
 

 

 

 

 

 

 

 

 

Copyright © 2002, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



LIGHTWEIGHT COMPONENT MODELS

FOR EMBEDDED SYSTEMS

by

H. John Reekie and Edward A. Lee

Memorandum No. UCB/BRL M02/30

30 October 2002



LIGHTWEIGHT COMPONENT MODELS

FOR EMBEDDED SYSTEMS

by

H. John Reekie and Edward A. Lee

Memorandum No. UCB/ERL M02/30

30 October 2002

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
UniversityofCalifornia, Berkeley

94720



Lightweight Component Models for Embedded Systems

H. John Reekie and Edward A. Lee

Dept. of Electrical Engineering and Computer Science

University of California at Berkeley

Abstract

Components are receivingattention as a means of advancing the state
of software distribution beyond the traditional choicesofsource code, com
piled binary executable, and compiled libraries. In this paper, we examine
lightweight component models for embedded real-time software systems,
and propose two different component models based on the concepts of
actors and models of computation.

1 Introduction

We are exploring the concept of software component [17] in the context of em
bedded and real-time systems. Although the term "component" is used in many
different ways, the term is coming to have an established meaning in software
design and implementation, and we follow the emerging usage of this term. In
tuitively, a softwarecomponent is a pieceof softwarethat can be "plugged into"
some other piece of software. Loosely analogous to a "hardware component"
such as a screw or a gear-box, a software component has clearly defined char
acteristics and clearly defined behavior in the domain of interest. In addition,
the context of production and consumption may be quite different (analogously,
the manufacturer of a screw does not know to what use the screw may be put).

In the embedded systems realm, performance and predictability often out
weigh reusability as key concerns in system construction. As a result, even sys
tems that are modeled and designed using sophisticated techniques and model
ing tools are built largely "by hand." Wesee the adoption of software component
models specifically designed for embedded systemsas one wayof improving the
ability to "bridge the gap" from systems modeling efforts to implementation.

In the Ptolemy Project, we have been exploring systems modeling using
actors and models of computation for some time [4]. We suggest in this paper
that these principles can be adapted to component models targeting real-time
embedded systems. We will first give a brief overview of software components
as we see them, and explain why actor-oriented software design is a natural
choice forembedded systems components. We will then describe twolightweight
component models that explore different parts of this space.



Software components

Szyperski defines software components to be "binary units of independent pro
duction, acquisition, and deployment that interact to form a functioning system"
[17]. He clarifies that "binary" means any format that can be executed by the
target machine [18]. This may be code for a specific processor, or virtual ma
chine code, or in some cases even source code (as in some scripting languages).

Figure 1 illustrates a possible component scenario. The source code of a
component is compiled to generate the two parts: the component interface, and
the component "binary," or executable portion. At a later time, multiple com
ponents are assembled together and loaded onto a target platform for execution.
The target platform typically contains some kind of runtimesupport, which we
have shown in the figure as the component runtime. In some component mod
els, a separate entity called a controller may exist to coordinate the activities
of the components; the controller may be a pre-written module, or may even be
synthesized by the component assembler. The collection of all of these pieces of
software is called a component framework.

In a component world, therefore, weadd to the traditional notions of design-
time, compile-time, and run-time, the notion of assembly-time. In some cases,
"assembly" of a component is done at run-time—such is the case with browser
plug-ins, for example. In others, it is doneon a machine different to the target
machine, as the final step in the development of the program.

We use the term component model to mean a description of components and
a component framework that abstracts from the details of a concrete imple
mentation, such as the exact format of the component executable. Our goal in
doingso is to understand the choices that can be made in the design of a compo
nent architecture, without getting distracted by machine- or platform-specific
details. This is doubly important in embedded systems, as we believe that
the diversity of process and system architectures will mean that many different
implementations of any given component model will be needed.

A component model defines, among other things, the structural elements of
its components. Typically, a component will have a set of method calls, often
grouped into implementationsof sharable method interfaces. Some component
models support events, whereby a component offers to notifyother components
when some particular event occurs. The event mechanism may be explicitly
declared (as in the Corba Component Model [16]), or implicit in stylized method
and type signatures (as in JavaBeans [6]).

Components may also depend on the presence of other components. This
can lead to tight sets of dependencies between components—a component may
require the presence of a particular database server component, for example.
Szyperski remarks that such dependencies are not uncommon in coarse-grained
component models [18].



compile
\

Source code

synthesize

Interface

Executable / a-semWe

Component

Executable
components

Target platform

Contro er

Figure 1: Component usage

Component executables

Figure 2 illustrates a possible set of transformations that might be performed on
the executable part of a component. A component starts off in a hand-written
source form, and ends up in a machine-executable form. Along the way, it
may progress through a core language, an intermediate form (IF), and a virtual
machine code. Any point along this chain could potentially be chosen as the
component's "executable" format; the component assembler and run-time will
then provide the rest of the path to execution. For example, if we chose an IF
as the executable format, then one path to execution would be a code generator
to a virtual machine, and a VM interpreter. If we chose virtual machine code,
then we can either interpret that directly, or compile it to native code and run
it on an appropriate instruction unit.

This diagram illustrates the tradeoff in choosing the form of components.
By choosing a point further towau-ds the left, we place a higher burden on
the component assembler or run-time. For example, if we choose to deploy
components as source code, then the author of the component assembler is
obliged to include a component compiler and optimizer. We also run greater
risk of accidentally introducing unwanted dependencies on external source code.
If we choose a point further to the right, the burden on the component assembler
is reduced, at the potential cost of lost optimization opportunities.

