Copyright © 2002, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AUTOMATIC SPECIALIZATION OF
ACTOR-ORIENTED MODELS IN PTOLEMY |I

by

Stephen Neuendorffer

Memorandum No. UCB/ERL M02/41

25 December 2002

AUTOMATIC SPECIALIZATION OF
ACTOR-ORIENTED MODELS IN PTOLEMY Ii

by

Stephen Neuendorffer

Memorandum No. UCB/ERL M02/41

25 December 2002

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Automatic Specialization of Actor-oriented Models in Ptolemy IT

by Stephen Neuendorffer

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of Cal-
ifornia at Berkeley, in partial satisfaction of the requirements for the degree of Master of Science,
Plan IL

Approval for the Report and Comprehensive Examination:

Committee:

Edward Lee
Research Advisor
k %k %k % %k
Kurt Keutzer

Second Reader

Published as:

Technical Memorandum UCB ERL M02/41,
Electronics Research Laboratory,

University of California at Berkeley,

December 25, 2002.

1 Introduction

In the design of embedded systems, profitability and time-to-market are critical concemns.
Since complete implementation can be expensive and time-consuming, making good high-
level decisions early in the design process is crucial. These high-level decisions can then be
used to guide system implementation, and the designer will have a reasonable expectation
that the system will perform as expected. Many high-level, domain-specific tools have
been built to help designers to more quickly arrive at a successful design. An important
subset of these tools, including commercial embedded systems tools such as Simulink from
The Mathworks, VCC from Cadence, and CoCentric System Studio from Synopsys, are
often known as actor-oriented [32]. These tools emphasize the concurrent operation of the
different parts of a design, making them a good match for designing embedded systems

that interact concurrently with the physical world.

When using actor-oriented tools, designers typically construct models that are intended
to capture some aspects of an embedded system. These models are constructed through
the composition of primitive components, which may be drawn from an existing library
or specified directly in the model. The behavior of a model corresponds, in some fashion,
with the behavior of the embedded system being modeled. Such models are commonly
used to formally analyze or simulate the behavior of a system prior to actually building
the system. In fact, sufficiently detailed system models can be considered specifications
of those systems [45]). These “golden models” are often used as a reference for testing the

correctness of a manual system implementation in another language, such as C or Verilog.

Unfortunately, manual system implementation tends to be an error-prone process and
it can be difficult to ensure that the behavior of an actor-oriented model is preserved when
faced with many low-level implementation details. One solution to this problem is to pro-
vide facilities for automatic code generation from within an actor-oriented design tool
[9, 10]. Code generation provides a correct-by-construction path from system modeling

to both optimized simulation and embedded system implementation. The resulting im-

plementation may include both software portions (e.g., a program that will execute on a
microprocessor) and hardware portions (e.g., a synthesized ASIC circuit, or an FPGA con-

figuration).

A key difficulty with code generation is that embedded systems are often extremely
resource constrained. An automatically generated implementation must efficiently use re-
sources (memory, processor time, chip area, etc.) to be useful in a final system. Be-
cause of this efficiency requirement, a significant amount of research into optimizing gen-
erated code has been performed. There has been work in optimal execution scheduling
[5, 6, 41, 17, 42], communication and control architectures for efficient software [43, 16]
and hardware [51, 49], and design space exploration techniques [30, 40, 46]. This work is

based in the formal definitions of components and the semantics of models of computation.

Unfortunately, the generation of optimized code from individual primitive components
is rarely considered in the code generation literature. From a designers point of view, well-
designed libraries of primitive components are often the most critical part of a design tool. !
Such libraries depend on the generality of components, so that those components can be
reused and reconfigured in different models. This report presents a series of techniques for
automatic specialization of generic component specifications. These techniques allow the

transformation of a generic component specifications into more compact and efficient ones.

We have integrated these techniques into a code generator for Ptolemy II, a software
framework for actor-oriented design in Java [15]). Combining automatic code generation
with actor specialization enables efficient implementation of models without sacrificing
design flexibility. We call this approach to implementing an actor oriented model co-
compilation, to emphasize how it integrates compiler optimization with automatic code
generation. It is conceptually similar to concepts of Aspect-Oriented Design [28], since

the style of component interaction is incorporated into the specification of a component.

'Kurt Keutzer often cites anecdotal evidence from his time as CTO of Synopsys. He found that users often
compared system-level design tools solely based on the libraries that were available without considering the

tools’ broader technical merits.

It also resembles the application of partial evaluation in functional languages to improve

execution speed [24].

The following section provides a summary of the relevant aspects of actor-oriented
modeling, and the code generation problem. Sections 2 and 3 describe actor-oriented de-
sign in more detail, along with a short description of its implementation of Ptolemy II.
Section 4 describes the specialization of Java actor specification, while section 5 describes

how actor specialization is used to synthesize software system implementations.

2 Actor-oriented System Modeling

Actor-oriented modeling [32] is a methodology that is particularly effective for system-
level design. Actors execute and communicate concurrently with other actors in a model.
The ordering of actor execution and the style of actor communication is determined by
a model of computation (MoC). Many different models of computation are possible. For
instance, in a dataflow or process network [25, 26, 41] model, actors communicate by
queues and execute concurrently whenever their input queues have sufficient data available.
Alternatively, in a discrete event model, actors communicate by events in time and only the

actor with the earliest event is enabled to execute.

Actors have a well defined interface. This interface abstracts the internal state and exe-
cution of an actor, and restricts how an actor interacts with its environment. The interface
includes ports that represent points of communication for an actor and parameters which
are used to configure the operation of an actor, increasing the contexts in which it can be
used. Generally parameter values are part of the a priori configuration of an actor and do
not change when a model is executed. The configuration of a model also contains explicit

communication channels that pass data from one port to another.?

This “port and parameter” syntax has several nice properties:

2This terminology is inspired by {21, 2, 1], although the specifics are somewhat different.

3

e The interface to a component, i.e. its ports and parameters, is an explicit part of the

component.

e It is easy to add external ports and parameters to a model, allowing models to be
composed hierarchically with other actors and models. Such a model is externally

indistinguishable from any other actor.

e The specification of an actor is independent of the model in which the actor is used,

making it easy to reuse an actor specification in other contexts.

Individual models of computation govern the interaction between components in widely
different ways. Each of these semantics is associated with a set of properties that are useful
for the modeling or design of a certain class of designs [34]. These properties are gen-
erally recognized, often because they have been established through formal mathematical
reasoning about the model of computation. For example, some models of computation ex-
pose a wide range of concurrency in the system, allowing for models to be executed in a
distributed environment [25, 22, 12]. Other models of computation are more sequential,
making it more difficult to distribute a model, but allowing efficient sequential execution
[33, 4, 20]. Similarly, some models of computation are easily analyzed at design time, al-
lowing static scheduling [7, 8], while others allow more dynamic component behavior and
runtime reconfiguration [35, 44]. Because of these properties, models of computation [32]

can be considered as patterns of component interaction, in the sense of Gamma et. al. [19].

2.1 Specifying Actor Behavior

The behavior of an actor is defined to be a possibly infinite set of operations. For the pur-
poses of this paper, the only thing that we need to say about these operations is that they
can represent the production and consumption of data from the ports of the actor, the com-
putation of new data, and modification of the internal state of the actor. The behavior of an

actor is primarily determined by an actor specification. The execution of this specification,

in the context of other actors and data from the environment results in an actor’s observed

behavior.

Actor specifications can be given in a variety of ways. For instance, actors are often
specified by drawing finite-state machines where each transition corresponds to a particular
sequence of operations [38]. An actor can also be specified by composing yet other actors
in a hierarchical model. Yet another technique is to use a special purpose textual language
that specifies what tokens to consume and what operations to compute on that data, such
as CAL [50]. However, one of the most flexible ways to specify actor behavior is to embed
the specification within a traditional programming language, such as Java or C, and use
special purpose programming interfaces for specifying ports and sending and receiving
data. This technique is very attractive, and has been widely used [40, 10, 18] since it allows
for existing code to be integrated into an actor-oriented design tool and for programmers to

quickly start using actor-oriented methodologies.

2.2 Generality of actors

We consider actors to be abstract system components in the following senses:

They have a well-defined interface, given by ports and parameters, through which

they can interact with the rest of the model. Other interactions are not allowed.

e They are generalizable across different uses of the same component. For instance, a
component may be given new parameter values or may be connected to a different

set of channels.

o They may have vastly different levels of granularity. For instance, an actor may repre-
sent algorithms ranging from the boolean OR of two bits to the boolean satisfiability

solution of an arbitrary logic formula.

