Copyright © 2002, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A NEW METHOD OF SPECIFYING
DATAFLOW ACTORS

by

Chris Chang, Johan Eker, Jorn W. Janneck, Yang Zhao

Memorandum No. UCB/ERL M02/28

27 September 2002

A NEW METHOD OF SPECIFYING
DATAFLOW ACTORS

by

Chris Chang, Johan Eker, J6rn W. Janneck, Yang Zhao

Memorandum No. UCB/ERL M(2/28

27 September 2002

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

A New Method of Specifying Dataflow Actors

UCB/ERL M02/28
Chris Chang, Johan Eker, J6rn W. Janneck, Yang Zhao

EECS Department
University of California at Berkeley
Berkeley, CA 94720
U.S.A.
{cbc, johane, janneck, ellen_zh}@eecs .berkeley.edu

Abstract. In the design of embedded software, approaches such as synchronous
dataflow or cyclo-static dataflow describe mechanisms for statically scheduling
specialized classes of dataflow actors. This paper argues that these classes are
often more specialized than is necessary in order to compute a static schedule, and
introduces a more general notion of actor that allows for more flexible specifica-
tions of actor networks, while retaining the advantages of static analyzability and
schedulability of compositions of actors. It also sketches the scheduling techniques
by reducing the problem to well-known problems in the field of Petri nets.

1 Introduction

Modern embedded systems typically consist of several concurrently operating com-
ponents that interact with each other and with the external environment. This is why
actors—concurrent, interacting components—are a natural choice for modeling and im-
plementing such systems. In contrast to objects, which interact via synchronous method
calls, actors communicate by exchanging data via ports and connections between their
ports. Hence, actors typically have no way of transferring control between each other.

The actor notion was introduced by [6] for modeling distributed knowledge-based
algorithms. Since then, actors have become more widely used, cf. [2]. Several more or
less specialized actor models have been used in the construction of software, and specif-
ically embedded software, e.g. [13, 12, 9], and a variety of tools and design frameworks
support an actor-oriented view of a system, e.g. Ptolemy [1], Moses [8], Grape II [10],
Matlab/Simulink, LabVIEW, and SDL.

Not all environments that support software construction use a language geared to-
wards the specification of actors—instead, many are based on the stylized use of tradi-
tional’ software concepts, such as procedures and objects. This is especially the case for
environments supporting dataflow actors, which are actors that receive and send data
parcels called tokens from and to each other.

Dataflow actors are useful for describing embedded software due to the importance
of issues such as data rates and optimizations in areas such as scheduling and buffer
allocation. It is often desirable to compute a schedule of execution for the actors at design
time, and approaches such as synchronous dataflow (SDF) and cyclo-static dataflow
(CSDF) provide efficient scheduling mechanisms for specialized classes of actors.

This paper argues that these classes are often more specialized than is necessary in
order to compute a static schedule, and introduces a more general notion of actor that
allows for more flexible specifications of actor networks, while retaining the advantages
of static analyzability and schedulability of compositions of actors.

The remainder of this paper is structured as follows. After summarizing some prereq-
uisites in section 2, we discuss why traditional approaches lead to overspecification of
actors and a consequent lack of reuse in section 3. This motivates a more flexible notion
of actors, which we describe using the Cal actor language in section 4. In section 5 we
show how the extra degree of freedom obtained by this notion addresses the reusabil-
ity problem, by using a scheduling mechanism which we call action-level scheduling
(ALS). However, this degree of freedom also potentially leads to ambiguous behavior,
and section 6 discusses this issue. We address the ambiguity problem in sections 7 and
8, by first generalizing our notion of actors, and then extending action-level scheduling
to handle this more general class of actors. We summarize and discuss our results in
section 9.

2 Static scheduling of actor networks

This paper focuses on the implications of the proposed notion of actors for the static
scheduling of actor networks, i.e. the design-time computation of a sequence in which
the actors in a network of actors are executed. Doing this ahead of time, rather than during
the execution of the system, is particularly interesting in the case of embedded systems,
because it allows not only to remove the scheduling from the executing code, but also
facilitates generation of memory- and time-efficient code from the actor network.

