
Building a Better Backtrace:

Techniques for Postmortem Program Analysis

Ben Liblit

liblit@ cs. berkeley. edu

Alex Aiken

aiken@ cs. berkeley. edu

Report No. UCB//CSD-02-1203

October 2002

Computer Science Division (EECS)
University of California
Berkeley, California 94720

mailto:liblit@cs.berkeley.edu
mailto:aiken@cs.berkeley.edu


Building a Better Backtrace:

Techniques for Postmortem Program Analysis ∗

Ben Liblit
liblit@cs.berkeley.edu

Alex Aiken
aiken@cs.berkeley.edu

October 2002

Abstract

After a program has crashed, it can be difficult to re-
construct why the failure occurred, or what actions led
to the error. We propose a family of analysis tech-
niques that use the evidence left behind by a failed pro-
gram to build a time line of its possible actions from
launch through termination. Our design can operate
with zero run time instrumentation, or can flexibly in-
corporate a wide variety of artifacts such as stack traces
and event logs for increased precision. Efficient demand-
driven algorithms are provided, and the approach is well
suited for incorporation into interactive debugging sup-
port tools.

1 Introduction

Programs crash. In spite of the best efforts of soft-
ware engineers, the grim reality is that zero-defect code
is rare. Programs misbehave by violating fundamental
rules of their implementation language (dereferencing a
null pointer, failing to catch an exception), or by violat-
ing higher-level, domain specific invariants (failing an
assert(), forgetting to acquire a lock).

Often, the flaw is not at the crash site (such as a
pointer dereference), but rather at some earlier point
(such as the forgotten initialization which allowed the
null pointer to be seen). When correcting such flaws,
the software engineer’s main tool is the symbolic debug-
ger. Coupled with a snapshot of program state at the
point of failure, such as a Unix core file, the debugger
helps the engineer reconstruct program activity leading
up to the failure. A stack backtrace, for example, pro-
vides a partial chronology of how the program reached a
crash site: main() called compile(), compile() called

∗This research was supported in part by NASA Grant No.

NAG2-1210, NSF Infrastructure Grant No. EIA-9802069, and

NSF Grant No. CCR-0085949. The information presented here

does not necessarily reflect the position or the policy of the Gov-

ernment and no official endorsement should be inferred.

parse(), and so on. Other techniques such as event log-
ging, single-step execution, and so-called “printf de-
bugging” may also be used. Each provides a slightly
more detailed chronology, giving the programmer more
information about the execution path of the program in
the lead-up to the crash. The process is tedious, though,
and important actions may be hidden from view, such as
functions which were called but silently returned before
the crash.

Our goal is to improve this process. We adapt tech-
niques from static program analysis to analyze programs
which have already crashed. The intent is not to prove
the program correct (for clearly it is not), but rather to
create more detailed chronologies of program execution
leading up to the error. We marshal information from
various artifacts to reconstruct the set of paths that
the program may have taken. The paths represent the
possible execution histories given what is known from
available postmortem evidence.

This paper makes three principal contributions:

• We describe a compact representation for realizable
program paths, and present an efficient algorithm
for computing the set of paths given a crash site
and a global control flow graph [Section 2]. Our
approach is a novel adaptation of earlier techniques
for computing context-free language reachability in
directed graphs.

• We show how this generic path discovery algorithm
can be applied to a range of postmortem analysis
situations, using a wide variety of post-crash arti-
facts to narrow the set of possible execution paths.
Analyses of asymptotic complexity quantify the
trade offs between precision and speed [Section 3].

• We propose strategies for condensing and summa-
rizing detailed path information for use in a debug-
ging system. We can present only those steps which
all chronologies must have taken, or the user may
selectively explore the various alternatives interac-
tively [Section 4].

1

mailto:liblit@cs.berkeley.edu
mailto:aiken@cs.berkeley.edu


2 Path Representation

We begin by reviewing how possible program executions
correspond to strings from a context free language of
matched parentheses.

A single function can be represented as a single con-
trol flow graph. Nodes are program statements and
edges represent possible transfers of control from one
statement to another. Each path through the graph
corresponds to one possible execution chronology. A
global control flow graph generalizes this representation
to multi-function programs. Each function contributes
its own control flow graph. We split each function in-
vocation into a pair of nodes: one representing the call,
and one representing the subsequent return. We add an
edge from the call node to the entry node of the called
function, representing the transfer of control from caller
to callee. A second edge, from the function’s exit node
back to the return node, represents return of control
from callee back to caller. Because the only way from
call to return is by going through the called function,
we do not place an edge directly from the call node to
the return node.

We assign a unique name to each call/return node
pair, and use that to label the call-to-entry and exit-to-
return edges. If the invocation site is named “l”, then
the call-to-entry edge is labeled “(l” and the exit-to-
return edge is labeled “)l”. Figure 1 shows an example.
One function may have many callers; labels allow us to
enforce proper call/return matching. If a function is
called by crossing edge (l, it must return across )l, not
some other mismatched edge )k. Paths corresponding
to valid executions are those in which all parentheses
are properly matched; such paths are realizable. The
sequence of labels traversed by a realizable path forms
a string in a context free language of matched parenthe-
ses, where each invocation site defines a unique paren-
thesis pair. (Realizable paths corresponding to par-
tial executions may contain zero or more unmatched
call edges, corresponding to functions which have been
called but have not yet returned.) The task of find-
ing well matched paths, then, is a specific instance of
a context free language reachability (CFL reachability)
problem. We will not work with context free languages
or grammars directly, but rather with the data struc-
tures of an efficient implementation: labeled graphs.