Larger components may be assembled from smaller components. Component com-

position is the primary mechanism by which complex behavior is constructed.

o They are executable specifications of behavior. (i.e. Actor models have an opera-

tional semantics)

Of these, the generality of actors is something that often varies from one actor to the
next. For instance, some actors are designed to be very specialized to a particular purpose,
such as an actor that represents the controller for a particular model of brushless motor.
Other actors are more general, such as an actor that has parameters that can be set to control
different models of brushless motors. In the second case, such a parameterized controller

enables component reuse of the controller in another model.

Component generality also allows for the possibility of dynamic reconfiguration during
execution. For example, an actor that is not specialized to a connection with another actor
has the potential to be dynamically reconnected to a different actor with no modification.
Similarly, an actor that is not specialized to particular parameter values has the potential to
be dynamically reconfigured with new values. Generally speaking, the use of generalized

components increases the available design possibilities when using components.

Imperative programming languages, such as C or Pascal, primarily offer generality
through the generality of function arguments. Any set of actual arguments that are compat-
ible with the formal arguments of a function may be passed to that function. Furthermore,
a function may be called from many places in a program using different arguments in each
case. We call such generality data polymorphism. Object-oriented languages, such as C++
and Java, add the notion of type polymorphism, where the types of actual arguments may
not be identical to the types of formal parameters. We identify several types of generality

in actor-oriented models, all of which are exhibited in Ptolemy II:

e data polymorphism: An actor may be given data with different values.
e type polymorphism: An actor may be given data of different types.
e parameter generality: An actor may be given a different set of parameter values.

6

e connection generality: An actor may be connected to a different set of actors.

e domain polymorphism: An actor may interact with other actors according to different

models of computation.

Unfortunately, extremely general components do have significant drawbacks. One
drawback that can seriously limit the reuse of existing components is increased design
complexity. A parameterizable component can be more difficult to use than an appropri-
ately specialized one, since it may be easier for a designer to develop a new component
than to determine the proper application of an existing one. A second drawback comes
in the form of execution efficiency: generality is often gained through increasing abstrac-
tion. However, increased abstraction can have significant negative impacts on resource
usage, e.g., increased processor cycles and memory usage for software systems or greater
chip area for hardware systems. We find that managing the tradeoff between component

generality and speciality becomes critical, especially for resource constrained systems.

2.3 Composition of Actors

As mentioned previously, actors with sophisticated behaviors are often specified by com-
posing simple actors in a model. Since this model is itself an actor, it can be further com-
posed to create an arbitrarily large hierarchical model. We define the context of an actor in a
model to include the model of computation used for composition, as well as parameter val-
ues, port connections, and types of ports and parameters. Although actors may be specified
in a general way, actors acquire specific context when composed in a model. This context
may change if a model is further composed hierarchically with further actors or models.
We say that an actor or model that can be further composed is an open composition. Con-
versely, a closed composition cannot be composed further. In a closed composition, it is
often useful to distinguish the model that contains all other actors as the roplevel model of

the hierarchical model.

Note that even in a closed composition, the context of actors may change dynamically
through dynamic reconfiguration. For instance, ports may be reconnected and parameters
may be assigned new expressions and values. Generally speaking, such modifications can
be initiated either through external user interaction or internally by the model. External
modifications are generally able to modify the model in entirely unpredictable ways. Inter-
nally triggered modification, on the other hand, can often be predicted since models often

include descriptions of the modification to be performed.

3 Ptolemy IT Summary

Ptolemy II [15] is a modeling and design tool written in Java that incorporates the concepts
of actor-oriented modeling introduced in the previous section. This section describes some
of the details of Ptolemy II necessary for understanding the process of actor specialization.

The rest of this paper will exclusively consider actors and models built using Ptolemy II.

3.1 Ptolemy II models

The syntax of a Ptolemy II model consists of actors (represented by the TypedAtomic-
Actor base class), communication ports (represented by the TypedIOPort class), and
relations (represented by the TypedIORelation class) that mediate the channels be-
tween ports. Links between a port and a relation create the communication channels be-
tween ports. Actor models (represented by the TypedCompositeActor class) contain
actors, ports, relations and the links between the ports and relations. Each of these Ptolemy
II objects can also have arbitrary attributes (represented by the Attribute base class).
The most interesting type of attribute is a parameter, which has a simple string expression

that can be evaluated.

This syntax is commonly represented visually as in Figure 1. Ports are visible on the

symbol1 correlator1

» Maximum
symbol2 comelator2 »
af

Multiplexor ;l >’

compareResults

bitSource P = o

D - 1 -
Gaussian Noise SequenceToAmay

] > > N a-:dNolfe_L

[~

v

SDF

hy

Figure 1: A model of a simple digital communication system, adapted from Jeff Tsay.[48])

boundaries of boxes representing actor interfaces and are connected to other ports by re-
lations. Parameter values are usually not shown. The model of computation is specified
by the box marked “SDF.” In most cases, this representation of a model is sufficient, since
it concentrates on the connections between actor interfaces. However, in some cases, it is
useful to represent not only the connections between actors, but also the specifications of
actor behavior. The specification of an actor’s behavior is given by drawing an arrow from
the actor interface to the specification, as in Figure 2. This figure shows the interface to the
model, as well as a partial Java specification of the DotProduct actor. The format of this

Java code will be explained in the following section.

In a Ptolemy II model, data communicated between actors is represented by instances
of the ptolemy.data.Token base class, or simply tokens. The values of parame-
ters are also represented by tokens, which can encapsulate any immutable value. Val-
ues with different data types are represented by different subclasses of the Token base
class. We often refer to these subclasses as token classes. Most token classes, such
as ptolemy.data. IntToken represent tokens with numeric types and serve simply
as object wrappers for native Java types. For instance, an IntToken might represent the
number 7. Other token class represent more complex numeric types, such as the the

ptolemy.data.DoubleMatrix class, which could represent a square identity ma-

OrthogonalCom

10

symbol1

T

public class DotProduct extends TypedAtomicActor {
public TypedIOPort input1, input2, output;

public void fire() throws IllegalActionException {
Token[] array1 = ((ArrayToken) input1.get(0)).arrayValue();
Token[] array2 = ((ArrayToken) input2.get(0)).arrayValue();

Token dotProd = null;
for (inti=0;i < arrayl.length;i++) {
ScalarToken currentTerm = (ScalarToken)array 1[i) multiply(array2[i]);
if (dotProd == null) {
dotProd = currentTerm;
jelse(
dotProd = dotProd.add(currentTerm);
}
]
output.broadcast(dotProd);

correlatort

symbol2

. TR

bitSourca

=

Multiplexor

compareResults

display

Gaussian Noise

SequenceToArray

addNoisa

==

Figure 2: The previous example model, explicitly showing actor specifications.

10

trix of size 4. More unusual are token classes, such as ptolemy.data.ArrayToken,
which represent tokens with structured types. Structured tokens aggregate other tokens into

composite data structures.

Ptolemy II also includes a sophisticated type-inference mechanism that allows actors to
be type polymorphic [52]. This mechanism infers the types of the ports of an actor based
on constraints declared by actors and constraints implied by connections between ports.
Automatic type conversions are performed when data is communicated between ports with
different types. This type inference system emphasizes exact solutions the type constraints.
That is, the inferred type of a port or parameter is, in most cases, exactly the type of the
data that will be carried by that port or parameter. In cases where exact types cannot be
determined, an indeterminate type, such as general is inferred. In such cases, a model
will still execute as long there are no contradictory type constraints, but automatic type

conversion will not be performed for the port or parameter with the indeterminate type.

As mentioned previously, model parameters are associated with string expression. These
expressions operate on tokens and, when evaluated, result in a single token value. Addi-
tionally, expressions may reference identifiers, such as the name of another parameter in
scope or the name of a globally defined constant. When the value referred to by the iden-
tifier has been determined, the identifier has been bound. The scoping rules allow access
to the value of any parameter contained by same actor or any container of the actor. These
scoping rules allow a designer to selectively hide most actor parameters deep in the hier-
archy, and only expose a small number of model parameters at a high-level. An identifier
is only bound to the value of a global constant if it cannot be bound to any parameter in
the model, which allows new global constants to be added without shadowing the param-
eters of existing models. Expressions are evaluated by parsing the string into a parse tree
and traversing the parse tree from the bottom-up computing intermediate results. The final

value is cached to avoid expensive parse tree traversal.

