we replace the least recently used
trigger in the cache. That the new sample is much closer than
the next closest sample indicates that the mobile host is prob-
ably at a location that is far from any it has visited before, so
we evict the entry we are least likely to use again. If instead
the new sample is not much closer than the next closest entry
in the cache is (e.g. the new sample’s latency is 50%-100%
of the latency of the next closest cached trigger), then we re-
place that entry with the new sample. This indicates that the
mobile host is relatively close to a recently visited location,
and the new sample is a better server for that location.

Using the mobility aware caching algorithm, a mobile host
taking 32 samples for each move, caching 10 entries, and
using a 50% threshold as described above reduces the latency
stretch to nearly 1.0 for a sufficient number ofi3 servers (see
Section 6.1).

4.1.4 Privacy-Efficiency Tradeoff

Although the location of a nearby i3 server reveals the MH’s
location to some extent, the MH can choose a private trigger
x such that it is stored on the i3 server close to the CH. This
also results in a low latency stretch without compromising
location privacy. With the current implementation this can be
achieved by havingx share the same k-bit prefix as the pri-
vate trigger of the CH. For even more location privacy, both
end-points can choose completely randomi3 servers. The
flexibility of i3 allows each application to make this tradeoff
as desired.

4.2 Fast Handoff

Existing mobility systems such as Mobile IP or TCP Migrate
propagate address binding updates (BUs) all the way to a HA
or CH. As a result, a potentially large number of packets may
be in flight when the path from the MH to the HA or CH is
long. If the MH stops receiving packets at the old IP address
before starting to receive packets at the new address (cold
switching), then those in-flight packets will be lost.

Low latency handoff [15] and fast handover [31] extensions
to MIPv4 and MIPv6 propose two mechanisms to address
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this problem. The first mechanism attempts to send a BU in
advance of an actual link-layer handoff when the handoff is
anticipated. However, timing must be arranged such that the
BU completes before the actual handoff does, which may be
hard to achieve in practice. Similar in concept to Region-
alized Tunnel Management [10] and Hierarchical Mobil-
ity [26] extensions in MIPv4 and MIPv6, the second mecha-
nism sets up a bi-directional tunnel between an anchor For-
eign Agent (FA) that stays the same during rapid movements
and the current FA. This allows the MH to delay a formal
BU to the HA which minimizes the impact on real-time ap-
plications. However, this mechanism relies on the existence
of a FA ineachnetwork the MH visits. Furthermore, the use
of link-layer triggers and inter-FA advertisements in these
mechanisms assumes a homegenous link-layer technology.

In contrast, ROAM provides a simple mechanism whereby
receivers can choose indirection points (i.e., triggers) that
map onto nearbyi3 servers. Since the number of packets that
are lost during a cold-switch is proportional to the delay be-
tween the MH and the indirection point, we expect that the
ability of a MH to choose nearby triggers will significantly
reduce packet loss. In section 6.2.3, we compare how well
ROAM supports cold-switches with MIPv6 via experiments.

4.3 Multicast-based Soft Handoff

When a MH moves from one network to another, there may
be an interval during which it has poor connectivity (either
lost packets or low bandwidth) in the new network, but good
connectivity in the old network. If the MH performs hand-
off too early, then its performance can suffer from poor con-
nectivity in the new network. On the other hand, if the MH
performs handoff too late, then it may lose packets as the
connectivity in the old network degrades.

The solution in ROAM is to use the generalized level of in-
direction provided byi3 to do multicast-based soft handoff.
In the situation described above, when the MH can obtain an
address in the new network, the MH’s proxy inserts a trigger
with the same identifier as its existing trigger, but associ-
ated with the new address. This causes the same packets to
be delivered to both the old and new addresses. This allows
the MH to take advantage of the best available connectivity.
When the connectivity in the new network is poor and con-
nectivity in the old network is good, most packets will arrive
via the old address. When the reverse is true, most packets
will arrive via the new address. We address the problems of
determining when to stop using multicast and how to sup-
press duplicate packets in Section 5.1.

4.4 Restrict Eavesdropping: Public and Pri-
vate Triggers

The originali3 design supports multicast by allowing any
host in the network to add a trigger with the same identifier
as another host’s trigger. However, this allows any host to
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Figure 4:Example of setting up a connection via private triggers
ida andidb between clientA and serverB. idp representsB’s pub-
lic trigger.

eavesdrop on another host’s communicationsif it knows that
host’s trigger.

We solve this by differentiating betweenpublic andprivate
triggers. Private triggers are secretly chosen by the appli-
cation end-points. Public triggers can be computed by all
end-hosts in the system and are used to establish initial con-
tact with the desired end-host. For example, the “New York
Times” web server would have a public trigger that is a hash
of its name. Subsequently, the client and the web server use
the public trigger to choose a pair of private triggers, and
then use these private triggers to exchange the actual data.

To avoid eavesdropping on public triggers, users can set the
EXCLUSIVE ID flag in the trigger headers to preclude other
hosts from inserting triggers with the same identifier. Since
private triggers are assumed to be secret, they don’t need to
have theEXCLUSIVE ID flag set. This allows applications to
use the multicast functionality via private triggers (see Sec-
tion 4.3). Also, end hosts are free to choose their private trig-
gers such that they are stored on nearby servers.

