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Abstract

Dynamic Locality Improvement Techniques for
Increasing Effective Storage Performance

by

Windsor Wee Sun Hsu
Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Alan Jay Smith, Chair

As the processor-disk performance gap continues to widen and computer systems be-
come ever more complex, increasingly aggressive and automated methods are needed to
improve I/O performance. This work concerns mechanizable ways to effectively increase
I/O performance. Our specific contributions are as follows.

First, we introduce our thesis that it is useful and practical for the storage system to be
introspective and to automatically optimize disk block layout in response to the dynamic
reference behavior. Based on the technology trends, we posit that a promising approach
to improving I/O performance is to replicate selected disk blocks and to lay them out to
increase the spatial locality of reference.

Next, we characterize how storage is used in real personal computer and server systems.
Among the things we analyze are the overall significance of I/O in the workloads, how the
I/O load varies over time, and the interaction of reads and writes. We find that there are idle
resources that can potentially be used to perform any optimization, and that optimizing the
disk block layout is likely to achieve useful benefit.

Based on our workload analysis, we next develop a simulation methodology that more
accurately models the timing of I/O arrivals than previous practice. Using this methodol-
ogy, we study I/O optimization techniques such as read/write caching, sequential prefetch-
ing, opportunistic prefetching, request scheduling, striping and short-stroking to understand
their actual effectiveness, and to establish an optimized baseline configuration for subse-
quent experiments. We also examine disk technology trends to quantify their performance
effect.

Next, we introduce Automatic Locality-Improving Storage (ALIS), a storage system
that automatically replicates and reorganizes selected disk blocks based on their usage pat-
terns. Using trace-driven simulations, we demonstrate that the techniques we develop for
ALIS are relatively insensitive to disk technology trends and are extremely effective, im-
proving average read performance by up to 50% for servers and by about 15% for personal
computers.
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Finally, we consider the additional use of processing power in the storage system to
handle application processing such as running decision support queries. Our results suggest
that highly scalable parallel software systems are needed for this to be effective.

Professor Alan Jay Smith
Dissertation Committee Chair
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Chapter 1

Introduction

I/O certainly has been lagging in the last decade
- Seymour Cray (1976)

I/O’s revenge is at hand
- Hennessy and Patterson (1996)

Beating, Breaking, Cheating, Eliminating, Removing, Solving the I/O bottle-
neck

- various (1988-2002)

1.1 Motivation

Processor performance has been increasing at the phenomenal rate of more than 50%
per year [PK98] while disk access time, being limited by mechanical delays, has been
improving by less than 10% per year [Gro00, PK98]. As the performance gap between the
processor and the disk continues to widen, disk-based storage systems are increasingly the
bottleneck in computer systems, even in personal computers where storage performance
has been identified as the primary cause of the delays that are highly frustrating to the
user [Cor98]. The I/O bottleneck is further compounded by the almost annual doubling in
disk capacity [Gro00], which far exceeds the rate of decrease in the access density or the
number of I/Os per second per GB of data. For instance, surveys of disk usage in large
mainframe installations conducted between 1980 and 1993 [McN95] found that the access
density was decreasing by only about 10% per year. In other words, although the disk arm
is only slightly faster in each new generation of the disk, each arm is responsible for serving
a lot more data. There is therefore an increasingly pressing need to focus on improving I/O
performance.

The I/O bottleneck has long been recognized as a serious problem and a plethora of op-
timization techniques have been invented to try to overcome it [Chapter 3]. However, many
of these techniques have to be configured and tuned to work well for different workloads.
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In a bid to wring more performance out of the system, many of the tuning parameters or
knobs have been exposed so that the user or administrator is now faced with a multitude
of knobs to adjust. It is, however, difficult or even impossible for the human mind to fully
understand the dynamics of even a relatively simple operation, especially how it relates
to the increasingly complicated storage hierarchy with its various levels of abstraction or
virtualization. Even in the simple case of a storage system with only a single disk, its per-
formance depends not just on where the data is placed and how the data is accessed but
also on its dynamic state, specifically, what was accessed previously. Therefore, although
raw storage is inexpensive, managing its performance is complex and costly. Thus the
pressing need is not merely to improve I/O performance but to improve it transparently or
autonomically [IBM01a], without requiring low-level user involvement.

Our thesis is that it is useful and practical for the storage system to be introspective
and to have the intelligence to automatically optimize disk block layout based on the actual
reference behavior and its own performance characteristics. In particular, we observe that
although disk access time has been improving by less than 10% per year, disk transfer rate
has been increasing by as much as 40% per year [Gro00, PK98]. Furthermore, with disk
capacities growing quickly, increasing amounts of disk space are available for storage op-
timization. Therefore, we posit that a promising approach to improving I/O performance
is to replicate selected disk blocks and to lay them out so as to increase the spatial locality
of reference and thereby leverage the high and rapidly growing disk transfer rate. We con-
tend that as more computing resources become available following Moore’s Law [HP96] or
can be added relatively easily to the storage system [Chapter 5], sophisticated techniques
for optimizing storage performance transparently, without human intervention, are increas-
ingly possible.

In this dissertation, we explore how storage systems tend to be used to show that the idea
of automatically optimizing disk block layout is feasible. In addition, we propose various
techniques for performing the optimization and demonstrate that they achieve useful and
dramatic results.

1.2 Background

The time taken by the disk to service an I/O request is composed of two parts – access
time and transfer time. Access time refers to the time required to position the disk head
over the correct sector and comprises the delay in moving the disk arm to the correct track
and the time spent waiting for the requested sector to rotate under the head. Transfer time
is the actual time needed to read the requested data after the head is in position. In other
words, transfer time is the only time during which data is being read or written, and access
time is the overhead for the transfer.

Therefore, to effectively utilize the bandwidth of the disk and achieve good I/O perfor-
mance, data has to be requested in large units so that the transfer time dominates the access
time. As the disparity between random and sequential disk performance grows, we have to
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resort to increasingly larger transfer units, either by using bigger blocks or pages [GG97],
or by more aggressive sequential prefetch. The effectiveness of transferring more data at
a time is, however, constrained by the amount of spatial locality in the reference stream.
For example, if the data that are located physically close together on the disk are not re-
lated in their usage patterns, using a larger block size or prefetch amount will result only in
the transfer of extra data that are not likely to be used, thereby wasting resources like I/O
bandwidth and cache space.

Two general approaches have been used to increase spatial locality in the reference
stream. The first is to rely on the application developer or the administrator to ensure that
accesses are localized. Since the I/O reference behavior of a program is a direct conse-
quence of the kinds of operations it performs and the order in which it performs them, the
application developer has some control over the locality present in the reference stream.
But applications are increasingly complicated as is the storage hierarchy, and the I/O refer-
ence behavior is likely to be dynamic and to vary with the data. Thus, we cannot generally
expect programmers to be very successful at developing programs that exhibit good spa-
tial locality, especially since the goal is locality system-wide and the system is likely to
be multiprogrammed. Similarly system administrators, who have even less knowledge and
control, cannot be expected to be very effective at ensuring that related data are clustered
together.

The second approach is for the system to use various heuristics to lay out data on disk so
that data that are expected to be used contemporaneously are located close to one another
(e.g., [GK97, MJLF84, MK91, Pea88]. The shortcoming of these a priori techniques is that
they are based on static information such as the name space relationships of files, which
may not reflect the actual reference behavior. Therefore, we believe that the reference
stream is often not as local as it can be, and that there may be considerable opportunities
for mechanizable techniques that utilize information about the dynamic reference behavior
to improve spatial locality.

1.3 Outline of Dissertation

This dissertation has six chapters and six appendices. The first chapter introduces and
motivates this work. The last chapter concludes the dissertation and discusses some av-
enues for future work. The four chapters in the middle address the following.

Chapter 2 characterizes how storage is actually used in real environments. We examine
multi-week traces of the I/O activity of a wide variety of both personal computer and server
systems to explore whether it is feasible and useful to automatically optimize disk block
layout. Among the things we analyze are the I/O intensity of the workloads, the overall
significance of I/O in the workloads, how the I/O load varies over time, and the interaction
of reads and writes. Our results indicate that improving I/O performance is important, and
that there are idle resources that can potentially be used to perform any optimization. We
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also discover that only a small fraction of the data stored is in active use, suggesting that it
will be useful to identify the blocks that are in use and to optimize their layout.

Based on the results of our workload analysis, we develop, in Chapter 3, a simulation
methodology that more accurately models the timing of request arrivals in real workloads
than previous practice. Using this methodology, we systematically study the many I/O op-
timization techniques (e.g., read caching, sequential prefetching, opportunistic prefetching,
write buffering, request scheduling, striping and short-stroking) that have been invented
over the years to determine their actual effectiveness at improving I/O performance for our
various workloads, and the optimal parameters for each technique. The optimal parameters
establish a baseline configuration for our experiments in the subsequent chapter. We also
examine disk technology trends to quantify the actual performance effect of the evolution
in disk technology.

In Chapter 4, we introduce Automatic Locality-Improving Storage (ALIS), a storage
system that automatically replicates and reorganizes selected disk blocks to take advantage
of technology trends to improve the effective performance of disk-based storage. Using
extensive trace-driven simulations, we present and motivate the various algorithms that
we develop to select blocks for replication and reorganization, and to lay these blocks
out. We demonstrate that these techniques are extremely effective, improving the average
read response and service times for server workloads by as much as 50% and those for
personal computer workloads by about 15%. As part of our analysis, we also examine how
improvement in disk technology will impact the effectiveness of ALIS and confirm that the
benefit of ALIS is relatively insensitive to disk technology trends.

As processing power becomes increasingly available in the storage system, it enables
sophisticated optimizations such as those performed by ALIS. The processing capability
can also be used to offload application processing, parts of file system functionality (e.g.,
object-based storage), etc. from the host system. In Chapter 5, we project the effective-
ness of offloading application processing to the storage system by performing some meta-
analysis of published benchmark results. Our findings suggest that for the storage system
to effectively perform application processing such as running decision support queries, we
have to develop parallel software systems that are scalable and that can efficiently utilize
the large number of processing units that will likely be in such a storage system.
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Chapter 2

Characteristics of I/O Traffic in Personal
Computer and Server Workloads

2.1 Synopsis

Understanding the characteristics of I/O traffic is increasingly important as the per-
formance gap between the processor and disk-based storage continues to widen. Recent
advances in technology, coupled with market demands, have, moreover, led to several new
and exciting developments in storage, including network storage, storage utilities, and in-
telligent self-optimizing storage. In this chapter, we empirically examine the physical I/O
traffic of a wide range of real server and personal computer (PC) workloads, focusing on
how these workloads will be affected by the new storage developments. As part of our anal-
ysis, we compare our results with historical data and reexamine rules of thumb (e.g., bits per
second per MIPS, I/Os per second per megabyte) that have been widely used for designing
computer systems. We find that the I/O traffic is bursty and appears to exhibit self-similar
characteristics. Our analysis also indicates that there is little cross-correlation in traffic
volume among the server workloads, which suggests that aggregating these workloads will
likely help to smooth out the traffic and enable more efficient utilization of resources. We
discover that there is a lot of potential for harnessing “free” system resources for purposes
such as automatic optimization of disk block layout. In general, we observe that the char-
acteristics of the I/O traffic are relatively insensitive to the amount of caching upstream and
that our qualitative results still apply when the upstream cache is increased in size.

2.2 Introduction

Processor performance has been increasing at the rate of 60% per year [HP96] while
disk access time, being limited by mechanical delays, has been improving by less than
10% per year [Gro00]. Compounding this widening performance gap between processor
and disk storage is the fact that disk capacity has been growing by more than 60% per year
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recently [Gro00] so that each disk is responsible for the storage and retrieval of rapidly
increasing amounts of data. The overall result of these technology trends, which show
no signs of easing, is that computer systems are increasingly bottlenecked by disk-based
storage systems. The key step in overcoming this bottleneck is to understand how storage
is actually used so that new optimization techniques and algorithms can be designed.

