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Abstract
Coulomb Interactions in High Throughput Electron Beam Lithography
by
Bo Wu
Doctor of Philosophy in Physics
University of California at Berkeley
Professor Andrew R. Neureuther, Chair

Professor Jonathan Wurtele, Cochair

High throughput electron beam lithography systems have been viewed as
promising candidates for sub-100nm wafer writing tools. This thesis extends previous
work in the study of electron Coulomb interactions and the study of electron interactions
with photo-resists. Both of these interactions contribute to image blur and the studies in
this thesis provide physical insight, quantitative characterization and suggest methods of
reducing blur.

The Berkeley Electron Beam Simulator (BEBS) is a collection of software tools
developed by the author to study the charged particle interactions in beam columns.
BEBS employs the Fast Multi-pole Method (FMM) for rigorous force calculations. It
takes about one hour with ten 500MHz processors to simulate a 30pA beam current in a.
typical 4x demagnification system using a packet of 13,000 particles. The accuracy of the
force calculation algorithm is benchmarked with that of Munro’s electron beam simulator.
BEBS provides many options for observing forces and trajectory changes, and improving
beam spot size. These options have been successfully applied and proved especially

useful in studying stochastic interactions affecting beam blur.



‘The influence of space charge on the electron dynamics is investigated with
simulations. The primary consequence of space charge is beam blur. Beam blur reduction
techniques are examined using both neutralizing ions and lens aberrations. Results show
that around 80% of the space charge blur is eliminated at 3024 beam current and that the
total beam blur is reduced by nearly 30%. Further beam blur reduction would be-
formidable unless the stochastic blur is also reduced.

The basic assumptions of Mkrtchyan’s Nearest Neighbor Theory are tested. It is
demonstrated that for typical e-beam lithography applications, electron interaction with
multiple neighbérs rather than the nearest neighbors is the norm other than exception in a
typical electron beam system. The simulation shows that the randomized correlation
length is a function of the beam diameter and that correlated interactions occur at other
axial positions due to symmetry with respect to the beam crossover. The structures of
stochastic Coulomb interactions have been analyzed in probe-forming systems through a
novel approach that combines algebraic analysis of forces and simulation of relocated
trajectory displacements. This approach is able to explain why a crossover beam and a
homocentrig parallel beam with the same beam angle produce the same beam blur in spite
of the high electron densities that occur in the crossover case.

Scaling laws for stochastic blur are developed. In a beam projection or multi-
emitter array system, the stochastic blur is proportional to beam current raised to the
power of 0.62, which roughly agrees with Jansen’s prediction of 0.67. The scaling laws
of the stochastic blur are also formulated with respect to column length, beam

convergence angle, emitter spacing and beam voltage.
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1 Introduction

High throughput electron beam systems, such as SCALPEL [1] and PREVEAIL
[2], have been used as potential candidates for sub-100nm lithographic tools. The
ultimate resolution in high throughput electron beam lithography is strongly limited by
the electron-electron interactions in the beam column [3] [4] and the electron interactions
with photo-resist [5]. A thorough understanding of these interactions is vital to the design

of any high throughput electron beam systems.

1.0. Thesis

The contents of this thesis are classified into two categories: (a) analytical and
simulation tools, including the characteristics of the Berkeley Electron Beam Simulator
(BEBS) developed by this author and its algorithms, and (b) scientific contributions in the
study of electron interactions in beam columns and the study of electron interaction with
photo-resist. This chapter highlights the thesis contribution and provides a few key
references. The general background is provided in Chapter 2 with more complete

references.



1.1. Tools

Experimenting with high throughput electron beam systems is very costly and
time consuming. System modeling gives insight to the physical mechanisms and provides
general guidelines for the design. A large number of theoretical works have been
dedicated to the study of the electron stochastic interactions [6] [7] and the global space
charge effect [3] in electron beam columns. Among these, simulation techniques provide
a powerful tool for the study of the collective behavior of a large number of charged
particles in the beam column. All the beam and column parameters can be easily tuned in
simulations. The simulation approach is particularly useful in the study of the electron

stochastic blurs when the analytical approach is formidable.

A serious drawback of some existing electron beam simulators is that the
computation time is proportional to the square of number of electrons, which makes the
high beam current simulation intractable. Munro et al. have been developing commercial
software for the design of electron beam lithographic systems [8] [9]. Since the initiation
of this thesis work, Munro uses the Barnes-Hut method [10] in his commercial electron
beam simulator to reduce the amount of computation required [11]. A detailec_i
comparison between BEBS and Munro’s simulator is provided in Section 3.6 of this
thesis. Han and Winograd [12] [13] developed an electron beam simulator at Stanford
University to study the global space charge effect. Its force computations, however, are

based on an unverified approximation of “test” electrons and “field” electrons.



The force computations in the BEBS are performed with Pbody [14] [15], which.
is a parallel library running on multiple processors. It employs the Fast Multipole Method
(FMM) [16] [17] for fast and rigorous force calculations. The computation time is
roughly proportional to the number of electrons and inversely proportional to the number

of processors.

Compared with other existing electron beam simulators, BEBS provides a number
of special options for the study of beam blur production mechanisms. These options
include identifying the neighboring electrons of an arbitrary electron of concern, directly
generating stochastic blurs in simulations through the use of positrons, etc. Each option
has been successfully applied in the academic contributions of this thesis. Chapter 3 will

discuss the details of BEBS’ computational algorithms and special options.

Facing many body problems, analytical approaches often lead to algebraic
expressions that are not solvable. Simulation techniques avoid this problem. Yet, the
underlying physical principles may be hidden. To address these shortcomings, the author
developed an approach [18] which combines analytical approach and simulation
technique and uses the strength of both. This new approach is successfully applied to thg

study of the structure of electron stochastic interactions in Chapter 6.

Some early work on electron-resist interactions owes to Greeneich [19] [20] and
Shimizu [21] on the modeling of electron-resist interaction. In 1980°’s Murata et al. [22]

[23] developed the hybrid model to study energy deposition in photo-resist. Murata’s



model, however, is based on the assumption that all forms of deposited energy contribute
equally to the exposure events and the detailed mechanisms of exposure reactions were

not considered.

The Electron-Resist Interaction Model (ERIM) presented in Chapter 9 of this -
thesis is the first of its kind to study the electron resist interaction mechanisms using
reaction cross sections [24]. ERIM is a pure analytical model, which gives an algebraic

expression for the spatial distribution of exposure events.

1.2. Academic contributions

This thesis first examines the beam blur contributions in terms of axial positions,
and inter- and intra-beamlet electron interactions [25]. The results are presented in
Chapter 4. The chapter also presents the summation rule of inter- and intra-beamlet

interactions.

The electron statistical interactions create image blurs that are not correctable
through conventional optical system compensation. Theorists developed different models
to predict the beam blur caused by the electron-electron stochastic interactions in various:
beam configurations. Mkrtchyan [6] formulated an analytical model based on the nearest-
neighbor approximation. Jansen [7] [26] developed the Extended Two-Particle model for
high throughput electron beam systems. Both model also require a series of

approximations and untested assumptions.



In Chapter 5 of this thesis, the nearest-neighbor assumption of Mkrtchyan’s is
tested via simulations. Analysis of a basic crossover showed that interactions with
multiple rather than nearest-neighbor electrons almost immediately became the norm

rather than the exception.

Jansen’s Extended Two-Particle model predicts that a crossover beam and a
homocentric parallel beam can produce the same beam blur as long as they share the
same beam angle [27]. However, the physical insight is completely buried in the

mathematical complexity of his analysis.

Chapter 6 of this thesis provides physical insight and quantitative explanation of
Jansen’s above prediction. The chapter reveals the rich structures of stochastic
interactions in different beam geometries [18], which can be further explored for possible

beam blur reduction.

Chapter 7 presents a stochastic effect simulator, which is the first of its kind to
produce stochastic blur directly in simulation. It is effectively used to develop the scaling
laws for the stochastic blur and the scaling laws for the space charge blur. The chapter

also provides the theoretical foundation for the stochastic effect simulator.

Han and Winograd [3] [12] demonstrated that the aberrations induced by the
lensing action of global space charge of the electrons result in beam blur that increases

with beam current. The space charge effect seriously limits the performance of high



throughput electron beam lithography systems. It was demonstrated in experiments that
the spherical aberrations of a focused ion beam can be corrected via electron clouds [28]
[29]. However, it was not clear whether the neutralization scheme would be applicable
for a high throughput e-beam lithography system due to the scattering of small-mass
electrons. Xiu [30] [31] studied the effect of space charge coils and a multi-pole projector -
in electron beam columns and tried to reduce field curvature and on-axis aberrations.

Nevertheless, no quantitative results have been given on beam blur reductions.

Chapter 8 of this thesis discusses the impact of positive ions in beam columns and
the effect of lens aberrations as potential techniques to reduce space charge blurs. Results
demonstrate that total beam blur can be considerably reduced with either technique in

high throughput electron beam systems [32].

The hybrid model developed by Murata [22] is a Monte Carlo program used to
simulate the exposure profile of e-beam resist. This model, however, is based on the
assumption that all forms of deposited energy contribute equally to the exposure events,
which has no physical basis. The exposure mechanisms are beyond the scope of Murata’s

model.

Chapter 9 of this thesis examines the mechanisms_of electron-resist interactions.
The chapter reveals the parameter dependencies of the minimum exposure dose and the

roles of secondary electrons with the ERIM model [24]. The author derives an analytical



expression for the spatial distribution of exposure events, which is suitable for numerical

solution.



2 Background

High throughput electron beam lithography systems are viewed as promising
candidates for the next generation of wafer writing tools. In contrast to optical
lithography, the resolution of electron beam lithography is no longer limited by
wavelength. Several different types of high throughput electron beam systems have been
proposed or developed with the goal of producing sub-100nm wafer-writing tools. In a
projection electron beam system, such as SCALPEL [1] and PREVAIL [2], developed by
Lucent and IBM, respectively, the mask is flood-illuminated by a beam of electrons, and
the image is projected on the surface of the wafer. In a multiple emitter array system,
each individual emitter can be tuned on or off and patterns on the emitter array are

projected onto the wafer.

2.0. Challenges

The disadvantage of electron beam lithography is that the demands for high
resolution and high throughput are contradictory due to the répelling forces between
electrons in the beam column [33] [34]. Meanwhile, the interaction of an electron beam
with photo-resist films produces a spatial distribution of exposure reactions, which

imposes another limitation to the resolution of electron beam lithography [35] [36].



Numerous efforts have been made to reduce beam blur at high beam currents to meet a

given resolution and throughput requirement.

2.1. Stochastic effect

The electron statistical interactions create image blur that is not correctable
through conventional optical system compensation. Different theoretical models have
been developed to predict the beam blur caused by the electron-electron stochastic
interactions. Berger et al. tried to investigate the trajectory displacement effects using
Monte Carlo methods [33]. However, the stochastic effect is always convoluted with the
space charge effect in his studies. The stochastic effect was never isolated. Weidenhausen
et al. first introduced the nearest-neighbor (N-N) approach to study the electron
stochastic effect in probe-forming systems [37] [38]. Based on the N-N approach,
Mkrtchyan et al. developed a new model to examine the stochastic interactions in high
throughput e-beam systems [6] [39]. Both models are based on consideration of the
nearest-neighbor electrons and on the concept of a randomized length, over which
interactions are correlated. Mkrtchyan was then able to get agreement with the limited
experimental data for a wide range of beam currents. Meanwhile, Van Leeuwen and
Jansen proposed the Multiple Independent Collision Approach (MICA) for probe-'
forming systems [40]. To isolate the stochastic effects the model only considers the
collisions of the electrons on the trajectory that runs through the center of a circular
beam. Jansen refined the above approach and developed the extended two-particle model
for projection e-beam systems [7]. Jansen’s model still requires either a first order

approximation or a strong- single-collision approximation. Jansen predicts that a



crossover beam and a homocentric parallel beam produce the same beam blur as long as
they share the same beam angle [27]. This prediction was later confirmed in simulation
results by Brodie et al. [41] and Han [42]. Nevertheless, the sophisticated mathematical
formulation of his model failed to give convincing physical insight into this problem and

the structure of electron stochastic interactions remains hidden.

2.2. Space charge effect

The aberrations induced by the lensing action of global space charge of the
electrons also result in beam blur that increases with beam current. Han and Winograd
[3][12] have demonstrated through simulations that the allowable current in a high
throughput electron beam projection system is strongly limited by these aberrations. In
particular, beam-induced space curvature and astigmatism have been recognized as the
major contributors to the beam blur. The space charge effect was later observed and

studied in the SCAPEL system [43] [44].