Component interfaces

In general, a component should carry or have bundled with it information that
enables a potential client to decide whether and how to use it. This informa
tion we clump under the heading of "interface"—the interface tells the client or
component assembler everything there is to know about the component, other
than the exact procedure by which it performs its work—that is "hidden" in the
executable. Potentially, a complete component model might include version in-

Component
runtime



Source

Compile

Transform

Core

Codegen

Compile Codegen push Hetb/e CG loadiO
push toadrt
add addrO,r1

VM code Native
I ^code

Intermediate
form^

\
Interpreter

N

VMInterpreter

i
1 /\

Executing code

/
/

Instruction unit

Figure 2: Transformation of a component executable

formation, authorand vendor information, identity authentication, performance
and cost metrics, usage documentation, and test vectors.

Current component models do not have stronginterfaces, being mostly lim
ited to static type signatures. A stronger form of component interface is an
assume-guarantee interface. Type signatures and assume-guarantee interfaces
are an example of stateless interfaces, since the interface specification does not
depend on the runtime state of the component. In the context of embedded
systems, other types of stateless interface will need to be supported, such as
timing information, resource usage, and so on.

A more powerful and comprehensive approach to component interfaces is
given by Alfaro and Henzinger's interface theories [3]. In general, an interface
of a component might be stateful, that is, it captures dynamic behavior of a
component. For example, a stateful interface for a file server component will
insist that a file be opened before it is read. Interface automata [2] are an ex
ample ofstateful interfaces. Stateful interfaces area general means ofcapturing
the "semantic information" that have been proposed briefly for components for
general-purpose computing [13].

A component framework must ensure that component interfaces are re
spected. Ideally, thiswould be performed once, at assembly-time—type systems
are the classic example of this. Since a static check is not always possible, the
component assembler may generate code to monitor the component at run-time
and raise a run-time exception if an interface is violated. Assertions in C are a
crude example of this type of checking.



2 Actor-oriented components

Actor-oriented software design [9] is an approach to systems design in which
entities called actors communicate through ports and communications channels.
Actor-oriented design is a natural match to embedded systems. One reason
for this is that embedded systems designers are well-versed in notations and
concepts that lend themselves to "box-and-arrow" notations, such as signal
processing block diagrams, state machines, and so on. Another is that this
style of program construction does not over-specify the program by requiring
the programmer to explicitly sequence the operations of the program. Finally,
efficient schedules for actor execution can often be automatically derived.

2.1 Actors and models of computation

In an actor-oriented software framework, the interaction betweenactors is cap>-
tured by what is known as a model of computation. Abstractly, a model of
computation is a description of the interaction and communication between ac
tors. Formally, it is a description of relations between tagged signals [12]. At
the implementation level, it is an algorithm for sequencing the flow of control
through a set of actors, and data structures that represent the appropriate form
of actors and communication channels. Examples of different models of compu
tation include discrete-time, dataflow, and continuous-time models. These and
a large number of other models of computation suitable for embedded systems
design have been explored in the context of the Ptolemy project [8].

The key thing to note about models of computation in an implementation
context is that control flow is removed from the actors. This has important
implications for a component model based on actors.

Let's consider an example. Suppose we have two processes, with the output
of the first connected to the input of the second by a FIFO queue. We could
write them as in Figure 3. By doing so, we have specified a key operational
detail of this program that, really, we didn't need to: this program requires a
multi-threaded environment with context-switching in which to run. Suppose we
now re-factor the program eis in Figure 4. This version of the two processes still
requires a multi-threaded environment, but by separating the control flow—
that is, the threads—from the computation contained in the actors, we have
enabled other models of computation to be employed with the same actors. For
example, we can now write a "dynamic dataflow" (DDF) program as in Figure
5, where actors A and B are as before, and process C is a single-threaded DDF
controller for that network. Finally, in this particular example, we know that
actor A produces one token each time it fires, and that actor B consumes two
tokens each time it fires. This is the synchronous dataflow (SDF) model of
computation [10], and a schedule can be computed for a network of such actors.
In this case, it would result in the controller shown in Figure 6.

As seen by this example, we are "lifting" control flow out of the actors
and into an external entity (the controller). In comparison, other component
models tend to place the control flow inside components. Apart from the thread



process P {
forever do {

wait for a token on the input channel
read the token into variable x

write f(x) to the output channel
}

}
process Q {

forever do {

wait for two tokens on the input channel
read the tokens into variables y and 2
write g(y,z) to the output channel

}

>

Figure 3: Two processes

process P {
forever do {

wait for a token on A's input channel
fire actor A

}

>

process Q •(
forever do •[

wait for two tokens on B's input channel
fire actor B

}

}
actor A {

read a token into variable x

write f(x) to the output channel
}
actor B {

read two tokens into variables y and z
write g(y,z) to the output channel

}

Figure 4: The same two processes, refactored



process C {
forever do {

if there is a token on A's input channel
fire actor A

if there are two tokens on B's input channel
fire actor B

Figure 5: A DDE controller for the two-process network

process C {
forever do {

fire actor A

fire actor A

fire actor B

}

>

Figure 6: An SDF controller for the two-process network

example above, consider a model with an event subscription and notification
model, such as JavaBeans. When an event is generated, the notification of the
event is implicitly a transfer of control—in this model, control tends to follow
the data.

