Task-Based Speed and Voltage Scheduling on Windows 2000

Jacob R. Lorch Alan Jay Smith

Report No. UCB/CSD-02-1191

/l August 2002

[

\

\

| | Computer Science Division (EECS)
| University of California

\ Berkeley, California 94720

\

\

[

Task-Based Speed and Voltage Scheduling on Windows 2000

Jacob R. Lorch Alan Jay Smith
August 2002
Abstract saving technology that has recently begun appearing in mod-

_ , _ ern portable computers is dynamic voltage scaling (DVS),
This paper describes RightSpeed, a task-based speed gnd ity to change processor voltage without rebooting.

voltage scheduler for Windows 2000. It takes advantage fis enables reduced energy consumption, as lower voltages
the ability of certain processors, such as those from TranSiaan lower energy consumption. However, lower voltages

meta and AMD, to dynamlc_ally cha_nge speed and Vo_lta%cessitate lower CPU speeds, presenting an interesting op-
and thus to save energy while running more slowly. Rightsa4ing system issue: how to ensure that performance re-

Speed uses PACE, an algorithm that computes the most @i\sig”reasonable while sometimes lowering speed to save

ergy efficient way to meet task deadlines with high probae-nergy

ility. Since m lication n rovi nough . . .
bility. Since most applications _do ot provide enoug o_Iata Traditionally, systems usiaterval-basedstrategies. Such
about tasks, such as task deadlines, for PACE to work, Right- . .)) .)
: - - .~ strategies divide time into intervals of fixed length and set
Speed uses simple and efficient heuristics to automatica . e
. N e speed for each interval based on recent CPU utilization.
detect task characteristics for such applications. We sh e .
. Jowever, CPU utilization is only a rough indicator of the re-
that RightSpeed has only 1.2% background overhead and its . e
operations take onlv a few microseconds each. It even gruwed speed. An interval-based strategy cannot distinguish
P y ' IOan urgent task that must run at full speed to meet a tight dead-

: S Yine from a less important task with several milliseconds to
4.4 s on average due to our extensive optimizations. We .
complete and little work to do.

show that RightSpeed is effective at meeting performance i i
targets set by applications to within 1.5%. We show that A Petter solution, as suggested by authors such as Pering
although the PACE calculator does not save energy for tfit@l- [171and Hong et al. [9], is to usask-bas’ed schedul-
current generation of processors due to their limited rand2d- Such scheduling considers the computer's work to con-

of worthwhile speed and voltage settings, we expect futurist of tasks with certain CPU requirements and deadlines. It

processors to have greater such ranges, enabling PACE tOtt:@_n runs the CPU fast enough to meet those deadlines with

duce CPU energy consumption by 6.1-8.7% relative to ti§asonable probability. - Recently, some researchers have
best standard algorithm. Finally, we show that with PACEEVEN built such task-based schedulers [18, 3]. In this paper,
giving a processor the ability to run at additional, highe¥'® describe how we built RightSpeed, a task-based sched-
speeds and voltagesducesoverall energy consumption. u:er with several improvements over these existing sched-
ulers.
The key differentiating feature of RightSpeed isR&CE
1 Introduction calculator, a component that determines the most energy
efficient schedule for meeting each task’s performance re-
Reducing energy consumption is important in portablguirements. In [10], we showed that computing such a
computers due to their limited battery capacity. Furtheschedule requires estimating the probability distribution of
more, rising concerns about energy prices make enerthe task’s CPU requirement, and gave a method called PACE
management important for other computers. An energyhat uses such a distribution to compute such a schedule. For
this paper, we extended this method to deal with issues that

*This material is based upon work supported by the State of California
P PP y arise in real systems: 1/O wait time, overlap of multiple si-

MICRO program, AT&T Laboratories, Cisco Systems, Fujitsu Microelec-
tronics, IBM, Intel Corporation, Maxtor Corporation, Microsoft Corpora-multaneous tasks, limited available speed/voltage settings,
tion, Quantum Corporation, Sony Research Laboratories, Sun Microsygonlinear relationship between speed squared and energy,
temfs, _Toshlba Corporation, and Ve_rltas Software. _ and limited timer granularity.

Microsoft Research, lorch@microsoft.com. Although Jacob is cur-
rently affiliated with Microsoft, he performed all implementation work Another new feature of RightSpeed is &atomatic task
while still a student at UC Berkeley. Thus, the implementation used no
internal Microsoft knowledge or documentation. IPACE stands for Processor Acceleration for Conserving Energy,

tComputer Science Division, EECS Department, University of Calisince the optimal way to schedule a task is to start out slowly, increas-
fornia, Berkeley, CA 94720-1776, smith@cs.berkeley.edu. ing speed only as necessary to complete the task on time.

detector A task-based scheduler can provide an interfacgould, which can more than offset processor energy sav-
letting applications specify information about their tasksngs. Second, the user will object to unduly extended re-
However, many application writers will not use it, so a tasksponse times.
based scheduler should also have an automatic task detec-
tor to let it infer task information from such applications,z_2
Flautner et al.’s scheduler has such a detector, but it requires
a great deal of complex, high-overhead, and Linux-specific The first researchers to discuss operating system tech-
system interposition [3]. In [11], we suggested a method fatiques for DVS were Weiser et al. [20] and Chan et al. [2].
automatic task detection with a more efficient heuristic, bithey suggested an interval-based approach, meaning that the
did not demonstrate an implementation. RightSpeed demaystem divides time into fixed-length intervals and schedules
strates an implementation of our heuristic. the speed for each interval based on the CPU utilizations of
Our scheduler also differs from existing schedulers byast intervals.
running on Windows 2000 rather than Linux. This is im- Interval-based strategies are used today in real systems
portant because almost all portable computers sold todeapable of dynamic voltage scaling, such as Transmeta’s
run Windows 2000 or its successor Windows XP. Our workongRurf™ [6]. However, such strategies have problems, as
demonstrates that task-based scheduling can be done eRering et al. [16], and later Grunwald et al. [4], pointed out.
on a closed-source commodity operating system. The CPU utilization by itself does not provide enough infor-
The goal of this paper is to demonstrate that a task-basetion about system timing requirements to ensure meeting
scheduler with a PACE calculator and an automatic task d@reasonable number of deadlines while saving energy.
tector can be implemented on a real machine running Win-
dows 2000. This involves overcoming the challenges of reﬁl3
hardware and software issues, and demonstrating that the re-
sulting scheduler places little overhead on the system. Recently, researchers have started building task-based
The structure of this paper is as follows. Section 2 giveschedulers, i.e., schedulers that consider the work of the sys-
background and related work on DVS algorithms. Sectiont@m to consist of tasks with certain deadlines. The goal of
describes the characteristics of the processors to which weask-based scheduler is to use speeds just high enough to
ported RightSpeed, and evaluates the potential effectiven@sset these deadlines with reasonable probability.
of DVS techniques on these processors. Section 4 discussegao et al. [22] described how to compute an optimal
the design of our task-based scheduler, and Section 5 dehedule when task CPU requirements and deadlines are
scribes our implementation of it. Section 6 gives results @hown. Hong et al. [5] later showed how to compute such
benchmarks showing the impact of our modifications on pegchedules more quickly using various heuristics. However,
formance and energy consumption. Section 7 discusses gystems do not generally have certain knowledge of task