Techniques that effectively reduce the space charge effect are vital to the
realization of high throughput electron beam lithography tools. The space charge
neutralization of electron beams using positive ions has been investigated since 1920’s.
‘when cathode ray tube was a main focus of the study [45] [46]. In the mid 20™ century,
topics which involved neutralization were beam transport phenomena, plasma physics
and elementary particle physics. The space charge neutralization of ion beams using

electrons was demonstrated [47]. In 1997 Chao [28] ef al. and Orloff [29] show that the

10



spherical aberrations in ion beams can be corrected via electron clouds. However, it was
not clear whether the neutralization scheme would be applicable for a high throughput e-
beam system due to the scattering of electrons. Xiu [30] [31] later studied the impact of
space charge coils and a multi-pole projector in electron beam systems trying to reduce

the field curvature the other space charge induced aberrations in the SCALPEL system. -

Nevertheless, no quantitative results have been given on beam blur reductions.

2.3. Simulation tool

Simulation techniques serve as a powerful tool for the study of electron Coulomb
interactions in the beam column. It is particularly useful in the study of the electron
stochastic blur when the analytical approach is formidable. In comparison with
experimental techniques, all the beam and column parameters can be easily tuned in

simulations.

The largest computational obstacle in the simulation of electron beams is the
calculation of the forces exerted on each electron by the other electrons. Calculating this
directly is prohibitively time consuming as the computation time grows as the square of
the number of particles. A great deal of literature has been devoted to the study of
reducing the amount of computation time by allowing the use of approximations. For
calculations where high accuracy is not essential, the method of Barnes and Hut [10] is a
possible choice, which is used in Munro’s commercial electron beam simulation software
[11]. The amount of work required by the Barnes-Hut method to perform the force

calculation for N particles is proportional to N log/.

11



Jansen developed the Fast Monte Carlo Simulation (FMCS), which combine the
Monte Carlo approach with his Extended Two-particle theory [48]. The accuracy of the
simulation, however, is limited by the unverified assumptions and approximations in
Jansen’s theory. Moreover, the detailed mechanisms of electron-electron interactions can -

no longer be examined due to these approximations.

The Stanford electron beam simulator, uses “field electrons” and “test electrons”
to avoid the large amount of calculations [12] [13]. In this model, all the field electrons
follow completely straight. trajectories and only provide background electric field for the
test electrons. This ai)proximation tends to overestimate the effect of Coulomb
interactions in the column. The simulator was mainly used for the study of global space

charge effect in beam projection systems.

For simulations that require more accuracy, the Fast Multipole Method (FMM) of
Greegard, Carrier and Rokhin [16] is an appropriate choice. Here the amount of work
required to perform the calculation is proportional to the number of particles. For a high
level of accuracy, it is more efficient than the Barnes-Hut algorithm. Carmichael [49] and
Wen at al. [50] employs a fully rigorous Fast Multipole Method (FMM) using the'
DPMTA code from Duke [51] to perform the force calculations for his electron beam
simulator. Wen’s implementation of FMM does not include local refinement in spatial
divisions, which limits its efficiency for highly non-uniform electron distributions, such

as a crossover beam.

12



2.4. Electron-resist interactions

In 1968 Reimer published the single scattering Monte Carlo model [52], in which
electron scatterings in solids are simplified by separating the effects of elastic and
inelastic scattering events. The angular deflection of an electron is determined by the
elastic scattering based on the Rutherford cross section and the energy loss between
scatterings is calculated by the continuous slowing down approximation of the Bethe law
[53]. The single scattering model has been refined by Reimer et al. [54], Curgenven and
Duncumb [55], Murata e/ al. [56]. Based on these past studies the Monte Carlo
simulation with single scattering was applied to fundamentals of electron beam
lithography. The reports by Shimizu and Everhart [21] anci Shimizu et al. [57] were
concerned with energy deposition in bulk PMMA targets. Nevertheless, the single
scattering model does not include inelastic collisions or secondary electron productions,

which cause spreading of energy absorption.

Based on the single scattering model, Murata e al. [22] [58] later developed a
hybrid model for lithography applications, which includes discrete energy processes and
fast secondary electron productions. The hybrid model provides the profile for the
electron energy deposited in the photo-resists. Vriens cross section [59] and the modiﬁed:
Bethe formula by Joy and Luo [60] were used to describe the discrete energy processes.
Both models, however, are based on the assumption that all forms of deposited energy
contribute equally to the exposure events, which has no physical basis. The detailed

mechanisms of exposure reactions are beyond the scope of these models.

13



In 1992 Lutwyche [61] proposed a semi-classical model to study the resolution of
e-beam lithography. G. Han and F. Cerrina [62] later developed an analytical model
based on the theory of virtual quanta. In these models, all the exposure events were

attributed to the high energy primary electrons. The impact of secondary electrons was

not included in the discussions. Moreover, they use overly simplified models for the -

resist molecules, which overlooks most of the exposure mechanisms.

14



3 Berkeley Electron Beam Simulator -
Algorithms and Characteristics

3.0. Introduction

The Berkeley Electron Beam Simulator (BEBS) is a collection of software tools
developed by the author to study the electrop Coulomb interactions in beam columns.
This chapter discusses the force computations in BEBS in section 3.1. The time iteration
algorithm is presented in Section 3.2. Section 3.3 addresses the issue of post-processing
of data. Section 3.4 presents BEBS’ special options for mechanism studies. Section 3.5

gives a comparison is given between BEBS and Munro’s simulation software.

3.1. Force computations in BEBS

3.1.0. Pbody library

The force computations in BEBS are performed with the Pbody library, which is a ;
parallel adaptive N-body solver developed by Blackston and Demmel [14] [15]. Pbody
employs a novel locally refinable Fast Multipole Method (FMM) [16] to achieve high
efficiency and accuracy. FMM reduces the amount of computation by using spherical
harmonics to approximate the effects of sets of particles rather than resorting to direct

calculation. The computation time is roughly proportional to the number of charge

15



particles, and inversely proportional to the number of processors, which is usually
between two to fifteen. Currently Pbody is available on two clusters: the NOW (Network

of Workstations) [63] and the Millennium [64] both at UC Berkeley.

The performance of Pbody depends on the settings of four parameters: expansion -
size P, MAXBN, SEPARATION, and the use of supernodes [65]. Pbody includes up to st
order terms in its spherical harmonics expansions, namely P=5. To improve the
efficiency of the code, Pbody uses an adaptive approach where the regions that are
populated more densely by particles are subdivided more finely cells. Figure 3-1 is a
schematic diagram for cell divisions with at most two particles in each cell. In e-beam
applications, typically, each cell holds up to MAXBN=50 particles. A large MAXBN
results in higher accuracy at the expense of run time. Pbody directly calculates the
Coulomb forces for each pair of electrons that belong to the same cell or adjacent cells.
These direct calculations become particularly important when the neighboring particles
are from different cells [66]. SEPARATION is a parameter defined in Pbody to extend the
direct calculation zone beyond adjacent cells [67] to produce a more accurate result.
SEPARATION=2 is chosen for BEBS. Pbody allows the use of supernodes, first
described by Zhao [68] to reduce the amount of computation with only a small cost in
accuracy. A typical 30pA current simulation (~13,000 particles) in a 40cm long col@
takes about one hour with ten 500MHz processors. Please refer to reference [15] for a
more detailed discussion of the Pbody library. A background introduction to FMM used

in the simulation of e-beam can be found in Chapter 2.
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Figure 3-1. The adaptive and the non-adaptive Division of space in FMM.

3.1.1. Electron bunch

Instead of filling the entire simulation column with electrons, BEBS uses single or
multiple electron bunches to reduce the computation time. Each electron bunch is 12mm
long. In order to avoid the “tail” effect, only the 4mm part in the middle is used to
produce image on the target plane as shown Figure 3-2. This method is discussed in
reference [13] [69] and is used both by Munro’s simulation software and by the Stanford
simulator. The projection lenses, whose focal lengths are independent of electron energy,
provide a means of directly observing beam blur due to electron-electron Couloml;
interactions. These achromatic imaging lenses are appropriate for investigating effects in
electron beam lithography systerhs where the space charge effect and the stochastic eﬁ‘ec§

are expected to dominate image quality such as in SCALPEL.
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3.1.2. Lorentz transformations

At beam voltage of 50KV or above, the electron repulsions obey Coulomb’s Law
only in the center of mass (CM) frame of the electrons due to relativistic effects. Thus, all
the electron positions are transformed from the lab frame into the CM frame before the -
Pbody library can be used. The flowchart of the algorithm is shown in Figure 3-3.

Assume that the beam current is in the z direction.

Mask or Multi-emitter array

Electron bunch Wafer

Beam profile = Projection lens 1 Projection lens 2

Figure 3-2. Schematic diagram of a typical simulated system with 25-emitter array. The

12mm long electron bunch is shown in the diagram.
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LAB Frame: {Xi, yi, Zi,t}

ﬂ Lorentz Transformations

CM Frame: {x'i, y'i, z’i,t'i}

Pbody Library
£yt (Vi-lfi-t<<ry)

CM Frame: {F{¢'}

Lorentz Transformations

LAB Frame: {F,(t)}

Figure 3-3. Flowchart of force calculations.

x'i=xi

Equation 3-1 [70]. yi=yi
Zi=y(zi-v-t)

ti=y(t-v-zilc?)

1

where ¥y =——=—===== and v is the center of mass velocity of the electron beam.
1-v? / c?

Notice that the positions of different electrons correspond at a slightly different

instant in the CM frame. However, the relative positions of the electrons only take
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negligible changes within these time differences, as indicated by Equation 3-2. Therefore,
simultaneousness is a good approximation in calculating forces. The forces are

transformed back to the LAB frame before Pbody is called.

. in = F:n/}’
Equation 3-2 [71]. Fyi=Flly
Fzi=F%

3.2. Time iteration

BEBS updates the positions of the electrons through a special iteration algorithm
of its own. There are two distinguished features of BEB’s time iteration algorithm. First,
it uses the time steps adaptively to reduce the amount of computations needed. Second,

BEBS uses continuously interpolated forces to calculate ending positions.

Figure 3-4 shows the flowchart of time iteration. BEBS uses a trial time step At
based on the result of the last time step. This section only discusses movements along the

x direction. The movements along y and z are treated in the same way. As an example, the

solid curve in Figure 3-4 shows the real trajectory of an electron i from # to 4f. The force
Fii(t) experienced by this electron varies with time. BEBS approximates Fg(#) with Fxi(?),
which would be experienced by this electron if there were no Coulomb forces and all the
electrons in the column traveled along straight lines, as shown in Figure 3-4. Fu(f)is
further approximated with parabolic function Fi(7) = Aui(71)*+Byi(7-4)+Cyi, Where the

coefficients 4;, By; and Cy; are solutions from the relations given by Equation 3-3.
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Cri= Fu(t)
Equation 3-3. Axi(At/2)*+Byi(At/2)+Cyi= Fii(t + At 12)

Axi(A1) 2+ By(At)+Cyi= Fri(t + Af)

Therefore,

Equation 3-4. Fi(t) = Fei(t) & Au(7)*+Be(v)+Cpiy t STS 1+ AL

The dashed curve in Figure 3-5 is the trajectory of electron i calculated with the
above force. Its ending point is

Equation 3-5. xi*(t+ Ar) = xi(t + At).

The validity of the above approximations are based on the assumption that all the
electron trajectories are “straight enough” within time A4, in other words,

Iri(t+At) - ri(t+At)|<=threshold for every electron in the column. A larger value of
threshold will speed up the simulation with lower accuracy. On the other hand, a smaller
threshold tends to increase the accuracy at the expense of simulation time. The optimal
threshold at each beam current is obtained by lowering the threshold value until the spot;
size stops changing. For instance, threshold=1le-6 is an appropriate choice for 30pA
beam current. It takes 200 to 400 times steps for an electron to trair.el through the column.
In the last step of each iteration, BEBS performs the threshold check. If the result is
negative for some electron, At will be halved to make the approximation more accurate.

On the other hand, if it works for two consecutive iterations, 4¢ will be double to speed
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up the simulation. The accuracy of the time iterations is checked with two relativistic
electrons traveling through the beam column. The percentage error of the final transverse

displacement of each electron is within 0.1%.

{xi, Vi, 1 } Fxi=0, trial time step At |[€¢——
{%i,t + At/2} {Zi,t + At}
\ 4 ‘
{Fi,1} {Fi,t+At/2} {Fi,t+ At}

{Fi(‘l‘)=Aitz+BiT+Ci}tSTSt+At

At > At/2

> {xi,t+At}

Fi(t + At) - Ti(t)| < threshold?
. No

Yes

Figure 3-4. Flowchart of time iteration
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xi(t), Fi(t)

—
— e

T +A12), Fit+ A1)~ T m——o o

Zi(t+Ar), Fi(t + Af)

Figure 3-5. Schematic diagram of the “real trajectory” (solid curve), calculated trajectory
(dashed curve), and “straight trajectory” of an arbitrary electron from time ¢ to At. The

forces used for iteration are measured on the “straight trajectory” at time #, 4t/2, and Ar.

