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Abstract

Multi-valued optimization and Post networks

Yinghua Li

Master of Science in Engineering - Electrical Engineering and Computer Science

University of California at Berkeley

Professor Robert K. Brayton, Chair

We address the problem of extending multi-valued optimization methods from i-

set mode expressions to Post mode expressions. The i-set mode is a format used for

general multi-valued logic, where a set of multi-valued input and binary output functions

are used to represent a multi-valued output function. Post mode is another format for

general MV logic and can be obtained from i-set mode by a transformation. However,

direct minimization of the multi-level network expressed by Post mode expressions is

desirable since they are preferred in some applications and can achieve some

simplifications. We examine some optimization methods on i-set mode expressions and

attempted to extend them to Post mode expressions. We successfully extended some,

including two important semi-algebraic optimization methods. The difficulties

encountered on the extension of other methods are analyzed. The second part of this

report summarizes further developments of the multi-valued multi-level synthesis tool

MVSIS.
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Chapter 1

Introduction

Multi-valued minimization can be used in hardware/software synthesis as a high

level representation. One approach for MV minimization is to encode the multi-valued

variable and use binary logic optimization, and then translate back to the multi-valued

domain. However, in such a process, some optimization opportunities are lost. Thus

direct multi-valued minimization is more desirable. In this chapter, we review some

research in multi-valued logic synthesis and its state-of-the-art applications. Then we

describe some specific problems of interest. Finally, we outline the remainder of this

report.

1.1 Multi-valued logic synthesis overview

Research on multi-valued logic synthesis for hardware was originally motivated

by the FSM state encoding problem [VKBSV97]. The two-level multi-valued logic

synthesis problem was addressed in the work of Rudell et.al [RSV88], and efficient

implementations were developed in ESPRESSO-MV. Techniques developed there were

applied to the encoding problem for two-level implementations of finite state machines

[VSV90]. For multi-level implementation, the synthesis problem formulated there was to

minimize a multi-level logic network, with only one multi-valued variable appearing at

the primary inputs. The application is state assignment for FSM's with a multi-level

circuit implementation. Lavagno el.al. developed a theory for algebraic decomposition

and factorization for this type of application [LMBSV90] and completed an

implementation called MIS-MV.

Recently, multi-level multi-valued minimization has been studied more generally.

Theories on node minimization [JBOO] and common sub-expression identification



[MBOO] were developed. An efficient software package MVSIS for multi-level multi

valued minimization [GJJLSROl] is available and continues to be developed. MVSIS can

be used to optimize general multi-valued logic: variables can have different ranges and

the logic can be multi-level. In MVSIS, the format of multi-valued functions is a natural

extension of that for binary functions. Each multi-valued function is represented by a set

of multi-valued input, binary-output functions. Many sophisticated algorithms in binary

logic synthesis have been extended to the multi-valued case.

In summary, multi-valued synthesis hasdeveloped to a stage where general multi

valued logic can be optimized without constraints on its structure. Although most

algorithms were designed for a particular format for multi-valued functions, their

extension to other formats for representing multi-valued functions isworth studying.

1.2 Motivation

Multi-valued functions can have different representations based on different

function sets that are logically complete. One such format isbased on binary logic AND,

OR and a multi-valued operation literal (we give the formal definitions in Chapter 2).

This format is used in MVSIS, since it has no constraint onthe range of variables and the

number of levels of the logic. Another format is based on Post Algebra [P21]. This

format has different base functions: MIN, MAXand literal; also the value set for a multi

valued variable is totally ordered. Usually the multi-valued logic in this format is two-

level.

In order to optimize logic based on Post algebra, oneapproach is to convert it into

the AND-OR format, use existing algorithms, and finally convert back. More direct

optimization is desirable since some optimization opportunities may be lost. Some

attempts have been made to minimize multi-valued logic in Post algebra [DJROl]. In this

report, we will analyze the minimization algorithms used in MVSIS and try to extend

them to the format based on Post algebra.

1.3 MVSIS overview



Since all implementations covered in this report are done in MVSIS, we give first

a brief introduction on it. MVSIS is a program modeled after SIS, but the logic network it

works on can have all variables multi-valued, each with its own range. It is an interactive

tool for multi-valued technology-independent synthesis.

1.3.1 Input specification

The input to MVSIS can be an MV circuit represented by a netlist of MV-nodes

(command: readjbliftnv). Binary networks can also be read (readjblif). Internally, a

design representation used in MVSIS is an MV-network of nodes; each node represents

an MV-function with a single multi-valued output. Each variable can have a separate

range of its own, which can be represented by the set {0, 1, ..., /ij^-l}. The function

whose onset gives the set of minterms for which = /, i.e. the function at node k

equals the value i, is called the i-set of function . There is an edge connects ftom i to

j if any of the i-sets of j depends explicitly on the variable of node i. The network has

a set ofprimary inputs and a set ofnodes, designated as the outputs ofthe network.

1.3.2 Combinational optimization

We mention all the commands for technology-independent transformations in this

section. They can be organized into 4 groups.

simplifyy fullsimp and reset_default are used for node simplification. Satisifiable

don't cares (SDC) are used in simplify,fullsimp is a stronger node simplification where

not only SDC but also compatible observability don't cares (CODC) are used. For each

node, one of the i-sets is designated as the default and by definition is the complement of

the other i-sets. Command resetjdefault can be used to choose a new default based on the

cost of the i-sets used to minimize the nodes.

Command fic, decomp and resub are for kernel and cube extraction.^ looks at all

the nodes in the network and tries to extract good common factors and create new nodes

in the network, re-expressing other nodes in terms of these, decomp does a complete

multi-valued factoring of the i-sets of each node and decomposes the nodes according to



these factorizations. Finally, resub performs algebraic substitution of one node into

another.

Command collapse, eliminate, merge, encode and undo execute network

manipulations, collapse operates exactly as in SIS. eliminate compares the cost of

eliminating some internal node against a given threshold, and eliminates the node if the

cost is less thanthe threshold, merge takes a listof nodes and forces a merge of them into

a single multi-valued node, encode tries to find a good binary encoding for each multi

valued variable in order to convert the network into a binary one. undo replaces the

current network with the previous one.

The last group of commands is for printing debug information, reading in input

files and writing out optimization results. It includes commands writejblifmv,

readjblifinv, readjblif,print,printJdctor,print_rangeandprint_stats.

Command validate verifies the combinational equivalence of two networks by

simulating the networks on random vectors. There was no formal verification in MVSIS.

1.4 Outline of the report

In Chapter 2, we present some notation and definitions, introduce the theory of

Post algebra and define the format based on it. The main part is devoted to extending

algorithms used in MVSIS to this new format. Detailed algorithm modification is

described for successful extensions where the operation can be done directly in this

format and analysis is givenon imsuccessful parts.

In Chapter 3, we present part of the implementation of the extensions to the new

format. Then we discuss commands which we added to improve MVSIS, namely qcheck,

elim_part, pair decode, and validate for formal verification. The extension to handle

extemal don't cares is also discussed. Some examples and experimental results are also

given in this chapter.

We conclude and summarize this report in Chapter 4. Directions for future work

are also given.



Chapter 2

Multi-valued Minimization in Post Algebra

There are different formats to represent multi-valued functions. The values of one

multi-valued variable can be imordered, i.e., we don't say one value is "greater" than

another; all values have the same priority. This is the format used in MVSIS. Chain-

based Post algebra, an algebraic system also used for manipulation of multiple-valued

functions,provides another format. Its main characteristic is that the values ofeach multi

valued variable are totally ordered. Such a characteristic leads to certain requirements on

different minimization techniques. In this chapter, we first give some notation and

definitions on multi-valued logic and introduce chain-based Post algebra. Then we

concentrate on extending minimization techniques used in MVSIS to the minimization of

multi-valued functions in Post algebra.