Interval-based DVS algorithms

Task-based voltage schedulers

enues for future work. Finally, Section 8 concludes. CPU requirements, so these approaches are unrealistic.
Flautner et al. [3] built a task-based voltage scheduler
2 Background and Related Work for Linux. This scheduler requires no modification of

applications—it infers all information about the system’s
tasks via heuristics. It infers that an interactive task be-
gins when a user interface event arrives, and uses a com-
In CMOS circuits, the dominant component of power conplex work-tracking heuristic to decide when such a task com-
sumption is proportional tv? f, whereV is voltage andf is pletes. It infers that a periodic task begins when a periodic
frequency. Energy is power times time, and time to run a cegvent occurs; it considers an event periodic if the lengths of
tain number of cycles is inversely proportional to frequencyntervals between the lagtevents have a small variance. To
so energy per cycle is proportional ¥& [21, p. 235]. At determine the speed for a task, it essentially computes the
a given voltage, the maximum frequency at which the CPBverage of the speeds that would have completed past simi-
can safely run decreases with decreasing voltage. Thus, taetasks on time.
system can reduce processor energy consumption by reducPillai et al. [18] built a task-based scheduler for real-time
ing CPU voltage, but this necessitates running at a slowembedded systems. It runs on Linux. This scheduler as-
speed. sumes complete knowledge of the deadlines and worst-case
However, it is important to not noticeably increase syscPU requirements of all tasks in the system, and assumes
tem response time, for two reasons. First, other componenisese tasks are periodic. The scheduler uses different algo-
such as the disk drive and backlight, use power. Noticeithms, some of which make provisions for tasks completing
ably increasing response time may cause these componédygfore their deadlines, as follows. One such algorithm slows
to remain in high-power modes longer than they otherwisgown the CPU when a task creates slack in the schedule by

2

2.1 Dynamic voltage scaling

completing early. Another algorithm anticipates that task3 Platforms
will likely complete early and therefore starts tasks as slowly
as possible and only uses higher speeds when these becoms this section, we examine the characteristics of Trans-
necessary to guarantee on-time completion. meta and AMD processors to which we ported RightSpeed.
As we do so, we will discuss how these characteristics influ-
ence how we should use PACE on these processors.
First, we introduce some definitions. gkttingis a speed
2.4 PACE and voltage combination at which a processor can prop-
erly operate. Theefficiencyof a setting is the amount by
One premise of task-based scheduling is that DVS can exhich power consumption is reduced by using this setting
ploit deadlines to save energy without significantly redudnstead of emulating its speed using the best possible combi-
ing performance. This is possible since a task’s completidrattion of all other settings. For example, suppose there are
time is irrelevant as long as it precedes the deadline. ThdBree settings: 300 MHz consuming 2 W, 500 MHz consum-
in evaluating the performance of a DVS algorithm, we cailg 3.6 W, and 700 MHz consuming 6 W. We can emulate

consider all tasks that complete by the deadline to have th60 MHz by running half the time at 300 MHz and half the

same effective performance. time at 700 MHz. This consumes 4 W, while the 500 MHz
A DVS algorithm essentially chooses a schedule descriBEiing consumes only 3.6 W, so the 500 MHz setting has
efficiency 10%. We can emulate 300 MHz by running 60%

ing how speed will vary with time. In [10], we showed that) 500 MH q o the CPU off 40% of th
two schedules that have the same average pre-deadline sp%féae time at Z and turning the 0 oofthe

and identical post-deadline parts will give the same effe ime; this emulation has average power consumption 2.16 W,

tive performance no matter how much work a task require’?,0 the 300 MHz setting has efficiency 7.4%. If a setting has
iency of 0% or less, it is navorthwhileg i.e., one should

This means that one can get the same performance as gﬁg ey | .
existing DVS algorithm by using different, yet performancé1e er use it since one can get lower power consumption at

equivalent, speed schedules; these new schedules may é\t)gnsame speed using ot.her settings.
consume less energy. For PACE to be effective, a processor must have at least

.) . three worthwhile speed/voltage settings. Furthermore, the
We then described an algorithm, PACE, for choosing g,qre settings, and the higher their efficiency, the more effec-

speed schedule that minimizes expected energy coNSUMpYER pAcE will be. This is because PACE works by choosing

for a given performance constraint. The PACE algorithm agyy,onq speed schedules with identical performance to find
sumes some knowledge of task CPU requirement distribyse ne with least expected energy consumption. If there is
tion; they showed how to dynamically and effectively eslif o chojce in such speed schedules, and/or if there is little
mate this distribution. One limitation is that PACE assUMegifrerence between choosing one setting versus emulating

the processor speed and voltage are continuously variagle; setting's speed with other settings, there will likely be
and that energy is a linear function of speed squared; in trrilﬁle benefit to choosing among them.

work, we extend PACE to a real DVS system without these

properties.

PACE requires the ability to detect when tasks begin an3d:L Transmeta system

end. In [11], we showed that there is a simple heuristic for The Transmeta system contains a TM5400-633 Ciifsoe
inferring task completion that is nearly as effective as FlaUE)Tocessor and 128 MB of memory (64 MB of SDRAM and
ner et al.’s and requires substantially less operating systgm MB of DDRAM). 16 MB of this memory is reserved
modification. A task is considered complete when either gy the Code-Morphing Software, whose primary function
threads in the system are blocked and no I/O is ongoing, @rto dynamically translate x86 code to the underlying ma-
when a new user interface event is delivered to the same @pine language of the VLIW chip. This code also imple-
plication. ments LongRuR", the DVS policy Transmeta chips use.
Also in [11], we pointed out that user interface events befransmeta told us how to override LongR¥rpolicies and
longing to different types, categories, and applications difféhange the speed ourselves.
sufficiently significantly from each other that PACE benefits, The processor can run at 300-633 MHz and 1.2-1.6 V.
rather than worsens, by inferring the probability distributiofable 1 gives the available speeds and voltages, as well as the
of a task from a sample of only those recent past tasks thzawer the CPU consumes at each level. We measured power
have nearly identical characteristics. Therefore, in Rightonsumption by running in a tight loop of additions while
Speed, we keep separate samples for tasks triggered by ussng hardware monitoring equipment Transmeta provided.
interface events of different types, categories, and applica-We see that the 300 MHz and 600 MHz settings have very
tions. low efficiencies, and are therefore barely worthwhile. With

Speed Voltage | Power | Energy/cycle| Efficiency
297.3 MHz 1.2V | 1.349W 4.537nJ 0.5% Applications A —
396.6 MHz | 1.225V | 1.809 W 4.561 nJ 11.0% instrumented
497.8 MHz 135V | 2.714W 5.461nJ 11.8% tt%:iﬁacglk()se Automatic task detector that infers
5985 MHz | 155V | 4.348W 7.265nJ 0.4% task information
631.1 MHz 16V |4915W 7.787nd N/A System calls to describe task boundaries and deadlines

Table 1: Characteristics of the Transmeta processor at vari-
ous settings

Operating system routines for scheduling speed and volt
PACE calculator to compute energy efficient schedules

g

ge

CPU capable of dynamic voltage scaling

Speed | Voltage | Power | Energy/cycle| Efficiency Figure 1: Overview of RightSpeed
500MHz | 1.25V | 10.63W 21.25nJ 7.6%
600 MHz 1.3V | 13.79W 22.99nd 1.4% . . e e
700 MHz | 135V | 17.35 W 24.79 nJ -0.9% to attain only a certain set of values. More flexibility in ei-
800MHz | 14V |2133W 26.66 nJ -3.6% ther dimension would let them choose settings closer to the
900 MHz 1.4V | 24.00 W 26.66 nJ N/A curve of maximum ideal efficiency.

Table 2: Characteristics of the AMD processor at variou4 Design
settings, with power and energy values approximated

4.1 Overview

only three reasonably worthwhile settings, we do not expectFigure 1 gives an overview of the RightSpeed design. Ap-
PACE to be very effective on this machine.

Incidentally, we note that the formulal79-10~9 - s341 4

plications convey information about their tasks to the oper-
ating system using system calls. This information includes

3.681, wheres is speed, gives a very close approximation tevhen tasks begin and end and what performance targets the
the energy consumption in nJ/cycle for all but the 300 MHazpplication wants for those tasks. Some applications are
setting. The power of 3.41 differs substantially from theblivious to the existence of these system calls, so an au-

power 2 predicted by simple scaling models, e.g., in [20]. tomatic task detector infers task information about them and

3.2 AMD system

generates task specification system calls on their behalf. The
system uses information about ongoing tasks to determine
what speed to use at various times, and implements this

The AMD system contains a pre-production version of thechedule using timers and special processor instructions that
900 MHz Mobile Athlon 4 processor, based on the Palominehange speed and voltage. The system uses a PACE calcula-
core, as well as 128 MB of memory. We were given docuor to compute the most energy efficient schedules that have
mentation about PowerNoW¥, the interface the chip uses the performance requested.
for dynamically changing speed and voltage.

