
Task-Based Speed and Voltage Scheduling on Windows 2000

Jacob R. Lorch Alan Jay Smith

Report No. UCB/CSD-02-1191

August 2002

Computer Science Division (EECS)
University of California
Berkeley, California 94720



Task-Based Speed and Voltage Scheduling on Windows 2000�

Jacob R. Lorchy Alan Jay Smithz

August 2002

Abstract

This paper describes RightSpeed, a task-based speed and
voltage scheduler for Windows 2000. It takes advantage of
the ability of certain processors, such as those from Trans-
meta and AMD, to dynamically change speed and voltage
and thus to save energy while running more slowly. Right-
Speed uses PACE, an algorithm that computes the most en-
ergy efficient way to meet task deadlines with high proba-
bility. Since most applications do not provide enough data
about tasks, such as task deadlines, for PACE to work, Right-
Speed uses simple and efficient heuristics to automatically
detect task characteristics for such applications. We show
that RightSpeed has only 1.2% background overhead and its
operations take only a few microseconds each. It even per-
forms PACE calculation, which is quite complicated, in only
4.4 �s on average due to our extensive optimizations. We
show that RightSpeed is effective at meeting performance
targets set by applications to within 1.5%. We show that
although the PACE calculator does not save energy for the
current generation of processors due to their limited range
of worthwhile speed and voltage settings, we expect future
processors to have greater such ranges, enabling PACE to re-
duce CPU energy consumption by 6.1–8.7% relative to the
best standard algorithm. Finally, we show that with PACE,
giving a processor the ability to run at additional, higher
speeds and voltagesreducesoverall energy consumption.

1 Introduction

Reducing energy consumption is important in portable
computers due to their limited battery capacity. Further-
more, rising concerns about energy prices make energy
management important for other computers. An energy-

�This material is based upon work supported by the State of California
MICRO program, AT&T Laboratories, Cisco Systems, Fujitsu Microelec-
tronics, IBM, Intel Corporation, Maxtor Corporation, Microsoft Corpora-
tion, Quantum Corporation, Sony Research Laboratories, Sun Microsys-
tems, Toshiba Corporation, and Veritas Software.

yMicrosoft Research, lorch@microsoft.com. Although Jacob is cur-
rently affiliated with Microsoft, he performed all implementation work
while still a student at UC Berkeley. Thus, the implementation used no
internal Microsoft knowledge or documentation.

zComputer Science Division, EECS Department, University of Cali-
fornia, Berkeley, CA 94720-1776, smith@cs.berkeley.edu.

saving technology that has recently begun appearing in mod-
ern portable computers is dynamic voltage scaling (DVS),
the ability to change processor voltage without rebooting.
This enables reduced energy consumption, as lower voltages
mean lower energy consumption. However, lower voltages
necessitate lower CPU speeds, presenting an interesting op-
erating system issue: how to ensure that performance re-
mains reasonable while sometimes lowering speed to save
energy.

Traditionally, systems useinterval-basedstrategies. Such
strategies divide time into intervals of fixed length and set
the speed for each interval based on recent CPU utilization.
However, CPU utilization is only a rough indicator of the re-
quired speed. An interval-based strategy cannot distinguish
an urgent task that must run at full speed to meet a tight dead-
line from a less important task with several milliseconds to
complete and little work to do.

A better solution, as suggested by authors such as Pering
et al. [17] and Hong et al. [5], is to usetask-based schedul-
ing. Such scheduling considers the computer’s work to con-
sist of tasks with certain CPU requirements and deadlines. It
then runs the CPU fast enough to meet those deadlines with
reasonable probability. Recently, some researchers have
even built such task-based schedulers [18, 3]. In this paper,
we describe how we built RightSpeed, a task-based sched-
uler with several improvements over these existing sched-
ulers.

The key differentiating feature of RightSpeed is itsPACE
calculator, a component that determines the most energy
efficient schedule for meeting each task’s performance re-
quirements.1 In [10], we showed that computing such a
schedule requires estimating the probability distribution of
the task’s CPU requirement, and gave a method called PACE
that uses such a distribution to compute such a schedule. For
this paper, we extended this method to deal with issues that
arise in real systems: I/O wait time, overlap of multiple si-
multaneous tasks, limited available speed/voltage settings,
nonlinear relationship between speed squared and energy,
and limited timer granularity.

Another new feature of RightSpeed is itsautomatic task

1PACE stands for Processor Acceleration for Conserving Energy,
since the optimal way to schedule a task is to start out slowly, increas-
ing speed only as necessary to complete the task on time.



detector. A task-based scheduler can provide an interface
letting applications specify information about their tasks.
However, many application writers will not use it, so a task-
based scheduler should also have an automatic task detec-
tor to let it infer task information from such applications.
Flautner et al.’s scheduler has such a detector, but it requires
a great deal of complex, high-overhead, and Linux-specific
system interposition [3]. In [11], we suggested a method for
automatic task detection with a more efficient heuristic, but
did not demonstrate an implementation. RightSpeed demon-
strates an implementation of our heuristic.

Our scheduler also differs from existing schedulers by
running on Windows 2000 rather than Linux. This is im-
portant because almost all portable computers sold today
run Windows 2000 or its successor Windows XP. Our work
demonstrates that task-based scheduling can be done even
on a closed-source commodity operating system.

The goal of this paper is to demonstrate that a task-based
scheduler with a PACE calculator and an automatic task de-
tector can be implemented on a real machine running Win-
dows 2000. This involves overcoming the challenges of real
hardware and software issues, and demonstrating that the re-
sulting scheduler places little overhead on the system.

The structure of this paper is as follows. Section 2 gives
background and related work on DVS algorithms. Section 3
describes the characteristics of the processors to which we
ported RightSpeed, and evaluates the potential effectiveness
of DVS techniques on these processors. Section 4 discusses
the design of our task-based scheduler, and Section 5 de-
scribes our implementation of it. Section 6 gives results of
benchmarks showing the impact of our modifications on per-
formance and energy consumption. Section 7 discusses av-
enues for future work. Finally, Section 8 concludes.

2 Background and Related Work

2.1 Dynamic voltage scaling

In CMOS circuits, the dominant component of power con-
sumption is proportional toV 2f , whereV is voltage andf is
frequency. Energy is power times time, and time to run a cer-
tain number of cycles is inversely proportional to frequency,
so energy per cycle is proportional toV2 [21, p. 235]. At
a given voltage, the maximum frequency at which the CPU
can safely run decreases with decreasing voltage. Thus, the
system can reduce processor energy consumption by reduc-
ing CPU voltage, but this necessitates running at a slower
speed.

However, it is important to not noticeably increase sys-
tem response time, for two reasons. First, other components,
such as the disk drive and backlight, use power. Notice-
ably increasing response time may cause these components
to remain in high-power modes longer than they otherwise

would, which can more than offset processor energy sav-
ings. Second, the user will object to unduly extended re-
sponse times.

2.2 Interval-based DVS algorithms

The first researchers to discuss operating system tech-
niques for DVS were Weiser et al. [20] and Chan et al. [2].
They suggested an interval-based approach, meaning that the
system divides time into fixed-length intervals and schedules
the speed for each interval based on the CPU utilizations of
past intervals.

Interval-based strategies are used today in real systems
capable of dynamic voltage scaling, such as Transmeta’s
LongRunTM [6]. However, such strategies have problems, as
Pering et al. [16], and later Grunwald et al. [4], pointed out.
The CPU utilization by itself does not provide enough infor-
mation about system timing requirements to ensure meeting
a reasonable number of deadlines while saving energy.

2.3 Task-based voltage schedulers

Recently, researchers have started building task-based
schedulers, i.e., schedulers that consider the work of the sys-
tem to consist of tasks with certain deadlines. The goal of
a task-based scheduler is to use speeds just high enough to
meet these deadlines with reasonable probability.

