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Abstract

Coulomb Interactions in High Throughput Electron Beam Lithography

by

BoWu

Doctor ofPhilosophy in Physics

University ofCalifornia at Berkeley

Professor Andrew R. Neureuther, Chair

Professor Jonathan Wurtele, Cochair

High throughput electron beam lithography systems have been viewed as

promising candidates for sub-lOOnm wafer writing tools. This thesis extends previous

work in the study of electron Coulomb interactions and the study of electron interactions

with photo-resists. Both of these interactions contribute to image blur and the studies in

this thesis provide physical insight, quantitative characterization and suggestmethods of

reducing blur.

The Berkeley Electron Beam Simulator (BEBS) is a collection of software tools

developed by the author to study the charged particle interactions in beam columns.

BEBS employs the Fast Multi-pole Method (FMM) for rigorous force calculations. It

takes about one hour with ten 500MHzprocessors to simulate a 30pA beam current in a.

typical 4x demagnification system usinga packetof 13,000 particles. The accuracy ofthe

force calculation algorithm is benchmarked with that ofMunro's electron beam simulator.

BEBS provides many optionsfor observing forces and trajectorychanges, and improving

beam spot size. These options have been successfully applied and proved especially

useful in studying stochastic interactions affecting beam blur.



The influence of space charge on the electron dynamics is investigated with

simulations.The primary consequenceof space charge is beam blur. Beam blur reduction

techniques are examined using both neutralizing ions and lens aberrations. Results show

that around 80% of the space charge blur is eliminated at 30pA beam current and that the

total beam blur is reduced by nearly 30%. Further beam blur reduction would be

formidable unless the stochastic blur is also reduced.

The basic assumptions of Mkrtchyan's Nearest Neighbor Theory are tested. It is

demonstrated that for typical e-beam lithography applications, electron interaction with

multiple neighbors rather than the nearest neighbors is the norm other than exception in a

typical electron beam system. The simulation shows that the randomized correlation

length is a fimction of the beam diameter and that correlated interactions occur at other

axial positions due to symmetry with respect to the beam crossover. The structures of

stochastic Coulomb interactions have been analyzed in probe-forming systems through a

novel approach that combines algebraic analysis of forces and simulation of relocated

trajectory displacements. This approach is able to explain why a crossover beam and a

homocentric parallel beam with the same beam angle produce the same beam blur in spite

ofthe high electron densities that occur in the crossover case.

Scaling laws for stochastic blur are developed. In a beam projection or multi^

emitter array system, the stochastic blur is proportional to beam current raised to the

power of 0.62, which roughly agrees with Jansen's prediction of 0.67. The scaling laws

of the stochastic blur are also formulated with respect to column length, beam

convergence angle, emitter spacing and beam voltage.
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1 Introduction

High throughput electron beam systems, such as SCALPEL [1] and PREVEAIL

[2], have been used as potential candidates for sub-lOOnm lithographic tools. The

ultimate resolution in high throughput electron beam lithography is strongly limited by

the electron-electron interactions in the beam column [3] [4] and the electron interactions

with photo-resist [5]. A thorough understandingof these interactions is vital to the design

ofany high throughput electron beam systems.

1.0. Thesis

The contents of this thesis are classified into two categories: (a) analytical and

simulation tools, including the characteristics of the Berkeley Electron Beam Simulator

(BEBS) developed by this author and its algorithms, and (b) scientific contributions in the

study of electron interactions in beam columns and the study of electron interaction with

photo-resist. This chapter highlights the thesis contribution and provides a few key

references. The general background is provided in Chapter 2 with more complete

references.



1.1. Tools

Experimenting with high throughput electron beam systems is very costly and

timeconsuming. System modeling gives insight to the physical mechanisms and provides

general guidelines for the design. A large number of theoretical works have been

dedicated to the study of the electron stochastic interactions [6] [7] and the global space

charge effect [3] in electron beam columns. Among these, simulation techniques provide

a powerful tool for the study of the collective behavior of a large number of charged

particles in the beamcolumn. All the beamand column parameters canbe easily tuned in

simulations. The simulation approach is particularly useful in the study of the electron

stochastic blurs when the analytical approach is formidable.

A serious drawback of some existing electron beam simulators is that the

computation time is proportional to the square of number of electrons, which makes the

highbeam current simulation intractable. Munro et al. have been developing conunercial

software for the design of electron beam lithographic systems [8] [9]. Since the initiation

of this thesis work, Munro uses the Bames-Hut method [10] in his commercial electron

beam simulator to reduce the amount of computation required [11]. A detailed

comparison between BEBS and Munro's simulator is provided in Section 3.6 of this

thesis. Han and Winograd [12] [13] developed an electron beam simulator at Stanford

University to study the global space charge effect. Its force computations, however, are

based on an unverified approximation of"test" electrons and "field" electrons.



The force computations in the BEBS are performed with Pbody [14] [15], which

is a parallel libraryrunning on multiple processors. It employs the Fast MultipoleMethod

(FMM) [16] [17] for fast and rigorous force calculations. The computation time is

roughly proportional to the number of electrons and inversely proportional to the number

ofprocessors.

Compared with other existing electron beam simulators, BEBS provides a number

of special options for the study of beam blur production mechanisms. These options

include identifying the neighboring electrons of an arbitrary electron of concern, directly

generating stochastic blurs in simulations through the use of positrons, etc. Each option

has been successfully applied in the academic contributions of this thesis. Chapter 3 will

discuss the details ofBEBS' computational algorithms and special options.

Facing many body problems, analytical approaches often lead to algebraic

expressions that are not solvable. Simulation techniques avoid this problem. Yet, the

imderl}dng physical principles may be hidden. To address these shortcomings, the author

developed an approach [18] which combines analytical approach and simulation

technique and uses the strength of both. This new approach is successftilly applied to the

study of the structure ofelectron stochastic interactions in Chapter 6.

Some early work on electron-resist interactions owes to Greeneich [19] [20] and

Shimizu [21] on the modeling of electron-resist interaction. In 1980's Murata et al [22]

[23] developed the hybrid model to study energy deposition in photo-resist. Murata's



model, however, is based onthe assumption that ail forms ofdeposited energy contribute

equally to the exposure events and the detailed mechanisms of exposure reactions were

not considered.

The Electron-Resist Interaction Model (BRIM) presented in Chapter 9 of this

thesis is the first of its kind to study the electron resist interaction mechanisms using

reaction cross sections [24]. BRIM is a pure analytical model, which gives an algebraic

expression for the spatial distribution ofexposure events.

1.2. Academic contributions

This thesis first examines the beam blur contributions in terms of axialpositions,

and inter- and intra-beamlet electron interactions [25]. The results are presented in

Chapter 4. The chapter also presents the summation rule of inter- and intra-beamlet

interactions.

The electron statistical interactions create image blurs that are not correctable

through conventionaloptical system compensation. Theoristsdeveloped differentmodels

to predict the beam blur caused by the electron-electron stochastic interactions in various

beam configurations. Mkrtchyan [6] formulated an analytical model based on the nearest-

neighbor approximation. Jansen [7] [26] developed the Extended Two-Particle model for

high throughput electron beam systems. Both model also require a series of

approximations and untested assumptions.



In Chapter 5 of this thesis, the nearest-neighbor assumption of Mkrtchyan's is

tested via simulations. Analysis of a basic crossover showed that interactions with

multiple rather than nearest-neighbor electrons almost immediately became the nonn

rather than the exception.

Jansen's Extended Two-Particle model predicts that a crossover beam and a

homocentric parallel beam can produce the same beam blur as long as they share the

same beam angle [27]. However, the physical insight is completely buried in the

mathematical complexity ofhis analysis.

Chapter 6 of this thesis provides physical insight and quantitative explanation of

Jansen's above prediction. The chapter reveals the rich structures of stochastic

interactions in different beam geometries [18], which can be further explored for possible

beam blur reduction.

Chapter 7 presents a stochastic effect simulator, which is the first of its kind to

produce stochastic blur directly in simulation. It is effectively used to develop the scaling

laws for the stochastic blur and the scaling laws for the space charge blur. The chapter

also provides the theoretical foundation for the stochastic effect simulator.

Han and Winograd [3] [12] demonstrated that the aberrations induced by the

lensing action of global space charge of the electrons result in beam blur that increases

with beam current. The space charge effect seriously limits the performance of high



throughput electron beam lithography systems. It was demonstrated in experiments that

the spherical aberrations of a focused ion beam can becorrected via electron clouds [28]

[29]. However, it was not clear whether the neutralization scheme would be applicable

for a high throughput e-beam lithography system due to the scattering of small-mass

electrons. Xiu [30] [31] studied the effect ofspace charge coils and a multi-pole projector

in electron beam columns and tried to reduce field curvature and on-axis aberrations.

Nevertheless, no quantitative results have been given on beam blur reductions.

Chapter 8 of this thesis discusses the impactofpositive ions in beam columns and

the effect of lens aberrations as potential techniques to reduce space charge blurs. Results

demonstrate that total beam blur can be considerably reduced with either technique in

high throughput electron beam systems [32].

The hybrid model developed by Murata [22] is a Monte Carlo program used to

simulate the exposure profile of e-beam resist. This model, however, is based on the

assumption that all forms of deposited energy contribute equally to the exposure events,

which hasno physical basis. Theexposure mechanisms are beyond the scope of Murata's

model.

Chapter 9 of this thesis examines the mechanisms.of electron-resist interactions.

The chapter reveals the parameter dependencies of the miniTnnm exposure dose and the

roles of secondary electrons with the ERIM model [24]. The author derives an analytical



expression for the spatial distribution of exposure events, which is suitable for numerical

solution.



2 Background

High throughput electron beam lithography systems are viewed as promising

candidates for the next generation of wafer writing tools. In contrast to optical

lithography, the resolution of electron beam lithography is no longer limited by

wavelength. Several different types of high throughput electron beam systems have been

proposed or developed with the goal of producing sub-lOOnm wafer-writing tools. In a

projectionelectron beam system, such as SCALPEL [1] and PREVAIL [2], developed by

Lucent and IBM, respectively, the mask is flood-illuminated by a beam of electrons, and

the image is projected on the surface of the wafer. In a multiple emitter array system,

each individual emitter can be tuned on or off and patterns on the emitter array are

projected onto the wafer.

2.0. Challenges

The disadvantage of electron beam lithography is that the demands for high

resolution and high throughput are contradictory due to the repelling forces between

electrons in the beam column [33] [34]. Meanwhile, the interaction of an electron beam

with photo-resist films produces a spatial distribution of exposure reactions, which

imposes another limitation to the resolution of electron beam lithography [35] [36].
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Numerous efforts have been made to reduce beam blur at high beam currents to meet a

given resolution and throughput requirement.

2.1. Stochastic effect

The electron statistical interactions create image blur that is not correctable

through conventional optical system compensation. Different theoretical models have

been developed to predict the beam blur caused by the electron-electron stochastic

interactions. Berger et al tried to investigate the trajectory displacement effects using

Monte Carlo methods [33]. However, the stochastic effect is always convoluted with the

spacechargeeffect in his studies. The stochasticeffect was never isolated. Weidenhausen

et al first introduced the nearest-neighbor (N-N) approach to study the electron

stochastic effect in probe-forming systems [37] [38]. Based on the N-N approach,

Mkrtchyan et al developed a new model to examine the stochastic interactions in high

throughput e-beam systems [6] [39]. Both models are based on consideration of the

nearest-neighbor electrons and on the concept of a randomized length, over which

interactions are correlated. Mkrtchyan was then able to get agreement with the limited

experimental data for a wide range of beam currents. Meanwhile, Van Leeuwen and

Jansen proposed the Multiple Independent Collision Approach (MICA) for probe-

forming systems [40]. To isolate the stochastic effects the model only considers the

collisions of the electrons on the trajectory that runs through the center of a circular

beam. Jansen refined the above approach and developed the extended two-particle model

for projection e-beam systems [7]. Jansen's model still requires either a first order

approximation or a strong- single-collision approximation. Jansen predicts that a



crossover beam and a homocentric parallel beam produce the same beam blur as longas

they share the same beam angle [27]. This prediction was later confirmed in simulation

results by Brodie et al [41] and Han [42]. Nevertheless, the sophisticated mathematical

formulation of his model failed to give convincing physical insight into this problemand

the structure of electron stochastic interactions remains hidden.

2.2. Space charge effect

The aberrations induced by the lensing action of global space charge of the

electrons also result in beam blur that increases with beam current. Han and Winograd

[3][12] have demonstrated through simulations that the allowable current in a high

throughput electron beam projection system is strongly limited by these aberrations. In

particular, beam-induced space curvature and astigmatism have been recognized as the

major contributors to the beam blur. The space charge effect was later observed and

studied in the SCAPEL system [43] [44].