By removing control flow from actors, we are able to make the same actors
usable in multiple execution contexts—we have not constrained their use by
unnecessarily specifying the use of threads, for example. We have also opened
opportunities for performance optimizations—by removing context switching
and by applying static analysis to determine schedules, for example. We have
also created verification opportunities, since we now have more control over the
behavior of the network of actors and are thus better able to make statements
about the performance and predictability of the network. Finally, we have
simplified the implementation of the components themselves, as will be shown
in the following sections.

2.2 Actors as embedded systems components

In general, we think that component models will become more domain-specific
than the current general-purpose models. By restricting the scope of a compo
nent model, components become easier to compose and verify- In the embedded
systems realm, we believe that actors are a good choice for "componentizing"
embedded systems software: the use of functional blocks connected by edges
that represent some kind of flow of data is a good match to many forms of



embedded systemsspecification, as mentioned already. Other parts of a compo
nent framework could also be "componentized" (schedulers, for example), but
we have not addressed this in this paper.

An actor typically consists of three main elements. First, a set of methods
that are shared by all components and are used by the component framework
to perform operations common to all actors. Typically, these operations will
perform functions like initializing and shutting down the component, and for
this reason werefer to them as life-cycle methods. Second, oneor more actions,
each of which processes input data to produce output data. Third, a set of
parameters which are used to control operation of the actor by an external
entity such as a user interface.

In the following paragraphswewill lookat some generic issues in component
models for embedded systems.

Encapsulating hardware

Components are a natural match forencapsulatinghardwareinterfaces. Embed
dedsystems programmers must often deal with low-level code such as interrupt
service routines (ISRs) and data buffering.

Consider a driver for an analog I/O device interfaced to a DSP (digital
signal processor). The interface might be implemented using an off-the-shelf
A/D/A converter chip, with which the DSP communicates using «m on-board
serial port. The driver for this interface needs to communicate with: a) the low-
level hardware and b) the higher-level processing software, (a) might involve
setting memory-mapped registers that configure the serial port, sending a series
of control words to the A/D/A chip, and installing oneor two interrupt service
routines (ISRs) to handle the serial port interrupts, (b) requires that the driver
implement an intermediary layer between the ISR and the higher-level code.
In a real-time DSp application, the ISR must be as short as possible (tens of
microseconds); as a result the driver must be structured so that most of the
work be done when the client calls, not in the ISR itself.

In a component world, the "driver" for the analog interface is encapsulated
into a component, as illustrated in Figure 7. The component model must have
the mechanisms to support the notion of components that synchronize to real
time.^ Provided this is done well, the component assembler is able to combine
components from different sources (for example, those provided by the hardware
platformvendor, thosepurchased from a third-party software supplier, and those
written in-house), without regardto platform-specific idiosyncrasies. Execution,
likewise, uses the same infrastructure forallcomponents, without having to have
code hand-written by a programmer to different device-specific APIs.

'Wehave notaddressed this issue ineither ofthecomponent models presented in the rest
of this paper. This is a subject for further discussion and a future paper.



Actor interface

fire_a {
init(

Buffers
Control registers

Read ISR

Jump table

= Write ISR

Figure 7: A component that encapsulates hardware

Binary components

Referring back to Figure 2, on the question of which format to choose as the
distribution format of a component, we lean towards the right-hand side of that
figure—that is, to the lower-level formats like native machine code. One could
argue that distributing components in source code format leaves better oppor
tunities for optimization (by merging components and converting channel reads
and writes into simple variable access). Nonetheless, binary-format distribution
does have advantages:

• It enables protection of proprietary information, which is essential if ven
dors of algorithms for specific hardware platforms are to provide software
in component form. (Currently, signal processing algorithms are typically
provided as binary function libraries.)

• It enables multiple source languages to be used. A number of DSP vendors
have produced excellent C compilers tuned to the architecture of their DSP
devices, and have added extensions to enable even better performance to
be obtained from the device. Expecting to be able to reproduce these
device-specific optimizations in some "common" source language is unre
alistic.

• Finally, we believe a binary component format encourages independent
component development. By focusing on producing binary components
with a small and very well-defined interface, independently of any partic
ular execution context, those components will be better suited for use in
multiple contexts.



word

addr num

/A /\
array struct int float

Figure8: An example type lattice, for a typical32-bit floating-point processor

Taken individually, noneof these may be particularly compelling, but teiken
together, we think they point to binary formats as the preferred primary means
of distribution of components for embedded systems.

Polymorphism and parameterized types

If a low-level executable format is chosen, it is likely that the executable code in
the components will not be polymorphic. For example, in a high-level language,
we might write an addmethod that has a typesignature add : (num x num) —•
num (where num is a supertype of various numeric types). While convenient
for the programmer, this is not feasible in a component distributed in machine
code for a particular processor, particularly if we are concerned with efficient
embedded implementation.

We therefore suggest that a component suitable for embedded systems pro
vide for multiple implementations of each entry point, specialized to concrete
low-level types. A convenient way to handle this is to give the component
model a parametric type system, such as in Haskell [7], which structures types
into a lattice such as shown in Figure 8. Method typesare declared using type
variables, for example:

add : num a ^ (a x q) —» a

Here, the type variable a represents any concrete type that can represent
num, that is, any leaf below num in the type lattice. Each specialized imple
mentation would then be tagged with the instantiated type variable—a = int
or a = float, for instance. The component assembler will choose a particular
concrete implementation according to the context in which the component is
used.