3.3. Post-processing of data

As the electrons reach the target plane, BEBS stores their coordinates (x; y;) and
velocities (Vy;, ). For a multi-emitter array system or beam projection system, the best
image plane is defocused from the Gaussian image plane due to the space charge effect.
In these systems, the major task of post-processing data includes measuring the size of

the image blur and finding the best image plane.

Figure 3-6 illustrates the data processing algorithm with a 25-emitter array system.
The algorithm starts with three trial target planes, where z=z, z;+4z, and z;-4Az
respectively. A spot size R%; (i=1,2,...25) is defined as the smallest radius of the circle
that encompasses 50% of the electron image points of this spot as indicated in Figure 3-7.

The center of the circle is the mass center of all the points. The sizes of different spots on
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plane z vary due to the space charge effect, and the spot size of plane z is defined as R(z)

=max{ K, i=1,2,...25} based on the worse case consideration.

The values R(z;), R(z;+4z), and R(z,-4z) define a parabola R(z)=a;z°+b,z+c; with
minimum at z,=- b,/2a,;. Then the program starts with new trial planes at z=z,, z,+A4z/2"
and z,-Az/2 respectively. The iteration continues until Az/2"<threshold. The z, is the

location of the best image plane, and R(z,) is the spot size (beam blur) of the system.

Figure 3-6. Spot sizes are measured at three different trail planes at z=z, z;+ A2/, and z-

Az/i for each iteration. Only two beamlets are shown for clarity.
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Figure 3-7. Measuring a beam spot i on a target plane z.

3.4. Special options in BEBS

A unique feature of BEBS is its special options for mechanisms studies compared
with other electron beam simulators, including Munro’s Software, whiph puts more
emphasis on the engineering design. Every special option listed below leads to academic
contributions presented in later chapters where the details of each option are also

provided.
1. Identify the neighboring electrons of an arbitrary electron of concern and compute the

forces caused by these electrons only. This special option gives the user the chance to

study the relative influence of the neighboring electrons in creating image blur.
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2. Directly generate stochastic beam blurs in simulation through the use of positrons. The
space blurs are completely eliminated in this case. This option is the first of its kind
among electron beam simulators and it gives users the capability to directly study the
stochastic blurs in any beam configurations. The details of this option together with

applications are covered on Chapter 5.

3. Separate the beam blurs caused by electron trajectory displacements and those caused
by the electron velocity shifts through particle relocations. This option helps identify and

compare the blurs of the two causes.

4. Switch on/off Coulomb interactions in different regions in the beam column. Although
impossible to run in practice, these Gedanken experiments provide the chance to study

the blur contributions from different regions in the beam column.

5. Introduce lens aberration in either of the projection lenses to study their effects. The
choices of aberrations include astigmatism, axial astigmatism, coma, field curvature,

distortion, and spherical aberration.
6. Introduce positive ions in the beam column to study their influence on the beam blur.

Due to their large mass compared with electrons, the ions in the column are assumed to

be stationary throughout the simulation.
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3.5. Comparison with Munro’s Software

In addition to the special options discussed in the previous section, a different
force computation algorithm is the other major difference between BEBS and Munro’s
electron beam simulator. Instead of the FMM, Munro employs the Barnes-Hut (BH)
method.

3
3.5.1. Barnes-Hut algorithm

The BH algorithm involves two steps [69]. In the first step, all the particles in the
bunch are surrounded by a cubic box called the “root cell”. This is subdivided into 8
smaller cells, until each particle has been assigned to a unique cell, as shown in Figure 3-
8. In the second step, the inter-particle forces are computed. To compute the force upon
particle P (see Figure 3-9), one starts from the root cell. Let L be its side length, and D
the distance from the centroid C of the particles in the cell to particle P. In Munro’s
implelgentation of BH, if D>=L (as in Figure 3-9a), one computes the total force upon P
by ass:lmmg that all the charée in the cell is located at the centroid C. On the other hand,
if D<L (as in Figure 3-9b), then the cell is resolved into eight sub-cells and the procedure
is repeated recursively. To obtain the force upon each particle, the above procedure is

repeated for each point P where the particle is located. We will refer to this version of BH

as the Munro type implementation.
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Figure 3-8. Organizing the particles in a tree structure.
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Figure 3-9. Force calculations in Barnes-Hut Method.

3.5.2. Accuracy and speed comparison
We compare the accuracy of the transverse forces computed with the Munro type

implementation for BH and the transverse forces computed with FMM for the electron
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bunch given in Figure 3-10. The electron bunch has the same geometry as the electron

bunch passing the crossover region in Figure 3-1 if the beam convergence angle is 1.5mR.

Figure 3-10. The electron bunch used in the accuracy comparison between Barnes-Hut

and FMM. R=240som and L=12mm.

The simulation computes the transverse forces F; and F), on an arbitrary electron

located in the 4mm part in the middle of the electron bunch with (a) FMM, (b) BH, and
| (c) direct calculation of forces from every other electron in the bunch. The forces
computed with FMM and BH are compared with forces calculated directly and the

percentage errors for FMM and BH are presented in Figure 3-11.

The simulation shows that the transverse forces computed with BH on average
have 9% errors compared the forces predicted by direct calculations at SpA beam current.
The percentage error tends to decrease as the beam current increases. The error for the

forces calculated with FMM, on the other hand, is always within 0.1% for SuA to 30uA.
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Figure 3-11. Percentage errors for the transverse forces computed with BH and for the
forces computed with FMM. The percentage errors corresponding to FMM are below

0.1% in the graph.

Figure 3-11 shows that the percentage errors decrease with beam current. The
following argument provides a qualitative explanation to this phenomenon. Figure 3-12
(a) and (b) are two electron bunches of the same geometry with electron densities n, < n;.
P, is an arbitrary point in configuration (a) and P, is the corresponding point in (b). Let
F, and F, be the total tranéverse forces measured respectively at these two points. In
order to compare the percentage errors of these forces calculated with BH, electron bunch
(b) is scaled to (c) such that n, = n.. Now, the shaded region in (c) has the same geometry
and same electron number density as electron bunch (a). Thus, the force Fihadea caused by
the electrons in the shaded region has the same percentage error as F,. On the other hand,
the unshaded region has larger cells with more electrons compared to the shaded region

as these cells are relatively further away from P.. Thus, the statistical fluctuation and
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percentage error Of Funshagea calculated with BH is smaller than that of Fipages. Therefore,

The total transverse force F. = Fipaged + Funshaded has less percentage errors than F,. In

other words, the percentage errors of forces decrease at higher current density.

% . o :‘. ° ... .k. o. F:T:';:::?i:'}:..:.::.:{:o:
(@) \Pa ®) Py
AN A IR
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e & 0 4 4o o 4 o 0000000\:°o
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Figure 3-12. Electron bunch (a) and bunch (b) with electron densities n, < n, and the
scaled electron bunch (c) with n. = n,.

Errors in the force calculations certainly influence the accuracies of the final beam
blur. The following back-of-the-envelope calculation provides a rough estimate of the

percentage error for the corresponding beam blurs based on physical intuition. The

accuracy of the estimates requires more rigorous studies.

Results given in the next chapter show that 90% of the beam blur is caused by the

transverse forces in the region within 200mm of the crossover at S5pA beam current. The
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averaged beam radius of this region R=315m is used to estimate the percentage error in
force calculations with BH. The corresponding electron number density is the same as
that of a 240um radius electron bunch at 8.7pA. Thus, the calculated farces in the these
two beam configurations also have the same percentage errors, which are more than 7%
for the BH method, as indicated in Figure 3-11. In other words, the transverse forces
calculated with BH in the crossover region are on average has 7% errors compared with

the exact forces.

, 2
Simple argument shows that F o Elz' o« I3, where F is the total force upon an

arbitrary electron in an electron bunch, and 4 is the average spacing of the electrons.

Results given in Chapter 7 state that the stochastic blur Bs oc 7% and the space charge

3
blur Bpoc 1. So, Bsoc F, and Bsp < F'2. Therefore, the final beam blur will be roughly

7% smaller if the errors for the forces do not average out between iterations. For 30pA
beam current, the estimated error for the beam blur will be around 3% instead of 7%.
Similarly, the estimated error for the beam blur computed with FMM is within 0.1% for

currents between SpuA and 30pA.

There are two likely reasons for the higher accuracy achieved the by FMM in the
above example. First, FMM uses direct calculations for the electron interactions between
neighboring cells, which is not present in the Munro type implementation of BH. This is

especially important when the neighboring electrons make significant contribution to the
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total transverse force. Secondly, FMM includes up to the 5™ term in the spherical

harmonic expansion while the BH implemented above only uses the monopole term.

The high accuracy of FMM is achieved at the cost of speed and runtime. Figure 3-
13 compares the run time per iteration N particles. The runtime test for BH was carried -
out by the Munro type implementation with 400MHz processors [69] while the runtime
for FMM was measured with BEBS running on ten S00MHz processors. As the graph
shows, simulation with BEBS is around 5 times slower compared with Munro’s simulator.
Here, the run time for BH and FMM are corresponding to different accuracies. The FMM
is implemented only for high accuracy force calculations. Thus only run timé at high

accuracy are available.

O =2 N W h 00 O N

Run time per iteration (sec)

0 2000 4000 6000 8000 10000 12000
Number of particles N

Figure 3-13. Comparison of run time per iteration between FMM and BH with N

particles.

33



4 Beam Blur Contributions in Multi-emitter Array
Systems

4.0. Introduction

This chapter first presents how beam blur contributions vary along the optical axis
in Section 4.1. Next it will aiscuss how the electrons from the same beamlet and electrons
from different beamlets interact and produce beam blur in Section 4.2. The summation
rule of the blur contributions will also be presented in this section. The topics covered in

this chapter were first investigated by the author and Neureuther [25].

4.1. Blur contribution along the optical axis

Studying how Coulomb interactions in different regions contribute to the final
spot size helps identify the regions producing most of the beam blur. This will provide
insight to new strategies for beam-blur reduction. Figure 4-1 shows the schematic:
diagram for the éimulated 4X demagnification system. The emitter array consists of
twenty-five emitters with 200um spacing. The illuminati;m convergence angle of each
beamlet is Gaussian distributed with standard deviation equal to a.. The whole column is

divided into eleven labeled regions.
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> 2z(mm)

Figure 4-1. Schematic diagram of the simulated system measuring beam blur contribution

along the optical axis. V=100kV, 8V=15V for all the simulations.

The crossover is around z=320mm in region 9. With one of the BEBS’ special
options, Coulomb interactions are turned on only in one region for a single run, and the
final spot size is measured on the best image plane. The results are presented in Table 4-1
and Figure 4-2. Here, the z value corresponds to the center of each region. Total beam
blur djp is measured when the forces are on throughout the column, and value a is the

linear summation of the blurs from all eleven regions.

dy/a gives the degree of coherency between different regions. A coherency close
to one implies that the blurs from different regions are combined in an almost linear
fashion, while a relatively small coherency indicates more randomness and more frequent

change of force directions as electrons travel in the column,

The data in Table 4-1 shows coherency increases with beam currents and

decreases with illumination convergence angle. This agrees with the microscopic
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interpretation that the stochastic forces make more directional changes at higher electron

densities.

Figure 4-2 and Figure 4-3 show that the contribution from the crossover region
(region 9) becomes more significant at smaller convergence angles and at higher current -
beam currents. Numerically, this contribution is roughly proportional to Z/a.. On the other
hand, the regions near the mask and the wafer contribute little, in spite of the high

electron densities.
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blur contribution (nn/40mm) omR) | 0.5 1.5 2.5 1.5
region # | z (mm) | region length (mm) I(nA) 5 5 5 10
1 10 20 0 0 0 0
2 40 40 1 0 0 1.7
3 80 40 1.7 1 0 1.9
4 120 40 1 23 1.7 | 1.6 2.5
5 160 40 1.9 1.8 1.7 34
6 200 | - 40 33 3 2.7 52
7 240 40 4.1 4 3.2 7
8 280 40 8.9 7 49 | 133
9 320 40 34 105 | 7.1 23
10 360 40 9.8 6 44 | 135
a(nm) 69 | 36.6 | 27 74.9
dp(nm) 51 | 34 | 25 | 53
coherency 074 | 093] 093] 0.71

Table 4-1. Blur contribution from different regions along the optical axis. The
contribution from the region near the mask or the wafer is normalized to a 40mm region

length for comparison.
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Figure 4-2. Beam blur contribution along the optical axis at different convergence angles.