The chip indicates it is capable of five settings, shown igoals for RightSpeed. First, we wanted it to be efficient, cre-
Table 2. We were unable to directly determine the poweiting low overhead on the system both when running in the
consumption of each setting since we lacked the necessagckground and when actively invoked. Second, we wanted
measurement equipment, so we estimate it uging V2.
We assume a power consumption of 24 W at the maximugp that it would run even when the operating system was
speed, as specified in the AMD data sheet [1].

We see that the 700 MHz and 800 MHz settings have negnt processors despite such processors having different com-
ative efficiency, so they are not worthwhile. (It is not surmands dealing with speed and voltage settings.
prising that the 800 MHz setting is not worthwhile, since

it has the same voltage as the 900 MHz setting, and thus t&
same energy consumption, but it runs more slowly.) Further-

In addition to the above functionality, we had three overall

it to be stable, relying only on documented system interfaces

upgraded. Third, we wanted it to be easily portable to differ-

2 Task specification interface

more, the 600 MHz setting has rather low efficiency. With A key piece of information an application must specify
only three worthwhile settings, one of which is only barelyabout a task is itsype An application may define types any
worthwhile, we expect PACE to be largely ineffective.
We suspect that some settings have poor efficiency be-classify different tasks into different types. First, it may
cause AMD made overly conservative choices of maximunvant to specify different performance targets for different
stable speed for certain voltages. One reason for this is tlgpes of tasks. For example, an MPEG player may require
their current design requires processor speeds and voltagdaster speed for processing its I-frames than its smaller P-

way it chooses; there are two reasons applications will want

frames. As another example, it may want a short and hatide task type from the event characteristics, i.e., whether it
deadline for its frame playback tasks but a longer and safta keystroke, mouse movement, or mouse click; which key
deadline for its user interface tasks. Second, tasks of differr mouse button was pressed or released; and to what appli-
ent types may have different CPU requirement distributionsation the event was delivered. As shown in [11], separating
so it is helpful to direct PACE to only consider tasks of théasks into types this way makes estimation of task work dis-
same type when estimating the probability distribution of &ibution more accurate, and enables us to set different poli-
task’s CPU requirement. cies for, for instance, keystrokes and mouse clicks.
RightSpeed uses this notion of task type to simplify its As suggested in [11], we use the minimum speed avail-
communication with applications. When an application beable as the pre-deadline speed for mouse movement events.
gins atask, it need only tell RightSpeed the type of that tasguch events require little processing, so this is sufficient to
RightSpeed can figure out all other information about thmeet practically all task deadlines. We use a default pre-
task, such as its performance requirements, from that tymieadline speed @f.7M for keystroke events ar@85M for
RightSpeed can give the application a unique identifier tmouse click events, whet® is the maximum speed avail-
identify this task, so the application can specify when thable on the machine. A better approach might be to com-
task completes by merely passing RightSpeed that idenpute a variable pre-deadline speed based on the distribution
fier. RightSpeed can then determine how many CPU cyclebserved and the likelihood of missing deadlines at various
that task used and use this datum to compute a new optinpaé-deadline speeds, as suggested in [11]. Unfortunately,
PACE schedule for the next task of that type. this requires accurate estimation of the tails of nonstation-
An application specifies performance targets for tasiry distributions, and we do not yet know how to do this;
types via a separate part of the task specification interfadbis is future work.
An application need only specify this data once, when it is We also need a heuristic to determine when such an in-
installed. Because task type data is persistent, i.e., it is ferred task is complete, since it is difficult to determine what
tained even when the application terminates and even whéPRU activity belongs to a given task. We use the heuris-
the system shuts down, a logical abstraction to use for this from [11], described in Section 2.4: we consider a task
data is a file. Thus, applications create files containing datamplete when either (a) all threads in the system above the
for their task types. idle priority level are blocked and no I/O is ongoing, or (b)
An application may specify a performance target in twanother user interface event is delivered to the same applica-
ways. First, it may specify a number of CPU cycles to b&on. An advantageous side effect of this is that time spent
completed by a certain deadline. Second, it may speciby unrelated threads is considered part of the task. Thus,
a deadline and a particular DVS algorithm, such as Tranghe speed schedule chosen will automatically account for the
meta’s LongRuf™, and dictate that performance be thevork performed by other threads during the task. Without
same as would be achieved via that algorithm. this accounting, the presence of such unrelated activity could
interfere with RightSpeed meeting its target deadlines.

4.3 Automatic task detector

. : . 4.4 PACE calculator
Since RightSpeed has not been released, no application

currently exists that explicity communicates its task infor- Computing the optimal speed schedule satisfying certain
mation to RightSpeed. Furthermore, even when it is rggerformance constraints requires knowledge of task CPU
leased, we expect few application writers will be both willuse distribution, which typically an application lacks. Right-
ing and able to communicate such information. Therefor§peed keeps track of how long tasks of each type have taken,
for RightSpeed to be useful, we require an automatic task dead uses this information to compute such an optimal speed
tector to infer task information from such applications and techedule with PACE.
call the task specification interface on their behalf. In [10], we described how to compute an optimal sched-
Our approach focuses on the tasks the user cares abgletassuming a linear relationship between energy and speed
most: those triggered by user interface events. User interfesgguared. Since the processors on which RightSpeed runs do
studies have shown that response times under 50-100 msado satisfy this property, we developed a more general for-
not affect user think time [19]; we thus consider 50 ms theula that does not rely on it. We discovered that the optimal
soft deadline for handling a user interface event. An exceppeed schedule satisfig’ (s) F'*(w) = K, wheres is the
tion is mouse movements, whose tracking may require repeed to run after completing cycles of a taskF*(w) is
sponse times of only 25-50 ms [12]; we thus consider 25 ntise probability the task takes more thartycles,E(s) is the
the soft deadline for handling them. energy consumption at speedand K is a constant chosen
We consider a task to begin when an application receivesasatisfy the performance constraint. For more details about
user interface event. We classify tasks into types, and deduhes formula and a proof that it works, see [8, pp. 83—-99].

5

In [10], we assumed that the CPU had arbitrarily variablthat factor such that after rounding all resulting speeds to the
speed settings that could be changed at arbitrary times. Qwarest worthwhile speed we get a schedule that meets the
real systems have only a limited number of speed settingew deadline constraint. The argument why this works is
and Windows 2000 only allows us to change speed at certais follows. The distribution of task work remaining has by
fixed times, once per millisecond. Thus, for RightSpeed wassumption not changed, but the deadline has effectively got-
need an algorithm that takes these realities into account yen shorter. Thus, all that has changed is the optimal value
still computes a near-optimal schedule. Our algorithm use$ K. This means the ratio of the new optimal speed to the
the following four steps. old optimal speed is roughly the same for all points in the

))) schedule, assuming that the function of energy versus speed
1. Create an idealized schedule using the formula abmﬁeds a reasonable shape.

Apply the granularization techniques of [10] to get a

schedule consisting of consecutpleaseseach having _ _ _
a constant speed. 4.6 Scheduling multiple simultaneous tasks

2. Foreach phase, round its speed to the closest speed th%hen multiple tasks are ongoing, the ideal speed is not

's available on the CPU and WOI‘thWhIle.. _ necessarily the sum of all the speeds for all those tasks. This
3. Round the length of each phase to an integer multiplg hecause power is not a linear function of speed, so super-
of the scheduling granularity. imposing schedules consumes a different amount of energy
4. As the rounding may have altered the schedule’s p&fran running them sequentially. Unfortunately, computing
formance characteristics, i.e., changed the pre-deadliggeasonable speed schedule that is the conjunction of two
speed, adjust the time spent at each speed by mul-extremely complex, so we avoid the issue by simply run-
ples of the scheduling granularity to make performancging at the maximum speed available when there are multi-
close to, but no less than, requested performance. pje tasks, and continue at that speed until no tasks remain.

