
 

 

 

 

 

 

 

 

 

Copyright © 2002, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



A NEW METHOD OF SPECIFYING

DATAFLOW ACTORS

by

Chris Chang, Johan Eker, Jom W. Janneck, Yang Zhao

Memorandum No. UCB/ERL M02/28

27 September 2002



A NEW METHOD OF SPECIFYING

DATAFLOW ACTORS

by

Chris Chang,Johan Eker, Jom W. Janneck, Yang Zhao

Memorandum No. UCB/ERL M02/28

27 September 2002

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University ofCalifornia, Berkeley

94720



A New Method of Specifying Dataflow Actors

UCB/ERLM02/28

Chris Chang, Johan Eker, Jora W. Janneck, Yang Zhao

EECS Department
University of California at Berkeley

Berkeley, CA 94720
U.S.A.

{cbc, j ohane, j anneck, ellen-zh}@eecs. berkeley. edu

Abstract. In thedesignof embedded software, approaches such as synchronous
dataflow or cyclo-static dataflow describe mechanisms for statically scheduling
specialized classes of dataflow actors. This paper aigues that these classes are
oftenmorespecialized thanisnecessary inordertocompute a staticschedule, and
introduces a more general notion of actorthatallows for more flexible specifica
tions of actornetworks, whileretaining theadvantages of static analyzability and
schedulability ofcompositionsofactors. Italsosketches thescheduling techniques
by reducingthe problemto well-known problemsin the fieldof Petri nets.

1 Introduction

Modem embedded systems typically consist of several concurrently operating com
ponents that interact with eachotherand with the extemal environment. This is why
actors—concurrent, interacting components—are a naturalchoiceformodelingand im
plementing suchsystems. In contrast to objects, which interact viasynchronous method
calls, actorscommunicate by exchanging data viaports and connections betweentheir
ports. Hence, actors typically have no way of transferringcontrol between each other.

The actornotion was introduced by [6] for modeling distributed knowledge-based
algorithms. Since then, actorshave becomemore widelyused,cf. [2]. Severalmore or
lessspecialized actor models have been used intheconstmction ofsoftware, andspecif
ically embedded software, e.g. [13,12,9], anda variety of tools anddesign frameworks
supportan actor-oriented viewof a system, e.g.Ptolemy [1],Moses[8], Grapen [10],
Matlab/Simulink, LabVIEW, and SDL.

Not all environments that support software constmction usea language geared to
wards thespecification of actors—instead, many arebased onthestylized useof 'tradi
tional' software concepts, such asprocedures and objects. This isespecially thecasefor
environments supporting dataflow actors^ which are actors that receive and send data
parcels called tokens from and to each other.

Dataflow actors areuseful fordescribing embedded software dueto theimportance
of issues such as data rates and optimizations in areas such as scheduling and buffer
allocation. Itisoften desirable tocompute ascheduleofexecution fortheactors atdesign
time, and approaches such as synchronous dataflow (SDF) and cyclo-static dataflow
(CSDF) provide efficient scheduling mechanisms for specialized classesof actors.



This paper argues that these classes are often more specialized than isnecessary in
order tocompute a static schedule, and introduces a more general notion of actor that
allows for more flexible speciflcations ofactor networks, while retaining the advantages
of static analyzability andschedulability of compositions of actors-

The remainderofthis paper isstructured as follows. Aftersummarizing some prereq
uisites insection 2, we discuss why traditional approaches lead tooverspecification of
actorsand a consequentlack of reuse in section3. This motivates a more flexible notion
ofactors, which we describe using theCal actor language insection 4. Insection 5 we
show how theextra degree of freedom obtained by this notion addresses thereusabil
ity problem, by using a scheduling mechanism which we call action-level scheduling
(ALS). However, this degree of freedom also potentially leads toambiguous behavior,
and section 6 discusses this issue. We address the ambiguity problem insections 7 and
8,by first generalizing our notion ofactors, and then extending action-level scheduling
to handle this more general class of actors. We summarize and discuss our results in
section 9.

2 Static scheduling of actor networks

This paper focuses on the implications of the proposed notion of actors for thestatic
scheduling ofactor networks, i.e. the design-time computation ofa sequence in which
the actors inanetworkofactors are executed. Doing this aheadoftime, rather than during
the execution ofthe system, isparticularly interesting inthe case ofembedded systems,
because it allows not only toremove the scheduling from the executing code, but also
facilitates generation of memory-and time-efficient code fromthe actor network.