Yao et al. [22] described how to compute an optimal
schedule when task CPU requirements and deadlines are
known. Hong et al. [5] later showed how to compute such
schedules more quickly using various heuristics. However,
systems do not generally have certain knowledge of task
CPU requirements, so these approaches are unrealistic.

Flautner et al. [3] built a task-based voltage scheduler
for Linux. This scheduler requires no modification of
applications—it infers all information about the system’s
tasks via heuristics. It infers that an interactive task be-
gins when a user interface event arrives, and uses a com-
plex work-tracking heuristic to decide when such a task com-
pletes. It infers that a periodic task begins when a periodic
event occurs; it considers an event periodic if the lengths of
intervals between the lastn events have a small variance. To
determine the speed for a task, it essentially computes the
average of the speeds that would have completed past simi-
lar tasks on time.

Pillai et al. [18] built a task-based scheduler for real-time
embedded systems. It runs on Linux. This scheduler as-
sumes complete knowledge of the deadlines and worst-case
CPU requirements of all tasks in the system, and assumes
these tasks are periodic. The scheduler uses different algo-
rithms, some of which make provisions for tasks completing
before their deadlines, as follows. One such algorithm slows
down the CPU when a task creates slack in the schedule by

2



completing early. Another algorithm anticipates that tasks
will likely complete early and therefore starts tasks as slowly
as possible and only uses higher speeds when these become
necessary to guarantee on-time completion.

2.4 PACE

One premise of task-based scheduling is that DVS can ex-
ploit deadlines to save energy without significantly reduc-
ing performance. This is possible since a task’s completion
time is irrelevant as long as it precedes the deadline. Thus,
in evaluating the performance of a DVS algorithm, we can
consider all tasks that complete by the deadline to have the
same effective performance.

A DVS algorithm essentially chooses a schedule describ-
ing how speed will vary with time. In [10], we showed that
two schedules that have the same average pre-deadline speed
and identical post-deadline parts will give the same effec-
tive performance no matter how much work a task requires.
This means that one can get the same performance as any
existing DVS algorithm by using different, yet performance
equivalent, speed schedules; these new schedules may even
consume less energy.

We then described an algorithm, PACE, for choosing a
speed schedule that minimizes expected energy consumption
for a given performance constraint. The PACE algorithm as-
sumes some knowledge of task CPU requirement distribu-
tion; they showed how to dynamically and effectively esti-
mate this distribution. One limitation is that PACE assumes
the processor speed and voltage are continuously variable
and that energy is a linear function of speed squared; in this
work, we extend PACE to a real DVS system without these
properties.

PACE requires the ability to detect when tasks begin and
end. In [11], we showed that there is a simple heuristic for
inferring task completion that is nearly as effective as Flaut-
ner et al.’s and requires substantially less operating system
modification. A task is considered complete when either all
threads in the system are blocked and no I/O is ongoing, or
when a new user interface event is delivered to the same ap-
plication.

Also in [11], we pointed out that user interface events be-
longing to different types, categories, and applications differ
sufficiently significantly from each other that PACE benefits,
rather than worsens, by inferring the probability distribution
of a task from a sample of only those recent past tasks that
have nearly identical characteristics. Therefore, in Right-
Speed, we keep separate samples for tasks triggered by user
interface events of different types, categories, and applica-
tions.

3 Platforms

In this section, we examine the characteristics of Trans-
meta and AMD processors to which we ported RightSpeed.
As we do so, we will discuss how these characteristics influ-
ence how we should use PACE on these processors.

First, we introduce some definitions. Asettingis a speed
and voltage combination at which a processor can prop-
erly operate. Theefficiencyof a setting is the amount by
which power consumption is reduced by using this setting
instead of emulating its speed using the best possible combi-
nation of all other settings. For example, suppose there are
three settings: 300 MHz consuming 2 W, 500 MHz consum-
ing 3.6 W, and 700 MHz consuming 6 W. We can emulate
500 MHz by running half the time at 300 MHz and half the
time at 700 MHz. This consumes 4 W, while the 500 MHz
setting consumes only 3.6 W, so the 500 MHz setting has
efficiency 10%. We can emulate 300 MHz by running 60%
of the time at 500 MHz and turning the CPU off 40% of the
time; this emulation has average power consumption 2.16 W,
so the 300 MHz setting has efficiency 7.4%. If a setting has
efficiency of 0% or less, it is notworthwhile, i.e., one should
never use it since one can get lower power consumption at
the same speed using other settings.

For PACE to be effective, a processor must have at least
three worthwhile speed/voltage settings. Furthermore, the
more settings, and the higher their efficiency, the more effec-
tive PACE will be. This is because PACE works by choosing
among speed schedules with identical performance to find
the one with least expected energy consumption. If there is
little choice in such speed schedules, and/or if there is little
difference between choosing one setting versus emulating
that setting’s speed with other settings, there will likely be
little benefit to choosing among them.

3.1 Transmeta system

The Transmeta system contains a TM5400-633 CrusoeTM

processor and 128 MB of memory (64 MB of SDRAM and
64 MB of DDRAM). 16 MB of this memory is reserved
for the Code-Morphing Software, whose primary function
is to dynamically translate x86 code to the underlying ma-
chine language of the VLIW chip. This code also imple-
ments LongRunTM, the DVS policy Transmeta chips use.
Transmeta told us how to override LongRunTM policies and
change the speed ourselves.

The processor can run at 300–633 MHz and 1.2–1.6 V.
Table 1 gives the available speeds and voltages, as well as the
power the CPU consumes at each level. We measured power
consumption by running in a tight loop of additions while
using hardware monitoring equipment Transmeta provided.

We see that the 300 MHz and 600 MHz settings have very
low efficiencies, and are therefore barely worthwhile. With

3



Speed Voltage Power Energy/cycle Efficiency
297.3 MHz 1.2 V 1.349 W 4.537 nJ 0.5%
396.6 MHz 1.225 V 1.809 W 4.561 nJ 11.0%
497.8 MHz 1.35 V 2.714 W 5.461 nJ 11.8%
598.5 MHz 1.55 V 4.348 W 7.265 nJ 0.4%
631.1 MHz 1.6 V 4.915 W 7.787 nJ N/A

Table 1: Characteristics of the Transmeta processor at vari-
ous settings

Speed Voltage Power Energy/cycle Efficiency
500 MHz 1.25 V 10.63 W 21.25 nJ 7.6%
600 MHz 1.3 V 13.79 W 22.99 nJ 1.4%
700 MHz 1.35 V 17.35 W 24.79 nJ -0.9%
800 MHz 1.4 V 21.33 W 26.66 nJ -3.6%
900 MHz 1.4 V 24.00 W 26.66 nJ N/A

Table 2: Characteristics of the AMD processor at various
settings, with power and energy values approximated

only three reasonably worthwhile settings, we do not expect
PACE to be very effective on this machine.

Incidentally, we note that the formula1:179 �10�9 �s3:41+
3:681, wheres is speed, gives a very close approximation to
the energy consumption in nJ/cycle for all but the 300 MHz
setting. The power of 3.41 differs substantially from the
power 2 predicted by simple scaling models, e.g., in [20].

3.2 AMD system

The AMD system contains a pre-production version of the
900 MHz Mobile Athlon 4 processor, based on the Palomino
core, as well as 128 MB of memory. We were given docu-
mentation about PowerNow!TM, the interface the chip uses
for dynamically changing speed and voltage.

The chip indicates it is capable of five settings, shown in
Table 2. We were unable to directly determine the power
consumption of each setting since we lacked the necessary
measurement equipment, so we estimate it usingP / V2f .
We assume a power consumption of 24 W at the maximum
speed, as specified in the AMD data sheet [1].

We see that the 700 MHz and 800 MHz settings have neg-
ative efficiency, so they are not worthwhile. (It is not sur-
prising that the 800 MHz setting is not worthwhile, since
it has the same voltage as the 900 MHz setting, and thus the
same energy consumption, but it runs more slowly.) Further-
more, the 600 MHz setting has rather low efficiency. With
only three worthwhile settings, one of which is only barely
worthwhile, we expect PACE to be largely ineffective.