11

3.2 Actor Specification in Java

Actors are commonly specified using a stylized form of a Java class. The class implements
the Executable interface, and each actor with the same specification is represented by
an independant instance of the class. The methods of the Executable interface break the
overall set of operations of an actor into a sequence of firings. The preinitialize ()
and initialize () methods are generally executed once before the actor does any
computation. The prefire (), fire(), and postfire () methods are executed to
form a single firing. The prefire () method allows a precondition check to ensure that
the actor can, in fact, be fired. In the models of computation considered in this report,
the £ire () .and postfire () methods are invoked immediately after one another af-
ter the prefire () method returns true. The wrapup () and terminate () methods
are called after computation is finished. For the purposes of this paper, we are primarily
concerned with the fact that each of these methods corresponds to an independant set of
operations specified using Java code. For more information about the operational semantics

of this actor model, see [37].

Within each method, invocations of the TypedIOPort class methodsget (), send (),
and broadcast () correspond to operations that send and receive data. Similarly, invoca-
tions of the Parameter class methods get Token () and getExpression () query
the values of parameters. The persistent state of the actor is stored in fields of the Java

class.

Ptolemy II also defines other methods that are used to notify an actor that certain proper-
ties have changed. The attributeChanged () method of an actor is invoked when the
value of an parameter of the actor has changed. Similarly, the at t ributeTypeChanged ()
method is called when the type of a parameter has changed. These methods are not part of
the normal flow of execution control, but may contain code that is an important part of an

actor specification.

12

3.3 Other Actor Specifications

We will consider several other actor specifications, which are useful in particular circum-
stances: token expressions, finite-state machines, and modal models. Token expressions
are useful for specifying actors that compute stateless functions 6f several inputs. The
expression is evaluated in the same way that parameter values are evaluated, except that
identifiers in the expression may be bound to the last values received on the actor’s input
ports. The value of the expression is sent to the actor’s single output port whenever the

actor is fired.

Finite state machine specifications [38] are useful for expressing actors with state.
Whenever the guard expression of a transition leaving the current state evaluates to true,
the transition is executed. The execution of a transition results in the evaluation of the
transition’s output expressions, and the results are sent to the corresponding output port.
Additionally, the state update expressions of the transition are evaluated, and the corre-
sponding state variables updated. Lastly, the current state is updated to be the target state

of the transition.

Modal models [38], however, are somewhat more interesting. In a modal model, each
state of a finite-state machine is additionally associated with a refinement actor. In addition
to checking for transitions, each firing of the modal model results in a firing of the refine-
ment associated with the current state. Additionally, when a transition of a modal model
is taken, the transition may update the parameter values of the refinement associated with
the destination state. The possibility for a modal model to update parameter values in a

refinement is a common source of dynamic reconfiguration in Ptolemy II models.

13

4 Actor Specialization

As mentioned previously, Java specifications of Ptolemy II actors define actor behavior
in a generic way. In order to generate an efficient implementation from a specification,
it is transformed into a new actor specification that is specialized to a particular context.
Such a context includes, for instance, assignments of values to parameters and assignments
of types to ports and parameters. While such a context could be specified explicitly, we
instead concentrate on using the implicit context that actors acquire when composed in a
model. In contrast with an explicit context, an implicit context is more difficult to use for

specialization, since it may change through dynamic reconfiguration of the model.

This report considers four types of actor specialization: parameter specialization, type
specialization, connection specialization and domain specialization. The following sec-
tions describe, for each type of specialization, the possibilities for determining whether or
not the appropriate context of an actor can change. In each case, an actor specification can
be specialized if the appropriate context does not change. Additionally, parameter special-
ization can be performed even if parameter values are dynamically reconfigured by a modal
model. In all cases, it is assumed that the model is not dynamically reconfigured by any

means external to the model.

Note that we do not consider specialization of the data generality from actors. In most
cases, actors used in models of embedded systems operate on unknown data, since they
are constantly receiving unknown data from sensors in the physical world. Hence, data
generality seems crucial to the notion of an embedded system. However, in some cases it is
useful to have actors internal to a model that produce sequences of constant or deterministic
data. In such cases it seems possible that classical compiler optimizations, such as constant
propagation and constant expression elimination [39] could be applied. We have not fully

considered these kinds of specializations, but they seem straightforward to apply.

14

4.1 Parameter Specialization

In the context of a complete executable model, the expression of a parameter must always
be evaluatable. Additionally, we distinguish expressions containing identifiers that have
not been bound in the model. Such expressions are called open expressions, while expres-
sions where all identifiers have been bound are called are called closed expressions. The
identifiers in open expressions must be either bound later in composition, making the ex-
pression closed, or they must match the names of globally defined constants. Lastly, we
distinguish those parameters that are constant, i.e., that have a closed expression and always
evaluate to the same value, and those which may not be constant. Any parameter that is not
definitely constant will be called dynamic, even though its value may actually not change.
A parameter is dynamic if either its expression may be dynamically reconfigured, or its ex-
pression is constant and contains identifiers bound to other dynamic parameters. Note that
open expressions may still be evaluatable, since identifiers may be bound to globally de-
fined constants, and that closed expressions are not necessarily constant expressions, since

parameter values may change during execution.

Parameter specialization is the transformation of an actor specification with unspecified
parameter expressions into a specification where parameter expressions are fixed. In this
context, two transformations are primarily of interest: replacing queries for the value of
constant parameters with the constant value of the parameter, and replacing evaluations of

dynamic parameters with generated code that avoids traversing the parse tree.

Unfortunately, these transformations cannot be performed in the context of an open
composition. First of all, it is impossible to determine when parameters in an open compo-
sition are, in fact, constant, since the open composition may be additionally composed as
part of a modal model. Secondly, it is impossible to determine whether identifiers in open
expressions should be bound to globally defined constants or left to be bound with other
parameters during later composition. For the rest of this section we ignore these difficulties

and deal solely with the case of closed composition.

15

4.1.1 Analyzing for Constant Parameters in Closed Compositions

This section describes a technique for directly computing the set of dynamic parameters in a
model, from which can be derived the set of constant parameters. In lieu of pseudocode, we
give an abstract mathematical description that can be easily implemented as an algorithm.
We will assumes that external modification of parameters is not allowed and that models
do not change parameter values internally, except through assignments in the transitions of
modal models. The scoping rules of parameters are described by a function dependents :
Parameters — P(Parameters), where Parameters is the set of all parameters in the
model, and P(X) denotes the power set of the set X. The set dependents(p) contains every
parameter whose expression includes an identifier bound to p. Parameter assignments are
described by the set assigned/nModalModels C Parameters contains all parameters that

can be modified in the transitions of modal models.

Given this information, we define a function
f : P(Parameters) — P(Parameters)
where VX € P(Parameters),

f(X)=Xu | dependents(z)

zeX

The set of dynamic parameters is the least fixed point
dynamicParameters = f(dynamicParameters)

starting from the initial point assignedInModalModels. Note that since X C f(X) for all
X, f is amonotonic function under the subset order. This property, along with the fact that
the number of parameters in the model is finite, implies that the above fixed point exists
and can be found by repeated application of f.[14]
dynamicParameters = |] f*(assignedInModalModels)
n>0
Given the set of dynamic parameters, the set of constant parameters is simply Parameters—

dynamicParameters. Note that this formulation seems straightforward to extend given

16

public TypedIOPort input, output;

public Parameter arraylength;

public void fire() {
int length = ((IntToken)arrayLength.getToken()).intValue{();
Token[] valueArray = input.get (0, length);
output.send(0, new ArrayToken(valueArray));

}

Figure 3: Original Code from SequenceToArray.

other sources of dynamic parameter expressions, such as a user interface that can directly

manipulate the model.

4.1.2 Replacing Constant Parameters

Parameters that are determined to be constant through the above algorithm can be spe-
cialized by replacing accesses to the parameter with the parameter’s constant value. Pri-
marily, this results in the replacement of invocations of the parameter’s getToken ()
method. These invocations are replaced with references to token objects. Since tokens
are immutable objects, the expense of runtime allocation is reduced by creating the tokens
during initialization and storing a reference to the token in an automatically created field of

the new specification.

As an example, consider the SequenceToArray actor in the example model. This ac-
tor consumes eight tokens in the model (the value of the arrayLength parameter) and
aggregates them into a single array token, as shown in Figure 3. This specification, special-

ized to a constant arrayLength parameter value of 8, is shown in Figure 4.

