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Abstract

We describe a formal approach for finding bugs in security-relevant software and verifying their
absence. The idea is as follows: we identify rules of safe programming practice, encode them as safety
properties, and verify whether these properties are obeyed. Because manual verification is too expensive,
we have built a program analysis tool to automate this process. Our program analysis models the program
to be verified as a pushdown automaton, represents the security property as a finite state automaton,
and uses model checking techniques to identify whether any state violating the desired security goal
is reachable in the program. The major advantages of this approach are that it is sound in verifying
the absence of certain classes of vulnerabilities, that it is fully interprocedural, and that it is efficient
and scalable. Experience suggests that this approach will be useful in finding a wide range of security
vulnerabilities in large programs efficiently.

1 Introduction

Software vulnerabilities are an enormous cause of security incidents in computer systems. A system is
only as secure as its weakest link, and often the software is the weakest link.

We can attribute software vulnerabilities to several causes. Some bugs, like buffer overruns in C, reflect
poorly designed language features and can be avoided by switching to a safer language, like Java. However,
safer programming languages alone cannot prevent many other security bugs, especially those involving
higher level semantics. As a typical example, OS system calls have implicit constraints on how they should
be called; if coding errors cause a program to violate such constraints when interacting with the OS kernel,
this may introduce vulnerabilities.

In this paper, we focus on detecting violations of ordering constraints, also known astemporal safety
properties. A temporal safety property dictates the order of a sequence of security-relevant operations. Our
experience shows that many rules of good programming practice for security programs can be described
by temporal safety properties. Although violating such properties may merely indicate risky features in a
program in some cases, it often renders the program vulnerable to attack, depending on the nature of the
violation. In either case, the ability to detect violations of the properties or to verify the satisfaction of them
would be a significant help in reducing the frequency of software vulnerabilities.

To illustrate the relevance of such temporal safety properties, we give next a few examples that reflect
prudent programming practice for Unix applications.

• Property 1. Suppose a process uses thechrootsystem call to confine its access to a sub filesystem. In
this case, the process should immediately callchdir(“/”) to change its working directory to the root
of the sub filesystem.

This rule can be described by the temporal safety property that any call tochroot should be imme-
diately followed by a call tochdir(“/”) . The program in Figure 1(b) violates this property: it fails
to call chdir(“/”) after chroot(“/var/ftp/pub”), so its current directory remains/var/ftp . As a
result, a malicious user may ask the program to open the file../../etc/passwd successfully
even though this is outside the chroot jail and the programmer probably intended to make it inac-
cessible. Here, the malicious user takes advantage of the method by which the operating system
enforceschroot(newroot). When a process requests access to a file, the operating system follows
every directory component in the path of the file sequentially to locate the file. If the operating system
has followed into the directorynew root and if the next directory name in the path is “.. ”, then
“ .. ” is ignored. However, in the above example, since the current directory is/var/ftp , the path
../../etc/passwd never comes across the new root/var/ftp/pub and is therefore followed
successfully by the operating system. In short, thechrootsystem call has subtle traps for the unwary,
and Property 1 encodes a safe style of programming that avoids some of these traps.
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chroot
other

chdir
other

(a) An FSA describing the Property 1

// Here the current directory is “/var/ftp”
chroot(“/var/ftp/pub”);
filename = readfrom network();
fd = open(filename, ORDONLY);

(b) A program segment violating Property 1. Note that
the program fails to callchdir(“/”) afterchroot(), so if
filename is “../../etc/passwd”, a security violation
ensues.

Figure 1: An FSA illustrating Property 1 (chroot()must always be immediately followed bychdir()) and a
program violating it

open(f)stat(f)

other

other

(a) An FSA describing Property 2

// Here ruid=x (a normal user), euid=0 (root)
stat(logfile, &st);
if (st.st uid != getuid())

return -1;
open(logfile, ORDWR);

(b) A program segment violating Property 2. Note that
the program is susceptible to a race condition, since the
binding of logfile to a file may change between the
stat()andopen()calls.

Figure 2: An FSA illustrating Property 2 (stat(f)must not be followed byopen(f)) and a program violating
it.

• Property 2. A call tostat(f)should not be followed immediately by a call toopen(f)(otherwise, it is a
suspicious code sequence that tends to indicate potential security weaknesses [5]).

Before explaining this property, we give some background. In Unix systems, each process has an
effective user ID (euid), which determines the file access permission of the process. If theeuid of
the process is zero, the user ID of the super-userroot, the process has full access to the filesystem
and is said to beprivileged. Consider a privileged process that runs on behalf of a normal user and
that wants to constrain itself to access only files owned by the normal user. A naive implementation
involves two steps: (1) callstat(“foo”) to identify the owner of the filefoo ; (2) only open the file
if it is owned by the current user. This strategy, however, is insecure because of a race condition:
an attacker may change the file associated with the namefoo (e.g., through modifying a symbolic
link) between thestat(“foo”) andopen(“foo”) calls. The program in Figure 2(b) illustrates this race
condition. Suppose the filenamefoo in the variablelogfile initially is a symbolic link to a file
owned by the attacker. Whenstat(logfile,&st) is called, the program verifies that the attacker is the
owner of the file. But before the program proceeds to open the file by callingopen(logfile, ORDWR),
the attacker changesfoo to be a symbolic link to/etc/passwd , a file that should not be writable
to him. Soopen(logfile, ORDWR)ends up opening/etc/passwd for him in read/write mode. We
see that violations of Property 2 often point to potential security vulnerabilities in the code.

• Property 3. Since a privileged process has full access permission to the system, it should not make
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unpriv
noexec

  priv
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seteuid(0)

seteuid(!0)

other other

unpriv
  exec

  priv
  exec

execl( ) other execl( )

execl( )

se
teu

id(
0)

(a) An FSA describing Property 3

// Here ruid=x (a normal user), euid=0 (root)
execl(“/bin/sh”, “sh”, NULL);

(b) A segment from a setuid-root program that violates
Property 3. The user will receive a shell with full root
access, which may not have been intended. Probably
the programmer should have calledseteuid(x)to drop
privilege before spawning the shell.