A focused examination of the I/O characteristics of real workloads is also needed to
determine the actual effect of the new paradigms and developments that have recently
emerged in the storage industry. First, storage is increasingly placed on some form of
general network so that it can be shared and accessed directly by several computers at
the same time (e.g., Network Attached Storage (NAS) for file storage and Storage Area
Networks (SANs) for block storage). The performance of such network storage hinges
on knowing the I/O traffic patterns, and optimizing the network for such patterns. Sec-
ond, consolidating the storage now distributed throughout an organization, for instance to
storage utilities or Storage Service Providers (SSPs), is expected to become increasingly
popular. Whether such an approach leads to more efficient pooling of resources among
different groups of users depends on the characteristics of their workloads, specifically on
whether the workloads are independent. In practice, we will need rules of thumb that de-
scribe the storage and performance requirements of each group of users, as well as realistic
traffic models. Third, the rapid growth in available processing power in the storage system
(e.g., [Chapter 5] and [Gra98]) makes it possible to build intelligent storage systems that
can dynamically optimize themselves for the workload [Chapter 4]. The design of these
systems requires a good understanding of how real workloads behave.

In this research, therefore, we empirically examine how storage is used by a variety of
real users and servers from the perspective of evaluating these new storage opportunities.
A total of 18 traces gathered from a wide range of environments are examined. We focus
in this chapter on analyzing the physical I/O traffic, specifically, (1) the I/O intensity of the
workloads and the overall significance of I/O in the workloads, (2) how the I/O load varies
over time and how it will behave when aggregated, and (3) the interaction of reads and
writes and how it affects performance. We compare our results with historical data to note
any trends and to revalidate rules of thumb that are useful for systems design and sizing. To
make our results more broadly applicable, we also study the effect of increased upstream
caching on our analysis. In the next chapter, we examine how these real workloads are
affected by disk improvements and I/O optimizations such as caching and prefetching. The
insights gained from this research are instrumental to the block reorganization technique
presented in Chapter 4.

The rest of this chapter is organized as follows. Section 2.3 contains a brief overview
of previous work in characterizing I/O behavior. Section 2.4 discusses our methodology
and describes the traces that we use. In Sections 2.5 to 2.7, we analyze the I/O traffic of
our various workloads in detail. Concluding remarks appear in Section 2.8. Because of the
huge amount of data that is involved in this study, we present only a characteristic cross-
section in the main text. More detailed graphs and data are presented in Appendix A. Some
of the more involved mathematical material appears in Appendix B.
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2.3 Related Work

The behavior of I/O at the file system level has been characterized in some detail (e.g.,
[ODH+85, BHK+91, BGW91, Vog99, RLA00]). There have also been several studies
of the logical I/O characteristics of large database and scientific systems; see [HSY01a,
HSY01b] for a brief bibliography. Compared to the analysis of I/O behavior at the logical
level, physical I/O characterization has received much less attention. Part of the reason is
that storage level characteristics are sensitive to the file system and buffer pool design and
implementation so that the results of any analysis are less broadly applicable. But this is
precisely the reason to analyze the physical I/O characteristics of different systems.

Traces of the physical I/Os in large IBM mainframe installations [Smi85] and produc-
tion VAX/VMS systems [BRT93, KLW94] have been used to study design issues in disk
caches. There has also been some analysis of the physical I/O characteristics of Unix sys-
tems [RW93] and Novel NetWare file servers [HH95] in academic/research environments.
Even though personal computers (PCs) running various flavors of Microsoft Windows are
now an integral part of many office activities, there has, to the best of our knowledge, been
no published systematic analysis of how physical storage is used in such systems.

2.4 Methodology

Trace data can generally be gathered at different levels in the system depending on the
reason for collecting the data. For instance, to evaluate cache policies for the file system
buffer, I/O references have to be recorded at the logical level, before they are filtered by the
file system buffer. In general, collecting trace data at the logical level reduces dependencies
on the system being traced and allows the trace to be used in a wider variety of studies, in-
cluding simulations of systems somewhat different from the original system. For example,
to study physical storage systems, we could filter a logical trace through models of the file
system layer to obtain a trace of the physical I/Os. A commonly used method for obtaining
such a logical trace is to insert a filter driver that intercepts all requests to an existing file
system device, and records information about the requests before passing them on to the
real file system device.

However, this approach does not account for I/Os that bypass the file system interface
(e.g., raw I/O, virtual memory paging and memory-mapped I/O). Recent results [RLA00]
show that 15% of reads and nearly 30% of writes in Windows NT workloads can be at-
tributed to paging by running programs. In addition, 85% of processes now memory-map
files compared with 36% that read files and 22% that write them. From a practical per-
spective, the approach of starting with a logical trace to evaluate physical storage systems
requires that a lot of data be collected, which adds disturbance to the systems being traced,
and then painstakingly filtered away by simulating not only the buffer cache and prefetcher
but also how the data is laid out and how the metadata is referenced. For today’s well-
tuned systems, each of these components is complicated and the details of their operation



8

are seldom publicly available. For instance, the file system buffer on many systems (e.g.,
Windows NT) is integrated with the memory manager and dynamically sized based on
perceived workload characteristics. Therefore, the net result of taking a logical trace and
filtering it through models of the file system components is not likely to reflect the work-
load seen by any real storage system. Since file systems today are relatively stable and
rarely undergo radical changes, we believe that for the purpose of studying physical stor-
age systems, analyzing traces collected at the physical level is generally more practical and
realistic. This is the method we use in this thesis.

In order to make our characterization more useful for subsequent mathematical analyses
and modeling by others, we fitted our data to various functional forms through non-linear
regression, which we solved by using the Levenberg-Marquardt method [PFTV90]. When
appropriate, we also fitted standard probability distributions to our data by using the method
of maximum likelihood to obtain parameter estimates and then optimizing these estimates
by the Levenberg-Marquardt algorithm [PFTV90].

2.4.1 Trace Collection

The traces analyzed in this study were collected on three different platforms – Windows
NT, IBM AIX and HP-UX. A different trace facility was used on each platform. The
Windows NT traces were collected by using VTrace [LS00], a software tracing tool for
Intel x86 PCs running Windows NT and Windows 2000. VTrace was primarily developed
to collect data for energy management studies for portable computers. In this study, we
focus mainly on the disk activities, which are collected by VTrace through the use of device
filters. We have verified the disk activity collected by VTrace with the raw traffic observed
by a bus (SCSI) analyzer.

After VTrace is installed on a system, each disk request generates a trace record con-
sisting of the time (based on the Intel Pentium cycle counter), sequence number, file object
pointer, disk and partition numbers, start address, transfer size, and flags describing the
request (e.g., read, write, synchronous). After the disk request has been serviced, a com-
pletion record is written. In a post processing step, we match up the sequence number
recorded in the request and completion records to obtain the service times.

To better understand the I/O behavior of the system, it is useful to be able to associate
each disk request with the name of the corresponding file and process. Because VTrace
also collects data on file system activities, in most cases, we are able to match up the file
object pointer with a file open record to obtain the filename. When the match fails, we try
to determine the filename by looking up the block address in a reverse allocation map that
is constructed from the daily snapshots that VTrace takes of the Windows NT file system
(NTFS) metadata. Since VTrace was designed to collect data for energy management stud-
ies, it also gathers data about process and thread creations and deletions as well as thread
switches. By using the thread create and thread switch trace records, we are able to match
up I/O requests with the names of the requesting processes. In addition, the thread switch
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records enable us to determine the overall significance of I/O in these workloads. We will
look at this in Section 2.5.1.

To keep the amount of data collected manageable, process and thread trace records are
gathered only for a span of one and a half hours every three and a half hours. In addition,
all trace collection is turned off ten minutes after the cessation of user mouse and keyboard
activity. Newer versions of VTrace collect some trace data all the time but in order to have
a consistent set of data, we have processed the traces used in this study to delete trace
records that occur more than ten minutes after the last user keyboard or mouse activity.
In other words, we consider the system to be idle from ten minutes after the last user
action until the next user action, and we assume that there is no I/O activity during the idle
periods. This means that the traces contain only the I/Os that occur when the user is actively
interacting with the system, and which are therefore likely to be noticed. We believe that
this is a reasonable approximation in the PC environment, although it is possible that we
are ignoring some level of activity due to periodic system tasks such as daemons. This
latter type of activity should have a negligible effect on the I/O load, although it might be
important for other types of studies, such as power usage.

Both the IBM AIX and HP-UX traces were collected using kernel-level trace facilities
built into the respective operating systems. These trace facilities are completely transpar-
ent to the user and adds no noticeable processor load. Among the information collected for
each physical I/O are: timing information, disk and partition numbers, start address, trans-
fer size and flags describing the request. More details about the IBM AIX trace facility can
be found in [IBM96]. The HP-UX trace facility is described in [RW93].

2.4.2 Trace Description

In this study, we use traces collected on both server and PC systems. Table 2.1 summa-
rizes the characteristics of the traces. The footprint of a trace is defined as the amount of
data referenced at least once in the trace. Figure 2.1 plots the trace footprint as a function
of the number of references, which is a measure of the trace length. Similar plots for the
read footprint and the write footprint are in Figure A.1 in Appendix A.

The PC traces are denoted as P1, P2, ..., P14. The term “P-Avg.” represents the arith-
metic mean of the results for all the PC traces. These traces were collected on Windows NT
PCs over a period ranging from about a month to well over nine months. In this thesis, we
utilize only the first 45 days of the traces. In addition to engineers and graduate students,
the users of these systems include a secretary and several people in senior managerial po-
sitions. By having a wide variety of users in our sample, we believe that our traces are
illustrative of the PC workloads in many offices, especially those involved in research and
development. Note, however, that the traces should not be taken as typical or represen-
tative of any other system. Despite this disclaimer, the fact that many of our results turn
out to correspond to those obtained previously, albeit in somewhat different environments,
suggest that our findings are to a large extent generalizable.
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System Configuration Trace Characteristics 
Design-

ation User Type 
System Memory 

(MB) File Systems       Storage 
Usedi (GB) # Disks Duration Footprintii 

(GB) 
Traffic 
(GB) 

Requests 
(106) 

P1 Engineer 333MHz P6 64 1GB FATi 5GB NTFSi 6 1 45 days (7/26/99 - 9/8/99) 0.945 17.1 1.88 

P2 Engineer 200MHz P6 64 1.2, 2.4, 1.2GB FAT 4.8 2 39 days (7/26/99 - 9/2/99) 0.509 9.45 1.15 

P3 Engineer 450MHz P6 128 4, 2GB NTFS 6 1 45 days (7/26/99 - 9/8/99) 0.708 5.01 0.679 

P4 Engineer 450MHz P6 128 3, 3GB NTFS 6 1 29 days (7/27/99 - 8/24/99) 4.72 26.6 2.56 

P5 Engineer 450MHz P6 128 3.9, 2.1GB NTFS 6 1 45 days (7/26/99 - 9/8/99) 2.66 31.5 4.04 

P6 Manager 166MHz P6 128 3, 2GB NTFS 5 2 45 days (7/23/99 - 9/5/99) 0.513 2.43 0.324 

P7 Engineer 266MHz P6 192 4GB NTFS 4 1 45 days (7/26/99 - 9/8/99) 1.84 20.1 2.27 

P8 Secretary 300MHz P5 64 1, 3GB NTFS 4 1 45 days (7/27/99 - 9/9/99) 0.519 9.52 1.15 

P9 Engineer 166MHz P5 80 1.5, 1.5GB NTFS 3 2 32 days (7/23/99 - 8/23/99) 0.848 9.93 1.42 

P10 CTO 266MHz P6 96 4.2GB NTFS 4.2 1 45 days (1/20/00 – 3/4/00) 2.58 16.3 1.75 

P11 Director 350MHz P6 64 2, 2GB NTFS 4 1 45 days (8/25/99 – 10/8/99) 0.73 11.4 1.58 

P12 Director 400MHz P6 128 2, 4GB NTFS 6 1 45 days (9/10/99 – 10/24/99) 1.36 6.2 0.514 

P13 Grad. Student 200MHz P6 128 1, 1, 2GB NTFS 4 2 45 days (10/22/99 – 12/5/99) 0.442 6.62 1.13 

P14 Grad. Student 450MHz P6 128 2, 2, 2, 2GB NTFS 8 3 45 days (8/30/99 – 10/13/99) 3.92 22.3 2.9 

P-Avg. - 318MHz 109 - 5.07 1.43 41.2 days 1.59 13.9 1.67 

 

(a) Personal Systems.