Section 7 discusses another possible attack in which a mali-
cious user may hijack a host’s public trigger.

4.5 Support for Native Applications

Figure 4 shows the details of our scheme for ani3 native ap-
plication. Consider the application where a clientA accesses
a web serverB. The web serverB maintains a public trigger
with identifieridp in i3 (step 1). The control path operations
are as follows. ClientA inserts a private trigger with identi-
fier ida into i3 (step 2), and sendsida to web serverB via
B’s public triggeridp (step 3).B receivesida from i3 (step
4) and inserts a private trigger with identifieridb into i3 (step
5).B then sendsidb toA viaA’s private triggerida (step 6),
andA receives it fromi3 (step 7). Finally, data packets from
A toB flow throughB’s private triggeridb, and throughA’s
private triggerida in the reverse direction.
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Notation Definition
X:hip home IP address of hostX
X:cip current IP address of hostX
C:port port associated to client processC
i3 hdr i3 packet header (see Figure 6)
i3 hdr:id i3 packet’s identifier
proxy hdr i3 proxy header
proxy hdr: flags: ID MASK specifies thatproxy hdr

flags has ani3 identifier. DATA MASK specifies
that the payload has an IP packet.

H() well-known hash function; used to compute
public trigger identifier forX asH(X:hip)

trans table translation table maintained by eachi3 proxy;
each entry is a pair (IP address,i3 identifier)

Table 1:Notations used in Section 4.6.

IPpkt = ([A.hip:CA.port, B.hip:CB.port], data)

(H(B.hip), IPpkt)

Client (A) Server (B)

IPpkt = ([A.hip:CA.port, B.hip:CB.port], data)

CA PBPA

(H(B.hip), [B.cip, PB.port])

([B.cip,PB.port], IPpkt)
CB

Figure 5:Supporting legacy applications.A:hip andB:hip repre-
sents home IP addresses of hostsA, andB, respectively. Each host
has a proxy that intercepts applications packets and send them via
i3.

4.6 Support for Legacy Applications

Although achieving host mobility fori3 native applications
is straight-forward, many legacy applications will remaini3
unaware. In designing a solution for these applications, our
primary goals are to remain transparent to both applications
and the TCP/IP protocol stack. The main host modification
required for legacy applications is a user-level ROAM proxy.
The proxy serves the following functions: (1) encapsulates
and decapsulates IP packets withini3 packets, (2) determines
the triggers of remote hosts, and (3) sends the local private
trigger to remote hosts. Table 1 gives the notations used in
this section.

We assume that each hostX has a current IP address de-
noted byX:cip and a home IP address (e.g., the address of
the host in its home network) denoted byX:hip. The home
address is stored in the end-host’s DNS record, and it is used
as a source address for all packets sent by legacy applications

flags id

i3_hdr prox_hdr payload (original IP packet)

Figure 6:The format of thei3 packet handled by the proxy. The
fields are explained in Table 1.

onX . Each hostX runs a ROAM proxyPX that maintains
a public trigger(id; addr) whereid is computed as a hash
onX ’s home IP address, andaddr contains the current ad-
dress ofX andPX ’s port number, i.e.,[X:cip; PX:port].
The proxy is responsible for updating the trigger every time
the host’s current IP address changes.

Figure 5 shows a typical data path in a legacy application,
where a clientCA running on hostA is accessing a web
serverCB running on hostB. (Figure 7 shows the pseudo-
code executed by an ROAM proxy.) The source and the des-
tination addresses in the headers of the packets sent by CA
are the host IP addresses ofA andB, respectively. Upon
capturing the packet,PA encapsulates it insidei3 and proxy
headers and sends it toCB throughi3 using UDP. The iden-
tifier of the packet is set toB’s public trigger identifier, i.e.,
H(B:hip) (see functionip receivein Figure 7). The format
of the packets handled by thei3 proxies is shown in Figure 6.

When this packet arrives atB (seei3 receive), B’s proxy
(PB) strips off thei3 and proxy headers and forwards the
packet to a local application. In addition,PB checks to see
if the packet was sent to its own public trigger. If it was,
thenPB knows thatA’s proxy (PA) does not have a private
trigger forB, soPB should send one. As an optimization,
PB sets a timeout to see if it can piggyback the trigger on
a packet sent fromB’s application (CB). Otherwise, when
the timeout expires,B’s proxy sends the private trigger in
a separate packet. An end-host chooses private triggers on a
per flow or a per communication peer basis. This precludes a
malicious end-host from learning the private trigger used by
(the flows of) another end-host and eavesdropping on it.

Assuming thatCB does send a packet before the timeout
expires,B’s proxy piggybacksB’s local private trigger on
the outgoing packet toA. Since,B’s proxy does not know
A’s private trigger, it usesA’s public trigger (asH(A:hip)).
WhenPA receives this packet, it insertsB’s private trigger
into its translation table withB:hip as the key. In addition,
PA sees that the packet was sent to its own public trigger, so
it also sets a timeout and tries to piggyback its local private
trigger toB.