We suspect that some settings have poor efficiency be-
cause AMD made overly conservative choices of maximum
stable speed for certain voltages. One reason for this is that
their current design requires processor speeds and voltages

CPU capable of dynamic voltage scaling

Operating system routines for scheduling speed and voltage
PACE calculator to compute energy efficient schedules

System calls to describe task boundaries and deadlines

Applications
instrumented
to describe
their tasks

Oblivious applications

Automatic task detector that infers
task information

Figure 1: Overview of RightSpeed

to attain only a certain set of values. More flexibility in ei-
ther dimension would let them choose settings closer to the
curve of maximum ideal efficiency.

4 Design

4.1 Overview

Figure 1 gives an overview of the RightSpeed design. Ap-
plications convey information about their tasks to the oper-
ating system using system calls. This information includes
when tasks begin and end and what performance targets the
application wants for those tasks. Some applications are
oblivious to the existence of these system calls, so an au-
tomatic task detector infers task information about them and
generates task specification system calls on their behalf. The
system uses information about ongoing tasks to determine
what speed to use at various times, and implements this
schedule using timers and special processor instructions that
change speed and voltage. The system uses a PACE calcula-
tor to compute the most energy efficient schedules that have
the performance requested.

In addition to the above functionality, we had three overall
goals for RightSpeed. First, we wanted it to be efficient, cre-
ating low overhead on the system both when running in the
background and when actively invoked. Second, we wanted
it to be stable, relying only on documented system interfaces
so that it would run even when the operating system was
upgraded. Third, we wanted it to be easily portable to differ-
ent processors despite such processors having different com-
mands dealing with speed and voltage settings.

4.2 Task specification interface

A key piece of information an application must specify
about a task is itstype. An application may define types any
way it chooses; there are two reasons applications will want
to classify different tasks into different types. First, it may
want to specify different performance targets for different
types of tasks. For example, an MPEG player may require
a faster speed for processing its I-frames than its smaller P-

4



frames. As another example, it may want a short and hard
deadline for its frame playback tasks but a longer and soft
deadline for its user interface tasks. Second, tasks of differ-
ent types may have different CPU requirement distributions,
so it is helpful to direct PACE to only consider tasks of the
same type when estimating the probability distribution of a
task’s CPU requirement.

RightSpeed uses this notion of task type to simplify its
communication with applications. When an application be-
gins a task, it need only tell RightSpeed the type of that task.
RightSpeed can figure out all other information about the
task, such as its performance requirements, from that type.
RightSpeed can give the application a unique identifier to
identify this task, so the application can specify when the
task completes by merely passing RightSpeed that identi-
fier. RightSpeed can then determine how many CPU cycles
that task used and use this datum to compute a new optimal
PACE schedule for the next task of that type.

An application specifies performance targets for task
types via a separate part of the task specification interface.
An application need only specify this data once, when it is
installed. Because task type data is persistent, i.e., it is re-
tained even when the application terminates and even when
the system shuts down, a logical abstraction to use for this
data is a file. Thus, applications create files containing data
for their task types.

An application may specify a performance target in two
ways. First, it may specify a number of CPU cycles to be
completed by a certain deadline. Second, it may specify
a deadline and a particular DVS algorithm, such as Trans-
meta’s LongRunTM, and dictate that performance be the
same as would be achieved via that algorithm.

4.3 Automatic task detector

Since RightSpeed has not been released, no application
currently exists that explicitly communicates its task infor-
mation to RightSpeed. Furthermore, even when it is re-
leased, we expect few application writers will be both will-
ing and able to communicate such information. Therefore,
for RightSpeed to be useful, we require an automatic task de-
tector to infer task information from such applications and to
call the task specification interface on their behalf.

Our approach focuses on the tasks the user cares about
most: those triggered by user interface events. User interface
studies have shown that response times under 50–100 ms do
not affect user think time [19]; we thus consider 50 ms the
soft deadline for handling a user interface event. An excep-
tion is mouse movements, whose tracking may require re-
sponse times of only 25–50 ms [12]; we thus consider 25 ms
the soft deadline for handling them.

We consider a task to begin when an application receives a
user interface event. We classify tasks into types, and deduce

the task type from the event characteristics, i.e., whether it
is a keystroke, mouse movement, or mouse click; which key
or mouse button was pressed or released; and to what appli-
cation the event was delivered. As shown in [11], separating
tasks into types this way makes estimation of task work dis-
tribution more accurate, and enables us to set different poli-
cies for, for instance, keystrokes and mouse clicks.

As suggested in [11], we use the minimum speed avail-
able as the pre-deadline speed for mouse movement events.
Such events require little processing, so this is sufficient to
meet practically all task deadlines. We use a default pre-
deadline speed of0:7M for keystroke events and0:85M for
mouse click events, whereM is the maximum speed avail-
able on the machine. A better approach might be to com-
pute a variable pre-deadline speed based on the distribution
observed and the likelihood of missing deadlines at various
pre-deadline speeds, as suggested in [11]. Unfortunately,
this requires accurate estimation of the tails of nonstation-
ary distributions, and we do not yet know how to do this;
this is future work.

We also need a heuristic to determine when such an in-
ferred task is complete, since it is difficult to determine what
CPU activity belongs to a given task. We use the heuris-
tic from [11], described in Section 2.4: we consider a task
complete when either (a) all threads in the system above the
idle priority level are blocked and no I/O is ongoing, or (b)
another user interface event is delivered to the same applica-
tion. An advantageous side effect of this is that time spent
by unrelated threads is considered part of the task. Thus,
the speed schedule chosen will automatically account for the
work performed by other threads during the task. Without
this accounting, the presence of such unrelated activity could
interfere with RightSpeed meeting its target deadlines.

4.4 PACE calculator

Computing the optimal speed schedule satisfying certain
performance constraints requires knowledge of task CPU
use distribution, which typically an application lacks. Right-
Speed keeps track of how long tasks of each type have taken,
and uses this information to compute such an optimal speed
schedule with PACE.

In [10], we described how to compute an optimal sched-
ule assuming a linear relationship between energy and speed
squared. Since the processors on which RightSpeed runs do
not satisfy this property, we developed a more general for-
mula that does not rely on it. We discovered that the optimal
speed schedule satisfiess2E0(s)F c(w) = K; wheres is the
speed to run after completingw cycles of a task,Fc(w) is
the probability the task takes more thanw cycles,E(s) is the
energy consumption at speeds, andK is a constant chosen
to satisfy the performance constraint. For more details about
this formula and a proof that it works, see [8, pp. 83–99].

5



In [10], we assumed that the CPU had arbitrarily variable
speed settings that could be changed at arbitrary times. Our
real systems have only a limited number of speed settings,
and Windows 2000 only allows us to change speed at certain
fixed times, once per millisecond. Thus, for RightSpeed we
need an algorithm that takes these realities into account yet
still computes a near-optimal schedule. Our algorithm uses
the following four steps.

1. Create an idealized schedule using the formula above.
Apply the granularization techniques of [10] to get a
schedule consisting of consecutivephases, each having
a constant speed.

2. For each phase, round its speed to the closest speed that
is available on the CPU and worthwhile.

3. Round the length of each phase to an integer multiple
of the scheduling granularity.

4. As the rounding may have altered the schedule’s per-
formance characteristics, i.e., changed the pre-deadline
speed, adjust the time spent at each speed by multi-
ples of the scheduling granularity to make performance
close to, but no less than, requested performance.

As an optimization, we precompute a set of parameter-
ized speed schedules when RightSpeed is installed, based
solely on the CPU characteristics. Thus, determining a speed
schedule involves only a binary search through the sched-
ules to find the lowest-energy one that nevertheless satisfies
the constraint. For details of this and other optimizations,
see [8, pp. 224–226] and the code at the website associated
with this paper.