2.1 Notations and definitions

Definition 2.1 (Multi-valued Variable) A variable is multi-valued if it takes on

values from a set //={0,1,..., |/^ |-1}.

Example 2.1 The multi-valuedvariable x takes on 5 values from the set {0,1,2, 3,4}.

Definition 2.2 (Multi-valued Literal) A multi-valued literal x^ where 5 is a subset of

values of X is a binary function on x. It evaluates to 1 if x takes on one of the values in

the subset S.

Example 2.2 is a literal of x. It evaluates to 1 if jc takes on value either 0 or 2.

Definition 2.3 (Multi-valued Cube) An MV cube is a conjunction of MV literals and

evaluates to 1 only if each of the literals evaluates to 1. Literals containing all values of

the corresponding variable always evaluate to 1 so they are suppressed in the cube form.



Definition 2.4 (SOP) A sum-of-products is the OR of a set of cubes, and evaluates to 1 if

any of the cubes evaluate to 1.

Notethat such a SOP is a function with a single binary output and multiple multi-valued

input variables.

Definition 2.5 (Multi-valued function) An n-variable multi-valued function /(x,,...,;c„)

is a mapping f '.P^xP^x....xP^ M with the variable taking values from the sets

Pf = {0,1,...,/>. -1} and the function / taking its value from the set M = {0,1,...,/« -1}.

Each set contains at least 2 values.

Example 2.3 The following truth table defines a multi-valued function on variables

and X2.

0 1 2

0 0 1 0

1 2 2 2

2 0 1 0

Table 2.1 An example ofmulti-valued function

Of coursewe want a more compact methodto represent multi-valued functions.

Definition 2.6 (i-set mode) A multi-valued function / with m output values can

represented by m i-sets. The yth i-set is a function whose onset gives the set of

minterms for which f = j. Such expression is said to be in the i-set modeformat.

Notice that the yth i-set function of /is the same as the literal flmction by

definition.

Example 2.4 The flmction in Example 2.3 can be written in the i-set mode as:



f> =X2">

The i-set mode format is the main one used in MVSIS. All the commands discussed in

Chapter 1 are based on this mode.

2.2 Post algebra and Post mode

Chain-based Post algebra was first developed by Emil Post in 1921.

Definition 2.7 (chain-based Post algebra) Chain-based Post algebra is an algebra <Af;

+, •, L\ 0,1>, such that the elements ofM form a totally ordered chain:

0 = 0<l<....<m-l = l

"+" and are the binary operations maximum (MAX) and minimum (MIN),

respectively, and L = is a set ofbasis literals specified by Definition 2.2 (

Note a basis literal takes on values 0 and 1 instead of0 and 1).

It has been shown that chain-based Post algebra is functionally complete for

multi-valued functions [P21]. So it can be used for expression and manipulation ofmulti

valued functions. For the function specified by Definition 2.5, the chained set is the union

of the input domains of the variables and the output domain of the function, i.e.

,max{/«,/J.}}. Maximum MAX (x,.,Xy) and minimum MIN

(x^, Xj)arebinary operations of type P^xFj ->M. Similarly we have cubes and sum-of-

products based on MAX and MIN, where MIN takes the place of AND, and MAX takes

the place ofOR.

Definition 2.8 (Post Cube) A Post cube is a product of literals of type

a • jcf' • X2^.... • x^" where a e ilf is a constant and product is MIN. Fora Post cube

c, let r|(c) denote its coefficient a and y (c) denote the product ofthe literals.

Actually a Post cube can be defined as a product of multi-valued variables since

MIN is defined for more than binary valued variables.

Definition 2.9 (>) Post cubes cj, C2 have relation cj > C2 if the value of cj is greater or

equal to the value of C2 under any input vector.
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Thus the coefficient associated with c, must not be less than the coefficient for

Cj; also the cube part of c, must contain that of Cj, i.e., ^(c,) >ri(c2), >

Similarly, we can define relations such as <, =.

Definition 2.10 (SOP) A sum-of-products expression overPost algebra is a sum of Post

cubes, with sum being MAX.

Note: In this report we use cube to refer to cubes in i-set mode and Post cube to refer to

cubes defined by Definition 2.8. Similarly, SOP refers to sum-of-products in i-set mode

while Post SOP refers to that defined in Definition 2.10.

Example 2.5 The function shown in Figure 1 can be written as:

We use the notion jth i-set to denote the sum-of-products expression formed by

all the cubes with constant j before them. For example, the 1®^ compressed i-set of the

above function is jc/" .

Since we use the MAX operation between cubes, a cube with a higher-valued

coefficient may be combined with a cube with a lower-valued coefficient as shown in the

following lemma [DJBOl].

Lemma 2.1 Let a<b be constants in M and g, h, k be products of multi-valued

literals. If f = a-g +b-h, then / = a'k +b'h where g ^k c{guh).

While the proof of Lemma 2.1 is straightforward, it provides useful information:

we can use the jth i-set as don't cares to simplifythe kth i-set for all j> k. Suchdon't

cares are called priority don't cares. For the function in Example 2.5, such

simplification yields a simpler result: / = 1• + 2•xj". The resulting i-sets are called

compressed i-sets. In fact, the following theorem holds.

Theorem 2.1 Suppose we use the don't cares described in Lemma 2.1 to minimize each

i-set and suppose that such minimizations yield minimum covers {g'"'\ g"*'̂ , ... , g'}.

Then the associated chain-based Post algebra form,

(m-l).^-'+(m-2). ... +1. g'

is minimum, i.e. has the minimum number ofcubes.



ProofSuppose there is a Post expression with fewer cubes. Then one ofthe g* can be

replaced byh'̂ which has fewer cubes.

However, h!^ must cover allminterms that arein thecare setof the i-set. Since is

assumed smaller than g* and g^ must also cover all such minterms, then both are covers,

but since g* was assumed minimum, we have a contradiction.

Thus we have a method for obtaining minimum chain-based Post expressions.

Definition 2.11 (Post mode) The expression of a multi-valued function which results

from the simplification using priority don't cares is called a Post mode format.

It can be expected that Post mode format is more compact than the i-set mode

format. In some applications such as code generation, the Post mode format is more

desirable. For example, if we want to generate C code from a multi-valued logic function

/with i-sets/, i = 0..wi-l, the natural code structure would be:

Iffo then

Return/= 0;

Else if// then

Retum/= 1;

else

Retum/= w-1;

We can use fo as don't cares to simplify /, because when we reach those

branches, fo has been evaluated to be false. Such simplification results in a Post mode

format forf

2.3 Extension of MVSIS commands to Post mode

MVSIS is designed to work on the i-set mode format of multi-valued functions.

We want to extend it to work on the Post mode format for the following reasons. First, in

some applications Post mode expressions are preferred. Second, for most multi-valued

functions the Post mode format is smaller than i-set mode format because of the use of
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priority don't cares. Optimization can be sped up since the time complexity of all

optimization algorithms is typically proportional to thesize of the input logic.

One possible approach for extending multi-level multi-valued synthesis to Post

expressions is to convert the Post format into i-set format, optimize in the i-set format and

then convert back. In this process no speed improvement is possible, while some

optimization opportunities may be lost if wewant the Post format as the final output. So

it is desirable to develop direct multi-valued minimization algorithms on the Post format

ifpossible.