When statically scheduling an actor network, one is usually looking for cyclic sched-
ules. In a network of dataflow actors (which are connected by FIFO buffers), a cyclic
schedule is a sequence of actor activations (firings) that results in the same number of
tokens being written to each buffer as were read from it—thereby leaving the buffer
lengths unchanged.

In order to be able to compute a cyclic schedule ahead of time one needs to constrain
the possible behaviors that the actors in the network may exhibit. For example, actors
that produce or consume different numbers of tokens depending on the values of their
input tokens are usually disallowed, because it would be necessary to know about token
values in order to compute a schedule, which is impossible or infeasible in most cases.

In synchronous dataflow (SDF) [12] networks, actors are constrained to constant
token rates—at each firing, an actor must consume and produce the same number of to-
kens at each input and output port (although these numbers may be different for different
ports). With this constraint, actor networks can be efficiently checked for schedulability,
and techniques have been developed to generate code that optimizes characteristics such
as buffer size or code size.

The definition of a cyclo-static dataflow (CSDF) [5] actor relaxes the constraint
on the token rates a little by requiring the numbers of tokens consumed or produced
on each port to cycle through a series of values during successive firings of the actor.
Schedulability can still be determined statically, and a schedule can be computed ahea
of time. '

S, >_|"> < : + >L> A,
”I>_'> _< Split Add | + >_g|
Split : Add
Fig. 1. A small example system.

Further generalizing SDF and CSDF actors, which we will call constant and cyclic
in the following, this paper introduces two new classes of actors (which we call free and
regular) and show how networks of these, too, can be statically scheduled.

3 Problem statement

Consider the network of actors shown in figure 1. Here we are using two different kinds
of actors:

1. Add actors (A, and Az), which consume one token from each input port, outputting
a token which is their sum.
2. Split actors (S; and Sy), with two possible actions:
(@) Up: The actor consumes a token from its input port and sends it to its upper
output port.
(b) Down: The actor consumes a token from its input port and sends it to its lower
output port.

The above does not uniquely specify the behavior of the Split actors, because
it does not define a policy for choosing between their two actions. For example, the
sequence

SYP_gyP__gPown__gUpP__gDown__4,_ 4,
is a cyclic schedule of the actions of the actors, as are

SPown__glp__ghoun__gUr__gUp__ 4, 4,
and

§Pown__gUP__gUp__gDoun__gUP_ 4, 4,

In the first schedule, the actions of S; are executed in the order Up—Up—Down,
whereas in the other two schedules they are executed in the order Down—Up—Up.

In this case, a cyclo-static dataflow description of a Sp1it actor would include the
order in which its actions are executed, its internal schedule. Conceptually, the internal

schedule is part of the actor specification and is fixed even before the actor is used in a
network. If it is different for two actors, then the result will be two different actors.

Since the internal schedules are fixed ahead of time, the schedulability of the overall
network not only relies on having the “correct” Sp1lit actors available but also on the
user to manually choose them. For example, choosing the schedule Up—Down—Down
for S; would result in a network that has no cyclic schedule.

This example illustrates two important points: first, the manner in which a Split
actor is specified, namely, as a fixed sequence of actions, reduces the possibilities for
reusing the actor in different contexts. Second, constructing the network becomes error-
prone, since the user has to choose actors with the correct internal schedules.

We can generalize to any cyclo-static actor: its specification requires fixing its internal
schedule, and although sometimes this is precisely what the user wants, other times it
may limit the usefulness of an actor by essentially overspecifying actor behavior. Actors
which affect the flow of tokens, such as the Sp1it actors, are typical examples where a
fixed sequence is often undesirable. We therefore need more flexible actor descriptions,
which can be used to automatically compute different internal schedules depending on
the actor’s context.

By analogy with polymorphism in type systems, the two instances of the Split
actor above perform the same function but have different types. In each case, the user
is forced to specify the type (ordering of actions) explicitly. Would not a means for
inferring these types be desirable? We will show that this is what our system achieves,
while simultaneously allowing the user to explicitly “declare types” as needed.