As an optimization, we precompute a set of parameter- Fortunately, in a mobil_e compute_r (and frequently 'in a
ized speed schedules when RightSpeed is installed, baggékf[ﬁp clompu_ter) :]here |fs only a smfglre] userkan_dhtyptl:_:atI]Iy
solely on the CPU characteristics. Thus, determining a spe g will only notlce_t € performance o the tas ,W't whic
schedule involves only a binary search through the Scherbe_ is currently actively involved. Therefore, typically there

ules to find the lowest-energy one that nevertheless satisf%@ be only one ongoing task at a time. Evidence supporting

the constraint. For details of this and other optimizationy,]IS comes from workload analyses we performed in [11] on

see [8, pp. 224-226] and the code at the website associar%(anths-long_traces of eight desktop computers. We found
with this paper. that, depending on the user, between 94.7 and 99.3% of all

user interface tasks finished before the next one began.

4.5 Dealing with I/0

_ _ _ _ 4.7 Scheduling no ongoing tasks
I/O time, unlike CPU time, is unaffected by changes in

CPU speed. The model from which PACE arises accounts When no tasks are ongoing, nothing of importance is oc-
only for task CPU time, so PACE does not give optimal reeurring, so the best speed to use is generally the minimum
sults when 1/0O can occur. Essentially, the occurrence of I/@vailable. However, since our inference of tasks is imper-
will delay the completion of a task, possibly causing it tdect, there may be ongoing tasks even when RightSpeed be-
miss its deadline. lieves there are no such tasks. For instance, a task may have
We deal with this in the following way. Since the problembeen triggered by a timeout instead of by a user interface
is to complete the CPU worind the 1/O by the deadline, event. We deal with this by reverting to a traditional interval-
we must complete the CPU work within a period equal tbased scheduler when we know of no ongoing tasks. Such
the deadline minus the 1/O time. If we knew I/O time ina scheduler divides time into intervals of some fixed length
advance, PACE could compute the optimal schedule mereind chooses a speed for each interval based on the CPU uti-
by substituting the deadline minus 1/O time for the deadlindization of recent past intervals. This way, if the CPU be-
Since we do not know 1I/O time in advance, we initially as€comes busy from working on a task we cannot detect, the
sume it is 0. If I/O occurs later, we determine how longnterval-based scheduler will nevertheless increase speed to
it took and accelerate the schedule to make up for the ladgal with this unknown work.
time. One caveat is that when the number of tasks becomes zero,
Theoretically, accelerating the schedule properly requirescent past CPU utilization will likely be high because the
performing a new complex calculation using the PACE forsystem just finished working on a task. RightSpeed knows
mula. However, we can use a shortcut: we multiply allhat this recent utilization is a poor predictor of future CPU
speeds in the schedule by a constant factor, where we choasibzation because it reflects a task that is no longer active.

6

5.2 Speed controller

RSLib Io‘ads itself into each applicatlion’s address space. There, it can)
il e e i o i The lowest-level component of RSTask is the speed con-
troller. This component accepts requests to start and stop
Application 1 AppncTtionz Appliczlition3 speed schedules and to transition to idle and maximum speed
RSLib RSLib RSLib .
' User Mode states. A speed schedule consists of a sequence of phases,
Kernel Mode
\\ | each with a speed to use and a duration in multiples of
RSTask| Vitual File System Interface the scheduling granularity. The speed controller internally
Task Type Group (TTG) File Managel handles any CPU-specific commands to change the speed.
=|&8|l2 o aneger This modularity aided in porting RightSpeed to two differ-
o o = Idleness Sample Queue
|| i ent chips with different voltage scaling commands.
Ti H
oPACE ‘ The scheduler also exports routines to pause and resume
Speed Controller] the current schedule when the CPU starts and stops waiting
RSTask gets support from RSInit, RSloCnt, and RSLog through shared for I/O A pause Changes the Speed to the minimum avall-
IS e R able. A resume determines how long the CPU spent waiting

for 1/0, accelerates the remaining part of the schedule ac-

Figure 2: Architecture of RightSpeed cordingly, and resumes that schedule.

However, an interval-based scheduler has no knowledge®f3 Timer resolution controller

tasks, so it will interpret the high recent utilization as a sign)]])
that the next intervals will have high utilization. Accord-, The default timer resolution on Windows 2000 machines

ingly, it will use an unnecessarily high CPU speed. To pré:s about 10 ms. Our timer resolu_tion cqntroller reduces the
vent this problem, when the number of tasks becomes ze%’fer resolution as much as possible using we!l-documepted
RightSpeed waits for a short period of time at the minimurﬁyStem_ calls [15]. On the sysftems we usgd, this makes timer
CPU speed before initiating the interval-based scheduler. resolution, and thus scheduling granularity, 1 ms.

5.4 Task type group file manager

5 Implementation Certain persistent information is associated with each task

)))) type: its deadline, its performance target, a sample of recent
In this secfuon, we discuss how we implemented our aR3sk cPU requirements, and a schedule to use for the next
proach on Windows 2000. task. Thus, it makes sense to consider task types to be part
of a virtual file system. We could have used one file per
5.1 Architecture task type, but instead a file in this virtual file system is a
task type group filecontaining information about multiple
Figure 2 shows the architecture of RightSpeed. The maigalated task types. A task type is uniquely identified by its
component is RSTask, a kernel module that receives requefdsand its index within that file.
to begin and end tasks and schedules the CPU speed adRSTask thus exposes a virtual file system interface
cordingly. Its main components are the speed controller, tkensisting of these files. RSTask stores the informa-
task type group file manager, the automatic schedule cotien in these virtual files in real files in a reserved di-
puter, and the idleness detector, each of which we will disectory on the real file system, but RSTask exposes
cuss later. Alongside RSTask is RSloCnt, a kernel modutkem as existing in the special directoiy\.\RSTask.
that interposes on all file system requests to monitor whémhe Unix analog would be /proc/rstask/.) Subdirecto-
any synchronous 1/O’s are ongoing. The next kernel comies of this directory are valid and supported; for in-
ponent is RSLog, a low-overhead logger we use for benchtance, an application could choose to use a file called
marking and debugging. The last kernel mode component\i§.\RSTask AcmeCd AcmeAppNamgMyTasks.ttg. For
RSInit, a driver that starts before all other drivers and fgerformance, RSTask caches open files in memory and does
cilitates communication between them. In user mode wt pass along changes to the copy to the on-disk file un-
have RSLib, a user-level library that the system loads inti the file is closed or until a global hourly timer goes off.
the address space of every application. It interacts with tifgsers may configure this period.)
GUI to interpose the user interface event delivery system andApplications communicate with RSTask by performing
thereby implement the automatic task detector. This libratyO control requests on these virtual files. Supported con-
also exports functions that applications can use to commutiel requests include beginning a task of a certain type and
cate with RightSpeed. acquiring a task ID for it, ending the task with a given ID,

changing the deadline for a task type, resetting the sample7 1/O counter
recent work requirements for a task type, and various other
W qu! ype, variou The other kernel module we will discuss is RSloCnt. Its

minor ones. RSTask suppofst I/O control requests [14], . bis t tth di h 1O’ d store thi
a Windows 2000 optimization that speeds up I/O operatior@. IS to count the pending synchronous s and store this

As a further optimization, RSTask has a control request th%?um. in shared memary where the idieness detector can ac-
ss it. It must also tell RSTask to resume any paused sched-

ends one task and begins another; the automatic task detegfor h thi tb
in RSLib uses this to quickly signal the end of the previoug © Wnenever fis count becomes Zero.