4.5 Dealing with I/O

I/O time, unlike CPU time, is unaffected by changes in
CPU speed. The model from which PACE arises accounts
only for task CPU time, so PACE does not give optimal re-
sults when I/O can occur. Essentially, the occurrence of I/O
will delay the completion of a task, possibly causing it to
miss its deadline.

We deal with this in the following way. Since the problem
is to complete the CPU workand the I/O by the deadline,
we must complete the CPU work within a period equal to
the deadline minus the I/O time. If we knew I/O time in
advance, PACE could compute the optimal schedule merely
by substituting the deadline minus I/O time for the deadline.
Since we do not know I/O time in advance, we initially as-
sume it is 0. If I/O occurs later, we determine how long
it took and accelerate the schedule to make up for the lost
time.

Theoretically, accelerating the schedule properly requires
performing a new complex calculation using the PACE for-
mula. However, we can use a shortcut: we multiply all
speeds in the schedule by a constant factor, where we choose

that factor such that after rounding all resulting speeds to the
nearest worthwhile speed we get a schedule that meets the
new deadline constraint. The argument why this works is
as follows. The distribution of task work remaining has by
assumption not changed, but the deadline has effectively got-
ten shorter. Thus, all that has changed is the optimal value
of K. This means the ratio of the new optimal speed to the
old optimal speed is roughly the same for all points in the
schedule, assuming that the function of energy versus speed
has a reasonable shape.

4.6 Scheduling multiple simultaneous tasks

When multiple tasks are ongoing, the ideal speed is not
necessarily the sum of all the speeds for all those tasks. This
is because power is not a linear function of speed, so super-
imposing schedules consumes a different amount of energy
than running them sequentially. Unfortunately, computing
a reasonable speed schedule that is the conjunction of two
is extremely complex, so we avoid the issue by simply run-
ning at the maximum speed available when there are multi-
ple tasks, and continue at that speed until no tasks remain.

Fortunately, in a mobile computer (and frequently in a
desktop computer) there is only a single user and typically
he will only notice the performance of the task with which
he is currently actively involved. Therefore, typically there
will be only one ongoing task at a time. Evidence supporting
this comes from workload analyses we performed in [11] on
months-long traces of eight desktop computers. We found
that, depending on the user, between 94.7 and 99.3% of all
user interface tasks finished before the next one began.

4.7 Scheduling no ongoing tasks

When no tasks are ongoing, nothing of importance is oc-
curring, so the best speed to use is generally the minimum
available. However, since our inference of tasks is imper-
fect, there may be ongoing tasks even when RightSpeed be-
lieves there are no such tasks. For instance, a task may have
been triggered by a timeout instead of by a user interface
event. We deal with this by reverting to a traditional interval-
based scheduler when we know of no ongoing tasks. Such
a scheduler divides time into intervals of some fixed length
and chooses a speed for each interval based on the CPU uti-
lization of recent past intervals. This way, if the CPU be-
comes busy from working on a task we cannot detect, the
interval-based scheduler will nevertheless increase speed to
deal with this unknown work.

One caveat is that when the number of tasks becomes zero,
recent past CPU utilization will likely be high because the
system just finished working on a task. RightSpeed knows
that this recent utilization is a poor predictor of future CPU
utilization because it reflects a task that is no longer active.

6



User Mode
Kernel Mode

Application 1 …
RSLib

Application 2

RSLib

Application 3

RSLib

RSLib loads itself into each application’s address space. There, it can
automatically detect tasks by installing a message hook. Also, applications can, if
so designed, directly call its functions to tell it when tasks begin and end.

R
S

In
it

R
S

Io
C

nt

R
S

Lo
g

RSTask

Speed Controller

Sample Queue

Timer
Resolution

Task Type Group (TTG) File Manager

Virtual File System Interface

PACE
Calculator

Task Manager

Idleness
Detection

RSTask gets support from RSInit, RSIoCnt, and RSLog through shared
memory and direct function calls.

Figure 2: Architecture of RightSpeed

However, an interval-based scheduler has no knowledge of
tasks, so it will interpret the high recent utilization as a sign
that the next intervals will have high utilization. Accord-
ingly, it will use an unnecessarily high CPU speed. To pre-
vent this problem, when the number of tasks becomes zero,
RightSpeed waits for a short period of time at the minimum
CPU speed before initiating the interval-based scheduler.

5 Implementation

In this section, we discuss how we implemented our ap-
proach on Windows 2000.

5.1 Architecture

Figure 2 shows the architecture of RightSpeed. The main
component is RSTask, a kernel module that receives requests
to begin and end tasks and schedules the CPU speed ac-
cordingly. Its main components are the speed controller, the
task type group file manager, the automatic schedule com-
puter, and the idleness detector, each of which we will dis-
cuss later. Alongside RSTask is RSIoCnt, a kernel module
that interposes on all file system requests to monitor when
any synchronous I/O’s are ongoing. The next kernel com-
ponent is RSLog, a low-overhead logger we use for bench-
marking and debugging. The last kernel mode component is
RSInit, a driver that starts before all other drivers and fa-
cilitates communication between them. In user mode we
have RSLib, a user-level library that the system loads into
the address space of every application. It interacts with the
GUI to interpose the user interface event delivery system and
thereby implement the automatic task detector. This library
also exports functions that applications can use to communi-
cate with RightSpeed.

5.2 Speed controller

The lowest-level component of RSTask is the speed con-
troller. This component accepts requests to start and stop
speed schedules and to transition to idle and maximum speed
states. A speed schedule consists of a sequence of phases,
each with a speed to use and a duration in multiples of
the scheduling granularity. The speed controller internally
handles any CPU-specific commands to change the speed.
This modularity aided in porting RightSpeed to two differ-
ent chips with different voltage scaling commands.

The scheduler also exports routines to pause and resume
the current schedule when the CPU starts and stops waiting
for I/O. A pause changes the speed to the minimum avail-
able. A resume determines how long the CPU spent waiting
for I/O, accelerates the remaining part of the schedule ac-
cordingly, and resumes that schedule.

5.3 Timer resolution controller

The default timer resolution on Windows 2000 machines
is about 10 ms. Our timer resolution controller reduces the
timer resolution as much as possible using well-documented
system calls [15]. On the systems we used, this makes timer
resolution, and thus scheduling granularity, 1 ms.

5.4 Task type group file manager

Certain persistent information is associated with each task
type: its deadline, its performance target, a sample of recent
task CPU requirements, and a schedule to use for the next
task. Thus, it makes sense to consider task types to be part
of a virtual file system. We could have used one file per
task type, but instead a file in this virtual file system is a
task type group file, containing information about multiple
related task types. A task type is uniquely identified by its
file and its index within that file.

RSTask thus exposes a virtual file system interface
consisting of these files. RSTask stores the informa-
tion in these virtual files in real files in a reserved di-
rectory on the real file system, but RSTask exposes
them as existing in the special directorynn.nRSTask.
(The Unix analog would be /proc/rstask/.) Subdirecto-
ries of this directory are valid and supported; for in-
stance, an application could choose to use a file called
nn.nRSTasknAcmeConAcmeAppNamenMyTasks.ttg. For
performance, RSTask caches open files in memory and does
not pass along changes to the copy to the on-disk file un-
til the file is closed or until a global hourly timer goes off.
(Users may configure this period.)

Applications communicate with RSTask by performing
I/O control requests on these virtual files. Supported con-
trol requests include beginning a task of a certain type and
acquiring a task ID for it, ending the task with a given ID,

7



changing the deadline for a task type, resetting the sample of
recent work requirements for a task type, and various other
minor ones. RSTask supportsfast I/Ocontrol requests [14],
a Windows 2000 optimization that speeds up I/O operations.
As a further optimization, RSTask has a control request that
ends one task and begins another; the automatic task detector
in RSLib uses this to quickly signal the end of the previous
user interface task when an application receives a new one.

5.5 Task manager and sample queue

RSTask keeps track of ongoing tasks and makes appropri-
ate calls to the scheduler when tasks begin and end. Also,
when a task ends, the task manager queues the information
about how long this task took in thesample queue. It does
not immediately invoke the PACE calculator since PACE cal-
culation is best done when the CPU is otherwise idle.