Figure 3: An FSA illustrating Property 3 (execl()must not be called in privileged state) and a program
violating it

certain system calls that run untrusted programs without first dropping all privileges (thereby granting
them with full access permission to the system).

One such system call isexecl. For example, the program in Figure 3(b) callsexecl(“/bin/sh”, “sh”,
NULL) in the privileged state, giving the untrusted user a shell with full filesystem access permission.
It violates the property that a privileged process should drop privilege (by callingseteuid(u)with some
user IDu6=0, for example1) before callingexecl.

In summary, the Unix system call interface comes with various pitfalls and implicit requirements on how this
interface should be invoked. The temporal safety properties listed above encode some of these requirements
in an explicit form. To reduce the risk of security vulnerabilities we would like to verify that these security
properties are all satisfied.

Although checking temporal safety properties by hand is feasible in small programs, it does not scale to
large programs because the sequence of operations in a property may span multiple functions or files in a
program. Moreover, we would like to be confident that the property is satisfied onall execution paths in the
program, yet manually checking all paths is infeasible in most cases. This point is illustrated in the program
in Figure 4 where the path[d0d2d3d4] in the functiondrop privilege drops privilege, but the path[d0d1]
fails to do so. So the path[m1d0d2d3d4m2m3] satisfies Property 3, but the path[m1d0d1m2m3] violates it.
These types of path-dependent errors are common in programs, but such interprocedural errors are difficult
to discover with testing or manual review, especially if the caller and callee are in different source files. As
a result, we conclude that automated tools to help with this task are needed.

In this paper, we describe an automated approach to help examine security-related temporal safety prop-
erties (abbreviated assecurity propertieshenceforth) in software. We have built MOPS2, a program analysis
tool that allows us to make these properties explicit and to verify whether they are properly respected by the
source code of some application.

MOPS determines at compile time whether there isanyexecution path through a program that may vio-
late a security property. Since it is infeasible to traverse every execution path because there are prohibitively
many paths, we use techniques from model checking and program analysis to structure the analysis. We
model the security property as a Finite State Automaton (FSA) and the program as a Pushdown Automa-
ton (PDA). We then use model checking to determine whether certain states representing violation of the

1For additional security, a privileged process should callsetuid(u)or setresuid(u,u,u)to drop all the privileges in itsruid, euid,
andsuid. We simplify the property by considering only theeuidand theseteuidsystem call.

2MOdel Checking Programs for Security properties
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int main(int argc, char *argv[])
{ // start withroot privilege

m0: do somethingwith privilege();
m1: drop privilege();
m2: execl(“/bin/sh”, “/bin/sh”, NULL); // risky syscall
m3:}

void dropprivilege()
{

struct passwd *passwd;

d0: if ((passwd = getpwuid(getuid())) == NULL)
d1: return; // but forget to drop privilege!
d2: fprintf(log, “drop priv for %s”, passwd->pw name);
d3: seteuid(getuid()); // drop privilege
d4: }

Figure 4: A program where the security property is violated on one execution path but not on the other one.

security property in the FSA are reachable in the PDA. Our approach may be viewed as an application of
lightweight formal methods to an interesting class of security properties.

MOPS is distinguished from other related tools in the following aspects. First, since it is based on a solid
formal foundation, i.e., model checking, it can take advantage of existing algorithms and future advances
from the model checking community. Second, because it fully supports interprocedural analysis and because
interprocedural bugs are more elusive than intraprocedural ones, MOPS promises to complement manual
auditing where an automated tool is needed the most. Third, MOPS is sound (modulo the mild assumptions
to be discussed in Section 7): it reliably catches all bugs of the specified types. This property makes MOPS
useful not only in finding security bugs but also in verifying security properties. Fourth, thanks to a novel
technique that substantially reduces the size of a program without affecting the result of model checking,
MOPS scales well to large programs in both time and space, overcoming the scalability problem that hinders
many software model checking systems (see Section 5. Other tools have some of these properties, but to the
best of our knowledge MOPS is the only tool that hasall of these desirable properties.

This paper is organized as follows. Section 2 and 3 describe the formal models that are the founda-
tions of this approach. The former presents an abstract view of the models and the latter describes their
implementation. Section 4 discusses how to derive a security model from the operating system accurately.
Section 5 describes some important algorithms of MOPS. Section 6 presents our experiences in using MOPS
to examine several security-relevant software. Section 7 discusses the soundness of this approach and its
limitations. Section 8 reviews the related work and compares them to MOPS.

2 Formal Models

MOPS is based on a formal approach that builds a formal model of a program and of a security property
and then analyzes the models. We start by describing the problem.
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2.1 The Problem

Given a program and a security property, the goal is to verify whether the program satisfies the property,
and if not, identify why. Typically, the program performs several security-relevant operations, and the
security property specifies certain sequences of security operations that lead to potential security violations
and that should be avoided. The problem is to determine if there existsany execution path through the
program that contain such a sequence of operations.

2.2 The Formal Framework

We start with a highly abstract model. LetΣ be the set of security-relevant operations. LetB ⊆ Σ∗ be
all sequences of security operations that violate the security property (B stands forbad). A tracet ∈ Σ∗ will
represent a sequence of operations executed by a pathp through the program, and we say thatt is a feasible
trace ifp is a possible execution path through the program. LetT ⊆ Σ∗ denote the set of all feasible traces,
extracted from all execution paths of the program (T stands fortrace). The problem is to decide ifT ∩B is
empty. If so, then the security property is satisfied. If not, then some execution path in the program violates
the security property.

In the above model,B and T are arbitrary languages. Since in generalT is an uncomputable set,
deciding whetherT ∩B = ∅ is an undecidable problem. To make the problem decidable, we specialize the
problem by restricting the form ofB andT .

First, we assume thatB, the set of sequences of security operations that violate the security property, is
a regular language. Our experiences show that most temporal safety properties can be described by regular
languages (see Sections 3 and 6 for examples). SinceB is a regular language, there exists a Finite State
Automaton (FSA)M that acceptsB (M stands formodel); in other words,B = L(M). We will usually
identify the security property with its representation as an FSA.