To accomplish these goals, we propose a different method for specifying actors: first,
we relax the need to specify a precise sequence for the actions and second, we provide
concepts and notation for describing families of internal schedules, some of which will
also require the actors to have state.

Hence, our actor specification will consist of two parts: a set of actions and some
state. This is precisely how an actor is specified in the Cal language, which will be the
topic of the next section.

4 Introduction to the Cal actor language

Cal [4] is an actor language developed in the Ptolemy project [3]. We will focus on
those aspects of the language relevant to the problem discussed here, viz. a more flexible
representation of dataflow actors.

We begin with two examples—the Cal versions of the Add and Split actors from
the previous section:

1 actor Add [T < Number] ()
2 T Inputl,T Input2 => T Qutput :

“w

4 action [a], [}] => [a + b] end
5 end

1 actor Split [T) ()
2 T Input => T Outputl, T Output? :
3

+ Up: action [a] = [a], [] end
5 Down: action [a] =[], [a] end
6 end

The essence of each actor is contained in its set of actions. An action is what an actor
executes when it fires, and it is atomic, in the sense that no two actions of the same actor
may execute at the same time (which could create race conditions on the actor state).
Each action consumes a number of input tokens, produces a number of output tokens,
and possibly changes the state of the actor.

Each action has a pattern on the left which is matched to the input. For example, the
action in line 4 of the Add actor consumes a token from its first input port, calls it a,
then consumes a token from its second input port, calls it b, and finally sends the value
of a+b to its output port.

An action may only be executed if its input patterns match the actual input sequences;
for example, the two actions of the Split actor each require at least one token to be
present at the input port. If such a token is present, both actions can be executed—the
order in which they occur in the actor does not imply any precedence among them.

We call actors free if the executability of their actions only depends on the presence
of a constant (for each port and action) number of tokens. Non-free actors add further
preconditions to their actions. Combined with state this will allow us to constrain the
internal schedules of these actors, which we will discuss in section 7.

In the following section we will first consider the problem of computing a schedule
for a network of free actors, before generalizing the technique for a more comprehensive
class of actors.

5 Action-level scheduling

Given a network of free actors, we will employ techniques developed in the context of
Petri nets [14] to compute the set of valid cyclic schedules in three stages:

1. Map the network of actors into a Petri net.
2. Compute the firing vectors of the Petri net.
3. Search for legal firing sequences of the Petri net.

The result of these steps is a set of possible sequences in which the actions of the
actor network may be fired.

5.1 Mapping an actor network to a Petri net

The Petri net representing the actor network in figure 1 is shown in figure 2. It is con-
structed as follows:

- Actions are represented by transitions, e.g. the rectangles labeled Up and Down in
the dashed box labeled S, (called SY ? and SP"“’" in the following).

Fig. 2. The Petri net representing the actor network in figure 1.

— The input ports of actors are represented by places, e.g. circles labeled P4 and P;
representing the input ports of actor A;.

— Connections from output ports to input ports are represented by arcs from transitions
to places, e.g. the arc going from SP°“" to P;. The arc weight is equal to the number
of tokens produced by the action represented by the transition on the corresponding
output port.

- If an action consumes tokens from an input port, an arc is drawn between the
corresponding place and the transition representing the action, e.g. the arc between
P; and A;. The arc weight is equal to the number of tokens consumed by the action
from the input port.

— Input ports of the network are represented by transitions, e.g. the transition labeled
I. They have outgoing arcs with weight 1 to every place representing an actor input
port that the network input port is connected to, e.g. the arc from I to P,.

~ Output ports of the network are represented by a place and a transition like P; and
O. Every transition that represents an action that sends tokens to that network output
port has an outgoing arc of the corresponding weight to the place, e.g. the arc from
As to P;.

The initial marking of the generated Petri net has zero tokens on every place (i.e. the
input buffers of every actor are empty).!

Because each action is directly represented by a transition in the Petri net, any
sequence of transition firings that return the Petri net to its original state corresponds to a
cyclic schedule of actions. Furthermore, the number of firings of a transition representing
a network input gives us the number of input tokens required by the schedule, and the
number of firings of a transition representing a network output equals the number of
tokens produced at that output.