As an additional optimization, the invocation of the intValue () method can also be
replaced, since it is always called on the same object. The result is shown in Figure 5. In
this case, since the parameter is not used elsewhere in the actor specification, the field and

token creation are dead and can also be removed.

17

public TypedIOPort input, output;
public IntToken arrayLength_value = new IntToken(8);
public void fire() {
int length = arraylLength_value.intValue();
Token{] valueArray = input.get (0, length);
output.send(0, new ArrayToken(valueArray));

}

Figure 4: The SequenceToArray actor, after specialization with
arrayLength=8.

Port input, output;

public void fire() {
int length = 8;
Token[] valueArray = input.get (0, length);
output.send (0, new ArrayToken(valueArray));

}

Figure 5: The SequenceToArray actor, after additional specialization with
arrayLength=38.

Although the initialization of constant parameters is relatively uninteresting, since the
values are known to be constant, actor specifications often contain code that is executed
when the parameter is initialized. This code is found in the attributeChanged ()
and attributeTypeChanged () methods. These methods are used to cache param-
eter values or to take other action based on the value of a parameter. For instance, the

attributeChanged () method of the SequenceToArray actor is shown in Figure 6.

After the value of the arrayLength parameter is set in the constructor of the actor,
the attributeChanged () method is called. As part of specializing the actor speci-
fication, this method invocation is inlined. Additionally, by analyzing object references,
the comparison attribute == arrayLength can be removed, since it will always

be true after initializing the arrayLength parameter and false otherwise. The result is

shown in Figure 7.

18

public void attributeChanged(Attribute attribute) {
if (attribute == arrayLength) ({
int rate = ((IntToken)arrayLength.getToken()).intValue();
if (rate < 0) {
throw new IllegalActionException(this,
"Invalid arrayLength: " + rate);

}

input.setTokenConsumptionRate (rate) ;
} else {
super.attributeChanged (attribute) ;

}

Figure 6: The attributeChanged () method of the SequenceToArray
actor.

4.1.3 Replacing Dynamic Parameters

The process of replacing dynamic parameters follows much the same pattern as replacing
constant parameters. However, invocations of the get Token () method are replaced with
a reference to a field containing the current value of the parameter. This field is updated
to contain the new value of the parameter whenever the expression for the parameter is

modified. Similarly, if the expression does not change, but depends on another value, then

IntToken arrayLengthValue;

public SequenceToArray (CompositeEntity container, String name) {
super (container, name);
// Initialize field for parameter.
arrayLengthValue = new IntToken(8);
// The result of calling attributeChanged (arrayLength) .
input.setTokenConsumptionRate (8) ;

Figure 7: The constructor of the SequenceToArray actor, after specialization
with arrayLength = 8.

19

every modification of that value triggers the expression to be recomputed. In the second
case, since the expression is constant, code is automatically generated from the expression
in order to optimize computation of the new parameter value. This code is generated by

traversing the parse tree of the expression in the same way that expressions are evaluated.

Unfortunately, one difficulty with this transformation is that the number of times that the
expression is computed during simulation may be different from the number of times the
expression is computed in generated code. This can have undesired effects when certain
methods are invoked (such as a method that returns a random number). Unfortunately,
this difficulty is somewhat inherent in the established semantics of parameter evaluation in
Ptolemy II, and is unlikely to be solved solely in the code generator. We are considering
ways of simplifying the semantics of the expression language to deal with this problem in

ways that are still acceptable for generated code.

4.2 Type Specialization

Actor specifications in Ptolemy II are often type polymorphic, allowing them to operate
equally well on integers, doubles, or even arrays of integers. This polymorphism is ab-
stracted by the ptolemy.data package, which represents a set of common operations
in a type-independent fashion, and a type inference algorithm that infers types where they
are not completely specified. Although actors are generically typed, in most models actors
only ever receive or produce data of a single type. Type specialization reduces a type-

polymorphic specification to a specification that is only able to deal with a single type.

Currently, we deal only with closed composition, and assume that the types inferred for
ports and parameters are exact. Based on inferred types for ports and parameters, the types
for variables in the Java specification are inferred. The types inferred are generally much
stronger than the types inferred by the regular Java type system and, when it is necessary to
distinguish, they will be referred to as foken types. Note, however, that token types almost

always correspond exactly with a single token class and in most cases this distinction is not

20

necessary.

4.2.1 Inferring Token Types in Java Actor Specifications

The token type inference algorithm is based on a dataflow analysis. The types of ports
and parameters of the actor are fixed, along with the types of newly created tokens, and
these types are propagated through the Java code. Unlike standard Java type inference, the
types of Java arrays of tokens and the types of fields that refer to tokens are considered type
variables, and will be updated with the correct token types. Additionally, the token types

of data contained in Java arrays are constrained to be the same.

A key distinction between this dataflow analysis, the Ptolemy II type system [52] and
the Java type system occurs when a type variable has different types along different paths
through the program. In Java, the variable is assigned a type based on object-oriented
subtyping, that is, the type will be the greatest subtype of the types along the two paths. In
the Ptolemy II type system, the type would be assigned according the Ptolemy type lattice
and an automatic type conversion inserted to ensure that the assigned type is an exact
type. In this dataflow analysis, exact types are highly desireable, since they enable type
specialization and token unboxing, but automatically inserting a type conversion would
change the behavior of the Java code. Hence we interpret the presence of different types

along different control paths to be a type error.

As an example, consider the specification of the Ramp actor in Figure 8, where the value
of the init parameter is an IntToken, and the step parameter contains a DoubleToken.
The type constraints are such that the type of the output port must be double. On the first
firing, the field _state refers to an IntToken, which is the value of the init parameter.
Since the output port has type double, the IntToken is converted to a DoubleToken in the
process of being sent. After the postfire () method is invoked, the _state field refers
to a DoubleToken, which results from adding the initial IntToken to the value of the step

parameter (a DoubleToken). The token type inference system will flag this as a type error.

21

TypedIOPort output; // double

Parameter init; // int
Parameter step; // double
private Token _state; // general

public void initialize();
_state = init.getToken();

}
public void fire() {
output.send (0, _state);

}

public void postfire() {
_State = _state.add(step.getToken());

}

Figure 8: A ramp actor specification, which does not have exact token types.

There are actually two solutions to the above problem. The first solution is to strengthen
the type constraints on the actor, declaring that the types of the parameters and the types
of the output port must all be the same. The IntToken value of the init parameter will
be automatically converted into a DoubleToken before being queried, and no type conflict
will be found. Another solution, shown in figure 9, is to manually insert code into the
initialize () method to convert the value of the initial token to the type of the output
port. Unfortunately, both of the above solutions have the potential to change the behavior

of the program and cannot be performed as automatic transformations.

4.2.2 Type Specialization Transformations

Inference of token types within Java code leads to several automatic transformations. Pri-
marily, Java fields which maintain the state of the actor, such as the field _state in Figure
9, can be given new Java types that more accurately reflect the data they reference. Similar
transformations can be performed on Java arrays of tokens. These transformations often
require the insertion of Java casts to ensure that the specification is still properly typed un-

der the Java type system. Although these transformations do not significantly modify the

22

TypedIOPort output; // double
Parameter init; // int
Parameter step; // double
private Token _state; // double
public void initialize();
_state = step.getType() .convert(init.getToken()) ;

}
public void fire() {
output.send(0, _state);

}

public void postfire() {
_state = _state.add(step.getToken());

}

Figure 9: A ramp actor specification annotated with possible exact token
types.

behavior of the code, they enable the unboxing of tokens, described in Section 5.1.

4.2.3 Type Inference and Type-Controlled Recursion

In the previous sections, we purposefully avoided describing the propagation of token types
through method calls. In fact, there are rather fundamental difficulties with the inference
of exact token types for such method calls. These difficulties are closely related to the
fact that Java is a Turing-complete language, and arise in loops as well. An example is
the actor specification shown in Figure 10. This actor takes an input, which can be either
an ArrayToken or numeric token, and multiplies it by the parameter factoxr. If the in-
put is an ArrayToken, then the output is also an ArrayToken. Note that in this case, the

-scaleOnLeft () is called recursively with different token types.