Although we assume thatB is a regular language, it is not sufficient to assume thatT , the set of all
feasible traces, will always be a regular language. The problem is that a regular language cannot describe
the execution paths that cross function calls very well. In the case of a function call, a stack is needed to
record the return address in the caller, and the language generated with a stack is context free rather than
regular. Therefore, in this paper we model the setT of feasible traces as a context free language. It follows
that there exists a Pushdown Automaton (PDA)P that acceptsT (P stands forprogram). A PDA consists of
a set of states, stack symbols, input symbols, and transitions. A snapshot of the PDA, called aconfiguration,
consists of its current state and all the symbols on the stack. A transition specifies that the PDA moves from
one configuration to another upon receiving a certain input symbol. With these specializations ofB andT ,
the original problem becomes deciding ifL(M) ∩ L(P ) is empty.

To solve the problem, first we need to computeL(M) ∩ L(P ). SinceC = L(M) ∩ L(P ) is the
intersection of a regular language (L(M)) and a context free language (L(P )), C is a context free language.
It also follows thatC is accepted by the PDA that is the intersection ofM and P . Second, we need
to determine if the languageC is empty. According to automata theory, there are efficient algorithms to
compute the intersection of a PDA and an FSA and to determine if the language accepted by a PDA is
empty [14,§6.2 and§6.3]. Hence we obtain a means to verify whether the security property is satisfied by
the program.

Using a context free language to model the set of feasible traces does introduce some imprecision. In
general we haveT ⊆ L(P ): the PDAP will indeed accept all feasible traces, yet it might also accept
some additional, spurious traces that are in fact infeasible due to the presence of other effects (such as data
flow) not modeled in our framework. Nonetheless, sinceT ⊆ L(P ), we are guaranteed thatT ∩ B ⊆
L(P ) ∩ L(M). Consequently, ifL(M) ∩ L(P ) is empty, we can conclude thatT ∩B is also empty, hence
the program definitely satisfies the security property; in contrast, ifL(M)∩L(P ) is non-empty, then we can
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only say thatT ∩ B may or may not be empty, hence the program might not satisfy the security property,
but there are no guarantees in this case.

This means that our analysis issound: it may make mistakes by giving false alarms (warnings that do
not correspond to an actual security vulnerability), but it will not overlook a real violation of the security
property. This limitation is unavoidable. Since the general problem is undecidable, no algorithm can both
avoid false alarms and avoid overlooking real bugs. Our experience is that false alarms are tolerable enough
in practice that the approach is still useful despite occasional bogus warning messages.

2.3 A Concrete Example

To illustrate the formal framework, let us work through a concrete example. The problem is to check if
the program in Figure 4 violates the security property that a process should not make theexeclsystem call
while it is in the privileged state (Figure 3(a))

In this problem, the set of security operations isΣ = {execl(), seteuid(0), seteuid(!0)}, where the last
element represents any call toseteuidwith a non-zero parameter (representing a non-root user ID). The
setB ⊆ Σ∗, the sequences of security-relevant operations that violate the security property, is accepted
by the FSAM shown in Figure 3(a). The setT ⊆ Σ∗, the feasible traces of the program in Figure 4, is
T = {[seteuid(!0), execl()], [execl()]}. Since this is a setuid-root program, the initial state in the FSAM
is (priv, noexec). According to Figure 3(a), although the path[seteuid(!0), execl()] in T is not accepted by
M , the path[execl()] in T is accepted byM . Therefore, we find thatT ∩ L(M) 6= ∅, or in other words,
an execution path in the program violates the security property. This indicates the presence of a security
vulnerability.

3 Implementation of Formal Models

In this section, we describe how to construct formal models from security properties and programs.

3.1 Modeling Security Properties

We call an FSA that describes a security property asecurity model. A transition in the FSA represents an
execution of a security-relevant operation. All sequences of operations that violate the property end in the
final states of the FSA. So the final states might also be thought of asrisky statesand are shown in double
circles in the figures. The FSAs describing Properties 1, 2, and 3 in Section 1 are shown in Figures 1(a),
2(a), and 3(a) respectively. Note that in these figures each transition labeledother is a special transition,
which is taken when no other transition from the same state can be taken.

3.1.1 Modularization

One important feature of MOPS is that it allows complex security properties to be decomposed into
simpler security models which are easier to describe. MOPS is able to combine these simpler models into
a complex model on the fly3. For example, consider the property that a process should not make a risky
system call such asexeclwhile it is in the privileged state. This property can be decomposed into two simpler
models: the first one describes the transition of a process between the privilege state and the unprivileged
state (Figure 5(a)) and the second one describes the execution of a risky system call (Figure 5(b)). MOPS
automatically combines the two simpler FSAs into the product automaton shown in Figure 5(c). Checking
the program in Figure 4 against this security model shows that the risky state is reachable at the program
pointm3.

3The complex model is a product automaton of the automata of the simple models
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unpriv priv

seteuid(0)

seteuid(!0)

other other

(a) A model of process privilege.

noexec exec

execl()

other

other execl()

(b) A model of risky system calls.

unpriv
noexec

  priv
noexec

seteuid(0)

seteuid(!0)

other other

unpriv
  exec

  priv
  exec

execl( ) other execl( )

execl( )

se
teu

id(
0)

(c) A composite model describing the property
that a process should not make risky system calls
while it is in the privileged state. The model is au-
tomatically constructed as the product of 5(a) and
5(b). Note that the outgoing transitions from the
final state(priv, exec)are omitted for clarity.

Figure 5: Building a complex model from simpler models.

Modularization also makes it possible to reuse existing models. Suppose we have already built the model
of process privilege (Figure 5(a)) and we want to build the model for the property that a process should not
make risky system calls in the privileged state (Figure 5(c)). Instead of building it from scratch, we only
need to build the model describing risky system calls (Figure 5(b)) and then plug in the existing model of
process privilege (Figure 5(a)). This allows the construction of amodel librarywhich supplies building
blocks for new models.