user interface task when an application receives a new on We implemented RSloCnt as a file system filter driver. A
ﬁfter driver implements a filter device, a special kind of de-

vice extremely helpful in tracing system events in Windows

NT/2000. A filter device carattachto an existing device,
5.5 Task manager and sample queue causing it to intercept any requests destined for that existing

device. For more information about them, see [14, 9]. Our

RSTask keeps track of ongoing tasks and makes approffifter driver has low overhead because it merely counts the

ate calls to the scheduler when tasks begin and end. Alseguests as they start and stop and passes them on.
when a task ends, the task manager queues the informatiotnfortunately, our approach limits one to filtering only
about how long this task took in treample queuelt does non-network file systems. There are undocumented ways to
notimmediately invoke the PACE calculator since PACE cafilter network file systems and network devices, as shown
culation is best done when the CPU is otherwise idle. in [9], but we do not do this in our prototype due to our

As stated in Section 4.7, when no tasks are ongoing, v@#ability goal.
wait for a short period then initiate an interval-based sched-
uler. We do this on the Transmeta system in the follow5.8 User-mode library
ing way. When RSTask detects the departure of the last _
ongoing task, it switches to the lowest available speed and'Ve use a well-documented method to load RSLib, a user-
sets a 50 ms timer. When the timer expires, it enters tfgode library, into the address space of every process that
LongRu™ automatic speed scheduling mode, which usé_gakes QUI calls [13]. _The main acFlwty of this library is
an interval-based strategy. We chose 50 ms because thid![§"P0sing on the delivery of user interface events to the
further backward than LongRIM’s scheduler ever looks. aPplication by using enessage hool3]. With this mecha-

We have not yet implemented a scheme using an interv&ism, we tell Windows to call a given function just before it
based scheduler on the AMD system. successfully completes an application’s request for the next

message from the GUI.
RSLib also exports functions that applications can use.
Most of these allow applications to specify task informa-
5.6 lIdleness detector and automatic schedule com- tjon. Applications can interact with RSTask without these
puter calls, but they are helpful to application writers who prefer
to use a function call interface rather than make I/O control
The idleness detector is another major component gflis to a virtual file system. RSLib exports other miscel-

RSTask. It is a thread running at priority 5, just abovéaneous functions letting applications do things like disable
the idle level, so that it can easily detect when no impogytomatic detection of their tasks.

tant threads remain unblocked. If it is scheduled when an

I/O is ongoing, it tells RSTask to pause the current sched-

ule; RSloCnt will later tell RSTask to resume the schedul® Results

when no synchronous I/O’s remain in the system. If the

idleness detector runs when no 1/O is ongoing, it notifie8-1 General overhead

RSTask that all tasks are complete. The other responsibil-|, this subsection, we evaluate system overhead just from
ity of the idleness detector is to invoke the PACE Camu'"’RightSpeed running unused in the background. There are
tor on all unprocessed entries in the sample queue when {3g, main sources of this overhead: (a) making the timer in-
system is otherwise idle. Not only does this cause the OV&Etrupt every 1 ms instead of every 10 ms causes interrupt-

head of PACE calculation to occur only when the system |§qcessing time to increase; and (b) filtering I/O requests to
idle, it also eliminates overhead due to saving and restoringunt them increases the time to perform each 1/O.

floating-point registers. Since the idleness detector runs onlyty evaluate these effects. we ran the following bench-
in kernel mode, the PACE calculator does not have to Sa¥garks on a system with a 450 MHz Pentium Ill:

and restore floating-point registers before and after perform-
ing its floating-point calculations. 1. Read an uncached 32 KB file

Operation | Time |

Without Ri'ghtSp%'d S

- 104 | With only RSloCnt == Load and initialize RSLib for a process 1.401 ms

2 With only RSTask —#zzz- Install message hook 8.532us

g With RightSpeed Open systemwide auto task type group fjld59.777us

g 102 I Get application name 12.583us

% Open per-app auto task type group file | 121.229us

ﬁ 1 Intercept a non-user-interface message 2.265us

-E Intercept and handle a user interface message7.605us
0.98 L Evaluate message type 1.013us

End task and begin another 3.575us

Benchmark # Make a simple 1/O control request of RSTask 1.162us

Begin a task 3.450us

Figure 3: Time to perform various benchmarks without| Kernel-mode component 1.345us
RightSpeed and with various components of RightSpeed en-End a task 2.530ps
abled, shown with 95% confidence intervals. Note that the __Kenel-mode component 1.134us
Y-axis origin is not zero. End one task and begin another 3.462us
Kernel-mode component 1.441us

2. Write a 100 KB file with write-through Table 3: Average time RightSpeed takes to perform common

3. Read 32 KB directly fromthe disk ~ operations on the AMD machine at 900 MHz
4. Compile the RightSpeed logger device with the Win-

dows DDK
5. Format a dissertation withTEX can cause large differences from one run to another, and

(b) confidentiality agreements preclude us from publishing
certain measurements of the prototype system. In all cases

We ran them without any RightSpeed modules loade@peed changing was disabled to not confound the measure-
with only the RSTask module loaded, and with both th&ent of durations. So, all runs are at 900 MHz. Most of
RSTask and the RSloCnt modules loaded. In all cases, Weese results we measured directly by making an entry in
disabled the network to avoid interference from network irthe log each time an operation started or stopped. However,
terrupts. None of these benchmatseRightSpeed at all; some of them, such as intercepting a message, involve hid-
indeed, we did not even install RSLib to perform these exlen overhead, so we measured them by running with and
periments. We ran each benchmark enough times that tghout the operation and subtracting. We ran each opera-
95% confidence interval about the sample mean included #en 10,100 times and discarded the first 100. Table 3 shows
values more than 0.01% away from the sample mean, %€ mean results.

10,000 runs occurred, or 2,000 seconds passed, whicheveYVe see that the overhead of linking RSLib into each appli-
came first. Figure 3 shows results. cation is about 1.4 ms; this occurs only once per application,
We see that RSloCnt adds 0.3—1.5% overhead, with an avhen it starts. Some of this is RSLib’s initialization, includ-
erage of 0.5%, due to filtering 1/O operations. If we did nothg installing the message hook and opening the automatic

have to use a file system filter to do this, e.g., if Microsoftask type group files, but this accounts for little of it. In these
provided hooks allowing one to simply count ongoing I/O'$enchmarks, the application task type group file is in the file
and be notified when the last I/O leaves the system, this ovéache, but even if it were not the time to load would not be
head would likely be lower. We also observe that RSTask, igjgnificantly more.
virtue of it reducing timer granularity from 10 ms to 1 ms, The overhead of hooking all messages delivered to appli-
increases operation times by 0.7—-1.6% with an average @stions is also small. For non-user-interface messages, the
1.1%, presumably due to the system responding to more freverhead is 2.3s per message. For user interface messages,
quent timer interrupts. Combined, the overhead is 1.2% ¢he message hook must determine the event type and com-
average. municate that this task is beginning and the previous task
is ending to RightSpeed. The total extra time is small, ap-
proximately 7.6us per message. Considering that messages
arrive on the order of every few milliseconds, and that user
The next set of results evaluates the time to perform vanterface messages arrive even less often (at worst about ev-
ious RightSpeed operations. We performed these measueey 14 ms in the case of rapid mouse movement, and more
ments on the AMD system, since accurately evaluating pédypically about once every 150 ms if the user is typing at 40
formance on the Transmeta system is difficult for two reawords per minute), total overhead is low.
sons: (a) the dynamic translation of code the chip performsRightSpeed operation microbenchmarks show more detail

9

6. Perform a CPU-intensive mathematical loop

6.2 Time to perform RightSpeed operations

Workload | User | Application | Key | Click Our traces do not give us sufficient information to pre-
events | events cisely recreate the workloads. For instance, we do not col-