2.1 Segments, Paths, and the Route
Map

A segment is a single hop from one graph node to an-
other, and a path is a sequence of segments. We repre-

call site

(l

return site

function
entry

function
exit

)l

Figure 1: Context free reachability in global control flow
graphs. Straight, solid arrows represent single edges.
Wavy arrows represent known paths crossing zero or
more edges.

sent segments and paths using the following datatypes:

N ::= a graph node

E ::= an intraprocedural flow edge

C ::= an unmatched call edge

L ::= a call/return site label

Segment ::= flow(E) | call(C) |match(L)

Path ::= seed(N) | compound(N,Segment , N,N)

The argument to each Segment constructor justifies
the use of that segment in a path: flow(e) represents
crossing intraprocedural flow edge e; call(c) represents
crossing function call edge c with no matching return;
match(l) represents crossing the function call edge with
label l, traversing the body of the called function, and
coming back along the return edge with label l. Al-
though this last case actually visits many nodes within
the called function body, a match segment encapsulates
the entire invocation as a single hop directly from the
call node to the return node. This lets us treat function
invocation as atomic from the perspective of the caller.

A seed path seed(n) represents the empty path from
node n to itself. This is not a self loop: it is an
empty path which crosses zero edges. A compound path
compound(n0, s, n1, n2) represents an extended traversal
which starts at node n0, crosses segment s to reach node
n1, and then continues onward ultimately finishing at
node n2.

The details of how to travel from n1 to n2 are recorded
externally, in a structure called the route map:

route : N ×N × {matched, unmatched} → 2Path

For any pair of nodes, the route map records the set
of paths which start at the first node and end at the
second. The third argument further distinguishes paths
which must be fully matched from paths which are al-
lowed to include zero or more unmatched call edges.
Thus, a path term compound(n0, s, n1, n2) coupled with
a route map route represents not one path but rather the
family of all paths which start at n0, cross s to n1, and
then continue on to n2 using any suffix path contained
in route(n1, n2, ).

2



n1

e1

e2 n2

route(n1, n1, ) = { compound(n1, flow(e1), n1, n1),

seed(n1)}

route(n2, n1, ) = {}

route(n1, n2, ) = { compound(n1, flow(e1), n1, n2),

compound(n1, flow(e2), n2, n2)}

route(n2, n2, ) = {seed(n2)}

Figure 2: Finite encoding of a path family

The level of indirection introduced by the route map
allows for finite representation of infinitely large path
families, such as those containing loops or recursion.
Figure 2 presents a minimal example. Starting with
route(n1, n2, ), we have two choices. We might se-
lect the first, compound(n1, flow(e1), n1, n2). This di-
rects us to start at n1, cross edge e1, and continue on-
ward using any suffix path from n1 to n2. We look
up route(n1, n2, ) again, and are presented with the
same two choices. We can select the first and cross edge
e1 as many times as we like before eventually choosing
compound(n1, flow(e2), n2, n2), which takes us out of the
loop and subsequently terminates with the empty seed
path at n2.

2.2 Path Discovery Algorithm

The standard demand-driven approach for computing
CFL reachability starts with a basic graph and an ini-
tial “trigger” edge consisting of a self-loop at some node
of interest. New edges are added starting at this trigger
and expanding outward, using a work list to track fron-
tier areas yet to be explored. New triggers are added for
subroutines, and well-matched paths discovered within
a function are propagated up to its callers. If multiple
paths exist to a single node, an edge will be added only
once; if all that matters is reachability, rediscovery by
an alternate route is of no interest. The final answer
is given by examining added edges having the original
node of interest as one endpoint; the other endpoint of
each such edge is a CFL-reachable node.

Our needs differ slightly. We are not interested in
mere reachability: the fact that the program has run
and crashed is an existence proof that the crash point
is reachable. We are interested in the specific path or
paths by which the crash point was reached. Thus,
the step-by-step justification for reaching each reach-
able node must be recorded, and if multiple paths exist,

fun start(seed(n)) = return n
or start(compound(n, , , )) = return n

fun finish(seed(n)) = return n
or finish(compound( , , , n)) = return n

fun discover(p,m) =
let

n1 = start(p)
n2 = finish(p)

in

if (n1, n2,m) /∈ domain(route)
work := work ∪ {(n1, n2,m)}

route(n1, n2,m) := route(n1, n2,m) ∪ {p}

Figure 3: Utility functions for path discovery

then this too must be represented. Justifications are
recorded by Segment constructors. Alternative paths
are represented by non-singleton sets in the route map.

Figure 3 presents some basic utility functions used by
the main algorithm. The start() and finish() functions
extract the endpoints of a path term. While each com-
pound path term represents a family of paths, that fam-
ily must always share the same endpoints; thus, it is rea-
sonable to talk about the endpoints of a compound path
term. The discover(p,m) function manages discovery of
a new matched or unmatched path. Here we see two
subtle differences from a standard CFL reachability al-
gorithm. First, instead of checking whether an edge has
already been added, we check whether the new path’s
endpoints are already in the domain of the route map.
We define domain(route) as the set of triples (n1, n2,m)
such that route(n1, n2,m) 6= ∅. Thus, domain(route)
roughly corresponds to the set of edges added by a stan-
dard CFL reachability algorithm.

The second change affects how a new path is recorded.
Standard reachability would add an edge if none were
already known. Our needs mandate that we remember
all paths, so the new path is unconditionally added to
the set of known paths for the given matching flag and
endpoints. The route map is similar to a solution table
from dynamic programming, but rather than each entry
being set just once, entries may be updated (enlarged)
as the main algorithm progresses. Observe here that
discover maintains a critical route map invariant: the
only paths added to route(n1, n2, ) are those starting
at n1 and ending at n2.