When statically scheduling anactor network, one isusually looking forcyclic sched
ules. In a network ofdataflow actors (which are connected by FIFO buffers), a cyclic
schedule is a sequence of actoractivations (firings) that results in the samenumber of
tokens being written to each buffer as were read from it—thereby leaving the buffer
lengths unchanged.

In order to be able to compute a cyclic schedule aheadoftime one needs to constrain
the possible behaviors that theactors in the network may exhibit Forexample, actors
that produce or consume different numbers of tokens depending on the values of their
input tokens areusually disallowed, because it would benecessary to know about token
values in orderto compute a schedule, which is impossible or infeasible in mostcases.

In synchronous dataflow (SDF) [12] networks, actors are constrained to constant
token rates—at eachfiring, an actormustconsume andproduce the samenumber of to
kens ateachinput andoutput port(although these numbers may bedifferent fordifferent
ports). With this constraint, actor networks can beefficiently checked forschedulability,
andtechniques have beendeveloped togenerate codethatoptimizes characteristics such
as buffer size or code size.

The definition of a cyclo-static dataflow (CSDF) [5] actor relaxes the constraint
on the token rates a little by requiring the numbers of tokens consumed or produced
on eachport to cycle through a series of values during successive firings of the actor.
Schedulability canstillbe determined statically, anda schedule canbe computed ahead
of time.



I

lO-oj

Split

•^2 A
>—{>

+

Split Add

Fig. 1. A small example system.

+

Add

o

M>l

Further generalizing SDF and CSDF actors, which we will call constant and cyclic
inthe following, this paper introduces two new classes ofactors (which we callfree and
regular) and show how networks of these, too, canbestatically scheduled.

3 Problem statement

Consider thenetwork ofactors shown infigure 1. Here weare using two different kinds
of actors:

1. Add actors (Aiand A2), which consume one token from each input port, outputting
a token which is their sum.

2. Split actors (5i and S2), with two possibleactions:
(a) Up: The actor consumes a token from its input port and sends it to its upper

output port.

(b) Down: Theactor consumes a token from itsinput port and sends it to its lower
output port.

The above does not uniquely specify the behavior of the Split actors, because
it does not define a policy for choosing between their two actions. For example, the
sequence

yli—>l2

is a cyclic schedule of the actions of the actors, as are

5£>au,n_5l/p_5Poti,n_5C/p_5Up_^^_^^

and

5pou,n_5C/p_^t/p_^Do«,n_5yp_^^_^^

In the first schedule, the actions of 5i areexecuted in the order Up—Up—Down,
whereas inthe other two schedules they areexecuted inthe order Down—Up—Up.

In this case,a cyclo-static dataflow description of a Split actor wouldincludethe
order inwhich its actions are executed, its internal schedule. Conceptually, the internal



schedule is part of the actor specification and is fixedeven before the actor is used in a
network. If it is different for two actors, then the result will be two different actors.

Since theinternal schedules arefixed ahead of time, theschedulability of theoverall
network not only relies on having the "correct" Split actors available but also on the
userto manually choose them. Forexample, choosing theschedule Up—Down—Down
for Si would result in a network thathas no cyclicschedule.

Thisexample illustrates two important points: first, the manner in which a Split
actor is specified, namely, as &fixed sequence of actions, reduces the possibilities for
reusingtheactorin different contexts. Second, constructing thenetwork becomes error-
prone, since the user has to choose actors with the correct internal schedules.

Wecangeneralizetoanycyclo-staticactor: itsspecificationrequires fixing itsinternal
schedule,and although sometimes this is preciselywhat the user wants,other times it
maylimittheusefulness ofanactorbyessentially overspecifying actorbehavior. Actors
which affect theflow of tokens, such astheSplit actors, aretypical examples where a
fixed sequence is often undesirable. Wetherefore need more flexible actor descriptions,
which canbe used toautomatically compute different internal schedules depending on
the actor's context.

By analogy with polymorphism in type systems, the two instances of the Split
actorabove perform the samefunction but have different types. In each case, the user
is forced to specify the type (ordering of actions) explicitly. Would not a means for
inferring thesetypes be desirable? Wewillshow that this is whatour system achieves,
while simultaneously allowing theuserto explicitly "declare types" as needed.