�
System�Configuration Trace�Characteristics�

Design-
ation�

Primary�
Function� System� Memory�

(MB)� File�Systems� Storage�
Usedi�(GB)�

#�
Disks� Duration� Footprintii�

(GB)�
Traffic�
(GB)�

Requests�
(106)�

FS1� File�Server�
(NFSiii)�

HP�9000/720�
(50MHz)� 32� 3�BSDiii�FFSiii�(3�GB)� 3� 3� 45�days�(4/25/92�-�6/8/92)� 1.39� 63� 9.78�

FS2iv� File�Server�
(AFSiii)� IBM�RS/6000�� -� 23�AIXiii�JFSiii�(99.1GB)� 99.1� 17� 8am�–�6pm�(11/6/2000)� -� 1.70� -�

TS1� Time-Sharing�
System�

HP�9000/877�
(64MHz)� 96� 12�BSD�FFS�(10.4GB)� 10.4� 8� 45�days�(4/18/92�-�6/1/92)� 4.75� 123� 20�

DS1�
Database�

Server�
(ERPiii)�

IBM�RS/6000�
R30�SMPiii���

(4X�75MHz)�
768�

8�AIX�JFS�(9GB),�3�paging�
(1.4GB),�30�raw�database�

partitions�(42GB)�
52.4� 13� 7�days�(8/13/96�–�8/19/96)� 6.52� 37.7� 6.64�

S-Avg.v� -� -� 299� -� 18.5� 8� 32.3�days� 4.22� 74.6� 12.1�

 
                                                 
i�Sum�of�all�the�file�systems�and�allocated�volumes. 
ii�Amount�of�data�referenced�at�least�once�(using�block�size�of�512�bytes)�
iii�AFS�–�Andrew�Filesystem,�AIX�–�Advanced�Interactive�Executive�(IBM’s�flavor�of�UNIX),�BSD�–�Berkeley�System�Development�Unix,�ERP�–�Enterprise�Resource�Planning,�FFS�–�Fast�
Filesystem,�JFS�–�Journal�Filesystem,�NFS�–�Network�Filesystem,�NTFS�–�NT�Filesystem,�SMP�–�Symmetric�Multiprocessor�
iv�Only�per�second�I/O�statistics�were�collected.�
v�Excluding�FS2.�

(b) Servers.

Table 2.1: Trace Description.
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Figure 2.1: Footprint vs. Number of References.

The servers examined include two file servers, a time-sharing system and a database
server. The first file server workload (FS1) was taken off a file server for nine clients at
the University of California, Berkeley. This system was primarily used for compilation
and editing. It is referred to as “Snake” in [RW93]. The second file server workload
(FS2) was taken off an Andrew File System (AFS) server at one of the major development
sites of a leading computer vendor. The system was the primary server used to support
the development effort. For this system, only per-second aggregate statistics of the I/O
traffic were gathered; addresses for individual I/Os were not collected. The FS2 data was
therefore used for only a few of our analyses. The trace denoted TS1 was gathered on
a time-sharing system at an industrial research laboratory. It was mainly used for news,
mail, text editing, simulation and compilation. It is referred to as “cello” in [RW93]. The
database server trace (DS1) was collected at one of the largest health insurers nationwide.
The system traced was running an Enterprise Resource Planning (ERP) application on top
of a commercial database. Throughout this thesis, we use the term “S-Avg.” to denote the
arithmetic mean of the results for FS1, TS1 and DS1.

Our traces capture the actual workloads that are presented to the storage system and are
therefore likely to be sensitive to the amount of filtering by the file system cache and/or the
database buffer pool. However, we believe that changing the amount of caching upstream
will only affect our characterization quantitatively and that the qualitative results still ap-
ply. To show that our characterization is relatively insensitive to the amount of caching
upstream, we filtered our traces through a Least-Recently-Used (LRU) write-back cache to
obtain another set of traces on which to run our analysis. Following the design of most file
systems, we allow a dirty block to remain in the cache for up to 30 seconds. When a block
is written back, we write out, in the same operation, all the dirty blocks that are physically
contiguous, up to a maximum of 512 blocks. The size of the cache is chosen to be the
size of the entire main memory in the original systems (Table 2.1). These filtered traces are
denoted by adding an “f” to the original designation. For instance, the trace obtained by fil-
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Number�of�MBs� Number�of�Requests�
�

Read� Write� Overall� Read� Write� Overall�

P1� 0.575� 0.176� 0.441� 0.618� 0.575� 0.605�

P2� 0.503� 0.173� 0.385� 0.547� 0.495� 0.525�

P3� 0.583� 0.163� 0.291� 0.632� 0.498� 0.537�

P4� 0.301� 0.175� 0.219� 0.358� 0.630� 0.527�

P5� 0.369� 0.232� 0.275� 0.438� 0.620� 0.574�

P6� 0.831� 0.190� 0.436� 0.821� 0.548� 0.617�

P7� 0.546� 0.143� 0.246� 0.551� 0.548� 0.549�

P8� 0.592� 0.239� 0.426� 0.629� 0.657� 0.642�

P9� 0.484� 0.146� 0.317� 0.488� 0.471� 0.479�

P10� 0.216� 0.162� 0.192� 0.316� 0.537� 0.436�

P11� 0.515� 0.245� 0.409� 0.520� 0.641� 0.577�

P12� 0.416� 0.179� 0.290� 0.450� 0.721� 0.601�

P13� 0.557� 0.257� 0.391� 0.585� 0.615� 0.603�

P14� 0.356� 0.221� 0.282� 0.415� 0.683� 0.596�

P-Avg.� 0.489� 0.193� 0.329� 0.526� 0.589� 0.562�

FS1� 0.594� 0.573� 0.582� 0.570� 0.681� 0.633�

TS1� 0.583� 0.394� 0.474� 0.546� 0.454� 0.495�

DS1� 0.057� 0.203� 0.122� 0.133� 0.702� 0.488�

S-Avg.� 0.412� 0.390� 0.393� 0.416� 0.612� 0.539�

�

Table 2.2: Fraction of I/O Activity that is Filtered.

tering P1 is denoted as P1f. We further denote the arithmetic mean of the results for all the
filtered PC workloads as “Pf-Avg” and that for the filtered FS1, TS1 and DS1 workloads
as “Sf-Avg”.

In Table 2.2, we present the faction of I/O activity that is satisfied by such an additional
cache. On average, over 50% of the I/O requests are removed by the cache, which shows
that the amount of caching has been significantly increased over what was in the original
traced systems. Observe further that the traffic volume is reduced less significantly than the
number of operations. This is because the smaller requests tend to have a higher chance of
hitting in the cache. Furthermore, by delaying the writes, we are able to consolidate them
into fewer but larger sequential writes. In Table 2.3 and Figure 2.2, we present the request
size distribution for both the original and the filtered traces. The average request size for
the original workloads is about 7-9 KB. The filtered traces have larger writes on average
but their request size distributions track those of the original traces remarkably well. That
the filtered traces maintain the qualitative behavior of the original traces is a result that we
will see repeated for different characteristics in the rest of the chapter.

2.5 Intensity of I/O

We begin our characterization by focusing on the I/O intensity of the various workloads.
This is akin to understanding the size of a problem so that we can better approach it. The



13

All�Requests� Read�Requests� Write�Requests�
�

Avg.� Std.�
Dev.� Min.� Max.� Avg.� Std.�

Dev.� Min.� Max.� Avg.� Std.�
Dev.� Min.� Max.�

P1� 19.1� 26.6� 1� 128� 17.7� 22� 1� 128� 22.4� 35.4� 1� 128�

P2� 17.2� 27.4� 1� 1538� 19.1� 24.4� 1� 128� 14.6� 30.9� 1� 1538�

P3� 15.5� 24.8� 1� 128� 15.5� 19.4� 1� 128� 15.5� 26.8� 1� 128�

P4� 21.7� 33.8� 1� 128� 20.4� 30.3� 1� 128� 22.5� 35.8� 1� 128�

P5� 16.3� 25� 1� 298� 20.8� 28.3� 1� 129� 14.8� 23.6� 1� 298�

P6� 15.7� 23.7� 1� 128� 23.1� 25.5� 1� 128� 14.7� 23.2� 1� 128�

P7� 18.5� 30.3� 1� 128� 19.1� 23.9� 1� 128� 18.4� 31.9� 1� 128�

P8� 17.4� 25.8� 1� 128� 16.8� 20.9� 1� 128� 18.2� 30.9� 1� 128�

P9� 14.7� 21.1� 1� 128� 15.4� 20.2� 1� 128� 13.9� 21.8� 1� 128�

P10� 19.6� 30.7� 1� 128� 23.7� 32.8� 1� 128� 15.7� 28� 1� 128�

P11� 15.2� 23.1� 1� 128� 19.4� 24.7� 1� 128� 11.7� 21.1� 1� 128�

P12� 25.3� 58.6� 1� 512� 27.5� 54.6� 1� 512� 23.6� 61.4� 1� 512�

P13� 12.3� 18.2� 1� 180� 14.5� 18.8� 1� 128� 11� 17.7� 1� 180�

P14� 16.1� 28.1� 1� 1539� 20.6� 31.2� 1� 128� 14� 26.2� 1� 1539�

P-Avg.� 17.5� 28.4� 1� 373� 19.5� 26.9� 1� 156� 16.5� 29.6� 1� 373�

Pf-Avg.� 27.4� 64.3� 1� 512� 21.3� 29.3� 1� 155� 34.1� 84.2� 1� 512�

FS1� 13.5� 5.08� 2� 512� 12.5� 5.47� 2� 64� 14.2� 4.65� 2� 512�

TS1� 12.9� 7.77� 2� 512� 12.4� 6.52� 2� 224� 13.3� 8.62� 2� 512�

DS1� 11.9� 21.9� 1� 512� 17.4� 27.1� 1� 512� 8.55� 17.3� 1� 256�

S-Avg.� 12.8� 11.6� 1.67� 512� 14.1� 13.0� 1.67� 267� 12.0� 10.2� 1.67� 427�

Sf-Avg.� 16.4� 29.8� 1.67� 512� 14.0� 13.5� 1.67� 222� 18.9� 41.0� 1.67� 512�

�
�

Table 2.3: Request Size (Number of 512-Byte Blocks).
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Figure 2.3: Disk and Processor Busy Time.

questions we seek to address in this section include how significant is the I/O component
in the overall workload, how many I/Os are generated, and how fast do the requests arrive.

2.5.1 Overall Significance of I/O

In Figure 2.3, we present the percent of time the disk and processor are busy for the PC
workloads. Similar results for the server workloads would be interesting but unfortunately,
this analysis relies on information that is available only in the PC traces. Specifically, we
calculate the processor busy time by looking at the thread switch records to determine when
the processor is not in the idle loop. The disk busy time is taken to be the duration during
which one or more of the disks in the system are servicing requests. Recall that for the PC
workloads, we only have trace data for the periods during which user input activity occurs
at least once every ten minutes. The results in Figure 2.3 therefore cover only the periods
during which the user is actively interacting with the system.

From the figure, the processor is, on average, busy for only about 10% of the time while
the disk is busy for only about 2.5% of the time. This low level of busy time is misleading,
however, because the user is interested in response time; CPU idle generally represents user
think time, and would occur in any case in a single user environment. We cannot, therefore,
conclude that the processor and I/O system are ”fast enough”. What the results do suggest
is that there is a lot of idle time for performing background tasks, even without having
to deliberately leave the computer on when the user is away. In other words, significant
resources are available even when the system is being actively used. The challenge is to
harness these idle resources without affecting the foreground work. If this can be done
unobtrusively, it will pave the way for sharing idle resources in collaborative computing,
a paradigm commonly referred to as peer-to-peer (P2P) computing. In addition, the idle
resources can be used to optimize the system so that it will perform better in future for the
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Figure 2.4: Processor Busy Time during Disk Busy/Idle Intervals. Bars indicate standard
deviation (To reduce clutter, we show only the deviation in one direction).

foreground task (e.g., see Chapter 4). We will characterize the disk idle periods in detail in
Section 2.6.3.