WhenA changes its IP address fromA:cip to A:cip0 as a
result of moving from one subnetwork to another, its ROAM
proxy will remove the trigger containing the old IP address
A:cip and insert a trigger containing the new IP address
A:cip0 into i3. The trigger identifier itself remains the same.
Effectively, host mobility is masked by thei3 network from
the communicating peer, and end-to-end connectivity is pre-
served.

While each end-host initially chooses its private triggers such
that they are stored on nearby servers, end-hosts may even-
tually move far from those servers. To address this problem,
each end-host can re-sample trigger servers either periodi-
cally or once it notices that its current private triggers are
causing a high latency. The new private triggers can be ex-
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// on receiving an IP packetpip from local applications
ip receive(pip)
p = i3 pkt new();
p:payload = pip;
p:prox hdr:flags = p:prox hdr:flags _ DATA MASK;
// do we need to send a private trigger to the sender?
if (exist timeout(pip:dst addr))
p:prox hdr:flags = p:prox hdr:flags _ ID MASK;
p:prox hdr:id = choose private trigger id(pip:dst addr);
timeout remove(pip:dst addr);

p:i3 hdr:id = i3 id(pip:dst addr);
i3 send(p);

// return thei3’s identifier corresponding to addr
i3 id(addr)

// get destination’s private trigger from translation table,
// if present
if (exist entry(trans table; addr))

return get id(trans table; addr);
else

return H(addr);

// on receiving ani3 packetp from network
i3 receive(p)
pip = p:payload; // get encapsulated IP packet carried by p
// does p carry sender’s private trigger?
if (p:prox hdr:flags ^ ID MASK)

update(trans table; pip:src addr; p:prox hdr:id);
else

refresh(trans table; pip:src addr);
// was p sent to the local host’s public trigger?
if (p:i3 hdr:id = H(pip:dst addr))

// p’s source may not know our private trigger identifier ...
timeout set(pip:src addr); // set a timeout to send it

// does p contain data for a host’s client?
if (p:prox hdr:flags ^ DATA MASK)

ip send(pip);

// timeout set byi3 receivefor addr has expired
timeout(addr)
p = i3 pkt new();
p:prox hdr:flags = p:prox hdr:flags _ ID MASK;
p:prox hdr:id = choose private trigger id(pip:dst addr);
p:i3 hdr:id = i3 id(pip:dst addr);
i3 send(p);

Figure 7:The pseudo-code executed by the proxy upon receiving packets from another host viai3 and from a host’s client. The format of
packetp handled by the proxy is given in Figure 6.trans tabledenotes a translation table that stores the association between (1) a host IP
addressaddr, and (2) the identifier of the private trigger inserted by the proxy running on hostaddr.

changed using a mechanism identical to the one used to ex-
change the original private triggers via the public triggers.
The only change occurs in thei3 receivefunction: in addi-
tion to comparing the packet identifier to the the host’s pub-
lic trigger, we also compare it to the previous private trigger
identifier, and then send out the new private trigger if neces-
sary. This operation will be transparent to applications.

5 Implementation Details

The ROAM user-level proxy translates between existing In-
ternet packets andi3 packets, and inserts/refreshes triggers
on behalf of the applications. Applications donotneed to be
modified, and are unaware of the ROAM proxy. The ROAM
proxy uses a virtual link-level interface (similar to [2]),
called TUN4, to transparently capture packets at user-level,
and to hide host mobility from applications. The TUN vir-
tual interface receives packets from user-level applications
instead of from a physical media, and sends them to user-
level applications instead of sending packets via physical
media.

Users can specify a set of criteria, using the iptables tool,
that determines whether a packet is redirected to the TUN
virtual interface or passed directly to the IP routing table.

4The TUN virtual interface is implemented by the Universal
TUN/TAP driver, which is included as a standard feature of the ker-
nel in Linux 2.4 and later.

TCP

Application

Network

UDP Proxy

eth0
(cip0)

eth1
(cip1)

tun0
(hip)

i3

IP Routing
Table

iptables

Figure 8:Data link, network, and transport layers on an end-host
running the ROAM proxy software. The dashed line shows the path
an outgoing TCP packet.

For example, if the user specifies the filter “-p udp –dport
domain -j ACCEPT”, then iptables will pass all DNS query
and reply packets directly to the routing table.

Figure 8 illustrates the organization of our software when
sending out a packet from the end host. The ROAM proxy
reads and translates packets from tun0. To ensure that the
translated packet does not get routed to tun0 again, the
ROAM proxy adds a rule to iptables such that all packets
from itself are passed directly to the routing table. Incoming
packets from the correspondent host’s proxy will arrive at
the physical interface and be addressed to the ROAM proxy.
The proxy will strip off thei3 and proxy headers and send it
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to TUN, from which the applications will receive the packet
(thus taking the reverse of the dashed path shown in Fig-
ure 8).

5.1 Multicast-based Soft Handoff

As a result of multicast-based soft handoff, thei3 server will
send duplicate encapsulated packets to the MH. To prevent
the MH’s TCP/IP stack and applications from receiving du-
plicates of the inner packet, the ROAM proxy suppresses du-
plicates during multicast-based soft handoff.