It seems unsatisfying that such a simple actor and such an elegant use of recursion
should not be a useful actor specification. We have tentatively approached this problem by

inlining all methods in the actor specification that take tokens as arguments, or return to-

23

TypedIOPort input,output; // array(double)
Parameter factor; // double
public void fire() {
if (input.hasToken(0)) {

Token in = input.get(0);

Token factorToken = factor.getToken();

Token result = _scaleOnLeft(in, factorToken);

output.send (0, result);

private Token _scaleOnLeft (Token input, Token factor) {
if (input instanceof ArrayToken) {
Token[] argArray = ((ArrayToken)input).arrayValue();
Token[] result = new Token[argArray.length];
for (int i = 0; i < argArray.length; i++) {
result[i] = _scaleOnLeft (argArray(i], factor);

}

return new ArrayToken (result);
} else {
return factor.multiply(input);

Figure 10: An actor that scales its input.

kens. Combining this approach with repeated application of type inference and recognition
of dead code guarded by the instanceof check allows the troublesome method to be
completely eliminated. This solution is certainly not perfect, since it may greatly increase
code size and is only applicable to recursive function calls governed by the type of a token.
However, in lieu of rewriting the actor more simply, there does not appear to be a better

solution if exact types are required. The final inlined version is shown in Figure 11.

24

TypedIOPort input,output; // array(double)
Parameter factor; // double
public void fire() {
if (input.hasToken(0)) {
Token in = input.get(0);
Token factorToken = factor.getToken();
Token[] argArray = ((ArrayToken)input).arrayValue();
Token[] result = new Token(argArray.length] ;
for (int i = 0; i < argArray.length; i++) {
result [i] = factor.multiply(input);

}

Token result = new ArrayToken (result);
output.send (0, result);

Figure 11: An unrolled version of an actor that scales its input.

4.3 Connection and Domain Specialization

Connections between the ports of actors are the primary mechanism for inter-component
communication in an actor-oriented model. However, actors are commonly specified inde-
pendently of their actual connections. The connections between ports are specified sepa-
rately in a model. This separation allows for Java actor specifications to be easily reused
multiple times in a model, and for connections to be created and deleted between actors
while a model is executing. However, many models are statically connected, i.e. the
connections between ports are specified when the model is created and are not changed

dynamically.

In this section, we will assume that models are not able to not modify their own con-
nections, implying that all models are statically connected. Connection specialization is
the process of transforming an actor specification into a new specification where the con-

nections to other actors are fixed.

25

Additionally, most actors in Ptolemy II are specified by Java code that is domain poly-
morphic. These actors make relatively few assumptions about how they communicate and
interact with other actors. Unlike other forms of actor generality, domain generality seems
unique in that it does not enable useful dynamic reconfiguration of a model. That is, we
have not seen instances where is it useful to change the model of computation of a model
from, for instance, synchronous dataflow to Kahn process networks. Hence, we assume
that actors in a statically connected model always operate according to the same model of
computation. Domain specialization is the process of transforming an actor specification

into a new specification where the model of computation is fixed.

Unlike parameter and type specialization, connection and domain specialization is pos-
sible in the context of both open compositions and closed compositions. This possibility
arises because, in Ptolemy II models, a connection between two ports is always a local
connection between ports in the same model. Communication that crosses the boundary of
a model must travel through two channels, one that mediates the external connection to the
model’s port and the other that mediates the internal connection.> An example is shown
in Figure 12. In contrast, parameters and type constraints have global scope, in the sense
that modification of a parameter value or type can affect parameter values and types across

hierarchical boundaries.

Connection specialization and domain specialization are dealt with in the same section
for two reasons. Primarily, they both involve transformation on the method of ports, and
after both of these transformations are performed, ports can be completely removed from
the actor specification. Perhaps more importantly, for the synchronous dataflow model
of computation we have considered, the send (), get (), and broadcast () methods
of ports can be replaced with more efficient code if the domain and port connections are

considered at the same time.

3This is true in the case of what Ptolemy II considers opaque hierarchy. In transparent hierarchy, the
same is not true. In this paper we deal solely with opaque hierarchy in composition.

26

SDF Director :

Sinewave SequencePlotter
ooo

B2

Two independent

channels are required

to transport data
TrigFunction

! output across model

boundaries

Figure 12: Communication across hierarchy requires multiple channels.

4.3.1 Connection and Domain Specialization Transformations

The specialization of static connections results in the removal of all method invocations
on ports. Invocations of methods that query the connections to the ports (such as the
getWidth() method) are replaced with actual values. At the same time, invocations
of methods that send and receive data from ports (i.e. get ()) are replaced with methods

that operate directly on communication channels.

As an example of the implications of this transformation, Figure 13 shows an actor
that transmits data received from any input port to its output port. This actor is specified
in such a way that each of the three input ports may or may not be connected. If any of
the inputs are not connected, then the corresponding loop will never actually consume any
data. This specification can be specialized to remove the extraneous loop (since the width
of the port is zero). Additionally, some domains, such as synchronous dataflow and Kahn
process networks, ensure the presence of data when an actor is fired. In these cases, domain

specialization results in the elimination of the unnecessary if statements.

27

Port inputl, input2, input3, output;
public void fire() {
for(i = 0; i < inputl.getWidth(); i++) {
if (inputl.hasToken(i)) {
output.send (0, inputl.get(i));
}
}
for(i = 0; i < input2.getWidth(); i++) {
if (input2.hasToken(i)) {
output.send (0, input2.get(i));
}
}
for(i = 0; i < input3.getWidth(); i++) {
if (input3.hasToken(i}) ({
output.send (0, input3.get(i));
}
}
}

Figure 13: A merge actor.

A source of complexity exists with any port method that takes a channel index, such
as the get (), send (), and hasToken () methods in Figure 13. For these methods,
it is often the case that the correct channel index can often not be statically determined
from the Java specification of the actor. For instance, it is common practice to write actor
specification code as in the Figure which iterates over all the channels of the port. To deal
with this, an additional array of channels is created for each port of an actor that allows
the channel to receive data to be determined at runtime. If all channel references can be

determined, then no such array is necessary.

We have currently implemented domain specialization transformations only for the syn-
chronous dataflow (SDF) model of computation in Ptolemy II. In an SDF model, all execu-
tion and communication can be statically scheduled [7]. This implies that the communica-
tion between ports can be implemented using fixed length arrays and circular addressing.

Additionally, we notice that SDF buffers can be shared in cases where data is broadcast

28

// The buffer for the input port.
DoubleToken[] _relation_0_double;
// The current read index for the input port.
int[] _index_input;
// The buffer for the output port.
ArrayToken[] _relation3_0_ double_;
public void fire{() {
// Code replacing the input.get() method
DoubleToken([] doubletokens = _relation_0_double;
int index = _index_input[0];
Token[] tokens = new Token(8];
for (int i = 0; i < 8; i++) {
tokens([i] = doubletokens(i];
index = ++index % 8;
}
_index_input[0] = index;
ArrayToken arraytoken = new ArrayToken (tokens) ;
// Code replacing the output.send() method
ArrayToken[] arraytokens = _relation3_0_ double_;
arraytokens[0] = arraytoken;

Figure 14: The SequenceToArray actor, with optimized communication.

to multiple receiving port. Invocations of the get () and send () are replaced with ar-
ray reads and writes and circular buffer addressing. The length of the arrays is statically

computed by simulating the execution of the schedule.

The code in Figure 14 illustrates the resulting transformed code for the SequenceToAr-
ray actor in the example model. This code contains references to the arrays of tokens for
the input and output buffers. It also contains a reference to the array of indices into the
input buffer which is updated as data is read from the buffer. No array of indices is created

for the output buffer, which contains only a single location.

29

S Co-compilation in Ptolemy II

Considered alone, the specialization transformations in the previous section allow opti-
mization of individual actors to a given context. This section describes how those transfor-
mations can be used in combination with automatic code generation to synthesize an effi-
cient implementation from an actor-oriented model. When have built a tool, called Coper-

nicus, that generates an implementation from Ptolemy II models using co-compilation.

The sequence of operations performed during co-compilation is:

1. Perform any analysis on the model, extracting information such as inferred types and

scheduling information.

2. Duplicate each original Java actor specification for each actor in the model. Auto-
matically generate a Java actor specification for actors that are specification using

finite state machines, modal models, or expressions.
3. Specialize each specification according to the usage of the actor in the model.

4. Automatically generate code from the model to join the specialized actor specifica-

tions.

5. Unbox tokens, remove internal actor interfaces, obfuscate the generated code and

perform other traditional compiler optimizations.

These transformations are represented by the large arrows in Figure 15. Note that after
the transformations are completed, an actor originally specified using a model has been
replaced with a Java actor specification. In this specification, the structure of the model has
been completely removed, leaving only the original actor interface to the model. Also note
that the generated specification still implements the Java Executable interface, even if

it no longer contains ports and parameters.

