
Handling the Complexities of a Real-World Language:

A Harmonia Language Module for C

Stephen McCamant

Report No. UCB/CSD-02-1192

August 22, 2002

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Handling the Complexities of a Real-World Language:

A Harmonia Language Module for C

Stephen McCamant˜

University of California, Berkeley

smcc@cs.berkeley.edu

August 22, 2002

Abstract

The syntax of popular programming languages often includes features that don’t conform to the simplest models

of program translation. Though designed to be easy for conventional compilers to handle, these features can cause

trouble for language analysis in other environments. In implementing support for the C language within the Harmonia

incremental framework, we’ve needed unconventional approaches to deal with the language’s quirks. Closely following

the language speci˛cation, we describe how a ‚ex-based lexer, an ambiguous context-free grammar, and an object-

oriented syntax-tree based analysis can be built to function well in a text editor or other interactive environment.

By resolving syntactic ambiguities during name resolution, we collect accurate semantic information about identi˛ers

and types, providing the basis for enhanced services in our augmented version of XEmacs.

1 Introduction

Harmonia is a framework for building interactive, language based tools for viewing, editing and transforming program

source code [Har]. Harmonia is language-independent, providing incremental lexer and parser drivers and a framework

for semantic analysis in which language-specific tables and code are contained in dynamically loadable libraries, called

language modules. About two dozen of these modules have been written so far, providing lexical and syntactic speci-

fications for a variety of languages, including many general-purpose programming languages as well as little languages

specific to the Harmonia project.

We describe the construction of a language module to support the C programming language, specifically the recent

ISO standard 9899 :19 9 9 , ‘C99 ’ for short. (References of the form (x 1.2.3.4) refer to rules in that standard, [JTC99a],
which served as the main specification for what to implement, such as rule 4 in section 1.2.3). The C language module

is the most complex language specification built for the project to date, mainly because of the extensive semantic

analysis performed. While our system can perform semantic analysis for several other languages, including a small

object-oriented language used in compiler implementation classes and our syntax specification language, C is the first

‘real-world’ language module to include the most significant phases of semantic analysis required to determine whether

a program is legal.

The analysis of C presents several challenges, since the design of the language did not contemplate the sort of inter-

active environment Harmonia presents. Several features of C, including its separate compilation, use of the preprocessor,

and insistence on declaration before use, show its origin in batch compilation systems with limited resources. While these

features are at worst minor annoyances for modern C compiler writers, they present much more fundamental problems

for the design of a Harmonia language module, which must work in a more restricted environment. In particular, the

framework provides two major constraints: first, the boundaries between the usual lexing, parsing, and semantic analysis

phases must be strict. Because our lexer and parser operate incrementally on changed regions of a syntax tree, phases

can’t make assumptions about what parts of other analysis phases have completed, or indeed even about a left-to-right

ordering of analysis. Second, because our syntax tree is a unified representation of all the persistent information about

˜This work was supported in part by NSF grants CCR-9988531 and CCR-0098314

1

a program, the analyses must all work on a common data structure. The structure of our single tree is thus a trade-

off between the needs of the parser and of later analyses, and the results of semantic analysis are not new tables of

information but annotations on the same tree.

Compensating for the rigidness of the framework, however, we also have access to some very powerful analysis tools.

The most important of these is our generalized LR (GLR) parser, which is what allows us to deal with a troublesome

part of C’s grammar relating to type names. The C grammar gives different treatment to names declared with typedef

to represent types, but there is nothing in the grammar to distinguish such names from ordinary identifiers. In a batch

processing compiler, the conventional way to handle this ambiguity is to feed symbol table information back from the

semantic analysis phase to the lexer, so it can give typedef names a different lexeme from normal identifiers. This

approach would not work with Harmonia’s pass separation: the semantic information simply is not available at the right

time. Instead, we write an ambiguous grammar for C, and then use Harmonia’s GLR parser, which can efficiently find

all the alternative representations of the token stream and represent them in a packed ‘parse DAG’ structure. (Roughly

speaking, a GLR parser ‘forks’ into separate streams of control whenever there is a conflict in the LR table; the streams

rejoin when their states match). It is then left to a later semantic analysis to choose between the alternatives using

information on the meaning of names. This general approach had been conceived as part of the rationale for the

incremental GLR parsing algorithm ([WG97]), but not previously implemented in a full-scale system.

2 Lexing and Parsing

2.1 Lexing and the Phases of Analysis

With the exception of the translation steps commonly done by a preprocessor, the lexical structure of C is straightforward.

Our lexical description is written using the standard notation of flex [Pax95], making liberal use of defined sub-patterns

to encapsulate complicated regular expressions. A start condition is used to simplify the description of matching /* */

comments, but none of flex’s other more advanced features, such as trailing contexts or creating multiple tokens in an

action, are needed. In particular, flex’s longest-match heuristic conveniently coincides with the rules of C. The complete

flex specification can be found in Appendix A.

The lexer tries to determine as much semantically useful information about a token as possible, though since the

lexer interface is limited to giving one of a fixed set of token names to a string of text, this is limited to simple tasks like

including the type modifiers on integer constants (see Figure 1). In contrast, transformations that involve changing the

text of the program, such as the concatenation of adjacent string constants and the replacement of escape characters

within them, are deferred to semantic analysis. The standard description of C [JTC99a] has these transformations

occurring before parsing, but because our mechanism is incremental, we must keep a representation that matches the

source code directly.

Conceptually, the operations of a C compiler on a source file are described as a sequence of many phases (x 5.1.1.2),
though in practice implementations compile either in a single pass, or with a preprocessor pass combining phases 1-4

(Figure 2). Since the scope of this project does not cover correct support of constructs enabled by the preprocessor,

our system only fully supports the processing phases traditionally carried out by a compiler proper, and not the work

of a preprocessor. As an exception, a few commonly used preprocessor features are recognized so that they can be

passed over in source files where they appear. The most obvious example of a construct treated this way are comments

(both the matching /* */ and C++-like // types), but our lexer also recognizes backslash-newline line continuations

when they appear in whitespace, and ignores preprocessor directive lines starting with #. The notorious ANSI ‘trigraph’

feature, in which for instance the sequence ??< can be used anywhere in place of the character { that doesn’t appear

in some non-ASCII character sets, is not supported. On the other hand the feature that replaced them, ‘digraphs’

{INTEGER}(ll|LL) { RETURN_TOKEN(INT_CONST_LL); }

{INTEGER}([Uu](ll|LL)|(ll|LL)[Uu]) { RETURN_TOKEN(INT_CONST_ULL); }

Figure 1: The lexer recognizes the various possibilities for type modi˛ers on integer literals, which along with the size of the

integer (determined in semantics) decide the type of the expression. For instance, an integer literal ending in ll will have either

signed or unsigned long long type (x 6.4.4.1.5). (An excerpt from the full ‚ex rules found in Appendix A).

2

1. Multibyte character and trigraph expansion

2. Backslash-newline compression

3. "Preprocessor" tokenization and comment removal

4. Inclusion and macro expansion

5. Escape sequence and character set conversion

6. Adjacent string literal concatenation

7. "Real" tokenization, and parsing

Figure 2: Phases of frontend processing speci˛ed in the C standard (conceptual). For an explanation of details such as the

di¸erence between preprocessor tokenization and \real" tokenization, see (x 5.1.1.2).

like <% that can only appear as complete tokens, can conveniently be supported because their occurrence is isolated in

single lexer rules. Also, the Java-style universal character names (\uXXXX and \UXXXXXXXX) are recognized, though not

translated when they appear in identifiers, since the Harmonia framework doesn’t support Unicode.

2.2 Parsing and Grammar

Harmonia’s grammar specification language supports the standard EBNF ?, +, and * operators for specifying optional

elements and sequences. A suffix of ? denotes that an element can occur once or not at all, a suffix of * that it can

occur zero or more times, and a suffix of + that it can occur one or more times. In addition, Harmonia sequences can

have separators, like the commas that occur between the elements of a list. These features allow us to treat sequences

abstractly; rather than being left-recursive or right-recursive, they are balanced into trees by the parser and traversed by

iterator objects.

Our context-free grammar for C is based on the standard, first from the second edition of K&R [KR88], then updated

with the changes from the C99 standard [JTC99a]. Besides some abbreviation of the standards’ verbose production

names, the main differences can be thought of as reversing the changes made in translating the language’s abstract

grammar into the unambiguous context-free grammar presented in the standards. The standards’ use of an opt subscript

on nonterminals is a special case of Harmonia’s ? operator, and most of its nonterminals with names ending in -list

correspond to sequences that Harmonia can express with its + and * operators, depending on whether the nonterminal

is optional when it occurs (Figure 3).