3 The Actif component model

Actif is the first of two component models proposed in this paper. It has a
separate executable and interface, and a controller that is synthesized from the
component interfaces. We believe that Actif will prove to be a powerful tool
for building reliable real-time systems. In this section, we present the basic

10



elements of this model. There are aspects of the model that we have not yet
finalized, such as the representation of time and synchronization with real time;
these are topics for a future paper.

3.1 Actif components

Lee and Parks introduced the notion of firing rules to govern execution of a
dataflow process [11]. In their formulation, an actor has one or more firing
rules, each of which contains a set of patterns (one per input channel) that eire
matched against the data present on the input channels. If all patterns match,
then that action can be fired.

For example, an actor that reads a single token fi^om each of two inputs has
the firing rule Ri = {[*],[*]}. The pattern [*] will match an input channel if
the channel contains at least one data value. Lee and Parks allow constants

to appear in firing rules. For example, an actor that selects from one input or
another according to the boolean value on a third input hgis two rules:

«i = {M.D.(f]}

That is, if the token on the third input is false (F) and a token is present on
the first input, the actor reads it. If the token on the third input is true (T) and
a token is present on the second input, the actor reads from that input instead.
(The pattern [] always matches.)

In Actif, we adopt a similar notion: an actor consists of a set of actions, each
of which has a firing rule. We do not, however, allow constant values in firing
rules—as a result, an action can be fired based only on the number of tokens
present on the input channels. Sequencing between actions is constrained by a
firing automaton-, this is in contrast to Lee and Parks, who provide an algorithm
to determine whether a set of firing rules is sequential, and if so, to determine
a unique order in which the rules can be tested. Actif is a refinement of a
dataflow model called "phased datsiflow" that was proposed in [15]. In more
recent work, the Cal actor language [1] also uses multiple guarded actions, but
these are considerably more sophisticated than Actif's firing rules.

For the purposes of exposition, we hereby invent a small "C-like" language
for describing actors. We are not proposing this as a necessary part of Actif,
it is just a convenient means of describing actors in sufficient detail that we
can talk about the component model. In this language, we would write the add
actor like this:

actor add (float inl, float in2) (float out) {

action a ([x] [y] -> [x + y]);
}

This actor has two input channels, inl and in2, and one output channel, called
out. All channels carry numbers of type float. The single action a reads a value
from each input channel and writes the sum to the output channel. The firing

11



(a) add (b) select

CoO'
(c) merge

Figure 9: Firingautomata: a) add, b) select, c) merge

automaton of this actor is shown in Figure 9a; in this case, as with any actor
with a single action, the automaton has a single state and a single transition,
and is trivially derived from the actor.

In general, a firing automaton has two typesofvertices, called place vertices
and choice vertices, and two types of transition, called action transitions and
choice transitions. A place vertex represents the state of an actor between ex
ecuting actions. Action transitions leave place vertices and represent execution
of an action. Choice vertices, colored black, represent a branch in control flow,
where the actor decides which place vertex to proceed to after completing an
action. Choice transitions leave a choice vertex and are labeled with a boolean
expression.

Consider the select actor. Its firing automaton includes a choice vertex,
which determines which action the actor is prepared to execute after reading
the control token. The actor would be written like this:

actor select (word inl, word in2, boolean Ctrl)
(word out) {

([][][p] -> []) next (if p then b else c);
([x][][] -> [x]) next a;
([]Cy][] -> [y]) next a;

action

action

action

The firing automaton of this actor is shown in Figure 9b. In comparison to the
Lee/Parks firing rules, this actor needs an extra action (the one labeled a) to
perform the read of the boolean value; this extra action is, in effect, making
sequentialization of the firing rules explicit.

12



actor mac (float in) (float out) {.
pairameters {

float factor = 1;

}
state {

float current = 0;

}
action a ([x] -> [y]) {

y = current + factor * x;
current = y;

}

Figure 10: The mac actor

If a place vertex has more than one output transition, then the transition
taken is chosen non-deterministically. For example, the merge actor, with firing
automaton shown in Figure 9c, can non-deterministically choose to read from
either input:

actor merge (word inl, word in2) (word out)
start a,b {

action a ([x][] -> [x]) next a,b;
action b ([][y] -> [y]) next a,b;

}

In this example, the start clause states which set of actions should be initially
considered. The start and next clauses contain sets of actions, meaning that any
action in the set will be considered for execution.

None of the actors so far have parameters or state. Figure 10 shows the mac
actor, which has a parameter factor and a state variable, current. It multiplies
each input value by a constant factor, and adds the product to the previous
output value. It is smaller than we would normally expect components to be,
but serves well enough as a concise example for the following sections.

3.2 Component structure

Actif actors are compiled into separate executable and interface portions. In
the executable portion, each action is implemented by a single procedure. The
argument to this procedure is a pointer to a block of memory that contains the
instantiated component's parameters, state, and input variables. The procedure
computes output values and new state values from the inputs, and writes them
to the memory block.

To illustrate, we will assume that the component compiler generates C code,
which can then be compiled again to produce the executable portion of the

13



struct mac.vars {

float current;
float factor;

float x;

float y;
>
void fire_mac_a (struct mac_vars ♦vars) {

vars->y = Veirs->current + vars->factor ♦ vars->x;
v2u:s->current = vars->y;

}

Figure 11: The executable portion of mac, when compiled to C

component. Figure 11 shows the C code generated by the component compiler
for the mac actor. As you can see, it's a fairly straightforward translation of
the component source code.