Toaccomplish these goals, wepropose a different methodforspecifying actors: first,
werelax theneed to specify a precise sequence for theactions and second, weprovide
concepts and notation for describing families of internal schedules, some of which will
also require the actors to have state.

Hence,our actor specification will consist of two parts: a set of actions and some
state. Thisis precisely howan actoris specified in theCal language, which willbe the
topic of the next section.

4 Introduction to the Cal actor language

Cal [4] is an actor language developed in the Ptolemy project [3]. We will focus on
those aspectsof the languagerelevantto the problemdiscussedhere, viz. a more flexible
representation of dataflow actors.

Webeginwith twoexamples—^the Cal versionsof theAdd and Split actors firom
the previous section:

1 actor Add [T < Number] ()
2 T Input!,T Input2 =» T Output:
3

4 action [a], [b] => [o-f b] end
5 end



1 actor Split [T] ()
2 T Input ==J> T Output!^ T Outputs :
3

4 Up: action (a) ==»• [a]. [] end
5 Down : action [oj [], [a] end
6 end

The essence ofeach actor is contained in its set ofactions. An action is what an actor
executes when itfires^ and it is atomic, in the sense that no two actions of the same actor
may executeat the same time (which could create race conditions on the actor state).
Each action consumes a number of input tokens, produces a number of output tokens,
and possibly changes the state of the actor.

Eachaction hasa pattern on the leftwhich is matched to theinput Forexample, the
action in line4 of the Add actorconsumes a token from its first inputport calls it a,
thenconsumes a token from its second inputport callsit b, andfinally sends thevalue
of a+b to its output port.

Anaction mayonlybeexecuted ifitsinputpatterns match theactual inputsequences;
for example, the two actions of the Split actoreach require at leastone tokento be
present at the input port If such a token is present both actions can be executed—^the
orderin which theyoccurin theactordoesnot imply anyprecedence among them.

Wecallactors if theexecutability of theiractions only depends on thepresence
of a constant (for each port and action) number of tokens. Non-firee actors add further
preconditions to their actions. Combined with state this will allow us to constrain the
internal schedules of these actors, which we will discuss in section 7.

In the following section we willfirstconsider the problem of computing a schedule
fora network of freeactors, before generalizing thetechnique fora morecomprehensive
class of actors.

5 Action-level scheduling

Given a networkof free actors, we will employ techniquesdeveloped in the context of
Petri nets [14] to computethe set of validcyclic schedules in threestages:

1. Map the network of actors into a Petri net.
2. Compute thefiring vectors of the Petri net.
3. Search for legal firing sequences of the Petri net.

The result of these steps is a set of possible sequences in which the actions of the
actor network may be fired.

5.1 Mapping an actor network to a Petri net

The Petri net representing the actor network in figure 1 is shown in figure2. It is con
structed as follows:

- Actions are represented by transitions^ e.g. the rectangles labeled Up and Downin
the dashedbox labeled iSi (called and Si°^^ in the following).



Dawn

Down

Fig.2. ThePetrinetrepresenting theactornetwork in figure 1.

- The inputportsof actorsare represented byplaces, e.g. circles labeled P4 and P5
representing the input ports of actor Ai.

- Connections from output ports toinputports arerepresented byarcsfrom transitions
to places, e.g. the arc going from 5^®^" toP3. The arc weight isequal tothe number
oftokens produced bytheaction represented bythe transition onthecorresponding
output port.

- If an action consumes tokens from an input port, an arc is drawn between the
corresponding place andthetransition representing theaction, e.g.thearcbetween
P3 and A2. The arc weight isequal tothe number oftokens consumed by the action
from the input port.

- Input ports of thenetwork arerepresented bytransitions, e.g. the transition labeled
I. They have outgoing arcs with weight 1to every place representing an actor input
portthat thenetwork input portis connected to,e.g. thearcfrom / toPi.

- Output ports of thenetwork arerepresented bya place anda transition likeP7 and
O. Every transition that represents an action that sends tokens tothat networkoutput
port has anoutgoing arcof thecorresponding weight to theplace, e.g. thearcfrom
A2 to P7.

The initial marking ofthe generated Petri net has zero tokens onevery place (i.e. the
inputbuffers of every actorareempty).^

Because each action is directly represented by a transition in the Petri net, any
sequence oftransition firings that return the Petri net toitsoriginal state corresponds toa
cyclic scheduleofactions. Furthermore, the number offirings ofatransition representing
a network input gives us the number of input tokens required by the schedule, and the
number of firings of a transition representing a network output equals the number of
tokens produced at that output.