Whenever possible, the grammar has been arranged so as to minimize the size and complexity of the resulting

parse trees; this reduces the memory usage of the representation, but more importantly simplifies the specification of

semantic analyses. This is achieved by making as much use as possible of the EBNF operators, and then substituting the

nonterminals with a single alternative (often incorporating EBNF) into the right-hand sides where they appear, whenever

doing so is sensible. It is not possible to eliminate every single-production rule in this way, because the EBNF operators

3

Standard C Grammar Harmonia Grammar

jump-statement:

return expressionopt
jump_stmt: RETURN exprs?

compound-statement:

{ block-item-listopt }

block-item-list:

block-item

block-item-list block-item

comp_stmt: ’{’ block_item* ’}’

enum-speci˛er:

enum identi˛er { enumerator-list }

enumerator-list:

enumerator

enumerator-list , enumerator

enum_spec: ENUM IDSYM ’{’ enum+[’,’] ’}’

Figure 3: Harmonia’s EBNF operators allow us to abstract the patterns of optional elements and sequences in the C grammar.

multiplicative-expression:

cast-expression

multiplicative-expression * cast-expression

multiplicative-expression / cast-expression

multiplicative-expression % cast-expression

additive-expression:

multiplicative-expression

additive-expression + multiplicative-expression

additive-expression - multiplicative-expression

Figure 4: The syntax of multiplicative and additive expressions, as speci˛ed in the C standard (x A.2.1).

are not allowed to nest in the current implementation. However, this nesting might not be desirable anyway, since there

are semantic behaviors that can usefully be factored out in the many places they appear.

The most important example of this transformation is the grammar of expressions. The C standard grammar is

written to unambiguously specify the precedence of operators by using a different nonterminal for the expressions that

occur at every level of precedence: additive-expression, shift-expression, relational-expression, and so on (Figure 4).

While suitable for their purposes, this choice would be undesirable for Harmonia, as it would introduce many additional

levels of one-child (‘chain’) nonterminals in the resulting parse trees, and require additional levels of indirection in the

specification of semantic analysis. Unfortunately it is not possible to merge all of the expression nonterminals, since

several of them occur in other productions of the grammar. We have been able to combine these rules into productions

for three nonterminals, corresponding to the C standard’s expression, assignment-expression, and conditional-expression,

which for grammar brevity we abbreviate as exprs, assign_expr, and expr (see Figure 5 for an example). The complete

EBNF grammar can be found in Appendix B.

2.3 Static Ambiguity Resolution

As in any LR-style tool, this merging of productions introduces spurious ambiguity in the grammar; besides the most

numerous cases of precedence and associativity in expressions, ambiguity also arises from the most natural way of

describing C’s if statements with optional else clauses, the well-known ‘dangling-else’ difficulty. Since all of these

ambiguities can be statically resolved based of the properties of a grammar, we would like to be able to resolve them

at the time of constructing parse tables, so the parser need not worry about them at analysis-time. Harmonia’s current

facility for resolving these ambiguities, however, is limited to the capabilities provided by bison [CP99], which work

intuitively only for resolving conflicts between binary operators: operators can be ordered according to precedence and

declared to have certain associativities with %left, %right and %nonassoc, and productions can also be given precedence

matching that of an operator with a %prec declaration.

As is the standard practice with bison and similar tools, the conflicts between most operators were resolved simply

by declaring the operators to be either left- or right-associative in the correct precedence order. The other expression

4

%left<operator> MINUS { alias ’-’ } PLUS { alias ’+’ }

%left<operator> TIMES { alias ’*’ } DIV { alias ’/’ } \

MOD { alias ’%’ }

%%

expr: /* ... */

| expr ’+’ expr

| expr ’-’ expr

| expr ’*’ expr

| expr ’/’ expr

| expr ’%’ expr

/* ... */

Figure 5: The same part of the expression grammar shown in Figure 4, as a Harmonia grammar speci˛cation. By declaring the

associativity and precedence of operators as properties of the tokens, we can specify the syntax of expressions in a way that

matches the abstract view used by the semantics, without the need for the many chain productions found in the standard’s

unambiguous grammar.

Expression Symbol

MultiplyTypeCast

(Area) * x

Variable Variable

Parenthesized ExprTypeName Dereference

TypedefName

Figure 6: The parse DAG resulting from the expression (Area)*x. If Area is the name of a user-de˛ned type, then the expression

is a type-cast of a dereference (the lighter subtree containing the TypeCast and Dereference nodes), while if Area is a variable,

the expression is a multiplication (the darker subtree with Multiply and Dereference). Harmonia’s GLR parser combines these two

interpretations (conceptually parse trees) into a single parse graph in which common children are shared. (For clarity, some chain

nonterminals have been omitted).

productions like the conditional (? :) operator and array indexing can also be parsed correctly with appropriate precedence

declarations, though it is not easy to see by inspection that the ? and : tokens should, for instance, be marked as being

right-associative to achieve the desired grouping. (The best way to make sense of the rule is that the sequence ?-

expression-: is to act like a right-associative binary operator).

The dangling-else ambiguity can also be resolved using precedence declarations, though not without extra com-

plications to the abstract syntax tree. Ideally, we would like to specify that the sequence of an else token and its

corresponding statement are optional in the production for an if statement, but in this case the table conflict would be

between shifting the else token and reducing an empty optional else-clause. The nonterminal representing an optional

else-clause is automatically generated in Harmonia’s translation from EBNF, however, so it is not possible to give it a

precedence declaration. Instead, we are forced to represent the choice by a pair of productions in the grammar. For C,

we have chosen to write two productions, one each for if statements with and without else clauses.

2.4 Semantic Ambiguity Resolution

With all of these static ambiguities resolved, however, we are still left with the most important and troublesome ambiguity

in the C grammar, which arises from the use of typedef. In several places in the grammar, most commonly in declarations

5

Declaration ::= DeclarationSpeci˛er+ Declarator˜
’,’ ’;’

unsigned const int x, *p;

Figure 7: The syntax of C declarations (simpli˛ed from Appendix B), and an example

a. int (*x)[5];

b. struct foo { int x; };

Figure 8: Other features of declaration syntax

a. int (x);

b. int;

Figure 9: Strange looking declarations that are still legal according to our grammar (b is semantically illegal under (x 6.7.2))

but also when a parenthesized expression might be a cast operator, C needs to distinguish between the name of a type

and other kinds of identifiers. This is easiest to understand in the case of a parenthesized expression: a type name in

parentheses can only be a cast, while other things appearing inside parentheses are simply to be grouped for parsing.

For instance, an expression like (Area)*x has two possible parses (shown in Figure 6) depending on whether Area is

the name of a variable or a type.

The ambiguity is less intuitively obvious, though more common, in declarations. The basic structure of a C declaration

is one or more ‘declaration specifiers’ followed by zero or more ‘declarators’; for instance, in the declaration in Figure 7,

unsigned, const and int are declaration specifiers, while x and *p are declarators. There are several possibilities in

C’s declaration syntax that are rarely exploited in practice: for instance, an extra set of parentheses are allowed around

a declarator for grouping, as in Figure 8 line a, and declarations without declarators are possible, which is the reason for

the oft-forgotten semicolon after a structure definition like Figure 8 line b, which is in fact a declaration of no instances

of the structure.

For more standard kinds of declarations, examples that have the same structure, like those in Figure 9 , look unusual,

but our grammar allows them for the sake of uniformity in the rules. There are also some rules of the language that

cannot be practically expressed in the grammar: for instance, a declaration is limited to certain combinations of specifiers

(you cannot have a short long int), but the number of possible combinations is large: for instance, the keywords in

the type most commonly referred to as unsigned long int can in fact appear in any of the 6 possible permutations,

along with optional const and volatile qualifiers, and the int can also be omitted (Figure 10). While the set of

possible specifications for this type is a context-free (in fact regular) language, there are so many possibilities that it

would not be practical to encode them in our grammar — the grammar for type specifiers would be larger than the

entire rest of the grammar. Instead, the grammar allows any combination of declaration specifiers, and the additional

restrictions are enforced during semantic analysis.

This flexibility of syntax has a regrettable interaction with the typedef facility. Using typedef, any identifier can be

made to act just as a built-in type name like int would, and typedef names are not marked in the way say structure tags

are (by a preceding struct keyword). Since our lexer and parser, acting as truly prior passes, do not have access to the

name information which will later be collected in semantic analysis as to which identifiers are typedef names and which

are not, the only thing to do is to treat every identifier as the same kind of token. The grammar contains ambiguous

productions, by which in some circumstances an identifier can be reduced either to a nonterminal representing a user

defined type or to one for a regular object identifier. This lexical-level ambiguity turns into a number of unresolved

conflicts in the construction of our LALR(1) parse table, and eventually through the action of the GLR parser ([WG97])

into multiple alternatives compactly represented in a parse DAG as in Figure 6. The method by which we choose between

these alternatives is described in section 3.2. Even innocent-looking declarations like int x; are ambiguous, since the

parser cannot tell that x isn’t a type name. (Even though it is not legal to have both an int and typedef name in the

same declaration, this constraint cannot cleanly be expressed at the level of the grammar, as described above).