Here I = 5uA.
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Figure 4-3. Beam blur contribution along the optical axis at different beam currents.

Here beam convergence angle a=1.5mR.

38



4.2. Inter-beamlet, intra-beamlet electron interactions and the

summation rule

4.2.0. Mask configurations

The electron beam in the column consists of multiple beamlets. To Understand
how these beamlets interact and contribute to the final beam blur is crucial to the mask
design. Only the central beamlet is measured on the wafer for the simulations in this

section, while other beamlets are turned on and off to study the effects.

Figure 4-4 shows the mask or emitter configurations for different test cases. Table
4-2 summarizes the corresponding blur size of the central beamlet for each of the mask
configurations. One notices that the two 3-beamlet configurations of produce almost the

same spot size.

1 beamlet 2 beamlets 3 beamlets-A 3 beamlets-B 4 beamlets 5 beamlets

Figure 4-4. Different configurations of the 25-emitter array. All the unmarked emitters

are turned off. The spacing between emitters is 200um.
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a.lpha(mR)lbeam]ets 1 2 3-A | 3-B 4 5
0.5 26 | 46 | 60 | 61 | 69 | 78
1.5 10 22 30 30 | 35 40 | spot size D (nm)
2.5 5 | 15 120 | 22 |255] 28 |
0.5 676 | 2116 | 3600 4761 | 6084
1.5 100 | 484 | 900 1225 | 1600 |spot area Dz(nmz)t
2.5 25 | 225 | 400 650.3 | 784

Table 4-2. Blur size of the central beamlet for each of the mask configurations in Figure

4-4. The current of each beamlet is 0.8u4, which corresponds to 20u4 for 25 beamlets.

4.2.1. Summation rule for beam blur contributions
Figure 4-5 shows the area of each spot against the number of beamlets that on.
The linear behavior of each data set clearly indicates that the blur contributions are

combined in a root mean square basis, namely:

N
Equation 4-1. D*=d}+Yd}
i=]

where D is the central beam blur, dj is the blur contribution from the electron-electron
interaction within the central beamlet itself, and d; is the blur contribution from the i

neighbor beamlet. Owing to symmetry, the d;’s at the same convergence angle are equal.
Thus:
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Equation 4-2. D*=d}+N-d?
for each convergence angle a. The values of & can be obtained as the slopes of the

corresponding linear plots in Figure 4-5. The values of d are summarized in Table 4-3.

:

—&—alpha=0.5mR
—&—2alpha=1.5mR
- ..~ alpha=2.5mR

H
g 8

2000

Spot area (nm?)

oy
8
o

o

1 2 3 4 5
Number of beamlets

Figure 4-5. Spot area of the central beamlet versus the total number of beamlets that are

switched on. Configuration A was used in the simulation for the 3-beamlet case.

4.2.2. Inter-beamlet and intra-beamlet blur contributions

Figure 4-6 and Figure 4-7 draw comparisons between dp and d. As can be seen, a
neighbor beamlet heavily contributes to the central beam blur at large convergence angles
and at high beam currents. At smaller angles, however, the effect of a neighbor beamlet
prior to the crossover tends to cancel with its effects beyond the crossover. This

phenomenon will be discussed in Chapter 5.
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ﬂ@g(i_a.fnleﬂ alpha=1.5 (mR) |

alpha (mR) | dg (nm) | d (nm) I (nA/beamlet) dg (nm) | d (nm) |
0.5 26 38 0.8 10 19.6
1.5 10 19.6 1.2 12.5 31.6
25 5 14 1.6 16.5 43.8

Table 4-3. Beam blur contribution d from a neighbor beamlet and the blur contribution

dp from the central beamlet itself. d is obtained from Equation 4-2.

—o—d
—=—d0

Contribution to the central beam
blur (nm)

0 0.5 1 15 2 25 3
alpha (mR)

Figure 4-6. Comparison between intra-beamlet contribution dy and the inter-beamlet

contribution d at different convergence angles.
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Figure 4-7. Comparison between intra-beamlet contribution dp and the inter-beamlet

contribution d at different beam currents.

4.2.3. Inter-beamlet blur contribution and emitter spacing on the mask

In all the previous test cases, the spacing between emitters on the mask is fixed at
200um. In this section, the relationship is investigated between d and the initial
separation of the corresponding emitters on the mask. Similar to Section 4.2.1, d is
obtained from Equation 4-2, and D, and dj are measured in simulations. The results are
summarized in Table 4-4, Figure 4-8 A and B. As can be seen, the blur confribution ﬁ'on;
a neighbor beamlet decreases much more slowly than the inverse square law for Coulomb

interactions.
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I=0.8pA/beamlet, a=1.5mR

Distance
(grid) 0.5 1 2 3 4 5 6 7

D2 (nm) 24 22 215 21 20 18.5 17 16.
d0 (nm) 10 10 10 10 10 10 10 10
d (nm) 218 196 19 185 173 156 13.7 125

I=0.8pA/beamlet, 0=2.5mR

Distance .
(grid) 0.5 1 2 3 4 5 6 7

D2mm) 16 15 14 135 13 12 115 11
do (nm) 4 5 5 5 5 5 5 5
d (nm) 15 14 13 125 12 11 104 98

I=1.2pA/beamlet, a=1.5mR

Distance
(grid) 0.5 1 2 3 4 5 6 7

D2(mm) 375 34 30 27.5 26 25 24 23
dO (nm) 125 125 125 125 125 125 125 125
d (nm) 3564 354 273 245 228 217 205 193

Table 4-4. Beam blur contribution d caused by inter-beamlet electron interactions varies

with the distance between the emitters on the mask. A grid here equals 200um.



(A) I=0.8pA/beamlet
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Figure 4-8. Beam blur contribution d from a neighbor beamlet decreases with the

comresponding emitter spacing on the mask. One grid equals 200um separation on the

mask.
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- 4.3. Conclusions

Studies show that beam blur is mostly produced in the crossover region in a multi-
emitter array system, which implies that blur reduction techniques should focus on
interactions in this region. Meanwhile, the blur contributions caused by inter-beamlet
electron interactions dominate over those caused by intra-beamlet electron interactions,
especially at large convergence angles. Further study is needed in order to find efficient
ways to isolate and manipulate inter-beamlet interactions in an experimental setup.
Simulation results demonstrate that the beam blur contributions from different beamlets

can be combined on a root mean square basis.
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5 Stochastic Coulomb Interactions and
Neighboring Electrons

5.0. Introduction

Mkrtchyan’s Nearest-Neighbor Theory [6] is one of the analytical models used to
study stochastic interacﬁons in e-beam lithography. This chapter provides the
methodology to verify one of Mkrtchyan’s basic assumptions, namely that the stochastic
force upon each electron in a beam column is dominated by the contribution from the
nearest neighbor electron. Section 5.1 introduces the basic setup of the test system.
Section 5.2 discusses the number of neighboring electrons in different regions along the
optical axis. Section 5.3 addresses the issue of how the number of neighboring electrons
affects the transverse stochastic forces. The reader may refer to Chapter 2 for a brief

introduction to the analytical models on the electron stochastic effects.

5.1. System setup

A basic test geometry of a crossover in a lens free region equidistant between two
lenses was used to explore the nature of the electron-electron interactions. The test beam
geometry is shown in Figure 5-1. The crossover is midway (at 100mm) in the 200mm

lens free analysis domain. The electron emitter for this study was idealized to inject
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electrons with all the same energy (6E = 0) and the angle was computed from the random
lateral position so that each electron if undeflected by others would pass through thé '
mathematical crossover (8o. = 0). An ideal lens was assumed to follow the simulation
domain, which focused the crossover to a point on an image plane 100mm beyond the
simulation domain. This lens, whose focal length is independent of electron -energy,
provides a means of directly observing beam blur due to electron-electron Coulomb
interactions. For the studies shown below, the beam energy was 100kV and the radius of
the initial beam was 1mm. The simulation domain was a 200mm cylindrical tube with a

1mm radius.

Ideal Emitter Ideal lens
Beam profile
Force free region
‘ Interaction region >

|
" 100mm 100mm 100mm

Figure 5-1. Test beam geometry. The system parameters are: V=100kV, AE=0, r= Imm,

f;mitter=1 00mm, f lens=5 Omm.
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5.2. Number of neighboring electrons

Simulation was carried out at beam currents of 1, 10, and 20pA, respectively. The
simulation was initialized by first running the column at the current for about two ns to
completely fill the simulation domain. At a later time step, those electrons with
instantaneous forces exceeding threshold value F,.g were singled out for the subsequent
analysis. The positions and forces of these electrons give insight to the locations and the
sizes of strongly interacting electron clusters, which make a major contribution to the
beam spot size. A threshold of 102°N was chosen for 1pA and 10N for 10 and 20pA.
Forces below this threshold were insignificant with respect to influencing beam spot size,
as confirmed by separate tests. For each electron, all its neighboring electrons are
identified and located. This allows the size of electron clusters to be seen as a function of
position along the beam. It also allows the contributions to the transverse force to be

analyzed as a function of the number of neighbors included in the calculation.

The number density of electrons with N neighbors is plotted as the function of
positions along the optical axis at /4 in Figure 5-2. At ] uA4 about 7600 electrons are in
the simulation domain at any instant. Of these, about 2700 (or 35%) experience force;
greater than I07°N as indicated by the data labeled total. The curve labeled N=I
corresponding to the electrons with only one nearest neig_hbor. These electrons account
for most of the strong interactions more than 20mm away from the crossover and about
37% of the strong interactions overall. Near the crossover the N>=3 and N<=8 curve
corresponding to those electrons with three to eight neighbors rises, and right at the

crossover many of the electrons experiencing strong forces have 9 or more neighbors.
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Figure 5-2.Number of neighbors electrons vs. axial position for I=1pA and Feyofr =10"N.

Figures 5-3 and 5-4 show the number density of electrons with N neighbors along
the .column for beam current increasing to /0 and 20uA4. The curves are quite similar in
shape to that for 1 pA. However, note that the vertical axis has been scaled proportional
to beam current. The area is about 9,062 electrons or 12% of the 76,000 electrons in a
10uA4 beam. The decrease in the cases with less than 9 neighbors at the crossover is quite
noticeable. As might be expected, the shape of these curves generally follows the number
of electrons expected to be within a sphere with a radius of 48 um. Fortunately, this also
indicates that the observed trends are likely scaleable to slightly lower force thresholds at
which as much as 30% of the electrons undergo transverse-displacements and produce

beam blur.
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Figure 5-3. Number of electrons with N neighbors vs. axial position for I=10uA and

Foug=10"N.

800 v T -+

700 |

600 |

400

300

200}

Number of electrons per
i
%

100

0! -
0 002 004 006 0.08 01 012 0.14 016 0.18 0.2 Z(m)

Figure 5-4. Number of electrons with N neighbors vs. axial position for I=20pA and

Feuog =10 N.
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5.3. Effect of neighboring electrons upon transverse forces

The contribution to the transverse statistical force from various numbers of
neighbors at a 1pA beam current is shown in Figure 5.5. The vertical axis shows the
force ratio for systematically including more neighbors. The horizontal axis shows the net
transverse force on a logarithmic scale. The lowest data set is the ratio of the magnitude -
of the transverse force for two nearest neighbors compared to the ratio for one. The result
is then shifted downward by one. Hence, any deviation from zero greater than 0.1 (49%

of the electrons) indicates that a second neighbor affects the force by more than 10%. It is

notable that at forces even above 10”N more than one nearest neighbor is participating.

Similar data sets are shown for 3 neighbors vs. 2 neighbors, 6 vs. 3, 10 vs. 6, and
the total vs. 10. Again, a deviation from 5, 10, 15, and 20 by more than 0.1 indicates that
the force changes by more than 10% when the additional neighbors are introduced. The
corresponding percentage of the electrons is also given in the graph. The curves become
quite compact in moving up to more nearest neighbors, especially for forces above 1078,
One exception is the large blur for the total versus the 10-neighbor curve, and this is
attributed to the presence of a more macroscopic space charge effect. As more and mofe
neighbors are included, the force evaluated becomes closer and closer to the real
statistical force, and the force ratio converges to one. For current of 144, Fioy is a good
approximation to the real transverse statistical force as se¢n on the graph. In this case,
52% of the forces are more than 10% off (83% are larger and 17% are smaller) if one

adopts the nearest neighbor approximation.
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Figure 5-5. Effect of neighboring electrons upon transverse forces for I=1pA and

Fouggr=10N.