The ROAM proxy maintains a small window of MD5 [23]
digests of recent packets. The proxy computes digests over
the first 20 bytes of the IP header and the first 8 bytes of
the transport header. The first 28 bytes of a packet are suf-
ficient to differentiate non-identical packets in practice [25].
To minimize duplicates, the window size must be sufficiently
large so that a duplicated packet that arrives both via a very
low latency link and via a very high latency link will be
caught in the window. We use a window size of 1 second,
which should be sufficient even if one path is very congested
or contains a 500ms satellite link. Note that this scheme only
eliminates duplicates generated byi3, and will noteliminate
duplicate packets that are sent by the sender (e.g., TCP dup-
ack). We show in Section 6 that a TCP bulk transfer flow
using multicast-based soft-handoff achieves similar through-
put to a flow without mobility.

Another implementation issue is when does the proxy stop
using multicast. The algorithm we use is to remove an ad-
dress when a large fraction of its packets are duplicates
as this indicates that the address is redundant. The ROAM
proxy maintains a counter of duplicate packets received on
both addresses (d) and a counter of packets received on each
addresses (pi). Whend > min(p0=k; p1=k), we simply re-
move the address that has received fewer packets in the last
window. The valuek is a constant indicating the fraction of
an address’s packets that must be duplicates before the ad-
dress can be dropped. In addition, the proxy uses a timeout
t to prevent a newly added address with poor connectivity
from being removed until the timeout expires. In our imple-
mentation, we usek = 2 andt = 30s. We emphasize that
this is a preliminary design; we are actively investigating al-
ternate designs.

6 Evaluation

In this section, we present simulation and experimental re-
sults evaluating the benefit and cost of using ROAM.

6.1 Simulation

We use simulation to evaluate ROAM in comparison to Mo-
bile IP with triangle routing, bidirectional routing, or route
optimization. In doing so, we show that in all the mobil-
ity schemes, routing efficiency and fault tolerance are pro-
portional to the amount of mobility infrastructure (eitheri3

servers ini3 or Home Agents in Mobile IP) deployed. How-
ever, for moderate amounts of infrastructure, ROAM pro-
vides much higher routing efficiency and fault tolerance than
Mobile IP. In addition, ROAM’s routing efficiency and fault
tolerance scale with the amount of infrastructure devoted to
it.

6.1.1 Methodology

We use our owni3 mobility sim simulator to simulate
i3 mobility and Mobile IP with its routing options. The pur-
pose of the simulator is to measure routing latency while
varying network topology, mobility routing schemes, mobil-
ity model, and communication model. The simulator simu-
lates the creation, maintenance, and measurement of routes
in the IP network, Mobile IP, and thei3 overlay network. It
is not a packet level simulator.

Our simulation network topologies consist of three kinds
of nodes: router nodes, mobility server nodes (i3 servers
or Home Agents), and client nodes (mobile or correspon-
dent hosts). We arrange the nodes according to the following
topologies:

� A power-law random graph topology with 1779 router
nodes, where the delay of each link is uniformly dis-
tributed in the interval[5; 100)ms. Although power-law
topologies have been shown [8] to accurately reflect In-
ternet topology, we have not found a realistic model for
assigning link latencies in a power law graph and so re-
sort to a uniform latency distribution.

� A transit-stub topology generated with theGT-ITM

topology generator [9] with 5000 nodes, where link la-
tencies are 100 ms for intra-transit domain links, 10 ms
for transit-stub links and 1 ms for intra-stub domain
links. We assume that each stub node forms its own
domain. Although transit-stub may not reflect Internet
topology as accurately as power-law, we can assign link
latencies in transit-stub in a way that reflects that intra-
domain latencies are much lower than inter-domain la-
tencies.

We definedomainto be a group of nodes that have low la-
tency links between them. For the power law topology, each
node forms its own domain. For the transit-stub topology,
each stub node forms its own domain. In both topologies,
a varying number of mobility server nodes of up to 200%
of the router nodes are randomly attached to the domains.
There is little performance improvement for more than 200%
server nodes because at that point, each domain is likely to
have a server. A number of client nodes equal to the router
nodes are also randomly attached to the router nodes. This
gives a wide variety of possible client locations. For a partic-
ular topology, we run 50 different arrangements of client and
server nodes to obtain sufficient variation in arrangement.
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For a particular arrangement of nodes, we randomly select
a home network (HN) from the client nodes with uniform
distribution. Using that HN, we run 2000 arrangements of
the mobile host (MH), and correspondent host (CH), as de-
scribed below. This represents the number of locations a MH
would visit before changing its HN, and is chosen to obtain
sufficient variation in foreign locations.

We examine three mobility routing schemes in addition to
regular IP routing: Mobile IP with triangular routing, Mobile
IP with bidirectional tunneling, and ROAM mobility.