30

OrthogonatCom

E

Y public class DotProduct extends TypedAtomicActor |
Original -
U
Model public class C 1extends t
.-
>
= — - B public class Coerelator2 extends TypedAtomicActor {
=
o] .
=
PR e E=m
= 3 N
pubdlic dass. 1 extends T

public class
.-
OrthogonalCom
P s public class O ‘om extends Typed)
:E}}Q s private 1) i 1= new C
, private icActor J = new Ci
. -
Co-compiled

Actor

public class

Figure 15: Co-compilation steps

31

The specializations in step three are exactly those specializations described in section
4. In step four, code is automatically generated to instantiate the correct communication
buffers and schedule actor firings according the model of computation. Code is also gener-

ated to connect the specialized actor specifications to the correct buffers.

Step five consists of several optimizations that do not operate on the structure of the
model, but are instrumental in the efficiency of the final actor specification. Token unbox-
ing transformations replace abstract token objects with native Java types, reducing object
allocation and garbage collection requirements. These transformations are possible be-
cause we restrict our actor specifications and models to those where exact types exist. This

transformation will be described more completely in the next section.

Internal actor interfaces are also eliminated in step five. Since ports and parameters have
been removed during specialization, the Java classes corresponding to the specialized actors
can be modified to extend from the java.lang.Object base class. This transformation

is possible because there is exactly one instance of each specialized actor specification.

Another optimization that occurs in step five is obfuscation of the generated code. Ob-
fuscation replaces the names of all methods with shorter strings. This is important since,
in Java bytecode, methods are referred to by the complete signature of the method. Hence,
unlike in C or C++, the names of methods often have a significant impact on the size of
compiled Java classes. We have applied the obfuscator in Jode [23], an open source de-

compilation tool.

To avoid undue complication, we do not specifically mention other optimizations that
are performed in step five, since they are well described in the literature. These techniques
include both peephole optimizations (common sub expression elimination, dead assign-
ment elimination, etc.) [39], as well as optimizations that take into account more global
information (loop unrolling, object flow analysis, local splitting [39], method inlining, etc.)
Note that in some cases, the co-compiler has more information about the classes being op-

erated on than a standard compiler, since automatically generated classes are not referenced

32

from outside of automatically generated code. This fact can be used to implement efficient

transformations on the class hierarchy that are not normally performed by Java compilers.

5.1 Token Unboxing

The boxing and unboxing of data is a well-known technique used in functional languages,
such as ML [36]. In functional languages, the goal of unboxing is to be able to pass
numeric types to type-polymorphic functions. The functions themselves are written to
handle arbitrary objects, but are unable to handle numeric values. Boxing refers to the
process of automatically encapsulating a numeric value in a wrapper object so that it can
be passed to such a type-polymorphic method. When the number is eventually passed
to another method that requires the numeric value, it is automatically removed from its
wrapper through unboxing. This transformation happens within the execution engine for

the language and is totally transparent to the programmer.

The co-compiler performs a transformation similar to unboxing: it replaces token ob-
jects (an abstract wrapper for a data object) with the value that the token contains. Similarly,
operations on the token (i.e., method calls) are replaced with native numeric operations. For
instance, the IntToken.add () method, which adds the values contained in two integer
wrapper objects, is replaced with a simple integer addition. In most Java implementations,
this greatly reduces the overhead involved in the operation. More importantly, the overhead

of allocating and garbage collecting the wrapper object for the result is also eliminated.

It is important to notice that token unboxing is not possible in the presence of type-
polymorphic actor specifications. Token unboxing is possible during co-compilation be-
cause the Ptolemy II type system emphasizes models where types are exactly determined

and type-polymorphic actor specifications have been specialized to those exact types.

So, for a particular type of token, which native numerical type and operations should

it replaced with? One possibility is to use a fixed and hardcoded replacement relation

33

between a type of token and a native numerical type [48). Unfortunately, this limits the
ability to add new data types to the Ptolemy II framework, as the operations for each token
must be essentially reimplemented in the code generation framework. We must also have
some way of transforming structured token types that are not directly replaced with native

types. This is not easily handled by a small set of hand-written rules.

We have implemented a technique for transforming tokens that does not rely on hand-
written replacement rules. Instead of reimplementing each token operation, we make use
of the specification of each token operation that already exists in the corresponding token
class. Wherever a method is invoked on a token class, this method is inlined from the
correct token class. Each token variable and field that refers to a token is replaced with
variables and fields corresponding to the fields of the token class. Additionally, a boolean
field is created that tracks whether the original token reference is null. This flag is used

to properly replace comparisons between the token and null.

This technique is generally effective for all numeric token types. Furthermore, it does
not preclude optimized transformations for specific numeric types, such as those described
for fixed-point types in [27]. It is also applicable for structured types as well, such as arrays
and records. For instance, the ptolemy.data.ArrayToken class aggregates a set of
other tokens and indexes them using integers. Since one field of the class contains an array
of other tokens, unboxing the array token replaces it with an array of tokens. These tokens

(regardless of their type) can then be unboxed by applying the above procedure recursively.

6 Results

One of the key goals of our co-compiler is the generation of very efficient and optimized
code. We have measured the code size, execution time, and memory allocation of the
generated code at each step in the co-compilation process, to better understand how indi-

vidual transformations change the generated code. We present this data for several exam-

34

ple models. The orthoCom model is the example shown in Figure 1, consisting of 12
actors. The rijndael model is a model of the AES encryption system and contains a
total of 109 actors specified with expressions, modal models, as well as Java code. The
rijndaelKeyGen model is a portion of the ri jndael model that generates a pseudo-

random key sequence, consisting of a total of 35 actors.*

We present performance data for all stages of co-compilation, from the original model
through actor specializations to the final optimized implementation of the model. For com-
parison, we also compare performance with and without obfuscation of the generated code.
Note, however, that the intermediate stages of specialization have not been independently
optimized. For instance, the parameter specialization transformations have not been op-
timized to minimize the number of tokens created, since any tokens created are later un-
boxed. This data is simply intended to demonstrate the potential feasibility of using actor
specialization to improve execution efficiency and provide a rough comparison between

different techniques.

Primarily of interest is the execution time of the generated code. This can have a
tremendous impact on the usefulness of code generation for embedded software systems.
Programs that do not meet the real-time requirements of an embedded system are useless.
To reduce measurement error, we report the execution time to process a reasonably large
amount of data through each model, and average over several runs. The data is collected
using the Java virtual machine in interpreted mode to avoid confusion from just-in-time
compilation. The results shown in Figure 16 indicate that a large speedup (roughly 20x)
of SDF models comes from specializing the communication between actors. Profiling sug-
gests that this speedup largely arises from the removal of synchronization in Ptolemy II that
protects modifications to models in multi-threaded environments. Some speedup also oc-
curs after unboxing tokens in step 5, mainly due to reduced load on the garbage collection

system.

Another important metric of the generated code is the size of the code that is generated.

“These models are available at http://ptolemy.eecs. berkeley.edu/publications.

35

Execution Time

e
[=] —
v
w
E
o 8 o orthoCom
i'—E“ § = & rijndaelKeyGen
e T o = + rijndael
o
-
g
o
g g
["2]
o - By - 4 —%
T T T T T T
W\ Param. W\Connect. W\ Type Final
Original After step 2 Spec. Spec. Spec. Final WA Obfuscation

Co-compilation Phase

Figure 16: Total Execution Time

This size is primarily of importance for embedded software systems, where it determines
the amount of non-volatile memory required. Figure 17 shows the size of the minimal
- jar archive of Java classes necessary to execute the generated code. This file is generated
by executing the generated code and tracking which classes are dynamically loaded. This

archive does not include the size of the standard JVM.

The results in Figure 17 suggest that the code size of the Ptolemy II software frame-
work greatly dominates the size of the generated code, even for the largest model. Actor
specialization, combined with token unboxing, removes almost all references to the soft-
ware framework. The data also suggests that even for modestly large models, like rijndael,
the size of generated code is significant. Even a hundred thousand bytes of code is unsuit-
able for many embedded systems, and is roughly twelve times larger than a Java reference

implementation for Rijndael.’