Techniques that effectively reduce the space charge effect are vital to the

realization of high throughput electron beam lithography tools. The space charge

neutralization of electron beams using positive ions has been investigated since 1920's

when cathode ray tube was a main focus of the study [45] [46]. In the mid 20*** century,

topics which involved neutralization were beam transport phenomena, plasma physics

and elementary particle physics. The space charge neutralization of ion beams using

electrons was demonstrated [47]. In 1997 Chao [28] et al and Orloff [29] show that the

10



spherical aberrations in ion beams can be corrected via electron clouds. However, it was

not clear whether the neutralizationscheme would be applicable for a high throughput e-

beam system due to the scattering of electrons. Xiu [30] [31] later studiedthe impact of

space charge coils and a multi-pole projector in electron beam systems trying to reduce

the field curvature the other space charge induced aberrations in the SCALPEL system.

Nevertheless, no quantitativeresults havebeen givenon beamblur reductions.

2.3. Simulation tool

Simulationtechniques serveas a powerful tool for the studyof electron Coulomb

interactions in the beam column. It is particularly usefiil in the study of the electron

stochastic blur when the analytical approach is formidable. In comparison with

experimental techniques, all the beam and column parameters can be easily tuned in

simulations.

The largest computational obstacle in the simulation of electron beams is the

calculation of the forces exerted on each electron by the other electrons. Calculating this

directly is prohibitively time consuming as the computation time grows as the square of

the number of particles. A great deal of literature has been devoted to the study of

reducing the amount of computation time by allowing the use of approximations. For

calculations where high accuracy is not essential, the method of Bames and Hut [10] is a

possible choice, which is used in Munro's commercial electron beam simulation software

[11]. The amount of work required by the Bames-Hut method to perform the force

calculation for N particles is proportional to AHogA^.
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Jansen developed the Fast Monte Carlo Simulation (FMCS), which combine the

Monte Carlo approach with his Extended Two-particle theory [48]. The accuracy of the

simulation, however, is limited by the unverified assumptions and approximations in

Jansen's theory. Moreover, the detailed mechanisms of electron-electron interactions can

no longer be examined due to these approximations.

The Stanford electron beam simulator, uses "field electrons" and "test electrons"

to avoid the large amount of calculations [12] [13]. In this model, all the field electrons

follow completely straight trajectories and only provide background electric field for the

test electrons. This approximation tends to overestimate the effect of Coulomb

interactions in the column. The simulator was mainly used for the study of global space

charge effect in beam projection systems.

For simulations that require more accuracy, the Fast Multipole Method (FMM) of

Greegard, Carrier and Rokhin [16] is an appropriate choice. Here the amount of work

required to perform the calculation is proportional to the number of particles. For a high

level of accuracy, it is more efficient than the Bames-Hut algorithm. Carmichael [49] and

Wen at al [50] employs a fidly rigorous Fast Multipole Method (FMM) using the

DPMTA code firom Duke [51] to perform the force calculations, for his electron beam

simulator. Wen's implementation of FMM does not include local refinement in spatial

divisions, which limits its efficiency for highly non-uniform electron distributions, such

as a crossover beam.

12



2.4. Electron-resist interactions

In 1968Reimerpublished the single scattering Monte Carlo model [52], in which

electron scatterings in solids are simplified by separating the effects of elastic and

inelastic scattering events. The angular deflection of an electron is determined by the

elastic scattering based on the Rutherford cross section and the energy loss between

scatterings is calculated by the continuous slowing down approximation of the Bethe law

[53]. The single scattering model has been refined by Reimer et al [54], Curgenven and

Duncumb [55], Murata el al [56]. Based on these past studies the Monte Carlo

simulation with single scattering was applied to fundamentals of electron beam

lithography. The reports by Shimizu and Everhart [21] and Shimizu et al [57] were

concerned with energy deposition in bulk PMMA targets. Nevertheless, the single

scattering model does not include inelastic collisions or secondary electron productions,

which cause spreading ofenergy absorption.

Based on the single scattering model, Murata et al [22] [58] later developed a

hybrid model for lithography applications, which includes discrete energy processes and

fast secondary electron productions. The hybrid model provides the profile for the

electron energy deposited in the photo-resists. Vriens cross section [59] and the modified

Bethe formula by Joy and Luo [60] were used to describe the discrete energy processes.

Both models, however, are based on the assumption that all forms of deposited energy

contribute equally to the exposure events, which has no physical basis. The detailed

mechanisms of exposure reactions are beyond the scope of these models.

13



In 1992 Lutwyche [61] proposed a semi-classical model to study the resolution of

e-beam lithography. G. Han and F. Cerrina [62] later developed an analytical model

based on the theory of \drtual quanta. In these models, all the exposure events were

attributed to the high energy primary electrons. The impact of secondary electrons was

not included in the discussions. Moreover, they use overly simplified models for the

resist molecules, which overlooks most ofthe exposure mechanisms

14



3 Berkeley Electron Beam Simulator -

Algorithms and Characteristics

3.0. Introduction

The Berkeley Electron Beam Simulator (BEBS) is a collection of software tools

developed by the author to study the electron Coulomb interactions in beam columns.

This chapter discusses the force computations in BEBS in section 3.1. The time iteration

algorithm is presented in Section 3.2. Section 3.3 addresses the issue of post-processing

of data. Section 3.4 presents BEBS' special options for mechanism studies. Section 3.5

gives a comparison is given between BEBS and Munro's simulation software.

3.1. Force computations in BEBS

3.1.0. Pbody library

The force computations in BEBSare perfonnedwith the Pbodylibrary, which is a

parallel adaptive N-body solver developed by Blackston and Demmel [14] [15]. Pbody

employs a novel locally refinable Fast Multipole Method (FMM) [16] to achieve high

efficiency and accuracy. FMM reduces the amount of computation by using spherical

harmonics to approximate the effects of sets of particles rather than resorting to direct

calculation. The computation time is roughly proportional to the number of charge

15



particles, and inversely proportional to the number of processors, which is usually

between two to fifteen. Currently Pbodyis available on two clusters: the NOW(Network

ofWorkstations) [63] and the Millennium [64] both at UC Berkeley.

Theperformance of Pbody depends on the settings of four parameters: expansion

size P, MAXBN, SEPARATION, and the use ofsupemodes [65]. Pbody includes up to S***

order terms in its spherical harmonics expansions, namely P-5. To improve the

efficiency of the code, Pbody uses an adaptive apprpach where the regions that are

populated more densely by particles are subdivided more finely cells. Figure 3-1 is a

schematic diagram for cell divisions with at most two particles in each cell. In e-beam

applications, typically, each cell holds up to MAXBN=50 particles. A large MAXBN

results in higher accuracy at the expense of run time. Pbody directly calculates the

Coulomb forces for each pair of electrons that belong to the same cell or adjacent cells.

These direct calculations become particularly important when the neighboring particles

are from different cells [66].SEPARATION is a parameter defined in Pbody to extend the

direct calculation zone beyond adjacent cells [67] to produce a more accurate result.

SEPARATI0N=2 is chosen for BEBS. Pbody allows the use of supemodes, first

described by Zhao [68] to reduce the amount of computation with only a small cost in

accuracy. A typical 30pA current simulation (-13,000 particles) in a 40cm long colunm

takes about one hour with ten 500MHz processors. Please refer to reference [15] for a

more detailed discussion of the Pbody library. A background introduction to FMM used

in the simulation ofe-beam can be found in Chapter 2.
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(a) Adaptive (b) Non-Adaptive

Figure 3-1. The adaptive and the non-adaptive Division of space in FMM.

3.1.1. Electron bunch

Instead offilling the entire simulation column with electrons, BEBS uses single or

multiple electron bimches to reduce the computation time. Each electron bunch is 12mm

long. In order to avoid the 'tail" effect, only the 4mm part in the middle is used to

produce image on the target plane as shown Figure 3-2. This method is discussed in

reference [13] [69] and is used both by Munro's simulation software and by the Stanford

simulator. The projection lenses, whose focal lengths are independent of electron energy,

provide a means of directly observing beam blur due to electron-electron Coulomb

interactions. These achromatic imaging lenses are appropriate for investigating effects in

electron beam lithography systems where the space charge effect and the stochastic effect

are expected to dominate image quality such as in SCALPEL.

17



3.1.2. Lorentz transformations

At beam voltage of 50KV or above, the electron repulsions obey Coulomb's Law

only in the center of mass (CM) frame of theelectrons dueto relativistic effects. Thus, all

the electron positions are transformed from the lab frame into the CM frame before the

Pbody library can be used. The flowchart of the algorithm is shown in Figure 3-3.

Assume that the beam current is in the z direction.

Mask or Multi-emitter array

A
Electron bunch

4mm

. 12mm

Wafer

Beamprofile Projection lens 1 Projection lens 2

Figure 3-2. Schematic diagram of a typical simulated system with 25-emitter array. The

12mm long electron bunch is shown in the diagram.



LAB Frame: yhzi, t}

Lorentz Transformations

V

CM Frame: {x'/, y't, z'i, t'l]

V

Pbody Library

t'j «t'i, ^vV •|/'| — « r'ijj

CM Frame:

Lorentz Transformations

LAB Frame: {F/(r)!

Figure 3-3. Flowchart of force calculations.

Equation 3-1 [70].

where y =

X i = Xi

yi = yi

z'i = y{zi-V't)

t'i = y{t-V'Zi/ c^)

and Vis the center ofmass velocity ofthe electron beam.

Notice that the positions of different electrons correspond at a slightly different

instant in the CM frame. However, the relative positions of the electrons only take
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negligible changes withinthesetimedifferences, as indicated by Equation3-2. Therefore,

simultaneousness is a good approximation in calculating forces. The forces are

transformed back to the LAB frame before Pbody is called.

Equation 3-2 [71].
Fxi= F'xi/ y

Fyi= F'yi/ y

Fzi = F'zi

3.2. Time iteration

BEES updates the positions of the electrons through a special iteration algorithm

of its own. There are two distinguished features of BEB's time iteration algorithm. First,

it uses the time steps adaptively to reduce the amount of computations needed. Second,

BEBS uses continuouslyinterpolated forces to calculateending positions.

Figure 3-4 shows the flowchart of time iteration. BEBS uses a trial time step /df

based on the result of the last time step. This sectiononly discusses movements along the

Xdirection. The movements alongy and z are treated in the same way. As an example, the

solid curve in Figure 3-4 shows the real trajectory of an electron i from t to At. The force

Fxi(t) experienced by this electron varies with time. BEBS approximates Fxift) with Fxi(t),

which would be experienced by this electron if there were no Coulomb forces and all the

electrons in the colunm traveled along straight lines, as shown in Figure 3-4. Fxi(t) is

further approximated with parabolic function Fxi(T) »Axi(T't)^+Bxi(T-t)+Cxi9 where the

coefficients Axh Bxi and Cxi are solutions from the relations given by Equation 3-3.
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Equation 3-3.

Therefore,

Equation 3-4.

C,i=Fxi{t)

Axi(At/2) ^+Bxi(At/2)+Cxi— Fxi(jt+A/ /2)

Axi(At) ^+Bxi(At)+Cxi- Fxi{t +At)

Fxi(T) WFxi(r) « Axi(T'tf+Bxi(T-t)+Cxi, t<T<t +At

The dashed curve in Figure 3-5 is the trajectory of electron / calculated with the

above force. Its ending point is

Equation 3-5. xi*(t+At) » xi(t+At).

The validity of the above approximations are based on the assumption that all the

electron trajectories are "straight enough" within time At, in other words,

|ri(t+At) - ri{t+At)\<=threshold for every electron in the column. A larger value of

threshold will speed up the simulation with lower accuracy. On the other hand, a smaller

threshold tends to increase the accuracy at the expense of simulation time. The optimal

threshold at each beam current is obtained by lowering the threshold value until the spot,

size stops changing. For instance, threshold=le'6 is an appropriate choice for 30pA

beam current. It takes 200 to 400 times steps for an electron to travel through the column.

In the last step of each iteration, BEBS performs the threshold check. If the result is

negative for some electron. At will be halved to make the approximation more accurate.

On the other hand, if it works for two consecutive iterations. At will be double to speed
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up the simulation. The accuracy of the time iterations is checked with two relativistic

electrons traveling through the beam column. The percentage error ofthe final transverse

displacement ofeach electron is within 0.1%.