As stated in Section 4.7, when no tasks are ongoing, we
wait for a short period then initiate an interval-based sched-
uler. We do this on the Transmeta system in the follow-
ing way. When RSTask detects the departure of the last
ongoing task, it switches to the lowest available speed and
sets a 50 ms timer. When the timer expires, it enters the
LongRunTM automatic speed scheduling mode, which uses
an interval-based strategy. We chose 50 ms because this is
further backward than LongRunTM’s scheduler ever looks.
We have not yet implemented a scheme using an interval-
based scheduler on the AMD system.

5.6 Idleness detector and automatic schedule com-
puter

The idleness detector is another major component of
RSTask. It is a thread running at priority 5, just above
the idle level, so that it can easily detect when no impor-
tant threads remain unblocked. If it is scheduled when an
I/O is ongoing, it tells RSTask to pause the current sched-
ule; RSIoCnt will later tell RSTask to resume the schedule
when no synchronous I/O’s remain in the system. If the
idleness detector runs when no I/O is ongoing, it notifies
RSTask that all tasks are complete. The other responsibil-
ity of the idleness detector is to invoke the PACE calcula-
tor on all unprocessed entries in the sample queue when the
system is otherwise idle. Not only does this cause the over-
head of PACE calculation to occur only when the system is
idle, it also eliminates overhead due to saving and restoring
floating-point registers. Since the idleness detector runs only
in kernel mode, the PACE calculator does not have to save
and restore floating-point registers before and after perform-
ing its floating-point calculations.

5.7 I/O counter

The other kernel module we will discuss is RSIoCnt. Its
job is to count the pending synchronous I/O’s and store this
count in shared memory where the idleness detector can ac-
cess it. It must also tell RSTask to resume any paused sched-
ule whenever this count becomes zero.

We implemented RSIoCnt as a file system filter driver. A
filter driver implements a filter device, a special kind of de-
vice extremely helpful in tracing system events in Windows
NT/2000. A filter device canattach to an existing device,
causing it to intercept any requests destined for that existing
device. For more information about them, see [14, 9]. Our
filter driver has low overhead because it merely counts the
requests as they start and stop and passes them on.

Unfortunately, our approach limits one to filtering only
non-network file systems. There are undocumented ways to
filter network file systems and network devices, as shown
in [9], but we do not do this in our prototype due to our
stability goal.

5.8 User-mode library

We use a well-documented method to load RSLib, a user-
mode library, into the address space of every process that
makes GUI calls [13]. The main activity of this library is
interposing on the delivery of user interface events to the
application by using amessage hook[13]. With this mecha-
nism, we tell Windows to call a given function just before it
successfully completes an application’s request for the next
message from the GUI.

RSLib also exports functions that applications can use.
Most of these allow applications to specify task informa-
tion. Applications can interact with RSTask without these
calls, but they are helpful to application writers who prefer
to use a function call interface rather than make I/O control
calls to a virtual file system. RSLib exports other miscel-
laneous functions letting applications do things like disable
automatic detection of their tasks.

6 Results

6.1 General overhead

In this subsection, we evaluate system overhead just from
RightSpeed running unused in the background. There are
two main sources of this overhead: (a) making the timer in-
terrupt every 1 ms instead of every 10 ms causes interrupt-
processing time to increase; and (b) filtering I/O requests to
count them increases the time to perform each I/O.

To evaluate these effects, we ran the following bench-
marks on a system with a 450 MHz Pentium III:

1. Read an uncached 32 KB file

8



0.98

1

1.02

1.04

1 2 3 4 5 6 Avg

T
im

e 
sc

al
ed

 s
o 

ba
se

 is
 1

Benchmark #

Without RightSpeed
With only RSIoCnt
With only RSTask

With RightSpeed

Figure 3: Time to perform various benchmarks without
RightSpeed and with various components of RightSpeed en-
abled, shown with 95% confidence intervals. Note that the
Y-axis origin is not zero.

2. Write a 100 KB file with write-through
3. Read 32 KB directly from the disk
4. Compile the RightSpeed logger device with the Win-

dows DDK
5. Format a dissertation with LATEX
6. Perform a CPU-intensive mathematical loop

We ran them without any RightSpeed modules loaded,
with only the RSTask module loaded, and with both the
RSTask and the RSIoCnt modules loaded. In all cases, we
disabled the network to avoid interference from network in-
terrupts. None of these benchmarksuseRightSpeed at all;
indeed, we did not even install RSLib to perform these ex-
periments. We ran each benchmark enough times that the
95% confidence interval about the sample mean included no
values more than 0.01% away from the sample mean, or
10,000 runs occurred, or 2,000 seconds passed, whichever
came first. Figure 3 shows results.

We see that RSIoCnt adds 0.3–1.5% overhead, with an av-
erage of 0.5%, due to filtering I/O operations. If we did not
have to use a file system filter to do this, e.g., if Microsoft
provided hooks allowing one to simply count ongoing I/O’s
and be notified when the last I/O leaves the system, this over-
head would likely be lower. We also observe that RSTask, by
virtue of it reducing timer granularity from 10 ms to 1 ms,
increases operation times by 0.7–1.6% with an average of
1.1%, presumably due to the system responding to more fre-
quent timer interrupts. Combined, the overhead is 1.2% on
average.

6.2 Time to perform RightSpeed operations

The next set of results evaluates the time to perform var-
ious RightSpeed operations. We performed these measure-
ments on the AMD system, since accurately evaluating per-
formance on the Transmeta system is difficult for two rea-
sons: (a) the dynamic translation of code the chip performs

Operation Time

Load and initialize RSLib for a process 1.401 ms
Install message hook 8.532�s
Open systemwide auto task type group file159.777�s
Get application name 12.583�s
Open per-app auto task type group file 121.229�s

Intercept a non-user-interface message 2.265�s
Intercept and handle a user interface message7.605�s

Evaluate message type 1.013�s
End task and begin another 3.575�s

Make a simple I/O control request of RSTask 1.162�s
Begin a task 3.450�s

Kernel-mode component 1.345�s
End a task 2.530�s

Kernel-mode component 1.134�s
End one task and begin another 3.462�s

Kernel-mode component 1.441�s

Table 3: Average time RightSpeed takes to perform common
operations on the AMD machine at 900 MHz

can cause large differences from one run to another, and
(b) confidentiality agreements preclude us from publishing
certain measurements of the prototype system. In all cases
speed changing was disabled to not confound the measure-
ment of durations. So, all runs are at 900 MHz. Most of
these results we measured directly by making an entry in
the log each time an operation started or stopped. However,
some of them, such as intercepting a message, involve hid-
den overhead, so we measured them by running with and
without the operation and subtracting. We ran each opera-
tion 10,100 times and discarded the first 100. Table 3 shows
the mean results.

We see that the overhead of linking RSLib into each appli-
cation is about 1.4 ms; this occurs only once per application,
when it starts. Some of this is RSLib’s initialization, includ-
ing installing the message hook and opening the automatic
task type group files, but this accounts for little of it. In these
benchmarks, the application task type group file is in the file
cache, but even if it were not the time to load would not be
significantly more.

The overhead of hooking all messages delivered to appli-
cations is also small. For non-user-interface messages, the
overhead is 2.3�s per message. For user interface messages,
the message hook must determine the event type and com-
municate that this task is beginning and the previous task
is ending to RightSpeed. The total extra time is small, ap-
proximately 7.6�s per message. Considering that messages
arrive on the order of every few milliseconds, and that user
interface messages arrive even less often (at worst about ev-
ery 14 ms in the case of rapid mouse movement, and more
typically about once every 150 ms if the user is typing at 40
words per minute), total overhead is low.