I/O is known to be a major component of server workloads (e.g., [RBH+95]). But if pro-
cessors continue to increase in performance at the historical rate of 60% per year [HP96],
as many believe they are likely to for the near future, the results in Figure 2.3 suggest that
I/O may also become the dominant component of personal computer workloads in the next
few years. More memory will of course be available in the future for caching but the PC
systems in our study are already well-endowed with memory. A common way of hiding
I/O latency is to overlap it with some computation either through multiprogramming or by
performing I/O asynchronously. From Figure 2.3, this technique appears to be relatively
ineffective for the PC workloads since only a small fraction (20% on average) of the disk
busy time is overlapped with computation. In Figure 2.4, we compare the processor busy
time during the disk idle intervals with that during the disk busy intervals. A disk idle
interval refers to the time interval during which all the disks are idle. A disk busy interval
is simply the period of time between two consecutive disk idle intervals. Reflecting the
low average processor utilization of the workloads, the processor is busy less than 20% of
the time for the long intervals (> 0.1s), regardless of whether any of the disks are busy.
During the short intervals (< 0.1s), the processor is busy almost all the time when all the
disks are idle but the processor utilization drops to less than 50% when one or more of the
disks are busy. Such results imply that little processing can be overlapped with I/O and
that I/O response time is important for these kinds of workloads.

That only a small amount of processing is overlapped with I/O suggests that there is
effectively little multiprocessing in the PC workloads. Furthermore, as shown in Table 2.4,
I/Os, especially those in the PC workloads, tend to be synchronous. This means that the
system generally has to wait for I/Os to be completed before it can continue with subse-
quent processing. Observe from the table that although Windows NT provides a common
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� Read� Write� Overall�

P1� 0.974� 0.667� 0.887�

P2� 0.970� 0.627� 0.825�

P3� 0.931� 0.701� 0.770�

P4� 0.829� 0.731� 0.768�

P5� 0.927� 0.776� 0.814�

P6� 0.967� 0.849� 0.864�

P7� 0.878� 0.723� 0.758�

P8� 0.968� 0.835� 0.909�

P9� 0.800� 0.605� 0.699�

P10� 0.763� 0.749� 0.756�

P11� 0.926� 0.705� 0.805�

P12� 0.961� 0.566� 0.736�

P13� 0.610� 0.695� 0.664�

P14� 0.733� 0.714� 0.720�

P-Avg.� 0.874� 0.710� 0.784�

FS1� 0.854� 0.254� 0.505�

TS1� 0.835� 0.671� 0.744�

DS1� -� -� -�

S-Avg.� 0.845� 0.462� 0.624�

�

Table 2.4: Fraction of I/O Requests that are Synchronous.

convenient interface for performing both synchronous and asynchronous I/O, on average
nearly 80% of the I/O requests are flagged as synchronous. Metadata updates account for
most, but not all, of the synchronous writes. Excluding metadata writes, about half of the
writes are synchronous. In the FS1 and TS1 traces, some I/O requests are not explicitly
flagged as synchronous or asynchronous. For these traces, we assume that I/Os are syn-
chronous unless they are explicitly flagged otherwise. The DS1 trace does not contain
information about whether the I/Os are synchronous.

A common difficulty in using trace-driven simulations to study I/O systems is to real-
istically account for events that occur faster or slower in the simulated system than in the
original system. Since the PC workloads have little multiprocessing and most of the I/Os
are synchronous, these workloads can be modeled by assuming that after completing an
I/O, the system has to do some processing and the user, some “thinking”, before the next
set of I/Os can be issued. For instance, in the timeline in Figure 2.5, after request R0 is
completed, there are delays during which the system is processing and the user is thinking
before requests R1, R2 and R3 are issued. Because R1, R2 and R3 are issued after R0
has been completed, we consider them to be dependent on R0. Similarly, R4 and R5 are
deemed to be dependent on R1. Presumably, if R0 is completed earlier, R1, R2 and R3 will
be dragged forward and issued earlier. If this in turn causes R1 to be finished earlier, R4
and R5 will be similarly moved forward in time.
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Figure 2.5: Intervals between Issuance of I/O Requests and Most Recent Request
Completion.

0

10

20

30

40

50

60

70

80

90

100

0.0001 0.001 0.01 0.1 1 10 100
Interval Between I/O Issue and Last I/O Completion (s)

Pr
oc

es
so

r/K
er

ne
l B

us
y 

Ti
m

e 
(%

 In
te

rv
al

)

Proc. Busy
Kernel Busy

f(x)=1/(0.0857x+0.0105)
r2 = 0.985

f(x)=1/(28.7x+0.060)
r2=0.956

Figure 2.6: Processor/Kernel Busy Time during Intervals between Issuance of I/Os and
Most Recent Request Completion. Bars indicate standard deviation (To reduce clutter, we
show only the deviation in one direction).

In Figure 2.6, we plot the percent of time the processor is busy during the interval
between when an I/O request is issued and the most recent completion of an I/O request
(the X’s in Figure 2.5). We are interested in the processor busy time during such intervals to
model what happens when the processing time is reduced through faster processors. From
Figure 2.6, we find that for the PC workloads, the processor utilization during the intervals
between I/O issuance and the last I/O completion is related to the length of the interval by
a reciprocal function of the form f(x) = 1/(ax + b) where a = 0.0857 and b = 0.0105.
The reciprocal function suggests that there is a fixed amount of processing per I/O. To
model a processor that is n times faster than was in the traced system, we would scale only
the system processing time by n, leaving the user think time unchanged. Specifically, we
would replace an interval of length x by one of x[1 − f(x) + f(x)/n]. We believe that for
the PC workloads, this is considerably more realistic than simply scaling the inter-arrival
time between I/O requests by n, as is commonly done.

In Figure 2.6, we also plot the percent of time that the kernel is busy during the intervals
between when an I/O request is issued and the previous I/O completion. We consider the
kernel to be busy if the kernel process (process ID = 2 in Windows NT) is allocated the
CPU. As shown in the figure, the kernel busy time is also related to the length of the
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 P-Avg. Pf-Avg. FS1 TS1 DS1 S-Avg. Sf-Avg. 

Read 25 12 92.7 190 344 209 137 

Write 37 15 129 246 564 313 113 
Av

er
ag

e 
Total 62 27 222 436 908 522 251 

Read 82 48 286 577 725 530 446 

Write 102 30 355 393 833 527 162 

# 
I/O

 R
eq

ue
st

s 
(1

03 ) 

M
ax

. 

Total 183 78 641 970 1558 1056 609 

Read 234 131 568 1152 3017 1579 1161 
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Total 529 368 1462 2756 5425 3214 2250 

Read 973 701 1677 3613 4508 3266 2731 

Write 1084 856 2446 2573 5159 3393 2403 I/O
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M
ax
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Total 2057 1557 4124 6186 9667 6659 5134 

 
 
 
 
 
 
 
 
 

 

Table 2.5: Daily Volume of I/O Activity in Thousands of Requests and Megabytes of Traf-
fic. Pf-Avg. and Sf-Avg. denote the arithmetic mean of the results for the filtered PC and
server workloads respectively.

interval by a reciprocal function, as we would expect when there is some fixed kernel cost
per I/O.

2.5.2 Amdahl’s Factor and Access Density

Table 2.5 presents the average and maximum amount of I/O traffic generated per day
by the various workloads. Note that the average is taken over the days when there is some
I/O activity recorded in the traces. This means that for the PC workloads, the weekends
are, for the most part, ignored. We find that the maximum daily I/O traffic is about two to
four times higher than the average. The server workloads are clearly more I/O intensive
than the PC workloads and we expect that servers today will have even higher rates of
I/O activity. Nevertheless, it should still be the case that collecting a daily trace of the disk
blocks referenced for later analysis and optimization (e.g., to optimize disk block placement
as in Chapter 4) is very feasible. For instance, for the database server workload, logging
eight bytes of information per request will create just over 12 MB of data on the busiest
day.

When designing the IBM System/360, Amdahl observed that the amount of I/O gener-
ated per instruction tends to be relatively constant [Amd70]. More specifically, Amdahls’
rule of thumb states that a typical data processing system requires approximately 1 Mb/s
of I/O bandwidth for every million instructions per second (MIPS) of processing power.
This rule of thumb dates back to the sixties before buffering and caching techniques were
widely used. It was recently revalidated for the logical I/O of database workloads in the
production environments of some of the world’s largest corporations [HSY01a]. Due to
the advent of caching, however, Amdahl’s factor for the ratio of physical I/O bandwidth to
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Avg.�Number�of�Mbs�of�I/O� Avg.�Number�of�I/Os�
� Per�

Second� /s�/MHz� /s�/MIPS� /s�/GB� Per�
Second� /s�/MHz� /s�/MIPS� /s�/GB�

P1� 0.588� 0.00177� 0.00177� 0.0980� 5.80� 0.0174� 0.0174� 0.967�

P2� 0.557� 0.00278� 0.00278� 0.116� 7.25� 0.0363� 0.0363� 1.51�

P3� 0.811� 0.00180� 0.00180� 0.135� 6.42� 0.0143� 0.0143� 1.07�

P4� 6.84� 0.0152� 0.01520� 1.14� 61.0� 0.135� 0.135� 10.2�

P5� 3.50� 0.00778� 0.00778� 0.583� 14.7� 0.0326� 0.0326� 2.45�

P6� 0.106� 0.000639� 0.000639� 0.0212� 1.44� 0.00866� 0.00866� 0.287�

P7� 2.84� 0.0107� 0.0107� 0.711� 28.5� 0.107� 0.107� 7.13�

P8� 1.08� 0.00361� 0.00361� 0.270� 8.65� 0.0288� 0.0288� 2.16�

P9� 1.11� 0.00671� 0.00671� 0.371� 15.4� 0.0929� 0.0929� 5.14�

P10� 5.71� 0.0215� 0.0215� 1.36� 44.8� 0.168� 0.168� 10.7�

P11� 0.852� 0.00243� 0.00243� 0.213� 10.9� 0.0310� 0.0310� 2.72�

P12� 4.63� 0.0116� 0.0116� 0.771� 22.8� 0.0570� 0.0570� 3.80�

P13� 0.385� 0.00193� 0.00193� 0.0963� 8.03� 0.0401� 0.0401� 2.01�

P14� 4.14� 0.00919� 0.00919� 0.517� 51.8� 0.115� 0.115� 6.47�

P-Avg.� 2.37� 0.00697� 0.00697� 0.457� 20.5� 0.0632� 0.0632� 4.04�

Pf-Avg.� 1.92� 0.00569� 0.00569� 0.372� 9.24� 0.0312� 0.0312� 1.94�

FS1� 1.26� 0.0252� 0.0503� 0.419� 26.8� 0.536� 1.07� 8.94�

TS1� 1.99� 0.0311� 0.0621� 0.191� 39.0� 0.610� 1.22� 3.75�

DS1� 6.11� 0.0204� 0.0407� 0.117� 72.4� 0.241� 0.482� 1.38�

S-Avg.� 3.12� 0.0255� 0.0511� 0.242� 46.1� 0.462� 0.925� 4.69�

Sf-Avg.� 2.98� 0.0234� 0.0467� 0.217� 29.5� 0.375� 0.750� 3.99�

�
�

Table 2.6: Intensity of I/O during the Busiest One-Hour Period.

MIPS was found to be on the order of 0.05 [HSY01a]. Since the value of Amdahl’s factor
determines what constitutes a balanced system, it would be useful to see if the same figure
applies to the current set of workloads.