6

const unsigned long int unsigned long const int

const unsigned int long unsigned int const long

const long unsigned int long unsigned const int

const long int unsigned long int const unsigned

const int unsigned long int unsigned const long

const int long unsigned int long const unsigned

unsigned const long int unsigned long int const

unsigned const int long unsigned int long const

long const unsigned int long unsigned int const

long const int unsigned long int unsigned const

int const unsigned long int unsigned long const

int const long unsigned int long unsigned const

const unsigned long

const long unsigned

unsigned const long

unsigned long const

long const unsigned

long unsigned const

Figure 10: The same type can a have quite a few di¸erent names. While the set of legal names forms a regular language, it would

be impractical to represent the possibilities directly in our grammar.

2.5 Preprocessor Constructs in the Grammar

In order to make the language module more usable on non-preprocessed source files, which is a practical necessity for an

editor, we have modified our C grammar to pass the most common preprocessor constructs through without complaint.

For instance, when preprocessor directives appear at the top level or in between statements, they are ignored by the

parser; this handles most uses of them, though the results of semantic analysis on such a parse tree are unreliable, and

constructs like the conditional inclusion of parts of a function definition are unlikely to be recognized correctly. Also,

because of their similar-looking syntax, most uses of macros can be parsed as if they were constant identifiers or function

calls, though this too obviously will not work well for semantic analysis. As an additional use of GLR-based ambiguity,

we allow ‘function calls’ to take arguments that are really the names of types, as a sop to ‘function calls’ that are really

unrecognized macros, though of course such interpretations are determined not to be functions in semantic analysis.

3 Semantic Analysis

The general framework for semantic analysis in Harmonia is an object-oriented language for operations of syntax trees,

ASTDef [Bos01], which is translated into C++ methods for syntax tree node objects. A semantic analysis is a collection

of methods defined on the classes for different nodes of a language’s syntax trees, usually a recursive traversal of the

tree of one sort or another. Our semantic analysis for C consists of two passes, one that collects names and resolves

ambiguities, and another that collects and checks type information. These will be described in the following subsections.

3.1 Name Resolution

One of the most basic kinds of semantic information, and the one that is probably most immediately useful in an

editing context, is the linkage between entities referred to by the same name: the naming of variables, functions, and

other language features is the most basic non-textual level of structure in source code. For C, name resolution is

additionally important because the information derived by name resolution is what is needed to resolve the grammatical

ambiguities caused by typedef names. In fact the interplay between name resolution and disambiguation is two-sided,

since a resolution of the typedef ambiguities is also needed to correctly recognize what identifiers are being declared.

Therefore, the two activities of name resolution and disambiguation need to occur in a single left-to-right pass over the

syntax tree.

7

If it were not for the interaction with disambiguation, name resolution for C would be fairly straightforward, though

the language does include a large number of details to attend to. There are several different kinds of namespaces in a

general C program: aside from macros (handled by the preprocessor) and keywords (recognized by the lexer and parser),

a given identifier could name:

› a data object, a function, an enumeration constant, or a typedef name (all of which share the same namespace,
and can be shadowed in inner blocks),

› an entire structure, union, or enumeration (which share a separate namespace, but also respect block structure),
› a statement label for goto (for which there is one flat namespace per function), or

› a member of a structure or union (for which there is one namespace per structure or union).

Each of these namespaces is represented by a different hashtable during name resolution (using an existing Harmonia

template class for possibly-nested namespace tables), though the tables for identifiers and struct/union/enum-tags are

linked so that they can easily be scoped together. Collecting name information is then a relatively straightforward

process of walking the syntax tree from left to right, adding and removing hashtables from a (conceptual) stack when

scopes are entered and exited, adding entries when declarations are processed and looking entries up when name uses are

encountered. For later reference, we also retain information about the context in which declarations are encountered,

and the linkage of identifiers (that is, whether they are visible from other compilation units; though we do not yet handle

multiple compilation units, linkage has implications for some other language rules).

3.2 Disambiguation

Conceptually separate from name resolution, though overlapping in time, is the process of disambiguation. Operating

on the ambiguous DAG produced by the parser, we choose for each ambiguity which alternative we prefer.

3.2.1 Ambiguities in the Harmonia Tree

When Harmonia’s GLR parser constructs multiple sub-trees representing one section of the source code, an extra level

of indirection is added to the syntax tree at the top of the region with multiple interpretations. Rather than the parent

of the region having one or the other of the interpretations as a child, its child is an abstract node representing the

common left-hand-side of the possible productions, and having the alternative subtrees as children. (These nodes are

referred to as ‘symbol nodes’, after nodes in a previous version of the GLR algorithm that intervened in every parent-child

relationship [Rek92], but a term like ‘choice node’ would probably be more descriptive). Associated with each symbol

node is the notion of a primary alternative: the parser chooses this alternative arbitrarily, but it is key to the way clients

of the analysis view the document. The alternatives of symbol nodes can share children, so in general the parse ‘tree’ is

really a directed acyclic graph, but the interface exported to clients is just a tree, specifically the tree that results from

choosing only the primary alternative at each symbol node. (In fact, many clients use a filtered view of the tree that

omits the symbol node levels completely).

3.2.2 Disambiguation by Elimination

There are several ways in which structural ambiguities in a language might be resolved. For instance, some ambiguities

might be resolvable based on information available in the tree at the point of ambiguity (the lowest node dominating

both alternatives). In other cases, one might want to heuristically evaluate the choices and give each a score, picking

the alternative with the best score. In the case of C, the most direct approach follows from the form of the language

specification: besides the grammar, additional (in some sense semantic) rules are provided which further restrict the set

of legal programs, to a subset of what is allowed by the context-free grammar. To resolve an ambiguity, we carry out

a semantic analysis on each of the alternatives at an ambiguity, being sure to look out for violations of the additional

semantic rules. Whenever we encounter one of these errors, we reject the alternative in which it appears; if all the

rules are implemented correctly, then at most one alternative will be left for each ambiguity, which if it exists will be

the correct one. (If the program has a genuine error, it is possible that none of the errors will be correct; in this

8

case we concatenate the error messages for each alternative to present a composite message). For this procedure to

be efficient, the disambiguating errors need to occur early in the alternative subtree, to minimize the analysis effort

duplicated between the alternatives (in the case of nested ambiguities, there is a danger of exponential running time),

but the ambiguities in C seem to satisfy this criterion.

The C rules we enforce to resolve ambiguities are:

› The declarator in a function definition must declare an object of function type. (x 6.9 .1.2)
› A typedef name in parentheses as a parameter declaration is an abstract declarator for a function with a single
parameter, not a redundantly parenthesized parameter declarator (for a parameter whose name would shadow the

typedef). (x 6.7.5.3.11)
› An old-style function declaration may not declare a parameter with the same name as an existing typedef name.
(x 6.9 .1.6)

› A declaration may include at most one typedef name. (x 6.7.2.2)
› A declaration that includes a typedef name may not include any other type specifier. (x 6.7.2.2)
› Every declaration must include at least one type specifier. (Note that this rule is not part of the C89 standard, in
which int can be implicit; C89 has a weaker rule that requires every declaration that redefines a typedef name to

include at least one other type specifier, which would also serve to resolve this ambiguity). (x 6.7.2.2).
› An identifier can be used as a typedef name only if it has been declared to be one.
› An identifier cannot be used as a primary expression if it has been defined as a typedef name. (x 6.5.1.2)

3.2.3 Data Structures for Disambiguation

Implicit in this plan of tentatively analyzing alternatives is the need, after we have finished analyzing a subtree, to either

discard the work we had done in analysis as incorrect, or incorporate it into our representation for analyzing the rest of

the program. Since our analysis collects information by updating a number of data structures, we need to be able to

either avoid making those changes until we have decided on the right alternative, or roll them back when we discard an

alternative. For the latter approach, the facility we need is similar to the dynamic scoping operators of languages like

LISP (fluid-let) and Perl (local()), but no such facility is available in ASTDef or the underlying C++. Instead,

we must implement it by hand for each relevant data structure. For simple types that can be assigned in C++, we

can create an auto-allocated object whose destructor restores a saved value at block exit with a simple template. For

name tables, we extend Harmonia’s nesting Scope templates with a new kind of scope (called an OverlayScope) that

for read accesses appears transparent, as if it were part of its parent scope, but stores new entries separately. Once

we have decided whether an alternative is correct, the overlay can either be discarded, or its entries can be copied into

the outer scope (which might itself be an overlay in the case of nested ambiguities). Finally, for changes we make to

Harmonia’s syntax tree for token sub-category classification, (described below), we keep a list of potential changes in a

separate structure, and only apply them once we have left an outermost ambiguity.