' This can easily be generalized to situations where there are initial tokens in the network.
Furthermore, our techmque can alsobeadapted tocompute the minimal initial marking required
to find a cyclic schedule.



5^ Computing the firing vectors

Asaprerequisitetofinding asequenceoftransition firings, wewill now compute the^iring
vectors of thePetrinet A firing vector contains a number of firings foreach transition—
consequently, its entries are non-negative integers, and its dimension is n x 1, wheren
isthe number oftransitions. Each sequence oftransition firings uniquely defines a firing
vector which contains for each transition the number ofitsoccurrences inthat sequence.
Theinverse isnottrue—^given a firing vector, there may bemany legal firing sequences,
including zero, that correspond toit. Later we will use this vector tosearch for a legal
sequence of transition firings.

In order to compute the firingvectorsof a Petri net, we needto construct its incidence
matrix. For a Petri net with n transitions and m places, the incidencematrix A is an
nx m matrixof integers and its entriesare givenby

"tj
= a- — a- •

*3 (1)

where aj = w{iJ)is the weight ofthe arc firom transition i to its output place j, and
= w{jy i) is theweight of thearc to transition i firom itsinput place j. If there is no

arc betweeni and j, then the corresponding weightis 0.
For example, the incidence matrix for the Petrinet in figure 2 is

A =

Pi P2 Pz Pa Ps Pe Pi
1 0 0 0 0 0 0"

0 0 0 0

0 0 0 0

10 0 0

0 10 0

0-1-1 1 0

0 0-1 0 0-1 1

0 0 0 0 0 0-1

-110

-1 0 1

0-1 0

0-1 0

0 0

I

^Down

gDoxon

M
M
o

(2)

Given an initial marking Mo,a firing vector x is related to themarking M resulting
firom a sequence of transition firings corresponding to itbythefollowing stateequation:

M = Mo+ A^x (3)

Sincewearelooking forcyclicschedules, Mq = M, andthusthefiring vector becomes
the (integer) solution of the equation:

A^x = 0 (4)

Solvingequation4 for the matrix in equation2, we get the firingvector

x = a -(3,2,1,1,1,1.1, if (5)

where a is a scalar. Since we are only interested in non-negative integer solutions, a
must be a non-negative integer.



Although thesolution spaceof equation 4 is one-dimensional in our example, it can
be multi-dimensional in the general case.This would giverise to multiple firing vectors
that wouldbe used as a startingpoint for finding a legalfiringsequence.

If the initialmarking Mq of a Petrinets is fixed, thentheexistence of a firing vector
X satisfying (4) is only a necessary but not a sufficient condition for the existence of a
cyclic schedule [14].^

53 Finding legal firing sequences

A sequenceof transitionfirings is legalif it doesnotproduceanegativenumberof tokens
on any place at any step. For example, the sequences

and

both conespond tothe firing vector [3,2,1,1,1,1,1,1)^that isasolution tothe equation
4. However, because the second sequence would temporarily produce in a negative
number of tokens on place P2.This is why in general the existence of a firing vector
does not implythe existenceof a legalfiringsequence.

The problem of finding legal firing sequences given a firing vectorhas been stud
iedextensively—^see e.g. [16]. It is known to be NP-complete in the general case, but
polynomial-timesolutionsexist for special classesof Petri nets, and heuristicshavebeen
developed forfinding legal firing sequences inacceptable time inmore general networks
(forexample [17]). Which of themany algorithms is themost appropriate forourclass
of Petri nets, andwhether wecanmake useof special structural properties of ourPetri
nets is still an open problem.