Figures 5-6 and Figure 5-7 show the contribution to the transverse statistical force
from various numbers of neighbors at 10 to 20 pA. An order of magnitude increase in
beam current causes a two order of magnitude translation of the data set to higher forces.
This is because the tenfold increase in beam current causes a tenfold decrease in the
average spacing, which results in a two order of magnitude increase in the typical force.
The spread in the data beyond a deviation of 0.1 is now much greater, and the increased
spread becomes particularly noticeable even when 6 and 10 neighbors are added. At
10uA it is likely the norm rather than the exception to have several nearest neighbors
contributing to the force when passing through the crossever. Since multiple neighbors
become important about /0mm prior to the ideal crossover where the 10ud current
corresponds to a current density of 30mA/cm’, this current density might serve as a rule of

thumb for when multiple neighbor contributions are completely dominating.
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Figure 5-6. Effect of neighboring electrons upon transverse forces for I=10pA and

Fuog=10""N.
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Figure 5-7. Effect of neighboring electrons upon transverse forces for I=20pA and

Fouog=10""N.
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5.4. Conclusions

Analysis of a basic crossover showed that strong transverse-deflection forces were
associated with high particle density. More importantly, interactions with multiple rather
than nearest neighbors almost immediately became the norm rather than the exception. In
practical systems where crossovers are not ideal, the current density might be used as a
guide, with strong multiple neighbor interactions being observed at 10mA/em’ and clearly
dominant at 30mA/cm’. The corresponding typical electron inter-particle spacings are

62m and 43 um, respectively.
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6 Structure of Stochastic Coulomb Interactions

6.0. Introduction

Traditionally, the stochastic beam blurs have been considered as random and
uncorrectable, until a puzzling result was discovered. Jansen [26] predicted that the
homocentric beam with a crossover and the homocentric parallel beam in Figure 6-1
produce the same spot size in spite of the high electron densities in the crossover regions.
The prediction was later confirmed in simulations [41] [42]. To explain this puzzling
result, Jansen suggested that some cancellation mechanism in stochastic interactions
reduces the final beam blur in the configuration with a crossover. Nevertheless, the
sophisticated mathematical formulation of his model failed to give convincing physical

insight into this problem.
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Figure 6-1. The homocentric beam with a crossover, and the homocentric parallel

beam that produces the same spot size, as predicted by Jansen.

In this chapter, the combined approach discussed in Section 1.0 is formulated
based upon the empirical analysis of average stochastic forces along the column. It has

been successfully utilized to explain of the structure of electron stochastic interactions.

Section 6.1 presents the result for the structure of stochastic interactions in a
probe-forming beam with a crossover and investigates how this structure affects the final
beam blur. The stochastic interactions in a homocentric parallel beam are discussed in
Section 6.2. Section 6.3 compares the two above configurations and explains why they
produce the same beam blur regardless of a considerable difference in electron densities'.
The formulation of the model not only gives physical insight into this result, but also
makes general predictions beyond those of Jansen’s. These predictions are later
confirmed in simulations. Section 6.4 briefly discusses the stochastic interactions in beam

projection systems.

57



6.1. Stochastic interactions in a probe-forming beam with a crossover

6.1.0. Stochastic force upon a single electron

Figure 6-2 shows a probe-forming system with a crossover in the middle.
Simulation was used to track the transverse stochastic forces Fxs ang Fys caused by the five
nearest neighbors upon an arbitrary electron. Figure 6-3 plots these forces as electron

traveled through the region between the two.lenses.

Electron source Electron Trajectories .
E i % Waft
./ _ 0—::‘\T -
%--'.".' .............. g :.-.':9”"'2.‘.“ itk 0 i;' o ....... v
-~ L@ ] .
Region 1 : Region 2 *:  Region 3
l l i , >Z
-4f ' 2f 0 2f af

Figure 6-2. Schematic diagram of the simulated beam configuration with a crossover.
Accelerating voltage V=100 kV, 6V=15V, beam current /=1 uA, focal length f=50mm,

and illumination convergence Gaussian semi-angle @ =1.5mR.

As electron A (dot) passes the crossover, its neighboring electron B (circle)
switches from one side of A to the other side, causing the transverse stochastic force to
change sign. The symmetry of the transverse forces around the crossover in Figure 6-3
indicates that stochastic Coulomb interactions are small, and that a first order

~ perturbation theory can be applied for its analysis. The symmetry of the forces will cancel
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out the blur contribution caused by velocity shift only while the blur caused by trajectory

shift survives.
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Figure 6-3. Stochastic forces upon an electron as it travels through the region between the

two lenses. These forces are computed with five nearest neighboring electrons.

The symmetry of stochastic forces must be distinguished from the space charge
effect, which also results in symmetric force patterns in a beam configuration with a
crossover. The space charge effect is a macroscopic effect, independent of the
microscopic stochastic distribution of the electrons. It depends only on the globai
distribution of the electrons in the beam column. The stochastic effect however, only

depends on the microscopic stochastic distribution of the neighboring electrons.
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6.1.1. Averaged stochastic force

In addition to the stochastic forces upon an individual electron, one is also
interested in averaging the stochastic forces upon different electrons as they travel
through the beam column. In order to characterize the averaged stochastic force,
Coulomb interactions were turned on only in a thin region [z, z+dz] for one simulation -
run, as shown in Figure 6-4. This is another application of the special options discussed
in Chapter 2. The assumption is that each electron experiences a constant stochastic force
as it travels through this thin region. The assumption is appropriate because the relative

positions of the electrons take very minor changes in such a short period.

Electron
emitter

Region of
interactions dx

.‘.v

AL

Figure 6-4. The average stochastic forces are measured in simulations. Accelerating
voltage is V=100 kV, §V=15V, beam current is I=1pnA, focal length is £~50mm, and

illumination convergence Gaussian semi-angle is o =1.5.
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Electron spot

Figure 6-5. Measuring the displacement of an arbitrary electron on the wafer.

For an arbitrary electron, a simple geometrical argument shows that the final

displacement in the x-direction on the wafer (Figure 6-5) is

Equation 6-1 X=x, +("£—x—2}-2 f
v, f
=, 4220 f
vZ

Here x; and v, are the displacement and the velocity of the electron passing
through lens 2, fis the focal length of both lenses, and v, is the axial velocity. The second

term in Equation 6-1 is the displacement change on the wafer caused by the action of lens
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2. The position shift dX caused by stochastic Coulomb interactions in the region of

interaction dz is

dx=_¢2+£‘dvx2
vZ
Equation 6-2
=—dx2+£.fﬂ.£
v, y-m v,

where Fy(z) is the stochastic force upon this electron measured in LAB frame. dx, and
dvy; are the trajectory and velocity shifts at lens 2. y is the Lorentz factor, m is the

electron mass, and dz /v, is the time to pass through this thin region.

The special options of BEBS also allow us to reposition each electron when it
passes lens 2 such that dx; = 0. This results in a displacement dX that is directly

proportional to Fy(z):

Equation 6-3 dx =_?";I"F’(Z)

Average both sides of the equations over all the electrons in the region, and one can
concludes that the average stochastic force is proportional to the spot size and therefore

can be directly measured through simulations:

Equation 6-4 | <|Fx(z)|> oc (ldX |) oc Spot size
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The spot size is measured for each 4mm long interaction region along the beam

column. The inverse of the beam blur is plotted against the axial position z in Figure 6-6.

f 1.2
P o 1.0
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— ol z(pm)
-100 -50 0 50 100

Figure 6-6. Inverse of the spot size versus the axial position of the region of interaction.

The linear relation in Figure 6-5 indicates that spot-size(z) is inversely

proportional to z except in the region around the crossover. Thus, the average force

Equation 6-5

k
(|Fe(z)|)= H’ z#0

where the forces are still finite as the electron density is finite. Here k is a constant

independent of z.

The relation in Equation 6-4 is derived for region 2. Yet, a similar argument and

result can be applied to region 1 and region 3 as long as the origin of the z-axis is moved

to the location of the emitter or the location of the wafer. The constant k, however,
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remains unchanged only if the convergence angles in region 1 and 3 are the same as the

crossover angle in region 2.

6.1.2. Blur contribution along the optical axis
The beam blur contributions along the optical axis can be characterized by the -
corresponding averaged stochastic forces. In Equation 6-2, consider the contribution

caused by the trajectory displacement in region z,

de,=dv,-T=a-dt-T
_F@) d& @f-2)

y-m v, v,

Equation 6-6

where dbv, is the velocity change caused by interactions in region dz and T is the time for

the electron starting from this thin region to reach lens 2. Therefore,

Fx(z) dz 2f - F 2f dz
Equation 6-7 dX = (2) & @f z)+ X2) 2f dz
?'m vz vz 7'm Vz Vz
_Fx(2)-z dz
y-m v}
In other words:
dX Fx(z) z
Equation 6-8 dz—y-m sz, z#0




The boundary condition comes from the assumption that Coulomb interactions
only occur in the region between the two lenses where —d <z <d. Now we will prove

that

SETMET IR

m vz

Equation 6-9

Figure 6-3 shows that Fy(z) only changes its sign at the crossover where z=0.

Therefore the proof can be shown in two separate cases.
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Casel: Fx(z)-z20
Hence, % >0 oweto Equation4 -1,

X(2)20 (-d<z<d) duetothe boundary condition.
Thus,|X|=X.
Take the absolute value of Equation 4 —7 on both sides, one obtains

dx_|ra) |
- 2

dz m vz

Take the ensemble average on both sides :

) _(r) 1

dz m vz

Case2:Fx(z)-z<0

|X|=-x.

dlx)) _(F()) |4
dz m ve?

Insert Equation 6-4 into Equation 6-8, one obtains:

k1 - -
— =const, —-d<z<dand z#0
Equation 6-10 d{lx|) _jm v:?
dz
0, z=0
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This result indicates that different regions along the axis make nearly uniform
contributions to the final stochastic beam blur in spite of different electron densities. As a
matter of fact, the crossover region makes the smallest blur contribution in spite of its
high electron density. This result is depicted in Figure 6-7. The area of the shaded region
represents the beam spot size while the profile of the region gives the relative-

contribution from different axial regions.

The relation in Equation 6-10 is derived for region 2. Yet, a similar argument and
result can be applied to region 1 and region 3 in Figure 6-2 as long as the origin of the z-
axis is moved to the location of the emitter or the location of the wafer. The constant £,
however, remains unchanged only if the convergence angles in region 1 and 3 are the

same as the crossover angle in region 2. In general,

Equation 6-11 X=X,+X,+X,

where X, X, and X; are the displacement changes on the wafer caused by interactions in

the three regions respectively.

For a thin region of interaction in region 1:

2f
Equation 6-12 dX1=—dx, + 5 v,y
Z
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where dx and dvy; are still the displacement and velocity changes at lens 2 but they are
caused by interactions in dz of region 1 instead of region 2. Simple geometrical

arguments show that:

4f-dv

x1»

Ckz = "3&[ +—
Equation 6-13 v,

v
dvx2 = dvxl __z°‘kl
f

where dx; and dv,; are the displacement and the velocity changes at lens 1 due to the

interactions in thin region dz . Substitute Equation 6-13 into Equation 6-12, and one

obtains:
X1 = (3 + Ly )+ 2L (=Y )
v, 2 S
Equation 6-14 2f
=dx) - ——-dv,
vz

Using the same argument as the one used in the derivation of Equation 6-10, it can be

shown that

k1
Equation 6-15 d<| X'l) ) ;vz—z =const, —2d<z<-d

dz
0, z=-2d
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In the above derivation, we have used the fact that £ remains the same for region 1 as it

shares the same beam angle as region 2. Similarly,

. ko1
Equation 6-16 d<1X3|> ;-v—2=const, d<z<2d

= z

dz
0, 2=2d

The differential blur contributions in all three regions are depicted in Figure 6-7. Notice
that the regions near the electron source or the wafer make little blur contribution similar

to the crossover region.

Homocentric parallel beam
Beam with a crossover i (| ¥ ‘)

Figure 6-7. Beam-blur contributions along the optical axis for a crossover beam and a

homocentric parallel beam that share the same beam angle.
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6.2. Stochastic interactions in a homocentric parallel beam

Figure 6-8 shows a homocentric parallel beam column. Again, simulation is used
to track the transverse stochastic forces Fysand Fy,s upon an arbitrary electron as it travels
through the region between the two lenses. The result is visualized in Figure 6-9.

Electron source Electron trajectory

Wafer

A 4

|
| ; :
-2d -d 0 d 2d

Figure 6-8. The homocentric parallel beam used in simulation. Accelerating voltage is
V=100kV, V=15V, beam current is [=1pA, d=100mm, and illumination convergence

Gaussian semi-angle is o =1.5.

In the above beam configuration, however, electron A (dot) always travels on the
same side of neighboring electron B (circle) and thus the stochastic force upon A caused
by B does not change its sign. Figure 6-9 shows that the stochastic force upon an
arbitrary electron is nearly constant. Thus, the average force F,(z) is also constant along
the z-axis. Similar to Equation 6-1, one can obtain the displacement X’ on the wafer if the

Coulomb interactions are only switched on in region 2:
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Figure 6-9. Stochastic forces upon an arbitrary electron as it travels through region 2. The

forces are computed with the five nearest neighboring electrons.