3.2.4 Disambiguation and Parent Pointers

For efficient traversals, Harmonia’s nodes also keep pointers to their parents, but this notion becomes more complicated

in the presence of multiple alternatives. If a node is shared between alternatives (as at least tokens always are in

the current implementation), it can have more than one parent, and in order to present a consistent interface to the

tree-style clients, there needs to be a distinguished primary parent, corresponding to the choices of primary alternatives

elsewhere in the tree, so that a node’s primary parent is the one by which it is reached in the tree of primary alternatives

(see Figure 11). Our disambiguation consists, in the end, of changing the primary alternative of symbol nodes, so when

doing so we must also reset the parent pointers in the region of the tree below the symbol node being changed but

above any nested symbol nodes, which we do with a simple traversal (see Figure 12). An additional constraint is that

we must carry out this alternative and parent-pointer setting for every symbol node that dominates a symbol we wish to

9

a.
X Symbol

X1 X2

A B C

Z1 YZ2

b.
X Symbol

X1 X2

A B C

Z1 YZ2

c.
X Symbol

X1 X2

A B C

Z1 YZ2

Figure 11: Symbol nodes and primary parents. Every symbol node has one of its alternatives designated as ‘primary’ (here X1,

shown by the bold arrow in a). The nodes reachable by paths from the root which only use primary alternatives form the primary

subtree (shown with bold edges in b). Every node also has a single primary parent link (shown with dashed lines in c), which points

to the parent by which it can be reached along a path in the primary subtree.

a.
X Symbol

X1 X2

A B C

Z1 YZ2

b.
X Symbol

X1 X2

A B C

Z1 YZ2

c.
X Symbol

X1 X2

A B C

Z1 YZ2

Figure 12: Changes in alternatives require changes in parent links. In (a), X1 is the primary alternative. If X2 rather than X1 is

chosen as the primary alternative for the symbol node (bold arrow in b), the membership of the primary subtree changes (bold

edges in b), and corresponding changes are needed in the primary parent pointers (dashed arrows in c).

X Symbol

X1

X2

Y Symbol

Y1 Y2

A

Figure 13: In the presence of nested symbol nodes, we cannot set the primary alternative for symbol node Y, without later choosing

an alternative at symbol node X, lest the primary parent of a shared child (A) be set incorrectly.

10

unsigned int

float

Array of
7

Pointer to

Function taking

returning

Pointer to

Constant

unsigned int a[7]

unsigned int *b

float c(unsigned int *)

const float *d

Figure 14: C’s types are represented by linked data structures eventually pointing back to a set of basic types.

disambiguate (even if we have no basis for choosing between the alternatives at a higher symbol node), to ensure that

every node whose parent might have been reset during our analysis has in fact had its parent set to the correct parent

(Figure 13). (In a sense, this situation is like the ones above in calling for a mechanism to undo the parent pointer

changes we made inside an eventually-discarded alternative analysis, but there is not a clean way to encapsulate the

needed information-saving in a way that could be used in other languages’ analyses. Harmonia’s tree versioning supports

rolling back an incomplete transaction’s worth of changes, but not nesting such transactions).

3.3 Exporting Analysis Results

The collection of hash tables and other structures we use during the analysis to collect name resolution information are

efficient and powerful for the needs of the analysis, but they are rather complicated. For Harmonia, we’d like to make

that information available to client programs using a standard interface for version-sensitive syntax tree attributes, so

that they can be accessed by applications written in any supported language. To do this we represent the information

as tree annotations of a restricted form (strings, integers, and pointers to other nodes can be attached to nodes of a

particular type), and take advantage of Harmonia’s facilities for efficiently recording the history of values that change over

time. The semantic information is then available to the Harmonia XEmacs mode as well as other Harmonia applications.

Though an infrastructure for multiple semantic analysis passes does not really exist, later passes also limit themselves

to this form of information, rather than the transient structures like hash tables, so that analysis in the future can be

provided more flexibly.

The most important form of annotation produced by name resolution is links (pointers) from each use of an object

identifier to its declarator; these are supplemented by links between the declarator and the identifier being declared, from

goto statements to their targets, from identifiers with linkage to other linked identifiers, and from incomplete structure

and union types to their complete definitions. Another useful kind of information produced during name resolution is

a further classification of identifiers (which cannot be distinguished from one another by the lexer) into sub-categories

such enumeration constants, structure tags, statement labels, variable declarations, typedef names, and so on. (Many

of these categories correspond to a token’s syntactic context, but until disambiguation has completed a token might

equally well be thought of as being in two different syntactic contexts).

3.4 Type Checking

With disambiguation out of the way, the type checking phase of semantic analysis can proceed in much the same way

as it would in a conventional compiler. The differences in doing the analysis for Harmonia stem from not being able

to transform our program representation (since we must retain the tree in the same format the parser found it), and

performing the analysis to the specification in the abstract, rather than for the benefit of any later compilation phases.

For a language that is sometimes criticized for a lack of type enforcement, C has a quite complex type system, with

a large number of built-in types and many ways of constructing complex types out of simpler ones. To handle these

uniformly, our representation is a linked, object-oriented one: the basic types like unsigned int have distinguished

11

a. int ***x; int x[1][1][1]
⌊⌊⌊

xint˜˜˜[1]
⌋

int˜˜ [1]
⌋

int˜ [1]
⌋

int

b. int x[5][5][5]; int x[1][1][1]

⌊⌊⌊
xint[5][5][5]7!int(˜)[5][5][1]

⌋
int[5][5]7!int(˜)[5]

[1]
⌋

int[5]7!int˜
[1]

⌋
int

Figure 15: The decay of array types (in an array lvalue) into pointer types allows a true multi-dimensional array (b, where x is

declared as int x[5][5][5]) to use the same dereference syntax as a nested pointer (a, where it is declared as int ***x). In

this ˛gure and the next, the types of sub-expressions are represented by subscripts in the traditional C type notation, and type

conversions are represented by a 7! arrow.

a. int f(void); (&f)()
⌊⌊

(&fint(void))
⌋

int(˜)(void)
()

⌋
int

b. int f(void); f()
⌊
fint(void)7!int(˜)(void)()

⌋
int

c. int f(void); (*f)()
⌊⌊

(*fint(void)7!int(˜)(void))
⌋

int(void)7!int(˜)(void)
()

⌋
int

Figure 16: Whenever a function type appears in an expression (except as an argument to & or sizeof), it is converted to a

pointer-to-function type (x 6.3.2.1.4). Thus, if f is a function (declared for instance as int f(void)), any of the syntaxes

(&f)(), f(), or (*f)(), as in a, b, or c, may be used to invoke it [JTC99b].

objects, and then derived types like unsigned int[7] (‘array of 7 unsigned ints’) are other objects that point to their

constituent types (see Figure 14 for examples). For efficiency, the results of this type construction are memoized: the

first time we make a seven-element array of unsigned integers, we record that type in a hash table that is part of the

unsigned integer type object, so that when that derived type is needed again we can just retrieve the same type object.

Corresponding to the different ways in which a derived type can be constructed in C, every type object also keeps track

of:

› the type of pointers to that type,
› a hash table holding the types of arrays of that type of various lengths and other qualifiers,
› a hash table holding the types of functions returning that type with various argument lists, and
› the seven possibilities of versions of the type qualified by combinations of const, volatile, and restrict

(restrict is a C99 extension).

In addition to this inclusion relationship between type objects, there is also an inheritance hierarchy among the classes

of type objects, reflecting the classification of types in the standard: for instance, all the integer types have a common

IntegerType parent class. The information that the rest of the analysis needs about types is provided by queries that

are virtual functions on the type objects, taking advantage of commonalities of related types to simplify the specification.

Besides the type information proper, the description of expressions in the C standard classifies them in some additional

ways, mainly having to do with whether they can change value or be modified. Following the taxonomy in [PB89], our

language module captures this with a notion of expression class like ‘address constant’ or ‘array lvalue’, including various

conversions between classes. This notion of class is overloaded to include several relatively unrelated constraints that

apply to expressions in context. Identifiers that represent arrays and pointers turn into element pointers and function

pointers respectively when used in expressions; these conversions are part of the way the standard formally specifies

the meaning of array subscripting and indirect function calls. (The need for these conversion rules can be seen in the

somewhat unintuitive examples in Figures 15 and 16).

Expressions that designate objects in memory are classified as lvalues, though not all lvalues can actually be modified;

there is a separate category of ‘modifiable lvalues’ that actually coincides with the expressions that can be assigned to.

Finally, different parts of the language require different kinds of constant expressions: integer constants (such as in case

statements), arithmetic constants, and address constants (as in static initializers). The type checking pass computes

the type and expression class of each expression in the tree in one pass: both are essentially computed bottom up,

though in some cases a mismatch between the class of expression required by an operator and the bottom-up computed

class requires a conversion, which also changes the type (for instance, when an expression that could be an lvalue is

used in an rvalue context, qualifiers like const are dropped from the type). To simplify passing this information around,

12

the return value of the type checking routines is conceptually an hexpression-class, typei pair, encapsulated in a single
object.