RightSpeed operation microbenchmarks show more detail

9



Workload User Application Key Click
events events

1 1 explorer 17,105 9,549
2 2 explorer 27,972 19,866
3 3 explorer 9,905 2,617
4 4 explorer 11,276 6,301
5 5 explorer 21,297 9,291
6 6 explorer 6,096 5,381
7 7 explorer 6,938 4,443
8 8 explorer 24,208 9,337
9 1 netscape 797,642 22,512
10 2 iexplore 193,823 59,667
11 3 psp 64,229 3,320
12 4 outlook 359,839 14,984
13 5 outlook 109,202 2,633
14 6 grpwise 275,972 13,576
15 7 winword 50,799 2,766
16 8 excel 13,891 2,016

Table 4: VTrace application workloads we use in certain
simulations

about the cause of overhead. Each I/O control request takes
about 1–2�s due to the time to trap into kernel mode and to
check and copy data from user buffers to kernel buffers. In-
side RSTask, the time to begin a task is about 1.3�s and the
time to end a task is about 1.1�s. The most common oper-
ation, beginning one task and ending another that is already
considered complete, takes about 1.4�s of kernel time. Note
that this is less than the sum of the time to begin a task and
to end a task because of various optimizations for this case.
For example, we look up the task type group file only once
and we acquire and release the spin lock controlling access
to the ongoing tasks list only once.

6.3 Effect on performance

Applications can specify performance targets for tasks.
However, since Windows 2000 is not a real-time operating
system, scheduling decisions do not necessarily happen pre-
cisely when they should, so RightSpeed will not necessar-
ily meet these targets. In this subsection, we evaluate how
closely it does.

These evaluations require workloads. We derived these
workloads from traces of users performing their normal busi-
ness on desktop machines running Windows NT or Win-
dows 2000. For more details on the tracing, see [9]. Each
workload corresponds to all tasks requiring no I/O that were
triggered by keystroke and mouse click events delivered to a
particular application for a particular user during the several
months that user was traced. Table 4 gives a brief description
of each workload; for more details about the users and ap-
plications, see [11] and [8, pp. 151–154]. We inferred when
tasks began and ended using the method from [11].

Our traces do not give us sufficient information to pre-
cisely recreate the workloads. For instance, we do not col-
lect disk contents and we irreversibly encrypt alphanumeric
keystrokes. However, to simulate RightSpeed we need only
know when and for how long each task ran. Thus, we use a
simulator that simulates each task by performing additions
repeatedly in a tight loop for the same number of cycles
as the original task took. Our workload simulator indicates
the beginning of each task to RightSpeed with an explicit
RSLib call; it sleeps for 2 ms at the end of each task to let
RightSpeed automatically detect the end of the task. We run
this workload simulator on the AMD machine to measure
the performance obtained when RightSpeed schedules the
speeds.

We evaluate RightSpeed’s performance as follows. We
assign performance targets corresponding to an average pre-
deadline speed of 630 MHz for keystroke tasks and 765 MHz
for mouse click tasks. For each workload, we calculate how
many deadlines it theoretically should miss and how much
total delay past deadlines it should achieve. We then simu-
late RightSpeed to see how many deadlines it actually misses
and the total delay it actually achieves.

We find that RightSpeed misses 1.5% fewer to 0.3% more
deadlines than the target, with an average absolute error of
0.4%. It has delay from 0.5% less to 0.1% more than the
target with an average absolute error of 0.2%. Since Right-
Speed conservatively rounds speeds for intervals to maxi-
mize the probability of making deadlines, it is not surpris-
ing that it tends to miss fewer deadlines and have less delay
than the target. Nevertheless, the absolute error is very low,
showing that RightSpeed is effective at meeting performance
targets even though it must use the millisecond-granularity
timer of Windows 2000 and even though Windows 2000
makes no guarantees about when speed-changing routines
will actually execute.

6.4 Time to perform PACE calculations

We also measured the average time to perform PACE cal-
culations for tasks. We performed this experiment for the
user 1 workload running explorer. We found that adding the
sample value to the task type group information and recom-
puting the schedule accordingly took an average of 4.447�s
� 0.312�s (the 95% confidence interval).2 Note that these
were always performed at the slowest, 500 MHz setting. So,
we see that PACE calculations can be made quite quickly
given all our optimizations.

2The standard deviation is very high (143.633�s), because occasion-
ally PACE calculations are interrupted by a context switch and take mil-
liseconds instead of microseconds to complete.

10



Workload Energy
without
RightSpeed

Energy with
RightSpeed
mimicking
LongRunTM

Increase

A 172.774 J 173.978 J +0.7%
B 94.581 J 94.86 J +0.2%
C 1007.228 J 1006.314 J -0.1%
D 126.786 J 126.786 J 0.0%
E 379.056 J 376.047 J -0.8%

Table 5: Comparison of using built-in LongRunTM schedul-
ing versus doing this scheduling with RightSpeed

6.5 Effect of overhead on energy consumption

To evaluate the effect of RightSpeed overhead on energy
consumption, we ran some workloads on the Transmeta ma-
chine both with and without RightSpeed. To equalize perfor-
mance, we instructed RightSpeed to not use the PACE cal-
culator but instead use an algorithm identical to Transmeta’s
LongRunTM strategy. Table 5 shows the results for five short
workloads derived from VTrace traces. We see that simu-
lating LongRunTM with RightSpeed has little effect on the
total energy consumption. In other words, the overhead of
signaling the beginnings and ends of tasks, and of imple-
menting the speed schedule in software instead of hardware
is insignificant. Incidentally, although not shown here, the
performance characteristics (deadlines missed and total de-
lay) of RightSpeed mimicking LongRunTM are very close
to that of LongRunTM by itself, so the direct comparison of
energy consumption is valid.

6.6 Effect of PACE on future processors

Because the real processors we implemented RightSpeed
on do not have a large range of worthwhile speeds, PACE
will not save sufficient energy on them to make its imple-
mentation worthwhile. To evaluate the effectiveness of our
PACE calculator, in this section we conduct simulations as-
suming future processors with better DVS characteristics.
Our simulations differ from those in [10] since we do not
make the same assumptions about scheduling capabilities.
In particular, we consider a finite number of settings and lim-
ited timer granularity.

For our simulations, we consider three processors, each
with a minimum setting running at 200 MHz and consum-
ing 1 W, and each with power consumption proportional to
speed cubed. (This cubic relationship assumes either a very
low threshold voltage or a threshold voltage that is varied
proportionally to supply voltage using technology like that
in [7].) The three processors differ only in their maximum
speeds: 600 MHz, 800 MHz, and 1 GHz. We assume the
processors can only run at multiples of 50 MHz and the timer

0
10
20
30
40
50
60
70
80
90

N
o 

D
V

S

Fl
at

Pa
st

/P
eg

 6
00

St
ep

pe
d 

60
0

PA
C

E
 6

00

Pa
st

/P
eg

 8
00

St
ep

pe
d 

80
0

PA
C

E
 8

00

Pa
st

/P
eg

 1
00

0

St
ep

pe
d 

10
00

PA
C

E
 1

00
0

A
vg

 e
ne

rg
y 

pe
r 

ta
sk

 (
m

J)

Algorithm

79.46

42.44
33.94

29.99 28.16
36.37

26.77 24.63

41.90

24.85 22.68

Figure 4: Summary of Table 6, showing average per-task
energy consumption averaged over all workloads for various
algorithms. Numbers after an algorithm identify the maxi-
mum CPU speed made available to that algorithm.

granularity is 0.1 ms.
Since our simulations occur on virtual hardware, we can

run them much faster than real time. So, we can use longer
workloads than those in Table 4, which were restricted to
a single application. Instead, we use eight workloads, each
corresponding toall activity of a traced user.

All the algorithms we simulate, except for the no-DVS al-
gorithm, will use the same performance target, so that we can
compare them fairly using only energy consumption. The
performance target is to have an average pre-deadline speed
of 400 MHz and a post-deadline speed of 600 MHz. The
four algorithms we consider are:

� Flat. The pre-deadline speed is constant.
� Stepped. The pre-deadline speed begins at 200 MHz

and is incremented by 50 MHz after each interval. In-
terval length is chosen to achieve the desired average
pre-deadline speed. This models algorithms such as
that used by Transmeta’s LongRunTM [6].