Enabling modularity is very important for practical use. For ease of presentation, we have so far de-
scribed only security properties that have concise representations as small FSAs, but in practice our security
models may be very complex. For instance, our model of user IDs in Linux has dozens of states and many
more transitions. If we had to re-specify this every time we wanted to check some security property that
involves privileges, the result would be too unwieldy for practical use. Modularity comes to the rescue here:
it lets us build a few base models once, then we can compose and extend them in many interesting ways.

3.1.2 Pattern Variables

MOPS is control flow and path sensitive but data flow insensitive. In other words, we ignore most data
flow: for instance, when processing anif-then-else statement, we conservatively assume that either
branch could be taken, and we do not try to analyze whether the condition to theif statement is true or
not. We make this choice for the following reasons. First, we conjecture that many security properties do
not require the analysis of data flow. Second, analysis of data flow is expensive and will severely limit
the scalability of MOPS. Third, we can do rudimentary data flow analysis by encoding data values into a
security model. For example, if we want to analyze the value of a boolean variableb, then we can split
each statesi in the security model into two statessi,0 andsi,1, wheresi,0 represents whenb is true andsi,1

represents whenb is false.
MOPS supports a special form of data flow analysis via pattern variables. A pattern variable used in an

FSA may be bound to any expression that satisfies context constraints in a program. For example, ifx is a
pattern variable in the FSA in Figure 6(a), thenx can be bound to the expression eithera or b in the program
in Figure 6(b). In other words, pattern variables enable syntactic matching.
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closed open

x=open( )

close(x)

other other

(a) An example of a security property using pattern
variables.

int main()
{

int a, b;
a = open(“foo”, ORDONLY);
b = open(“bar”, ORDONLY);
. . .
close(a);
close(b);

}

(b) An example of a program motivating
the utility of pattern variables. By using
the pattern variable to match up eachopen
call to its correspondingclosecall, we can
accurately track the state of each file de-
scriptor.

Figure 6: An example showing the use of pattern variables

3.2 Modeling Programs

Since we only care about all feasible paths in a program and the statements executed on these paths, we
can model the execution of the program by a pointer and a stack. The pointer points to the program position
of the next statement to be executed, and the stack records the return addresses of all unfinished function
calls. Therefore, the value of the pointer and the values on the stack uniquely identify a snapshot of the
program in execution. If we merge the pointer and the stack by regarding the pointer as the top element on
the stack, we get a Pushdown Automaton(PDA). The control flow in the program determines the transitions
in the PDA. An algorithm that constructs the PDA from the program is described in Section 5.

Once we have an FSA describing a security property and a PDA representing a program, our goal is to
check if any risky state in the FSA is reachable at any program point in the PDA. To answer this question,
MOPScomposesthe FSAM with the PDAP using standard techniques [14, Theorem 6.5]. This results in
a new PDA, called thecomposite PDA, which accepts the languageL(M)∩L(P ). The initial configuration
of the composite PDA represents the snapshot when the program starts, where the state of the PDA is the
initial state of the security model and the stack of the PDA only contains the entry point of the program. By
using model checking techniques, MOPS can determine if any risky state is reachable within the composite
PDA. If this is the case, then MOPS has found a potential security violation and outputs an execution path in
the program that causes this violation. For example, MOPS finds that the path in Figure 7 from the program
in Figure 4 violates the security property in Figure 3(a).

Furthermore, MOPS can determine, for each statement in a program, all the states in an FSA that the
statement can be executed in. For example, if the FSA contains a privileged and an unprivileged state,
MOPS tells which statement may be executed in the privileged state. If this does not meet a programmer’s
expectation, a vulnerability is likely. We speculate that this additional functionality may be very useful when
auditing security-critical programs by hand.

8



Function Program Point Statement

main m0: do somethingwith privilege();
main m1: drop privilege();
drop privilege d0: if ((passwd = getpwuid(getuid())) == NULL)
drop privilege d1: return; // but forget to drop privilege!
main m2: execl(“/bin/sh”, “/bin/sh”, NULL); // risky system call

Figure 7: An execution path that causes a security violation, from the program in Figure 4.

unpriv priv

seteuid(0)

seteuid(!0)

other other

Figure 8: A simplified FSA describing process privilege in Linux 2.4.17

4 Modeling Operating Systems Semantics

Since a security model is an abstract representation of the security operations in an operating system, we
need to understand the semantics of the security operations precisely to construct an accurate security model.
This, however, is often difficult because the semantics of security operations is subtle and varies among
different operating systems (such as different flavors of the Unix system). Moreover, their documentation is
sometimes incomplete or incorrect [8].

We advocate relying on the kernel code for the construction of security models, since the kernel code
determines the semantics of the security operations. We adopt a two step process: in the first step, find out
all the kernel variables that affect the security operations and then determine the states in the FSA based on
these kernel variables; in the second step, determine the transitions among these states in the FSA. The first
step can usually be done by hand, but manually doing the second step is often laborious and error prone
because of the large number of transitions. We tackle this problem by writing a state-space explorer that
exhaustively executes all the security operations on the operating system and automatically creates all the
transitions in the security model.

To illustrate this process, we will show how to build a security model that describes the transition of
privilege in a process in Linux 2.4.17. Further details may be found in a companion paper [8].

4.1 A simple model

Since the privilege of a process is carried in itseuid, we start with a simple model with two states: the
privileged statepriv representing when theeuid is zero and the unprivileged stateunpriv representing when
theeuidis non-zero, as shown in Figure 8. The callseteuid(0)causes a transition fromunpriv to priv and any
call to seteuidwith a non-zero argument, denoted byseteuid(!0), causes a reverse transition. Furthermore,
theeuidcan also be changed by thesetuid, setreuid, andsetresuidsystem calls, so they are also added into
the model (not shown in Figure 8 for legibility). We will refer to these system calls that modify the user IDs
of a process as theuid-setting system calls.
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ruid=0,euid!=0,suid=0

ruid=0,euid=0,suid=0

ruid!=0,euid!=0,suid!=0

ruid=0,euid!=0,suid!=0

ruid!=0,euid=0,suid=0

ruid=0,euid=0,suid!=0

ruid!=0,euid=0,suid!=0

ruid!=0,euid!=0,suid=0

ERROR

Figure 9: A refined view of the Linux 2.4.17 process privilege model, capturing theruid, euid, andsuid.