With the Mobile IP schemes, the MH also has a home agent
(HA). The HA is usually assumed to be in the HN, but in a
real network this may not be feasible because of deployment
costs. In addition, requiring the HA to be in the HN restricts
the number of MHs that can have mobility survive. Instead,
we assume that a real network would have a more incremen-
tal deployment model, where a service provider would pro-
vide one or more home agents and map multiple users to
each one. Therefore, in our simulations, we select the server
closest to the HN as the HA.

With ROAM mobility, the MH uses the mobility-aware
caching algorithm described in Section 4.1. The MH takes
32 samples in each move, maintains 10 entries in its cache,
and replaces close entries when new samples are closer, but
not less than 50% closer. These parameters are a compro-
mise between performance and overhead because each sam-
ple consumes network bandwidth.

We simulate MH movement according to two mobility mod-
els: uniform and Pareto with respect to the HN. In the uni-
form model, the MH is uniformly randomly selected from
the client nodes. In the Pareto home model, the probability
that the MH is distanced from the HN is1=d2. This sim-
ulates a MH that is close to the HN most of the time, but
sometimes moves very far from the HN.

Similarly, we simulate communication with CHs according
to three communication models: uniform, Pareto with re-
spect to the HN, and Pareto with respect to the MH’s cur-
rent location in a foreign network. In the uniform model, the
CH is randomly selected from the client nodes with uniform
distribution. The Pareto home and Pareto foreign models as-
sign distances to the CH according to the Pareto model given
above, but relative to the HN or the MH’s current location,
respectively. These models simulate a CH that is close to the
HN or MH, respectively, most of the time, but is sometimes
very far from it.

Given all of these parameters, we measure the round trip time
(RTT) of the various mobility schemes as shown in Figure 9.
Note that in the ROAM case, both the MH and CH can be
mobile, while in the triangular routing and bidirectional tun-
neling cases, we assume that the CH is stationary (i.e., the
CH does not have a HA). If we were to assume that the CH
is mobile, then the triangular routing and bidirectional tun-
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Figure 9:This figure shows the routes that packets travel in the
different mobility schemes.

neling cases would incur more latency, so this comparison
favors those cases over ROAM.

In all cases, we measure the latency stretch of the various
schemes relative to the shortest IP path. Since there is con-
siderable variance in the measurements due to the different
random variables, we use the 90th percentile of the latency
stretch to give a bound on the worst case performance.

6.1.2 Results: Stretch vs. Infrastructure

Figures 10 and 11 show a series of graphs which compare
the 90th percentile stretch of MIP with triangular routing
and bidirectional tunneling (“bi”) and ROAM in a power
law network (Figure 10) and a transit-stub network (Fig-
ure 11). Each graph shows a different combination of mo-
bility model, communication model, and network topology.

In the power law network graphs, ROAM’s stretch is always
lower than that of MIP with bidirectional tunneling. This
is because ROAM hosts are able to choose trigger servers
closer to themselves than a home agent would be by us-
ing the mobility-aware caching algorithm (see Section 4.1).
However, when there are few servers in the network, MIP
triangular routing does better than ROAM. This is because
ROAM hosts must use trigger servers to communication both
from the CH to the MH and also in the reverse direction,
while MIP with triangular routing only needs to use the home
agent in the forward path. Small numbers of servers increase
ROAM’s stretch because it is less likely that a server will be
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Figure 10:This figure compares the 90th percentile stretch of MIP with triangular routing (“tri”) and bidirectional tunneling (“bi”) with
ROAM in a power law network. In each graph, the x-axis is the number of servers (home agents ori3 servers) on a log scale. The y-axis
is the stretch relative to the shortest Internet path. Note that the different graphs have different scales on the y-axis. The different graphs are
for varying mobility models (“m”) and communication models (“c”). “uniform” indicates a random selection of a location in the network
with uniform probability. “Pareto home” indicates a random selection of a location in the network with a Pareto distribution of distance from
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foreign network.
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Figure 11:This figure is the same as Figure 10, except with a transit stub network.
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nearby. For large numbers of servers, ROAM stretch is be-
tween 50% and 66% less than that of MIP with triangular
routing. The crossover point varies from 100-500 servers de-
pending on the mobility and communication model. 100-500
servers corresponds to 5-28% of the domains in the power
law network having a local server.

When comparing MIP and ROAM in the transit-stub net-
work, we find that when more than 1-2% of the transit-stub
domains have a server, ROAM matches or exceeds MIP’s
stretch.

ROAM matches MIP when one or both of the communica-
tion end points (the CH and the MH) is close to the home
network. We would expect that these are the optimal cases
for MIP. Indeed, Figures 11 (b), (d), (e), and (f) show that
MIP’s stretch drops sharply as the number of deployed home
agents increases. More home agents increase the likelihood
that a HA will be in the HN, thus decreasing the stretch in-
curred by triangular routing or bidirectional tunneling when
the CH and/or MH are close to the home network. However,
the figures also show that ROAM’s stretch converges with
MIP’s when more than 50 to 100 servers are deployed in the
network (corresponding to 1-2% of the transit-stub domains
having a server). This is because ROAM is able (through its
trigger server caching algorithm) to dynamically find trigger
servers which are as close to the MH and CH as a statically
configured home agent.