In MVSIS, there are two main kinds of optimization methods: semi-algebraic

optimization and don't care-based simplification. We will focus on extending these two

classes ofcommands to Post mode.

2.3.1 Semi-algebraic optimization methods

Semi-algebraic optimization methods for multi-valued division and factorization

are important minimization methods for multi-valued functions. Two methods that apply

to the i-set mode are implemented bycommandsfic, decomp andfactor in MVSIS. There

are two types: the satisifable-matrix method and the maximum graph matching

method.

2.3.1.1 Satisifiable Matrix Method

We give a briefdescription of the satisfiable-matrix method and explain how to

extend it to Post mode expressions. Suppose A is a matrix, each cell of which is filled

with an MV-cube.

Definition 2.12 (Supercube) The supercube of a set of cubes f is the smallest cube

containing/

Definition 2.13 (Value Condition) Let / be the set of rows and / the set of columns in A

in which value of some variablex appears. The value satisfies the value condition if

it appears in all entries ofAgiven by {Aij \i s IJ eJ}.
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Definition 2.14 (Satisfiable-matrix) A matrix A is satisfiable if all values of all variables

in all cubes of it satisfy the value condition.

We can look for a factorization of the type / = (d){q) + r for a multi-valued input,

binary-valued output function by fitting some of the cubes of/ into a satisfiable-matrix

[GBOO]. Then d and q can be formed by the following procedure:

1. For each row i, form the supercube ofall cubes in that row; denote it c?,-.

2. OR these supercubes together to form d = E,J,.

3. For each column j, form the supercube of all cubes in that column; denote it

4. OR these supercubes together to form q =

The cubes not in A form the remainder r. If the goal of the factorization is to minimize

the number of cubes in the factored representation off, we would want the satisfiable-

matrix to be as large as possible. The "size" of the matrix is measured in terms of the

number ofdistinct cubes in it.

A slight extension to handle the constants in Post cubes, can make the satisfiable-

matrix method work on Post expressions. Recall, for these cubes, each has a constant in it

in addition to a set of literals.

Definition 2.15 (Constant condition) Let ^ be a matrix of Post cubes. Suppose the

maximum ofthe constants in row i is denoted consU and the maximum ofthe constants in

columnj is constj. The constant condition is satisfied if the constant at Aq can be written

as consti'constj.

In Post mode, a satisfiable-matrix must satisfy both the value conditions and the

constant condition.

Definition 2.16 (Post supercube) The supercube of a set of Post cubes C = {c/}, denoted

<s(C) is the cube that satisfies:

1. i3(C) > Ci for any c, € C;

2. a > g(C) for any Post cube a satisfying condition 1.

An interesting fact about the constant of <j(C) is that it is equal to the maximum

constant in C; if rjia (C)) > max_consU we can replace it with maxjconst to get a new

Post cube CT, which satisfies Condition 1 while a < (j(C). For any Post cube ct that
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satisfies Condition 1, y{a)-^y(cj). So y(cs)^supercube({y{cj)}) where supercube is

defined in Definition 2.12. Thus y(<y(C))= supercube{{y(cj)}). Actually these

arguments show a method to compute the Post supercube.

For a multi-valued input, multi-valued output function /, we can fit its Post cubes

into a satisfiable-matrix and then use the above procedure to find a factorization for it (of

course weneed to getthePost supercube instead of supercube for each row and column).

Theorem 2.2 For any satisfiable matrix Ay the d and q formed by the above procedure

have the following property:

A.j=drgj

Proof: A. j < •qj can be obtained directly from the definition of Post supercube.

Since d. is the Post supercube for row z, A^j <d. for any input vector. Similarly

A,j < q.. So A,j < MIN(d,yq.) = d, •q..

Assume A. . <d. -qj for some input vector w. Note that the constants in A^j, z/.and qj

has the following relation: r](Afj) = r|(flf.)• r](q.) due to the constant condition. Thus

Aj < happens only ifthere exists avariable with avalue vsuch that ve z/. -qj
but V̂ Ai j. However, vmust be in A. f̂or some ky and in A^ j for some m. Therefore by

the value condition for a satisfiable matrix, ve A^ j, which contradicts to our assumption.

So A^ j =d,'q..

Example 2.6 The following multi-valued input, multi-valued output function/in Post
mode can be fit in a satisfiable matrix:

Row \Column 1 2

2-x">'''.v'
3

2-w'

1

S-x"'-'' 2-x"".v'

2

ly l-x"''".y'.u' ly-w'
1

3-z' 3-x">"'-z'-u' 2-x"'-''"-z'.v' 2-z'-w'
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Table 2.2 An example ofsatifiable matrix

Then a factorization of/is {3'X^ '̂̂ '̂ ^ + 1-^ + -u^ + + 2-w'). Note

that sometimes factorization is not unique. For example, if also value 4 were allowed,

then the first coefficient of the first expression could be 4 as well as 3.

Thus satisfiable-matrix method can be used on Post expressions for factorization,

inexact division, just as it is used in i-set mode.

A branch and bound technique is used in implementing the satisfiable-matrix

method to speed up the search for the largest matrix. In the Post mode, both the value

condition and the constant condition can be used to identify candidate Post cubes for a

matrix cell. We give a method to check the constants. This method can be combined with

those for checking the value condition to form the bounding part of the algorithm for Post

mode factorization.

Suppose for each row, we store the maximum constant in the row so far

constructed and call it r,. Similarly for a column, and call it cy. In selecting a cube for Ay,

besides checking for the value condition, we check the constant as follows. Let the

coefficient of the proposed cube be c.

1. Ifc < min(r„ cj) or c < min(r„ cj), then reject the cube.

2. At this point, either r, < c or cj < c.

a. If r, < c then test all entries in the row i and see if r|(^,. ) = min(c, Ck)

for k < j. If this holds, replace r,- by c and accept the cube. Otherwise

reject the cube.

b. (here cj < c) Test all entries in columnj and see if ri ) = min(c, C])

for k < i. If this holds replace cjby c and accept the cube. Otherwise

reject the cube.

Such checking has a linear time complexity to the size ofsatisfiable-matrix.

2.3.1.2 Maximum graph-matching method

The maximum graph-matching method is used for exact division, in which the

divisor is given. It has the time complexity of O(n^) and is much faster than the
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satisifiable-matrix method. We show here that this algorithm can be used for exact

division in the Post mode with little modification.

The problem of exact division can be defined as: given a setofPost cubes/and a

set of divisor Post cubes {c?,-, 1</<«}, find the largest set of quotient Post cubes {qj^

The maximum graph-matching method is used only for the case « = 2. It can be

outlined as:

1. Find all candidate Post cubes offfor djand d2. Any candidate cube c,y is one

satisfying c,y< J,. Thus we get two groups ofcandidates {c/y} and {c2y}.

2. For each candidate c,y compute a candidate quotient qy, specified by a lower

bound and upper bound: cy <qij< a(c,y, Tl(c,.y).y(J.)), where c denotes the

cube that contains all values not in c. For example, if

each variable has a range size of3.

3. Identify compatible pairs. Two Post cubes, cyy, C2k are said to becompatible if

cr(c/y, C2k) < cr(c;y, T] (c, ) 'Y (^i) )* T1 ) •Y(^^2) )•

4. Reduce the problem to a bipartite graph: each candidate cube is a vertex.

There is an edge between two cubes if and only if they are compatible.

5. Solve the maximum graph-matching problem. The cubes that are paired form

the columns ofa satisfiable matrix.