� Past/Peg. The pre-deadline speed is constant at
200 MHz for the first interval, then is pegged to the
maximum. Interval length is chosen to achieve the de-
sired average pre-deadline speed. This models the al-
gorithm suggested in [4].

� PACE. The pre-deadline speed schedule is computed
by PACE using an estimate of task work distribution
derived from the most recent tasks of the same type.

Results are in Table 6 and summarized in Figure 4. Note
that Flat does not change its behavior for different maximum
speeds, so we present its results only for a 600 MHz maxi-
mum speed.

One interesting observation is that the greater the range
of speeds available on the CPU, the more energy efficient
the Stepped and PACE algorithms become. For example,
per-task average CPU energy consumption under PACE de-
creases 19.5% when switching from a CPU with maximum
speed 600 MHz to one with maximum speed 1 GHz. This

11



Maximum speed 600 MHz Maximum speed 800 MHz Maximum speed 1 GHz
User No DVS Flat Past/Peg Stepped PACE Past/Peg Stepped PACE Past/Peg Stepped PACE
1 44.83 23.29 16.11 14.80 13.67 15.85 13.29 11.87 16.90 12.38 10.92
2 112.36 67.00 64.62 57.07 53.60 69.44 49.37 45.59 81.19 44.75 40.93
3 81.93 39.62 31.19 25.25 23.34 35.78 23.80 21.05 42.44 22.93 20.06
4 48.07 22.20 8.44 9.04 7.78 8.90 8.66 7.39 9.75 8.44 7.18
5 80.24 41.70 25.45 24.59 23.43 25.76 21.86 20.70 28.26 20.23 19.13
6 51.20 23.47 12.02 11.12 10.09 11.71 10.80 9.39 12.39 10.61 9.17
7 132.34 77.22 73.37 64.29 61.26 78.65 55.99 52.48 91.16 51.00 47.47
8 84.75 45.02 40.32 33.74 32.10 44.84 30.43 28.55 53.09 28.44 26.61

Avg 79.46 42.44 33.94 29.99 28.16 36.37 26.77 24.63 41.90 24.85 22.68

Table 6: Simulation results showing average per-task energy consumption, in mJ, for various algorithms, workloads, and
maximum CPU speeds. All algorithms except “No DVS” achieve the same performance target by using a 400 MHz average
pre-deadline speed and a 600 MHz constant post-deadline speed.

is because the availability of a higher speed on the CPU al-
lows a schedule to begin a task running more slowly, since
it can more easily make up for this slowness by running
even faster later in the schedule. The ability to run slowly
at the beginning saves energy in the common case where
the task requires little work, since the schedule never pro-
ceeds past the low-energy beginning part. PACE takes ad-
vantage of the broader range of speeds to find a better sched-
ule, while Stepped just happens to work better with the larger
set of speeds. Past/Peg, on the other hand, does worse with
a greater range of speeds. Essentially, Past/Peg ignores all
but the two extreme settings of the CPU, and we see that this
is costly in terms of energy consumption; we conclude that
using intermediate speeds can save energy.

We also see from these results that PACE is always the
best algorithm, followed by Stepped, followed by Past/Peg,
followed by Flat. This echoes the results from [11], and
shows that even when we require PACE to deal with lim-
ited settings and timer granularity, it is still an improvement
over existing DVS algorithms.

Furthermore, we predicted in Section 3 that the greater
the available CPU speed range, the better PACE would do in
comparison to other algorithms, and we see this borne out
in our simulation results. On the CPU with maximum speed
600 MHz, PACE reduces energy consumption by 6.1% com-
pared to Stepped; with maximum speed 800 MHz, the reduc-
tion is 8.0%; with maximum speed 1 GHz, the reduction is
8.7%.

In conclusion, we find that even when a finite set of speeds
are available and the timer granularity is limited, PACE is
still an improvement over other algorithms. We find that hav-
ing higher speeds available on the CPU helps PACE reduce
energy consumption, and furthermore PACE does better the
greater the range of speeds available on the CPU. This is an
important lesson for chip designers, who may think that pro-
viding the capability of running at high voltages and there-
fore high speeds will increase energy consumption. We see

here that with proper energy management using PACE, pro-
vision of higher speeds can actuallyreduceenergy consump-
tion.

7 Future work

7.1 Modifying applications

An important next step in this research is to insert calls to
RightSpeed into various applications, such as movie players,
to communicate task information to RightSpeed. We have
shown that RightSpeed is good at meeting deadline targets,
and this will pay off better once we modify applications in
this manner.

7.2 User testing

In this paper, we have relied on user interface studies that
suggest a connection between making deadlines and user-
perceived response time instead of conducting user experi-
ments ourselves. It will be important in future work to make
sure that the performance targets RightSpeed assigns to au-
tomatically detected tasks ensure a satisfactory user experi-
ence.

7.3 PACE calculator

We hope in future to test the PACE calculator on a real
system with a large range of worthwhile settings to evaluate
its actual effect on the energy consumption of such a system.

7.4 Specification of performance targets

For some applications, the best way to specify perfor-
mance targets may not be to describe the average pre-
deadline speed or an equivalent DVS algorithm. It may be
more natural to specify a target fraction of deadlines to make,

12



e.g., to say that 99% of tasks should complete by their dead-
line. In future, we would like to devise a way for RightSpeed
to meet this kind of performance target with high accuracy
and energy efficiency.

7.5 Predicting I/O

Our approach to dealing with I/O is somewhat unsatisfac-
tory, as we do not consider the I/O time a task requires until
after it actually occurs. A better approach would be to model
the probability distribution of task I/O requirements for each
task type and use this distribution to compute a more optimal
schedule at the outset of the task. This requires a more com-
plicated model of speed and voltage scheduling, and conse-
quently a more complicated solution to computing an opti-
mal schedule than PACE currently uses.

8 Summary and Conclusions

We have implemented RightSpeed, a task-based speed
and voltage scheduler for Windows 2000, to take advantage
of dynamic voltage scaling (DVS) capabilities on Transmeta
and AMD chips. Unlike traditional DVS systems, which use
interval-based methods to change speed merely according to
recent CPU usage, RightSpeed considers tasks and their per-
formance constraints. RightSpeed is an improvement over
other task-based schedulers in that it uses PACE to com-
pute optimal speed schedules and uses an efficient heuristic
for automatically detecting tasks triggered by user interface
events. RightSpeed also distinguishes itself by running on
Windows, the most popular laptop operating system.

RightSpeed obtains task information in two ways. First,
applications can use its virtual file system interface to di-
rectly indicate when tasks begin and end, what task type they
belong to, and what performance targets should be used for
each task type. Second, RightSpeed uses anautomatic task
detectorto infer task information for applications that do not
use the RightSpeed task specification interface. To automat-
ically detect tasks, RightSpeed watches for the occurrence
of user interface events such as keystrokes. When such an
event occurs, RightSpeed infers that a task begins.

RightSpeed also features aPACE calculator. This allows
RightSpeed to automatically monitor the work requirements
of tasks as they complete, deduce a probability distribution
of work requirements for each task type, and from those to
compute optimal schedules for scheduling CPU speed when
tasks of those type run. It computes these schedules using
the theory of PACE, described in [10].

The systems to which we have ported RightSpeed have
DVS characteristics quite different from the idealized condi-
tions given in [10]. They have limited scheduling granular-
ity, a limited supply of speeds, and a nonlinear relationship

between speed squared and energy. Also, one system con-
tains speeds that are not worthwhile for PACE schedules. We
have therefore developed techniques to apply PACE to such
real systems, and have implemented them in RightSpeed.