Fxi = 0, trial time step At

{3c/,/ +A//2} {jci, t +A/}

y r

{Fut+At/2} {/'«,/+A/}

1 r y f \ r

{Fi(r) =AiT^ +BiT+Ci\ r<r</+A/

threshold?

Yes

^^F^shed^^
Figure 3-4. Flowchart oftime iteration
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+ At / 2), Fi(t + At / 2)

_ Xi(t + At), Fi{t + A/)
xi{t-¥Atl2),Fi{t+. , _

Xi *(t-\- At)

Xi{t + A/), Fi{t + At)

Figure 3-5. Schematic diagram ofthe "real trajectory" (solid curve), calculated trajectory

(dashed curve), and "straight trajectory" of an arbitrary electron from time t to At. The

forces used for iteration are measured on the "straight trajectory" at time t, At/2, and At.

3.3. Post-processing of data

As the electrons reach the target plane, BEBS stores their coordinates (Xi, yi) and

velocities (Vxb Vyi). For a multi-emitter array system or beam projection system, the best

image plane is defocused from the Gaussian image plane due to the space charge effect.

In these systems, the major task of post-processing data includes measuring the size of

the image blur and frnding the best image plane.

Figure 3-6 illustrates the data processing algorithm with a 25-emitter array system.

The algorithm starts with three trial target planes, where z=Z], zj+Az, and zj-Az

respectively. A spot size (i=l,2,...25) is defined as the smallest radius of the circle

that encompasses 50% of the electron image points of this spot as indicated in Figure 3-7.

The center of the circle is the mass center ofall the points. The sizes of different spots on
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planez vary due to the spacecharge effect, and the spot size of plane z is defined as R(z)

=max{i=l,2, ,..25} based on the worse case consideration.

The values R(zj), R(zi-^Az), andR(z]-Az) define a parabola R(z)=a]Z^+bjz+cj with

minimum at Z2=- b]/2a]. Then the program starts with new trial planes at z=Z2, Z2+Az/2

and Z2-Az/2 respectively. The iteration continues until zl2/2"<threshold. The is the

locationofthe best image plane, and R(zi) is the spot size (beam blur) ofthe system.

z= ZrAz/i

z= Zi-Az/i

Figure 3-6. Spot sizes are measured at three different trail planes at z=Zi, Zi+Az/i, and zr

Az/i for each iteration. Only two beamlets are shown for clarity.
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Figure 3-7. Measuring a beam spot i on a target planez.

3.4. Special options in BEBS

A unique feature of BEBSis its special options for mechanisms studies compared

with other electron beam simulators, including Munro's Software, which puts more

emphasis on the engineering design. Every special option listed below leads to academic

contributions presented in later chapters where the details of each option are also

provided.

1. Identify the neighboring electrons of an arbitrary electron of concern and compute the

forces caused by these electrons only. This special option gives the user the chance to

study the relative influence ofthe neighboring electrons in creating image blur.
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2. Directly generate stochastic beam blurs insimulation through theuseof positrons. The

space blurs are completely eliminated in this case. This option is the first of its kind

among electron beam simulators and it gives users the capability to directly study the

stochastic blurs in any beam configurations. The details of this option together with

applications are covered on Chapter 5.

3. Separatethe beam blurs causedby electron trajectorydisplacements and those caused

by the electron velocity shifts through particle relocations. This option helps identify and

compare the blurs of the two causes.

4. Switch on/offCoulomb interactions indifferent regions in the beam column. Although

impossible to run in practice, these Gedanken experiments provide the chance to study

the blur contributions from different regions in the beam column.

5. Introduce lens aberration in either of the projection lenses to study their effects. The

choices of aberrations include astigmatism, axial astigmatism, coma, field curvature,

distortion, and spherical aberration.

6. Introduce positive ions in the beam column to study their influence on the beam blur.

Due to their large mass compared with electrons, the ions in the.colunm are assumed to

be stationary throughout the simulation.
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3.5. Comparison with Munro's Software

In addition to the special options discussed in the previous section, a different

force computation algorithm is the other major difference between BEBS and Munro's

electron beam simulator. Instead of the FMM, Munro employs the Barnes-Hut (BH)

method.

3.5.1.^Bames-Hut algorithm

The BH algorithm involves two steps [69]. In the first step, all the particles in the

bunch are surrounded by a cubic box called the "root cell". This is subdivided into 8

smaller cells, until each particle has been assigned to a unique cell, as shown in Figure 3-

8. In the second step, the inter-particle forces are computed. To compute the force upon

particle P (see Figure 3-9), one starts from the root cell. Let L be its side length, and D

the distance from the centroid C of the particles in the cell to particle P. In Munro's

implementation of BH, if D>=L (as in Figure 3-9a), one computes the total force upon P

by assuming that all the charge in the cell is located at the centroid C. On the other hand,

if D<L (as in Figure 3-9b), then the cell is resolved into eight sub-cells and the procedure

is repeated recursively. To obtain the force upon each particle, the above procedure is

repeated for each point P where the particle is located. We will refer to this version ofBH

as the Munro type implementation.
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Figure 3-8. Organizing the particles in a tree structure.

L

(a) D>L

P.

L

(b) D<=L

Figure 3-9. Force calculations in Barnes-Hut Method.

3.5.2. Accuracy and speed comparison

We compare the accuracy of the transverse forces computed with the Munro type

implementation for BH and the transverse forces computed vrith FMM for the electron
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bunch given in Figure 3-10. The electron bunch has the same geometry as the electron

bunchpassingthe crossover regionin Figure3-1 if the beam convergence angleis l.SmR,

A
R

\1

7X~'
L/3 •

n- • . \

y. •_j

Figure 3-10. The electron bunch used in the accuracy comparison between Barnes-Hut

and FMM. R=240fm and L=12mm.

The simulation computes the transverse forces Fx and Fy on an arbitrary electron

located in the 4mm part in the middle of the electron bimch with (a) FMM, (b) BH, and

(c) direct calculation of forces from every other electron in the bunch. The forces

computed with FMM and BH are compared with forces calculated directly and the

percentage errors for FMM and BH are presented in Figure 3-11.

The simulation shows that the transverse forces computed with BH on average

have 9% errors compared the forces predicted by direct calculations at 5pA beam current.

The percentage error tends to decrease as the beam current increases. The error for the

forces calculated with FMM, on the other hand, is always within 0.1% for SpA to 30pA.
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Figure 3-11. Percentage errors for the transverse forces computed with BH and for the

forces computed with FMM. The percentage errors corresponding to FMM are below

0.1% in the graph.

Figure 3-11 shows that the percentage errors decrease with beam current. The

following argument provides a qualitative explanation to this phenomenon. Figure 3-12

(a) and (b) are two electron bunches of the same geometry with electron densities ria< ni,.

Pa is an arbitrary point in configuration (a) and Pb is the corresponding point in (b). Let

Fa and Fb be the total transverse forces measured respectively at these two points. In

order to compare the percentage errors of these forces calculated with BH, electron bimch

(b) is scaled to (c) such that Ha - ric. Now, the shaded region in (c) has the same geometry

and same electron number density as electron bunch (a). Thus, the force Fshaded caused by

the electrons in the shaded region has the same percentage error as Fa- On the other hand,

the unshaded region has larger cells with more electrons compared to the shaded region

as these cells are relatively further away from Pc. Thus, the statistical fluctuation and
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percentage error of Fumhaded calculated with BH is smaller thanthatof Fshaded- Therefore,

The total transverse force Fc = Fshaded + Fu„shaded has less percentage errors than Fa. In

otherwords, the percentage errors of forces decrease at highercurrent density.

• •

• •
• •

(a)
\

Pa

• • • •* • •• • • •»*.. • • .* »•».«>v*»

(b) Pi

•• ••

• •

• •
• • • •

• • • I

• • •
• • •

• •

• • • •

• •

• •

• •

(c)

Figure 3-12. Electron bunch (a) and bunch (b) with electron densities ria < ny and the

scaled electron bunch (c) with ric - ria.

Errors in the force calculations certainly influence the accuracies of the final beam

blur. The following back-of-the-envelope calculation provides a rough estimate of the

percentage error for the corresponding beam blurs based on physical intuition. The

accuracy ofthe estimates requires more rigorous studies.

Results given in the next chaptershow that 90% ofthe beam blur is caused by the

transverse forces in the region within 200mm of the crossover at 5|iA beam current. The
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averaged beam radius of this region R=315jLmi is used to estimate the percentage error in

force calculations with BH. The corresponding electron number density is the same as

that of a 240|jm radius electron bunch at 8.7pA. Thus, the calculated forces in the these

two beam configurations also have the same percentage errors, which are more than 7%

for the BH method, as indicated in Figure 3-11. In other words, the transverse forces

calculated with BH in the crossover region are on average has 7% errors compared with

the exact forces.

1 -
Simple argument shows that Fcc—^qc P, where F is the total force upon an

d

arbitrary electron in an electron bunch, and d is the average spacing of the electrons.

Results given in Chapter 7 state that the stochastic blur Bst oc 7®^^, and the space charge

3

blur BspfXil. So, BstccF, and BspccF^. Therefore, the final beam blur will be roughly

7% smaller if the errors for the forces do not average out between iterations. For 30|iA

beam current, the estimated error for the beam blur will be around 3% instead of 7%.

Similarly, the estimated error for the beam blur computed with FMM is within 0.1% for

currents between 5pA and 30pA.

There are two likely reasons for the higher accuracy achieved the by FMM in the

above example. First, FMM uses direct calculations for the electron interactions between

neighboring cells, which is not present in the Munro type implementation of BH. This is

especially important when the neighboring electrons make significant contribution to the
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total transverse force. Secondly, FMM includes up to the 5^ term in the spherical

harmonic expansion whilethe BH implemented aboveonly uses the monopole term.

The high accuracy of FMMis achieved at the cost ofspeedandruntime. Figure3-

13 compares the run time per iteration N particles. The runtime test for BH was carried

out by the Munro type implementation with 400MHzprocessors [69] while the runtime

for FMM was measured with BEBS running on ten 500MHz processors. As the graph

shows, simulation with BEBS is around 5 times slower compared with Mimro's simulator.

Here, the run time for BH and FMM are corresponding to different accuracies. The FMM

is implemented only for high accuracy force calculations. Thus only run time at high

accuracy are available.

o
0)
C/3

G
O

"eS

a>

^ 0 2000 4000 6000 8000 10000 12000

Number ofparticles N ^ '

Figure 3-13. Comparison of run time per iteration between FMM and BH with N

particles.
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4 Beam Blur Contributions in Multi-emitter Array

Systems

4.0. Introduction

This chapter first presents how beam blur contributions vary along the optical axis

in Section 4.1. Next it will discuss how the electrons from the same beamlet and electrons

from different beamlets interact and produce beam blur in Section 4.2. The summation

rule of the blur contributions will also be presented in this section. The topics covered in

this chapter were first investigated by the author and Neureuther [25].

4.1. Blur contribution along the optical axis

Studying how Coulomb interactions in different regions contribute to the final

spot size helps identify the regions producing most of the beam blur. This will provide

insight to new strategies for beam-blur reduction. Figure 4-1 shows the schematic

diagram for the simulated 4X demagnification system. The emitter array consists of

twenty-five emitters with 200{im spacing. The illumination convergence angle of each

beamlet is Gaussian distributed with standard deviation equal to a. The whole colurrm is

divided into eleven labeled regions.
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10 11

320 360 400

z(mm)

Figure 4-1. Schematic diagram of the simulated system measuring beam blur contribution

along the optical axis. V=100kV, 5V=15V for all the simulations.

The crossover is around z=320mm in region 9. With one of the BEBS' special

options, Coulomb interactions are turned on only in one region for a single run, and the

final spot size is measured on the best image plane. The results are presented in Table 4-1

and Figure 4-2. Here, the z value corresponds to the center of each region. Total beam

blur do is measured when the forces are on throughout the column, and value a is the

linear summation of the blurs from all eleven regions.

dt^a gives the degree of coherency between different regions. A coherency close

to one implies that the blurs from different regions are combined in an almost linear

fashion, while a relatively small coherency indicates more randomness and more frequent

change of force directions as electrons travel in the column.

The data in Table 4-1 shows coherency increases with beam currents and

decreases with illumination convergence angle. This agrees with the microscopic



interpretation that the stochastic forces make more directional changes at higher electron

densities.