The only modification is the concept of Post supercube and the part of handling the
constants inthe Post cubes inthe calculation oflower and upper bounds ofquotients. The

keypartof thisalgorithm is about thecompatibility of two Postcubes.

Lemma 2.2 Iftwo Post cubes cj and C2 are compatible, then there exists a quotient q such

that cj = q-dj and C2 = q-d2.

Proof For two compatible Post cubes, we have a(cy, ci) < a(cy, Tl(c,)-Y(i/,)> ct(c2.

*7 (^a))- Let q - a(cy, ci). Then q-di - a(cy, ci) -dj > cj-dj = cj. Since y(^i) only

contain values that are not included in yW)» qdi < a(cy, ti(c,)-y(</,))• </y =

supercube(y (c,),y(c?,) )'dj= r|(c,) •( supercube(y (c,),y(J,) )y (cf,) ) = "n (c,)-y (c,) =cy.

So C] = q-dj. Similarly,we can show C2 = q-d2.
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Lemma 2.2 also provides a method to compute the quotient q for two compatible

Post cubes. In the following we show an example of this algorithm.

Example 2.7 Exact division using the maximum graph matching method.

/= + \-xf''-''"-y'-v'

• Find candidate cubes. Since <di- and <d]y they are

the candidate cubes for dj. Similarly, and are candidate

cubes for d2.

• Compute the lower and upper bounds of the quotient cubes. We use qjiow and qjup

to refer to the lower and upper bound of theyth cube.

1 2 3

1

4

lower bound 2.y''.'Lv' i.yftWLy.v'

Upper bound

r fable 2.3 Lower and upper bounds ol the quotient cubes

• Then look for compatible pairs. We can see that cignow, gsiow) = <y{giup, g3iup) =

and (j{q2iow, q4iow) = ^{q2up> q4iup) = 2-x^^-^-^^-v^. Hence these are the

compatible pairs. Actually they are the maximal compatible pairs. For a larger

example, we can build a graph and use the maximal graph-matching algorithmto

find them. Thus the exact division result is ^ -u^+ and r =

null, i.e.,/= l-./X

Thus we have extended the main algorithms for semi-algebraic optimization used

in MVSIS from the i-set mode to the Post mode. Some new features were introduced in

this extension. First, the divisor obtained from the satisfiable-matrix method is no longer

a binary output function, but a multi-valued output function. However, extractions of

such divisors can result in functions of the following form: /= d'(qi+ q2'''-^ qtd +

where d is a multi-valued variable. This is no longer a Post expression as defined in

Section 2.2 since multi-valued variables are used in cubes besides literals; a multi-valued

variable is not a literal. If we restrict the result to contain only literals, d has to be
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replaced by in some cubes, so such extractions may not be a gain as far as the

network cost is concerned.

Another feature is that the extraction of a common sub-expression can be done

considering the entire multi-valued output function instead of separate i-sets. In the i-set

mode, a multi-valued output function is treated as a set of binary output functions, each

for one i-set. This restricts the search for good common sub-expression, e.g., the sub

expression cannot contain cubes from different i-sets. However, in the Post mode, all the

cubes of a multi-valued output function are considered simultaneously. However, at this

point it is unclear whatdifference such features would make in practical applications.

2.3.2 Don't care-based logic network minimization

Algebraic methods can be used to derive an appropriate stracture for the MV-

network. Once the structure has been decided, the multi-valued function at each node can

be optimized using the maximal permissible behavior allowed for this node. This

flexibility is given by satisfiability don't cares (SDC), observability don't cares (GDC)

and observability partial cares (OPC) [JBOO]. Such optimization is called don't care-

based minimization and forms another important part of MV function optimization. In

MVSIS, command simplify and fullsimp are implementations of such minimization

methods.

An SDC is easy to compute. For a MV function node y, in i-set mode, let

(/"j/'vm/") denote its i-sets. Suppose its input variables are {x,,jC2,...,xJ and

Xj G }=Pj. f is 2i binary function P, xPj x....x5 which defines the set of

minterms in ....xP^ that produce output value / for y. We can express the SDC

for y as:

yV-W W
/=0

where Urepresents the universal set {0, 1, ..., «}, since the SDC just expresses variable

combinations that can't happen. Here, the SDC expression is in SOP form rather than a

MAX ofMIN form.

SDc,^
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In Post mode, such a function is given as

X- =n'g" +.... + l-g'

where • and + are MIN and MAX, andg^ can treated as a binary function since it takes

on either value n or value 0. Priority don't cares may have been used to simplify function

y.so f Cg' c f yjy'J'j'.

Lemma 2.3 The SDC we can get directly from the Post expression ofy is:

SDC,='yyy'-"g'
/=0

where {O.i -1} represents the set ofvalues from 0 to / -1.

Proof We want to use SDC to express variable combinations that can't occur. Since

/' Q g' c f' maximum onset for g' is • So we have g^=l =>

y,. ^ {0,...,/-l}. This is expressed by SDCy^. can occur and thus cannot be

included in SDC. So SDCy^ is the largest SDC we can obtain in the Post mode.

In the above we tried to obtain an expression of SDC without first converting to i-

set mode and then computing SDC. We can see in the following example that because of

the use ofpriority don't cares, we lose a part of SDC to keep the calculation correct.

Example 2.8 The SDC of Post mode function y = 2-

+ is STiCy = -a!'K includes the whole function/ to obtain

the simplest form, and contains so it cannot be included in SDC. This

causes the loss ofSDC

The computation of CODC is more complicated. The maximum ODC (MODC)

for the input edge Xj is the set of minterms in the primary input space, such that the

output MV-function y is insensitive to all values of Xj, i.e., for any such minterm, no

matter how Xj is changed to some other value, thevalue ofy does not change. This set of

minterms can be used as don't cares for the minimization of the source function of Xj,

since the minterms have no effect on the output value ofy. We first compute the set of
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don't care minterms MODC in the local input space of under which the value of Xj are

indistinguishable. This gives the maximal ODC for edge Xj -> . MODC isdefined as:

MODC(yi,Xj) ={m\f{m[Xj=0]) =... = f(m[xj = €/> x....xPJ

Here the notation m[Xj =t] isthe minterm obtained fi-om mby changing Xj to the value

t. It canbe proved thatMODC canbe computed usingmulti-valued cofactoring:

MODC{y,,Xj) =
/=o A=0

The validity of MODCs for a particular input edge requires other input edges to produce

certain values. So we need the MODCs to be "compatible" with each other. One

approach is to implicitly order the input edges and to compute the CODC for each input

edge by making the associated MODC compatible with all the preceding edges in the

ordering. Given an ordering x, ... ^ Xj •<... ^ , the CODC for edge Xj isdefined as:

CODC(y,,Xj) = {/« € MODCj \V/ < j\(m ^ CODC,)w

(for any value t of x^, m[xi =/]e MODCj)

It canbe shown thatCODC can be computed using the following approach:

CODC(y,,Xj) =P, {MODC(y.,Xjm +CODC^^

P,(F) = CODC^^ -F +Vx.'F

CODC^= Y[CODC(y,,x,)
iefanout{Xj)

We give the algorithm to compute CODCs thathas been implemented in MVSIS

[JTHE] in Figure 2.1.

Let's see if we can extend this complex algorithm to Post mode. The first step is

to computeMODC and CODCin the local input space.