3.5 Obstacles to Pass Separation

An additional complication of C, relative to the structure that is been described so far, is that name resolution and

type checking cannot actually be treated as completely separate passes. In modern versions of C, each structure or

union has a separate name space for its members, so that for instance two different structures can have fields with the

same name. As a consequence, it is not possible to tell which field with a given name a structure access operator (.

or ->) is accessing without knowing the type of the object being accessed. Because of this ordering constraint, the

name resolution of structure members is postponed from the main name resolution pass, and done instead when the

expression is type checked. Because a table listing the members of each structure or union type was prepared during

name resolution, though, this operation is just a simple lookup; in particular, no additional disambiguation is required.

Our division of the analysis into passes also complicates some aspects of C’s semantics that are structured around a

left-to-right ordering of the code in a compilation unit. C has the notion of an ‘incomplete type’; for instance, the type

of a structure is incomplete if only a forward declaration like struct s; has been seen, and not a definition that gives

the members of the structure. In order to ensure that a one-pass compiler can lay out data structures, C requires that a

type be complete when it is used in certain ways, such as the element type of an array. Straightforwardly following our

two phase approach, the incomplete and completing definitions for a type would be found and linked together during

the name resolution pass, while the completeness of object definition types would be verified during type checking. By

the time we reach the type checking pass, however, this approach has lost any information about where in the tree

an incomplete type was visible (assuming that we eventually saw a complete definition), since the data structures only

reflect the most up-to-date information about the type. To correctly enforce this requirement, we need to either separate

the representations of complete from incomplete versions of a type or check the relative position of the declaration and

its use in the tree: we have for the moment chosen the first approach as simpler.

3.6 Practical Aspects of Semantic Analysis

ASTDef’s object-oriented framework has some advantages for separating the concerns of different analysis and different

kinds of nodes, but it has the effect of de-localizing the control flow in an analysis — the code rarely continues on for

more than a few lines in a single method before returning to code for some other kind of node. Thus the control flow

is best understood in terms of the inclusion relationship between rules in the grammar, shown in Figure 17. The core

of each analysis is a traversal that walks through the entire tree, but it is necessary to define smaller sub-traversals

to access information from nested tree structures (for instance, to find the name of the variable being declared in a

declarator).

Because an analysis is not a first class entity in ASTDef, we haven’t generally designated data types and variables

as belonging to a particular analysis. It is natural to associate some declarations with particular kinds of node, but in

many other cases data structures are needed to pass information between the code analyzing different nodes. For data

structures, the best approach appears to be to put them in a header file shared by the entire module; they are then easy

to use, though information hiding between analyses is not enforced. For variables that conceptually would be global to

an analysis (like a name table in name resolution or the set of basic types in type checking), what we have done is create

a ‘context’ structure that is passed by reference among all of the analysis methods, and filled with whatever information

is necessary. (Adding new parameters to methods one by one quickly becomes cumbersome: our name resolution and

type checking passes have about 250 methods each).

Another task that is part of implementing semantic analyses in Harmonia is giving labels to the elements on the

right-hand side of each production so that they can be referred to from code. These names in the syntax specification

are used as the basis for the names of accessor methods on the node objects, which are the way the semantic analysis

passes traverse the tree. For elements that are modified by EBNF operators, at least two names are required: one that

names the element ‘outside’ the modifier (for a sequence specification, this gives the iterator), and one for each element

within the modified sub-production (there can be more than one if the operator applies to a parenthesized sequence

of elements). Accessors are needed for each item that is used by a semantic analysis, so for most languages they are

not needed on elements of the concrete syntax like parentheses and semicolons that play no further semantic role after

13

Translation unit

External declaration

Declaration

Compound statement

Declaration specifier

Initialized declarator

Declarator

Pointer

Direct declarator

Block item

Statement

Storage class specifier Type specifierType qualifier

Parameter type list

Assignment expression

Initializer

Inner initializer

Parameter declaration

Designation

Designator

(Conditional) expression

(Comma) expression(s)

Figure 17: Rule inclusion relationships in C (simpli˛ed)

prog: BEGIN (stmt ’;’)+ END?

prog: begin:BEGIN stmts:(stmt:stmt semi:’;’)+ end:(end:END)?

Figure 18: A production, before and after accessor names have been added.

14

Figure 19: Our language module in use in a Harmonia-enabled version of XEmacs. A marker in the margin points out a semantic

error (a misspelled identi˛er), which is displayed in the modeline when the marker is under the mouse cursor.

parsing. For C, however, we have added accessors for every item in the grammar as part of a project that used a tree

traversal for output purposes. Figure 18 shows an example of this transformation.

4 Exploiting Semantic Information

The additional semantic information that the C language module computes in its analysis is used by Harmonia’s XEmacs

editing mode to provide more powerful and more correct services to users (Figure 19). One example of this power is

the improvement in syntax highlighting that can be achieved by using more complete information about the role tokens

play in a program. For instance, it is easy enough for any editor to highlight the keywords like float and short that

specify types, since the set of such keywords is fixed. If the editor is to provide a consistent view of C’s syntax, however,

other type specifiers, both standard ones like size_t and types defined in the user’s program, should be highlighted in

the same way. It is not possible to correctly distinguish such type names with a simple text match, since they consist

of the same kind of sequence of letters as regular identifiers, but when information from name resolution is available,

it is trivial to recognize those tokens whose sub-categorization (based on an earlier declaration) marks them as typedef

names.

With the correct syntactic structure determined after disambiguation, we can also take advantage of Harmonia-

Mode’s structural editing features [Too02]. For instance, we can use structural navigation to traverse a file one function

at a time, or drill down to structure of statements and expressions. Structurally-filtered views let us temporarily hide the

comments in a file, the bodies of functions, or other syntactically defined subsets of the code to concentrate on whatever

else is important for the current task. Last but not least, we can put syntactic modifiers on what would otherwise be a

textual I-search, for instance to find the word ‘token’ only when it’s the name of a variable, not when it occurs in strings

or comments. A related feature, which would be easy to implement but has not yet been, would be to make the links

between uses of identifiers to their definitions available as hyperlinks, allowing users to navigate ‘semantically’ through

the naming structure of a program.

Another convenient use of interactive analysis is to display semantic errors directly in the text editor as soon as the

user has made them. Since our analysis does most of the checks that a C compiler does, it can also catch most of

15

the same errors that a compiler does (it cannot yet find problems in data flow, though, like the use of an uninitialized

variable). There is also a certain advantage to handling the ambiguities of the C language explicitly, rather than deciding

in the lexer what kind of identifier a lexeme is, as most batch C compilers do. Our module can display the errors that

disqualified all of the ambiguous alternatives, while many compilers can do little more than signal a generic ‘syntax error’

when the structure of a declaration did not match the category it guessed for an identifier.

5 Areas for Future Work

5.1 Analysis of C

Though the module described above is a close-to-complete implementation of the rules of standard C, there is still a

significant amount of work needed to produce the best tool for day-to-day editing. First, there are some small pieces

missing from the type checking analysis as it stands: compound assignment operators and complex initializers are not

type checked, enumeration constants are not matched with their definitions, and constant expressions are not folded to

their correct values (so, for instance, we cannot check whether the case labels in a switch statement are really distinct).

There are also some other analyses traditionally performed by compilers that would be useful, such as control and data

flow to find unreachable code and uninitialized variables.

There are two other missing complexities that are the main practical limits on the utility of the current module: the

lack of support for either preprocessing or multiple compilation units. The preprocessor unfortunately plays a large part

in the meaning of many C programs, through macro definitions, conditional compilation, and header inclusion. In most

cases, these facilities are used in fairly well structured ways: macros serve either as constant expressions or like inlined

functions, conditionals bracket syntactically complete sequences of statements, and header files are just used to specify

interfaces [EBN97]. One approach then is to handle only ‘well-behaved’ preprocessor uses, and ignore or rewrite the

rest. A more ambitious approach would be to exactly replicate the behavior of the preprocessor, performing the same

text transformations a preprocessor does as a pre-lexing stage of analysis, and matching the results of the rest of the

analysis back onto the non-preprocessed source. While this is the only strategy that is sure to work with any existing

C program, there are significant challenges involved in bridging the gap between the two representations of a program.

The division of C programs into multiple files can be considered part of the challenge of working with the preprocessor,

but it is perhaps the most important special case, since even C programs that consist of only one file generally require

functions from the standard library. We have some plans for doing analysis incrementally at the granularity of program

units (discussed in [Bos01]), but they are better explored first in a language with simpler inter-unit semantics than C.

5.2 Harmonia’s Analysis Infrastructure

Harmonia’s ASTDef framework is flexible enough to support many analysis strategies with efficient (though batch-

structured) code, but the process of writing the code for an analysis is more tedious than it needs to be. One area that

could be streamlined is the selection of accessor names for all the components of each production. For C, it was quite

uncommon for the name of an accessor to convey any extra information about the role that the corresponding item played

semantically: the names usually duplicated or were abbreviations of the item itself, or plurals in the case of sequences.