Figure 4-2 and Figure 4-3 show that the contribution from the crossover region

(region 9) becomes more significant at smaller convergence angles and at higher current

beam currents. Numerically, this contribution is roughlyproportional to I/a. On the other

hand, the regions near the mask and the wafer contribute little, in spite of the high

electron densities.
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blur contribution {nm/40mm) a(mR) 0.5 1.5 2.5 1.5

region # z {mrri) region length {mm) I(pA) 5 5 5 10

1 10 20 0 0 0 0

2 40 40 1 0 0 1.7

3 80 40 1.7 1 0 1.9

4 120 40 2.3 1.7 1.6 2.5

5 160 40 1.9 1.8 1.7 3.4

6 200 40 3.3 3 2.7 5.2

7 240 40 4.1 4 3.2 7

8 280 40 8.9 7 4.9 13.3

9 320 40 34 10.5 7.1 23

10 360 40 9.8 6 4.4 13.5

a(nm) 69 36.6 27 74.9

</o(nm) 51 34 25 53

coherency 0.74 0.93 0.93 0.71

Table 4-1. Blur contribution from different regions along the optical axis. The

contribution from the region near the mask or the wafer is normalized to a 40mm region

length for comparison.
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Figure4-2. Beam blur contributionalong the optical axis at different convergence angles.

Here I = 5/jA.

I=10liA

z(mm)

Figure 4-3. Beam blur contribution along the optical axis at different beam currents.

Here beam convergence angle a=L5mR.
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4.2. Inter-beamlet, intra-beamlet electron interactions and the

summation rule

4.2.0. Mask configurations

The electron beam in the column consists of multiple beamlets. To Understand

how these beamlets interact and contribute to the final beam blur is crucial to the mask

design. Only the central beamlet is measured on the wafer for the simulations in this

section, while other beamlets are tumed on and off to study the effects.

Figure 4-4 shows the mask or emitterconfigurations for different test cases. Table

4-2 summarizes the corresponding blur size of the central beamlet for each of the mask

configurations. One notices that the two 3-beamlet configurations of produce almost the

same spot size.

1 beamlet 2 beamlets 3 beamlets-A 3 beamlets-B 4 beamlets 5 beamlets '

Figure 4-4. Different configurations of the 25-emitter array. All the unmarked emitters

are tumed off. The spacing between emitters is 200pm.
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alpha(mR) beamlets 1 2 3-A 3-B 4 5

0.5 26 46 60 61 69 78

spot size D (nm)1.5 10 22 30 30 35 40

2.5 5 15 20 22 25.5 28

0.5 676 2116 3600 4761 6084

spot area D^(nm^)1.5 100 484 900 1225 1600

2.5 25 225 400 650.3 784

Table 4-2. Blur size ofthe central beamlet for each ofthe mask configurations inFigure

4-4. The current of each beamlet is which corresponds to 20^ for25 beamlets.

4.2.1. Summation rule for beam blur contributions

Figure 4-5 shows the area of each spot against the number of beamlets that on.

The linear behavior of each data set clearly indicates that the blur contributions are

combinedin a root mean square basis, namely:

Equation 4-1.
n

2 . j2

i=I

where D is the central beam blur, do is the blur contribution from the electron-electron

interaction within the central beamlet itself, and di is the blur contribution from the i***

neighbor beamlet. Owing to symmetry, the dis at the same convergence angle are equal.

Thus:
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Equation 4-2. =dQ +N'

for each convergence angle a The values of (f can be obtained as the slopes of the

corresponding linear plots in Figure 4-5. The values ofd are summarized in Table 4-3.

6000

S 3000

O 2000

- 1000

2 3 4

Number of beamlets

'alpha=0.5mR

•alpha=1.5mR

alpha=2.5mR

Figure 4-5. Spot area of the central beamlet versus the total number ofbeamlets that are

switched on. Configuration A was used in the simulation for the 3-beamlet case.

4.2.2. Inter-beamlet and intra-beamlet blur contributions

Figure 4-6 and Figure 4-7 draw comparisons between do and d. As can be seen, a

neighbor beamlet heavily contributesto the central beam blur at large convergence angles

and at high beam currents. At smaller angles, however, the effect of a neighbor beamlet

prior to the crossover tends to cancel with its effects beyond the crossover. This

phenomenon will be discussed in Chapter 5.

41



1=0.8

CuA/beamlet) alDha=1.5 CmR^

aloha fmR) dftfnm) d fnm) I CuA/beamlefi dnTmn^ dfnm'l

0.5 26 38 0.8 10 19.6

1.5 10 19.6 1.2 12.5 31.6

2.5 5 14 1.6 16.5 43.8

Table 4-3. Beam blur contribution d from a neighbor beamlet and the blur contribution

do from the central beamlet itself, d is obtained from Equation 4-2.
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Figure 4-6. Comparison between intra-beamlet contribution do and the inter-beamlet

contribution d at different convergence angles.
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Figure 4-7. Comparison between intra-beamlet contribution do and the inter-beamlet

contribution d at different beam currents.

4J23. Inter-beamlet blur contribution and emitter spacing on the mask

In all the previous test cases, the spacing between emitters on the mask is fixed at

200pm. In this section, the relationship is investigated between d and the initial

separation of the corresponding emitters on the mask. Similar to Section 4.2.1, d is

obtained fi'om Equation 4-2, and D2 and do are measured in simulations. The results are

summarized in Table 4-4, Figure 4-8 A and B. As can be seen, the blur contribution firom

a neighbor beamlet decreases much more slowly than the inverse-square law for Coulomb

interactions.
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Distance

(grid) 0.5

I=0.8|xA/beamlet

1 2

, a=1.5mR

3 4 5 6 7

D2 (nm) 24 22 21.5 21 20 18.5 17 16

dO (nm) 10 10 10 10 10 10 10 10

d (nm) 21.8 19.6 19 18.5 17.3 15.6 13.7 12.5

Distance

(grid) 0.5

I=0.8|xA/beamlet, a=2.5mR

1 2 3 4 5 6 7

D2 (nm) 16 15 14 13.5 13 12 11.5 11

dO (nm) 4 5 5 5 5 5 5 5

d (nm) 15 14 13 12.5 12 11 10.4 9.8

Distance

(grid) 0.5

I=1.2^A^eamlet, a=1.5mR

12 3 4 5 6 7

D2 (nm) 37.5 34 30 27.5 26 25 24 23

dO (nm) 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5

d (nm) 35.4 35.4 27.3 24.5 22.8 21.7 20.5 19.3

Table 4-4. Beam blur contribution d caused by inter-beamlet electron interactions varies

with the distance between the emitters on the mask. A grid here equals 200|jm.
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Figure 4-8. Beam blur contribution d from a neighbor beamlet decreases with the

corresponding emitter spacing on the mask. One grid equals 200)xm separation on the

mask.
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4.3. Conclusions

Studies showthatbeamblur is mostlyproduced in the crossover region in a multi-

emitter array system, which implies that blur reduction techniques should focus on

interactions in this region. Meanwhile, the blur contributions caused by inter-beamlet

electron interactions dominate over those caused by intra-beamlet electron interactions,

especially at large convergence angles. Further study is needed in order to find efficient

ways to isolateand manipulate inter-beamlet interactions in an experimental setup.

Simulation results demonstrate that the beam blur contributions from different beamlets

can be combined on a root mean square basis.
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5 Stochastic Goulomb Interactions and

Neighboring Electrons

5.0. Introduction

Mkrtchyan's Nearest-Neighbor Theory [6] is one of the analytical models used to

study stochastic interactions in e-beam lithography. This chapter provides the

methodology to verify one of Mkrtchyan's basic assumptions, namely that the stochastic

force upon each electron in a beam column is dominated by the contribution from the

nearest neighbor electron. Section 5.1 introduces the basic setup of the test system.

Section 5.2 discusses the number of neighboring electrons in different regions along the

optical axis. Section 5.3 addresses the issue of how the number of neighboring electrons

affects the transverse stochastic forces. The reader may refer to Chapter 2 for a brief

introduction to the analytical models on the electron stochastic effects.

5.1. System setup

A basic test geometry of a crossover in a lens free region equidistant between two

lenses was used to explore the nature of the electron-electron interactions. The test beam

geometry is shown in Figure 5-1. The crossover is midway (at 100mm) in the 200mm

lens free analysis domain. The electron emitter for this study was idealized to inject
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electrons withall the same energy (6E= 0) andthe angle wascomputed from the random

lateral position so that each electron if undeflected by others would pass through the

mathematical crossover (6a = 0). An ideal lens was assumed to follow the simulation

domain, which focused the crossover to a point on an image plane 100mm beyond the

simulation domain. This lens, whose focal length is independent of electron energy,

provides a means of directly observing beam blur due to electron-electron Coulomb

interactions. For the studies shown below, the beam energy was lOOkV and the radius of

the initial beam was 1mm. The simulation domain was a 200mm cylindrical tube with a

1mm radius.

Ideal Emitter

Beam profile

Interaction region

Ideal lens

Force free region

100mm 100mm 100mm

Figure 5-1. Test beam geometry. The systemparameters are: V=l00kV, AE=0, r= Imm,

femUKr^l00mm,f^^=50mm.

48

Image plane

/



5.2. Number of neighboring electrons

Simulation was carried out at beam currentsof 1,10, and 20fiA, respectively. The

simulation was initialized by first running the column at the current for about two ns to

completely fill the simulation domain. At a later time step, those electrons with

instantaneous forces exceeding thresholdvalue Fcato#were singled out for the subsequent

analysis. The positions and forces of these electrons give insight to the locations and the

sizes of strongly interacting electron clusters, which make a major contribution to the

beam spot size. Athreshold of10*^®Nwas chosen for IpA and 10"^^Nfor 10 and 20pA.

Forces below this threshold were insignificant with respect to infiuencingbeam spot size,

as confirmed by separate tests. For each electron, all its neighboring electrons are

identified and located. This allows the size ofelectron clusters to be seen as a fimction of

position along the beam. It also allows the contributions to the transverse force to be

analyzed as a fimctionof the numberof neighbors includedin the calculation.

The number density of electrons with N neighbors is plotted as the fimction of

positions along the optical axis at 7/Z/4 in Figure 5-2. At about 7600 electrons are in

the simulation domain at any instant. Of these, about 2700 (or 35%) experience forces

greater than as indicated by the data labeled total. The curve labeled N=^l

corresponding to the electrons with only one nearest neighbor. These electrons accoimt

for most of the strong interactions more than 20mm away fi:om the crossover and about

37% of the strong interactions overall. Near the crossover the N>=3 and N<=8 curve

corresponding to those electrons with three to eight neighbors rises, and right at the

crossover many of the electrons experiencing strong forces have 9 or more neighbors.
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Figure 5-2.Number of neighbors electrons vs. axial position for 1=1pA and Fcutoff=10'̂ °N.

Figures 5-3 and 5-4 showthe number density of electrons with N neighbors along

the column for beam current increasing to 10 and 20juA, The curves are quite similar in

shape to that for 1 pA. However, note that the vertical axis has been scaled proportional

to beam current. The area is about 9,062 electrons or 12% of the 76,000 electrons in a

lOjuA beam. The decrease in the cases with less than 9 neighbors at the crossover is quite

noticeable. As might be expected, the shape of these curves generally follows the number

of electrons expected to be within a sphere with a radius of 48 um. Fortunately, this also

indicates that the observed trends are likely scaleable to slightly lower force thresholds at

which as much as 30% of the electrons undergo transverse-displacements and produce

beam blur.
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5.3. Effect of neighboring electrons upon transverse forces

The contribution to the transverse statistical force from various numbers of

neighbors at a IjiA beam current is shown in Figure 5.5. The vertical axis shows the

force ratio for systematically includingmore neighbors.Hie horizontal axis shows the net

transverse force on a logarithmic scale. The lowest data set is the ratio of the magnitude

ofthe transverse force for two nearest neighbors compared to the ratio for one. The result

is then shifted downward by one. Hence, any deviation from zero greater than 0.1 (49%
r

of the electrons) indicates that a second neighbor affects the force bymore than 10%. It is

notable that at forces even above 1(T^^Nmore than one nearest neighbor is participating.

Similar data sets are shown for 3 neighbors vs. 2 neighbors, 6 vs. 3,10 vs. 6, and

the total vs. 10.Again, a deviation from 5,10,15, and 20 by more than 0.1 indicates that

the force changes by more than 10% when the additional neighbors are introduced. The

corresponding percentage of the electrons is also given in the graph. The curves become

quite compact in moving up to more nearest neighbors, especially for forces above 10"'®.

One exception is the large blur for the total versus the 10-neighbor curve, and this is

attributed to the presence of a more macroscopic space charge effect. As more and more

neighbors are included, the force evaluated becomes closer and closer to the real

statistical force, and the force ratio converges to one. For current of 7/z4, Fioxyis a good

approximation to the real transverse statistical force as seen on the graph. In this case,

52% of the forces are more than 10% off (83% are larger and 17% are smaller) if one

adopts the nearest neighbor approximation.
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Figure 5-5. Effectof neighboring electrons upontiansverse forces for 1=1|xA and

/^««.#=10- '̂'N.