4.2 Improving the model

The above simple model, however, is inaccurate. The behavior of the uid-setting system calls depends
not only on theeuid but also on theruid andsuid [8]. Therefore, we extend the model to consider all the
three user IDs. The range of values in each user ID determines the number of states in the model. Typically,
a process switches its user IDs betweenroot, whose user ID is zero, and a non-root user, whose user ID is
non-zero. In this case, the model needs eight states to describe all possible combinations of the values in
the three user IDs. In addition, there is anerror state, which represents a failed system call. This resulting
model is shown in Figure 9. For legibility, all input symbols (system calls) on the transitions are omitted.

To verify if the states in this model are complete, we need to find out if other kernel variables besides
theruid, euid, andsuidof a process can affect the behavior of the uid-setting system calls. A search through
the kernel finds that the effective capability (cap effective), the permitted capability (cap permitted), and
the variablekeepcapabilitiesof a process are also relevant. Like theruid, euid, andsuid, they are also per-
process variables. We addcap effectiveandcap permittedinto the state space, each of which is represented
as a binary value. We ignorekeepcapabilitiesbecause few programs modify it and we let MOPS warn
about such programs.

4.3 Determining Transitions

Having determined the states in the security model, the next step is to create transitions in the model.
However, it would be too laborious and error prone to create the huge number of transitions in Figure 9
and Figure 10. Instead, we write a state-space explorer that creates the transitions automatically. From
each state in the FSA, the explorer determines all the outgoing transitions from this state by making all the
uid-setting system calls from this state and examining the state transitions resulting from the calls. A proof

10



R!=0,E!=0,S=0,CE=1,CP=1
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EPERM

R!=0,E=0,S!=0,CE=0,CP=1

R=0,E=0,S=0,CE=0,CP=1

R=0,E=0,S!=0,CE=0,CP=1

R!=0,E=0,S=0,CE=0,CP=1 R!=0,E!=0,S=0,CE=0,CP=0

R=0,E=0,S=0,CE=0,CP=0

R=0,E=0,S!=0,CE=0,CP=0

R=0,E!=0,S!=0,CE=0,CP=0

R=0,E!=0,S=0,CE=0,CP=0

R!=0,E=0,S=0,CE=0,CP=0

R!=0,E=0,S!=0,CE=0,CP=0

Figure 10: A further refined model of process privilege in Linux 2.4.17, this time capturing all of theruid,
euid, suid, effective and permitted capabilities.

Parser  Model
Checker

Source
 Code CFG

Security
  Model

  Reachability
of Risky States

Figure 11: The high-level architecture of MOPS.

of correctness of this approach and other details may be found elsewhere [8].

5 Algorithms

MOPS consists of a parser and a model checker, as shown in Figure 11. MOPS checks whether a source
program satisfies a security property by the following steps: first, the parser builds a Control Flow Graph
(CFG) of the program; then, the model checker builds a PDA from the CFG and checks the PDA against the
security property.

5.1 Parser

The parser builds a CFG from a source program. Each edge in the CFG represents a statement in the
program by an Abstract Syntax Tree (AST), and each node in the CFG represents a program point. The
parser is derived from RC [12], which is based onGCC. By using aGCC-derived parser, MOPS is able to
parse any source program thatGCCparses. If the program consists of multiple source files, MOPS merges
the multiple CFGs each of which is generated from one source file into a single CFG.

As source programs get larger, the sizes of their CFGs increase rapidly. For example,sendmail8.12.0,
a popular Internet mail program with 53k lines of code, has a CFG with 182k nodes and 197k edges. Most
model checkers cannot handle such a large CFG. Therefore, we must find a way to drastically compact large
CFGs.

We propose a novel technique for compacting CFGs because we have observed that, for most programs
and most security properties, the majority of the statements in the program are irrelevant to the security
property. For example, since a security property describing the transition of privileges in a Unix process
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1. Find all the relevant functions by computing the transitive closure of relevant functions.
2. For each nodev in the CFG, attach a bit vectorbv with all bits clear.

/* In the following, bv[i] denotes theith bit of the bit vector attached to the nodev */
3. Set a variablemsb:= 0.
4. Identify the entry nodev. Setbv[0] := 1. Add v to a work queueW .
5. While the work queueW is not empty, do:

Pick a nodev from W .
If any incoming edge tov has a relevant statement, then

If all the bits inbv are clear, then
Setmsb:= msb+ 1 andbv[msb] := 1.

else
For each preceding nodeu of v, do

Setbv := bv ∪ bu.
If any bit in bv has been changed in this iteration, then

Add all the succeeding nodes ofv into the work queueW .
6. Remove every edgev → v′ wherebv = bv′ and mergev with v′.
7. Remove the bodies of all the irrelevant functions.

Figure 12: An algorithm for compacting CFGs

cares only about the uid-setting system calls, all the other statements in the program are irrelevant to the
security property. We describe the observation formally as follows. With regard to a security property, we
define arelevant functionas a function that is defined by a program and that contains at least arelevant
statement, and we define arelevant statementas a statement that may trigger a state change in the security
model or that is a call to a relevant function. We consider two program paths to beequivalentwith regard
to a security property if they contain the same sequence of relevant statements. For example, if the first
path contains the sequence [A D E B F C] , the second path contains the sequence [A D B C], and only the
statementsA, B,andC are relevant to the security property, then the two paths are equivalent with regard to
the security property.

Compacting a CFG should not introduce any imprecision to the analysis. Intuitively, this requires that
the result of running the model checker on a program and a property is always guaranteed to be the same as
running on the compacted version of the program and the property. Formally, it requires that for each path
in the uncompacted CFG there must exist an equivalent path in the compacted CFG, and vice versa. The
following algorithm satisfies this requirement: first, identify all the relevant statements by computing the
transitive closure of all the relevant functions second, decide which edges can be safely shrunk by attaching
a bit vector to each node in the CFG and compute values for these bit vectors; finally, compact the CFG by
(1) shrinking all the edges whose source node and destination node have the same value in their bit vectors,
and (2) removing the bodies of all but the relevant functions. Figure 12 describes this algorithm in details.