! This can easily be generalized to situations where there are initial tokens in the network.
Furthermore, our technique can also be adapted to compute the minimal initial marking required
to find a cyclic schedule.

5.2 Computing the firing vectors

Asaprerequisite to finding a sequence of transition firings, we will now compute the firing
vectors of the Petri net. A firing vector contains a number of firings for each transition—
consequently, its entries are non-negative integers, and its dimension is n x 1, where n
is the number of transitions. Each sequence of transition firings uniquely defines a firing
vector which contains for each transition the number of its occurrences in that sequence.
The inverse is not true—given a firing vector, there may be many legal firing sequences,
including zero, that correspond to it. Later we will use this vector to search for a legal
sequence of transition firings.

In order to compute the firing vectors of a Petri net, we need to construct its incidence
matrix. For a Petri net with n transitions and m places, the incidence matrix A is an
n X T matrix of integers and its entries are given by

a;; = a}; —aj;)
where a,fj = w(3, j)is the weight of the arc from transition i to its output place 7, and
a;; = w(j,1) is the weight of the arc to transition i from its input place j. If there is no
arc between i and j, then the corresponding weight is 0.

For example, the incidence matrix for the Petri net in figure 2 is

P1 P2 P3 P4 P5 Ps P1
1 0 0 i IU
S 4
Sboum
1
sur V)]

=_-OOOOoOOO

Given an initial marking Mo, a firing vector x is related to the marking M resulting
from a sequence of transition firings corresponding to it by the following state equation:

M =M, + ATx 3)

Since we are looking for cyclic schedules, Mo = M, and thus the firing vector becomes
the (integer) solution of the equation:

ATx=0)]
Solving equation 4 for the matrix in equation 2, we get the firing vector
x=c-[3,2,1,1,1,1,1,1)T (6))

where a is a scalar. Since we are only interested in non-negative integer solutions, o
must be a non-negative integer.

Although the solution space of equation 4 is one-dimensional in our example, it can
be multi-dimensional in the general case. This would give rise to multiple firing vectors
that would be used as a starting point for finding a legal firing sequence.

If the initial marking M, of a Petri nets is fixed, then the existence of a firing vector
x satisfying (4) is only a necessary but not a sufficient condition for the existence of a
cyclic schedule [14).2

5.3 Finding legal firing sequences

A sequence of transition firings is legal if it does not produce a negative number of tokens
on any place at any step. For example, the sequences

I—I—]—SPoum /P S{P—gPown_glP__ A, Ay —0—0
and
I—I—]—§Pown_gJP__gPown__glr__sUP_ 4, 4, 0—0

both correspond to the firing vector 3, 2,1,1,1,1,1,1]7 thatis a solution to the equation
4. However, because the second sequence would temporarily produce in a negative
number of tokens on place P». This is why in general the existence of a firing vector
does not imply the existence of a legal firing sequence.

The problem of finding legal firing sequences given a firing vector has been stud-
ied extensively—see e.g. [16). It is known to be NP-complete in the general case, but
polynomial-time solutions exist for special classes of Petri nets, and heuristics have been
developed for finding legal firing sequences in acceptable time in more general networks
(for example [17]). Which of the many algorithms is the most appropriate for our class
of Petri nets, and whether we can make use of special structural properties of our Petri
nets is still an open problem.

Once we have computed a legal firing sequence, we need to remove the input and
output transitions from it to get a valid cyclic action schedule. The first sequence above
would thus become the schedule

SlDown_ S{JP_ S:, P__ SzD"‘""— Sg P_A—Ay

6 Ambiguous schedules

In many cases, the procedure described in section 5 produces more than one possible
schedule, i.e. it is ambiguous. There are basically two kinds of ambiguity: that which may
affect the result computed by the network, and that which is guaranteed not to. Note that
in our example, all schedules yield the same result, because addition is a commutative
operation, and exactly how the two Split actors distribute the tokens does not affect the
outcome. But suppose that the actor A2 in figure 1 subtracted the lower input token from
the upper input token instead. In that case, the schedule