Figures 5-6 and Figure 5-7 show the contribution to the transverse statistical force

from various numbers of neighbors at 10 to 20 \iA. An order of magnitude increase in

beam current causes a two order ofmagnitude translation of the data set to higher forces.

This is because the tenfold increase in beam current causes a tenfold decrease in the

average spacing, which results in a two order of magnitude increase in the typical force.

The spread in the data beyond a deviation of 0.1 is now much greater, and the increased

spread becomes particularly noticeable even when 6 and 10 neighbors are added. At

lOpA it is likely the norm rather than the exception to have several nearest neighbors

contributing to the force when passing through the crossover. Since multiple neighbors

become important about 10mm prior to the ideal crossover where the lOjuA current

corresponds toa current density of30mA/cm^, this current density might serve asa rule of

thumb for when multiple neighbor contributions are completely dominating.
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5.4. Conclusions

Analysis of a basic crossovershowedthat strong transverse-deflection forces were

associated with high particle density. More importantly, interactions with multiple rather

than nearest neighbors almost immediatelybecame the norm rather than the exception. In

practical systems where crossovers are not ideal, the current density might be used as a

guide, with strong multiple neighbor interactions being observed at lOmA/cm^ and clearly

dominant at SOmAJcrrf. The corresponding typical electron inter-particle spacings are

62fm and 43respectively.
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6 Structure ofStochastic Coulomb Interactions

6.0. Introduction

Traditionally, the stochastic beam blurs have been considered as random and

uncorrectable, until a puzzling result was discovered. Jansen [26] predicted that the

homocentric beam with a crossover and the homocentric parallel beam in Figure 6-1

produce the same spot size in spite of the high electron densities in the crossoverregions.

The prediction was later confirmed in simulations [41] [42]. To explain this puzzling

result, Jansen suggested that some cancellation mechanism in stochastic interactions

reduces the final beam blur in the configuration with a crossover. Nevertheless, the

sophisticated mathematical formulation of his model failed to give convincing physical

insight into this problem.
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Electron
Wafers

Figure 6-1. The homocentric beam with a crossover, and the homocentric parallel

beam that produces the same spot size, as predicted by Jansen.

In this chapter, the combined approach discussed in Section 1.0 is formulated

based upon the empirical analysis of average stochastic forces along the column. It has

been successfully utilized to explain of the structure ofelectron stochastic interactions.

Section 6.1 presents the result for the structure of stochastic interactions in a

probe-forming beam with a crossover and investigates how this structure affects the final

beam blur. The stochastic interactions in a homocentric parallel beam are discussed in

Section 6.2. Section 6.3 compares the two above configurations and explains why they

produce the same beam blur regardless of a considerable difference in electron densities.

The formulation of the model not only gives physical iiisight into this result, but also

makes general predictions beyond those of Jansen's. These predictions are later

confirmed in simulations. Section 6.4 briefly discusses the stochastic interactions in beam

projection systems.



6.1. Stochastic interactions in a probe-forming beam with a crossover

6.1.0. Stochastic force upon a single electron

Figure 6-2 shows a probe-forming system with a crossover in the middle.

Simulation was used to track the transverse stochastic forces Fxs and Fys caused by the five

nearest neighbors upon an arbitrary electron. Figure 6-3 plots these forces as electron

traveled through the region between the two lenses.

Electron source

\X

ElectronTrajectories ,
Wafer

Region 1 Region 2 Region 3

-4f -2f 0 2f 4f

Figure 6-2. Schematic diagram of the simulated beam configuration with a crossover.

Accelerating voltage V=100 kV, SV=15V, beam current 1=1ptA, focal lengthf=50mm,

and illumination convergence Gaussian semi-angle a =L5mR,

As electron A (dot) passes the crossover, its neighboring electron B (circle)

switches from one side of A to the other side, causing the transverse stochastic force to

change sign. The symmetry of the transverse forces around the crossover in Figure 6-3

indicates that stochastic Coulomb interactions are small, and that a first order

perturbation theory can be applied for its analysis. The symmetry of the forces will cancel
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out the blur contribution caused by velocity shift only while the blur caused by trajectory

shift survives.
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Figure 6-3. Stochastic forces upon an electron as it travels through the region between the

two lenses. These forces are computed with five nearest neighboring electrons.

The symmetry of stochastic forces must be distinguished from the space charge

effect, which also results in symmetric force patterns in a beam configuration with a

crossover. The space charge effect is a macroscopic effect, independent of the

microscopic stochastic distribution of the electrons. It depends only on the global

distribution of the electrons in the beam column. The stochastic effect however, only

depends on the microscopic stochastic distribution of the neighboring electrons.
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6.1.1. Averaged stochastic force

In addition to the stochastic forces upon an individual electron, one is also

interested in averaging the stochastic forces upon different electrons as they travel

through the beam column. In order to characterize the averaged stochastic force,

Coulomb interactions were tumed on only in a thin region [z, z^dz] for one simulation

run, as shown in Figure 6-4. This is another application of the special options discussed

in Chapter2. The assumption is that each electronexperiences a constant stochastic force

as it travels through this thin region. The assumption is appropriate because the relative

positionsof the electrons takeveryminorchanges in such a short period.

Electron

emitter
^dz Region of

interactions dX

Figure 6-4. The average stochastic forces are measured in simulations. Accelerating

voltage is V=100 kV, 5V=15V, beam current is 1=1pA, focal length is f^SOmm, and

illumination convergence Gaussian semi-angle is a =1.5.

60



Electron spot

Figure 6-5. Measuring the displacement of an arbitrary electron on the wafer.

For an arbitrary electron, a simple geometrical argument shows that the final

displacement in the x-direction on the wafer (Figure 6-5) is

Equation 6-1

= -X2+ — •2/

Here X2 and Vx2 are the displacement and the velocity of the electron passing

through lens 2,/is the focal length of both lenses, and is the axial velocity. The second

term in Equation 6-1 is the displacement change on the wafer caused by the action of lens



2. The position shift dX caused by stochastic Coulomb interactions in the region of

interaction dz is

Equation 6-2

dX =-dx^+^-dv,.

y-m

where Fx(z) is the stochastic force upon this electron measured in LAB frame. dx2 and

dvx2 are the trajectory and velocity shifts at lens 2. y is the Lorentz factor, m is the

electron mass,and dzhz is the timeto pass through this thin region

The special options of BEBS also allow us to reposition each electron when it

passes lens 2 such that dx2 = 0. This results in a displacement dX that is directly

proportional to Fx(z)'.

Equation 6-3

Average both sides of the equations over all the electrons in the region, and one can

concludes that the average stochastic force is proportional to the spot size and therefore

can be directly measured through simulations:

Equation 6-4 OC OC Spot size
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The spot size is measured for each 4mm long interaction region along the beam

column. The inverse of the beam blur is plotted against the axial position z in Figure 6-6.
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Figure 6-6. Inverse of the spot size versus the axial position ofthe region of interaction.

The linear relation in Figure 6-5 indicates that spot-size(z) is inversely

proportional to z except in the region around the crossover. Thus, the average force

Equation 6-5

where the forces are still finite as the electron density is finite. Here ^ is a constant-

independent of2.

The relation in Equation 6-4 is derived for region 2. Yet, a similar argument and

result can be applied to region 1 and region 3 as long as the origin of the z-axis is moved

to the location of the emitter or the location of the wafer. The constant k, however.
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remains unchanged only if the convergence angles in region 1 and 3 are the same as the

crossover angle in region 2.

6.1.2. Blur contribution along the optical axis

The beam blur contributions along the optical axis can be characterized by the

corresponding averaged stochastic forces. In Equation 6-2, consider the contribxition

caused by the trajectory displacement in region dz.

Equation 6-6 dx2 = dVx'T = a-dt-T

_ Fx{z) dz (2f -z)
y-m V,

wheredvx is the velocity change caused by interactions in regiondz and T is the time for

the electron starting from this thin regionto reach lens 2. Therefore,

Equation 6-7

In other words:

Equation 6-8

Fx(z) dz (2/-Z) ^Fx{z) 2/ dz
y m Vx

_ Fx{z)'z dz
ym

ym Vx

dX Fx{z) z
—= 2'
dz y-m V/

and J!f(z= -t/) = 0
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The boundaiy condition comes from the assumption that Coulomb interactions

only occur in the region between the two lenses where -d < z <d. Now we will prove

that

Equation 6-9
I) _ <|f^(z)i)

dz m vz
z

Figure 6-3 shows that Fx(z) only changes its sign at the crossover where z=0.

Therefore the proof can be shown in two separate cases.
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Case 1: Fx(z) •z > 0

(DC
Hence, — >0 owe to Equation A-1,

ck

X(z)>0 (-d <z<d) due to the boundary condition.

Thus,\X\ =X.

Take the absolute value of Equation A-1 on both sides, one obtains

d\x\ |Fx(z)| |z|
<h m vz^

Take the ensemble average on both sides:

d{\X\) (|Fx(z)|) |z|
dz m vz^

Case 2: Fx{z) •z < 0

|jr|=-x.

^(|X|) (|F.(z)|)
dz m vz

Insert Equation 6-4 into Equation 6-8, one obtains:

Equation 6-10

r k 1
z- = const,

m Vz
-d < z ^ d and z ^ 0

dz

[o. z = 0
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This result indicates that different regions along the axis make nearly uniform

contributions to the final stochastic beam blur in spite ofdifferent electron densities. As a

matter of fact, the crossover region makes the smallest blur contribution in spite of its

high electron density. This result is depicted in Figure 6-7. The area of the shaded region

represents the beam spot size while the profile of the region gives the relative

contribution from different axial regions.

The relation in Equation 6-10 is derived for region 2. Yet, a similar argument and

result can be applied to region 1 and region 3 in Figure 6-2 as long as the origin of the z-

axis is moved to the location of the emitter or the location of the wafer. The constant

however, remains unchanged only if the convergence angles in region 1 and 3 are the

same as the crossover angle in region 2. In general.

Equation 6-11

where Xj, X2, and X3 are the displacement changes on the wafer caused by interactions in

the three regions respectively.

For a thin region of interaction in region 1:

Equation 6-12 dX\ = -dX', + •dv
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where dx2 and dvx2 are still the displacement and velocity changes at lens 2 but they are

caused by interactions in dz oi region 1 instead of region 2. Simple geometrical

arguments show that:

Equation 6-13

4f
dx2 =-3d5cj

where dxj and dvxi are the displacement and the velocity changes at lens 1 due to the

interactions in thin region dz . Substitute Equation 6-13 into Equation 6-12, and one

obtains:

dX\ = -{r^dx^ + ^xi)+—

Equation 6-14

Using the same argument as the one used in the derivation of Equation 6-10, it can be

shown that

Equation 6-15 7 = const, -2d<z<-d
m V
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In the above derivation, we have used the fact that k remains the same for region 1 as it

shares the same beam angle as region 2. Similarly,

Equation 6-16 rf(iX3|) _
^ 1 ^2 ~consty a <2 <2d

z = 2d

The differential blur contributions in all three regions are depicted in Figure 6-7. Notice

that the regions near the electron source or the wafer make little blur contribution similar

to the crossover region.

Beam with a crossover

Homocentric parallel beam

/

Figure 6-7. Beam-blur contributions along the optical axis for a crossover beam and a

homocentric parallel beam that share the same beam angle.



6.2. Stochastic interactions in a homocentric parallel beam

Figure 6-8 shows a homocentric parallel beam column. Again, simulation is used

to track the transverse stochastic forces Fxs andFys upon an arbitrary electron as it travels

through the region between the two lenses. Theresult is visualized in Figure 6-9.

Electron source

Region 1

Electron trajectory

k Q
1^—

Region 2 Region 3

Wafer

Figure 6-8. The homocentric parallel beamused in simulation. Accelerating voltage is

V=100kV, 6V=15V, beam current is I=l|aA, d=100mm, and illumination convergence

Gaussian semi-angle is a =1.5.

In the above beam configuration, however, electron A (dot) always travels on the

same side of neighboring electron B (circle) and thus the stochastic force upon A caused

by B does not change its sign. Figure 6-9 shows that the stochastic force upon an

arbitrary electron is nearly constant. Thus, the average force Fx(z) is also constant along

the 2-axis. Similar to Equation 6-1, one can obtain the displacement X'on the wafer if the

Coulomb interactions are only switched on in region 2:



Equation 6-17 r =:c2+f^
\

^2

f)
•f

=Zx2./
Vz

-0.05 0.05

Figure 6-9. Stochastic forces upon an arbitrary electron as it travels through region 2. The

forces are computed with the five nearest neighboring electrons.