ROAM significantly improves on MIP’s stretch when neither
the CH or the MH are close to the home network. We would
expect that this is the worst case for MIP and Figures 11(a)
and (c) validate this. Increasing the number of home agents
in these cases does not decrease MIP’s stretch because hav-
ing a home agent close to the home network does not put
it any closer to the CH or MH. In contrast, ROAM’s stretch
decreases as more servers are deployed because it can still
dynamically find close trigger servers. Figure 11(a) shows
that even when the CH, MH, and HN form a triangle with
equal distribution of distance on each leg, ROAM’s stretch is
40% that of MIP. When the CH and MH are Pareto close (as
shown in Figure 11(c)), then ROAM has a stretch1=400th
that of MIP with triangular routing. The difference is so large
because the maximum latency in our transit-stub topology is
over 1000ms while the minimum latency is only 1ms, so the
impact of poor routing may be large.

The mobility and communication models make a greater dif-
ference in stretch in the transit-stub graphs than in the power
law graphs. This is because in our transit-stub network local-
ity affects latency more than in our power law network. Close
nodes in a power law network have a higher latency between
them than in a transit-stub network because the close transit-
stub nodes are likely to be in the same stub domain. On the
other hand, far nodes in a power network have a lower la-
tency between them than in a transit-stub network because
far transit-stub nodes are likely to be in different transit do-
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Figure 12:This figure compares the 90th percentile stretch of MIP
with triangular routing (“tri”) and bidirectional tunneling (“bi”)
with ROAM in a transit-stub network. The x-axis shows the latency
from the home network in ms. The y-axis shows the stretch.
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Figure 13: This figure compares the robustness of IP, MIP
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host, home agent, ori3 server is operational. The y-axis shows the
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mains. Similarly, this is why MIP stretch decreases more in
Figures 11 (b), (d), (e), and (f) than in Figures 10 (b), (d), (e),
and (f).

6.1.3 Results: Stretch v.s. Distance from HN

Instead of comparing the stretch to the number of mobil-
ity servers in the network, Figure 12 compares the stretch
to the distance of the MH from the HN. This figure shows
that as the distance from the home network increases, MIP’s
stretch increases linearly, while ROAM’s stretch remains rel-
atively constant. This simulation uses the transit-stub topol-
ogy with 10000 servers, a uniform mobility model, and a
uniform communication model.

6.1.4 Results: Fault Tolerance

In addition to stretch, we also simulate the failure of nodes.
We vary the failure probability of the client and server nodes
in the system from 0% to 50% and do 10,000 runs. In this
simulation, we assume that both the MH and CH are mobile
and have a home agent. We assume that IP routing succeeds
when both the MH and CH are operational. We assume that
MIP is functional when the MH, CH, MH’s HA, and CH’s
home agent are operational. We assume that ROAM is func-
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Figure 14:Network topology used for multicast-based soft hand-
off experiments. As shown by the dashed arrow, the mobile host
moves between different locations on the 10.0.1 subnet during
handoffs.

tional when the MH and CH are operational, and the MH and
CH can both find an operational trigger server in their caches
(of size 10).

Figure 13 shows the results of failing nodes on the likeli-
hood of connectivity between the MH and CH. When nodes
have a 5% chance of failing, MIP has an 85% likelihood of
successful connectivity. When nodes have a 15% chance of
failing, MIP likelihood of successful connectivity drops to
only 50%. On the other hand, ROAM’s robustness follows
IP’s regardless of the failure rate.

6.2 Experiments

In this section, we describe our test-bed and examine the ef-
fect of handoffs on TCP throughput.

6.2.1 Methodology

Our MH is a IBM Thinkpad T23 1.13GHz laptop running
Red Hat Linux 7.3 with a 2.4.18 kernel. The CH is a 866
MHz desktop running a 2.4.18 Linux kernel. Ouri3 server is
a 800 MHz desktop running a 2.4.10 Linux kernel.

6.2.2 Results: Multicast-based Soft Handoffs

In this experiment, we perform TCP bulk transfers from
the CH to the MH. Figure 14 shows our test-bed topology.
The CH and thei3 server reside in the 100 Mb/s Ethernet
10.0.2 network5. The MH initiates TCP connections from
one location on the 10.0.1 subnet, and then moves to another
location on the same subnet at a later point, or vice versa.
Both MH locations use identical connections with 10Mbps
links. The purpose of this simple configuration is to ex-
pose the performance impact of multicast-based soft hand-
offs. Each run involved a 16 seconds TCP bulk transfer and
we varied the number of handoffs (0, 1, 2, and 4) performed
during a transfer. This was repeated ten times at each hand-
off frequency. Figure 15 plots TCP throughput received by
the MH as the number of handoffs increases during the bulk

5Network addresses are anonymized.
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Figure 15:TCP throughput received by the MH as the handoff
frequency increases. The vertical error bars show the standard de-
viations of the receiver throughput.
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Figure 16:Network topology used for cold switch experiments.
As shown by the dashed arrow, the mobile host moves from one
location to another on the same subnet during handoff.

transfer. The vertical error bars show the standard deviation
of the receiver throughput.