Figure 12 illustrates the code generated by the component assembler to
call an instance of the mac actor. Again, we assume that the output of the
component assembler is C code, whichis then compiled to produce an executable
controller. The interesting part of this code is the three lines at the end: it reads
an input value and writes it to the memory block vars; it then calls the action
procedure firejmac-a; when that returns, it reads the computed output value
from vars and writes it to the output channel.

The interface part of the component must contain sufficient information that
the assembler can generate this code. Figure 13 illustrates a possible interface
for mac in an XML language. It contains all of the information in the actor
definition, except for the actual computation that is performed by the action—
that part of the actor is kept hidden from the component assembler.

Tosummarize, eachactor hasa single structure containing parameters, state
variables, input values read from the input channels, and computed output
values. Eachaction of that actor has a single procedure that accepts a pointer
to that structure as its argument. We highlight a few points about the model:

• Theactoris not responsible for reading input from channels or writing out
put to channels. This is handled by the codesynthesized by the component
framework. This approach removes the need for polymorphic interfaces to
a channel, as in systems such as Ptolemy II.

• In some coordination models, actors are expected to not update their state
when they produce output. In Actif, this means that the controller must
make a copy of state that is modified by an action and restore it after the
action completes.

In addition to the codegenerated for the actions, all componentshaveseveral
life-cycle methods:

14



struct mac_vars {

float current;

float factor;

float x;

float y;
}
struct mac_vars mac_0_vars = { 0.0, 1.0 >;

extern void fire_mac_a (struct mac_vars ♦);

extern struct inputChannelFloat *mac_0_input;
extern struct outputChsinnelFloat ♦mac_0_output;

mac_0_vars_a.x = readInputFloat(mac_0_input);
fire_mac_a(&mac_0_vars);
writeOutputFloat Cmac_0_output, mac_0_veu:s_a. y) ;

Figure 12: Sample code generated to call mac, in C

<?xml...>

<actor name="mac">

<channel class="input" t3rpe="float" name="in"/>
<channel class="output" type="float" name="out"/>
<vars name="mac_vars">

<field naine="factor" type="float" default="1.0"/>
<field name="current" type="float" default="0.0"/>
<field name="x" type="float"/>
<field name="y" type="float"/>

</vars>

<action namie="a" rule="[»]->[*] " procedure="f ire_mac_a">
<read channel="in" var="x"/>

<write channel="out" veur="y"/>
<update var="current"/>

</action>

<automaton initial="0">

<state stateid="0"/>

<transition from="0" to="0" action="a"/>

</automaton>

</actor>

Figure 13: The mac interface

15



• initialize is called when the component is initialized. It can allocate mem
ory needed by the actor, initisdize registers on peripheral devices, install
ISRs, and so on.

• reset returns the actor to the state it was in just after initialize was called.

• finalizeshuts down the component. It can releasememory, disable periph
eral devices, turn out the lights, and so on.

3.3 Controller synthesis

Once a set of components has been connected into a network, the component
assembler needs to synthesize a controller for them. A suitable intermediate
form for this controller is a state machine, where transitions represent selection
and execution of smaction. Let M(a) be a predicate that tests whether an actor
has the required tokens on its inputs for action a, and F{a) be the instruction
to fire actiona. The transition labeled a € A{f) : M{a)/F{a) means "select an
action a from the set of enabled actions of actor f with matching input tokens,
and fire it." For example. Figure 14a shows a simple two-actor network as we
used in the example in section 2. Figure 14b is a DDF controller for it: each
transition selects an action from actor f or g and fires it. In this case, since
there are two transitions from the initial (and only) state, either transition can
be non-deterministically chosen.

Controllers can also specify a single action to be taken on a transition. We
write this as, for example, M{fa)/F{fa), meaning "fire action a of actor /,
provided that it has matching input tokens." Or without the guard, F{fa)
means "fire action a of actor /." Figure 14c illustrates an SDF controller for
the example network, again assuming that / produces one token each time it
fires, and that g consumes two tokens each time it fires. (Since the scheduler
for the SDF coordination model guarantees that sufficient tokens are available,
there is no need to test for the controller to test for the presence of tokens.)

In some coordination models, the controller mayiterate to a fix-point before
updating the state of the components. This requires that the controller preserve
the state of the actor prior to firing an action, and restore it if iteration is
required. We will refer to these instructions as prsv{fa) and rstr{fa). (They
are action-specific, as not all actions will modify the whole state, and it makes
no sense to preserve parts of the state that will not be modified.) To illustrate.
Figure 15ashows a simple continuous-time network that represents the following
set of differential equations:

X = f{x,u,t)
y = g{x, u, t)

x(to) = Xo

This system has a continuous portion, being the input signal and the loop
around / and the integrator, and a discrete part, being the actor g and the
output signal. For simplicity, we will assume that / and g each have only

16



1
f

1 2

y
1

(a) A simple model

B^Aigy.mVm F{9') F(f')

a6/\(0: MCoiyPfa) ^ O O

(b) DDF controller (c) SDF controller

Figure 14: A simple network and two controllers for it

a single action. To execute this system, the controller, shown in Figure 15b,
repeatedly fires / until it is satisfied that the computed continuous value out of
the integrator is a sufficiently good approximation. Each time, it must restore
the state of / prior to firing it again. When computation of the output value of
/ converges, the controller moves onto the next phase and fires g.