Analogously to the derivation ofEquation 6-7 and Equation 6-8, one obtains

Equation 6-18

Equation 6-19
/_

~ = consU -d^z<d
dz y-m V.
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The analysis of region 1 and 3 are similar to that of the crossover beam and the

expressions are the sameas Equation 6-15andEquation 6-16. Thus, the blurcontribution

is nearlyuniform except in the regions near the electron source and the wafer. It can be

shown that this constant is the same as the constant in the crossover beam as long as the

two configurations share the same beam angle. The result is visualized inFigure 6-7.

6.3. Other probe forming beam configurations

The model used in the above analysis can be applied to other probe-forming

beams as well. As an example, this model predicts that the three beam columns inFigure

6-10 produce the same beam blur as long as the beam angle a remains constant. The

distance between the two lenses is always L/2 2&2i result of constant beam angle. This

prediction has been confirmed with simulations. The blur is42nm atbeam current 7=1^.

Figure 6-10. Threebeamconfigurations withthe samecolumnlength andthe same

beamangle. V=100 kV, SV=15V, L=400mm, andGaussian semi-angle a =1.5.
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6.4. Stochastic interactions in a system with multi-emitter array

The 4Xdemagnification system used in this study is the same as the one in Figure

2-1. The mask has a 5X5 array of emitters with 200pan spacing. The structures of the

stochastic forces are more complicated in a high throughput beam system. In Figure 6-11,

electrons A (circle) and B (dot) emitted from the same region on the mask travel through

the column similarly to the case of the homocentric parallel beam. This result challenges

Mkrtchyan's assumption of random correlation length [6], in which the nearest neighbor

electron of the test particle does not change. Electron C (triangle), however, changes its

relative position with respect to A and B. Moreover, the electron trajectories actually

cross at different positions along the z-axis, in contrast to a probe-forming beam with a

crossover where all the trajectories cross around the same point.

25-emitter

array

kk

.....a-
1 ir i »..j

Wafer

/
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Figure 6-11. The relative positions of the electrons in a system with a 25-emitter array.

Accelerating voltage is V=100 kV, 5F=15V, beam current is I-lpiA, focal lengths are

F 1=160mm and F2=40mm, and illumination convergence Gaussian semi-angle is a =1.5.
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Figure 6-12. Stochastic forces upon an electron as it travels through the beam projection

column. The forces are computed with five nearest neighboring electrons. Beam current

1=1^.

Figure 6-12 shows the transverse stochastic forces and upon an electron

that is emitted fi-om a region near the edge of the projection field. This electron does not

encounter any neighboring crossing electrons emitted firom other regions until it comes

near the crossover region where components of the force change signs. In comparison

with the crossover beam in the previous section, the neighboring electrons cross at

different locations in a multi-emitter array system. Thus the stochastic force patterns are

not strongly symmetric around z=0. Due to the irregular pattern of the stochastic forces,

the algebraic model developed in the previous sections has yet to be extended to the

quantitative analysis ofthe multi-emitter system.
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6.5. Conclusions

The structures of stochastic Coulomb interactions have been revealed both in

probe-forming beams and in multi-spot projection electron beam columns. A technique

combiningan algebraic approach and simulations has been developedfor the analysis and

comparison of the stochastic Coulomb interactions and the stochastic blur. It has been

shown that in a crossover configuration where the beam angles are equal, the blur

yr

contribution is nearly constant along the column, very sunilar to a parallel beam. The

randomized correlation length assumption of Mkrtchyan's Nearest Neighbor Theory

needs modification to include symmetry around the crossover. The simulation shows that

the randomized correlation length is a function of the beam diameter and that correlated

interactions occur at other axial positions due to symmetry with respect to the beam

crossover. Further study is needed to investigate the possibility of reducing the stochastic

blur through manipulating its rich structures.
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7 Scaling Laws of Stochastic Coulomb Interactions

7.0. Introduction

The previous chapter presented a combined approach to study the beam blur

contribution along the optical axis. Nevertheless, this method is no longer applicable if

one wants to rescale an electron beam system and compare the blur sizes. In contrast to

the space charge effect, the theoretical analysis of the stochastic effect is much more

sophisticated. Different theoretical models have been developed to predict the beam blur

caused by the electron-electron stochastic interactions in various beam configurations.

These theories, which are briefly introduced in Chapter 2, are based on a series of

unverified assumptions or approximations. Heretofore in simulation studies the stochastic

blur contributions have always been convolved with those of the space charge and can

only be isolated through approximation. This section describes a stochastic effect

simulator that directly measures the stochastic blur.

Figure 7-1 shows the schematic diagram of the stochastic effect simulator. BEBS

use moving positrons to eliminate the space blurs. A positron has the same mass but

opposite charge as an electron. In the simulation, the positrons in the column share the
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same energy, energy spread, and spatial distribution as the electrons. Therefore, the

global space charge effect is completely eliminated and the beam blurs are only caused

by the stochastic interactions among the electrons and the positrons. The positrons exert

and experience similar stochastic forces to their electrons counterparts and produce the

beam blur together with the electrons. As an example, the total beam blur created by the

combining of a ISfjA electron beam and a 15fjA positron beam will be the same as the

stochastic blur produced by a SO^A electron beam.

- =r zCSL .o"®

O Moving electron 9 Moving positron

Figure 7-1. Schematic diagram of the stochastic effect simulator.

This stochastic effect simulator can directly measure the stochastic blurs in any

beam configurations. The space charge blurs can be easily obtained from the following

relationship:

Equation 7-1 space charge blur =-Jtotal blur^ - stochastic blur^
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7.1. Theory

This section provides a preliminary proof of the validity of the stochastic effect

simulator. Figure 7-2 shows the cross sections of two identical beam columns A and B,

one for an ordinary electron beam simulator and the other for the corresponding

stochastic effect simulator. Assume that the particle locations in either of the columns

follow identical and independent distributions. Two test electrons are at identical

positions of the two columns as shown in the figure. Fx, Fy, F*x and F*y are the total

forces upon them caused by other electrons in the column. Now we claim:

Equation 7-2 Vanance{F^)=Variance{Fj^)

Equation 7-3 Variance{Fy)=Variance[Fy)

Without losing generality, it is sufficient to show:

Equation 7-4 e{f^)-E^{F)= e{f^)

Remember that £^Fj=0 due to the effect of positrons. HereF =^FJ, F =^^Ff,
/=! /=1

where F) and F^ are the forces caused by particle i in the respective columns. Moreover,

all the FjS follow the same statistical distribution, i.e., /(f;)=/{Fj), /(^)=/(^) if

particles iis positive and/(- Ff)= /{Fj) ifparticles iis negative.

In order to show Equation 7-4, we first show

Equation 7-5 e{(F, +F^f)- +F2)= +fJI
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where particle 1 and 2 carry oppositecharges in the stochastic effect simulator column B.

LHS =e{f^ + +2• •Fj)- E^{Fi)-E^{F2)-2•E{Fi)-^(Fj)
=2-Far(F,)

RHS =f((F, - F2)')= f(f,' +Fj^ - 2•F, •F2)

=f(f,')+ f(f2')- 2•F{F,)- E(F2)- F'(F,)- E^{F2)+ £'(F,)+ £'(Fj)
=2Far(F|)

= LHS

Now, all the particles with opposite charges in column B can be paired. Similarly, all the

electrons in column A are also paired. Each pair ofparticles produces a total force, which

conforms to similar independent distribution in two columns. Analogous to the derivation

ofEquation 7-5, it can be shown that E^{f)= N•Var{Fi)=

Remember that the position of the test electron in each coluirm is arbitrary. The

variance of the force is actually a good measurement of the magnitude of the stochastic

force. Hence, the stochastic forces at identical positions in the two columns are roughly

equal. Therefore, the stochastic effect simulator produces the same stochastic blur as the

original electron beam column.
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Figure 7-2. Cross sections of an ordinary electron beam simulator A and the

corresponding stochastic effect simulator B.

7.2. Scaling laws

7.2.0. Comparison with Jansen's Theory

Jansen's theory [26] predicts the scaling of the stochastic beam blur versus the

beam current for a SCALPEL system:

Equation 7-6 Jansen'sstochastic blur oc f

Simulation with BEES shows that:

Equation 7-7 BEBS's stochastic blur oc f
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The simulation results roughly agree with Jansen's prediction. Nevertheless, the

spot size is larger than Jansen's prediction at each current as shown in Figure 7-3. Jansen

made a series of approximations and assumptions, which includes: (1) each electron only

being involved in one or no strong collisions in a beam segment, and (2) the interactions

being fully correlated in one beam segment and fully uncorrelated between beam

segments. These approximations all contribute to the above discrepancy.

SCALPEL

Jansen^s analysis

l^tA)

' t I

10.1 12.1 14.1

Figure 7-3. Comparison between the stochastic blur measured with BEBS and the blur

from Jansen's prediction.

7.2.1. Scaling laws for a 25-emitter array system

The applications of Jansen's theoretical model are restricted by the beam

configurations due to its complexity. The stochastic effect simulator, however, can be

81



easily applied for different beam geometries. In this section, the scaling laws are

developed for the 4X demagnification 25-emitter arraysystem shown in Figure 7-1.

The spot sizes are plotted against beam current, beam energy, emitter spacing,

column length and beam convergence angle in Figure 7-4, 7-5, 7-6, 7-7, and 7-8

respectively. The space charge blurs are calculated based on Equation 7-1.

Beam blur (nm)
100 T

I(mA)

Total bl ur

Spflgft fjhargft blur

Stocha! tic blur

Figure 7-4. Current dependency ofthe beam blurs in a 25-emitter array system.
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Figure 7-5. Beam energy dependency ofthe stochastic blur and the space charge blur.
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Figure 7-6. Emitter spacing dependency ofthe stochastic blur and the space charge blur.
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Figure 7-7. Column length dependency ofthe stochastic blur and the spacecharge blur.
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Figure 7-8. Convergence angle dependency of the stochastic blur and the space charge
blur.
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The above curves lead to the scaling laws for the stochastic blur and the space

charge blurs:

Equation 7-8 Stochastic blur ccfH'^a -"'S V"'

Equation 7-9 Space charge blur oc f

Here I is beam current, L is column length, a is illumination convergence angle, S is

emitter spacing, and Vis beamvoltage.The blur size is independent ofthe beam energy

spread AE when it is within 15eV.The scaling laws for the space charge blurs agree with

Han's theoretical predictions [42].
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8 Impact ofPositive Ions and Effect ofLens

Aberrations

8.0. Introduction

The aberrations induced by the lensing action of global space charge of the

electrons result in beam blur that increases with beam current, as first demonstrated by

Han et al [3]. There are a lot of papers which deal with space charge neutralizations in

various systems such as cathode ray tube (CRT) and focused ion beams [45] [47].

However, it is not clear whether the neutralization scheme would be effective for the high

throughput e-beam due to the light mass of electrons. Xiu [30] [31] studied the effect of

space charge coils and a multi-pole projector in electron beam columns and tried to

reduce field curvature and on-axis aberrations. Nevertheless, no quantitative results have

been given on the beam blur reductions. This chapter discusses techniques that

effectively reduce the space charge effect Section 8.1 investigates the feasibility of

reducing the global space charge with stationary neutralizing ions in electron beam

columns. Section 8.2 explores the feasibility of reducing space charge effect with induced

lens aberration. The summary and conclusions are given in Section 8.3.

86



8.1. Impact of positive ions

The beam blur produced in an electron beam system can be decomposed into

stochastic blur and space charge blur, which are caused respectively by the stochastic

Coulomb interactions and the global space charge effect. Introducing a cloud of positive

ions in the electron beam column can reduce the global net charge and thus decrease

space charge blur. However, this will cause a considerable increase in stochastic blur

contribution due to the increased opportunity for collisions. Changes of the total beam

blur depend on the trade-off between these two competing tendencies. The schematic

diagram is shown in Figure 8-1.