Theorem 2.2 If MV-fimction y,- has the Post expression, i.e.,

y," = «•g" +(«-1) •g"'̂ +.... +1 •g', the MODC can becomputed as:

•\((•f n 'f

MODC{y„Xj) =Y ri<' h E
/=0 4=0 ) p=M *=0 ^
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f

Proof: We show that 1̂ E^=tVf'x) •Since f ^g'cf'(J,
yk=0 J p=M k=0 k=0

V

for any g', and f' =null, any minterm mm must be in
A=0

n 7 7

while not in • Otherwise, if we have that
k=0 ^ p=l+\ k=0 ^ A=0 ''

V V

x'̂ j -men/i while Xj 'Tfi^114 . This contradicts that f' cg^. Similarly, we
k=0 ^ k=0 '

can show that 'W g 2^ 2^ •Finally any minterm wi'm
p=M Jt=0 ^

n^x} E must
A=0 ^ J p=l+l k=Q

be in because otherwise we have Xj -me while Xj f' •
A=0 ^ A=o ^

The computation shown in Theorem 2.2 in some sense implicitly converts from

the Post mode to the i-set mode. So it seems more complicated than in the i-set mode.

Note that the size of 2jSx^, cannot exceed that of g''. Thus the above method of
A:=0

calculating MODC is at least as fast as the straightforward way, which explicitly converts

yi to i-set mode and then calculates the MODC. During the convertion to i-set mode, we

need to usecomplement too: f' = g' .

Once we have computed the MODC, the CODC in the local space can be

computed using the algorithm in i-set mode without modification. Then we need to map

CODC into the primary input space by variable substitution, complement the result to

obtain the care set, and then map it to the local input space by image computation.

Mapping CODC into the primary input space is realized by variable substitution, i.e., we

replace any literal of intermediate nodes byits fimction/'̂ until we reach the primary

inputs. For image computation, recursive range computation is used in MVSIS. In the

local input space ofy,-, each input variable is cofactored by A(x), the complement of the

don't care set. A generalized cofactor operation is used here. This array of cofactored
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functions gives the transition functions thatmapthe entire primary input space PI into the

local care set ofnode y,-.

^A(x) - [(/l)w(jr)>(/2)^(:t)v,(/r)^(;r)]

A{x) = CODC'p\{x)

Once we have the range function, we apply output cofactoring to carryout the recursive

image computation:

coDq:,,,

= IMAGEiCODC'p'j) = RANGE{F,^^^) = RANGEif„f,,....f^)
\p^\

k=0

The range computation is applied recursively to the list of functions, successively

cofactored. Wegive a more detailed analysis on these twoprocesses to see if extension to

Post mode is possible.

The first step is to collapse CODC into theprimary input space, where weneed to

use the function for literals, such sis/^K Unfortunately, it seems impossible for one to get
exactfrom without converting back into i-set mode. Sincec if we use

to replace/'̂ , we will get alarger CODC set in the primary input space. So when we use

A(x) = CODC^p'j{x) to compute the care set, we lose some part of the real care setwhich

is unacceptable. One idea to fix this would be to try to recover the lost care part during

the image computation. However, from the following graph, we can see that it is

impossible.

Figure 2.2 CODC collapsing
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Suppose we have computed the CODC for y in terms of the inputs to the fanout

cone ofy. Node z which is a fanin to this CODC can be outside of the transitive fanins of

y. So when we do collapse using the Post mode functions, some care set may be lost due

to node z. In image computation, we only use the nodes in the transitive fanins ofy, and

thus this could not recover the lost part due to z.

We conclude that the algorithm based on collapsing and image computation

cannot be extended to the Post mode. The main reason is that we cannot get the exact

function of a literal during collapsing. Therefore it seems the best way to use CODCs for

simplifyingmulti-valued nodes in Post mode is to convert the network to i-set mode, use

the previous algorithm, and convert back.

Algorithm [CODC-based MV-network minimization]:

Input: MV-network ntk, external don't care XDCj at each primary output]

Local CODCj: CODC set for node i

Local DCj: complete don't care set for node i

Traverse each node] in ntk in reverse DPS order

If] is primary output

CODCj = XDCj

Continue;

For each fanout node k

D = MODC(fk. yj)

For each fanin node i of k that is already visited

D = [complement(CODCi) + VyJ-D

D = D + CODCki

CODCj = CODCj n D;

Collapse CODCj into primary input space

Remove the supporting variables not in the transitive fanin cone of yj

DCj = -.image(-iCODCj)

MINIMIZE(ONSETj, DCj)

End

Figure 2.1 CODC-based MV-network minimization algorithm
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2.3.3 Other commands in MVSIS

Besides semi-algebraic optimization and don't care-based minimization, there are

other commands in MVSIS, such as merge, collapse, eliminate, pairjdecode, and

eliminate_part. We would like to extendthem to Post mode ifpossible.

merge is used to combine small nodes into one larger node. Given n nodes, npi,

np2,...,npm, each takes values from the set Pi, P2, respectively. The merged node

newjtp has the i-set functions as:

f{0) ^ f{0} .{0} .{0)
J new_np J np\ J np2 J npn

Jnew_np J np\ ' *J np2 ' '•••' ' J npn

Theorem 2.3 If the given nodes are all in Post mode, then the merged node obtained by

the following method is a node in Post mode which has the same functionality as node

newjtp shown above.

Given nodes in Post mode:

=(I -1) • +(I ni -2) •gj-'-' +....+\-gJ

The mergednode can be computed as:

=(\p,\x..^\p,\ -1) •g^i^'+(I I Ipj -2). +....+1 •

where ^gj n....r^gj .

Proof: We only need to show that f' eg' c /' uT.!*' for any /. Suppose

/=;,x|Pj |x.. |̂PJ+i,x|P3 |x.. |̂PJ+...+;;, then =gj n....ngj' and

fL_np =Lpi' . And we know that c g'̂ c ^
rl /

J new np —Snew np • W^e Can alsO get



23

n . 1^ n 1^

/'• c: ^ f&new_Rp — I \J npj ^ai=\PA-\-' "PJ ^jl \''"PJ new_np
j=] kj=ijj=i i=|P||x..4P„|-l

Of course this may not be the simplest form; and the new node possibly could be

further simplified using priority don't cares.

collapse is the inverse operation of substitution. If two nodes are given as

arguments, the fanin node is collapsed into the fanout node so that the fanout node is not

dependent on the fanin node any more. Since the fanin node is usually referred to in the

literal form in the fanout node, it seems that we have to convert the fanin node back into

the i-set mode to get the function of its literals. No other method is known as far as we

know. Actually the failure in extending the CODC computation was mainly because we

did not find a way to do collapse in the Post mode.

eliminate eliminates all the nodes in the network whose value does not exceed a

specified threshold. The value of a node represents the increase in cost in the network if

that node is eliminated. Unfortunately, this command is based on collapse. We eliminate

a node by collapsing it into all its fanout nodes and then delete it from the network. So

again there seems no easy way to extend it to the Post mode. A similar thing happens to

eliminatejpart, a newly added command to reduce the number of values of a node. It

eliminates the values of a node whose cost does not exceed a given threshold. When

eliminating those values, we probably need to collapse the function of those values into

the fanout nodes. Thus converting back to i-set mode seems necessary again.

pairjdecode is a newly added command to create multi-valued nodes. It searches

the whole network for the "best" pair of nodes, and creates a new node whose i-sets equal

to all the decodes of the two nodes, and then re-substitutes the new node into the fanouts

of the pair to get some saving. This command is introduced in more detail in Section 3.6.

We will see that the method for calculating the value of a pair can be extended to Post

mode without modification. Thus this command can be used for Post mode.