(Recall the stmts:(stmt:stmt example from Figure 18.) It would be easier on implementers, more predictable, and

make the syntax specification easier to read if such conventional accessor names were generated automatically, and only

the exceptions were explicitly specified.

Another helpful change would be to make the concept of a traversal of the tree a first-class notion in the ASTDef

language. Roughly, a traversal would be a depth-first left-to-right walk over some subset of nonterminals in a grammar,

implemented with a recursive method on each nonterminal node object with an identical name and argument list.

The name resolution and type checking passes described above would correspond to two main traversals, with a few

sub-traversals extracting extra information in some contexts. From the point of view of structuring code it would be

convenient for a traversal to declare its own types and global (to the traversal) variables; the latter could be implemented

by the same sort of context variable we used for C, but without the need to explicitly declare it. Within this structure,

the more predictable parts of a traversal could be specified declaratively and implemented automatically: for instance,

if on a particular nonterminal a traversal simply recurses on all the nonterminal’s children (say as type checking does

16

on all the declarations in a file, all the statements inside a block, etc.), this could be specified compactly. Some other

common patterns are a traversal that recurses on a nonterminal’s children one by one until a particular return value is

returned (as our name resolution does when it finds an alternative-disqualifying error), or recurses on a particular child

(as the accessor traversal to find the name of the variable being declared in a declarator does).

As alluded to above, a feature that would have been quite helpful for this project, though perhaps only because of

our particular disambiguation strategy, would be a uniform way to make ‘undo-able’ data structures in which an abortive

foray can be efficiently retracted. It likely isn’t feasible to solve this problem for general C++ data structures, but

the infrastructure Harmonia provides could be improved to make it easier to undo changes to the central syntax tree

structure. The tree already has mechanisms for versioning that include much of the change tracking that would be

needed, but some of the current assumptions about how they are used would have to be modified (either allowing the

unfinished analysis transactions to nest, or having an analysis use a whole subtree of versions).

A final possible direction for evolution would be to re-introduce the distinction between concrete and abstract syntax,

to allow some of a language’s complexity to show up declaratively in the syntax but not in the tree structure used by

analysis. It’s generally easier for an implementer to express a language constraint in the syntax description, when possible,

than as a rule in semantic analysis. On the other hand, there are countervailing pressures to simplify the description of

syntax, particularly as it affects the tree structure seen by later analyses and clients. This pressure is quite strong in

Harmonia, because the lack of an abstract syntax means that every additional complexity added in the syntax requires

extra method calls and levels of indirection in each semantic pass that operates on that tree structure. In C, this tradeoff

appeared most visibly in specifying the possible combination of declaration specifiers (the complexity in Figure 10). Faced

with the choice of expressing the constraints with perhaps 100 lines of grammar or what turned out to be 500 lines of

mainly error-checking code, we chose the latter, since each additional line of grammar complexity would cause a factor

of 5 to 10 times as many lines of semantic analysis overhead. There are of course other trade-offs involved in the choice

of where to enforce language constraints: while a parser can’t automatically generate very informative error messages,

an incremental parser like Harmonia’s can trace an error back to a previous change, which is intuitive in the context of

an editor. Incrementalizing semantic analyses is more difficult, and instead to achieve informative error messages we had

to invert the description of the standard, which lists what is allowed, to efficiently recognize instead what combinations

are not allowed. While this ultimately gives very informative messages, the inversion itself is a complex transformation,

and the resulting code would be difficult to modify if a new type specifier were introduced (as several were in C99).

Harmonia’s structure has been simplified relative to earlier projects by unifying the notions of concrete and abstract

syntax, but this simplification has come at the price of requiring compromises to the design of both. (Another challenge

that should be mentioned to the prospect of pushing more complexity into the grammar are the scalability limitations

we have encountered with our current systems for parser tables and syntax tree code generation).

6 Conclusion

We’ve shown that with the right tools, we can develop analyses for a real-world programming language, C, almost directly

from its specification. Using the Harmonia framework, we’ve constructed an incremental lexer directly from a standard

flex specification, and an incremental GLR parser from an EBNF grammar. Using a specialized language that translates

into C++ code, we’ve implemented batch semantic analyses that collect and verify name and type information, and

by combining the GLR parser’s support for ambiguous grammars with semantic disambiguation, we can cleanly support

ambiguities, such as those associated with typedef names, that are usually handled with inter-pass feedback. Grouped

into a Harmonia language module, these analyses allow language-aware tools, such as an enhanced version of XEmacs,

to provide enhanced, correct user services.

A Flex lexical specification

%x INCOMMENT

HEXDIGIT [0-9a-fA-F]

OCTESCAPE \\[0-7]{1,3}

HEXESCAPE \\x{HEXDIGIT}+

17

UNIV \\u{HEXDIGIT}{4}|\\U{HEXDIGIT}{8}

ESCAPE (\\[ntvbrfa\n\\?’"])|{OCTESCAPE}|{HEXESCAPE}|{UNIV}

STRING \"([^\\\n"]|{ESCAPE})*\"

CHARLIT \’([^\\\n’]|{ESCAPE})*\’

WSCHAR [\n\t\f\v\r]

WHITESPACE {WSCHAR}+|({WSCHAR}*\\\n)+{WSCHAR}*

IDENT [_a-zA-Z]([_a-zA-Z0-9]|{UNIV})*

DIGIT [0-9]

NUMBER {DIGIT}+

ZNUMBER ([1-9]{DIGIT}*)|0

INTEGER {ZNUMBER}|(0[0-7]+)|(0[xX][0-9a-fA-F]+)

EXPONENT [Ee][+-]?[0-9]+

FRACTIONAL ([0-9]+\.)|([0-9]*\.[0-9]+)

DECFLOAT {FRACTIONAL}{EXPONENT}?|[0-9]+{EXPONENT}

HEXFRACT {HEXDIGIT}*\.{HEXDIGIT}+|{HEXDIGIT}+\.