Once wehave computed a legal firing sequence, weneed to remove theinput and
output transitions from it to geta valid cyclic action schedule. Thefirst sequence above
would thus become the schedule

6 Ambiguous schedules

In many cases, the procedure described in section 5 produces more than onepossible
schedule, i.e. itisambiguous. Therearebasically two kinds ofambiguity: that which may
affect theresultcomputed bythenetwork, andthatwhich isguaranteed notto.Notethat
in our example, all schedules yield the same result, because addition is a commutative
operation, and exactly how the two Split actors distribute the tokens does not affect the
outcome. Butsuppose thattheactor A2 infigure 1subtracted thelower input token from
the upper input token instead. In that case, the schedule

^However, ifwe are able to choose Mo, then we can put enough tokens in each place to guarentee
that transitionscan fire as specifiedby the firingvector,and the existence of such a x becomes
sufficient Wecanthen evencompute theminimal initial marking required foracyclic schedule.
[15]



would compute thevalue X1+X2— X3 (whereXj is thei-th inputtokento thenetwork),
while

would compute xz + X3 —xi instead. On the other hand, the schedule

81^—82^—Ai—S^'^—A2

always computes the same result as the first schedule. The reason is that each actor has
thesameinternalschedule inbothcases, i.e.81 isfired in thesequence Up—Up—Down
and 82 in the sequence Up—Down (for the other two actors the internal schedules are
not very interesting as they only have one action).

Wecall twoschedulesequivalentif andonly if theyimplyidenticalinternalschedules
foreachactor. Forexample, thefirst andthesecond schedule above arenotequivalent,
because 81 hasthe internal schedule Up—Up—Down in thefirst, andDown—Up—Up
in the second schedule.Two equivalentschedules are guaranteed to result in the same
outputof thenetwork.^

If the search for legal firing sequences onlyproduces different equivalent schedules,
the choicebetween them maystill affect the efficiency of the generated code,e.g. with
respect to the size of the buffers between actors. However, since in this case the internal
schedules are entirely determined, wecan use the techniques developed forcyclo-static
dataflow networks to handle this case.

If the procedure in the previous sectionproducesseveral non-equivalent schedules,
we have the following ways of dealing with the situation:

1. Flag an error.
2. Display the possible classes of schedules and let the user choose one of them.
3. Let the user add constraints to the actors.

The firstsolutionwouldbe appropriate if the userdeclaresthata uniqueschedule(up
to equivalence)is required,and the second solution isonly practical if the numberofnon-
equivalent schedules is small. Picking a class of schedules effectively fixes all internal
schedules for all actors, thus again reducing the problem to a cyclo-static scheduling
problem.

The following sections will address the third solution.

7 Describing regular scheduling constraints in Cal actors

This section will explain how to express constraints on an actor's schedule in the Cal
language. In the limit, such a constraint explicitly defines a full internal schedule—
effectively yieldinga cyclicactor.Doing this for everyactor in the networkwouldresult
in a cyclo-static network. Say, for example, we want to constrain 8\ to start with one
execution of Down, we could do this by explicitly giving its schedule as

^Because fixing the internal schedule ofan actor turns it into adeterminate prefix-monotonic
function on its input streams—cf. [11].



final state

Down
Down

(a)
Initial state

Fig.3. The finite automaton (a)andits translation into thePetri net (b)of theconstraint Down
Up* for the Split actor.

Down Up Up

But we may want tobeless restrictive than that. Ifwe do not know how many tokens
it will send up(and inmore complex situations this might very well bea non-obvious
result ofthe schedule), we may want tosay that one execution ofDown isfollowed by
any number of executionsof Up, e.g. like this:

Down Up*

A constraint that has theform ofa regular expression (ofaction names) is called a
regular constraint, and an actor that contains such aconstraint iscalled a regular actor.
In Cal, theSplit actorwith the regularconstraintabovewouldbe writtenas follows:

1 actor SplitConstrained [T] ()
2 T Input =» T Outputl,T Outputs :
3

4 Up : action [o] [a], [] end
5 Down : action [oj =» [], [a] end
6 selector Down Up* end
7 end

In lines4 and5 theactionsare named,and thesenamesare usedin the selectorclause
(line 6) as symbolsin the regularexpression.

Note that regular actors are a proper superset of both free and cyclic actors. If
Ai,...,i4„ are the action labels, then any fixed sequence in the Ai (corresponding to
the internal schedule of a cyclic actor) is a valid regular expression, and the regular
expression to describe a free actor would be

Mil... |A„)*

The following section will describe the modifications to the ALS procedure from
section 5 that are necessary to handle regular actors.



8 Regular action-levelscheduling

Even though regular actors aresignificantly more expressive thanfreeactors, thebasic
mechanism for finding a schedule is hardlyanydifferent. As in the free case, the actor
network ismapped into a Petri net,forwhich wethen compute a firing vector and search
for legal firing sequences. The only differences are that the mapping of regular actors
into pieces of the Petri netisslightly different from the free case, and also that the firing
vector andthelegal firing sequence arecomputed fordifferent initial andfinal markings.