In summary, we examined all the optimization commands in MVSIS and made

attempts to extend them to the Post mode format. We successfully extended semi-

algebraic optimization methods while difficulties were found in the extension of don't
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care-based minimization methods, specifically, the CODC computation. Other commands

were examined and analysis of their extension was given. The main difficulty

encountered is the collapse process, which is unique to multi-leveled logic and is used to

compute the fimction of a nodein terms of primaryinputs.
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Chapter 3

Implementation in MVSIS

In this chapter we describe some further development of MVSIS. MVSIS already

contains commands for node simplification and sub-expression extraction, which are

quite powerful for multi-valued multi-level logic minimization. However, MVSIS cannot

perform formal verificationor handle external don't cares. To do formal verification, the

user can write out BLIF-MV files, read it into VIS, and execute a verification command,

but this is cumbersome. At the end of this chapter, we show some experimental results of

an MVSIS implementationof some operations extended to Post mode. However,most of

the extension work ofChapter 2 has not been implemented yet.

3.1 Cost function

We introduced the structure of multi-valued logic in MVSIS in Chapter 1. Before

presenting our implementations, we discuss the cost functions used to evaluate the

minimization results. The optimization criteria are functions of the total number ofnodes

and the size of the MV-function contained in each node. The exact cost function depends

on the final type of target implementation. Minimizing the numberof cubes or literals is

generally beneficial for both hardware and software. For some applications, we want to

minimize the number of cubes while paying relatively less attention to the number of

literals. One example application is optimization in a compiler for control dominated

software applications where code size or evaluation time is key, while time for

compilation can be relaxed. For other applications, such as hardware applications, we

would focus on reducing the number of literals.

MVSIS provides two cost functions: one is the number of cubes, the other is the

number of literals in factored form. Users can specify which cost function to use.
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3.2 Qcheck

MVSIS guarantees the result of synthesis to be consistent with the input only if

the input logic network is deterministic. We call a network is deterministic if for any

input vector, each primary output has exactly one value. Otherwise, because of the use of

default value and other optimization methods, the resulting logic could be inconsistent

with the original.

So it is desirable to include a command to quickly check if the input network is

deterministic, qcheck is such a command which is always called automatically by

readjblifinv since it is very fast even for large networks. In this command, we examine

each node to see if its i-sets areorthogonal. If overlap parts exist, these parts are removed

and put into the default i-set. Then the new network is compared with the original

network using simulation. If the two networks are reported inconsistent, then the original

network definitely was non-deterministic; hence a warning message is printed. The

default value of 1000 is used for number ofsimulation vectors.

The fact that a network contains external don't cares does not immediately imply

that it is non-deterministic. The argument for this is that external don't cares correspond

to some part of the input space which the user does not care about (possibly because it

can't occur), and we are concemed only with the care partbeing deterministic. Sowe do

the same check on networks with extemal don't cares but restrict the simulation vectors

to be in the care part of the input spaces.

Notice that qcheck is not a definitive test in the sense that a network can pass

qcheck but still be non-deterministic since simulation instead of formal verification is

used to compare the two networks. The purpose of this command is only to check

determinismof input networks quickly as a first check after we read them in.

3.3 eliminate_part
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eliminate_part is like eliminate^ except it works only on multi-valued output

nodes (not binary nodes) and can eliminate some of the i-sets of the nodes.

eliminate_part can be used to reduce the number of values ofmulti-valued nodes, even to

the point that the node becomes binary. This command examines each internal multi

valued node in the network and eliminates the i-sets whose value sum does not exceed a

specified threshold. If the value of 2 or more i-sets in a node is less than or equal to the

threshold, those i-sets are eliminated by two steps: a) collapsing their fimctions into the

fanout nodes if necessary; b) merging their fimctions into one new i-set to replace them.

The command iterates, since eliminating some i-sets may change the values of other i-

sets. The iteration continues of all no further change in the network occurs.

The value of an i-set in node m is defined as the worst-case cost increase for

eliminating this i-set. The worst case happens when we have to collapse the i-set into the

fanout nodes of node m for each of its appearances while each literal representing m is

still needed. For example, literal is used in its fanout node g. The worst case of

eliminating happens when we have to collapse the function of into g and

literal is still needed. So the value is actually an upper bound on the increase in cost.

Real increase can be much lower because of three reasons: 1) the selection of a new

default value, 2) the use of the new i-set (in the above example, if we finally decide to

merge tm*®' and , then no collapse is needed) and 3) the simplification of the new i-

set.

Note that we define the elimination of a subset of i-sets as merging them into one

single i-set. So actually we should evaluate all possible subsets of i-sets to determine

which should be eliminated. Since the complexity of such evaluation is exponential in the

number of values of a node, we use estimations. We first calculate the value of each

single i-set and order them in increasing order. Then we find the largest j so that the sum

of the values of the first j i-sets is less than or equal to the threshold. Here we take into

consideration the possible saving by using the i-set as new default. Such estimation is

conservative, but still gives a good direction on how to eliminate the values of multi

valued nodes to control the cost increase. The overview ofeliminate_part is as follows.
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// node m contains n l-sets

value[n] = single_value_calculate( m ); // this array contains the values of i-sets.

(value[n], order[n]) = increase_order(value[n]);

max = 0; // max keeps the number of i-sets that can be eliminated

For i from 1 to n-2

Cost = Zo..i value[i] - default_saving

If cost <= threshold

max = i;

If max >= 1

merge i-sets from order[0] to order[ max];

update fanout nodes of m and default value of m;

Figure 3.1 eliminatejpart procedure on a singlenode

To see the accumulated value of the i-sets, the command print_part_yalue canbe

used. It shows the ordering ofthe i-sets and the accumulated values from least to greatest.

Forexample, fora particular node mit might print out the following,

m: (110) 1230 50 68 112 136 160184 ( 6 3 0 7 8 5 2 1 4 )

The name mis first followed bythe normal value of the node (110), then a vector

of the accumulated i-set values 12, 30, ...., where 12 is the value of the 6-set, 30 is 12

plus the value of the 3-set, etc. If the command eliminate_part 30 is given, MVSIS will

merge the 6-set and the 3-set, resulting in a new node with 8 i-sets. Then a new default

value will be selected, since themerged i-set maybe the largest.

3.4 External don't cares

A previous version of MVSIS only supported inputs that are completely specified

and only deterministic multi-valued logic. We extend MVSIS to permit user specified

extemal don't cares and to be able to extract extemal don't cares from incompletely

specified networks. Commandfullsimp is modified correspondingly to use extemal don't

cares as a part of the compatible observability don't cares.
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Command readjblifmv is extended to recognize the syntax .exdcin the input .blif

or .blifmv file, which can be used to specify extemal don't cares. The user can also

specify don't cares by putting on the primary output and the corresponding cubes are

automatically recognized as extemal don't cares. An example of such an input file is

shown in the following example.

Example 3.1 a27.blif

model s27.bench .inputs G6 G5
.inputs GO G1 G2 G3 .outputs GIG Gil G13 G17
.outputs G17 .names G6 G5 dc[1093]
.wire_load_slope 0.00 11 1
.latch G10G5 0 .names dc[ 1093] GIO
.latch G11G6 0 11

.latch G13 G7 0 .names dc[1093] Gil

.namesGllG17 11

0 1 .names dc[1093] G13
.names G14 G11 GIO 11

00 1 .names dc[1093] G17
01- 11

.exdc
.end

Table 3.1 An input file with extemal don't cares

An extemal don't care network will be created as a part of the main network if

there are such specifications in the input file. The EXDC network can be multi-level.

Each primary output node is a binary node and its onset specifies the don't care set for

the output node which has the same name in the main network. For sequential logic, the

latch inputs are treated as primary outputs and can have corresponding nodes in the

extemal don't care network.