2 However, if we are able to choose Mp, then we can put enough tokens in each place to guarentee
that transitions can fire as specified by the firing vector, and the existence of such a x becomes
sufficient. We can then even compute the minimal initial marking required for a cyclic schedule.
(15]

S{} P__ S:/ P__ S%)own_ Sg P__ S2Down__ A—A,

would compute the value z; + x5 — 3 (where z; is the -th input token to the network),
while

SPmn— S{JP_ S{’P__ g P__ Sé)own_ A;—A,
would compute z2 + z3 — x; instead. On the other hand, the schedule
S{J P__ S{} P__ Sgp___ S2Down_ Al" S]Doum_ Az

always computes the same result as the first schedule. The reason is that each actor has
the same internal schedule in both cases, i.e. S is fired in the sequence Up—Up—Down
and S, in the sequence Up—Down (for the other two actors the internal schedules are
not very interesting as they only have one action).

We call two schedules equivalent if and only if they imply identical internal schedules
for each actor. For example, the first and the second schedule above are not equivalent,
because S has the internal schedule Up—Up—Down in the first, and Down—Up—Up
in the second schedule. Two equivalent schedules are guaranteed to result in the same
output of the network.>

If the search for legal firing sequences only produces different equivalent schedules,
the choice between them may still affect the efficiency of the generated code, e.g. with
respect to the size of the buffers between actors. However, since in this case the internal
schedules are entirely determined, we can use the techniques developed for cyclo-static
dataflow networks to handle this case.

If the procedure in the previous section produces several non-equivalent schedules,
we have the following ways of dealing with the situation:

1. Flag an error.
2. Display the possible classes of schedules and let the user choose one of them.
3. Let the user add constraints to the actors.

The first solution would be appropriate if the user declares that a unique schedule (up
to equivalence) is required, and the second solution is only practical if the number of non-
equivalent schedules is small. Picking a class of schedules effectively fixes all internal
schedules for all actors, thus again reducing the problem to a cyclo-static scheduling
problem.

The following sections will address the third solution.

7 Describing regular scheduling constraints in Cal actors

This section will explain how to express constraints on an actor’s schedule in the Cal
language. In the limit, such a constraint explicitly defines a full internal schedule—
effectively yielding a cyclic actor. Doing this for every actor in the network would result
in a cyclo-static network. Say, for example, we want to constrain S; to start with one
execution of Down, we could do this by explicitly giving its schedule as

3 Because fixing the internal schedule of an actor tums it into a determinate prefix-monotonic
function on its input streams—cf. [11].

final state

@ initial state

Fig. 3. The finite automaton (a) and its translation into the Petri net (b) of the constraint Down
Up* for the Split actor.

Down Up Up

But we may want to be less restrictive than that. If we do not know how many tokens
it will send up (and in more complex situations this might very well be a non-obvious
result of the schedule), we may want to say that one execution of Down is followed by
any number of executions of Up, e.g. like this:

Down Up*

A constraint that has the form of a regular expression (of action names) is called a
regular constraint, and an actor that contains such a constraint is called a regular actor.
InCal, the Split actor with the regular constraint above would be written as follows:

1 actor SplitConstrained [T] ()

2 T Input = T Outputl, T Output?2 :
3

4 Up: action [a] = [a], [] end

5 Down: action [o] = [], [a] end

6 selector Down Up+ end

7 end

Inlines 4 and 5 the actions are named, and these names are used in the selector clause
(line 6) as symbols in the regular expression.

Note that regular actors are a proper superset of both free and cyclic actors. If
Ay, ..., Ap are the action labels, then any fixed sequence in the A; (corresponding to
the internal schedule of a cyclic actor) is a valid regular expression, and the regular
expression to describe a free actor would be

(A |...| An)*

The following section will describe the modifications to the ALS procedure from
section 5 that are necessary to handle regular actors.

8 Regular action-level scheduling

Even though regular actors are significantly more expressive than free actors, the basic
mechanism for finding a schedule is hardly any different. As in the free case, the actor
network is mapped into a Petri net, for which we then compute a firing vector and search
for legal firing sequences. The only differences are that the mapping of regular actors
into pieces of the Petri net is slightly different from the free case, and also that the firing
vector and the legal firing sequence are computed for different initial and final markings.