Analogously to the derivation of Equation 6-7 and Equation 6-8, one obtains

Equation 6-18 x __F f
quation & y-m vzz
d{| X’ F;
Equation 6-19 <!1z |)=<}|,:L> ;f—2=const, -d<z<d
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The analysis of region 1 and 3 are similar to that of the crossover beam and the
expressions are the same as Equation 6-15 and Equation 6-16. Thus, the blur contribution
is nearly uniform except in the regions near the electron source and the wafer. It can be
shown that this constant is the same as the constant in the crossover beam as long as the

two configurations share the same beam angle. The result is visualized in Figure 6-7.

6.3. Other probe forming beam configurations

The model used in the above analysis can be applied to other probe-forming
beams as well. As an example, this model predicts that the three beam columns in Figure
6-10 produce the samé beam blur as long as the beam angle a remains constant. The
distance between the two lenses is always. L/2 as a result of constant beam angle. This

prediction has been confirmed with simulations. The blur is 42nm at beam current =1 ud.

Figure 6-10. Three beam configurations with the same column length and the same

beam angle. V=100 kV, 6V=15V, L=400mm, and Gaussian semi-angle o =1.5.
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6.4. Stochastic interactions in a system with multi-emitter array

The 4X demagnification system used in this study is the same as the one in Figure -
2-1. The mask has a 5X5 array of emitters with 200um spacing. The structures of the
stochastic forces are more complicated in a high throughput beam system. In Figure 6-11,
electrons A (circle) and B (dot) emitted from the same region on the mask travel through
the column similarly to the case of the homocentric parallel beam. This result challenges
Mkrtchyan’s assumption of random correlation length [6], in which the nearest neighbor
electron of the test particle does not change. Electron C (triangle), however, changes its
relative position with respect to A and B. Moreover, the electron trajectories actually
cross at different positions along the z-axis, in contrast to a probe-forming beam with a

crossover where all the trajectories cross around the same point.

95-emitter | o

-2F;

Figure 6-11. The relative positions of the electrons in a system with a 25-emitter array.
Accelerating voltage is V=100 kV, 6V=15V, beam current is J=1uA, focal lengths are

F;=160mm and F;=40mm, and illumination convergence Gaussian semi-angle is a =1.5.

73



FaS, FyS 00
(-] -
w

. l

w83 028 02 04603 005 . 0 006 = .

Figure 6-12. Stochastic forces upon an electron as it travels through the beam projection

column. The forces are computed with five nearest neighboring electrons. Beam current

I=1.

Figure 6-12 shows the transverse stochastic forces Fisand Fs upon an electron
that is emitted from a region near the edge of the projection field. This electron does not
encounter any neighboring crossing electrons emitted from other regions until it comes
near the crossover region where components of the force change signs. In comparison
with the crossover beam in the previous section, the neighboring electrons cross at
different locations in a multi-emitter array system. Thus the stochastic force patterns are.
not strongly symmetric around z=0. Due to the irregular pattern of the stochastic forces,
the algebraic model developed in the previous sections has yet.to be extended to the

quantitative analysis of the multi-emitter system.
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6.5. Conclusions

The structures of stochastic Coulomb interactions have been revealed both in
probe-forming beams and in multi-spot projection electron beam columns. A technique
combining an algebraic approach and simulations has been developed for the analysis and
comparison of the stochastic Coulomb interactions and the stochastic blur. It has been -
shown that in a crossover configuration where the beam angles are equal, the blur
contribution is nearly coﬁ;sgfant along the column, very similar to a paralle] beam. The
randomized correlation length assumption of Mkrtchyan’s Nearest Neighbor Theory
needs modification to include symmetry around the crossover. The simulation shows that
the randomized correlation length is a function of the beam diameter and that correlated
interactions occur at other axial positions due to symmetry with respect to the beam
crossover. Further study is needed to investigate the possibility of reducing the stochastic

blur through manipulating its rich structures.
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7Scaling Laws of Stochastic Coulomb Interactions

7.0. Introduction

The previous chapter presented a combined approach to study the beam blur
contribution along the optical axis. Nevertheless, this method is no longer applicable if
one wants to rescale an electron beam system and compare the blur sizes. In contrast to
the space charge effect, the theoretical analysis of the stochastic effect is much more
sophisticated. Different theoretical models have been developed to predict the beam blur
caused by the electron-electron stochastic interactions in various beam configurations.
These theories, which are briefly introduced in Chapter 2, are based on a series of
unverified assumptions or approximations. Heretofore in simulation studies the stochastic
blur contributions have always been convolved with those of the space charge and can
only be isolated through approximation. This section describes a stochastic effect

simulator that directly measures the stochastic blur.

Figure 7-1 shows the schematic diagram of the stochastic effect simulator. BEBS
use moving positrons to eliminate the space blurs. A positron has the same mass but

opposite charge as an electron. In the simulation, the positrons in the column share the
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same energy, energy spread, and spatial distribution as the electrons. Therefore, the
global space charge effect is completely eliminated and the beam blurs are only caused
by the stochastic interactions among the electrons and the positrons. The positrons exert
and experience similar stochastic forces to their electrons counterparts and produce the
beam blur together with the electrons. As an example, the total beam blur created by the

combining of a /1544 electron beam and a /544 positron beam will be the same as the

stochastic blur produced by a 30u4 electron beam.

O Moving electron @ Moving positron

Figure 7-1. Schematic diagram of the stochastic effect simulator.

This stochastic effect simulator can directly measure the stochastic blurs in any
beam configurations. The space charge blurs can be easily obtained from the following

relationship:

Equation 7-1 space charge blur = J total blur? — stochastic blur?
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7.1. Theory

This section provides a preliminary proof of the validity of the stochastic effect -
simulator. Figure 7-2 shows the cross sections of two identical beam columns A and B,
one for an ordinary electron beam simulator and the other for the cormresponding
stochastic effect simulator. Assume that the particle locations in either of the columns
follow identical and independent distributions. Two test electrons are at identical
positions of the two columns as shown in the figure. F,, Fj, F* and F*, are the total

forces upon them caused by other electrons in the column. Now we claim:
Equation 7-2 Variance(F,)= Variance(f;)

Equation 7-3 | Variance(F;,)= Variance(f";)

Without losing generality, it is sufficient to show:

Equation 7-4 E(F?)- EX(F)= E(7?)

2

~ N ~ ~
Remember that E(F )=0 due to the effect of positrons. Here F =ZF}, F =ZF- ,

H
i=1 i=1

~

where F; and F; are the forces caused by particle i in the respective columns. Moreover,
all the Fis follow the same statistical distribution, i.e., f(F)= f (Fj), S/ (17;)= f (Fj) if

particles i is positive and f' (— f;)= f (FJ) if particles i is negative. -

In order to show Equation 7-4, we first show

Equation 7-5 E((Fl +F2)2)" E*(R "'Fz):E((fi "'}.':2)2)’
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where particle 1 and 2 carry opposite charges in the stochastic effect simulator column B.

LHS = E(F? + F? +2. F,- Fy)- E(F)- E*(5,)-2- E(R,)- E(F,)
=2-Var(R)
RHS = E((F, - F,} )= E(F? + F; -2 F; - Iy
= B(F2)+ E(R2)-2- B(R)- E(F,)- BX(F)- E*(R)+ EX(F)+ EX(F,)
=2-Var(R)
=LHS
Now, all the particles with opposite charges in column B can be paired. Similarly, all the

electrons in column A are also paired. Each pair of particles produces a total force, which

conforms to similar independent distribution in two columns. Analogous to the derivation

of Equation 7-5, it can be shown that E(F2)- EX(F)= N -Var(F,)= E(F?).

Remember that the position of the test electron in each column is arbitrary. The
variance of the force is actually a good measurement of the magnitude of the stochastic
force. Hence, the stochastic forces at identical positions in the two columns are roughly
equal. Therefore, the stochastic effect simulator produces the same stochastic blur as the

original electron beam column.
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(A)

Figure 7-2. Cross sections of an ordinary electron beam simulator A and the

corresponding stochastic effect simulator B.

7.2. Scaling laws

7.2.0. Comparison with Jansen’s Theory
Jansen’s theory [26] predicts the scaling of the stochastic beam blur versus the

beam current for a SCALPEL system:

Equation 7-6 Jansen’s stochastic blur o< I""’
Simulation with BEBS shows that:
Equation 7-7 BEBS'’s stochastic blur o« I'®
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The simulation results roughly agree with Jansen’s prediction. Nevertheless, the
spot size is larger than Jansen’s prediction at each current as shown in Figure 7-3. Jansen
made a series of approximations and assumptions, which includes: (1) each electron only
being involved in one or no strong collisions in a beam segment, and (2) the interactions
being fully correlated in one beam segment and fully uncorrelated between beam -

segments. These approximations all contribute to the above discrepancy.

spot size (nm)

0.1 2.1 4.1 6.1 8.1 10.1 121 14.1

Figure 7-3. Comparison between the stochastic blur measured with BEBS and the blur

from Jansen’s prediction.
7.2.1. Scaling laws for a 25-emitter array system

The applications of Jansen’s theoretical model are restricted by the beam

configurations due to its complexity. The stochastic effect simulator, however, can be
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easily applied for different beam geometries. In this section, the scaling laws are

developed for the 4X demagnification 25-emitter array system shown in Figure 7-1.

The spot sizes are plotted against beam current, beam energy, emitter spacing,
column length and beam convergence angle in Figure 7-4, 7-5, 7-6, 7-7, and 7-8 -

respectively. The space charge blurs are calculated based on Equation 7-1.

Beam blur (nm)
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Figure 7-4. Current dependency of the beam blurs in a 25-emitter array system.
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Figure 7-5. Beam energy dependency of the stochastic blur and the space charge blur.
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Figure 7-6. Emitter spacing dependency of the stochastic blur and the space charge blur.
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Figure 7-7. Column length dependency of the stochastic blur and the space charge blur.
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Figure 7-8. Convergence angle dependency of the stochastic blur and the space charge
blur.
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The above curves lead to the scaling laws for the stochastic blur and the space

charge blurs:
Equation 7-8 Stochastic blur oc P9L" o 028 08B y 283
Equation 7-9 Space charge blur « o218 06g-038 -2, 3]

Here I is beam current, L is column length, « is illumination convergence angle, S is
emitter spacing, and ¥ is beam voltage. The blur size is independent of the beam energy
spread AE when it is within 15eV. The scaling laws for the space charge blurs agree with

- Han’s theoretical predictions [42].
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8 Impact of Positive Ions and Effect of Lens
Aberrations

8.0. Imntroduction

The aberrations induced by the lensing action of global space charge of the
electrons result in beam biur that increases with beam current, as first demonstrated by
Han et al [3]. There are a lot of papers which deal with space charge neutralizations in
various systems such as cathode ray tube (CRT) and focused ion beams [45] [47].
However, it is not clear whether the neutralization scheme would be effective for the high
throughput e-beam due to the light mass of electrons. Xiu [30] [31] studied the effect of
space charge coils and a multi-pole projector in electron beam columns and tried to
reduce field curvature and on-axis aberrations. Nevertheless, no quantitative results have
been given on the beam ‘blur reductions. This chapter discusses techniques that
effectively reduce the space charge effect. Section 8.1 investigates the feasibility of
reducing the global space charge with stationary neutralizing ions in electron beam
columns. Section 8.2 explores the feasibility of reducing sl;ace ch.z.lrge effect with induced

lens aberration. The summary and conclusions are given in Section 8.3.
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8.1. Impact of positive ions

The beam blur produced in an electron beam system can be decomposed into‘
stochastic blur and space charge blur, which are caused respectively by the stochastic
Coulomb interactions and the global space charge effect. Introducing a cloud of positive
ions in the electron beam column c;an reduce the global net charge and thus decrease -
space charge blur. However, this will cause a considerable increase in stochastic blur
contribution due to the increased opportunity for collisions. Changes of the total beam

blur depend on the trade-off between these two competing tendencies. The schematic

diagram is shown in Figure 8-1.

Total beam blur

T 1

Stochastic beam blur

1 1

Space charge blur

Electron — ion
interactions.

Ion space
charge

Electron — electron
interactions.

Figure 8-1. Effect of neutralizing ions upon electron beam blurs.