1 1 explorer| 17,105 9,549 lect disk contents and we irreversibly encrypt alphanumeric
2 2 explorer | 27,972 | 19,866 . .
3 3 explorer| 9,905 | 2.617 keystrokes. However, to simulate RightSpeed we need only
4 4 explorer| 11,276 6,301 know when and for how long each task ran. Thus, we use a
5 5 explorer| 21,297 | 9,291 simulator that simulates each task by performing additions
6 6 explorer| 6,096 | 5,381 repeatedly in a tight loop for the same number of cycles
7 7 explorer 6,938 | 4,443 as the original task took. Our workload simulator indicates
8 8 explorer | 24,208 | 9,337 the beginning of each task to RightSpeed with an explicit
9 1 netscape 797,642| 22,512 RSLib call; it sleeps for 2 ms at the end of each task to let
12 g |exp|§;g 122'233 53 ’ggg RightSpeed automatically detect the end of the task. We run
12 4 outlook 359',839 14’,984 this workload simulator on the AMD machine to measure
13 5 outlook | 109,202| 2,633 the performance obtained when RightSpeed schedules the
14 6 grpwise | 275,972 | 13,576 speeds.
15 ’ winword | 50,799 | 2,766 We evaluate RightSpeed's performance as follows. We
16 8 excel| 13.891] 2016 assign performance targets corresponding to an average pre-

deadline speed of 630 MHz for keystroke tasks and 765 MHz
Table 4: VTrace application workloads we use in certaifPr mouse click tasks. For each workload, we calculate how
simulations many deadlines it theoretically should miss and how much
total delay past deadlines it should achieve. We then simu-

late RightSpeed to see how many deadlines it actually misses
about the cause of overhead. Each I/O control request taléeh% thg tota?l delay it actually acrsllieves y

about 1-2us due to the time to trap into kernel mode and to _ _ _

check and copy data from user buffers to kernel buffers. In- e find that RightSpeed misses 1.5% fewer to 0.3% more

side RSTask, the time to begin a task is abouy&and the deadlines than the target, with an average absolute error of
time to end a task is about L. The most common oper- 0.4%. It_ has delay from 0.5% less to 0.1% more than. the

ation, beginning one task and ending another that is alreatfj9€t With an average absolute error of 0.2%. Since Right-

considered complete, takes about Asbof kernel time. Note SPeed conservatively rounds speeds for intervals to maxi-
that this is less than the sum of the time to begin a task aff§Z€ the probability of making deadlines, it is not surpris-

to end a task because of various optimizations for this caddd that it tends to miss fewer deadlines and have less delay

For example, we look up the task type group file only OnC@an the target. Nevertheless, the absolute error is very low,

and we acquire and release the spin lock controlling acce¥¥Wing that RightSpeed is effective at meeting performance
to the ongoing tasks list only once. targets even though it must use the millisecond-granularity

timer of Windows 2000 and even though Windows 2000
makes no guarantees about when speed-changing routines
6.3 Effect on performance will actually execute.

Applications can specify performance targets for tasks.
However, since Windows 2000 is not a real-time operating
system, scheduling decisions do not necessarily happen gge4 Time to perform PACE calculations
cisely when they should, so RightSpeed will not necessar-
ily meet these targets. In this subsection, we evaluate how\we also measured the average time to perform PACE cal-
closely it does. culations for tasks. We performed this experiment for the
These evaluations require workloads. We derived thesser 1 workload running explorer. We found that adding the
workloads from traces of users performing their normal bussample value to the task type group information and recom-
ness on desktop machines running Windows NT or Wirputing the schedule accordingly took an average of 4,417
dows 2000. For more details on the tracing, see [9]. Eaech0.312us (the 95% confidence interval)Note that these
workload corresponds to all tasks requiring no I/O that wengere always performed at the slowest, 500 MHz setting. So,
triggered by keystroke and mouse click events delivered tonge see that PACE calculations can be made quite quickly
particular application for a particular user during the severglven all our optimizations.
months that user was traced. Table 4 gives a brief description
of each workload; for more details about the users and ap- 2The standard deviation is very high (143.638), because occasion-

plications, see [11] and [8, pp. 151-154]. We inferred wheg)iy pacE calculations are interrupted by a context switch and take mil-
tasks began and ended using the method from [11]. liseconds instead of microseconds to complete.

10

Workload | Energy Energy with | Increase E

without RightSpeed k)

RightSpeed | mimicking g

LongRun™ S —
A 172.7743] 173.978J] +0.7% o 10 R RN RN RN AN A R
B 94,581 J 94.86J| +0.2% < 228888888 ¢8¢8¢s
C 1007.228J] 1006.314J| -0.1% o FE8F T8 534
D 126.786J] 126.786J] 0.0% BET R 8T 3 8%
E 379.056J] 376.047J| -0.8% &0
Algorithm

Table 5: Comparison of using built-in LongR&hschedul-

Figure 4: Summary of Table 6, showing average per-task
ing versus doing this scheduling with RightSpeed

energy consumption averaged over all workloads for various
algorithms. Numbers after an algorithm identify the maxi-

6.5 Effect of overhead on energy consumption mum CPU speed made available to that algorithm.

To evaluate the effect of RightSpeed overhead on energyanularity is 0.1 ms
co_nsumpnon_, We ran some wprkloads on the Trar?smeta Magince our simulations occur on virtual hardware, we can
chine both with and without RightSpeed. To equalize perfo

nstructed RightS dt ; the PACE glrn them much faster than real time. So, we can use longer
mance, we instructed Rightopeed to ot use the N vorkloads than those in Table 4, which were restricted to

Eulat(;r b#'\t/lmtstetad us_(re ?)? a:c_l)g%rlthmtlr:jentlcal[[tofTr?nsmﬁt Ssingle application. Instead, we use eight workloads, each
ongrRun ™ strategy. 1able o SNoWs the resufts for five st Oréorresponding tall activity of a traced user.
workloads derived from VTrace traces. We see that simu- . .
. M o . . All the algorithms we simulate, except for the no-DVS al-
lating LongRud™ with RightSpeed has little effect on the

. 8Prithm, will use the same performance target, so that we can
total energy consumption. In other words, the overhead . . .
compare them fairly using only energy consumption. The

5|gngllng the beginnings ano_l ends of ta_sks, and of Implgferformance target is to have an average pre-deadline speed
menting the speed schedule in software instead of hardwor](e400 MHz and a post-deadiine speed of 600 MHz. The
is insignificant. Incidentally, although not shown here, th? ur algorithms we consider are:

performance characteristics (deadlines missed and total d%- ’

lay) of RightSpeed mimicking LongRIM are very close
to that of LongRufM by itself, so the direct comparison of
energy consumption is valid.

e Flat. The pre-deadline speed is constant.

e Stepped. The pre-deadline speed begins at 200 MHz
and is incremented by 50 MHz after each interval. In-
terval length is chosen to achieve the desired average
pre-deadline speed. This models algorithms such as
that used by Transmeta’s LongR{n[6].

Because the real processors we implemented RightSpeed past/Peg. The pre-deadline speed is constant at
on do not have a large range of worthwhile speeds, PACE 200 MHz for the first interval, then is pegged to the

will not save sufficient energy on them to make its imple- maximum. Interval length is chosen to achieve the de-
mentation worthwhile. To evaluate the effectiveness of our sjred average pre-deadline speed. This models the al-

PACE calculator, in this section we conduct simulations as- gorithm suggested in [4].

suming future processors with better DVS characteristics. pACE. The pre-deadline speed schedule is computed

Our simulations differ from those in [10] since we do not py PACE using an estimate of task work distribution

make the same assumptions about scheduling capabilities. gerived from the most recent tasks of the same type.