The main path discovery algorithm is parameterized
in terms of six arguments:

N : the set of all nodes in the graph

E : a set of pairs from N ×N defining interprocedural

3



control flow edges

Λ( : a set of triples from N ×N × L defining interpro-
cedural call edges, where L is the set of call/return
site labels

Λ) : a set of triples from N×N×L defining interproce-
dural return edges, where L is the set of call/return
site labels

C : a set of pairs from N ×N defining interprocedural
call edges which are not to be matched up with
corresponding return edges

ω : the specific node in N at which the program has
crashed

The distinction between Λ( and C is somewhat non-
standard: in typical CFL reachability any call edge
might be matched or unmatched. For our purposes, it
will sometimes be useful to explicitly distinguish those
call edges which must be matched (Λ() from those which
must be unmatched (C); see Section 3.2 for a situation
where this is useful.

Figure 4 presents the main path discovery algorithm
which uses a work list to explore the graph, working
backward from the crash site ω. (Although a forward
search from program entry would discover the same
paths, there are several practical reasons why working
back from the crash site is preferable; we discuss this
decision further in Section 3.) On entry to the main
loop, the route map and work list contain a single un-
matched seed path at node ω; this corresponds to the
initial trigger edge used in standard CFL reachability.
The loop repeatedly expands the set of discovered paths
until there are no frontiers left to explore. New paths
are discovered in any of five ways, corresponding to the
five numbered calls to discover (see also Figure 5):

1. crossing an intraprocedural control flow edge

2. initiating a new query at the exit node of a function,
in hope of finding the entry node

3. crossing from a return node to the corresponding
call node, provided that the called function already
has at least one known matched path

4. crossing from a return node to the correspond-
ing call node at the moment that a matched path
within the called function is discovered

5. crossing an unmatched call edge

Generalized CFL reachability is cubic in the num-
ber of graph nodes. Our algorithm exploits structural
properties of the global control flow graph to avoid ex-
ploring any function more than once: the seed path

added in case 2 is independent of which return edge led
us to the function. This technique, first proposed by
Reps et al [14], reduces the asymptotic complexity to
O(E+Λ( +C). Since the size of C is bound by the size
of Λ(, this is equivalent to O(E + Λ().

3 Path Recovery Scenarios

The general path discovery algorithm presented above
can be used in a variety of postmortem situations. In
this section, we show that by modifying the graph on
which backtrack is called, we can use a wide variety of
post-crash artifacts.

Assume we are given a global control flow graph, con-
sisting of a set of nodes (N), a set of interprocedural
control flow edges (E), a set of labeled interprocedural
call edges (Λ(), a set of labeled interprocedural return
edges (Λ)), and a unique program entry node (α). Func-
tion invocations are split into node pairs: a call node n
such that (n, , l) ∈ Λ( for some label l, and a corre-
sponding return node n′ such that ( , n′, l) ∈ Λ), with
no direct flow from call to return: (n, n′) /∈ E. All of
this information is static; it can be computed at compile
time and stored offline until needed.

3.1 Crash Site Only

All we may know about a crash is the program counter
where the crash occurred, with no information about
program behavior before the crash or program state at
the crash site.

Given just a crash node ω, best-effort path recon-
struction proceeds as follows. Let C be the set of call
edges stripped of their labels: C = {(n, n′) : (n, n′, ) ∈
Λ(}. Populate the route map by calling the main path
discovery algorithm in Figure 4 as:

backtrack(N,E,Λ(,Λ), C, ω)

The family of all possible paths leading to the crash is
then given by:

route(α, ω, unmatched)

In this special case, the paths discovered by the back-
tracking algorithm correspond to a context free gram-
mar of matched parentheses (call/return pairs from
Λ(,Λ)) with optional unmatched left parentheses (iso-
lated call edges from Λ(). For any single path from α
to ω, the sequence of unmatched call edges corresponds
to functions which had been called but not yet returned
at the time of the crash. Given only a crash site and
no additional information, we can present such possible
stacks to the user but cannot automatically rule out one
versus another.

4



fun backtrack(N,E,Λ(,Λ), C, ω) =

route(n1, n2,m) := ∅ for all n1, n2,m
work := ∅
discover(seed(ω), unmatched)

repeat

let

t = (n1, n2,m) = any element of work
in

work := work− {t}

foreach e = (n0, n1) in E
1: discover(compound(n0, flow(e), n1, n2),m)

foreach (n′
1, n1, l) in Λ)

2: discover(seed(n′
1),matched)

foreach (n0, n
′
0, l) in Λ(

if (n′
0, n

′
1,matched) ∈ domain(route)

3: discover(compound(n0,match(l), n1, n2),m)

if m
foreach (n′

1, n1, l) in Λ(

foreach (n2, n
′
2, l) in Λ)

foreach (n′
2, n

′
3,m

′) in domain(route)
4: discover(compound(n′

1,match(l), n
′
2, n

′
3),m

′)
else

foreach c = (n′
1, n1) in C

5: discover(compound(n′
1, call(c), n1, n2),m)

until work = ∅

Figure 4: Main path discovery algorithm

n0

1:

e n1 n2 n1 n2

n′
1

)l

2:

n0

3:

(l

n1 n2

n′
0 n′

1

)l

n′
1

4:

(l

n′
2 n′

3

n1 n2

)l

n′
1

5:

(l

n1 n2

Figure 5: Case-by-case examples of path discovery. Straight, solid arrows represent single edges. Wavy arrows
represent known extended paths. Dotted arrows represent newly discovered paths. Circled nodes n1 and n2

correspond to the task selected from the work list.