Total beam blur

t
Stochastic beam blur Space charge blur

Electron - electron

interactions.

t
Electron-ion I I Ion space
interactions. I I charge

lonization state

Electron space
charge

Figure 8-1. Effect ofneutralizing ions upon electron beam blurs.
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Figure 8-2 shows the simulated multi-emitter array system with both projection

electrons and positive ions in the column. The ions are assumed to be stationary

compared to fast moving electrons because of their large masses. To find the most

favorable configuration, ion distributionA and distribution B are tested. In configuration

the relation between the ion number densities and the electron number densities are

given by:

Equation8-1 fix,y,z) -f^,y,z)ly

throughout the beam column. The space charge effect is completely eliminated in this

case, y is caused by the relativistic effect. In configuration 5, however, ions are

introduced only in the region between the two lenses where their distributions follow

Equation 1. The space charge effect is partially eliminated here. In our initial studies,

each ion is assumed to have only one positive charge (such as
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Figure 8-2. Schematic diagram of a high throughout electron beam column with

neutralizing ions.

Figure 8-3 shows that the percentage blur reduction increases with the beam

current. This is because the space charge blur dominates at higher beam currents as

discussed in Chapter 5 and it is more effective to reduce the total beam blur through

eliminating the space charge effect. Up to 24% blur reduction has been achieved atSOjuA

with neutralization scheme B. Blur reduction is less effective with neutralization scheme

A, especially at beam currents below I5juA. In fact, in the regions outside the two lenses,

the stochastic Coulomb interactions dominate over the space charge effect at low beam

currents. Introducing ions in these regions in scheme A leads to insignificant reduction of

space charge blur but considerable increase of stochastic blur. Other ion distribution

schemes have also been extensively studied with simulations, including Gaussian and
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Lorentzian distributions along the optical axis. Scheme B gives the best blur reduction

found to date.
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Figure 8-3. Beam current dependency of spot sizes for differentneutralization schemes.

Figure 8-4 shows the point spreads on the optimal target plane without

neutralizing ions (left) and with neutralization scheme B (right). With the presence of

ions, the beam spots near the edge of the field are smaller and much more symmetric.

Some residual aberration still appears to be present in the image on the right because only

electrons in the region between the lenses are neutralized.
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Figure 8-4. The point spreads before and after the correction with neutralizing ions.

The blur reductionalso depends on the ionization state of the ions. With ions in a

higher ionization state, such as He^^, the ion number density must be decreased in order

to maintainthe same spacecharge neutralization. The numberof recoils for each electron

are decreased due to the smaller number of charge particles in the column. Nevertheless,

the magnitude of each recoil tends to increase because each individual ion has more

charges. The total stochastic effect depends on the tradeoff between these two competing

tendencies. Figure 8-5 illustrates how the beam blur reductions are affected by ionization

states. To better understanding the trend, we also simulate the cases of fictitious ions

and with fractional ionization states. When the ionization state approaches
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zero, the statistical ion distribution approaches a continuum ofa charged cloud, in which

the space charge effect is perfectly eliminated with no increase in stochastic blur. In this

case, the spot size approaches the limit of stochastic beam blur, which can be directly

measured with our stochastic effect simulator described in Chapter 5.

25 Emitter Array

1 1.5 2 2.5

lonization state

Figure 8-5. lonization state dependency ofthespot sizes. Neutralization scheme A is

used here for each ionization state. The stochastic beam blur is 56nm as measured in

Chapter 8.

8.2. Effect of the lens aberrations

The neutralization technique, however, inevitably increases the stochastic blur.

This section investigates the feasibility of reducing the space charge blur through

introducing lens aberrations. These induced aberrations are intended to cancelor partially
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cancelthe aberrations of the spacechargelens. Figure 8-6 shows the schematicsofsuch a

system.

Lens with introduced _[_ Aberrated lens induced by
Aberrations the global space charge

09

A A "Af w 0r^ A wf- %

Figure 8-6. Introducing lens aberrations to reduce the space charge blur in a high

throughput electron beam system. Only two beamlets are shownfor clarity.

The effects of different aberrations have been extensively explored through

simulations. Introducing astigmatism in lens 1 so far has led to the best beam blur

reduction. Other tested aberrations include field curvature, spherical aberration,

distortion, coma, and axial astigmatism. The aberrations used in this thesis work follow

the definitions given by Bom and Malacara et al. in [72] [73]. Figure 8-7 shows that the

spot sizeis minimized withthe properamount of astigmatism of the first projection lens.

The astigmatism is defined as

I^Castig't^ '0.
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where r is the radial distance measured on the first projection lens, ^is the incident angle

ofthe electron on the lens, and D is the corresponding position change on the target plane

caused by the aberration.

25 EmittErArr^, I=30/tA

Total Wurte

-V •

Stochastic blur size

66 132 198 264 330 396

Figure 8-7. Beam blur reduction depends on the magnitude ofthe induced astigmatism.

The beam spot reaches its minimum of61nm with 330m"^ astigmatism in the first

lens. The percentage blur reduction is about 31%. The spot size increases when the

astigmatism caused by the space charge effect is either under-compensated or

overcompensated. As one can see, the reduced beam blur closely approaches the

stochastic blur limit, which is around 56nm. Figure 8-8 shows the point spreads at the

best focal plane before and after the correction. The spots near the edge of the field are

significantly improved. Similar to neutralizing ions, the blur reduction technique with

lens aberrations is more effective at higher beam currents when the space charge blur

dominates.
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Figure 8-8. The point spreads before and after correction withastigmatism.

8.3. Summary and conclusions

Different beam blur reduction techniques have been explored in simulation with

either neutralizing ions or introduced lens aberrations. Blur reductions of 24% and 31%

have been respectively achieved with the above two schemes at SOfiA beam current and

L5mR illumination convergence angle. The percentage reductions are more pronounced

at higher beam currents.

95



9 Electron Interaction with Photo-resist

9.0. Introduction

Since 1960s a series of Monte Carlo models have been proposed and refined to

examine the electron interactions with solids. Among these models, the hybrid model was

developed by Murata et al [22] to simulate the electron energy deposition in the photo

resist. The hybrid, however, is based on the unverified assumption that all forms of

deposited energy contribute equallyto the exposure events. The detailed mechanisms of

exposure reactions are beyondthe scope ofthis model.

The analytical Electron-Resist Interaction Model (BRIM) developed at UC

Berkeley is a recommended approach to studythe details of the electron-resist interaction

process through reaction cross sections. Section 9.1 gives the schematics of the BRIM.

Section 9.2 discusses the secondary electron emission process. Section 9.3 investigates

the exposure process using the reaction cross-sectionapproach. All of the components are

linked together in Section 9.4 and the algebraic expression describing the spatial

distribution ofthe exposure events is presented.
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9.1. Schematics of ERIM

Figure 9-1 shows the schematic diagram of the ERIM model. The high-energy

primary electrons are emitted from a point source. Low energy secondary electrons are

emitted along the primary electron path and cause most of the exposure events, as will be

discussed in later sections. The deflection process of primary electrons caused by elastic

scattering can be separated from the secondary electron emission process for the purpose

ofanalysis.

Primary election pdnt source (lOOKeV) Photo-resist
\ Exposure event

Lowenergy secondary electron(<400eV)

I

9

^ 1O-

' /1.^ / ^ ^

Real physicd Piimaiy election Secondaiy electrons production
pK)c®SB deflection andresisterqxisures

Figure 9-1. Schematic diagram of the secondary electron productions and the exposure

process.
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The ERIM is a continuous model based on the probability distributions of primary

electrons fpr{E^r,z), secondary electrons fse{Es^r^z), and the spatial distribution of the

exposure events fexp{E^r,z) as indicated in Figure 9-2.

fpr(E,r,s) r, z ftotai{Es, r, z

Primary electron profile

Resist Exposure profile

Secondary elections Final elections
production profile profile

Exposure cross section Oop —?

Figure 9-2. Schematicdiagram ofthe continuous BRIM model.

The total exposure profile is the sum of the exposure profiles caused by primary

and secondaryelectrons, respectively. As will be shown in Section 9.3, at a primary beam

energy of lOOKeV, secondary electrons are responsible for up to 80% of the exposure

events. Moreover, the angular deflections of the primaries are negligible at such high

energy. The exposures by the primaries are roughly along straight trajectories and the

resolution limit of exposure events is limited by the spatial distribution of the

secondaries.



9.2. Secondary electron emission process

The differential cross section of the secondary electron production is given by

Vriens [59] as following:

Equation 9-1

day ^ 1 417, 4C/. O

+ (i+Uy-sYj e(\+U,j-€)

^ p
where, <S> = cos \nU,

In the above equation, Uy and Ry are the ionization energy ofj shell electrons of an /

element and the Ryberg energy normalized by the incoming electron energy E,

respectively. € is the energy transfer normalized by E. When E»Uij, the above cross

section reduces to:

Equation 9-2
dEse Epr (Ese-^-jy

where Uy is replaced by the mean ionization energy J which is 74eV for PMMA [74], Epr

and Ese are the primary and secondary electron energy,respectively.

Thetotal Vrienscrosssection forPMMA at highbeamenergy is thengivenby:

Equation 9-3 o&e =—• •—=1.45 X10"^®(cw^)
3 Epr J
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Equations 9-2 and 9-3 clearly indicate that the number of secondary electrons is

inversely proportional to the primary electron energy, even though the shape of the curve

for secondary electron distribution remains the same. Figure 9-3 plots the number of

secondary electrons against the corresponding energies when three thousand lOOKeV

primary electrons are incident on a lOOnm thick PMMA resist. The three thousand

electrons correspond to the minimum dose of 500//C/cm^ for lOnmxlOnmxlOOnm

PMMA at a beam energy of lOOKeV. The graph shows that 81% of secondary electrons

have energies below 200eV. The total number of secondary electrons is:

Equation 9-4 Nse = asene'l' 3000 = 157

Here rie is the total electron density in PMMA and 1 =100nm is the resist thickness.

Number ofsecondary electrons /eV

3000 primary electrons at
lOOKeV

Figure 9-3. Energy dependency ofthe secondary electron production.
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The number of further cascade electrons is less than ten. This number has been

evaluated using the secondary electrons at energies of 400eV or less. The effect of the

cascade electrons is not considered in later discussions due to their small number.

The modified Bethe formula by Joy and Luo [60] is used to describe the energy

loss of the secondaries along their paths:

Equation 9-5 -785-^.In
ds EA

1.166(£ + 0.85J)

J

where Z, A and p are the atomic number, atomic weight and density of the photo resist

respectively. Figure 9-4 shows that 90% of the secondary electrons whose energies are

below 400eVcan only travel less than 12nm in PMMA resist Meanwhile, 81% of the

secondaries whose energies are below 200eV can only travel less than 5nm. This agrees

with the experimental result that the resolution limit for lOOnm PMMA is aroimd lOnm

[75].

Es(eV)
1000

lOOeV

=1000eV

Es=4.9eV''
s(nm)0 10 20 30 40 60

Figure 9-4. Energy losses ofsecondaryelectronsalong

101



Because the energies of secondaries are much lower compared to that of the

primaries, their emission angles are almost perpendicular to the primary electron

trajectories [22]:

Equation 9-6
2, /T. Rse!tneC^ •\-'2.EselEpr ^

sm

TV
(p = —

2

where 0 is the emission angle of an arbitrary secondary electron. The angular deflections

of secondary electrons are neglected in the ERIM model due to their short path lengths.

9.3. Exposure process

Modeling of the exposure process is illustrated with the PMMA resist and yet the

discussion can be extended to chemically amplified resists as long as the proper binding

energy is used in the modeling. Figure 9-5 shows an incoming electron with energy E

{E>4.9eV) inducing a scission event in the PMMA resist. Here, the incoming electron

could be either a primary or a secondary electron. In the ERIM model, during the scission

process, one of the electrons in a C-C bond is ionized and emitted with kinetic energy AE

causing the C-C bond to break.

Equation 9-7 Cexp =

a)
3 E £b

,5 1 2a. lna.-ln£. / , . \
( 7 H ), {otherwise}

E + lsb 3£b E 3E^ E + £b ^ '
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Since a secondary electron emission is involved, Vriens cross section is used to

calculate the scission cross section:

Equation 9-8
Oexp =

—,(£»£6)
3 E €b

;ie'̂ , 5 I Isb ln£&-ln£^ / , ^
( 7 H ), [otherwise)

£+2a 3a. E 3E^ E + a ^ '

where €b is the C-C binding energy of 4.9eV.

E-AE- &

Figure 9-5. Schematic diagram of a scission event in PMMA.

Figure 9-6 shows how the exposure cross section changes with the electron

energy E. The cross section is maximal when the electron energy is close to the C-C bond

energy and decreases at large energies.
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Figure 9-6. Electronenergydependency ofthe exposure cross sectionin PMMA.

The total number ofscissions caused by the primary electrons is

Equation 9-9 Nexp —Oaq) -TlC'l •3000 —43

where ric is the backbone C-C bond density in PMMA and resist thickness l=100nm.

Similar calculation shows that the number ofscissions caused by the secondary electrons

is around 180.