The time complexity of this algorithm isO(MN), whereM is the number of relevant statements and
N is the number of nodes in the CFG. Since the CFG of each function body is disjoint and MOPS runs this
algorithm on each of them separately, the complexity of this algorithm does not depend on the number of
function bodies in the program.

Compaction can reduce the sizes of CFGs substantially. For example, the uncompacted CFG ofsendmail
has 1742 function bodies, 182k nodes, and 197k edges, which is too large for MOPS’s model checker to
handle. After we compacted it with regard to the security property in Figure 9, we have reduced the CFG
to only 37 function bodies, 240 nodes, and 670 edges. MOPS’s model checker successfully ran on the
compacted CFG.
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5.2 Model Checker

Taking a CFG generated by the parser and a security model represented by an FSA, the model checker
decides if the program of the CFG may violate the security property in four steps. First, it constructs a PDA
for the CFG by adding a transition to the PDA for each edge in the CFG according to the following rules
(the PDA has a single states):

• For an edge from a program pointp1 to p2 with a statementi:

– If i is not a function call, add a transition(s, p1)
i→ (s, p2) to the PDA.

– If i is a call to a functionf , add a transition(s, p1)
ε→ (s, f0p2) to the PDA, wheref0 is the

entry point of the functionf . 4

• For an edge that is a return statement from a functionf , add a transition(s, fn) ε→ (s, ε) to the PDA,
wherefn is the exit point of the functionf andε denotes that no symbol is pushed onto the stack.

Second, the model checker computes the intersection of the security model with the program PDA by
taking their parallel composition [14], which creates a new PDA (called thecomposite PDA), whose states
come from the FSA and whose input symbols and stack symbols come from the PDA, by the following
algorithm5:

• For each transition(s, p1)
i→ (s, p2) in the program PDA and each transitions1

i→ s2 in the security
model, add a transition(s1, p1) → (s2, p2) to the composite PDA.

• For each transition(s, p1)
ε→ (s, p2p3) in the program PDA and each states1 in the security model,

add a transition(s1, p1) → (s1, p2p3) to the composite PDA.

• For each transition(s, p1)
ε→ (s, ε) in the program PDA and each states1 in the security model, add

a transition(s1, p1) → (s1, ε) to the composite PDA.

Note that we have dropped the input symbols in the composite PDA because we only care about its state
reachability, not about its acceptable languages. The initial configuration of the composite PDA is(s0, p0)
wheres0 is the initial state of the security model andp0 is the entry point of the program (usually the entry
point of the functionmain).

Third, the model checker computes all the reachable configurations from the initial configuration of the
composite PDA. The set of reachable configurations could be very large, or even infinite, so representing it
internally is a challenge. Fortunately, there is a beautiful theorem that comes to the rescue: the reachable
configurations of a PDA form a regular language, and hence can be represented by an FSA. Our model
checker represents the set of reachable states using aP-automaton.

A P-automaton (PA) is an FSA that describes the reachable configurations of a PDA, and it can be
computed effectively using an algorithm described elsewhere [10]. To construct the PA of a PDA, we take
all the states from the PDA and make them the initial states of the PA, and we add a final state to the PA.
Then, we take all the stack symbols from the PDA and make them the input symbols of the PA. A path
in the PA from an initial states to the final state with input symbols[i1, . . . , in] on the edges represents

4We only consider a function call if we have the source code of the function body (so we can build its CFG). This implies that
we will not consider library calls whose source code is unavailable to us.

5This algorithm works only if there is noε-transition in the FSA, which is guaranteed due to the way by which FSAs are
constructed in MOPS.
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the configuration(s, i1 . . . ik) in the PDA6. This definition shows clearly how to add edges to the PA to
represent an initial configuration of the PDA. Call the resulting PAPA0. FromPA0, the following algorithm
constructs post*(PA0), a PA that contains all the successors of the initial configuration. In other words,
post*(PA0) contains all the reachable configurations of the PDA.

• For each transitiont = (p1, r1) → (p2, r2r3) in the PDA, add a new statept and a new edgep2
r2→ pt

to PA0.

• Add new edges toPA0 according to the following saturation rules:

– If (p1, r1) → (p2, ε) is in the PDA andp1
r1→ q is in PA0, add an edgep2

ε→ q.

– If (p1, r1) → (p2, r2) is in the PDA andp1
r1→ q is in PA0, add an edgep2

r2→ q.

– If t = (p1, r1) → (p2, r2r3) is in the PDA andp1
r1→ q is in PA0, add an edgept

r3→ q.

The space and time complexity of this algorithm ranges fromO(SP 2) to O(S3P 2) whereS is the number
of states in the security model, andP is the number of statements in the compacted CFG.

Finally, the model checker tests whether the state of any reachable configuration is a risky state of the
security model. If not, the program satisfies the security property. Otherwise, the program may violate the
security property.

5.2.1 Backtracking

When the model checker determines that a program may violate a security property, it is useful to
identify a program path (sometimes known as an error trace) on which the violation occurs. We call this
backtracking, and we have implemented a novel algorithm for extending the post*() computation described
above to support backtracking. The algorithm attaches to each edge in the PA a predecessor list that records
all the edges that have triggered this edge to be added during the post*() computation. For example, if the
edgep1

r1→ q in PA0 and the transition(p1, r1) → (p2, r2) in the PDA trigger a new edgep2
r2→ q to be added,

then the algorithm addsp1
r1→ q to the predecessor list of the new edge. Intuitively, since the input symbol

on an edge in the PA represents a program point, the predecessor list of the edge records all the program
points that can immediately precede the current one in an error trace. Therefore, once we find a reachable
PDA configuration violating the security property, we can backtrack all its preceding configurations one by
one using the predecessor lists in the PA.