5



The asymptotic complexity is the same as that of the
main algorithm: O(E + Λ().

3.2 Crash Site + Stack Trace

A slightly richer environment may identify not just the
crash site but also the sequence of nested function calls
which were executing at the time of the crash. Java ex-
ceptions, for example, record a stack trace at the point
where the exception was thrown. Presentation of a stack
trace is also standard fare for any source-level debugger,
and stack traces can be readily extracted from Unix
core files.

Each frame in a stack trace corresponds to a call edge
with no matching return. Furthermore, these are the
only call edges which may be unmatched: any other
functions called before the crash must have successfully
returned. Assume that the stack trace ~S is represented
as a vector of call edges 〈c1, c2, . . . , c|~S|〉, where each ci ∈

Λ(. Instead of backtracking along the original global
control flow graph (N,E,Λ(,Λ), α), we construct a new

graph (N̂ , Ê, Λ̂(, Λ̂), α̂) as follows:

Let Σ be the set of stack positions, represented as
integers in the range [0, |~S|]. Then the set of nodes N̂
consists of all nodes in the original graph paired with all
possible stack positions. Edges are duplicated likewise,
with both endpoints sharing the same stack position:

N̂ = N × Σ = {(n, σ) : n ∈ N ∧ σ ∈ Σ}

Ê = {((n, σ), (n′, σ)) : (n, n′) ∈ E ∧ σ ∈ Σ}

Crossing a matched call edge does not change the stack
position, because a matched call edge must return be-
fore the crash. Thus:

Λ̂( = {((n, σ), (n′, σ), l) : (n, n′, l) ∈ Λ( ∧ σ ∈ Σ}

Λ̂) = {((n, σ), (n′, σ), l) : (n, n′, l) ∈ Λ) ∧ σ ∈ Σ}

At program entry, the stack is empty. We have entered
zero of the call sites listed in ~S, and encode this as a
node with stack position zero:

α̂ = (α, 0)

Crossing an unmatched call edge is allowed only when
that edge matches the next edge expected in the stack
trace ~S. After such an edge has been crossed, the node
on the other side must record the fact that we have
consumed one element of the stack. We enforce these
restrictions by careful definition of the set of unmatched
call edges:

Ĉ = {((n, σ − 1), (n′, σ)) : (n, n′, ) = cσ}

For example, if the stack trace consists of the sequence
of edges 〈(a, b, ), (c, d, ), (e, f, )〉, then the set of un-
matched call edges would be:

{((a, 0), (b, 1)), ((c, 1), (d, 2)), ((e, 2), (f, 3))}

This encodes precisely the desired restrictions: the only
way from the start node (α, 0) to any node ( , 1) is to
reach node (a, 0) and cross down to node (b, 1). There
is no way back to layer 0: the crossing down to layer 1
represents the first function call that had not returned
by the time of the crash. As a second example, consider
the special case of a crash in the program’s top-level
procedure: this will yield an empty stack trace, produc-
ing an empty set Ĉ, forcing all paths to be fully matched
before reaching the crash.

Paths proceed monotonically downward through the
stack, consuming stack frames one by one. The crash
site ω should only be considered once each and every
frame in the stack trace is accounted for:

ω̂ = (ω, |~S|)

We invoke the main path discovery algorithm as:

backtrack(N̂ , Ê, Λ̂(, Λ̂), Ĉ, ω̂)

The family of all possible paths leading to the crash is
given by:

route(α̂, ω̂, unmatched)

Although the new graph is |~S| times larger than the
original, the layers are connected only by edges in C. In
effect, we are doing O(Ê + Λ̂() work on each of |~S|+ 1

layers, plus O(~S) work to chain them together. The
complete process, then, scales linearly with respect to
the size of the stack trace: O(~S(Ê + Λ̂()). Also, note
that the full graph need not be represented explicitly:
given the original global control flow graph, the new
graph can be represented implicitly, using code rather
than storing |~S|-way duplicated data structures.

Stack traces motivate our use of a backward analysis.
Backward analysis reaches return edges before match-
ing call edges. If we discover a call edge but have not
already crossed the corresponding return edge, then this
edge can only be unmatched: if it is the next unmatched
call edge in the stack trace, we continue; otherwise, we
have reached a dead end and must explore elsewhere. A
forward analysis would reach calls before returns. Upon
reaching the next call edge in the stack, forward analysis
cannot tell whether or not that edge should be matched,
and so must explore both possibilities. Backward anal-
ysis is more deterministic, and therefore explores fewer
dead ends.

6



3.3 Crash Site + Event Trace

Some environments may not provide stack trace infor-
mation, but may allow observation and logging of se-
lected program actions before the crash. If these ac-
tions can be tied to individual nodes in the control flow
graph, then they can be used to narrow the set of pos-
sible paths to the crash point. We call such actions
events, and a sequential log of events is an event trace.

Event traces may come from many sources. A line
of code added manually that prints out the message
“reached line 15 in function foo()” is an event,
provided that each such message identifies a unique pro-
gram point. The messages appearing in a typical Unix
system log form an event trace for the kernel. Many
Unix variants have provisions for recording the system
(kernel) calls made by a process. Security audit trails
under Windows NT, 2000, and XP provide a similar
trace. Debugger-managed breakpoints are events. In
general, any observable action with can be tied to a
program point is an event.