Shttp://www.esat .kuleuven.ac .be/"rijmen/rijndael/rijndael.zip

36

Jar Size after Treeshaking

8
(-]
o orthoCom
8 & rijndaelKeyGen
© + rijndael
@
2
@
£ 8
] <
N
3
]
Ly
(=)
o ——
N
o 4
T T T] T T T
W\ Param. W\Connect. W\ Type Final
Original After step 2 Spec. Spec. Spec. Final W\ Obfuscation

Co-compilation Phase

Figure 17: Jar File Size

The final metric we consider is the run-time memory requirements of the generated
code. Here the primary concern is reducing load on the Java garbage collector, so we con-
sider only memory that is allocated and available for recovery by the Java virtual machine.
This information is collected by logging garbage collection in the Java virtual machine and
totalling the number of bytes collected. Objects that are not available for recovery repre-
sent a relatively small fraction of total allocated memory. The results in Figure 18 suggest
that significant improvements arise from communication specialization, since caches for
performance improvement can be replaced with hardcoded relationships. Token unboxing
also reduces the amount of data allocated, although this effect is relatively less significant
for the profiled models. In particular, the textttorthoCom model contains many array to-
kens. Although token unboxing eliminates the token allocations, the arrays themselves are
still allocated. Future work will hopefully address this difficulty.

Ultimately, these results seem to suggest that actor specialization is a promising tech-

nique for improving execution efficiency of actor-oriented models. While the current ap-

37

Heap Memory Usage

[=)
- 8
2 o
s 9 © orthoCom
o & rijndaelKeyGen
g] + rijndael
'Q o
[o]
8§ 8 -
< ®
e
o -
£
Q
2 o
Q
o —
=4
o - & A
T T T T] T T
W\Param. W\Connect. W\Type Final
Original After step 2 Spec. Spec. Spec. Final WA\ Obfuscation

Co-compilation Phase

Figure 18: Heap memory usage of the generated code.

plication of these techniques in code generation seems useful for improving simulation
speed, greater execution efficiency is still needed to use the generated implementations in
resource constrained embedded systems. Currently none of these specialization techniques

take memory usage or code size into account.

After removing actor generality through specialization, the next major performance
bottleneck appears to be caused by actor safety. For instance, extra copies of data are often
made when tokens are created, in order to ensure that the tokens themselves are immutable
pieces of data. This ensures that the data is always used in a safe fashion. However, it is
possible that safe use of tokens can be shown through formal analysis instead, eliminating

this overhead. Future work will hopefully address this issue as well.

38

7 Summary

This paper presents a series of techniques that enable the automatic specialization of gen-
eral component specifications. These components are specialized according to an implicit
context that exists when the components are composed with other components. This form
of specialization is particularly useful when synthesizing an optimized implementation of
an aggregation of components. The specialization transformations have been implemented

as part of a Ptolemy II co-compilation tool, called Copemnicus.

An important aspect of our co-compiler is that it is not built for a particular set of
token data types or actor specifications. Optimized code is generated by parsing Java code
specifications of tokens and actors and manipulating those specification through their Java
interfaces. This flexibility is critical, since it enables user-specified actors and data types to

be easily used.

7.1 Related Work

The Ptolemy II co-compiler can also be viewed as an application of aspect-oriented pro-
gramming and aspect weaving [28] to actor-oriented design. In aspect-oriented program-
ming, different languages are used to express separate, orthogonal aspects of a program.
Aspect weaving is the process of taking those orthogonal aspects and compiling them to-

gether into a single program.

In an actor-oriented system model, there are two separate aspects of the model that
we are interested in: the behavior of individual actors and the composition of those ac-
tors. The behavior of an actor is usually specified using Java code and the Ptolemy II actor
programming interfaces. The composition of actors can be specified using several seman-
tically equivalent syntaxes, including an XML-based textual syntax and a block diagram
visual syntax. The result of co-compiling a Ptolemy II model is the weaving of the com-

munication and configuration aspect of the model into the actor code. The basis for the

39

combination is the precise definition of the programming interfaces summarized in section
3.

Unfortunately, co-compilation is not compatible with existing aspect-oriented design
methodologies. The available tools, such as Aspect] [29], primarily provide syntactic sup-
port for weaving in a carrier language. Unfortunately, many steps in co-compilation require
a significant amount of semantic analysis of the existing code, such as loop and dataflow
analysis in order to be able to create an efficient implementation. The tools are also not
designed with many facilities to dynamically control the weaving. For Ptolemy II, this
would mean that a new set of aspects would have to be dynamically generated from each
Ptolemy II model. For these reasons, we have more directly leveraged traditional compiler

techniques and infrastructure, and primarily discuss co-compilation in those terms.

Another area of related work is Paul Hudak’s notion of a domain-specific embedded
languages (DSELs) [24]. A DSEL is a language that is implemented not as a traditional
programming language such as C, Java or Haskell, but as a well-defined set of programming
interfaces in a traditional programming language (the carrier language). Instead of having
a specific compiler, syntax, and semantics, an embedded language inherits them from the

carrier language.

Essentially, the style of Java actor specifications in section 3.2, combined with exact
type inference of section 4.2.1 forms an embedded language for actor design. While Hu-
dak concentrates on using the functional language Haskell as a carrier language, we use the
object-oriented Java language instead. Additionally, Hudak describes how partial evalua-
tion of Haskell functions can be used to improve performance of his DSELs. The special-
ization transformations described in section 4 describe the kinds of partial evaluation that

can be performed on our actor specifications.

40

7.2 Future Work

There are several interesting areas of future work. Firstly, this paper has concentrated on
generating code for closed compositions. It would be interesting to concentrate on imple-
menting these techniques for open compositions as well. This would require recognizing
open parameter expressions and leaving those as parameters. It would also be necessary to
verify that no information about the actor interface of open compositions is lost when gen-
erating code. In the context of type specialization, open compositions can be approached
by recognizing the presence of “tight” type constraints. Such type constraints ensure that a

type cannot change, even in the presence of further composition.

One disadvantage of the type inference algorithm given in section 4.2.1 is that it as-
sumes that the type constraints declared by an actor are, in fact, correct. However, it is
relatively easy to write actor code for which the correct type constraints are non-trivial to
write by hand. I anticipate that these constraints can actually be automatically extracted

from Java actor specifications or, at the very least, checked for inconsistency.

We have currently approached co-compilation with an eye towards maximizing the op-
portunities for specialization. This approach can lead to the creation of large amount of
duplicated code. For instance, an actor may be reused multiple times in the model, with the
same types and parameter values in each case. Recognizing such cases has the potential to

greatly reduce the size of generated code.

Another area of future work surrounds how generated code can be integrated into an
embedded systems. For generated Java code, in addition to difficulties with resource con-
straints, library management is also a concern. Embedded Java virtual machines inevitably
have limited libraries which must be augmented with generated code. This problem is often
described as application extraction [47]. Additionally, embedded systems often require a
hardware implementation or mixed hardware and software systems are the norm. I have
begun investigating how to synthesize such implementations from Ptolemy II models and

Java actor specifications. While there has been some work dealing with communication

41

refinement from actor-oriented models to such systems [11, 3], there appears to be much

work yet to be done.

I intend to apply this research to the Caltech robotic vehicle testbed [13]. This ve-
hicle has complex dynamics that resemble the two-dimensional dynamics of airplanes. I
anticipate implementing autonomous control algorithms as well as pilot-involved control
algorithms. Of particular interest is a “softwalls” system, which is capable of preventing

the vehicle’s pilot from driving into a predefined unsafe area [31].

7.3 Acknowledgments

I'd like to thank the authors of Soot,® a library for optimizing bytecode, and Jochen Hoenicke,
the author of Jode. Their effort building usable tools made my task easier. I'd also like to
thank Christopher Hylands, for his assistance in scripting the extraction of performance
data.

References

[1] G. Agha, 1. A. Mason, S. F.Smith, and C. L. Talcott. A foundation for actor computa-

tion. Journal of Functional Programming, 1993.

[2] G. A. Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems.
The MIT Press Series in Artificial Intelligence. MIT Press, Cambridge, 1986.

[3] F. Balarin, L. Lavagno, C. Passerone, and Y. Watanabe. Processes, interfaces, and
platforms: Embedded software modeling in Metropolis. In Proceedings of EMSOFT
02: Embedded Software, Lecture Notes in Computer Science 2491, pages 407-421.
Springer, 2002.

Shttp://www.sable.mcgill.ca/soot/

42

[4] G. Berry and G. Gonthier. The Esterel synchronous programming language: Design,
semantics, implementation. Science Of Computer Programming, 19(2):87-152, 1992.

[5] S. S. Bhattacharyya and E. A. Lee. Scheduling synchronous dataflow graphs for
efficient looping. Journal of VLSI Signal Processing, 6, 1993.