6 Applications

6.1 Checking Privilege Flow in Non-local Control Flow

6.1.1 Problem

POSIX allows a program to do a non-local jump by callinglongjmp, in which the program jumps to
the stack context saved by a previoussetjmpcall. Since non-local jumps are not in the Control Flow Graph
of the program, most program analysis tools cannot analyze them. However, non-local jumps are prone to
security vulnerabilities since they may cause unexpected control flow. For example, the program in Figure 13
starts with privilege. Then, it drops privilege (by callingseteuid(getuid())) before doing potentially risky
operations in the functionmain. However, if the program subsequently receives a signal, thelongjmpcall in

6To avoid confusion, we use the wordedgeto refer to transitions in P-automata and reserve the wordtransition for transitions
in PDAs
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jmp buf env;

void signalhandler()
{

seteuid(0);
logwtmp(message, “ ”, “ ”);
longjmp(env, 1);

}

int main()
{

// drop privilege
seteuid(getuid());
...
setjmp(env);
// do something potentially risky
...

}

Figure 13: A program with a security vulnerability caused bylongjmpcarrying privilege to the call site of
setjmp, where privilege should have been dropped

the functionsignalhandlerwill cause the program to jump into the functionmain(immediately after the call
site ofsetjmp) with the privilege obtained insignalhandler. Thereafter, the program will execute potentially
risky operations in the functionmainwith privilege.

6.1.2 Temporal Safety Property

To prevent alongjmpcall from carrying privilege to the call site of asetjmpwhere privilege should have
been dropped, we propose the following temporal safety property:

Property 4: the privilege of a process when it callslongjmpmust match its privilege when it
callssetjmp.

Obviously, an FSA describing this property should have two dimensions: one dimension records the privi-
lege of the process when it last calledsetjmp, and the other records its current privilege. The states in the
FSA whose privileges in the two dimensions are different represent violation of this property. Formally,
let F be the FSA describing the transition of privilege in a process (constructed in Section 4) and letS
be the set of states inF . We derive an FSAG that describes the above property. The states inG are
S× (S ∪{⊥})∪{ERROR}, where× denotes the Cartesian product and⊥ represents the uninitialized state
(thesetjmpbuffer is in the uninitialized state before the firstsetjmpis called). Use the following rules to add
transitions toG.

• For every transitionu i→ v in F and every states ∈ (S ∪{⊥}), add a transition(u, s) i→ (v, s) to G .

• For every states ∈ S andt ∈ (S ∪ {⊥}), add a transition(s, t)
setjmp(env)−→ (s, s) to G.

• For every states ∈ S andt ∈ (S ∪ {⊥}) ands 6= t, add a transition(s, t)
longjmp(env, *)−→ ERRORto

G where the stateERRORindicates violation of the property.
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• For every states ∈ S, add a transition(s, s)
longjmp(env, *)−→ (s, s) to G.

6.1.3 Implementation

We used the above security model to find a known security vulnerability inwu-ftpdversion 2.4 [6]. The
vulnerability is similar to the one in Figure 13, except thatseteuid(0)and longjmp(env)are called in the
handlers for the signals SIGPIPE and SIGURG respectively. Therefore, by sending the signal SIGURG im-
mediately after the signal SIGPIPE to awu-ftpdprocess, an attacker can cause the process to callseteuid(0)
in the handler of the signal SIGPIPE to gain privilege, and then to calllongjmp(env)in the handler of the
signal SIGURG to return to the call site ofsetjmp(env)in the functionmain. Thereafter,wu-ftpdwill execute
with root privilege, which results in giving the attacker root privilege.

Since this vulnerability involves signal handling which is not part of the control flow of a program
and which most program analysis tools, including MOPS, are unable to handle, at present we need to
manually insert the control flow of signal handling into the program. A naive approach would be to non-
deterministically add a call to a signal handler after every statement in the program wherever the signal is
enabled. This is too laborious. Fortunately, there is a better approach. We observe that it is sufficient to add
such calls only after the statements that may trigger state changes in the FSA. Since only the uid-setting sys-
tem calls and thesetjmpcall may trigger transitions in the above FSA, we only need to non-deterministically
add a call to a signal handler after the uid-setting system calls and thesetjmpcall in the program wherever
the signal is enabled. This substantially reduces the number of calls added to the program. The need to
modify the program by hand is a repairable limitation of our current implementation, not a fundamental
limitation of the approach. It would be straightforward to extend the control flow analysis to add transitions
for signal handlers as needed automatically, and we hope to add this to a future version of MOPS.

Sincelongjmp(env, *) causes a program to jump to the stack context inenvwhich has been saved by
setjmp(env), if the program uses multiple jump buffers, we need to match everylongjmpwith its correspond-
ing setjmp. Pattern variables (Section 3.1.2) handle this naturally, so long as there is no aliasing.

6.1.4 Results

MOPS detected the vulnerability inwu-ftpd2.4 beta 11 and discovered the offending path that was given
in the report of the vulnerability [13].

wu-ftpdversion 2.4 beta 12 fixed the vulnerability by safeguarding everyseteuidcall with enabling/disabling
signals. This new version precedes every call to gain privilege (seteuid(0)) with a call to disable signals and
follows every call to drop privilege (seteuid(!0)) with a call to enable signals. We used MOPS to verify that
this new version satisfies Property 4, as given above.

6.2 Checking Proper Dropping of Privilege

Many server processes start with root privilege in their user IDs. They often need to drop privilege
temporarily before doing untrusted operations on a user’s behalf or to drop privilege permanently before
passing control to the user. Failure in dropping privilege may allow an attacker to take control of the
application or even the OS.

To detect this vulnerability, we need to find which statements in the program may be executed with
privilege. Using the techniques described in Section 4, we built an FSA for describing privilege transitions
in each process on Linux (Figure 9 shows the FSA, where for clarity all the labels of the transitions are
removed). Each state in the FSA encodes whether the root privilege is present in theruid, euid, andsuid. By
using MOPS to find, for each statement in the program, the set of states in the FSA that the statement may
be executed in (Section 3.2), we are able to identify all the statements that may be executed with privilege,
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and therefore to determine whether each operation that intends to drop privilege may fail. By this approach,
we identified two known vulnerabilities insendmail: sendmail8.10.1 fails to drop root privilege in user IDs
permanently due to a bug in the Linux kernel and an unexpected interaction between the user IDs and the
capabilities [17], andsendmail8.12.0 fails to drop privilege in group IDs permanently due to an unexpected
interaction between the user IDs and the group IDs [20]. More details of these vulnerabilities may be found
elsewhere [8].