In most cases, events are not logged internally by the
suspect program, but rather appear in some external
repository such as a logging daemon or a terminal win-
dow. This can make the event trace more robust than
a stack trace in the face of extreme program failure:
a misbehaving C program might trash its stack before
crashing, leaving a stack trace which is simply garbage.
An externally logged event trace will survive such mis-
behavior. (Note, however, that we do assume that even
a crashed C program obeys its own control flow graph.
If a program directly modifies its program counter or
overwrites a saved return address, it is effectively cross-
ing graph edges that do not exist; such misbehavior is
outside the scope of this paper.)

If each event uniquely identifies a program point, then
we can augment our static global control flow graph with
a set NV ⊆ N of event nodes: these are nodes which,
if crossed, must emit a traced event. Following a crash,
we collect an event trace ~V , represented as a sequence
of nodes 〈n1, n2, . . . , n|~V |〉 where each ni ∈ NV .

Let Υ be the set of event trace positions, represented
as integers in the range [0, |~V |]. We build a new graph
by combining nodes with event trace positions, as for
stacks. However, we can be somewhat more selective
here, because events are mandatory: if the next event
we expect to see is at node n, then we cannot cross any
other node in NV before reaching n; if we had reached
some other event node in NV , then that node would
have appeared next in the event trace rather than n.
This differs sharply from stack traces, where the ex-
pectation to see a given unmatched call edge does not
block us from visiting (and returning from) arbitrary
other functions first. We express the mandatory nature

of event nodes by selectively knocking out certain ele-
ments of the new node set:

N̂ = {(n, υ) : n ∈ N ∧ υ ∈ Υ}

− {(n, υ − 1) : n ∈ NV ∧ n 6= nυ}

Equivalently:

N̂ = {(n, υ) : n ∈ N −NV ∧ υ ∈ Υ}

∪ {(nυ, υ − 1) : υ ∈ Υ}

Thus, if nodes a, b, and c are event nodes, and the event
trace consists of 〈a, b, b〉, then N̂ would contain (a, 0),
(b, 1), and (b, 2), but no other clones of a, b, or c. This
implies, for example, that node c can never be crossed.
In general, exactly one node from NV will appear for
each event trace position υ ∈ [0, |~V |). No event node

can ever appear with event trace position |~V |, because
once we have observed all logged events, no more can
be emitted before the crash.

The new edge sets are constructed so as to transition
from one event trace position to the next when crossing
an event node:

Ê = {((n, υ), (n′, υ)) : (n, n′) ∈ E ∧ n /∈ NV ∧ υ ∈ Υ}

∪ {((nυ+1, υ), (n
′, υ + 1)) : (nυ+1, n2) ∈ E ∧ υ ∈ Υ}

This formulation transitions to the next event trace po-
sition upon departure from an event node, rather than
upon arrival at it. That is correct provided that a crash-
ing event node does not emit an event. If crashes hap-
pen before event emission, an adjusted formulation is
straightforward. If event nodes cannot crash, the dis-
tinction is moot.

Without loss of generality, we can assume that func-
tion call nodes and function exit nodes are never event
nodes. Therefore:

Λ̂( = {((n, υ), (n′, υ), l) : (n, n′, l) ∈ Λ( ∧ υ ∈ Υ}

Λ̂) = {((n, υ), (n′, υ), l) : (n, n′, l) ∈ Λ) ∧ υ ∈ Υ}

Ĉ = {((n, υ), (n′, υ)) : (n, n′, ) ∈ Λ(}

No events have been seen when the program first begins;
all events in the trace must have been seen by the time
the program crashes. Thus:

α̂ = (α, 0) ω̂ = (ω, |~V |)

Given these definitions, we build the route map by call-
ing:

backtrack(N̂ , Ê, Λ̂(, Λ̂), Ĉ, ω̂)

The set of paths that could have led to the crash is given
by:

route(α̂, ω̂, unmatched)

7



As in the previous scenario, the layered nature of the
new graph limits the asymptotic increase in work. We
do O(Ê+Λ̂() work on each of |~V |+1 layers, for O(~V (Ê+

Λ̂()) work overall. As before, the generated graph can be
represented implicitly rather than by literal duplication
of the original graph.

3.4 Other Variations

The stack trace and event trace scenarios presented
above serve to illustrate the key concepts whereby in-
formation about the crash is used to restrict the set of
realizable paths. We briefly consider several variations
here, to show how our approach can accommodate other
typical debugging scenarios. In each case, the main path
discovery algorithm remains the same; we simply call it
with graphs constructed in slightly different ways.

3.4.1 Stack + Event Trace

The strategies used in Sections 3.2 and 3.3 are largely
orthogonal, and can be combined without difficulty.
Nodes in the constructed graph will form a subset of
N × Σ × Υ, where the start node is (α, 0, 0), the crash

site node is (ω, |~S|, |~V |), and the edges are built in the
obvious manner. In the worst case, we may need to
explore every stack/event state pair, giving an overall
asymptotic complexity which is linear in the product of
stack and event trace sizes: O(~S~V (Ê + Λ̂()).

3.4.2 Multiple Event Traces

Section 3.3 listed some of the many potential sources of
event trace information. A single program may actually
be under observation using several of these mechanisms
at once. If all events are timestamped, they can be
uniquely ordered and treated as a single event trace. If
timestamps are not available, then effectively we have a
vector of t uncorrelated event streams 〈~V1, ~V2, . . . , ~Vt〉.
We can allow arbitrary interleavings of events by apply-
ing the strategy used in Section 3.3 t times, effectively
giving us nodes of the form (n, υ1, υ2, . . . , υt). Asymp-
totic complexity is linear in the product of all trace sizes:
O(~S~V1

~V2 . . . ~Vt(Ê + Λ̂())

3.4.3 Unknown Crash Site

All scenarios we have considered thus far assume that
the crash site is known. If it is not, then we can still
perform a best-effort analysis based on other available
information. If only a stack trace is given, then the crash
node can be any node within the last called function.
We can perform backward path discovery from the entry
node of this terminal function, and then consider all

well matched forward extensions of these paths to other
nodes within the same function. Given just an event
trace, we perform backward path discovery from the
last event node seen in the trace, and then consider
all (matched or unmatched) forward extensions of these
paths that do not cross any additional event nodes.