To this end, we calculated the ratio of I/O intensity, i.e., the rate of I/O activity, to
processor speed for our workloads. Unlike the traces used in [HSY01a] which cover only
the peak periods of the workloads as identified by the system administrator, the traces in
the current study span periods of days and weeks, and includes periods of light activity as
well as those of heavy activity. Therefore, in calculating the I/O intensity normalized by
processor speed in Table 2.6, we consider the busiest one-hour interval, which we define
as the one hour interval with the highest I/O bandwidth requirement. The I/O intensity
averaged over various time intervals ranging from 100 milliseconds to the trace length is
presented in Table 2.7. Notice from Table 2.6 that the filtered traces have significantly fewer
I/O operations during the busiest one-hour interval. However, because the request sizes for
the filtered traces are much larger during this period (see Table 2.8), the bandwidth figures
for the filtered traces are just slightly lower than those for the original workloads. In this
section, our focus is on establishing general rules of thumb with regards to the I/O intensity
of our various workloads. It turns out that the effect of filtering the workloads is not large
enough to significantly affect any of our findings.
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� 0.1s� 1s� 10s� 1min� 10min� 1hr� Trace�Len.�

P1� 115� 55.3� 27.3� 8.63� 2.13� 0.588� 0.0366�

P2� 64.8� 26.8� 20.9� 7.54� 2.35� 0.557� 0.0234�

P3� 50.3� 27.2� 15.9� 13.1� 4.19� 0.811� 0.0129�

P4� 121� 99.5� 80.0� 56.1� 34.6� 6.84� 0.0893�

P5� 40.2� 28.0� 26.3� 17.6� 13.2� 3.50� 0.0674�

P6� 45.0� 23.3� 8.51� 2.81� 0.44� 0.106� 0.00549�

P7� 61.3� 47.1� 18.5� 10.4� 4.78� 2.84� 0.0463�

P8� 51.9� 36.4� 19.8� 11.8� 3.60� 1.08� 0.0204�

P9� 50.0� 27.0� 11.1� 5.99� 3.71� 1.11� 0.0306�

P10� 85.0� 75.0� 48.5� 34.9� 17.1� 5.71� 0.0358�

P11� 133� 46.4� 29.0� 12.7� 2.06� 0.852� 0.0266�

P12� 90.0� 48.7� 26.2� 20.1� 10.7� 4.63� 0.0139�

P13� 45.0� 21.5� 7.77� 4.39� 1.26� 0.385� 0.0148�

P14� 71.6� 51.5� 32.5� 29.0� 12.4� 4.14� 0.0476�

P-Avg.� 73.1� 43.8� 26.6� 16.8� 8.04� 2.37� 0.0337�

Pf-Avg.� 109� 45� 24.0� 15.0� 6.66� 1.92� 0.0237�

FS1� 382� 41.1� 26.1� 11.9� 2.05� 1.26� 0.133�

TS1� 264� 96.3� 14.9� 10.8� 4.88� 1.99� 0.260�

DS1� 156� 108� 91.9� 85.1� 19.7� 6.11� 0.515�

S-Avg.� 267� 81.7� 44.3� 35.9� 8.87� 3.12� 0.302�

Sf-Avg.� 262� 76� 42.9� 32.0� 7.71� 2.98� 0.213�

�
�

Table 2.7: I/O Intensity (Mb/s) Averaged over Various Time Intervals, showing the peak or
maximum value observed for each interval size.

From Table 2.6, the server workloads are fairly consistent, generating about 0.02-
0.03 Mb/s of I/O for every MHz of processing power. The PC workloads are less I/O
intensive, generating about 0.007 Mb/s/MHz on average. In order to determine an order of
magnitude figure for the ratio of I/O bandwidth to MIPS, we need a rough estimate of the
Cycles Per Instruction (CPI) for the various workloads. We use a value of one for the PC
workloads because the CPI for the SPEC95 benchmark on the Intel Pentium Pro processor
has been found to be between 0.5 and 1.5 [BD97]. For the server workloads, we use a CPI
value of two in view of results in [ADHW99, KPH+98a]. Based on these estimates of the
CPI, we find that the server workloads generate around 0.05 bits of real I/O per instruc-
tion, which is consistent with the estimated Amdahl’s factor for the production database
workloads in [HSY01a]. The figure for the PC workloads is seven times lower at about
0.007 bits of I/O per instruction.

Interestingly, surveys conducted between 1980 and 1993 of large data processing main-
frame installations found that the number of physical I/Os per second per MIPS was de-
creasing by just over 10% per year to 9.0 in 1993 [McN95]. This figure is about ten times
higher than what we are seeing for our server workloads. A possible explanation for this
large discrepancy is that the mainframe workloads issue many small I/Os but data reported
in [McN95] show that the average I/O request size for the surveyed mainframe installations
was about 9 KB, which is slightly larger than the 8 KB for our server workloads (Table 2.8).
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All�Requests� Read�Requests� Write�Requests�
�

Avg.� Std.�
Dev.� Min.� Max.� Avg.� Std.�

Dev.� Min.� Max.� Avg.� Std.�
Dev.� Min.� Max.�

P1� 26� 32.9� 1� 128� 20.4� 22.9� 1� 128� 42.3� 48.5� 1� 128�

P2� 19.7� 30� 1� 1536� 16.5� 20.7� 1� 128� 44.3� 63.1� 1� 1536�

P3� 32.3� 43.5� 1� 128� 18.6� 28.5� 1� 128� 38.9� 47.7� 1� 128�

P4� 28.7� 40.2� 1� 128� 15.5� 21.1� 1� 128� 29.8� 41.2� 1� 128�

P5� 61� 58.9� 1� 129� 96.4� 53.1� 1� 129� 13� 18.7� 1� 128�

P6� 18.9� 29.4� 1� 128� 27.6� 29� 1� 128� 16.8� 29.1� 1� 128�

P7� 25.5� 36.1� 1� 128� 21.9� 25� 1� 128� 27.4� 40.5� 1� 128�

P8� 32� 42.6� 1� 128� 21.2� 31.5� 1� 128� 55.3� 52.9� 1� 128�

P9� 18.5� 27.7� 1� 128� 19.3� 27.9� 1� 128� 16� 26.7� 1� 128�

P10� 32.6� 44.4� 1� 128� 37� 46.4� 1� 128� 23.1� 37.8� 1� 128�

P11� 20.1� 29� 1� 128� 21.6� 27.3� 1� 128� 17.4� 31.5� 1� 128�

P12� 51.9� 120� 1� 512� 96.4� 144� 1� 512� 38.2� 107� 1� 512�

P13� 12.3� 18.8� 1� 128� 14.6� 20.9� 1� 128� 10.5� 16.7� 1� 128�

P14� 20.5� 38.6� 1� 128� 13.7� 29.1� 1� 128� 72� 58.3� 1� 128�

P-Avg.� 28.6� 42.3� 1� 256� 31.5� 37.7� 1� 156� 31.8� 44.3� 1� 256�

Pf-Avg.� 55.5� 93.3� 1� 512� 34.2� 38.2� 1� 155� 91� 141� 1� 512�

FS1� 12� 5.52� 2� 18� 11.6� 5.61� 2� 18� 14.4� 4.15� 2� 16�

TS1� 13� 9.87� 2� 512� 12.6� 5.52� 2� 64� 14.9� 19.9� 2� 512�

DS1� 21.6� 35.3� 1� 128� 25.4� 38.6� 1� 108� 19� 32.5� 1� 128�

S-Avg.� 15.5� 16.9� 1.67� 219� 16.5� 16.6� 1.67� 63.3� 16.1� 18.9� 1.67� 219�

Sf-Avg.� 25.8� 12.7� 2.00� 213� 27� 8.73� 2.00� 51.3� 13.1� 13.4� 2.67� 213�

�
�

Table 2.8: Request Size (Number of 512-Byte Blocks) during the Busiest One-Hour Period.

Of course, mainframe MIPS and Reduced Instruction Set Computer (RISC) MIPS are not
directly comparable and this difference could account for some of the disparity, as could
intrinsic differences between the workloads. In addition, our calculations are based on the
MIPS rating of the system, which is what we have available to us. The mainframe surveys,
on the other hand, used utilized MIPS [Maj81] or the processing power actually consumed
by the workload. To make our calculations consistent with the survey results, we could fac-
tor in the processor utilization when the workload is running. For instance, if the processor
utilization is 10%, as suggested by our earlier results for the PC workloads, we would mul-
tiple our figures by 10. With this adjustment, the PC workloads still generate less than
one I/O per second per MIPS. The server traces, unfortunately, do not contain information
from which we can derive the processor utilization for these workloads. But we expect the
processor in these workloads to be also less than fully utilized so that the number of I/Os
generated per second per MIPS by these workloads is actually closer to the survey results
than the raw numbers suggest.

Another useful way of looking at I/O intensity is with respect to the storage used (Ta-
ble 2.1). In this thesis, the storage used by each of the workloads is estimated to be the
combined size of all the file systems and logical volumes defined in that workload. This
makes our calculations comparable to historical data and is a reasonable assumption unless
storage can be allocated only when written to, for instance by using storage virtualization
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Processing�Power�(GHz)� Storage�(GB)�
� Bandwidth�

(Mb/s)� P-Avg.� Pf-Avg.� S-Avg.� Sf-Avg.� P-Avg.� Pf-Avg.� S-Avg.� Sf-Avg.�

Ethernet� 10� 0.718� 0.879� 0.196� 0.214� 10.9� 13.4� 20.6� 23.0�

Fast�Ethernet� 100� 7.18� 8.79� 1.96� 2.14� 109� 134� 206� 230�

Gigabit�Ethernet� 1000� 71.8� 87.9� 19.6� 21.4� 1093� 1344� 2063� 2302�

Ultra�ATA-100� 800� 57.4� 70.3� 15.7� 17.1� 875� 1075� 1650� 1842�

Serial�ATA� 1200� 86.1� 105� 23.5� 25.7� 1312� 1613� 2475� 2763�

UltraSCSI�320� 2560� 184� 225� 50.1� 54.8� 2799� 3441� 5281� 5894�

Fiber�Channel� 1000� 71.8� 87.9� 19.6� 21.4� 1093� 1344� 2063� 2302�

Infiniband� 2500� 179� 220� 49.0� 53.5� 2733� 3360� 5157� 5756�

�
�

Table 2.9: Projected Processing Power and Storage Needed to Drive Various Types of I/O
Interconnect to 50% Utilization.

software that separates the system view of storage from the actual physical storage. Ta-
ble 2.6 summarizes, for our various workloads, the number of I/Os per second per GB of
storage used. This metric is commonly referred to as access density and is widely used
in commercial data processing environments [McN95]. The survey of large data process-
ing mainframe installations cited above found the access density to be decreasing by about
10% per year to 2.1 I/Os per second per GB of storage in 1993. Notice from Table 2.6
that the access density for DS1 appears to be consistent with the mainframe survey results.
However, the access density for FS1 and TS1 is about two to four times higher. The PC
workloads have, on average, an access density of 4 I/Os per second per GB of storage,
which is on the order of the figure for the server workloads even though the server work-
loads are several years older. Such results suggest that PC workloads may be comparable
to server workloads in terms of access density. Note, however, that as disks become a lot
bigger and PCs have at least one disk, the density of access with respect to the available
storage is likely to be much lower for PC workloads.

Table 2.6 also contains results for the number of bits of I/O per second per GB of stor-
age used. The PC workloads have, on average, 0.46 Mb of I/O per GB of storage. By this
measure, the server workloads are less I/O intense with an average of only 0.24 Mb of I/O
per GB of storage. Based on these results, we project the amount of processing power and
storage space that will be needed to drive various types of I/O interconnect to 50% utiliza-
tion. The results are summarized in Table 2.9. Note that all the modern I/O interconnects
offer Gb/s bandwidth. Some of them, specifically Ethernet and Fiber Channel, have newer
versions with even higher data rates. For the kinds of workloads that we have, the I/O
interconnect is not expected to be a bottleneck any time soon. However, we would expect
to see much higher bandwidth requirements for workloads that are dominated by large se-
quential I/Os (e.g., scientific and decision support workloads). In such environments, and
especially when many workloads are consolidated into a large server and many disks are
consolidated into a sizeable outboard controller, the bandwidth requirements have to be
carefully evaluated to ensure that the network or connection between the disks and the host
does not become the bottleneck.
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Inter-Arrival�Time�(s)� P-Avg.� Pf-Avg.� FS1� TS1� DS1� S-Avg.� Sf-Avg.�

1st�Moment� 3.25� 7.23� 0.398� 0.194� 0.0903� 0.227� 0.561�

2nd�Moment� 7.79E+05� 1.86E+06� 368� 23.1� 2.00� 131� 363�

3rd�Moment� 6.46E+11� 1.60E+12� 2.02E+07� 8.09E+03� 67.4� 6.74E+06� 1.88E+07�

�
�

Table 2.10: First, Second and Third Moments of the I/O Inter-Arrival Time.
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Figure 2.7: Distribution of I/O Inter-Arrival Time.