6.3 Verifying Success of System Calls

Failure of certain security related system calls may cause vulnerability. For example, ifsetuid(getuid())
fails, the calling process fails to drop privilege permanently which may allow an untrusted application to
take over the OS. We obtain the following security property:

Property 5: thesetuidsystem call should never fail.

The FSA that we built for modeling uid-setting system calls includes a state that represents failed calls.
With this FSA, MOPS is able to verify that no uid-setting system calls may fail in OpenSSH 2.5.2.

6.4 Performance

We measured the performance of MOPS by sendmail 8.12.0, which has 53k lines of code, in the exper-
iment described in Section 6.2. On an 1.5GHz Pentium machine, MOPS spent 110 seconds in parsing the
source files and 95 seconds in model checking. This computation needed less than 300MB of memory. This
suggests that MOPS will scale well to large security-relevant programs.

7 Discussion

The two major goals of MOPS are soundness and scalability. Soundness will enable MOPS to be used
not only as a bug-finding tool but also as a property-verification tool. To evaluate the soundness of MOPS,
let us look at the two stages of MOPS: transforming a C program into a PDA, and model checking the
PDA. The latter stage is always sound. The former stage is sound as long as every execution path in the
program is captured in the PDA. This requires that the program be a portable, single-threaded C program that
has no implementation-defined behavior: for example, no buffer overruns and no runtime code generation.
In addition, MOPS ignores control flow by function pointers, signal handlers, and non-local jumps via
setjmp/longjmp. Although this approximation introduces unsoundness, it is not a fundamental limitation
of the approach but rather a limitation of the current implementation. We can overcome this problem by
manually transforming the control flow that MOPS ignores to the equivalent ones that MOPS considers, as
we did in Section 6.1.3. We are working on automating this process and we hope to add it to a future version
of MOPS.

Scalability will enable MOPS to work on a broad range of programs, especially the more complex
ones which are more error-prone. MOPS has achieved high scalability by disregarding most data flow and
compacting the CFGs very efficiently. This advantage, however, comes with the price of lower precision:
MOPS may mistakenly consider paths that are infeasible in the program to be feasible, and issue extraneous
warnings. Although there is always a trade-off between scalability and precision, we are investigating how
much we can push MOPS’s precision without sacrificing scalability.
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8 Related Work

A number of static analysis techniques have been used to detect specific security vulnerabilities in soft-
ware. Wagner et al. used integer range analysis to find buffer overruns [19]. Koved et al. used context
sensitive, flow sensitive, interprocedural data flow analysis to compute access rights requirement in Java
with optimizations to keep the analysis tractable [16]. CQUAL [11] is a type-based analysis tool that pro-
vides a mechanism for specifying and checking properties of C programs. It is used to detect format string
vulnerabilities [18] and to verify authorization hook placement in the Linux Security Model framework [21],
which are examples of the development of sound analysis for verification of particular security properties.
The application of CQUAL, however, is limited by its flow insensitivity and context insensitivity, although
it is being extended to support both.

Metal [9, 1] is a general tool that checks for rule violations in operating systems, using meta-level
compilation to write system-specific compiler extensions. The goals of Metal and MOPS are different.
Metal is aimed at finding bugs with few false positives. Therefore, false negatives are quite possible and it
is neither sound nor complete. On the other hand, MOPS is aimed at verifying security properties with no
false negatives, which is achieved by its soundness (modulo the mild assumptions discussed in Section 7).
Moreover, Metal is primarily an intra-procedural tool — inter-procedural checking requires extra effort from
the user. However, since interprocedural bugs are more elusive, automated tools become more valuable when
they find interprocedural bugs. MOPS is fully interprocedural.

SLAM [2, 3] is a pioneer project that uses software model checking to verify temporal safety properties
in programs. It validates a program against a well designed interface using an iterative process. During
each iteration, a model checker determines the reachability of certain states in a boolean abstraction of the
source program and a theorem prover verifies the path given by the model checker. If the path is infeasible,
additional predicates are added and the process enters a new iteration. SLAM, however, does not yet scale
to very large programs. Compared to SLAM, MOPS trades precision for scalability and efficiency by con-
sidering only control flow and ignoring most data flow, as we conjecture that many security properties can
be verified without data flow analysis. Also since MOPS is not an iterative process, it does not suffer from
possible non-termination as SLAM does.

Jensen et al. model checked a special class of security properties in Java using only control flow analy-
sis [15, 4]. Its algorithm, however, requires that one specifies a fixed, finite bound on the size of the program
stack. The model checking algorithm in MOPS is based on the work by Esparza [10], which properly
handles stacks of unbounded size. We have extended the algorithm with backtracking and CFG compaction.

9 Conclusions

In this paper, we have described a formal approach that is able to check a wide range of security prop-
erties in large programs efficiently. We have implemented this approach in a tool calledMOPS. In our
approach, we identify rules of safe programming practice, encode them as security properties, and describe
them by Finite State Automata (FSA). To check these properties in a program, MOPS models the program
as a pushdown automaton (PDA) and uses model checking techniques to determine the reachability of risky
states in the PDA. The major advantages of this approach are: (1) since it is fully interprocedural, it is
especially useful in finding interprocedural bugs, which are more likely to elude manual audit; (2) since it
is sound (modulo mild assumptions), it can reliably catch all bugs of the specified types; (3) thanks to our
novel compaction algorithm, MOPS is efficient and scales to handle large programs. Preliminary evidence
suggests that MOPS will be helpful in finding various types of security vulnerabilities in C programs.

We are working on extending MOPS. We are investigating how much data flow analysis we can incor-
porate into MOPS without affecting its scalability. We are also experimenting with checking more security
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properties in more programs so that we can improve MOPS as we gain more experience.
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