We see that as handoff frequency increases, the TCP
throughput degradation is minimal. In fact, there are no
losses across the multicast-based soft handoffs as both inter-
faces are available. The slight performance penalty is caused
by the overhead of MD5 digest computation of every packet
received and detection of duplicates during handoffs. This
demonstrates the effectiveness of ROAM to support rapid
handoffs. For example, consider a user on an airplane mov-
ing at 500 miles per hour, and cell coverage sizes with diam-
eters of 1.5 miles. In this case, the user makes 5 cell cross-
ings per minute, which can be easily supported by ROAM.
To support multiple such users on the airplane, we can use a
NAT-like device to aggregate cell-crossings made by users,
and thereby alleviate the handoff load on thei3 trigger server.

6.2.3 Results: Cold Switch

In this experiment, we compare the handoff performance of
ROAM and MIPv6 during a cold switch when the MH is far
away from the CH. Figure 16 shows the experimental setup.
We use the NIST Net [19] network emulation package to em-
ulate a round trip time (RTT) of 70 milliseconds between the
MH and the CH. In the setup for ROAM, RTT between the
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Figure 17:TCP sequence trace showing a bulk transfer with a
cold-switch for ROAM.
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Figure 18:TCP sequence trace showing a bulk transfer with a
cold-switch for MIPv6.

MH and the i3 server is approximately 3 milliseconds. The
nistnet router delays packets between the i3 server and the
CH by 70 milliseconds. We emulate the MIPv6 scenario by
running the i3 server on the same machine as the CH since
binding updates are propagated to the CH in MIPv6. The
nistnet router delays packets between the MH and the CH by
70 milliseconds. During a cold switch, the first interface is
shutdown around 35-40 milliseconds before the second inter-
face is brought up. During this disconnected interval, pack-
ets from thei3 server to the MH are lost in both ROAM and
MIPv6. However, the number of packets that are lost after
cold switch completes is proportional to the delay between
the MH and the indirection point.

Figures 17 and 18 plot the TCP sequence numbers seen at the
CH (TCP sender) for the ROAM and MIPv6 scenarios dur-
ing a cold switch. ROAM recovers from packet loss caused
by the cold switch by entering fast retransmit when the MH
receives duplicate acknowledgements generated by packets
received after the lost packets. However, in MIPv6, the MH
loses the entire window of data and the CH waits for a time-
out and goes into slow start before retransmitting the lost
packets.

Routing Header Relative Transmission
Size Overhead Delay

IP 40B 1.25 23ms
Mobile IP 60B 1.88 27ms
ROAM 117B 3.66 41ms
ROAM w/comp 45.8B 1.43 24ms

Table 2:This table shows the header overhead of various routing
schemes. All header sizes are in bytes. The listed overhead is rel-
ative to a 32 byte payload. The transmission delay is for the given
header size, a 32 byte payload, and a 32Kb/s link bandwidth.

If the disconnectivity time due to cold switch ist, and
t < RTT < 2t, then ROAM can recover by fast retransmit
whereas MIPv6 has to recover by timeout. If RTT is greater
than2t, then both ROAM and MIPv6 can recover through
fast retransmit. However, ROAM will recover sooner be-
cause of its ability to choose a nearby i3 server irrespective
of the CH’s location, thereby greatly reducing packet loss.

7 Discussion

In this section, we discuss some important security issues
and the overhead of ROAM. We then discuss the possibil-
ity of using ROAM to exchange only control information,
while data packets are forwarded via IP. Finally, we discuss
the possibility to replace the ROAM proxy with a NAT-like
solution, and some deployment issues.

Trigger hijacking. As discussed in Section 4.4, a public trig-
ger’s identifier can have only one address associated with it.
Although this ensures that no one can eavesdrop on the com-
munication destined to a public trigger, an attacker can wait
for a host to fail to refresh its public trigger, and insert its own
trigger with the same identifier. As a result, all packets des-
tined to that identifier will be received by the attacker. This
attack is similar to hijacking a DNS entry. One solution is
to eliminate theEXCLUSIVE ID bit and then use public key
cryptography to protect against eavesdropping. When initi-
ating a connection,A encrypts its private triggerida under
the public key ofB, before sending it toB via B’s public
trigger idp. SinceA’s private trigger is encrypted, a mali-
cious userM cannot impersonateB even if it inserts a trig-
ger(idp; addrm) into i3.

The public key ofB can be obtained through several pos-
sibilities. To name a few, one can use a Public Key Infras-
tructure, store public keys in the DNS system, or obtain it
out-of-band similar to what ssh does.

Overhead. Although thei3 encapsulation used by ROAM
adds packet header overhead, ROAM with header compres-
sion adds only 18% more overhead than standard TCP/IP for
a 32 byte payload. This would add only 4% more delay on a
5ms latency, 32Kb/s bandwidth link.