4 The Compact component model

Compact is the second of our two component models. It is being developed as a
lightweight framework for execution of components in Java. Its primary aim is
to provide a means by which components developed by different authors can be
executed in more than one execution framework, again developed by different
authors.

4.1 Overview

One of the issues in building a conventional software framework is coupling
between the various parts of the ft^amework. As a design evolves and gets
larger, this coupling inevitably becomes tighter and less structured. In an actor-
oriented framework such as Ptolemy II, for example, actors come to depend
on numerous APIs for retrieving and sending data, communicating with the
execution code for special purposes such as scheduling delayed execution, and
various other services. Conversely, the framework comes to depend on various

17



donelF{ga)

prsv{fa)
done/rstr{fa)

step

M{fa)/F{fa)

(a) Continuous-time model (b)Controller

Figure 15: A continuous time network and its controller

actor APIs, such as a potentially unbounded number of "marker" interfaces
or superclasses to indicate that an actor implements some particular type of
functionality.

A component approach, in contrast, enforces explicit declaration of depen
dencies. In particular, components can be developed independently ofa partic
ularexecution framework, thereby reducing the possibility ofaccidental depen
dencies between components and a particular framework.

Compact is a component model targeted specifically at Java platforms. We
have designed thismodel to beeasy to implement and to allow direct authoring
of components. Thus, Compact does not have a separate interface portion, nor
does it require a component compiler. We therefore don't consider Compact to
bea "proper" component model; nonetheless, we think it will be useful and give
us a means of exploring the implications of component models on a broader and
more accessible range of platforms.

Figure 16 illustrates how Compact mediates between different component
sources and execution frameworks. In the first instance, components can be
written by hand. Secondly, components could be generated from a Ptolemy II
model using the Copernicus code generation tool [14]. Copernicus, by using a
technique cdled co-compilation and some knowledge of the Ptolemy II frame
work, is in effect able to compile away some of the framework dependencies for
us. One interesting consequence of this would be the ability to develop signifi
cant IP in Ptolemy II, and then compile it into a more efficient component for
execution in other, non-Ptolemy, execution frameworks. Finally, components
could be written in an actor definition language such as Cal [1], and compiled
to Compact.

On the execution side, componentscan be executed in any execution frame
work that is able to adapt itself to the Compact component model. We note
again a key difference between component models and frameworks: with a suit
able component model, components can be developed independently of the final
execution environment. We are also designing for Compact its own execution
framework, called Clef (for Compact Lightweight Execution Framework). As its

18



Hand-coded actor ^^^^^^Rolemy/Ptact
Rolemy model ^Compact component r > Clef

XGalactorx.

Figure 16: Compact and its place in the universe

name implies, Clef is small and efficient, and as such, is suitable for execution
on small platforms or for embedding into other applications. CLEF is capable
of being run on J2ME [5], the embedded versionof the Java Platform.^ We also
plan to experiment with using Clef as an execution engine in a visu£dization
framework, to sequence control flow through complex visualization processing
networks.

Incidentally, the name "Compact" originated as a contraction of the words
"component" and "actor," but we also like it because it summarizes the philos
ophy of this model well.

4.2 Component structure

Compact is a Java-specific component firamework, and uses the reflection capa
bilities of Java to encode the interface of a component in the Java source code.
We will use the moc actor as our example agmn—mac in Compact is shown
in Figure 17. For each port, the component declares (but does not create) an
object of a suitable type. Compact provides a set of interfaces for this purpose.
The moc actor, for example, has two double-carrying ports, of type IDouble-
Port, shownin Figure 18. These ports are instantiated not by the actor, but by
the component run-time, thus allowing the run-time to supply diflFerent imple
mentations of the port according to the coordination model in which the actor
is used.

Each component class requires a public static variable called signature, which
tells the component assembler which ports are inputs and which are outputs.
In addition, it gives for each port the minimum number of tokens consumed
by inputs and produced on outputs. If additional tokens are needed then this
is indicated by a trailing -f; for example, the signature that indicates that an
actor reads one or more tokens on the port in, and always produces just one on
the port out, is

in(l+) -> out(l)

^Specifically, we aretargeting the version known asCDC/FP, that is, the Connected Device
Configuration with the Foundation Profile. This platform is suited for systems with 2MB or
more of memory, and does not include graphics capability. Targeting the much smaller CLDC
(Connection-Limited Device Configuration) would require a component model more akin to
Actif, in which component source is compiled into a form more amenable to execution on a
small platform.

19



public class Mac implements lActor {
public String signature = "in(l) -> out(l)";
public IDoublePort in;
public IDoublePort out;

public double current = 0.0;
private double .factor = 1.0;
public double getFactor () { return .factor; }
public void setFactor (double f) { .factor = f; }

public void fire () {

double X = in.getO;
current = current + x * .factor;

out.put(current);
}

Figure 17: The Mac class written in Compact

(There is no special significance to the names inand out, they are just names.)
In the mac example, just a single token is consumed and produced. If the token
count is omitted, it is assumed to be one. A simple extension to this language,
required for multi-rate signal processing actors, would be to allow the token
count to be set to the name of a parameter.