BINEXP [pP][+-]?[0-9]+

HEXFLOAT 0[xX]({HEXFRACT}|{HEXDIGIT}+){BINEXP}

FLOAT {DECFLOAT}|{HEXFLOAT}

DIRECTIVE {WSCHAR}*#(.*\\\n)*.*

%%

{WHITESPACE} { RETURN_TOKEN(WSPC); }

<INCOMMENT>"*/" { BEGIN(INITIAL); RETURN_TOKEN(COMMENT); }

<INCOMMENT>.|\n { yymore(); break; }

"/*" { BEGIN(INCOMMENT); yymore(); break; }

"//".* { RETURN_TOKEN(COMMENT); }

^{DIRECTIVE}\n { RETURN_TOKEN(PREPROC); }

"[" { RETURN_TOKEN(LBRACK); }

"]" { RETURN_TOKEN(RBRACK); }

"<:" { RETURN_TOKEN(LBRACK); }

":>" { RETURN_TOKEN(RBRACK); }

"(" { RETURN_TOKEN(LPAREN); }

")" { RETURN_TOKEN(RPAREN); }

"{" { RETURN_TOKEN(LBRACE); }

"}" { RETURN_TOKEN(RBRACE); }

"<%" { RETURN_TOKEN(LBRACE); }

"%>" { RETURN_TOKEN(RBRACE); }

"." { RETURN_TOKEN(DOT); }

"->" { RETURN_TOKEN(PTR); }

"++" { RETURN_TOKEN(INC); }

"--" { RETURN_TOKEN(DEC); }

"&" { RETURN_TOKEN(BAND); }

"*" { RETURN_TOKEN(TIMES); }

"+" { RETURN_TOKEN(PLUS); }

"-" { RETURN_TOKEN(MINUS); }

"~" { RETURN_TOKEN(BNOT); }

"!" { RETURN_TOKEN(NOT); }

"/" { RETURN_TOKEN(DIV); }

"%" { RETURN_TOKEN(MOD); }

"<<" { RETURN_TOKEN(LSHIFT); }

">>" { RETURN_TOKEN(RSHIFT); }

"<" { RETURN_TOKEN(LT); }

">" { RETURN_TOKEN(GT); }

18

"<=" { RETURN_TOKEN(LE); }

">=" { RETURN_TOKEN(GE); }

"==" { RETURN_TOKEN(EQ); }

"!=" { RETURN_TOKEN(NE); }

"^" { RETURN_TOKEN(BXOR); }

"|" { RETURN_TOKEN(BOR); }

"&&" { RETURN_TOKEN(LAND); }

"||" { RETURN_TOKEN(LOR); }

"?" { RETURN_TOKEN(QUESTION); }

":" { RETURN_TOKEN(COLON); }

";" { RETURN_TOKEN(SEMI); }

"..." { RETURN_TOKEN(ELLIPSIS); }

"=" { RETURN_TOKEN(ASSIGN); }

"*=" { RETURN_TOKEN(MULASSIGN); }

"/=" { RETURN_TOKEN(DIVASSIGN); }

"%=" { RETURN_TOKEN(MODASSIGN); }

"+=" { RETURN_TOKEN(ADDASSIGN); }

"-=" { RETURN_TOKEN(SUBASSIGN); }

"<<=" { RETURN_TOKEN(SHLASSIGN); }

">>=" { RETURN_TOKEN(SHRASSIGN); }

"&=" { RETURN_TOKEN(ANDASSIGN); }

"^=" { RETURN_TOKEN(XORASSIGN); }

"|=" { RETURN_TOKEN(ORASSIGN); }

"," { RETURN_TOKEN(COMMA); }

{INTEGER} { RETURN_TOKEN(INT_CONST); }

{INTEGER}[Uu] { RETURN_TOKEN(INT_CONST_U); }

{INTEGER}[Ll] { RETURN_TOKEN(INT_CONST_L); }

{INTEGER}([Uu][Ll]|[Ll][Uu]) { RETURN_TOKEN(INT_CONST_UL); }

{INTEGER}(ll|LL) { RETURN_TOKEN(INT_CONST_LL); }

{INTEGER}([Uu](ll|LL)|(ll|LL)[Uu]) { RETURN_TOKEN(INT_CONST_ULL); }

{FLOAT}[fF] { RETURN_TOKEN(FLOAT_CONST); }

{FLOAT} { RETURN_TOKEN(DOUBLE_CONST); }

{FLOAT}[lL] { RETURN_TOKEN(LONGDOUBLE_CONST); }

{STRING} { RETURN_TOKEN(STR_CONST); }

L{STRING} { RETURN_TOKEN(WIDE_STR_CONST); }

{CHARLIT} { RETURN_TOKEN(CHAR_CONST); }

L{CHARLIT} { RETURN_TOKEN(WIDE_CHAR_CONST); }

auto { RETURN_TOKEN(AUTO);}

break { RETURN_TOKEN(BREAK);}

case { RETURN_TOKEN(CASE);}

char { RETURN_TOKEN(CLANGCHAR);}

const { RETURN_TOKEN(CONST);}

continue { RETURN_TOKEN(CONTINUE);}

default { RETURN_TOKEN(DEFAULT);}

do { RETURN_TOKEN(DO);}

double { RETURN_TOKEN(DOUBLE);}

else { RETURN_TOKEN(ELSE);}

enum { RETURN_TOKEN(ENUM);}

extern { RETURN_TOKEN(EXTERN);}

float { RETURN_TOKEN(CLANGFLOAT);}

for { RETURN_TOKEN(FOR);}

goto { RETURN_TOKEN(GOTO);}

19

if { RETURN_TOKEN(IF);}

inline { RETURN_TOKEN(INLINE);}

int { RETURN_TOKEN(CLANGINT);}

long { RETURN_TOKEN(CLANGLONG);}

register { RETURN_TOKEN(REGISTER);}

restrict { RETURN_TOKEN(RESTRICT);}

return { RETURN_TOKEN(RETURN);}

short { RETURN_TOKEN(CLANGSHORT);}

signed { RETURN_TOKEN(SIGNED);}

sizeof { RETURN_TOKEN(SIZEOF);

static { RETURN_TOKEN(STATIC);}

struct { RETURN_TOKEN(STRUCT);}

switch { RETURN_TOKEN(SWITCH);}

typedef { RETURN_TOKEN(TYPEDEF);}

union { RETURN_TOKEN(UNION);}

unsigned { RETURN_TOKEN(UNSIGNED);}

void { RETURN_TOKEN(VOID);}

volatile { RETURN_TOKEN(VOLATILE);}

while { RETURN_TOKEN(WHILE);}

_Bool { RETURN_TOKEN(_BOOL);}

_Complex { RETURN_TOKEN(_COMPLEX);}

_Imaginary { RETURN_TOKEN(_IMAGINARY);}

{IDENT} { RETURN_TOKEN(IDSYM); }

<*>.|\n ERROR_ACTION;

%%

B EBNF Grammar

This appendix summarizes the grammar used by our language module, based on the C99 standard grammar (x A.2) with
additions for non-preprocessed code. In the grammar below, the notations x?, x˜, and x+ mean zero or one, zero or

more, or one or more xes, respectively, as in standard EBNF. The notation x+
a means one or more xes, separated by as

if there is more than one, and similarly x˜
a .

trans unit ::= ext decl+

ext decl ::= decl spec+ declr decl˜ comp stmt j decl j PREPROC

decl spec ::= stor class spec j type spec j type qual j inline

decl ::= decl spec+ init declr˜
’,’ ’;’

stor class spec ::= auto j register j static j extern j typedef

type name ::= type spec qual+ abst declr?

type spec qual ::= type spec j type qual

type spec ::= void j char j short j int j long j float

j double j signed j unsigned j Bool j Complex

j Imaginary j struct IDSYM? ’{’ struct decl+ ’}’

j union IDSYM? ’{’ struct decl+ ’}’ j struct IDSYM

j union IDSYM j enum IDSYM? ’{’ enum+
’,’ ’,’? ’}’

j enum IDSYM j IDSYM

type qual ::= const j volatile j restrict

20

init declr ::= declr (’=’ init)?

designator ::= ’[’ expr ’]’ j ’.’ IDSYM

designation ::= designator+ ’=’

inner init ::= designation? init

init ::= assign expr j ’{’ inner init+
’,’ ’,’? ’}’

enum ::= IDSYM (’=’ expr)?

declr ::= pointer? direct declr

abst declr ::= pointer j pointer? direct abst declr

direct declr ::= IDSYM j ’(’ pointer? direct declr ’)’

j direct declr ’[’ type qual˜ assign expr? ’]’

j direct declr ’[’ type qual˜ static type qual˜ assign expr ’]’

j direct declr ’[’ type qual˜ ’*’ ’]’

j direct declr ’(’ param type list ’)’

j direct declr ’(’ IDSYM˜
’,’ ’)’

direct abst declr ::= ’(’ abst declr ’)’ j direct abst declr? ’[’ assign expr? ’]’

j direct abst declr? ’[’ ’*’ ’]’

j direct abst declr ’(’ param type list? ’)’

j ’(’ param type list? ’)’

struct decl ::= type spec qual+struct declr+
’,’ ’;’ j PREPROC

struct declr ::= declr j declr? ’:’ expr

pointer ::= ’*’ type qual˜pointer?

param decl ::= decl spec+ declr j decl spec+ abst declr?

param type list ::= param decl+
’,’ (’,’ ’...’)?

for init ::= exprs? ’;’ j decl

stmt ::= IDSYM ’:’ stmt j case expr ’:’ stmt j default ’:’ stmt

j exprs? ’;’ j comp stmt j if ’(’ exprs ’)’ stmt

j if ’(’ exprs ’)’ stmt else stmt j switch ’(’ exprs ’)’ stmt

j while ’(’ exprs ’)’ stmt j do stmt while ’(’ exprs ’)’ ’;’

j for ’(’ for init exprs? ’;’ exprs? ’)’ stmt

j goto IDSYM ’;’ j continue ’;’ j break ’;’

j return exprs? ’;’ j PREPROC

block item ::= decl j stmt

comp stmt ::= ’{’ block item˜ ’}’

exprs ::= exprs ’,’ assign expr j assign expr

arg expr ::= assign expr j type name

assign expr ::= expr ’=’ assign expr j expr ’*=’ assign expr

j expr ’/=’ assign expr j expr ’%=’ assign expr

j expr ’+=’ assign expr j expr ’-=’ assign expr

j expr ’<<=’ assign expr j expr ’>>=’ assign expr

j expr ’&=’ assign expr j expr ’^=’ assign expr

j expr ’|=’ assign expr j expr

21

expr ::= expr ’?’ exprs ’:’ expr j expr ’||’ expr j expr ’&&’ expr

j expr ’|’ expr j expr ’^’ expr j expr ’&’ expr j expr ’==’ expr

j expr ’!=’ expr j expr ’<’ expr j expr ’>’ expr

j expr ’<=’ expr j expr ’>=’ expr j expr ’<<’ expr

j expr ’>>’ expr j expr ’+’ expr j expr ’-’ expr j expr ’*’ expr

j expr ’/’ expr j expr ’%’ expr j ’(’ type name ’)’ expr

j ’&’ expr j ’+’ expr j ’-’ expr j ’~’ expr j ’!’ expr j ’*’ expr

j expr ’(’ arg expr ˜
’,’ ’)’ j ’++’ expr j ’--’ expr j expr ’++’

j expr ’--’ j sizeof expr j sizeof ’(’ type name ’)’

j ’(’ exprs ’)’ j int const j char const j ‚oat const

j str const j ’(’ type name ’)’ ’{’ inner init+
’,’ ’,’? ’}’