3.4.4 Ambiguous Stack Trace

It may not always be possible to translate a real stack
trace into the idealized form used in Section 3.2. A
typical example is the stack report given by uncaught
Java exceptions. Each frame is described in terms of a
fully qualified method name, a source file name, and a
line number within that file. Suppose a single function
is called twice on one line, as in “foo(bar(), bar())”.
If an exception is raised during either call to bar(), we
will not be able to tell which call site was active at the
time of the error.

Recall that adherence to the observed stack trace is
enforced via Ĉ, the set of unmatched call edges. When
the stack trace is unambiguous, Ĉ contains one and only
one edge of the form (( , σ − 1), ( , σ)) for each σ ∈ Σ,
corresponding to the fact that there is one and only one
call edge for each stack position. If any given stack posi-
tion σ is found to be ambiguous, we add one unmatched
edge transitioning from σ−1 to σ for each candidate call
site. We expect such situations to be rare in practice.

3.4.5 Ambiguous Event Trace

This scenario is similar to that just presented. If a
given event cannot be unambiguously associated with
a unique node in the control flow graph, we add ad-
ditional edges to Ê reflecting the various possibilities.
Thus, if the σ’th event is ambiguous, then each candi-
date event node n and successor n′ will yield one edge
((n, σ − 1), (n′, σ)) in the generated graph.

3.4.6 Incomplete Event Trace

Event nodes will generally be sparse with respect to
the complete program. Even so, a complete event trace
from launch to crash may become excessively long if the
program is long lived, or if event nodes occur within
heavily trafficked loops. Many of the sources for event
traces listed in Section 3.3 have finite logging capacity:
text scrolls off of windows; log files are periodically ro-
tated and removed; an in-program event log might use a
fixed-size rotating buffer; and so on. The Intel Pentium
4 family of processors is capable of recording the source
and destination address of the four most recently taken
branches [8].

Such suffix traces may be used as follows. Once the
first event in the trace has been seen, all remaining

8



events must have been logged faithfully. Thus, nodes of
the form ( , σ), σ > 0 can be treated as originally sug-
gested, along with their related edges. For nodes of the
form ( , 0), we retain the complete set of cloned nodes
given by N × {0}, and all associated edges. We cannot
omit any event nodes at trace position zero, because
it is possible that these nodes were reached before the
first event in our incomplete trace. Instead, for the first
event node in the trace (n1) and for each edge (n1, n),
we include both ((n1, 0), (n, 0)) as well as ((n1, 0), (n, 1))
as edges in the generated graph. The first of these edges
represents any “forgotten” crossings of node n1, while
the second edge represents the crossing of n1 that ap-
pears as the first event in the event trace.

Suffix traces work well with a backward analysis: the
first event node we see must be the last one in the trace.
In a forward analysis, we would discover event node n1

but be unable to tell if this represents the first node
in the trace, or some earlier crossing which has since
been forgotten. The forward analysis would have no
choice but to pursue both possibilities. As seen earlier,
backward analysis is more deterministic and therefore
explores fewer dead ends.

3.4.7 Program Counter Sampling

Periodic sampling of the program counter is a well
known strategy for profiling code. This is typically im-
plemented in software using clock interrupts, although
the Alpha processor contains hardware support for sam-
pling with such low overhead that it can be left running
continuously even on production systems [2]. Sampled
program counter values are not strictly events, because
no program counter is guaranteed to be sampled each
time it executes. However, we can exploit such informa-
tion using a slightly more permissive formulation than
that used in Section 3.3:

Ê = {((n, υ), (n′, υ)) : (n, n′) ∈ E ∧ υ ∈ Υ}

∪ {((nυ+1, υ), (n
′, υ + 1)) : (nυ+1, n

′) ∈ E ∧ υ ∈ Υ}

We have removed the “n /∈ NV ” restriction from the
first set of edges. This gives us more edges and requires
more graph exploration, reflecting the less precise in-
formation provided by program counter sampling com-
pared to mandatory event nodes.

3.4.8 Dynamic Dispatch

Our algorithm assumes that the global control flow
graph includes complete static call information. Dy-
namic dispatch, such as through function pointers or
virtual method invocations, can be managed using any
of several well-known techniques for forming conser-
vative static approximations of dynamic call graphs.

While such approaches are fairly standard in static pro-
gram analysis, there is one respect in which our post-
mortem viewpoint is uniquely beneficial: stack traces
reveal the real addresses of unique call/return sites.
There is no indirection, and therefore each stack frame
can be treated as a completely static call. The un-
matched call edges placed in Ĉ need never be dynamic.

3.4.9 Demand Driven Analysis

Although the main algorithm is fairly efficient, event
traces can grow quite large, and therefore it may be
desirable to reconstruct paths on demand, rather than
exhaustively. If the work list is managed as a first in,
first out queue, then paths will be discovered starting
close to the crash site and gradually radiating outward.
Code closer to the crash is more likely to be related to
the error, so a backward analysis works well here. It is
easy to detect when one has transitioned to the previ-
ous position in a stack or event trace, and this forms
a logical unit of work to compute (in O(Ê + Λ̂() time)
and present to the user before pausing or continuing
to search in the background. If reconstruction is using
just a stack or just one event stream, then preliminary
results for a suffix of the trace are guaranteed to par-
ticipate in the final α̂-to-ω̂ solution. If multiple traces
are used, per Section 3.4.1 and 3.4.2, then it is possible
that some preliminary paths may dead end later on; de-
mand driven analysis can display preliminary results as
a conservative superset which may be narrowed down
by further exploration.