Table 2 lists the overhead of various routing schemes relative
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to different payload sizes. A standard web browser using IP
and TCP or an IP telephony application using IP, UDP, and
RTP has a total header size of 40 bytes. Mobile IP requires
20 additional bytes for IP in IP encapsulation. The size of
the i3 header in the current implementation is 48 bytes (of
which 32 bytes is thei3 identifier). The proxy header has a
minimum size of one byte (see Figure 6). The encapsulating
IP and UDP headers total 28 bytes. Thus, the ROAM total
header size is 28 (encapsulating packet) + 1 (proxy) + 48 (i3
header) + 40 (original packet) = 117. When private identi-
fiers are piggybacked in the data packets (typically only in
the beginning of the connection), the overhead increases by
another 32 bytes.

However, header compression has been shown [14] to re-
duce packet header overhead by a factor of 5. If we com-
press the 89 bytes of header after the encapsulating header
(which must remain uncompressed to route through the In-
ternet), then we reduce the total header size to an average of
45.8 bytes. This only requires modifications to the proxy and
i3 server software.

Table 2 shows that even for a 32 byte IP telephony payload,
the ROAM compressed header overhead is only 18% greater
than that of standard TCP/IP. On a hypothetical 5ms latency,
32Kb/s link, the net difference in transmission delay is 5%.
This overhead decreases as packet sizes, latencies, and band-
widths increase.

Another source of overhead is the user level proxy which
causes each packet to traverse the OS–user level boundary
twice. This can reduce the maximum throughput that can
be achieved by the end host. However, that maximum is un-
likely to be reached even in a relatively high bandwidth wire-
less network like 802.11b (11Mb/s). If this becomes an issue,
the proxy can be eliminated at the cost of implementing its
functionality in the kernel.

Control plane indirection. We assume that all packets are
transmitted viai3. For most applications we expect the indi-
rection overhead to be acceptable, but there might be appli-
cations for which achieving the highest possible throughput
and lowest latency is critical. For those applications, one can
implement a solution similar to TCP Migrate, wherei3 is
used only to exchange the new IP addresses when end-hosts
move. In comparison to the basic TCP Migrate solution, such
an approach would allow simultaneous mobility and would
avoid overloading the DNS.

Home proxy. We assume that each end-host runs a ROAM
proxy. In some cases, the robustness and efficiency this pro-
vides may not be worth the management and deployment
costs. For example, during initial deployment, few of a mo-
bile host’s correspondent hosts will have ROAM proxies.
An alternative is to deploy a home proxy for a mobile host
that implements the functionality of the ROAM proxy for
all of its non-ROAM correspondent hosts. This home proxy

is analogous to the Home Agent in Mobile IP in that it is
only used for hosts that cannot use a more efficient routing
method.

Deployment issues.Our initial design assumes that ROAM
uses a shared overlay infrastructure (i3). The most likely de-
ployment strategy of such an infrastructure is still unclear.
Options include a single provider for-profit service (like con-
tent distribution networks), a multi-provider for-profit ser-
vice (like ISPs), and a cooperatively managed nonprofit in-
frastructure (like Gnutella). While full deployment is always
hard to achieve, our solution is incrementally deployable; if
the efficiency and robustness are not a concern, then it could
start as a single server. Moreover, it does not require the co-
operation of ISPs, so third parties can provide this service.

Personal/Session mobility.Our focus on using ROAM for
network layer mobility allows only a brief description of how
the same architecture can be used for personal/session mo-
bility (Section 2). Personal/session moblity requires track-
ing the set of active devices for a user and routing to the
optimal device. Devices register themselves for a particular
person whenever they detect an authorized user is nearby
(e.g., devices have Bluetooth transceivers and users carry
Bluetooth smart cards). Devices register by setting a trig-
ger with an identifier representing that user. Given multi-
ple simultaneously registered devices, the devices follow an
agreement protocol to decide which one will handle a par-
ticular session (e.g., the least expensive one or the high-
est performance one). Leveraging the ROAM infrastructure
for personal/session mobility removes the cost of deploying
infrastructure specific to any particular application or per-
sonal/session mobility scheme.

Service composition.With i3, endhosts can easily redirect
data packets through transcoding servers before reaching the
destination. For example, a low-bandwidth wireless mobile
host can route a MPEG stream to go through a MPEG-to-
H.263 transcoder, and receive a H.263 stream instead. Fur-
thermore, a mobile host can redirect its packets to go through
performance optimization agents such as TCP snoop [3] to
improve performance over wireless links. Refer to [27] for
details on howi3 uses a stack of identifiers to achieve ser-
vice composition.

8 Conclusion

In this paper we present a highly robust and efficient mobility
architecture. ROAM uses an indirection infrastructure which
is implemented as an overlay network. This infrastructure al-
lows end hosts to avoid the inefficiency of triangle routing by
allowing them to choose nearby indirection points. This in-
frastructure is as robust as the underlying IP network. ROAM
preserves location privacy and allows simultaneous mobil-
ity while not requiring any changes to the TCP/IP protocol
stack.
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Simulation results show that our solution has a low latency
stretch and it is highly robust compared to Mobile IP. We
evaluate a prototype of ROAM in a small testbed. Prelimi-
nary experimental results using this prototype demonstrate
that ROAM provides good support for soft-handoff and fre-
quent mobility.

However, more remains to be done to evaluate our solution
better. To aid with this, we plan to deploy ROAM on a larger
scale with end hosts andi3 servers spanning the continental
US.
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