Jonization state
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Figure 8-2 shows the simulated multi-emitter array system with both projection
electrons and positive ions in the column. The ions are assumed to be stationary
compared to fast moving electrons because of theﬁ large masses. To find the most
favorable configuration, ion distribution 4 and distribution B are tested. In configuration
A, the relation between the ion number densities and the electron number densities are -
given i)y:

Equation 8-1 Sixy.2) = fexy.2)y

throughout the beam column. The space charge effect is completely eliminated in this
case. 7 is caused by the relativistic effect. In configuration B, however, ions are
introduced only in the region between the two lenses where their distributions follow
Equation 1. The space charge effect is partially eliminated here. In our initial studies,

each ion is assumed to have only one positive charge (such as H").
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Figure 8-2. Schematic diagram of a high throughout electron beam column with

neutralizing ions.

Figure 8-3 shows that the percentage blur reduction increases with the beam
current. This is because the space charge blur dominates at higher beam currents as
discussed in Chapter 5 and it is more effective to reduce the total beam blur through
eliminating the space charge effect. Up to 24% blur reduction has been achieved at 30uA
with neutralization scheme B. Blur reduction is less effective with neutralization scheme
A, especially at beam currents below /5u4. In fact, in the regions outside the two lenses,
the stochastic Coulomb interactions dominate over the space charge effect at low beam
currents. Introducing ions in these regions in scheme A leads to insignificant reduction of
space charge blur but considerable increase of stochastic blur. Other ion distribution

schemes have also been extensively studied with simulations, including Gaussian and
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Lorentzian distributions along the optical axis. Scheme B gives the best blur reduction

found to date.

100
90 25 Emitter Array
80 =+ no neutralization
70
T & -
E neutralization
- 50 through out the
N a0 column
(7]
g 30 —=—neutralization only in
20 the region between
the two lenses
10 T
0 : —
1] 10 20 30 40
I (A

Figure 8-3. Beam current dependency of spot sizes for different neutralization schemes.

Figure 8-4 shows the point spreads on the optimal target plane without
neutralizing ions (left) and with neutralization scheme B (right). With the presence of
ions, the beam spots near the edge of the field are smaller and much more symmetric..
Some residual aberration still appears to be present in the image on the right because only.

electrons in the region between the lenses are neutralized.
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Figure 8-4. The point spreads before and after the correction with neutralizing ions.

The blur reduction also depends on the ionization state of the ions. With ions in a
higher ionization state, such as He?*, the ion number density must be decreased in order
to maintain the same space charge neutralization. The number of recoils for each electron
are decreased due to the smaller number of charge particles in the column. Nevertheless,
the magnitude of each recoil tends to increase because each individual ion has more’
charges. The total stochastic effect depends on the tradeoff between these two competing
tendencies. Figure 8-5 illustrates how the beam blur reductions are affected by ionization
states. To better understanding the trend, we also simulate the cases of fictitious ions

Fic™** and Fic®* with fractional ionization states. When the jonization state approaches
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zero, the statistical ion distribution approaches a continuum of a charged cloud, in which
the space charge effect is perfectly eliminated with no increase in stochastic blur. In this
case, the spot size approaches the limit of stochastic beam blur, which can be directly

measured with our stochastic effect simulator described in Chapter 5.
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lonization state

Figure 8-5. Ionization state dependency of the spot sizes. Neutralization scheme 4 is

used here for each ionization state. The stochastic beam blur is 56nm as measured in

Chapter 8.

8.2. Effect of the lens aberrations

The neutralization technique, however, inevitably-increases the stochastic blur.
This section investigates the feasibility of reducing the space charge blur through

introducing lens aberrations. These induced aberrations are intended to cancel or partially
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cancel the aberrations of the space charge lens. Figure 8-6 shows the schematics of such a

system.

Lens with introduced + Aberrated lens induced by
the global space charge

Aberrations

Figure 8-6. Introducing lens aberrations to reduce the space charge blur in a high

throughput electron beam system. Only two beamlets are shown for clarity.

The effects of different aberrations have been extensively explored through
simulations. Introducing astigmatism in lens 1 so far has led to the best beam blur
reduction. Other tested aberrations include field curvature, spherical aberration,
distortion, coma, and axial astigmatism. The aberrations used in this thesis work follow
the definitions given by Born and Malacara ef al. in [72] [73]. Figure 8-7 shows that the
spot size is minimized with the proper amount of astigmatism of the first projection lens..

The astigmatism is defined as

D=Casug-1* -0
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where r is the radial distance measured on the first projection lens, @is the incident angle

of the electron on the lens, and D is the corresponding position change on the target plane

caused by the aberration.
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Figure 8-7. Beam blur reduction depends on the magnitude of the induced astigmatism.

The beam spot reaches its minimum of 61nm with 330m™ astigmatism in the first
lens. The pércentage blur reduction is about 31%. The spot size increases when the:
astigmatism caused by the space charge effect is either under-compensated or
overcompensated. As one can see, the reduced beam blur closefy approaches thé
stochastic blur limit, which is around 56nm. Figure 8-8 shows the point spreads at the
best focal plane before and after the correction. The spots; neai' t.l.1e edge of the field are
significantly improved. Similar to neutralizing ions, the blur reduction technique with

lens aberrations is more effective at higher beam currents when the space charge blur

dominates.
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Figure 8-8. The point spreads before and after correction with astigmatism.

8.3. Summary and conclusions

Different beam blur reduction techniques have been explored in simulation with
either neutralizing ions or introduced lens aberrations. Blur reductions of 24% and 31%
have been respectively achieved with the above two schemes at 304 beam current and
1.5mR illumination convergence angle. The percentage reductions are more pronounceci

at higher beam currents.
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9 Electron Interaction with Photo-resist

9.0. Introduction

Since 1960s a series of Monte Carlo models have been proposed and refined to
examine the electron interactions with solids. Among these models, the hybrid model was
developed by Murata et al.. [22] to simulate the electron energy deposition in the photo-
resist. The hybrid, hoWever, is based on the unverified assumption that all forms of
deposited energy contribute equally to the exposure events. The detailed mechanisms of

exposure reactions are beyond the scope of this model.

The analytical Electron-Resist Interaction Model (ERIM) developed at UC
Berkeley is a recommended approach to study the details of the electron-resist interaction
process through reaction cross sections. Section 9.1 gives the schematics of the ERIM.
Section 9.2 discusses the secondary electron emission process. Section 9.3 investigates
the exposure process using the reaction cross-section approach. All of the components are
linked together in Section 9.4 and the algebraic expression. .describing the spatial

distribution of the exposure events is presented.
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9.1. Schematics of ERIM

Figure 9-1 shows the schematic diagram of the ERIM model. The high-energy-
primary electrons are emitted from a point source. Low energy secondary electrons are
emitted along the primary electron path and cause most of the exposure events, as will be
discussed in later sections. The deflection procesé of primary electrons caused by elastic -
scattering can be separated from the secondary electron emission process for the purpose

of analysis.

Primary electron point source (1060KeV) Photo-resist
Low energy secondary electron (<400eV)

¢ e
! 4—@?‘?‘»

. Nad ’
e n,l?;’ | \ + <~!§:‘|-t}‘
2 D Bt 4
"4

Exposure event

’

‘ ‘,_9\, . N\ . visi @"
Q- 4 Y
Real physical Primary electron  Secandary electrons production
process deflection and resist exposures

Figure 9-1. Schematic diagram of the secondary electron productions and the exposure

process.

97



The ERIM is a continuous model based on the probability distributions of primary
electrons fr(E,7,z), secondary electrons fs(Es,r,z), and the spatial distribution of the

exposure events fexp(E,r, z) as indicated in Figure 9-2.

o E,r, 2) fee( Bz, 1y 2 f_"'“ foowa( Es, 7, 2)]
Primary electron profile Secondary electrons Final electrons

production profile profile

Exposure cross section Oep = ?

Resist Exposure profile

Figure 9-2. Schematic diagram of the continuous ERIM model.

The total exposure profile is the sum of the exposure profiles caused by primary
and secondary electrons, respectively. As will be shown in Section 9.3, at a primary beam
energy of /00KeV, secondary electrons are responsible for up to §0% of the exposure
events. Moreover, the angular deflections of the prirnariés are r-legligible at such high
energy. The exposures by the primaries are roughly along straight trajectories and the
resolution limit of exposure events is limited by the spatial distribution of the

secondaries.
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9.2. Secondary electron emission process

The differential cross section of the secondary electron production is given by

Vriens [59] as following:

Equation 9-1

doy _ 14Uy 1 4U, o
=732 N=ztsa¢1t 7+ 3~ d
de E°“(1 +2U,-j) e 3¢ 1+U;-¢e)y 1+ Uy -£) e +U; —-¢)

172
R
where, ® = cos{ —| —Z InUj; .
1+U;

In the above equation, Uy and R, are the ionization energy of j shell electrons of an i

element and the Ryberg energy normalized by the incoming electron energy E,
respectively. € is the energy transfer normalized by E. When E>> Uj;, the above cross

section reduces to:

7
dO.’se~7k4 Ese+—3-J

Equation 9-2 =—.
dEse Epr (Ese +J )3

where Uj; is replaced by the mean ionization energy J which is 74eV for PMMA [74], E,,

and E,, are the primary and secondary electron energy, respectively.

The total Vriens cross section for PMMA at high beam energy is then given by:

Equation 9-3 Goe = 2. _ni L 1.45x1072%(cm?)
3 Er J
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Equations 9-2 and 9-3 clearly indicate that the number of secondary electrons is
inversely proportional to the primary electron energy, even though the shape of the curve
for secondary eléctron distribution remains the same. Figure 9-3 plots the number of
secondary electrons against the corresponding energies when three thousand 100KeV
primary electrons are incident on a /00nm thick PMMA resist. The three thousand:
electrons correspond to the minimum dose of 500xC/cm’ for 10nmxIOnmx100nm
PMMA at a beam energy of 100KeV. The graph shows that 81% of secondary electrons

have energies below 200eV. The total number of secondary electrons is:

Equation 9-4 : Nse = Ose -ne-1-3000 =157

Here n, is the total electron density in PMMA and / =100nm is the resist thickness.

Number of secondary_ electrons /eV
24 | .
] 3000 primary electrons at
2t 100KeV
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06 |
o4}
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Figure 9-3. Energy dependency of the secondary electron production.
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The number of further cascade electrons is less than ten. This number has been
evaluated using the secondary electrons at energies of 400eV or less. The effect of the

cascade electrons is not considered in later discussions due to their small number.

The modified Bethe formula by Joy and Luo [60] is used to describe the energy -

loss of the secondaries along their paths:

Equation 9-5 %f— =-785- £, ln[l'wé(E ha 0'85',)]

EA J

where Z, 4 and p are the atomic number, atomic weight and density of the photo resist
respectively. Figure 9-4 shows that 90% of the secondary electrons whose energies are
below 400eV can only travel less than /2nm in PMMA resist. Meanwhile, 8% of the
secondaries whose energies are below 200eV can only travel less than 5nm. This agrees
with the experimental result that the resolution limit for 700nm PMMA is around 10nm

[75].
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Figure 9-4. Energy losses of secondary electrons along
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Because the energies of secondaries are much lower compared to that of the
primaries, their emission angles are almost perpendicular to the primary electron

trajectories [22]:

. T Es/ Mecz +2Fse/ Epr
Equation 9-6 sin?(p-—)= =0
q (¢ 2) 2+E3¢/Me€2
o=Z
T2

where ¢ is the emission angle of an arbitrary secondary electron. The angular deflections

of secondary electrons are neglected in the ERIM model due to their short path lengths.

9.3. Exposure process

Modeling of the exposure process is illustrated with the PMMA resist and yet the
discussion can be extended to chemically amplified resists as long as the proper binding
energy is used in the modeling. Figure 9-5 shows an incoming electron with energy E
(E>4.9eV) inducing a scission event in the PMMA resist. Here, the incoming electron
could be either a primary or a secondary electron. In the ERIM model, during the scission

process, one of the electrons in a C-C bond is ionized and emitted with kinetic energy AE

causing the C-C bond to break.
4
g% ! SE>> &)
Equation 5-7 =l = 5 1 28 Ina-E ,
G =t ), (otherwise)
E+2e 3 E 3E E+e
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Since a secondary electron emission is involved, Vriens cross section is used to

calculate the scission cross section:

5 =t 1
Equation 9-8 e 5--5-5,(E >> &)
-l =t 5 1 2% Ins—InE

(———- + , lotherwi
E+2& (3& E 3E? E+e )(O 8 zse)

where &, is the C-C binding energy of 4.9eV.

Figure 9-5. Schematic diagram of a scission event in PMMA.

Figure 9-6 shows how the exposure cross section changes with the electron
energy E. The cross section is maximal when the electron energy is close to the C-C bond

energy and decreases at large energies.

103



A Exposure reaction cross section (cm?)
50
-16
440
-16
3x10
=16
2x10
=16
1x10 E(eV)
>
0 20 40 60 80 100

Figure 9-6. Electron energy dependency of the exposure cross section in PMMA.