2.5.3 Request Arrival Rate

In Table 2.10, we present the first, second and third moments of the distribution of
I/O inter-arrival time. The distribution is plotted in Figure 2.7. Since this distribution
is often needed in modeling I/O systems, we fitted standard probability distributions to
it. As shown in the figure, the commonly used exponential distribution, while easy to
work with mathematically, turns out to be a rather poor fit for all the workloads. Instead,
the lognormal distribution (denoted Lognorm(µ, σ) where µ and σ are respectively the
mean and standard deviation) is a reasonably good fit. Recall that a random variable is
lognormally distributed if the logarithm of the random variable is normally distributed.
Therefore, the lognormal distribution is skewed to the right or towards the larger values,
meaning that there exists long intervals with no I/O arrivals. The long tail of the inter-arrival
distribution could be a manifestation of different underlying behavior such as correlated
arrival times but regardless of the cause, the net effect is that I/O requests seldom occur
singly but tend to arrive in groups because if there are long intervals with no arrivals, there
must be intervals that have far more arrivals than their even share. We will analyze the
burstiness of the I/O traffic in greater detail in the next section.

Another interesting way to analyze the arrival process of I/O requests is relative to the
completion of preceding requests. In particular, if the workload supports multiple outstand-
ing I/O requests, there will be more potential for improving the average I/O performance,
for instance, through request scheduling. Figure 2.8 presents the distribution of queue
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Figure 2.8: Distribution of Queue Depth on Arrival. Bars indicate standard deviation.

depth, which we define to be the length of the request queue as seen by an arriving request.
In Table 2.11 and Figure A.2 in Appendix A, we break down the outstanding requests into
reads and writes. Note that we consider a request to be in the queue while it is being
serviced.

We find that across all the workloads, the read queue tends to be shallow – more than
85% of the requests arrive to find the queue devoid of read requests, and the average number
of reads outstanding is only about 0.2. Nevertheless, the read queue can be deep at times.
If there are read requests in the queue, the average number of them is almost 2 (denoted
Avg.| > 0 in Table 2.11). In addition, the maximum read queue depth can be more than
90 times higher than the average. Notice that the server workloads do not appear to have
a deeper read queue than the personal system workloads. This finding suggests that read
performance in personal system workloads could benefit as much from request scheduling
as in server workloads. We will examine request scheduling in detail in Chapter 3. Observe
further from Table 2.11 that the write queue is markedly deeper than the read queue for all
the workloads, as we would expect given that a greater fraction of writes are asynchronous
compared to reads (Table 2.4). The PC workloads appear to have a significantly shallower
write queue than the server workloads.

Note that we are looking at the number of outstanding requests from the perspective of
the operating system layer at which the trace data were collected. This reflects the potential
for request scheduling at any of the levels below, and not just at the physical storage system,
which is typically not handed hundreds of requests at a time. Some of the differences
among the workloads could be the result of collecting the traces at different levels on the
different platforms. In general, the operating system and/or the disk device driver will
queue up the requests and attempt to schedule them based on some simple performance
model of the storage system (e.g., minimize seek distance). There is a tendency for the
operating system and/or device driver to hold back the requests and issue only a small
number of them at any one time so as to avoid overloading the storage system. In reality,
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#�I/Os�Outstanding� #�Reads�Outstanding� #�Writes�Outstanding�
�

Avg.� Avg.|>0� Std.�
Dev.�

90%-
tile� Max.� Avg.� Avg.|>0� Std.�

Dev.�
90%-
tile� Max.� Avg.� Avg.|>0� Std.�

Dev.�
90%-
tile� Max.�

P1� 0.377� 1.73� 0.937� 1� 24� 0.273� 1.66� 0.802� 1� 23� 0.104� 1.36� 0.407� 0� 10�

P2� 0.421� 1.9� 1.01� 2� 13� 0.28� 1.93� 0.864� 1� 12� 0.141� 1.45� 0.473� 0� 6�

P3� 0.553� 2.52� 1.51� 2� 20� 0.177� 2.34� 0.856� 0� 14� 0.376� 2.41� 1.23� 1� 20�

P4� 0.796� 2.67� 1.96� 3� 74� 0.332� 2.15� 1.1� 1� 27� 0.464� 2.33� 1.55� 1� 74�

P5� 0.304� 1.92� 0.958� 1� 22� 0.0985� 1.97� 0.601� 0� 20� 0.206� 1.71� 0.704� 1� 22�

P6� 0.27� 1.52� 0.684� 1� 10� 0.0169� 1.36� 0.181� 0� 8� 0.253� 1.52� 0.66� 1� 8�

P7� 0.47� 2.09� 1.26� 2� 55� 0.139� 1.92� 0.766� 0� 54� 0.331� 1.91� 0.967� 1� 22�

P8� 0.365� 1.96� 1.07� 1� 26� 0.196� 1.65� 0.699� 1� 14� 0.168� 1.82� 0.673� 0� 16�

P9� 0.718� 2.77� 2.41� 2� 73� 0.233� 1.72� 0.837� 1� 24� 0.484� 3.3� 2.27� 1� 73�

P10� 0.573� 2.33� 1.81� 2� 60� 0.252� 1.62� 0.766� 1� 19� 0.321� 2.53� 1.62� 1� 60�

P11� 0.454� 2.22� 1.29� 1� 37� 0.251� 2.06� 0.948� 1� 17� 0.204� 1.73� 0.728� 1� 35�

P12� 0.341� 1.99� 1.06� 1� 19� 0.201� 2.37� 0.897� 0� 17� 0.14� 1.35� 0.464� 1� 8�

P13� 0.664� 2.26� 1.47� 2� 24� 0.393� 2.33� 1.17� 1� 17� 0.272� 1.7� 0.859� 1� 24�

P14� 0.541� 2.11� 1.28� 2� 23� 0.184� 1.62� 0.677� 1� 17� 0.358� 1.98� 1.05� 1� 23�

P-Avg.� 0.489� 2.14� 1.34� 1.64� 34.3� 0.216� 1.91� 0.797� 0.643� 20.2� 0.273� 1.94� 0.975� 0.786� 28.6�

FS1� 1.49� 4.19� 4.62� 3� 181� 0.186� 1.38� 0.538� 1� 13� 1.3� 4.74� 4.56� 3� 181�

TS1� 9.98� 27.2� 41.1� 12� 1530� 0.214� 1.42� 0.574� 1� 20� 9.76� 36.4� 41.1� 11� 1530�

DS1� 3.13� 8.68� 15.9� 5� 257� 0.203� 1.95� 0.904� 1� 9� 2.93� 8.93� 15.7� 5� 256�

S-Avg.� 4.87� 13.4� 20.5� 6.67� 656� 0.201� 1.58� 0.672� 1� 14� 4.66� 16.7� 20.5� 6.33� 656�

�
�

Table 2.11: Queue Depth on Arrival.

modern storage systems, specifically modern disks, have the ability to do more elaborate
and effective [WGP94] request scheduling based on whether a request will hit in the disk
cache, and on the seek and rotational positions.

2.6 Variability in I/O Traffic over Time

When I/O traffic is smooth and uniform over time, system resources can be very ef-
ficiently utilized. However, when the I/O traffic is bursty as is the case in practice (Sec-
tion 2.5.3), resources have to be provisioned to handle the bursts so that during the periods
when the system is relatively idle, these resources will be wasted. There are several ap-
proaches to try to even out the load. The first is to aggregate multiple workloads in the
hope that the peak and idle periods in the different workloads will tend to cancel out one
another. This idea is one of the premises of the storage utilities model. Whether the aggre-
gation of multiple workloads achieves the desired effect of smoothening the load depends
on whether the workloads are dependent or correlated. We will examine the dependence
among our workloads in Section 2.6.1.

The second approach to smoothening the traffic is to try to shift the load temporally.
For instance, by deferring or offloading some work from the busy periods to the relative
lulls (e.g., write buffering and logging disk arrays [CHY00, SHCG94]) or by eagerly or
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Figure 2.9: Daily Volume of I/O Activity.

speculatively performing some work in the hope that such work will help improve perfor-
mance during the next busy period (e.g., prefetching and reorganizing data based on access
patterns as suggested in Chapter 4). The effectiveness of these attempts at time-shifting
the load to even out the traffic depends on the extent to which the traffic is autocorrelated.
We will analyze the autocorrelation of I/O traffic to determine whether they are long-range
dependent or self-similar in Section 2.6.2. In Section 2.6.3, we characterize in detail the
idle periods to help in the design of techniques that try to exploit idle resources.

2.6.1 Dependence among Workloads

In general, two processes are said to be dependent or correlated if the value a process
takes on constrains the possible values that the other process can assume. In the current
context, the process is the discretized time series of the I/O traffic generated by a given
workload. For example, in Figure 2.9, we plot the daily volume of I/O activity for FS1 and
TS1 as a function of the day of week (0 = Sunday). If the two workloads are positively
correlated, we should see the peaks in the two workloads appearing on the same day so that
if the two workloads are aggregated, the resulting workload will have higher peaks. If the
workloads are negatively correlated, the peaks of one will occur when the other workload
is relatively idle. If the workloads are independent, there should be no relation between
the volume of activity for the two workloads. When many independent workloads are
aggregated, the resulting traffic will tend to be smooth.

To more formally characterize the dependence among the workloads, we calculate
the cross-correlation. The cross correlation between two processes P(i) and Q(i) where
i=0,1,2...n-1 is defined as

rPQ =

∑

i (P (i) − P )(Q(i) − Q)
√

∑

i(P (i) − P )2
√

∑

i(Q(i) − Q)2
(2.1)
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Figure 2.10: Cross-Correlation of Volume of I/O Activity vs. Time Interval Used to Ag-
gregate Volume.

The possible values of rPQ range from -1 to 1 with -1 indicating perfect negative correlation
between the two processes, 0 indicating no correlation, and 1 indicating perfect positive
correlation. For each workload, we consider the I/O arrival process aggregated over fixed
intervals that range from one minute to a day. We synchronize the processes by the time of
day and the day of week. The results are available in Tables A.1 to A.4 in Appendix A.

To summarize the dependence among a set of workloads W , we introduce the aver-
age cross-correlation which is defined as rPQ where P ∈ W , Q ∈ W and P 6= Q.
Figure 2.10 plots the average cross-correlation for the PC workloads as a function of the
time interval used to aggregate the arrival process. The same figure also plots the average
cross-correlation among the server workloads. We find that, in general, there is little cross-
correlation among the server workloads, suggesting that aggregating them will likely help
to smooth out the traffic and enable more efficient utilization of resources. Our PC work-
loads are taken mostly from office environments with flexible working hours. Nevertheless
the cross-correlation among the PC workloads is still significant except at small time inter-
vals. This suggests that multiplexing the PC workloads will smooth out the high frequency
fluctuations in I/O traffic but some of the time-of-day effects will remain unless the PCs are
geographically distributed in different time zones. Note that the filtered workloads tend to
be less correlated but the difference is small.

2.6.2 Self-Similarity in I/O Traffic

In many situations, especially when outsourcing storage, we need rules of thumb to
estimate the I/O bandwidth requirement of a workload without having to analyze the work-
load in detail. In Section 2.5.2, we computed the access density and found that the server
workloads average about 5 I/Os or about 30 KB worth of I/O per second per GB of data.
This result can be used to provide a baseline estimate for the I/O bandwidth required by
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Figure 2.11: Distribution of I/O Traffic Averaged over Various Time Intervals.

a workload given the amount of storage it uses. To account for the variability in the I/O
traffic, Figure 2.11(a) plots the distribution of I/O traffic averaged over one-second inter-
vals and normalized to the average bandwidth over the entire trace. The figure shows that
to satisfy the bandwidth requirement for 99% of the 1-second intervals, we would need to
provision for about 15 times the long-run average bandwidth. Notice that for all the work-
loads, there is an abrupt knee in the plots just beyond 99% of the intervals. This means
that to satisfy requirements beyond 99% of the time would require disproportionately more
resources.