Actor firing is implemented by the method fire, from the IActor interface.
This method reads inputs, writes outputs, and updates the state. The controller
guarantees that, when fire is called, the minimum number of input tokens speci
fied in signature are present in the input ports—the actor does not need to check
for the presence of this minimum number of tokens, and is in turn obliged to
consume at least that many tokens. As in Actif, a firing may modify the actor's
state, so if a controller requires that an actor's state be preserved in a firing,
it must do so explicitly. The actor's state is assumed by default to be the set
of public instance variables; actors can optionally implementan interface called
IMemento to gain control over the copying and restoring of their own state.

For each configuration parameter, a component has a JavaBeans-like prop
erty, indicated by appropriate get and set methods. In the example, factor
is such a property. Since reading and writing configuration parameters is an
infrequent operation, the component run-time can use reflection to do this.

As in Actif, Compact actors can have three life-cycle methods, initialize,
reset, and shutdown. These methods are declared by the ILifeCycle interface. If
a component does not implement ILifeCycle, then the component run-time will
assume that initialize and shutdown do nothing, and will reset the state to its
initial value for reset.

20



public interface IDoublePort {
int getCountO;
double getO;
void put (double d);

>

Figure 18: The port interface for doubles

4.3 Polymorphism

Despite being written in Java, Compact is kept fast and lightweight by using
primitive Java data types, without "boxing" them in polymorphic Token ob
jects. Instead, we lay the burden of presenting polymorphism to the user on the
component assembler user interface, if desired. Our reasons:

• Polymorphism in significant numerical algorithms is often not straightfor
ward. For example, a signal processing filter will need to be written differ
ently for fixed-point and floating-point implementations—the fixed-point
implementation requires additional code for overflow checks and seeding
operations that are not needed in the floating-point implementation.

• Run-time polymorphism can be very expensive. In Ptolemy II, for exam
ple, every arithmetic operation makes method calls into the type system
to check for type compatibility, and requires allocation of a new object for
the result.

• If a Ptolemy II model is compiled into a component with Copernicus, then
the resulting component will be monomorphic anyway, since the compiler
requires concrete types to perform token unboxing, one of its most signif
icant optimizations. In a similar vein, if an actor definition language is
used to write components, then a single polymorphic source actor can be
compiled into a "family" of Compact components.

4.4 Executing Compact components

Compact components can be executed in any environment that can adapt to its
component format. Because this format is so simple, we hope that there will
be multiple platforms that will support Compact components, thus facilitating
sharing of components between researchers and developers. We will illustrate
here how a Compact component could be executed in the Ptolemy II execution
environment. Our ideas here are based on recent work on compiling Cal actors
to execute in Ptolemy II [19].

Execution of a Compact component in Ptolemy II uses a set of adapter
objects, which we have named Ptact. A Ptolemy actor is significantly more
complex than a Compact component, and has a high degree of dependency on
the various bits and pieces of the Ptolemy API (in contrast to the Compact
component, which has none). Specifically:

21



TypedlOPort

DoublePort

Ptolemy
director

Compact
component

TypedlOPort

Parameter

/

DoublePort

Figure 19: A compact component adapted to Ptolemy II

• Ptolemy actors communicate using polymorphic Token objects that en
capsulate primitive data items, whereas Compact actors read and write
primitive data items.

• Ptolemy supports multi-threading, whereas Compact does not.

• Ptolemy actors support mtUti-porta—thait is, ports that contain multiple
channels, but Compact only has ports with single channels.

• Ptolemy actors support arbitrary sets of named parameters, whereasCom
pact components have only a fixed set.

Figure 19 shows the structure of a Ptolemy actor, implemented using a
Compact component and the Ptact adapters. In this diagram, single arrowheads
indicate a reference, and double arrowheads indicate a reference and a calling
interface. Grey objectsare thosethat are part ofPtact. The Ptact actor adapter
creates the other adapter objects, as well as providing the execution interface
to a director (the Ptolemy II equivalent ofa controller). Parameter objects read
from and write directly to properties of the Compact component. The port
adapters mediate between the Compact component and the Ptolemy ports, and
perform token boxing and unboxing.

5 Concluding remarks

We believe that, as component models mature, domain-specific component mod
els will arise in various fields. In this paper, we presented our view of compo
nents for embedded software systems, and described two different component
modelsbased on the concept of actor-oriented softwaredesign. The two models
deliberately present different choices in the design space of component mod
els for embedded systems. In future, we expect that other component models

22



will be developed that focus on different capabilities. Examples could include
component models tailored to system-on-chip hardware design, or to embedded
systems that consist of large number of mobile nodes.

Of the two component models, Actif is the more substantial, but also the
more complex to implement. It requires that components be programmed in
a language specific to the purpose, and then compiled to generate executable
and interface portions. The controller for an assembled network of components
must be synthesized from a description of the network and the component inter
faces. Because actions of an Actif component will always consume and produce
a known number of tokens, we believe that Actif holds more promise for building
dependable and reliable real-time systems. Finally, because Actif has a sepa
rate interface, it also provides a ready platform for further research into more
advanced interface specifications for embedded systems components.

Compact, in contrast, is designed to be simple to implement, and is re
stricted to one language. It does not require a component compiler, nor does it
require that a controller by synthesized for each network. It is therefore intended
more as an experimental platform for component models, and as a "half-way"
point between a true component model such as Actif, and higher-level modeling
environments such as Ptolemy II.