4 Path Summarization

The techniques described above populate the route
map, with route(α̂, ω̂, unmatched) as the basis for iden-
tifying all realizable paths to the crash site. However,
a route map is not immediately useful to a human soft-
ware engineer searching for a bug. Even the minuscule
route map given in Figure 2 requires careful, detailed
reading to understand the family of paths it encodes.
Enumerating all paths is no solution, as that set will
in general be infinite. Summarization is needed to con-
dense the route map to an accessible form.

One useful presentation is to show the node-by-node
steps that all paths share in common. These represent
program activity which must have occurred. When sev-
eral paths are available, we should explicitly show the
user that we do not know which was taken; once those
paths join back together, though, we can pick up again
along this common continuation.

Figure 6 gives two examples of useful summaries of
intraprocedural paths. In the first example, it is clear

9



a

b

t f

c

ω

〈a, b, . . . , c, ω〉

a

b

c

d

ω

〈a, . . . , b, c, d, ω〉
〈a, b, . . . , c, d, ω〉
〈a, b, c, . . . , d, ω〉
〈a, b, c, d, . . . , ω〉

Figure 6: Sample path summaries

where a gap appears due to two choices for how to con-
tinue on from b to reach ω. This appears in the route
map as two elements in the set route(b, ω, ). In the sec-
ond example, gaps represent loops which may be tra-
versed any number of times. Any of the four summaries
offered is correct, though they vary in which parts of
the execution they emphasize.

We produce path summaries of this form for gen-
eral multi-procedure graphs as follows. Build a new
graph whose nodes are in one-to-one correspondence
with those in the graph that was used during path dis-
covery. Add edges to this graph only where the cor-
responding edges appear as single-segment hops in the
route map. That is, if route(n1, n2, ) appears anywhere
in the route map, then create an edge from n1 to n2 in
the newly constructed graph.

Because we don’t care what the single-step segment
is, this new graph directly connects call nodes to their
matched return nodes without detouring through the
called function. Unmatched call edges do appear as
edges in the new graph, but matched call/return pairs
are reduced to a single direct edge from call to return.
This can be thought of as a view of the realizable paths
with zero detail inside function calls.

We now perform a series of dominator computations
on this new graph. The last node in the summary must
be ω, the crash site. The immediate dominator of ω with
respect to root node α will be the closest predecessor of
ω along every path from α. This node, idom(ω), must
be the second-to-last node in the summary. The third
to last node will be idom(idom(ω)), and so on, until
eventually we reach α, the first node in the summary.
The nodes in the summary are exactly those nodes on
a root-to-leaf walk of the dominator tree from α to ω,
computable in time which is nearly linear with respect
to the number of graph nodes [12].

At each stage in the tree walk, we can check whether
the immediate dominator of a node is also the unique
predecessor of that node. If so, then the transition
from idom(n) to n was the only possible progression.
If not, then there must be a gap between idom(n) and
n which can be spanned by more than one path. In-
ject a gap marker into the summary at this point to
inform the user that we do not know which path was
taken. Alternately, at each stage in the tree walk check
the size of the route map entry from that node to ω; if
it lists more than one path, then insert a gap. These
two strategies produce identical results for the first ex-
ample in Figure 6. For the second example, gap in-
sertion before nodes with multiple predecessors yields
〈a, . . . , b, c, d, ω〉, while gap insertion after non-singleton
route map entries yields 〈a, b, c, d, . . . , ω〉.

Because each step in the summary corresponds to a
path segment from the route map, each step forward or
backward can be attributed to a concrete program ac-
tion: intraprocedural flow, call to a function that does
not return, or function call and return. In the later case,
the user can “unfold” the invocation and interactively
browse paths within the called function, selectively in-
creasing the level of interprocedural detail as much as
is useful for the problem at hand.

5 Related Work

The idea of exploring execution chronologies has re-
ceived attention before in the form of replay debuggers
[4, 5, 11, 13, 15, 17]. Replay debuggers periodically
checkpoint program execution to allow fast incremen-
tal replay. This essentially creates the ability to travel
backward in time: the unique, exact execution path is
known, and all data values are available at any previous
point in time.

Dynamic slicing identifies the subset of an executed
program’s statements which actually affect the value of
a single selected variable at some point of interest [1, 9].
Recent work in this area uses static analysis of the pro-
gram’s data and control dependencies to reduce execu-
tion overhead [7] and can exploit information such as
the dynamic call graph and debugger breakpoints [6].
Our approach is more lightweight. We reconstruct over-
all program flow rather than focusing on an individual
variable, and present a family of possible paths without
guaranteeing uniqueness. In exchange for reducing the
level of detail, we can exploit a wider variety of post-
crash artifacts with as little as zero run-time overhead.

Our use of paths to describe program executions re-
lates to earlier work on program tracing and path pro-
filing [3, 10]. Profiling builds an aggregate statistical
model of the program over many runs in order to drive

10



subsequent optimization or performance tuning. Pro-
gram tracing can be far more detailed, but risks blowing
up in time or space if too much information is retained.
Techniques for presenting and navigating our path sum-
maries remain an open area of study; current research
in visualizing large traces and understanding dynamic
program behavior may offer useful insights [16].