j IDSYM j expr ’.’ IDSYM j expr ’->’ IDSYM

j expr ’[’ exprs ’]’

int const ::= INT CONST j INT CONST U j INT CONST L

j INT CONST UL j INT CONST LL j INT CONST ULL

str const ::= STR CONST+ j WIDE STR CONST+

char const ::= CHAR CONST j WIDE CHAR CONST

‚oat const ::= FLOAT CONST j DOUBLE CONST j LONGDOUBLE CONST

C Code Examples

C.1 Syntax Specification

The syntax specification, processed by Harmonia’s ladle2 program, uses an extension of Bison’s syntax [CP99], extended

with EBNF operators, names for productions (after =>), which turn into the names of node classes, and accessor names

for items (before :), which become the names of accessor methods on those objects. The following example shows the

grammar of statements (compare to the EBNF above):

stmt: label:IDSYM c:’:’ stmt:stmt => "LabeledStatement"

| kw:CASE expr:expr c:’:’ stmt:stmt => "CaseLabelStatement"

| kw:DEFAULT c:’:’ stmt:stmt => "DefaultLabelStatement"

| expr:(expr:exprs)? semi:’;’ => "ExprStatement"

| stmt:comp_stmt => "CompoundStatement"

| kw:IF l:’(’ pred:exprs r:’)’ t_stmt:stmt %prec BARE_IF_PREC

=> "IfNoElseStatement"

| k1:IF l:’(’ pred:exprs r:’)’ t_stmt:stmt

k2:ELSE f_stmt:stmt => "IfElseStatement"

| kw:SWITCH l:’(’ val:exprs r:’)’ stmt:stmt => "SwitchStatement"

| kw:WHILE l:’(’ val:exprs r:’)’ stmt:stmt => "WhileStatement"

| k1:DO stmt:stmt k2:WHILE l:’(’ val:exprs r:’)’ semi:’;’ => "DoWhileStatement"

| kw:FOR l:’(’ init:for_init pred:(expr:exprs)? semi:’;’

inc:(expr:exprs)? r:’)’ stmt:stmt => "ForStatement"

| kw:GOTO label:IDSYM semi:’;’ => "GotoStatement"

| kw:CONTINUE semi:’;’ => "ContinueStatement"

| kw:BREAK semi:’;’ => "BreakStatement"

| kw:RETURN ret:(expr:exprs)? semi:’;’ => "ReturnStatement"

| p:PREPROC => "PreprocStatement"

;

22

C.2 Name Resolution

The resolve_indents() function, which is defined for each kind of node, fills out the idents table it takes as an

argument and watches for errors that would invalidate an alternative. If it finds such an error, it returns false up the

call tree to the closest symbol node. Here is the implementation for uses of typedef names:

// type_spec -> IDSYM:type_name

operator TypedefTypeSpec extends ParentNode, type_spec, GLRStateMixin {

// Pointer to the Declarator that defined us

public versioned slot Vptr definition = NULL;

versioned Semantics attribute definition

= TypedVal((Node*)definition.value(vg(), gvid));

public virtual method bool resolve_idents(ResolveContext *ctx,

IdentTable *idents) {

// Get our string

PooledString id = get_type_name()->pooled_string();

// Our kid is a typedef name, at least from this parent

get_type_name()->set_subspecies(ctx, IDSYM::TYPEDEF_NAME);

if (!idents->resolve_ident(id)) {

// No definition is scope

assert(!idents->has_ident_binding(id));

ambig_semant_error(ctx, this, "undefined typedef name"

" %s", id.chars());

return !ctx->inside_ambig;

}

IdentInfo *info = idents->resolve_ident(id);

assert(info);

if (info->type != IdentInfo::TYPEDEF_ID) {

// Wrong kind of previous definition

ambig_semant_error(ctx, this, "identifier is not "

"a typedef name: %s", id.chars());

return !ctx->inside_ambig;

} else {

// Looks good

definition.set_value(vg(), info->definition);

compute_synth_attrs(true); // Set change bits

return true;

}

}

}

C.3 Type Checking

The type checking of subtraction is typical among binary operators. First we recursively check the types of the two

arguments, then check that they have the right expression classes, and then check for one of three allowed type patterns:

the difference of two arithmetic types, of a pointer minus an integer, or of two compatible pointer types.

operator Subtract extends expr {

public virtual method ExprType determine_type(TypecheckContext *ctx) {

ExprType left, right, tmp;

if (!(left = get_left()->determine_type(ctx)))

23

return ExprType(ERROR_CLASS, 0);

if (!(right = get_right()->determine_type(ctx)))

return ExprType(ERROR_CLASS, 0);

if ((tmp = left.to_rvalue())) {

left = tmp;

} else {

set_semant_error(this, "Can’t use %s as left arg to ‘-’",

left.name().c_str());

}

if ((tmp = right.to_rvalue())) {

right = tmp;

} else {

set_semant_error(this, "Can’t use %s as right arg to ‘-’",

right.name().c_str());

}

ExprType result;

if (left.ty->is_arithmetic() && right.ty->is_arithmetic()) {

// Difference of two arithmetic types is the usual converted

// result type

ArithmeticType *left_converted = (ArithmeticType*)left.ty;

ArithmeticType *right_converted = (ArithmeticType*)right.ty;

result.ty =

ArithmeticType::usual_conv(&left_converted, &right_converted);

if (left.is_int_const() && right.is_int_const())

result.cl = INTEGER_CONST;

else if (left.is_arith_const() && right.is_arith_const())

result.cl = ARITH_CONST;

else

result.cl = RVALUE;

} else if (right.ty->is_integer() && left.ty->is_ptr_to_object()) {

// Pointer minus an integer is a pointer of the same type

result.ty = left.ty;

if (right.is_int_const() && left.is_addr_const())

result.cl = CONSTANT;

else

result.cl = RVALUE;

} else if (left.ty->is_pointer() && right.ty->is_pointer()) {

// Pointer minus a pointer is a (particular) integer type

CType *left_ref_uq = ((PointerType *)left.ty)->referent_type

->unqualified();

CType *right_ref_uq = ((PointerType *)right.ty)->referent_type

->unqualified();

if (!CType::composite_type(left_ref_uq, right_ref_uq))

// Can’t do ’int *’ - ’char *’

set_semant_error(this, "Incompatible pointer types in "

"difference: %s - %s",

left.ty->name().c_str(),

right.ty->name().c_str());

result.ty = ctx->the_PtrdiffType;

result.cl = RVALUE;

} else {

// Any other type combination is illegal

24

set_semant_error(this, "Wrong types to ‘-’: %s - %s",

left.ty->name().c_str(),

right.ty->name().c_str());

result.ty = 0;

result.cl = ERROR_CLASS;

return result;

}

string msg = "Difference has type " + result.ty->name();

set_string_prop(MOUSE_OVER_MSG, msg.c_str());

compute_synth_attrs(true);

return result;

}

}

D Source Code Availability

The complete source code of the flex, grammar and semantic specifications is also available online [McC02].

References

[Bos01] Marat Boshernitsan. Harmonia: A flexible framework for constructing interactive language-based program-

ming tools. Technical Report CSD-01-1149 , Computer Science Division, EECS Department, University of

California, Berkeley, June 2001.

[CP99] Robert Corbett and Project GNU. bison release 1.28, 19 9 9 .

[EBN97] Michael Ernst, Greg J. Badros, and David Notkin. An empirical analysis of C preprocessor use. Technical

Report TR-97-04-06, University of Washington, 19 97.

[Har] Harmonia Research Group. Harmonia project home page. http://www.cs.berkeley.edu/~harmonia.

[JTC99a] JTC1/SC22/WG14. International Standard 9899: Programming languages | C. ISO/IEC, 199 9 .

[JTC99b] JTC1/SC22/WG14. Rationale for International Standard | Programming languages | C. Number N897

in working group documents. ISO/IEC, draft revision 2 edition, October 199 9 .

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice Hall, second edition,

1988.

[McC02] Stephen McCamant. C language module source files, 2002. http://www.cs.berkeley.edu/~harmonia

/projects/c-language/index.html.

[Pax95] Vern Paxson. flex 2.5.4 man pages, November 1995. Free Software Foundation.

[PB89] P.J. Plauger and Jim Brodie. Programmer’s Quick Reference Series: Standard C. Microsoft Press, 1989 .

[Rek92] Jan Rekers. Parser Generation for Interactive Environments. Ph.D. dissertation, University of Amsterdam,

1992.

[Too02] Michael Toomim. Harmonia-Mode User’s Guide, 2002. http://www.cs.berkeley.edu/~harmonia

/projects/harmonia-mode/introduction.html.

[WG97] Tim A. Wagner and Susan L. Graham. Incremental analysis of real programming languages. In Proceedings

of the ACM SIGPLAN ’97 Conference on Programming Language Design and Implementation, pages 31–43,

Las Vegas, NV, June 1997.

25