Thebasic ideaofthemapping isstill thesameasinsection 5—^actions arerepresented
bytransitions, input buffers byplaces. Intheregular case, however, weneed torepresent
the regular constraint. As a first step, we transform the regular expression into a finite
automaton that accepts the same sequenceof labels (e.g. [7]), which we call the actor
automaton. The automaton for the example from the previous section is depicted in
figure 3a. Note that it has exactly an initid and a final state, and that the transitions are
labeled with action names.

Inordertoconstruct thePetrinetelements from aregular actor, wereplace eachstate
in its actor automaton with a place, and each state transition with a Petri net transition
whichrepresentsthe action that is indicatedby the label.It is thereforeconnectedaccord
ingly, i.e. with incomingarcs fi'omthe input buffers that the action consumes from, and
corresponding outgoing arcs.It alsohasanincoming arcfrom(placethatrepresents) the
state it comesfrom, and an outgoingarcs to the state it goes to. This mappingis shown
for the constrained actorfirom the previous section in figure 3b.The placesQi and Q2
correspond to the two states of the actor automaton.

Whilein the firee case,the initialas wellas thefinal marking weretheemptymarking
(i.e.no tokens on anyplace), in the regularcasetheinitial marking containsexactlyone
tokenon eachplace that represents an initial stateof an actor automaton. Similarly, the
final marking is empty except for one token in the final state of each actor automaton.

This does not affect the firing vector in the example (though it might very well
do so inmore complex cases^. However, it does constrain the legal firing sequences:
the transition representing ^ is no activated until has fired, as the constraint
dictates. This means that now

is no longer a legal firing sequence, which is what we wanted to achieve.

9 Discussion and conclusion

In this paper we have presented a notion ofdataflow actor that views actors as collections
of actions which essentially describe different possible behaviors of the actor. When
composingactors into actor networks,the (static) schedulingalgorithmcan choose from
thesebehaviors whenever an actoris fired. Thisresultsinanadditionaldegreeof freedom
because scheduling can now happen at the level of the individual actions, rather than the
actors.Wehaveshownhow well-known techniques basedon Petri nets can be applied
to solve this problem.



Regular

Fig. 4. Classes ofactors.

Unfortunately, the additional degree offieedom isalso asource ofpossibly harmful
ambiguities. We have shortly discussed a criterion for detecting such ambiguities and
then proposed a solution that allowed a user togradually inject more constraints into
the actor network. Even though in the limit this technique corresponds to specifying
a cyclo-static dataflow network, it is usually possible to infer much ofthe scheduling
information from amuch looser description. This, too, could be solved by mapping the
problem to anequivalent Petrinetproblem.

We introduced two new classes ofactors, which we called and regular. They
relate to SDF actors (called constant here) and CSDF actors (called cyclic in this work)
as shown in figure 4. Of course, both free and cyclic actors have constant actors as
a spwial case; in fact, constant actors areprecisely their intersection. As discussed in
section 7, the set ofregular actors properly contains both free and cyclic actors.

Even though the scheduling technique presented in this paper works for all regular
actors, and hence also for the more specialized actor classes, itseems more appropriate
to view itas a complement to more traditional scheduling techniques such as SDF or
CSDF, rather than as acompeting approach. While itallows asomewhat more general
description ofactors, itdoes not take into account optimizations such asbuffer size or
code size minimization. But since aschedule found by this technique can be abstracted
intoaCSDForeven an SDFspecification, all themechanisms developed in these contexts
can be brought to bear on it.

This work can be built upon in a number ofways. As we have briefly discussed
in section 5, the efficiency of the scheduling techniques depends on the existence of
reasonably fast algorithms for finding legal firing sequences—this could be either good
heuristics or solutions for special cases that frequently occur in practice. This has been a
well-studied problem in the context ofPetri nets, so one obvious next step is to apply the
existing results from that field to our scenario. In addition, the structures typically occur
ring in networks ofregular dataflow actors may very well give rise to more specialized
heuristics that lead toeven better solutions for those typical cases.

Another direction ofwork would use an action schedule computed for anetwork for
generating code forthat network—e.g. byemploying a source-level transformation on
the Cal descriptions that generates an Cal actor representing the network.