[6] S.S. Bhattacharyya and E. A. Lee. Memory management for dataflow programming
of multirate signal processing algorithms. IEEE Transactions on Signal Processing,

1994. To appear.

[7] S.S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Software Synthesis from Dataflow
Graphs. Kluwer, 1996.

[8] G.Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cyclo-static dataflow. IEEE
Transactions on Signal Processing, 44(2):397-408, 1996.

[9] J. Buck, S. Ha, E. A. Lee, and D. Messerschmitt. Ptolemy: A framework for sim-

ulating and prototyping heterogeneous systems. International Journal of Computer
Simulations, 4:155~182, April 1995.

(10] J. Buck and R. Vaidyanathan. Heterogeneous modeling and simulation of embed-
ded systems in El Greco. In Proceedings of the Eighth International Workshop on
Hardware/Software Codesign (CODES), San Diego, California, May 2000.

[11] W. O. Cesdrio, G. Nicolescu, L. Gauthier, D. Lyonnard, and A. A. Jerraya. Colif:
A design representation for application-specific multiprocessor SOCs. IEEE Design
and Test of Computers, 18(65):8-19, Sept. 2001.

[12] K. Chandy and J. Misra. Asynchronous distributed simulation via a sequence of
parallel computations. Communications of the ACM, 24(11):198-206, April 1981.

[13] L. Cremean et al. The caltech multi-vehicle wireless testbed. In Proceedings of the
Conference on Decision and Control (CDC). IEEE, Dec. 2002.

(14] B. Davey and H. Priestley. Introduction to Lattices and Order. Cambridge University
Press, 1990.

43

[15] J. Davis et al. Ptolemy II - Heterogeneous concurrent modeling and design in Java.
Memo M01/12, UCB/ERL, EECS UC Berkeley, CA 94720, Mar. 2001.

[16] S. Edwards. Compiling Esterel into sequential code. In Proceedings of International
Symposium on Hardware/Software Codesign (CODES). SIGDA, ACM, May 1999.

[17] S. A. Edwards. The Specification and Execution of Heterogeneous Synchronous Re-
active Systems. PhD thesis, EECS Department, University of California at Berkeley,
CA, 1997.

(18] D.D. Gajski, editor. SpecC: Specification Language and Methodology. Kluwer, 2000.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley,
1995.

[20] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow pro-
gramming language Lustre. Proceedings of the IEEE, 79(9):1305-1321, September
1991.

[21] C. Hewitt. Viewing control structures as patterns of passing messages. Journal of
Artifical Intelligence, 8(3):323-363, June 1977.

[22] C. A. R. Hoare. Communicating sequential processes. Computer Science. Prentice

Hall International, 1985.
[23] J. Hoenicke. Jode: Java optimizer and decompiler. http://jode.sourceforge.net.

[24] P. Hudak. Modular domain specific languages and tools. In Proceedings of the 5th In-
ternational Conference on Software Reuse, pages 134-142, IEEE Computer Society,
June 1998.

[25] G. Kahn. The semantics of a simple language for parallel programming. In Pro-
ceedings of the IFIP Congress 74, pages 471-475, Paris, France, 1974. International

Federation for Information Processing, North-Holland Publishing Company.

[26] G.Kahn and D. B. MacQueen. Coroutines and networks of parallel processes. In Pro-
ceedings of the IFIP Congress 77, pages 993-998, Paris, France, 1977. International

Federation for Information Processing, North-Holland Publishing Company.

[27] H. Keding, M. Coors, O. Luethje, and H. Meyr. Fast bit-true simulation. In Proceed-
ings of the 38th Design Automation Conference (DAC’2001), June 2001.

[28] G. Kiczales et al. Aspect-oriented programming. In ECOOP *97 — Object-Oriented
Programming 11th European Conference, Jyviskyld, Finland, number 1241 in Lec-

ture Notes in Computer Science, pages 220-242. Springer-Verlag, 1997.

[29] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An
overview of Aspect]. In ECOOP, pages 327-353, 2001.

[30] B. A. Kienhuis. Design Space Exploration of Stream-based Dataflow Architectures:
Methods and Tools. PhD thesis, TU Delft, Jan. 1999.

[31] E. A. Lee. Soft Walls - Modifying flight control systems to limit the flight space
of commercial aircraft. Technical Memorandum UCB/ERL MO01/31, Electronics Re-
search Lab, Department of Electrical Engineering and Computer Sciences, University
of California Berkeley, CA 94720, USA, Oct. 2001.

[32] E. A. Lee. Embedded software. Advances in Computers, 56, 2002.

[33] E. A. Lee and D. G. Messerschmitt. Synchronous Data Flow. Proceedings of the
IEEE, pages 55-64, September 1987.

[34] E. A. Lee, S. Neuendorffer, and M. J. Wirthlin. Actor-oriented design of embed-
ded hardware and software systems. Journal of Circuits, Systems, and Computers,
scheduled for publication June 2003.

[35] E. A. Lee and T. M. Parks. Dataflow process networks. Proceedings of the IEEE,
83(5):773-798, May 1995.

45

[36]

[37]

[38]

[39]

[40]

[41]

(42]

[43]

X. Leroy. Effectiveness of type-based unboxing. Technical Report BCCS-97-03,
Boston College Computer Science Department, June 1997. In Workshop on Types in
Compilation ’97.

J. Liu. Responsible Frameworks for Heterogenous Modeling and Design of Embedded
Systems. PhD thesis, EECS Department, University of California at Berkeley, CA,
2001.

J. Liu, X. Liu, T. J. Koo, B. Sinopoli, S. Sastry, and E. A. Lee. A hierarchical hybrid
system model and its simulation. In 38th IEEE conference on Decision and Control,
Phoenix, AZ, December 1999.

S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,
1997.

P. K. Murthy, E. G. Cohen, and S. Rowland. System Canvas: A new design en-
vironment for embedded DSP and telecommunication systems. In Proceedings of
International Symposium on Hardware/Software Codesign (CODES). SIGDA, ACM,
Apr. 2001.

T. M. Parks. Bounded Scheduling of Process Networks. PhD thesis, EECS Depart-
ment, University of California at Berkeley, CA, 1995.

C. Passerone, Y. Watanabe, and L. La\}agno. Generation of minimal size code for
schedule graphs. In Proceedings of Design, Automation and Test in Europe (DATE).
SIGDA, ACM, Mar. 2001.

J.L.Pino, S. Ha, E. A. Lee, and J. T. Buck. Software synthesis for DSP using Ptolemy.
Journal on VLSI Signal Processing, 9(1):7-21, Jan. 1995.

[44] D. B. Stewart, R. A. Volpe, and P. K. Khosla. Design of dynamically reconfigurable

real-time software using port-based objects. IEEE Trans. on Software Engineering,
23(12):759-776, Dec. 1997.

[45] J. Sztipanovits and G. Karsai. Model-integrated computing. IEEE Computer, pages

110-112, Apr. 1997.

46

[46] J. Teich, E. Zitzler, and S. Bhattacharyya. 3D exploration of software schedules for

[47]

(48]

[49]

(50]

[51]

[52]

DSP algorithms. In Proceedings of International Symposium on Hardware/Software
Codesign (CODES). SIGDA, ACM, May 1999.

F. Tip, C. Laffra, P. F. Sweeney, and D. Streeter. Practical experience with an appli-
cation extractor for Java. Technical Report 21451(96813), IBM Research, Oct. 1999.

J. Tsay, C. Hylands, and E. Lee. A code generation framework for Java component-
based designs. In Proceedings of International Conference on Compilers, Architec-
ture, and Synthesis for Embedded Systems(CASES), pages 18-25, ACM, Nov. 2000.

P. van der Wolf, P. Lieverse, M. Goel, D. L. Hei, and K. Vissers. An MPEG-2 decoder
case study as a driver for a system level design methodology. In Proceedings of
International Symposium on Hardware/Software Codesign (CODES). SIGDA, ACM,
May 1999.

L. Wemli. Design and implementation of a code generator for the CAL actor lan-
guage. Technical Memorandum UCB/ERL M02/5, Electronics Research Lab, De-
partment of Electrical Engineering and Computer Sciences, University of California
Berkeley, CA 94720, USA, March 2002.

M. Williamson. Synthesis of Parallel Hardware Implementations from Synchronous
Dataflow Graph Specifications. PhD thesis, EECS Department, University of Cali-
fornia at Berkeley, CA, 1998.

Y. Xiong and E. Lee. An extensible type system for component-based design. In Pro-
ceedings of 6th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, number 1785 in Lecture Notes in Computer Science.

Springer-Verlag, Mar. 2000.

47