We can extract extemal don't cares from some incompletely specified networks.

If one primary output is not specified on some part of the primary input space, that part

can be extracted to become the extemal don't care for this primary output. However if the

initial network is multi-level, to determine such unspecified input minterms is based on

global sensitization and becomes very complicated. Another possible way is to collapse

the whole network into a two-level network and then extract the unspecified part, but

such an operation can be quite expensive too. So currently we only do such extraction on

two-level networks. In such networks, each primary output depends directly on primary
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inputs, the unspecified part of the output node can be easily obtained by complementing

the OR of all i-sets. This routine is called automatically by readjblifmv. The extracted

external don't cares are merged with any extemal don't care network specified.

Command write_blifinv is also extended to write out the extemal don't care

network in the same format as shown in the above example.

3.5 Formal verification

MV-networks can be verified in MVSIS either by simulation or by formal

verification based on MDD comparison. The command for verification is:

validate [-m method] [-n num] [-b]filel [file!]

file] is compared with thecurrent network whenfile2 is not specified. The primary input

and output variables of the two networks are associated by their names. The -m option

specifies the verification method. If method is sim (default), two networks are simulated

using random vectors. If method is mdd, the MDD's for the global functions at the

primary outputs are constructed for both networks and compared. The -b option indicates

that the file(s) are in BLIP format. The default is BLIF-MV. The -n num specifies the

number of random vectors to be used in the simulation. The default is 1000.

Formal verification is based on MDD operations [KB90]. In formal verification,

we first assign variable indexes to all the primary inputs of the two networks. The

primary inputs with the same names are assigned the same index and thus will be treated

as the same variable by the MDD package. Then we traverse the whole network fi'om

primary inputs to primary outputs and build up the local MDD for each node function.

Then we eliminate intemal variables using MDD operations to obtain theglobal functions

ofthe primary outputs.

Formal verification works notonlyon combinational networks but alsosequential

networks. It also permits input networks to contain extemal don't care networks. For

sequential networks, full sequential equivalence is not checked in general. We simply

treat the latches as primary inputs and the latch inputs as primaryoutputs. The number of
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latches is compared first, and then the global functions for latch inputs. Further

development is needed here. If external don't care networks exist, the global function for

the external don't care network is subtracted from the global network functions to obtain

global care functions, and these are compared. If the comparison result is that two

networks are different, one minterm in the primary input space on which the two

networks yield different output values will be printed. The main procedure is as follows.

Formal verification( networki, network2 ) {

Compare primary inputs and primary outputs;

If different then retum FALSE;

If networks are sequential then

Compare latches;

If different then return FALSE;

Assign Indexes to the primary Inputs and latches of networki;

Based on the assignment to networki, assign Indexes to Pis and latches of
network2;

// It Is very Important that variables that match by name are assigned the
same Index so that they are treated as the same variable by BDD package.

If exdc networks exist then

Assign Indexes to Pis based on the assignment of networki;

For each PO o1 In networki and PC o2 that matches It by name In network2

For the Ith l-set of o1 and o2

Mdd_compute( o1,1, mddl ); // mddl Is the MOD for this l-set

Mdd_compute(o2,1, mdd2);

Mdd_exclude( mddl, exdc_mdd1);

Mdd_exclude( mdd2, exdc_mdd2);

lf( I mdd_equal( mddl, mdd2))

print a vector;

return FALSE;

retum TRUE;

}

Figure 3.2 Formal Verification Procedure
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Formal verification is usually called after the execution of optimization

commands to verify the correctnessofall the operations.

3.6 Pairjiecode

pairjiecode does bit pairing to create new multi-valued nodes. It looks for a

"best" pair of signals to pair together. Then it creates a new node (if its value is greater

than a specified threshold) with i-sets equal to all the decodes of the pair. This new node

thenis algebraically substituted intonodes which depend on at leastoneof these decodes.

Finally, any setofvalues of the new node, which always appear together in thefanouts, is

merged into a single value ofthe new node. After this step, simplify should beexecuted to

effect full substitution.

The format of this command is:

pairjiecode [-i num] [-t numj[threshold]

The threshold option is used to specify the upper bound of the cost increase due to

creating the new node. Its default value is 0. The -z option can be used to specify the
number of iterations. The default case is to continue iterating until the network does not

change. The -t option specifies a time limit in terms of seconds for the whole process.
When a timeout occurs, the intermediate result obtained so far is retumed.

Pairing two nodes into one can bring savings. A simple example is shown in the

following, inwhich wesuppose a and b are binary signals.

Example 3.2 g =

=> neway'^ =

neway^^ =

neway^^ = ^^y^^

g = neway '̂
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=^> newab^^^ =

g = neway^^y^^d!^^

Pairing a and b enables the merge of two cubes in g. Since the values 0 and 1 ofnewab

are always used together, they are merged into a single value. Thus newab can be

simplified. The total number of literals reduces fi*om 8 to 7. We have found that

pair_decode is quite useful in finding XOR sub-expressions in some examples.

// estimate the savings of pairing up a and b

Pair_value(a, b) {

// a has m values and b has n values. They can be MV nodes

Value = 0;

For each node out with a and b as inputs

Value =+#literals (or #cubes);

Remove a and b from all cubes and eliminate all duplicated cubes;

Value = - #literals (or #cubes );

If cost = #literals then

Value = -2*(m*n-1); // #literals in newab

Else // cost = #cubes

Value = -(m*n-1); // #cubes in newab

Return value;

}

pair_decode( network) {

while( time_remaining and changed and iteration_remaining) {

choose the best pair a and b using procedure pair_value;

create newab from a, b;

use node_simplify to resub newab into fanout nodes of a and b;

merge values of newab if possible;

}

}

Figure 3.3 pair_decode Procedure
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The key part of this command is how to estimate the savings of a pair. We

evaluate each pair of nodes by counting the savings introduced by merging cubes if they

are paired up. This is a lower bound on the real saving. After the best pair is chosen and

a new node has been generated, we use an existingprocedurenodejsimplijy in MVSIS to

find fanouts for this new node, but only the fanout nodes of the original pair are

considered as candidate fanouts for the new node. Such restriction cuts execution time

and yet gives good performance. If the use of the new node in a candidate fanout can lead

to any savings, nodejsimplijy will automatically re-substitute the new node into it. In

Figure 3.2, we present the main procedures ofpair decode.

UC Berkeley, HVSIS 0.95 (compiled 16-Oct-Ol at 4:42 PH)
changing to short-name mode
mvsis> rl matmul-c

mvsis> s

mvsis> saf

matmul: 4 nodes, 4 PCs, 96 cijhes(sop), 320 lits(3op), 160 lits(fact.)
mvsis> pd 1
m{0} = a{0 e 2} + e{0}

m{l) = a{0 e 1}
m{3} = a{l e 2} + a{2}e{l}
n{0} = a{0 f 2} + f{0}
n{l} = a{0 f 1}

n{3} = a{l f 2} + a{2}fU)
o{0} = e{0 c 2} + c{0}
0(1} = e{0 c 1}
0(3} = e{l c 2} + e{2}c{l}

P{0} = f{0 c 2} + c{0}
PU> = f{0 c 1}

p{3} = f{l c 2} + f{2}c(l}
q{0} = b{0 g 2} + g{0}

q{i} = b{0 g 1)

q{3> = b{l g 2} + b{2}g{l}
r{0} = b{0 h 2} + h{0}
r{l} = b{0 h 1}

r{3} = b{l h 2} + b{2}h{l}
s{0} = g{0 d 2} + d{0}
S{1} = g{0 d 1}

s{3} = g{i d 2} + g{2}d{l}
t{0} = h(0 d 2} + d{0}
t{l} = h{0 d 1}

t{3} = h{l d 2} + h{2}d{l}
matmul12 nodes, 4 POs, 64 cubes(sop), 184 lits(sop), 160 lits(fact.)