The basic idea of the mapping is still the same as in section S—actions are represented
by transitions, input buffers by places. In the regular case, however, we need to represent
the regular constraint. As a first step, we transform the regular expression into a finite
automaton that accepts the same sequence of labels (e.g. [7]), which we call the actor
automaton. The automaton for the example from the previous section is depicted in
figure 3a. Note that it has exactly an initial and a final state, and that the transitions are
labeled with action names.

In order to construct the Petri net elements from a regular actor, we replace each state
in its actor automaton with a place, and each state transition with a Petri net transition
which represents the action that is indicated by the label. It is therefore connected accord-
ingly, i.e. with incoming arcs from the input buffers that the action consumes from, and
corresponding outgoing arcs. It also has an incoming arc from (place that represents) the
state it comes from, and an outgoing arcs to the state it goes to. This mapping is shown
for the constrained actor from the previous section in figure 3b. The places Q; and Q2
correspond to the two states of the actor automaton.

While in the free case, the initial as well as the final marking were the empty marking
(i.e. no tokens on any place), in the regular case the initial marking contains exactly one
token on each place that represents an initial state of an actor automaton. Similarly, the
final marking is empty except for one token in the final state of each actor automaton.

This does not affect the firing vector in the example (though it might very well
do so in more complex cases). However, it does constrain the legal firing sequences:
the transition representing Sy ? is no activated until SP°“" has fired, as the constraint
dictates. This means that now

I—I—I—8]P—8/P_gPown__gDoun__gUr__ 4, 4, 00

is no longer a legal firing sequence, which is what we wanted to achieve.

9 Discussion and conclusion

In this paper we have presented a notion of dataflow actor that views actors as collections
of actions which essentially describe different possible behaviors of the actor. When
composing actors into actor networks, the (static) scheduling algorithm can choose from
these behaviors whenever an actor is fired. This results in an additional degree of freedom
because scheduling can now happen at the level of the individual actions, rather than the
actors. We have shown how well-known techniques based on Petri nets can be applied
to solve this problem.

Regular

Fig. 4. Classes of actors.

Unfortunately, the additional degree of freedom is also a source of possibly harmful
ambiguities. We have shortly discussed a criterion for detecting such ambiguities and
then proposed a solution that allowed a user to gradually inject more constraints into
the actor network. Even though in the limit this technique corresponds to specifying
a cyclo-static dataflow network, it is usually possible to infer much of the scheduling
information from a much looser description. This, too, could be solved by mapping the
problem to an equivalent Petri net problem.

We introduced two new classes of actors, which we called Jfree and regular. They
relate to SDF actors (called constant here) and CSDF actors (called cyclic in this work)
as shown in figure 4. Of course, both free and cyclic actors have constant actors as
a special case; in fact, constant actors are precisely their intersection. As discussed in
section 7, the set of regular actors properly contains both free and cyclic actors.

Even though the scheduling technique presented in this paper works for all regular
actors, and hence also for the more specialized actor classes, it seems more appropriate
to view it as a complement to more traditional scheduling techniques such as SDF or
CSDF, rather than as a competing approach. While it allows a somewhat more general
description of actors, it does not take into account optimizations such as buffer size or
code size minimization. But since a schedule found by this technique can be abstracted
intoa CSDF or even an SDF specification, all the mechanisms developed in these contexts
can be brought to bear on it.

This work can be built upon in a number of ways. As we have briefly discussed
in section 5, the efficiency of the scheduling techniques depends on the existence of
reasonably fast algorithms for finding legal firing sequences—this could be either good
heuristics or solutions for special cases that frequently occur in practice. This has been a
well-studied problem in the context of Petri nets, so one obvious next step is to apply the
existing results from that field to our scenario. In addition, the structures typically occur-
ring in networks of regular dataflow actors may very well give rise to more specialized
heuristics that lead to even better solutions for those typical cases.

Another direction of work would use an action schedule computed for a network for
generating code for that network—e.g. by employing a source-level transformation on
the Cal descriptions that generates an Cal actor representing the network.