In particular, we consider a finite number of settings and lim-

ited timer granularity. Results are in Table 6 and summarized in Figure 4. Note
For our simulations, we consider three processors, eatttat Flat does not change its behavior for different maximum

with a minimum setting running at 200 MHz and consumspeeds, so we present its results only for a 600 MHz maxi-

ing 1 W, and each with power consumption proportional towum speed.

speed cubed. (This cubic relationship assumes either a veryOne interesting observation is that the greater the range

low threshold voltage or a threshold voltage that is varieof speeds available on the CPU, the more energy efficient

proportionally to supply voltage using technology like thathe Stepped and PACE algorithms become. For example,

in [7].) The three processors differ only in their maximunper-task average CPU energy consumption under PACE de-

speeds: 600 MHz, 800 MHz, and 1 GHz. We assume tlezeases 19.5% when switching from a CPU with maximum

processors can only run at multiples of 50 MHz and the timepeed 600 MHz to one with maximum speed 1 GHz. This

11

6.6 Effect of PACE on future processors

Maximum speed 600 MHz Maximum speed 800 MHz Maximum speed 1 GHz
User | NoDVS | Flat | Past/Peg| Stepped | PACE || Past/Peg| Stepped | PACE || Past/Peg| Stepped | PACE
1 44.83 | 23.29 16.11 14.80 | 13.67 15.85 13.29 | 11.87 16.90 12.38 | 10.92
2 112.36 | 67.00 64.62 57.07 | 53.60 69.44 49.37 | 45.59 81.19 4475 | 40.93
3 81.93 | 39.62 31.19 25.25 | 23.34 35.78 23.80 | 21.05 42.44 22.93 | 20.06
4 48.07 | 22.20 8.44 9.04| 7.78 8.90 8.66 7.39 9.75 8.44 | 7.18
5
6
7
8

80.24 | 41.70 25.45 2459 | 23.43 25.76 21.86 | 20.70 28.26 20.23 | 19.13
51.20| 23.47 12.02 11.12 | 10.09 11.71 10.80 9.39 12.39 10.61 9.17
132.34| 77.22 73.37 64.29 | 61.26 78.65 55.99 | 52.48 91.16 51.00 | 47.47
84.75| 45.02 40.32 33.74 | 32.10 44.84 30.43 | 28.55 53.09 28.44 | 26.61

Avg | T79.46]42.44] 3394 2999] 2816 36.37 | 26.77 | 2463 | 4190 | 24.85 | 22.68 |

Table 6: Simulation results showing average per-task energy consumption, in mJ, for various algorithms, workloads, ¢
maximum CPU speeds. All algorithms except “No DVS” achieve the same performance target by using a 400 MHz avera
pre-deadline speed and a 600 MHz constant post-deadline speed.

is because the availability of a higher speed on the CPU d&lere that with proper energy management using PACE, pro-
lows a schedule to begin a task running more slowly, sinagsion of higher speeds can actuakduceenergy consump-

it can more easily make up for this slowness by runnintjon.

even faster later in the schedule. The ability to run slowly

at the beginning saves energy in the common case where

the task requires little work, since the schedule never prg- Future work

ceeds past the low-energy beginning part. PACE takes ad- . L

vantage of the broader range of speeds to find a better schéd: Modifying applications

ule, while Stepped just happens to work better with the larger aon important next step in this research is to insert calls to
set of speeds. Past/Peg, on the other hand, does worse \iiintSpeed into various applications, such as movie players,
a greater range of speeds. Essentially, Past/Peg ignores@tommunicate task information to RightSpeed. We have
but the two extreme settings of the CPU, and we see that thigown that RightSpeed is good at meeting deadline targets,

is costly in terms of energy consumption; we conclude thahq this will pay off better once we modify applications in
using intermediate speeds can save energy. this manner.

We also see from these results that PACE is always the
best algorithm, followed by Stepped, followed by Past/Pe .
foIIowe?j by Flat. This ec);]oespt%e results frorr? [11], an%‘2 User testing
shows that even when we require PACE to deal with lim- |n this paper, we have relied on user interface studies that
ited settings and timer granularity, it is still an improvemer%uggest a connection between making deadlines and user-
over existing DVS algorithms. perceived response time instead of conducting user experi-
Furthermore, we predicted in Section 3 that the great@ients ourselves. It will be important in future work to make
the available CPU speed range, the better PACE would dogdare that the performance targets RightSpeed assigns to au-
comparison to other algorithms, and we see this borne agimatically detected tasks ensure a satisfactory user experi-
in our simulation results. On the CPU with maximum speednce.
600 MHz, PACE reduces energy consumption by 6.1% com-
pared to Stepped; with maximum speed 800 MHz, the redug-
tion is 8.0%; with maximum speed 1 GHz, the reduction is‘,?'3 PACE calculator
8.7%. We hope in future to test the PACE calculator on a real
In conclusion, we find that even when a finite set of speedystem with a large range of worthwhile settings to evaluate
are available and the timer granularity is limited, PACE ids actual effect on the energy consumption of such a system.
still an improvement over other algorithms. We find that hav-
ing higher speeds available on the CPU helps PACE redug._e4 Specification of performance targets
energy consumption, and furthermore PACE does better the
greater the range of speeds available on the CPU. This is arfFor some applications, the best way to specify perfor-
important lesson for chip designers, who may think that pronance targets may not be to describe the average pre-
viding the capability of running at high voltages and theredeadline speed or an equivalent DVS algorithm. It may be
fore high speeds will increase energy consumption. We se®re natural to specify a target fraction of deadlines to make,

12

e.g., to say that 99% of tasks should complete by their dedaetween speed squared and energy. Also, one system con-
line. In future, we would like to devise a way for RightSpeedains speeds that are not worthwhile for PACE schedules. We
to meet this kind of performance target with high accuradyave therefore developed techniques to apply PACE to such

and energy efficiency. real systems, and have implemented them in RightSpeed.
We measured the overhead of RightSpeed to demonstrate
7.5 Predicting 1/0 the feasibility of using task-based deadline scheduling along

with automatic task detection and PACE calculation. We
Our approach to dealing with I/O is somewhat unsatisfagound that the overhead due to low-level system modifica-
tory, as we do not consider the I/O time a task requires untiPns, including monitoring when I/O's occur and increasing
after it actually occurs. A better approach would be to modéhe resolution of the timer, is small, on average 1.2%. This
the probability distribution of task I/O requirements for eachould be lower if there were more operating system sup-
task type and use this distribution to compute a more optim@@rt for these modifications. We found that overhead due to
schedule at the outset of the task. This requires a more co@ther aspects of RightSpeed are quite modest, on the order of
plicated model of speed and voltage scheduling, and congefew microseconds to perform most operations. Even PACE
quently a more complicated solution to computing an optfalculation, involving complicated floating-point operations,
mal schedule than PACE currently uses. takes on average only about 4.4 per task on a 500 MHz
processor, thanks to several optimizations.
We also demonstrated that RightSpeed is effective at
8 Summary and Conclusions meeting the performance targets applications specify. This
is an important finding considering that Windows 2000 does
We have implemented RightSpeed, a task-based spewat provide scheduling guarantees.
and voltage scheduler for Windows 2000, to take advantageUnfortunately, the characteristics of the machines on
of dynamic voltage scaling (DVS) capabilities on Transmeta&hich we implemented RightSpeed cannot demonstrate the
and AMD chips. Unlike traditional DVS systems, which useaisefulness of the PACE calculator in reducing energy con-
interval-based methods to change speed merely accordingt®nption of tasks. Both processors have a limited set of
recent CPU usage, RightSpeed considers tasks and their pailable settings, and effectively have even fewer since sev-
formance constraints. RightSpeed is an improvement overal settings have low relative energy efficiency. We be-
other task-based schedulers in that it uses PACE to colieve that the next generation of processors will feature more
pute optimal speed schedules and uses an efficient heuristisrthwhile settings over a greater range of speeds, enabling
for automatically detecting tasks triggered by user interfaggeater energy savings from PACE.
events. RightSpeed also distinguishes itself by running onwe performed simulations of processors whose speed ver-
Windows, the most popular laptop operating system. sus power curves match those expected from semiconduc-
RightSpeed obtains task information in two ways. Firstor theory, and found that our version of PACE, optimized
applications can use its virtual file system interface to dfer speed and modified to take into account limits of speed
rectly indicate when tasks begin and end, what task type thayd time granularity on real systems, still saves energy com-
belong to, and what performance targets should be used fatred to other algorithms. We found that as long as one
each task type. Second, RightSpeed useaudomatic task uses the PACE algorithm, energy savings from DVS im-
detectorto infer task information for applications that do nofprove with larger ranges of available speeds. For example,
use the RightSpeed task specification interface. To automat a CPU with a speed range of 200 MHz—1 GHz, we con-
ically detect tasks, RightSpeed watches for the occurrenseme 19.5% less energy than on a CPU with a speed range of
of user interface events such as keystrokes. When suchZz00 MHz—600 MHz, even when power consumption is the
event occurs, RightSpeed infers that a task begins. same on both CPUr’s at identical speeds. Furthermore, PACE
RightSpeed also featured”ACE calculator This allows is more effective at improving algorithms when the CPU has
RightSpeed to automatically monitor the work requirements greater speed range. PACE reduces energy consumption
of tasks as they complete, deduce a probability distributicmompared to the Stepped algorithm by 6.1% when the speed
of work requirements for each task type, and from those tange is 200 MHz—-600 MHz; this improvement rises to 8.7%
compute optimal schedules for scheduling CPU speed whetmen the speed range expands to 200 MHz—-1 GHz.
tasks of those type run. It computes these schedules using\n important lesson from this is that the current practice
the theory of PACE, described in [10]. of reducing the maximum speed of processors marketed for
The systems to which we have ported RightSpeed haweobile environments may be misguided. Providing the abil-
DVS characteristics quite different from the idealized condity to run at a high speed, even if it can only be for a short
tions given in [10]. They have limited scheduling granulartime due to thermal constraints, can not only make a proces-
ity, a limited supply of speeds, and a nonlinear relationshgnr more attractive to consumers evaluating them in terms