In analyzing the data, we notice that for many of the workloads, the distribution of I/O
traffic is relatively insensitive to the size of the interval over which the traffic is averaged.
For instance, in Figure 2.11(b), the distributions for time intervals of 0.1s, 1s, 10s, 100s for
the database server DS1 are very similar. This scale-invariant characteristic is apparent in
Figure A.4 on page 184, which shows the traffic variation over time for different time scales
for TS1 and DS1. The topmost plot shows the throughput averaged over time intervals of
0.3s. In the second plot, we zoom out by a factor of ten so that each data point is the average
traffic volume over a three-second interval. The third plot zooms out further by a factor of
ten. Observe that rescaling the time series does not smooth out the burstiness. Instead the
three plots look similar. It turns out that for these workloads, such plots look similar for
time scales ranging from tens of milliseconds to tens of seconds.

Definition of Self-Similarity

The phenomenon where a certain property of an object is preserved with respect to
scaling in space and/or time is described by self-similarity and fractals [Man82]. Let X be
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the incremental process of a process Y , i.e., X(i) = Y (i + 1) − Y (i). In this context, Y
counts the number of I/O arrivals and X(i) is the number of I/O arrivals during the ith time
interval. Y is said to be self-similar with parameter H if for all integers m,

X = m1−HX(m) (2.2)

where

X(m)(k) = (1/m)
km
∑

i=(k−1)m+1

X(i), k = 1, 2, ...

is the aggregated sequence obtained by dividing the original series into blocks of size m
and averaging over each block, and k is the index that labels each block. In this chapter, we
focus on second-order self-similarity, which means that m1−HX(m) has the same variance
and autocorrelation as X . The interested reader is referred to [Ber94] for a more detailed
treatment.

The single parameter H expresses the degree of self-similarity and is known as the
Hurst parameter. For smooth Poisson traffic, the H value is 0.5. For self-similar series,
0.5 < H < 1, and as H → 1, the degree of self-similarity increases. Mathematically,
self-similarity is manifested in several equivalent ways and different methods that examine
specific indications of self-similarity are used to estimate the Hurst parameter. Many of the
statistical methods used to estimate the Hurst parameter assume that the arrival process is
stationary. In order to avoid potential non-stationarity, we selected two one-hour periods
from each trace. The first period is chosen to be a high-traffic period, specifically one that
contains more I/O traffic than 95% of other one-hour periods in the trace. The second
period is meant to reflect a low traffic situation and is chosen to be one that contains more
I/O traffic than 30% of other one-hour periods in the trace.

The interested reader is referred to Appendix B for details about how we estimate the
degree of self-similarity for our various workloads. Here, we simply summarize the Hurst
parameter values we obtain (Table 2.12) and state the finding that for time scales ranging
from tens of milliseconds to tens and sometimes even hundreds of seconds, the I/O traffic is
well-represented by a self-similar process. Note that filtering the workloads does not affect
the self-similar nature of their I/O traffic.

Implications of Self-Similar I/O Traffic

That the I/O traffic is self-similar implies that burstiness exists over a wide range of
time scales and that attempts at evening out the traffic temporally will tend to not remove
all the variability. More specifically, the I/O system may experience concentrated periods
of congestion with associated increase in queuing time. Furthermore, resource (e.g., buffer,
channel) requirements may skyrocket at much lower levels of utilization than expected with
the commonly assumed Poisson model in which arrivals are mutually independent and are
separated by exponentially distributed intervals. This behavior should be considered when
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 P-Avg. Pf-Avg. FS1 FS2 TS1 DS1 S-Avg. Sf-Avg. 

H 0.81 0.79 0.88 0.92 0.91 0.91 0.90 0.80 
�  (KB/s) 188 91.6 108 229 227 1000 445 367 

� 2 (KB/s)2 769080 528538 122544 345964 502879 1256360 627261 528439 

 
 

Table 2.12: Hurst Parameter, Mean and Variance of the Per-Second Traffic Arrival Rate
during the High-Traffic Period.

designing storage systems, especially when multiple workloads are to be isolated so that
they can coexist peacefully in the same storage system, as is required in many storage util-
ities. Such burstiness should also be accounted for in the service level agreements (SLAs)
when outsourcing storage.

More generally, I/O traffic has been known to be bursty but describing this variability
has been difficult. The concept of self-similarity provides us with a succinct way to char-
acterize the burstiness of the traffic. We recommend that I/O traffic be characterized by a
three-tuple consisting of the mean and variance of the arrival rate and some measure of
the self-similarity of the traffic such as the Hurst parameter. The first two parameters can
be easily understood and measured. The third is more involved but can still be visually
explained. Table 2.12 summarizes these parameter values for our various workloads.

It turns out that self-similar behavior is not limited to I/O traffic or to our workloads.
Recently, file system activities [GMR+98] and I/O traffic [GS99] have been found to ex-
hibit scale-invariant burstiness. Local and wide-area network traffic may also be more
accurately modeled using statistically self-similar processes than the Poisson model (e.g.,
[LTWW94]). However, analytical modeling with self-similar inputs has not been well
developed yet. (See [PW00] for some recent results on modeling network traffic with self-
similar processes). This, coupled with the complexity of storage systems today, means that
the effect of self-similar I/O traffic has to be analyzed, for the most part, through simu-
lations. In Appendix B, we present a method that uses the parameters in Table 2.12 to
generate self-similar traffic for such simulations.

Underpinnings of Self-Similar I/O Traffic

We have seen that the I/O traffic in our workloads is self-similar but self-similarity is a
rather abstract concept. To present a more compelling case and provide further insights into
the dynamic nature of the traffic, we relate this phenomenon to some underlying physical
cause, namely the superposition of I/O from multiple processes in the system where each
process behaves as an independent source of I/O with on periods that are heavy-tailed.

A random variable, X , is said to follow a heavy-tailed distribution if

P (X > x) ∼ cx−α, as x → ∞, c > 0, 1 < α < 2. (2.3)

Such a random variable can give rise to extremely large values with non-negligible proba-
bility. The superposition of a large number of independent traffic sources with on and/or off
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Figure 2.12: Length of On/Off Periods for the Five Most I/O-Active Processes.

periods that are heavy-tailed is known to result in traffic that is self-similar1 [WTSW97].
In the current context, we consider each process in the system as an independent source of
I/O. As in [GS99], we define an off period for a process as any interval longer than 0.2s
during which the process does not generate any I/O. All other intervals are considered to
be on periods for the process. This analysis has been shown to be relatively insensitive to
the threshold value used to distinguish the on and off periods [WTSW97].

Taking logarithm on both sides of Equation 2.3, we get

log(P (X > x)) ∼ log(c) − αlog(x), as x → ∞. (2.4)

Therefore, if X is heavy-tailed, the plot of P (X > x) versus x on log-log scale should
yield a straight line with slope α for large values of x. Such log-log plots are known as
complementary cumulative distribution plots or “qq-plots” [KR96]. In Figure 2.12, we
present the qq-plots for the lengths of the on and off periods for the five processes that
generate the most I/O traffic in each of our PC workloads. Unfortunately, none of our other
workloads contain the process information that is needed for this analysis. As shown in the
figure, the on periods appear to be heavy-tailed but not the off periods. This is consistent
with results reported in [GS99] where the lack of heavy-tailed behavior for the off periods
is attributed to periodic activity such as the sync daemon traffic. Having heavy-tailed on
periods is sufficient, however, to result in self-similar aggregate traffic.

1Not Poisson; assumptions of Palm-Khintchine theorem are not satisfied.
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Figure 2.13: Distribution of Idle Period Duration. For the weighted distribution in (b), an
idle period of duration s is counted s times, i.e., it is the distribution of idle time.

2.6.3 The Relative Lulls

As discussed earlier, when the I/O load is not constant but varies over time, there may
be opportunities to use the relatively idle periods to do some useful work. The reader
is referred to [GBS+95] for an overview of idle-time processing and a general taxonomy
of idle-time detection and prediction algorithms. Here, we characterize in detail the idle
periods, focusing on specific metrics that will be helpful in designing techniques that try to
exploit idle time.

We consider an interval to be idle if the average number of I/Os per second during the
interval is less than some value k. The term idle period refers to a sequence of intervals that
are idle. The duration of an idle period is simply the product of the number of idle intervals
it contains and the interval size. In this study, we use a relatively long interval of 10 seconds
because we are interested in long idle periods during which we can perform a substantial
amount of work. Note that storage systems tend to have some periodic background activity
so that treating an interval to be idle only if it contains absolutely no I/O activity would be
far too conservative. Since disks today are capable of supporting in excess of 100 I/Os per
second, we select k to be 20 for all our workloads except DS1. DS1 contains several times
the allocated storage in the other workloads so its storage system will presumably be much
more powerful. Therefore, we use a k value of 40 for DS1.

Based on this definition of an idle interval, we find that for the PC workloads, more
than 99% of the intervals are idle. The corresponding figure for the server workloads
on average is more than 93%. Such results indicate that there are clearly a lot of idle
resources in the storage system that can potentially be put to good use. Figure 2.13 presents
the distribution of idle period duration for our workloads. We fitted standard probability
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Figure 2.14: Average Duration of Busy Periods.

distributions to the data and found that the lognormal distribution is a reasonably good fit
for most of the workloads. Notice that although most of the idle periods are short (less than
a thousand seconds), long idle periods account for most of the idle time. This is consistent
with previous results [GBS+95] and implies that a system that exploits idle time can get
most of the potential benefit by simply focusing on the long idle periods.

Inter-idle Gap

An important consideration in utilizing idle resources is the frequency with which suit-
ably long idle periods can be expected. In addition, the amount of activity that occurs
between such long idle periods determines the effectiveness and the feasibility of exploit-
ing the idle periods. For instance, a log-structured file system or array [Men95, RO92]
where garbage collection is performed periodically during system idle time may run out
of free space if there is a lot of write activity between the idle periods. In the disk block
reorganization scheme proposed in Chapter 4, the inter-idle gap, i.e., the time span between
suitably long idle periods, determines the amount of trace data that has to be accumulated
on the disk.

In Figure 2.14, we consider this issue by plotting the average inter-idle gap as a function
of the duration of the idle period. The results show that for the PC workloads on average,
idle periods lasting at least an hour are separated by busy periods of about an hour and with
just over 17,000 references. As we would expect, the server workloads have longer busy
periods separated by shorter idle periods. But in both environments, the results indicate
that there are long idle periods that occur frequently enough to be interesting for offline
optimizations such as disk block reorganization. In the server environments, we may have
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Figure 2.15: Remaining Idle Duration.

to be more meticulous about using the idle time by, for instance, dividing an offline task
into several finer-grained steps that can be scheduled whenever there is a short idle period.

Idle Length Prediction

In some cases, there is a recovery cost associated with stopping an offline task before
it is completed. Therefore, it is important to predict how long an idle period will last so
that the system can decide whether a task should be initiated. In Figure A.3 on page 184,
we plot the autocorrelation of the sequence of idle period duration at different lags. For
all our workloads, there is little correlation between the length of one idle period and the
lengths of the immediately preceding periods. In other words, how long the system will
remain idle is not predictable from the lengths of its recent idle periods. This is in stark
contrast to the strong correlation that has previously been observed for a personal Unix
workstation [GBS+95]. In that study, the idle period was taken to be an interval during
which there was no I/O activity. We conjecture that because the personal UNIX workstation
in the previous study was not heavily used, the idle periods are determined primarily by the
periodic background activity that exists in the system, hence the strong autocorrelation.

In Figure 2.15, we plot the expected future idle duration, E[I(x)], which is defined as
the expected remaining idle duration given that the system has already been idle for x units
of time. More formally,

E[I(x)] =
∞
∑

i=x+1

(i − x)l(i)

1 − L(i)
(2.5)

where l(·) is the probability distribution of the idle period duration, i.e., l(j) is the probabil-
ity that an idle period has a duration of j and L(·) is the cumulative probability distribution
of the idle period duration, i.e., L(j) =

∑j
i=1 l(i). Observe from Figure 2.15 that E[I(x)]

is generally increasing. In other words, the longer the system has been idle, the longer it
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is likely to remain idle. This phenomenon suggests prediction policies that progressively
raise the predicted remaining idle duration as the system remains idle.