Figure 3.4 an example forpairjdecode

At first glance pairjdecode looks similar to another command merge but they are

different. First, merge will replace the pair of nodes with a new node, while pairjdecode

will keep this pair of nodes if eliminating them provides no cost savings. Also the
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methods to calculate savings are different, merge counts the saving of a pair of nodes by

comparing the size of the resulting node with that of the two nodes, while pairjdecode

focuses on the impact of creating a new node, on the fanout nodes ofthe original pair and

can result in impressive results in some cases. In Figure 3.3 we show an example where

pairjdecode can reduce the cost significantly.

3.7 Post mode

To extend MVSIS commands to Post mode operations, it is necessary to include

commands for transformation between the i-set mode and the Post mode. This is because

there is no effective way to extend some commands to Post mode, as shown in Chapter 2.

The command compress that transforms a network in i-set mode to Post mode had

already been included for use in code generation [DJROl]. We added a new command,

uncompress, to transform in the other direction. Given an expression

JF, = «•?"+(«-1) +lg' in Post mode, uncompress computes the

corresponding expression in i-set mode by:

/=I+I

ESPRESSO is called to control an explosion in the number of cubes, which may be

caused by complement and intersection operations.

As presented in Chapter 2, some MVSIS commands can be extended to Post

mode, but the implementation for this has not been finished. However, some commands

can be used directly on Post mode. They are decomp andfie. In these commands, each i-

set of a node is treated as a separate function. For example, in the satisfiability matrix

method, the search for a good divisor is limited to single i-sets. Then we can directly use

them in Post mode. Note that these commands are not as powerful as the extensions

discussed in Section 2.3.1 because the search space is limited to one compressed table

entry, rather than the entire Post expression.
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We mentioned that including Post mode operations in MVSIS has two positive

effects: one is that theuser can optimize Post mode logic directly; the other is to speed up

some optumzation operations since Post mode expressions can have smaller sizes than

that for i-set mode. For some algorithms that are relatively time-consuming, such as the

satisfiable-matrix method. Post mode can reduce execution times greatly. We did some

experiments using decomp andfx. to demonstrate the effectiveness of using thePostmode

in improving timeperformance. Some interesting experiments areshown.

The MV examples used in the experiments come from 1) machine learning

applications, 2) a set of multi-valued benchmarks distributed with VIS and 3) a set of

examples from asynchronous applications. We did not include sequential examples since

decomp and fx are mainly for combinational logic optimization. We compare two

approaches, both with respect to performance and the run time:

Approach 1: decomp,fx^ eliminate'.

Approach 2: compress,decomp, jx, uncompress, eliminate.

The input files available are written in i-set mode, so we need to call compress to

transform to Post mode first. The run time of Approach 2 includes the run time for

compress and uncompress, eliminate is the last operation for both approaches since it is

usually called after decomposition and kemel extraction to getrid of bad extractions. The

initial characteristics of the examples are given inTable 4.1 and the experimental results

are shown in Table 4.2.

#cubes sop #literals sop #nodes
Adder mod4.mv 24 48 2

Balance.mv 337 1348 1

Iris.mv 100 400 1

Mm3.mv 111 555 1

Mm4.mv 598 2990 1

Mm5.mv 112 506 1

Ele-ctr-det.mv 1633 3542 1446

Bakery-proc.mv 813 1788 258

Coh-dir.mv 996 1917 653

Matmukmv 128 480 4

Table 3.2 initial characteristicsofthe examples
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From the experimental results, we see that for most examples, the times are

comparable or better with Approach 2. The run times reduce mainly because the size of

network is reduced by being simplified with priority don't cares. For some examples,

better results are obtained by Approach 2, mainly because of more extensive use of the

complements ofkernels. At the end ofApproach 2 we call uncompress to change back to

i-set mode. This involves the intersection of function with lower priority and the

complement of those with higher priorities. So if a kernel has been extracted for a

function with higher priority, its literal is used in that function, possibly causing the

complement of that literal to be introduced into the function with lower priority when

uncompress is executed. This can cause large savings since in i-set mode, we usually

cannot use the complement of a kernel if it contains more than 2 cubes, since division by

a more than 2 cube kernel would be very expensive.

Approach! Approach 2
#cubes #literals Time(s) #cubes #literals Time(s)

Adder mod4.mv 24 60 <0.1 26 56 <0.1

Balance.mv - - - 230 1100 3.8

Iris.mv 57 187 2.1 31 114 0.3

Mm3.mv 26 64 1.2 16 37 <0.1

Mm4.mv 140 393 65.8 41 112 0.2

MmS.mv 126 338 7,7 78 242 1.0

Ele-ctr-det.mv 193 439 3.0 180 407 2.5

Coh-dir.mv 254 566 4.4 240 546 4.4

Bakery-proc.mv 147 338 1.4 183 650 1.4

Matmul.mv 112 248 1.2 112 304 0.6

means that no result in reasonable time period

Table 3.3 Experimental results by Approaches 1 and 2

There are some examples where Approach 2 gets worse results. The main reason

is that we extract kemels in Post mode but finally evaluate the results in i-set mode. A

good kemel to the function that has been simplified with priority don't cares can be bad

in the original function.

Since the speed improvement obtained using Post mode is desirable, it leads to the

idea ofusing Post mode operations first if the input network is too large and then use i-set

mode operations. This approach can improve both speed and the quality of the results.



39

Chapter 4

Conclusion and Future Work

4.1 Conclusion

We investigated the problem ofextending MV optimization methods from i-set mode

expressions to Post mode expressions, which is another format used for general MV

logic. Also, some further development of the multi-valued synthesis tool MVSIS was

done. The work can be summarized in two main parts:

• We successfully extended two semi-algebraic optimization methods from i-set

mode to Post mode, namely the satisfiability matrix method for factorization and

inexact division, and the maximum graph matching method for exact division.

Also attempts were made to extend don't care-based minimization methods to

Post mode. The commands used in MVSIS were examined one by one to show

either how they can be extended or what is the difficulty in such extension. This

forms the theoretical bases for implementing such extensions.

• We also worked on the development of MVSIS. New commands were

implemented, including qchecky eliminate_part, pair_decode, and validate for

formal verification. The algorithms used in these commands were presented and

their effectiveness was shown on some examples. Also, experiments on using

Post mode operations to speed up MV minimization were performed and the

results analyzed.

4.2 Future work

Much work still needs to be done:
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Implement the extension of semi-algebraic optimization methods in MVSIS. We

have mentioned that it seems those methods on Post mode can generate multi

valuedsub-expressions whichcannotbe realized in the i-setmode. Comparing the

results in the two different modes would be interesting.

Extend don't care-based methods to Post mode. We have shownhow to compute

SDC in Post mode, while the computation of CODC is unsolved. Since the

simplification using CODC plays an important role in MV minimization, more

effort in this should be done.

Develop a new version of MVSIS for asynchronous optimization using type of

logic called delay-insensitive logic. Some discussions on using MV-synthesis to

design such logic have indicated how this can be done.

Include technology dependent optimization of MV logic in MVSIS. Circuits using

current based transistors have been discussed in literature. Such circuits can

realize multi-valued logic, and this poses a requirement on technology dependent

optimization. Some theoretical work has been done on technology mapping,

which provides a good basis for further research.
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