The total number of scissions caused by the primary electrons is

Equation 9-9 Nexp = Cexp -nec-1-3000 =43

where 7. is the backbone C-C bond density in PMMA and resist thickness /=100nm.
Similar calculation shows that the number of scissions caused by the secondary electrons

is around 180.

Clearly, the scission events are dominated by secondary electrons. Since the'
number of secondary electrons is inversely proportional to the primary electron energy,
as presented in Section 9.2, the number of scission events also follows the inversely
proportional relationship. Therefore, the exposure dose is proportional to the primary

beam energy in the high-energy regime. This result agrees with experiments [75].
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9.4. Spatial profile of exposure events

After the detailed investigation of secondary electron production and exposure
mechanisms, we develop a formulation to describe the global distribution of the exposure
events. The number of exposure events per unit distance along a secondary electron path
can be evaluated based on the modified Bethe formula and the exposure cross section in

the previous sections:

Equation 9-10

®
O'ap[Ese]' np = O'm[Ese(Eso, r )] n»
e 4 5 1 26 Ing—In Ese
where, Cexp = (= )
Ese+28 3& Esx 3Es Eet+o
The number of secondary electrons emitted per unit energy is:
ol dos e’ ne
tl - © =
Equa on dESO Epr(Eso + J )2 (9)

Combining Equation 9-9 and Equation 9-10, one obtains the spatial distributions
of the exposure events caused by the secondary electrons when a single primary electron

incidents on the resist:

O'axp[Ese(Eso. r)] ns e dose

dEso
2mr dEso

Equation 9-12 7@(" )= f; v
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If the deflections of primary electrons are taken into consideration, the above

expression has to be convoluted with the spatial distribution of primary electrons:

Equation 9-13 Je(r) = fe(F) * for(7)

9.6. Exposure dose

Equation 9-8 clearly shows how the exposure reaction cross section depends on
binding energy €. Meanwhile, the exposure cross section is proportional to the number of
exposure events per unit volume if all other resist and beam parameters remain
unchanged. Thus, the normalized number of exposure events per unit volume is plotted

against binding energy ¢, for different electron energies in Figure 9-7.
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Figure 9-7. The normalized number of exposure events per unit volume against the
binding energy ¢ at different electron energies E. From top to bottom, the curves

correspond to E=400eV, 100eV, 60eV, and 20eV, respectively.
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As discussed in Section 9.2 and Section 9.3, the exposure reactions are dominated
by the secondary electrons at energies of 400eV or below. Figure 9-6 shows that at energy
E=400eV, the number of exposures per unit volume is inversely proportional to binding
energy & if other resist and beam parameters remain unchanged. For energy below
400eV, the number of exposures decreases even faster. In order to mamtam the minimum-
number of exposures per unit volume, one must increase the exposure dose and thus
increase the number of secondary electrons. The exposure dose follows the conventional
definition, which is the amount of charges incident on a unit area of the photo-resist.
Therefore, the ERIM model predicts that the minimal exposure dose is a super-linear
function of the binding energy . On the other hand, a larger binding energy will lead to
smaller line width if the exposure dose is held constant. These results are beyond the
framework of Murata’s Hybrid model, which only considers total deposited energy rather

than exposure cross sections.

9.7. Conclusions and discussion

An analytical electron resist interaction model ERIM has been developed to study
the detailed mechanisms of the exposure events. It has been found that secondary
electrons are responsible for up to 80% of the exposure events. The model predicts that
the minimum exposure dose (#C/cm?) is proportional to the primary electron energy in
the high-energy regime, which agrees with experiments. The ERIM model also predicts
that the minimal exposure dose is a super-linear function of the binding energy for

exposures if other resist and beam parameters remain unchanged. This result is still to be
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confirmed in experiments. The above results are beyond the scope of the hybrid model

developed by Murata, which only considers the total energy deposited in the resist.

An algebraic expression is derived for the spatial distribution of the exposure
events. The expression is suitable for numerical solution. The ERIM model can be -

extended to chemically amplified resists by adjusting the binding energy.

There are still some open questions regarding the resist exposure process and the
ERIM model. According to the prediction of the ERIM model, only around 22.3 exposure
events occur in a /0nmxI10nmx10nm volume of PMMA at the minimum exposure dose
of 5004C/cm’. The average spacing between adjacent exposures is 3.5nm. For chemically
amplified resist, the minimum exposure dose is usually five times smaller and the spacing
between adjacent exposures would be around 6nm. This inhomogeneity of exposures can

be smoothed out during the post exposure bake.

Experimental results by Shultz [76] and Greeneich [77] show respectively 0.0169
scissions/eV and 0.019 scissions/eV in PMMA polymer. This number is roughly nine
times as large as the prediction by ERIM. One possible explanation for the discrepancy is.
that the ERIM model so far only includes exposure events that are directly caused by.
electron interactions with the C-C bond in the main chain, As a.matter of fact, primary
and secondary electrons also interact with other chemical bonds in PMMA and produce
different kinds of radicals. Shultz [76] [78], Alexander [79], and Kircher [80] suggest that

some of these radicals can rupture the main chain by disproportionation, which may
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explain the ease of PMMA backbone rupture. There is still no consensus on the detailed
mechanisms. If all the exposures caused by the radicals were included, the total number
of exposure events would be considerably larger than the number predicted by ERIM.
Nevertheless, the basic approach of ERIM can be extended to include the effect of
radicals. The main conclusions given earlier in this section would still be valid since the -
binding energies for the backbone scission and for the radical productions are roughly the

same.

The accuracy of the ERIM model also depends on the accuracy of the physical
models such as the modified Bethe formula by Joy and Luo at energies below 100eV
when the exposure cross section is very large. Fu_rﬂmer investigations are required in order

to explain the discrepancies and to improve the ERIM model.
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1 0 Conclusions

10.0. Numerical and analytical tools

In this thesis, three simulation and analytical tools are developed to study the
electron Coulomb interactions in beam columns and electron interactions with photo-

resist.

The Berkeley Electron Beam Simulator (BEBS), developed by the author, is a
software program used to simulate the electron interactions in beam columns. It employs
adaptive Fast Multipole Method and parallel codes for efficient and rigorous calculation
of Coulomb forces. It also uses continuous-force interpolation and adaptive time steps to
speed up time iteration. BEBS provides a series of options specific for studying the
mechanisms of beam blur production. All of these special options have been successfully
used to produce the academic contribution of this thesis. As one of the options, BEBS
enables the stochastic effect simulator using positrons in the beam. column, which directly

produce the stochastic blur on the target plane.
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There are two versions of BEBS running on the Network of Workstations (NOW)

.and the Millennium Cluster, respectively. A typical 30puA current simulation in a 40cm

long column takes about one hour with ten S00MHz processors. Compared with Munro’s

electron beam simulator that has 9 to 4 percent errors in force calculation at a beam
current of 5 to 30pnA, BEBS can achieve up to 4-digit accuracy in forces with 3 to S times

longer simulation time.

In order to study the structure of stochastic Coulomb interactions, the author
developed a novel approach that combines simulation techniques and algebraic analysis.
It not only avoids the sophisticated algebra and approximations of a conventional
analytical approach but also reveals the structure of stochastic Coulomb interactions in
certain beam configurations. This new approach has been successfully applied to the

analysis of a crossover configuration and a homocentric parallel beam.

The Berkeley Electron-Resist Interaction Model (ERIM) has been investigated as
an analytical approach to study electron resist interaction mechanisms based on reaction
cross sections. This model provides an algebraic expression for the spatial distribution of

exposure events in the photo resist.
10.1. Mechanism studies and beam blur reductions -

This thesis discusses different mechanisms that cause beam blur in beam columns

and in photo-resist. Several potential techniques for blur reductions are also proposed.
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Studies show that beam blur is mostly produced in the region around the
crossover in a multi-emitter array system. Thus, any blur reduction technique only need
to focus on its effect on this region. Meanwhile, the blur contributions caused by inter-
beamlet electron interactions dominate over those caused by intra-beamilet electron
interactions, especially at large convergence angles. Effective ways are still to be found -
to isolate and reduce the inter-beamlet blur contributions. The beam blur contributions

from different beamlets can be combined on a root mean square basis.

Mechanism that causes stochastic blur is examined from different perspectives.
Unlike the space charge blur, stochastic blurs can not be easily reduced with conventional
optics. Further studies are required in order to fully utilize the structure of stochastic

interactions for possible blur reductions.

Although the stochastic effect has long been observed, it has never been directly
measured in experiments and or in simulations. The Stochastic Effect Simulator enables
the direct measurement of stochastic blur and demonstrates the “stochastic limit” for any
technique that reduces space charge blur only. Simulations show that in 4x
demagnification electron beam systems, the stochastic blur is proportional to beam
current raised to the power of 0.62, column length raised to the power of 1.27, bean;
convergence angle raised to the power of 0.9, emitter spacing raised to the power of —
0.45, and beam voltage raised to the power of —2/3. The scaling exponent 0.62 for beam
current roughly agrees with Jansen’s prediction of 0.67. The blur size is independent of

the beam energy spread AE when it is within 15eV. Scaling laws for space charge blurs
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are also developed. The scaling exponents agree with Han’s simulation and experimental

results [3] [42].

Simulations are used to test the basic assumptions of Mkrtchyan’s theory on
electron stochastic interaction in a beam column: (1) consideration of nearest-neighbors -
only, and (2) a randomized length, over which interactions are correlated. Analysis of a
basic crossover beam shows that interactions with multiple rather than nearest
neighboring electrons almost immediately become the norm rather than the exception as
proposed by Mkrtchyan. The simulation shows that the randomized correlation length is a
function of the beam diameter and that correlated interactions occur at other axial
positions due to symmetry with respect to the beam crossover. The randomized
correlation length assumption of Mkrtchyan’s theory needs modification to take the

symmetry into consideration.

The structures of stochastic Coulomb interactions have been revealed both in
probe-forming beams and in multi-spot projection electron beam columns. It has been
demonstrated that in a crossover configuration where the beam angles are equal, the blur
contribution is nearly constant along the column, very similar to a parallel beam. The
structure of the stochastic Coulomb interactions also implies possibilities in the reductioﬁ

of stochastic beam blurs.

Different techniques that reduce the space charge blurs have been explored in

simulation with either neutralizing ions or lens aberrations introduced in the projection
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lenses. Blur reductions of 24% and 3% have been respectively achieved with the above
two schemes at 30u4 beam current and I.5mR illumination convergence angle. The
percentage reductions are more pronounced at higher beam currents. Future experimental

works are required to test these ideas in high throughput e-beam systems.

ERIM is a recommended approach to study the detailed process of the exposure
events. It is shown that secondary electrons are responsible for up to 80% of the exposure
events. The model predicts that the exposure dose is proportional to the primary electron
energy in the high-energy regime, which agrees with experimental results. An algebraic
expression for the spatial distribution of the exposure events is derived and is suitable for
numerical solution. The ERIM model also predicts that the minimal exposure dose is a
super-linear function of the bond energy for exposure. The model can be potentially

extended to chemically amplified resists through adjusting the binding energy.

10.2. Future work

The aberration compensation and beam neutralization techniques suggested in this
thesis are subject to dynamic changes in projected pattern and pattern displacement.
These effects can be viewed as transient effects and demand further investigations. For
the space charge neutralization technique, the ion cloud reaches the optimal distribution
during the transient period after the beam current changes. The introduced aberration also
takes a transient period to reach its desired magnitude. The length of the transient time

will directly influence the throughput of an e-beam system.
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Even without these beam blur compensation techniques, there are a number of
interesting transient questions, such as the resolution of the initial burst of electrons down
the column. At present, e-beam systems suggest that these effects are, however, small

compared to the overall exposures.

Simulations show about 30% beam blur reduction at 304 beam current in a 25-
emitter array system with space charge blur reduction techniques. The blur size has been
reduced from 88nm to around 60nm, which is close to the 56nm stochastic blur limit. The
reduced spot size would satisfy the 70nm resolution requirement in high-throughput e-
beam lithography. However, these results are based on either ideal ion distributions or
ideal lens aberrations and the blur reductions would be smaller in experimental systems.
The future work in this area should focus on the experimental implementation of these

techniques.

The potential application of the structure of stochastic Coulomb interactions
requires further investigations. The structure suggests the possibility of reducing
stochastic blurs through manipulating the electron trajectories, which could improve the

ultimate resolution of e-beam systems.

The ERIM model can be extended to chemically amplified resists by adjusting the
binding energy. The accuracy of the model needs to be improved by including the
indirect exposures through radicals and quantifying all the energy transfer pathways.

Experimental work is required to test the relationship between the binding energy and the
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minimal exposure dose, as predicted by ERIM. It will also be interesting to look at

creation of exposure events when resist molecules are modeled as dipoles.
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