Further work is also needed inthe context of handling ambiguities. The notion of
equivalent schedules developed in section 6could be extended to make useofknowledge



about thecomputation inside theactors, suchas thecommutativity of theAdd actors in
our example.

Acknowledgements

This research ispartofthePtolemy project, which issupported bytheDefenseAdvanced
Research Projects Agency (DARPA), theMARCO/DARPA Gigascale Silicon Research
Center (GSRC), theState ofCalifornia MICRO program, and thefollowing companies:
Agilent Technologies, CadenceDesign Systems,Hitachi, NationalSemiconductor, and
Philips.

References

1. The Ptolemy ProjecL Department EECS, University of California at Berkeley (Jhttp :
/ /ptolemy.eec3.berkeley.edu).

2. Gul A.Agha. ACTORS: AModel of Concurrent Computation inDistributed Systems. The
MTT PressSeries in Artificial Intelligence. MITPress, Cambridge, 1986.

3. JohnDavis, ChristopherHylands, BartKienhuis, EdwardA.Lee,lie liu, Xiaojun Liu,Lukito
Muliadi, Steve Neuendorffer, Jeflf Tsay, Brian Vogel, andYuhong Xiong. Heterogeneous
concurrentmodeling and design in Java. TechnicalMemorandumUCB/ERLMOl/12, EECS,
Universityof California,Berkeley, March 2001.

4. JohanEkerandJdmJaimeck. Caltrop—slanguage report Technical Memorandum UCB/ERL
???/??, Electronics Research Lab, Department ofElectrical Enginee andComputer Sciences,
University of Californiaat Berkeley California,Berkeley, CA 94720,USA,2002.

5. MarcEngels, GreetBilsen, Rudy Lauwereins, andJeanPeperstraete. Cyclo-static dataflow:
Model andimplementation. In 1994, editor, 28thAnnual Asilomar Conference on Signals,
Systems, and Computers,pages 503-507, October-November.

6. CarlHewitt, \fiewing control structures as patterns ofpassing messages. JournalofArtifical
Intelligence, 8(3):323-363, June 1977.

7. JohnE.Hopcroft andJeffrey D. UUman. Introduction toAutomata Theory, Languages, and
Computation. Addison-Wesley,1979.

8. J5mW. Jarmeck. SyntaxandSemantics ofGraphs—An approach tothespecification ofvisual
notationsfor discreteeventsystems, PhD thesis,ETH Zurich,Computer Engineering and
Networks Laboratory, July 2000.

9. Gilles Kahn. Thesemantics of a simple language forparallel programming. InProceedings
of the IFIF Congress 74, pages 471-475, Paris, France, 1974. Intemational Federation for
Information Processing, North-Holland PublishingCompany.

10. R. Lauwereins, M. Engels, M.Ade, and J. A. Peperstraete. Grape-2: A tool for the rapid
prototyping of mutli-rate asynchronous DSPapplications onheterogeneous multiprocessors.
IEEE Computer,28(2):35-43, February 1995.

11. EdwardA.Lee. Adenotational semantics fordataflow withfiring. Technical Report UCB/ERL
M97/3,EECS, University of Californiaat Berkeley, January1997.

12. EdwardA.LeeandD.G.Messerschmitt. Static schedulingofsynchronousdata flow programs
for digital signal processing. IEEETransactions on Computers, January 1987.

13. EdwardA.LeeandD.G.Messerschmitt Synchronous dataflow. IEEEProceedings, Septem
ber 1987.

14. Tadao Murata. Petri nets: Properties, analysis, andapplications. Proceedings of the IEEE,
77(4):541-580, April 1989.



15. ToshiinasaWatanabe,Yutaks Misubata, and Kenji Onaga. Legal firing sequences and minimal
initial markings for petri nets. InProceedings ISCAS '89, pages 323-326,1989.

16. Toshimasa Watanabe, Yutaka Misubata, and Kenji Onaga. Legal firing sequence and related
problems ofpetri nets. InProceedings ofthe ThirdInternational Workshop On Petri Nets and
Performance Models, pages 277-286. IEEE Computer Society Press, 1990.

17. Masahiro Yamauchi and Toshimasa Watanabe. Aheuristic algorithm fsd for the legal firing
sequence problem ofpetri nets. InProc. IEEE Int. Conf onSystems, Man. andCybernetics
(SMC'98), pages 78-83, October.


	Copyright notice 2002
	ERL-02-28