The principal ways in which we differ from these pre-
vious works are that (a) we assume no modifications of
the program before execution and (b) we are able to
take advantage of external information such as logs to
give more precise information.

6 Conclusions

We have described a family of techniques for analyzing
crashed programs and reconstructing the set of possible
executions that may have led up to the crash. Though
based on algorithms from static analysis, our approach
takes advantage of unique information which is only
available from actual program execution. We are able
to glean evidence from a wide variety of postmortem ar-
tifacts, and offer flexible trade offs between the amount
of information collected at run time and the specificity
of its results. Full, deterministic program tracing is pos-
sible, but even a stack trace extracted from a core dump
can be used to recover information about why a program
has died.

References

[1] H. Agrawal, R. A. DeMillo, and E. H. Spafford.
Debugging with dynamic slicing and backtracking.
Software—Practice and Experience, 23(6):589–616,
June 1993.

[2] J. M. Anderson, L. M. Berc, J. Dean, S. Ghe-
mawat, M. R. Henzinger, S.-T. A. Leung, R. L.
Sites, M. T. Vandevoorde, C. A. Waldspurger, and
W. E. Weihl. Continuous profiling: Where have all
the cycles gone? ACM Transactions on Computer
Systems, 15(4):357–390, Nov. 1997.

[3] T. Ball and J. R. Larus. Programs follow paths.
Technical Report MSR-TR-99-01, Microsoft Re-
search, Redmond, Washington, Jan. 6 1999. Also
Bell Labs/Lucent Technical Report BL0113590-
990106-01.

[4] S. P. Booth and S. B. Jones. Walk backwards
to happiness — debugging by time travel. In 3rd
International Workshop on Automated Debugging,
pages 1–11, Linköping, Sweden, May 26–27 1997.
University of Linköping.

[5] B. Boothe. Efficient algorithms for bidirectional
debugging. In Proceedings of the ACM SIGPLAN
’00 Conference on Programming Language Design
and Implementation, pages 299–310, Vancouver,
British Columbia, June 18–21, 2000. SIGPLAN
Notices, 35(5), May 2000.

[6] R. Gupta, M. L. Soffa, and J. Howard. Hybrid slic-
ing: integrating dynamic information with static
analysis. ACM Transactions on Software Engineer-
ing and Methodology, 6(4):370–397, Oct. 1997.

[7] K. Inoue, M. Jihira, A. Nishimatsu, and
S. Kusumoto. Call-mark slicing: An efficient and
economical way of reducing slices. In Proceedings of
the 21st International Conference on Software En-
gineering, pages 422–431. ACM Press, May 1999.

[8] Intel Corp. System Programming Guide, volume 3
of IA-32 Intel Architecture Software Developer’s
Manual. Intel Corp., Mt. Prospect, Illinois, 2001.

[9] B. Korel and J. Laski. Dynamic program slic-
ing. Information Processing Letters, 29(3):155–163,
Oct. 1988.

[10] J. R. Larus. Whole program paths. In Proceedings
of the ACM SIGPLAN ’99 Conference on Program-
ming Language Design and Implementation, pages
259–269, Atlanta, Georgia, May 1–4, 1999. SIG-
PLAN Notices, 34(5), May 1999.

[11] T. J. LeBlanc and J. M. Mellor-Crummey. Debug-
ging parallel programs with instant replay. IEEE
Transactions on Computers, C-36(4):471–482, Apr.
1987. September 1986 Also available as BPR
12, Computer Science Department, University of
Rochester, September 1986.

[12] T. Lengauer and R. E. Tarjan. A fast algorithm for
finding dominators in a flow graph. ACM Trans-
actions on Programming Languages and Systems,
1(1):121–141, July 1979.

[13] R. H. B. Netzer and M. H. Weaver. Optimal tracing
and incremental reexecution for debugging long-
running programs. In Proceedings of the ACM SIG-
PLAN ’94 Conference on Programming Language
Design and Implementation, pages 313–325, Or-
lando, Florida, June 20–24, 1994. SIGPLAN No-
tices, 29(6), June 1994.

[14] T. Reps, S. Horwitz, and M. Sagiv. Precise in-
terprocedural dataflow analysis via graph reach-
ability. In Conference Record of the 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’95), pages 49–61,
San Francisco, January 22–25, 1995. ACM Press.

11



[15] A. P. Tolmach and A. W. Appel. Debugging stan-
dard ML without reverse engineering. In 1990
ACM Conference on Lisp and Functional Program-
ming, pages 1–12. ACM, ACM Press, June 1990.

[16] R. J. Walker, G. C. Murphy, B. Freeman-Benson,
D. Wright, D. Swanson, and J. Isaak. Vi-
sualizing dynamic software system information
through high-level models. ACM SIGPLAN No-
tices, 33(10):271–283, Oct. 1998.

[17] P. R. Wilson and T. G. Moher. Demonic memory
for process histories. In Proceedings of the SIG-
PLAN ’89 Conference on Programming Language
Design and Implementation, pages 330–343, Port-
land, Oregon, June 21–23, 1989. SIGPLAN No-
tices, 24(7), July 1989.

12


	Introduction
	Path Representation
	Segments, Paths, and the Route Map
	Path Discovery Algorithm

	Path Recovery Scenarios
	Crash Site Only
	Crash Site + Stack Trace
	Crash Site + Event Trace
	Other Variations
	Stack + Event Trace
	Multiple Event Traces
	Unknown Crash Site
	Ambiguous Stack Trace
	Ambiguous Event Trace
	Incomplete Event Trace
	Program Counter Sampling
	Dynamic Dispatch
	Demand Driven Analysis


	Path Summarization
	Related Work
	Conclusions