13

of their maximum performance, but can also actually re{5] I. Hong, M. Potkonjak, and M. B. Srivastava. On-line
duce energy consumption by providing DVS algorithms with ~ scheduling of hard real-time tasks on variable voltage pro-
more options. To take advantage of these options, however, C€SSO. InProceedings of the International Conference on
the system needs to use an algorithm like PACE that only ~COmMPuter Aided Desigipages 653-656, November 1998.
uses high speeds when necessary. [6] A. Klaiber. The technology behind Crust processors.

In conclusion, we have demonstrated that we can per- White paper, Transmeta Corporation, January 2000.
form task-based speed and voltage scaling efficiently in Wing7] T. Kuroda, K. Suzuki, S. Mita, T. Fujita, F. Yamane, F. Sano,
dows 2000 using documented operating system modification A. Chiba, Y. Watanabe, K. Matsuda, T. Maeda, T. Sakurai,
techniques. In addition, we have shown that even when ap- and T. Furuyama. Variable supply-voltage scheme for low-
plications are not written to communicate task and deadline ~Power high-speed CMOS digital designEEE Journal of
information to the DV'S system, we can infer when tasks be- ~ Solid-State Circuits33(3):454-462, March 1998.
gin and end using documented operating system interposi8] J. R. Lorch. Operating Systems Techniques for Reducing
tion techniques. Finally, although our PACE calculator is ~ Processor Energy ConsumptioRhD thesis, Computer Sci-
not useful for modern processors due to limited ranges of €nce Division, EECS Department, University of California
useful settings, we expect future processors to have larger 2t Berkeley, 2001.
such ranges and for PACE to be more effective on them. W] J. R. Lorch and A. J. Smith. The VTrace tool: building a
expect manufacturers will soon release such processors, ca- System tracer for Windows NT and Windows 2000SDN
pable of both very low and very high speeds, to satisfy con- Magazing15(10):86-102, October 2000.
sumers’ demand for both energy efficiency and high perfojt0] J. R. Lorch and A. J. Smith. Improving dynamic voltage

mance. scaling algorithms with PACE. IRroceedings of the 2001
The code for RightSpeed is available on the World Wide ~ACM SIGMETRICS Conferengeages 50-61, June 2001.
Web athttp://www.cs.berkeley.edu/"lorch/rightspeed [11] J. R. Lorch and A. J. Smith. Using user interface event in-

formation in dynamic voltage scaling algorithms. Techni-
cal Report UCB/CSD-02-1190, Computer Science Division,
9 Ackn owledg ments EECS, University of California at Berkeley, August 2002.

. . . 12] 1. S. MacKenzie and C. Ware. Lag as a determinant of hu-
This work would not have been possible without the co[- man performance in interactive systems.Pimceedings of

operation of people from both Transmeta and AMD, who \\TERCHI '93 pages 24-29, April 1993.
provided not only hardware but also detailed guidance in us-
ing it. Those people include Marc Fleischmann and Row
Hamilton from Transmeta and Richard Russell, Dave To-
bias, and Fred Weber from AMD. Also, we offer great thankg!4] R. Nagar.Windows NT File System Internal®'Reilly and
to the many users of our tracer whose traces yielded the Associates, Inc., Sebastopol, CA, 1997.

workloads for this paper. [15] G. Nebbett. Windows NT/2000 Native APl Reference
Macmillan Technical Publishing, Indianapolis, IN, 2000.

] Microsoft Corporation. Platform SDK Documentation
2000.

References [16] T. Pering, T. Burd, and R. W. Brodersen. The simulation
and evaluation of dynamic voltage scaling algorithms. In
[1] AMD. Mobile AMD Athlon 4 processor model 6 CPGA Proceedings of the 1998 International Symposium on Low

data sheet. On the World Wide Web at http://iwww.amd.com/ ~ Power Electronics and Desigpages 76-81, August 1998.

products/cpg/athlon/techdocs/pdf/24319.pdf, August 2001.[17] T. Pering, T. Burd, and R. W. Brodersen. \Voltage schedul-
ing in the IPARM microprocessor system. Pmoceedings of
the 2000 International Symposium on Low Power Electron-
ics and Designpages 96-101, July 2000.

[2] E. Chan, K. Govil, and H. Wasserman. Comparing algo-
rithms for dynamic speed-setting of a low-power CPU. In
Proceedings of the First ACM International Conference on

Mobile Computing and Networking (MOBICOM 9Bages [18] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling
13-25, November 1995. for low-power embedded operating systemsPtaceedings

; ; f the 18th ACM Symposium on Operating Systems Princi-
K. FI . Reinh T. Mudge. A 0
[3] autner, S Rein ardt, an_d udge _ utomatic ples (SOSPYpages 89-102, October 2001.
performance-setting for dynamic voltage scaling. Plro-
ceedings of the Seventh ACM International Conference of19] B. Shneiderman.Designing the User Interface: Strategies

Mobile Computing and Networking (MOBICOM 2001ily for Effective Human-Computer InteractiorAddison-Wes-
2001. ley, Reading, MA, 1998.

[4] D. Grunwald, P. Levis, K. I. Farkas, C. B. Morrey lll, and [20] M. Weiser, B. Welch, A. Demers, and S. Shenker. Schedul-
M. Neufeld. Policies for dynamic clock scheduling. Pno- ing for reduced CPU energy. Proceedings of the 1st Sym-
ceedings of the 4th Symposium on Operating Systems Design posium on Operating Systems Design and Implementation
and ImplementatigrOctober 2000. pages 13—-23, November 1994.

14

[21] N.H. E.Weste and K. EshraghiaPrinciples of CMOS VLSI
Design Addison-Wesley, Reading, MA, 1993.

[22] F. Yao, A. Demers, and S. Shenker. A scheduling model for
reduced CPU energy. IRroceedings of the IEEE 36th An-
nual Symposium on Foundations of Computer Scigrages
374-382, October 1995.

15