We measured the overhead of RightSpeed to demonstrate
the feasibility of using task-based deadline scheduling along
with automatic task detection and PACE calculation. We
found that the overhead due to low-level system modifica-
tions, including monitoring when I/O’s occur and increasing
the resolution of the timer, is small, on average 1.2%. This
would be lower if there were more operating system sup-
port for these modifications. We found that overhead due to
other aspects of RightSpeed are quite modest, on the order of
a few microseconds to perform most operations. Even PACE
calculation, involving complicated floating-point operations,
takes on average only about 4.4�s per task on a 500 MHz
processor, thanks to several optimizations.

We also demonstrated that RightSpeed is effective at
meeting the performance targets applications specify. This
is an important finding considering that Windows 2000 does
not provide scheduling guarantees.

Unfortunately, the characteristics of the machines on
which we implemented RightSpeed cannot demonstrate the
usefulness of the PACE calculator in reducing energy con-
sumption of tasks. Both processors have a limited set of
available settings, and effectively have even fewer since sev-
eral settings have low relative energy efficiency. We be-
lieve that the next generation of processors will feature more
worthwhile settings over a greater range of speeds, enabling
greater energy savings from PACE.

We performed simulations of processors whose speed ver-
sus power curves match those expected from semiconduc-
tor theory, and found that our version of PACE, optimized
for speed and modified to take into account limits of speed
and time granularity on real systems, still saves energy com-
pared to other algorithms. We found that as long as one
uses the PACE algorithm, energy savings from DVS im-
prove with larger ranges of available speeds. For example,
on a CPU with a speed range of 200 MHz–1 GHz, we con-
sume 19.5% less energy than on a CPU with a speed range of
200 MHz–600 MHz, even when power consumption is the
same on both CPU’s at identical speeds. Furthermore, PACE
is more effective at improving algorithms when the CPU has
a greater speed range. PACE reduces energy consumption
compared to the Stepped algorithm by 6.1% when the speed
range is 200 MHz–600 MHz; this improvement rises to 8.7%
when the speed range expands to 200 MHz–1 GHz.

An important lesson from this is that the current practice
of reducing the maximum speed of processors marketed for
mobile environments may be misguided. Providing the abil-
ity to run at a high speed, even if it can only be for a short
time due to thermal constraints, can not only make a proces-
sor more attractive to consumers evaluating them in terms

13



of their maximum performance, but can also actually re-
duce energy consumption by providing DVS algorithms with
more options. To take advantage of these options, however,
the system needs to use an algorithm like PACE that only
uses high speeds when necessary.

In conclusion, we have demonstrated that we can per-
form task-based speed and voltage scaling efficiently in Win-
dows 2000 using documented operating system modification
techniques. In addition, we have shown that even when ap-
plications are not written to communicate task and deadline
information to the DVS system, we can infer when tasks be-
gin and end using documented operating system interposi-
tion techniques. Finally, although our PACE calculator is
not useful for modern processors due to limited ranges of
useful settings, we expect future processors to have larger
such ranges and for PACE to be more effective on them. We
expect manufacturers will soon release such processors, ca-
pable of both very low and very high speeds, to satisfy con-
sumers’ demand for both energy efficiency and high perfor-
mance.

The code for RightSpeed is available on the World Wide
Web athttp://www.cs.berkeley.edu/˜lorch/rightspeed.

9 Acknowledgments

This work would not have been possible without the co-
operation of people from both Transmeta and AMD, who
provided not only hardware but also detailed guidance in us-
ing it. Those people include Marc Fleischmann and Rowan
Hamilton from Transmeta and Richard Russell, Dave To-
bias, and Fred Weber from AMD. Also, we offer great thanks
to the many users of our tracer whose traces yielded the
workloads for this paper.

References

[1] AMD. Mobile AMD Athlon 4 processor model 6 CPGA
data sheet. On the World Wide Web at http://www.amd.com/
products/cpg/athlon/techdocs/pdf/24319.pdf, August 2001.

[2] E. Chan, K. Govil, and H. Wasserman. Comparing algo-
rithms for dynamic speed-setting of a low-power CPU. In
Proceedings of the First ACM International Conference on
Mobile Computing and Networking (MOBICOM 95), pages
13–25, November 1995.

[3] K. Flautner, S. Reinhardt, and T. Mudge. Automatic
performance-setting for dynamic voltage scaling. InPro-
ceedings of the Seventh ACM International Conference on
Mobile Computing and Networking (MOBICOM 2001), July
2001.

[4] D. Grunwald, P. Levis, K. I. Farkas, C. B. Morrey III, and
M. Neufeld. Policies for dynamic clock scheduling. InPro-
ceedings of the 4th Symposium on Operating Systems Design
and Implementation, October 2000.

[5] I. Hong, M. Potkonjak, and M. B. Srivastava. On-line
scheduling of hard real-time tasks on variable voltage pro-
cessor. InProceedings of the International Conference on
Computer Aided Design, pages 653–656, November 1998.

[6] A. Klaiber. The technology behind CrusoeTM processors.
White paper, Transmeta Corporation, January 2000.

[7] T. Kuroda, K. Suzuki, S. Mita, T. Fujita, F. Yamane, F. Sano,
A. Chiba, Y. Watanabe, K. Matsuda, T. Maeda, T. Sakurai,
and T. Furuyama. Variable supply-voltage scheme for low-
power high-speed CMOS digital design.IEEE Journal of
Solid-State Circuits, 33(3):454–462, March 1998.

[8] J. R. Lorch. Operating Systems Techniques for Reducing
Processor Energy Consumption. PhD thesis, Computer Sci-
ence Division, EECS Department, University of California
at Berkeley, 2001.

[9] J. R. Lorch and A. J. Smith. The VTrace tool: building a
system tracer for Windows NT and Windows 2000.MSDN
Magazine, 15(10):86–102, October 2000.

[10] J. R. Lorch and A. J. Smith. Improving dynamic voltage
scaling algorithms with PACE. InProceedings of the 2001
ACM SIGMETRICS Conference, pages 50–61, June 2001.

[11] J. R. Lorch and A. J. Smith. Using user interface event in-
formation in dynamic voltage scaling algorithms. Techni-
cal Report UCB/CSD-02-1190, Computer Science Division,
EECS, University of California at Berkeley, August 2002.

[12] I. S. MacKenzie and C. Ware. Lag as a determinant of hu-
man performance in interactive systems. InProceedings of
INTERCHI ’93, pages 24–29, April 1993.

[13] Microsoft Corporation. Platform SDK Documentation,
2000.

[14] R. Nagar.Windows NT File System Internals. O’Reilly and
Associates, Inc., Sebastopol, CA, 1997.

[15] G. Nebbett. Windows NT/2000 Native API Reference.
Macmillan Technical Publishing, Indianapolis, IN, 2000.

[16] T. Pering, T. Burd, and R. W. Brodersen. The simulation
and evaluation of dynamic voltage scaling algorithms. In
Proceedings of the 1998 International Symposium on Low
Power Electronics and Design, pages 76–81, August 1998.

[17] T. Pering, T. Burd, and R. W. Brodersen. Voltage schedul-
ing in the lpARM microprocessor system. InProceedings of
the 2000 International Symposium on Low Power Electron-
ics and Design, pages 96–101, July 2000.

[18] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling
for low-power embedded operating systems. InProceedings
of the 18th ACM Symposium on Operating Systems Princi-
ples (SOSP), pages 89–102, October 2001.

[19] B. Shneiderman.Designing the User Interface: Strategies
for Effective Human-Computer Interaction. Addison-Wes-
ley, Reading, MA, 1998.

[20] M. Weiser, B. Welch, A. Demers, and S. Shenker. Schedul-
ing for reduced CPU energy. InProceedings of the 1st Sym-
posium on Operating Systems Design and Implementation,
pages 13–23, November 1994.

14



[21] N. H. E. Weste and K. Eshraghian.Principles of CMOS VLSI
Design. Addison-Wesley, Reading, MA, 1993.

[22] F. Yao, A. Demers, and S. Shenker. A scheduling model for
reduced CPU energy. InProceedings of the IEEE 36th An-
nual Symposium on Foundations of Computer Science, pages
374–382, October 1995.

15