Further work is also needed in the context of handling ambiguities. The notion of
equivalent schedules developed in section 6 could be extended to make use of knowledge

about the computation inside the actors, such as the commutativity of the 2dd actors in
our example.

Acknowledgements

This research is part of the Ptolemy project, which is supported by the Defense Advanced
Research Projects Agency (DARPA), the MARCO/DARPA Gigascale Silicon Research
Center (GSRC), the State of California MICRO program, and the following companies:
Agilent Technologies, Cadence Design Systems, Hitachi, National Semiconductor, and
Philips.

Referenceé

1.

2.

10.

11.

12.

13.

14.

The Ptolemy Project. Department EECS, University of California at Berkeley (hitp :
/ /ptolemy.eecs.berkeley.edu).

Gul A. Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems. The
MIT Press Series in Artificial Intelligence. MIT Press, Cambridge, 1986.

. John Davis, Christopher Hylands, Bart Kienhuis, Edward A. Lee, Jie Liu, Xiaojun Liu, Lukito

Muliadi, Steve Neuendorffer, Jeff Tsay, Brian Vogel, and Yuhong Xiong. Heterogeneous
concurrent modeling and design in Java. Technical Memorandum UCB/ERL M01/12, EECS,
University of California, Berkeley, March 2001.

. Johan Eker and J6mn Janneck. Caltrop—Ilanguage report. Technical Memorandum UCB/ERL

77?7, Electronics Research Lab, Department of Electrical Enginee and Computer Sciences,
University of California at Berkeley California, Berkeley, CA 94720, USA, 2002.

. Marc Engels, Greet Bilsen, Rudy Lauwereins, and Jean Peperstraete. Cyclo-static dataflow:

Model and implementation. In 1994, editor, 28th Annual Asilomar Conference on Signals,
Systems, and Computers, pages 503-507, October-November.

. Car] Hewitt. Viewing control structures as patterns of passing messages. Journal of Artifical

Intelligence, 8(3):323-363, June 1977.

. John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, 1979.

. Jorm W. Janneck. Syntax and Semantics of Graphs—An approach to the specification of visual

notations for discrete event systems. PhD thesis, ETH Zurich, Computer Engineering and
Networks Laboratory, July 2000.

. Gilles Kahn. The semantics of a simple language for parallel programming. In Proceedings

of the IFIP Congress 74, pages 471-475, Paris, France, 1974. International Federation for
Information Processing, North-Holland Publishing Company.

R. Lauwereins, M. Engels, M. Ade, and J. A. Peperstracte. Grape-2: A tool for the rapid
prototyping of mutli-rate asynchronous DSP applications on heterogeneous multiprocessors.
IEEE Computer, 28(2):35-43, February 1995.

EdwardA. Lee. A denotational semantics for dataflow with firing. Technical Report UCB/ERL
M97/3, EECS, University of California at Berkeley, January 1997.

EdwardA. Lee and D. G. Messerschmitt. Static scheduling of synchronous data flow programs
for digital signal processing. JEEE Transactions on Computers, January 1987.

Edward A. Lee and D. G. Messerschmitt. Synchronous data flow. IEEE Proceedings, Septem-
ber 1987.

Tadao Murata. Petri nets: Properties, analysis, and applications. Proceedings of the IEEE,
77(4):541-580, April 1989.

15. Toshimasa Watanabe, Yutaka Misubata, and Kenji Onaga. Legal firing sequences and minimal
initial markings for petri nets. In Proceedings ISCAS '89, pages 323-326, 1989.

16. Toshimasa Watanabe, Yutaka Misubata, and Kenji Onaga. Legal firing sequence and related
problems of petri nets. In Proceedings of the Third International Workshop On Petri Nets and
Performance Models, pages 277-286. IEEE Computer Society Press, 1990.

17. Masahiro Yamauchi and Toshimasa Watanabe. A heuristic algorithm fsd for the legal firing
sequence problem of petri nets. In Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics
(SMC’98), pages 7883, October.

	Copyright notice 2002
	ERL-02-28