We are proceeding with implementations of both component models. The
implementation of Actif is the longer-term project. The Compact implementa
tion is shorter-term, and will include the dedicated execution framework Clef,
and the Ptact adaptor to allow Compact actors to be executed within Ptolemy
II. We hope that we will be able to collaborate with other researchers in em
bedded systems to provide similar adaptors for their own execution frameworks,
thus enabling sharing of resources in the form of components. In future work,
we will also be looking to "componentize" other parts of component frameworks,
such as controllers and scheduling and analysis algorithms.

Acknowledgments

We gratefully acknowledge the assistance of Gabor Karsai of the University of
Vanderbilt and Stephen Neuendorffer of UC Berkeley for interesting and valu
able comments on this paper. We also thank Jorn Janneck for many interesting
discussions concerning actors and models of computation.

This work is partially funded by DARPA and NSF via Lockheed contract
285915D, National Experimental Platform for Hybrid and Embedded Systems.

This work was conducted within the Ptolemy Project at UC Berkeley. The
Ptolemy Project is supported by the DefenseAdvanced Research Projects Agency
(DARPA), the NationalScience Foundation (NEPHESTprogram),the MARCO/DARPA
Gigascale Silicon Research Center (GSRC), the State of California MICRO pro
gram, and the following companies: Agilent Technologies, Cadence Design Sys
tems, Hitachi, National Semiconductor, and Philips.

23



References

[1] The Caltrop project. Online at http://www.gigascaIe.org/caltrop/.

[2] L. de Alfaro and T.A. Henzinger. Interface automata. In Proceed
ings of the Ninth Annual Symposium on Foundations of Software En-
gineering, pages 109-120. ACM Press, 2001. Online at http://www-
cad.eecs.berkeley.edu/ tah/.

[3] L. de Alfaro and T.A. Henzinger. Interface theories for component-based
design. In T.A. Henzinger and C.M. Kirsch, editors, EMSOFT01: Embed
ded Software, Lecture Notes in Computer Science, pages 148-165. Springer-
Verlag, 2001. Online at http://www-cad.eecs.berkeley.edu/ tah/.

[4] John Davis II, Christopher Hylands, Bart Kienhuis, Edward A. Lee, Jie
Liu, Xiaojun Liu, Lukito Muliadi, Steve Neuendorffer, Jeff Tsay, Brian
Vogel, and Yuhong Xiong. Heterogeneous concurrent modeling and design
in Java. Technical Memorandum UCB/ERL MOl/12, Electronics Research
Laboratory, Dept of EECS, University of California at Berkeley, March
2001. Online at http://ptolemy.eecs.berkeley.edu/.

[5] Java 2Platform, Micro Edition. Online at http://java.sun.com/j2me/.

[6] Mark Johnson. A walking tour ofJavaBeans. Java World, August 1997.
Online at http://www.javaworld.com/.

[7] S. P. Jones, J. Hughes, L. Augustsson, D. Barton, B. Boutel, W. Bur
ton, J. Fasel, K. Hammond, R. Hinze, P. Hudak, T. Johnsson, M. Jones,
J. Launchbury, E. Meijer, J. Peterson, A. Reid, C. Runciman, and
P. Wadler. Haskell 98: A Non-strict, Purely Functional Language. Techni
cal report, February 1999. Available at http://www.haskell.org.

[8] Edward A. Lee. Overview of the Ptolemy project. Technical Memoran
dumUCB/ERL MOl/11, University ofCalifornia at Berkeley, March 2001.
Online at http://ptolemy.eecs.berkeley.edu/.

[9] Edward A. Lee. Embedded software. In M. Zelkowitz, editor, Ad
vances in Computers, volume 56. Academic Press, 2002. Online at
http://ptolemy.eecs.berkeley.edu/.

[10] Edwa,rd A. Lee and David G. Messerschmitt. Synchronous data flow. Pro
ceedings of the IEEE, 75(9):1235-1245, September 1987.

[11] Edward A. Lee and Thomas M. Parks. Dataflow process networks. Pro
ceedings of the IEEE, 83(5):773-798, May 1995.

[12] Edward A. Lee and AlbertoSangiovanni-Vincentelli. A framework forcom
paring models of computation. IEEE Transactions on Computer-Aided De
sign of Integrated Circuitsand Systems, 17(12):1217-1229, December 1998.

24



[13] Bertrans Meyer. What to compose. Software Development Magazine,
March 2000. Online at http://www.sdmagazine.com/.

[14] Stephen Neuendorffer. Co-compilation ofactor-oriented models in Ptolemy
II. Master's thesis, Electronics Research Laboratory, University of Califor
nia at Berkeley, 2002. In preparation.

[15] H. John Reekie. Realtime Signal Processing: Dataflow, Visual, and Func
tional Programming. PhD thesis. School of Electrical Engineering, Univer
sity of Technology, Sydney, 1995.

[16] Douglas C. Schmidt, Nanbor Wang, and Carlos O'Ryan. Overview of the
CORBA component model. In George T. Heineman and Williiam T. Coun-
cill, editors. Component-Based Software Engineering: Putting the Pieces
Together, chapter 31. Addison-Wesley, 2001.

[17] Clemens Szyperski. Component Software. Addison-Wesley, 1998.

[18] Clemens Szyperski. Point, counterpoint. Software Development Magazine,
February 2000. Online at http://www.sdmagazine.com/documents/.

[19] Lars Wernli. Cal actor language. Master's thesis, Electronics Research
Laboratory, University of California at Berkeley, March 2002.

25


	Copyright notice 2002
	ERL-02-30