Clearly, the scission events are dominated by secondary electrons. Since the

number of secondary electrons is inversely proportional to the primary electron energy,

as presented in Section 9.2, the number of scission events also follows the inversely

proportional relationship. Therefore, the exposure dose is proportional to the primary

beamenergy in the high-energy regime.This result agrees with experiments[75].
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9.4. Spatial profile of exposure events

After the detailed investigation ofsecondary electron production and exposure

mechanisms, we develop a formulation to describe the global distribution ofthe exposure

events. The number ofexposure events per unit distance along a secondary electron path

can be evaluated based on the modified Bethe formula and the exposure cross section in

the previous sections:

Equation 9-10

Ga^Ese\nb- Gex^Ese{Eso,r '̂ rib

where, Gap=
m

(
5 1 2a lna-ln£r

Ese 4* 2a 3a Ese 3Ese^ Ese + Sb

The number of secondary electrons emitted per unit energy is:

Equation 9-11
das Tva^rie

-ru^

dEso Epr{Eso +*/)^

Combining Equation 9-9 and Equation 9-10, one obtains the spatial distributions

ofthe exposure events caused by the secondary electrons when a single primary electron

incidents on the resist:

Equation 9-12
aexp\Ese{E5o, r)\ rib das
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If the deflections ofprimary electrons are taken into consideration,the above

expression has to be convoluted withthe spatialdistribution of primary electrons:

Equation 9-13 I fejv{r) =fcxp{r)*fpr{r)

9.6. Exposure dose

Equation 9-8 clearly shows how the exposure reaction cross section depends on

binding energy €b. Meanwhile, the exposurecross sectionis proportional to the numberof

exposure events per unit volume if all other resist and beam parameters remain

unchanged. Thus, the normalized number of exposure events per unit volume is plotted

against binding energy €b for differentelectron energiesin Figure9-7.
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Figure 9-7. The normalized number of exposure events per unit volume against the

binding energy eb at different electron energies E. From top to bottom, the curves

correspond to E=400eV, lOOeV, 60eV, and 20eV,respectively.
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As discussed in Section9.2 and Section9.3, the exposure reactions are dominated

by the secondary electrons at energies of400eVor below. Figure 9-6 shows thatat energy

E=400eV, the number of exposures perunit volume is inversely proportional to binding

energy ei, if other resist and beam parameters remain unchanged. For energy below

400eV, the number ofexposures decreases even faster. In order to maintain the minimum

number of exposures per unit volume, one must increase the exposure dose and thus

increase the numberof secondary electrons. The exposure dose follows the conventional

definition, which is the amount of charges incident on a unit area of the photo-resist.

Therefore, the ERIM model predicts that the minimal exposure dose is a super-linear

fimction of the binding energy et. Ontheother hand, a larger binding energy will leadto

smaller line width if the exposure dose is held constant. These results are beyond the

firework ofMurata's Hybrid model, which only considers total deposited energy rather

than exposure cross sections.

9.7. Conclusions and discussion

An analytical electron resist interaction model BRIM has been developed to study

the detailed mechanisms of the exposure events. It has been found that secondary

electrons are responsible for up to 80% of the exposure events. The model predicts that

the minimum exposure dose ijjC/cnf) is proportional to the primary electron energy in

the high-energy regime, which agrees with experiments. The BRIM model also predicts

that the minimal exposure dose is a super-linear fimction of the binding energy for

exposures ifother resist and beamparameters remainunchanged. This result is still to be
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confirmed in experiments. The above results are beyond the scope of the hybrid model

developed by Murata, which only considers the total energy deposited in the resist.

An algebraic expression is derived for the spatial distribution of the exposure

events. The expression is suitable for numerical solution. The ERIM model can be

extended to chemically amplified resists by adjusting the binding energy.

There are still some open questions regarding the resist exposure process and the

BRIM model. According to the predictionofthe ERIM model, only aroimd 22.3 exposure

events occur in a lOnmxlOnmxlOnm volume of PMMA at the minimum exposure dose

of500^/cm^.The average spacing between adjacent exposures is3.5nm. For chemically

amplified resist,the minimumexposure dose is usually five times smaller and the spacing

between adjacent exposures would be around 6nm. This inhomogeneity of exposures can

be smoothed out during the post exposure bake.

Experimental results by Shultz [76] and Greeneich [77] show respectively 0.0169

scissions/eV and 0.019 scissions/eV in PMMA polymer. This number is roughly nine

times as large as the prediction by ERIM. One possible explanation for the discrepancy is.

that the ERIM model so far only includes exposure events that are directly caused by

electron interactions with the C-C bond in the main chain. As a matter of fact, primary

and secondary electrons also interact with other chemical bonds in PMMA and produce

different kinds of radicals. Shultz [76] [78], Alexander [79], and Kircher [80] suggest that

some of these radicals can rupture the main chain by disproportionation, which may
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explain the ease of PMMA backbone rupture. There is still no consensus on the detailed

mechanisms. If all the exposures caused by the radicals were included, the total number

of exposure events would be considerably larger than the number predicted by ERIM.

Nevertheless, the basic approach of BRIM can be extended to include the effect of

radicals. The main conclusions given earlier in this section would still be valid since the

binding energies for the backbone scissionand for the radicalproductions are roughly the

same.

The accuracy of the BRIM model also depends on the accuracy of the physical

models such as the modified Bethe formula by Joy and Luo at energies below lOOeV

whenthe exposurecross section is very large. Further investigations are required in order

to explain the discrepancies and to improve the BRIM model.
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10 Conclusions

10.0. Numerical and analytical tools

In this thesis, three simulation and analytical tools are developed to study the

electron Coulomb interactions in beam columns and electron interactions with photo

resist.

The Berkeley Electron Beam Simulator (BEBS), developed by the author, is a

software program used to simulate the electron interactions in beam columns. It employs

adaptive Fast Multipole Method and parallel codes for efficient and rigorous calculation

of Coulomb forces. It also uses continuous-force interpolation and adaptive time steps to

speed up time iteration. BEBS provides a series of options specific for studying the

mechanisms ofbeam blur production. All of these special options have been successfiilly

used to produce the academic contribution of this thesis. As one of the options, BEBS

enables the stochastic effect simulator using positrons in the beam column, which directly

produce the stochastic blur on the target plane.
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There are two versions of BEBS running on the Network of Workstations (NOW)

and the Millennium Cluster, respectively. A typical 30pA current simulation in a 40cm

long column takes about one hourwith ten 500MHz processors. Comparedwith Munro's

electron beam simulator that has 9 to 4 percent errors in force calculation at a beam

current of 5 to 30|xA, BEBS can achieve up to 4-digit accuracy in forces with 3 to 5 times

longer simulation time.

In order to study the structure of stochastic Coulomb interactions, the author

developed a novel approach that combines simulation techniques and algebraic analysis.

It not only avoids the sophisticated algebra and approximations of a conventional

analytical approach but also reveals the structure of stochastic Coulomb interactions in

certain beam configurations. This new approach has been successfully applied to the

analysis ofa crossover configuration and a homocentric parallel beam.

The BerkeleyElectron-Resist Interaction Model (ERIM) has been investigated as

an analytical approach to study electron resist interaction mechanisms based on reaction

cross sections. This model provides an algebraic expression for the spatialdistributionof

exposure events in the photo resist.

10.1. Mechanism studies and beam blur reductions

This thesis discusses different mechanisms that cause beam blur in beam columns

and in photo-resist. Severalpotential techniques for blur reductionsare also proposed.
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Studies show that beam blur is mostly produced in the region around the

crossover in a multi-emitter array system. Thus, any blur reduction technique only need

to focus on its effect on this region. Meanwhile, the blur contributions caused by inter-

beamlet electron interactions dominate over those caused by intra-beaiiilet electron

interactions, especially at large convergence angles. Effective ways are still to be foimd

to isolate and reduce the inter-beamlet blur contributions. The beam blur contributions

from different beamlets can be combined on a root mean square basis.

Mechanism that causes stochastic blur is examined from different perspectives.

Unlike the space charge blur, stochastic blurs can not be easily reduced with conventional

optics. Further studies are required in order to fully utilize the structure of stochastic

interactions for possible blur reductions.

Although the stochastic effect has long been observed, it has never been directly

measured in experiments and or in simulations. The Stochastic Effect Simulator enables

the direct measurement of stochastic blur and demonstrates the '^stochastic limif for any

technique that reduces space charge blur only. Simulations show that in 4x

demagnifrcation electron beam systems, the stochastic blur is proportional to beam

current raised to the power of 0.62, column length raised to the power of 1.27, beam

convergence angle raised to the power of -0.9, emitter spacing raised to the power of -

0.45, and beam voltage raised to the power of-2/3. The scaling exponent 0.62 for beam

current roughly agrees with Jansen's prediction of 0.67. The blur size is independent of

the beam energy spread AE when it is within ISeV. Scaling laws for space charge blurs
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are also developed. The scaling exponents agree with Han's simulation and experimental

results [3] [42].

Simulations are used to test the basic assumptions of Mkrtchyan's theory on

electron stochastic interaction in a beam column: (1) consideration of nearest-neighbors

only, and (2) a randomized length, over which interactions are correlated. Analysis of a

basic crossover beam shows that interactions with multiple rather than nearest

neighboring electrons almost immediately become the norm rather than the exception as

proposed by Mkrtchyan. Thesimulation shows that the randomized correlation length is a

function of the beam diameter and that correlated interactions occur at other axial

positions due to symmetry with respect to the beam crossover. The randomized

coirelation length assumption of Mkrtchyan's theory needs modification to take the

symmetry into consideration.

The structures of stochastic Coulomb interactions have been revealed both in

probe-forming beams and in multi-spot projection electron beam columns. It has been

demonstrated that in a crossover configuration where the beam angles are equal, the blur

contribution is nearly constant along the column, very similar to a parallel beam. The

stmctureof the stochastic Coulombinteractions also implies possibilitiesin the reduction

of stochastic beam blurs.

Different techniques that reduce the space charge blurs have been explored in

simulation with either neutralizing ions or lens aberrations introduced in the projection
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lenses. Blur reductions of 24% and 31% have been respectively achieved with the above

two schemes at 30beam current and l.SmR illumination convergence angle. The

percentage reductions are more pronounced at higherbeam currents. Future experimental

works are required to test these ideas in high throughput e-beam systems.

ERIM is a recommended approach to study the detailed process of the exposure

events. It is shown that secondary electrons are responsible for up to 80% ofthe exposure

events. The model predicts that the exposure dose is proportional to the primary electron

energy in the high-energy regime, which agrees with experimental results. An algebraic

expression for the spatial distribution ofthe exposure events is derived and is suitable for

numerical solution. The ERIM model also predicts that the minimal exposure dose is a

super-linear function of the bond energy for exposure. The model can be potentially

extendedto chemically amplified resists throughadjusting the binding energy.

10.2. Future work

The aberration compensationand beam neutralization techniques suggested in this

thesis are subject to dynamic changes in projected pattern and pattern displacement.

These effects can be viewed as transient effects and demand further investigations. For

the space charge neutralization technique, the ion cloud reaches the optimal distribution

duringthe transient period after the beam current changes. The introducedaberration also

takes a transient period to reach its desired magnitude. The length of the transient time

will directly influence the throughput ofan e-beam system.
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Even without these beam blur compensation techniques, there are a number of

interesting transient questions, such as the resolution ofthe initial burst ofelectrons down

the column. At present, e-beam systems suggest that these effects are, however, small

compared to the overall exposures.

Simulations show about 30% beam blur reduction at 30^ beam current in a 25-

emitter array system with space charge blur reduction techniques. The blur size has been

reduced from 88nm to around 60nm, which is close to ibe 56nm stochastic blur limit. The

reduced spot size would satisfy the 70nm resolution requirement in high-throughput e-

beam lithogr^hy. However, these results are based on either ideal ion distributions or

ideal lens aberrations and the blurreductions would be smaller in experimental systems.

The future work in this area should focus on the experimental implementation of these

techniques.

The potential application of the structure of stochastic Coulomb interactions

requires further investigations. The structure suggests the possibility of reducing

stochastic blurs through manipulating the electron trajectories, which could improve the

ultimate resolution ofe-beam systems.

The BRIM model canbe extended to chemically amplified resists by adjustingthe

binding energy. The accuracy of the model needs to be improved by including the

indirect exposures through radicals and quantifying all the energy transfer pathways.

Experimental work is required to test the relationship between the bindingenergy and the
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minimal exposure dose, as predicted by ERIM. It will also be interesting to look at

creation ofexposure events when resist molecules are modeled as dipoles.
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