To better understand how such prediction policies should be designed, we also calcu-
lated the hazard rate of the idle period duration (Figure A.5 in Appendix A). The hazard
rate is simply the likelihood that an idle period ends with a duration of at most k + r time
units given that it is already k units long. In other words, given that the system has been
idle for k units, H(k, r) is the probability that a task initiated now and requiring r units of
time will not be completed before the system becomes busy again. More formally,

H(k, r) =

r
∑

i=0

l(k + i)

1 − L(k − 1)
(2.6)

We find that the hazard rate increases with r, meaning that the chances for the task not to
be completed before the system becomes busy again increases with the length of the task,
as we would expect. In addition, the hazard rate generally declines as the length of time the
system has already been idle increases. This result again supports the idea of predicting
the remaining idle period duration by conditioning on the amount of time the system has
already been idle.

2.7 Interaction of Reads and Writes

In general, the interaction between reads and writes complicates a computer system and
throttles its performance. For instance, static data can be simply replicated to improve not
only the performance of the system but also its scalability and durability. But if the data
is being updated, the system has to ensure that the writes occur in the correct order. In
addition, it has to either propagate the results of each write to all possible replicated copies
or to invalidate these copies. The former usually makes sense if the updated data is unlikely
to be updated again but is likely to be read. The latter is useful when it is highly likely that
the data will be updated several more times before it is read. In cases where the data is
being both updated and read, replication may not be useful. The read-write composition
of the traffic, together with the flow of data from writes to reads, is therefore an extremely
important workload characteristic. This is the focus of this section.

2.7.1 Read/Write Ratio

A wide range of read/write ratio has been reported in the literature. In addition to
intrinsic workload differences, the read-to-write ratio also depends to a large extent on
how much of the reads and writes have been filtered by caching, and on the kinds of I/Os
(e.g., user data, paging, file system metadata) that are tabulated. Because main memory
is volatile, the amount of write buffering performed by the file system cache is typically
limited. For example, UNIX systems have traditionally used a policy of periodically (once
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�
Requests

Requests�Write�#

Requests�Read�# �
Traffic�����������

Written�MB

Read�MB �

Footprint

Written�Blocks�Unique�#

Read�Blocks�Unique�# �

P1� 2.51� 1.99� 1.05�

P2� 1.37� 1.79� 1.55�

P3� 0.429� 0.430� 0.563�

P4� 0.606� 0.550� 0.585�

P5� 0.338� 0.475� 1.02�

P6� 0.147� 0.231� 0.322�

P7� 0.288� 0.299� 0.399�

P8� 1.23� 1.14� 0.941�

P9� 0.925� 1.02� 1.38�

P10� 0.937� 1.41� 2.17�

P11� 0.831� 1.38� 0.787�

P12� 0.758� 0.883� 0.904�

P13� 0.566� 0.744� 1.40�

P14� 0.481� 0.710� 0.770�

P-Avg.� 0.816� 0.932� 0.988�

Pf-Avg.� 0.965� 0.607� 0.888�

FS1� 0.718� 0.633� 1.50�

TS1� 0.794� 0.740� 1.15�

DS1� 0.607� 1.24� 1.06�

S-Avg.� 0.706� 0.870� 1.24�

Sf-Avg.� 1.12� 0.843� 1.19�

�

Table 2.13: Read/Write Ratio.

every 30s) flushing the dirty blocks in the file cache to disk so as to limit the amount of data
that can potentially be lost in a system failure. In Windows NT, one quarter of the dirty data
in the file cache is written back to disk every second [Rus98]. Therefore, more of the reads
than writes are filtered by the file system cache. The file system also adds metadata writes
which may account for more than half of the physical writes (more than 72% in [RW93]
and more than 53% in our PC workloads). Thus at the logical level, the read/write ratio is
generally much higher than at the physical level.

For instance, the ratio of logical read to write traffic has been reported to be between 3.7
and 6.3 for desktop workstation workloads [RLA00], and the ratio of logical read to write
operations has been found to be between 3 and 4.5 in various office environments [RBK92].
But at the physical level, the read/write ratio has been observed to range from only about
0.4 to 1 for Novell NetWare file servers [HH95] and from about 0.7 to 0.8 for several HP-
UX systems [RW93]. These figures are comparable to the physical read/write ratio we
obtained, which are presented in Table 2.13. Observe that for the various server workloads
and the PC workloads on average, the ratio of read to write requests varies from 0.6 to
0.82, which means that writes account for about 60% of the requests. Interestingly, main-
frame data processing workloads appear to have a higher read/write ratio. For example,
measurements conducted at the physical level at 12 moderate-to-large MVS installations
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running mainly data processing applications (circa 1993) found the read/write ratio to be
about 3.5 [McN95]. Analysis of the logical I/O traffic of the production database workloads
of ten of the world’s largest corporations of about the same period found the read/write ratio
to average roughly 10 [HSY01a, HSY01b].

Observe from Table 2.13 that for the PC workloads, the read/write ratio appears to be
negatively correlated with the memory size of the system. Unfortunately, we do not have
enough data points to observe any trends for the server workloads. In Figure 2.16, we plot
the read/write ratio for the PC workloads as a function of the memory size. As shown in the
figure, the read/write ratio is approximately related to the memory size by an exponential
function of the form f(x) = aeb/x where a and b are constants. The model is limited by the
few data points we have but it predicts that with an infinitely large memory, i.e., as x → ∞,
there will be about 6 writes for every read. Such results support the prediction that almost
all reads will be absorbed by the larger buffer caches in the future so that physical I/O will
become dominated by writes [OD89]. However, that the read/write ratio remains relatively
consistent across all our workloads, which span a time period of eight years, suggests that
workload changes may have a counter effect. Also, the fact that the ratio of read footprint
to write footprint decreases, albeit slowly, with memory size, suggests that effects (e.g.,
workload differences) other than an increase in caching, could also be at work here.

If writes become increasingly dominant, a pertinent question to ponder is whether phys-
ical read performance really matters. In Figure 2.17, we plot the read and write cache miss
ratios assuming a write-back cache with the least-recently-used (LRU) cache replacement
policy. We define the miss ratio to be the fraction of requests that cannot be satisfied by
the cache but that result in a request to the underlying storage system. Observe that the
plots for the filtered workloads are simply a translation of those for the original workloads;
the behavior is qualitatively similar. In this experiment, we are in essence simulating a
second level cache. The upstream file system cache and/or the database buffer pool have
captured significant portions of any read reuse but because they are volatile, they cannot
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Figure 2.17: Miss Ratio with LRU Write-Back Cache (512-Byte Blocks).

safely cache the writes. Therefore, the writes observed at the storage level exhibit much
stronger locality than the reads. In other words, although read caching by the file system
or the database buffer can eliminate most of the reads, if writes are delayed long enough
by using non-volatile memory, write requests can similarly be very significantly reduced.
In fact, for practically all the workloads, a small cache of 1 MB eliminates more than half
the writes.

Furthermore, unlike reads which tend to be synchronous, writes can be effectively ren-
dered asynchronous through the use of write caching or buffering [Chapter 3]. In addition,
the effective latency of writes can often be reduced by writing data asynchronously or in
a log [RO92, WAP99] or by using write-ahead logging [MHL+92]. Recent results (e.g.,
[Dah95]) further suggest that because of the widening performance gap between processor
and disk-based storage, file system read response times may be dominated by disk accesses
even at very high cache hit rates. Therefore, the performance of read I/Os continues to be
very important.

2.7.2 Working Set Overlap

The working set W (t, τ) is defined as the set of blocks referenced within the last τ units
of time [Den68]. More formally,

W (t, τ) = {b : Count(b, t − τ, t) >= 1} (2.7)

where Count(b, t − τ, t) denotes the number of times block b is referenced between t − τ
and t. In Figure 2.18, we plot the average and maximum daily working set size for our
workloads. Note that we define the working set of day x as W (t=midnight of day x,
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Figure 2.18: Daily Working Set Size.

τ=1 day). To understand the interaction between reads and writes, we classify the blocks
referenced into those that are read, written, and both read and written. Specifically,

Wread(t, τ) = {b : ReadCount(b, t − τ, t) >= 1}
Wwritten(t, τ) = {b : WriteCount(b, t − τ, t) >= 1}

Wboth(t, τ) = Wread(t, τ) ∩ Wwritten(t, τ)

Observe that on average, the daily working set for the various workloads range from just
over 4% (PC workloads) to about 7% of the storage used (FS1). The size of the working
set is not constant but fluctuates day to day so that the maximum working set can be several
times larger than the average. Notice further from Figure 2.18 that the working set of blocks
that are both read and written is small, representing less than 25% of the total working set
size for all the workloads. To better understand the interaction between the blocks that
are read and those that are written, we introduce the idea of the generalized working set
W (t, τ, c) = {b : Count(b, t − τ, t) >= c}. The working set first introduced in [Den68]
is simply the special case where c = 1. Figure 2.19 presents the average daily generalized
working set size for our workloads as a function of c, the minimum number of times a
block is referenced in a day for it to be considered part of the working set. The figure
shows that for all the workloads, the relationship between the average size of the daily
generalized working set and c can be approximately described by a reciprocal function of
the form f(c) = a

cb where a and b are positive constants. That the working set decreases
sharply as c increases beyond one indicates that only a small fraction of the data stored is
in active use, suggesting that it is probably a good idea to identify the blocks that are in
use and to optimize their layout. We will consider this in detail in Chapter 4. Notice also
that the amount of data that is both actively read and updated is clearly very small. In the
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Figure 2.19: Average Daily Generalized Working Set Size.

next section, we will examine this further by looking at the dependencies between reads
and writes.

2.7.3 Read/Write Dependencies

Dependencies are generally classified into three categories – true dependencies (Read
After Write or RAW), output dependencies (Write After Write or WAW) and anti depen-
dencies (Write After Read or WAR). A RAW is said to exist between two operations if
the first operation writes a block that is later read by the second operation and there is no
intervening operation on the block. WAW and WAR are similarly defined.

In Figure 2.20, we plot the percentage of reads for which there is a write within τ
references that constitute a WAR. We refer to τ as the window size. Observe that even
for a large window size of 100,000 references, less than 25% of the reads fall into this
category for all the workloads. In other words, blocks that are read tend not to be updated
so that if disk blocks are replicated or reorganized based on their read access patterns,
write performance will not be significantly affected. Notice from Figures 2.21 and 2.22
that all the workloads contain more WAW than RAW. This implies that updated blocks
are more likely to be updated again than to be read. Therefore, if we do replicate blocks,
we should only update one of the copies and invalidate the rest rather than update all the
copies. In other words, a write-invalidate policy will work better than a write-broadcast
policy. Again, we see that the results for the filtered traces are quantitatively different from
those for the original traces but they lead to the same conclusions.

For the PC traces, we are able to match up I/O requests with the corresponding file-
name. To better understand the dependencies, we rerun the RAW and WAW analysis for
these workloads excluding references to the file system metadata and to log files, which
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Figure 2.20: Frequency of Occurrence of Write after Read (WAR).
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Figure 2.21: Frequency of Occurrence of
Read after Write (RAW).
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Figure 2.22: Frequency of Occurrence of
Write after Write (WAW).
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$bitmap, $boot, $logfile, $mftmirr and $upcase. Log references are those that access blocks
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respectively constitute about half and a quarter of all the write requests. The results are
summarized in Figure 2.23. Observe that once the metadata and log references are filtered
out, it is still the case that updated blocks are more likely to be updated again than to be
read, but less so. In other words, although metadata and log writes make it more likely for
an updated block to be updated again than to be read, they are not the only cause for this
behavior.

2.8 Conclusions

In this chapter, we empirically analyze the I/O traffic of a wide range of real workloads
with an emphasis on understanding how these workloads will respond to new storage devel-
opments such as network storage, storage utilities, and intelligent self-optimizing storage.
As part of our analysis, we also study the effect of increased upstream caching on the traf-
fic characteristics seen by the storage system and discover that it affects our analysis only
quantitatively. Our major findings include:

• Importance of I/O Innovation/Optimization

I/O is known to be a major component of server workloads and improving the I/O per-
formance for these workloads is critical. Our results suggest that if processors con-
tinue to increase in performance according to Moore’s Law, I/O is likely to also be-
come a dominant component of personal computer workloads in the next few years.
Our data show that consistently across all the workloads, writes account for about
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60% of the requests. However, just as read caching by the file system or the database
buffer can eliminate most of the reads, if writes are delayed long enough (e.g., by
using non-volatile memory), write requests can similarly be very significantly re-
duced. In fact, for practically all the workloads, a small write-back cache of 1 MB
eliminates more than half the writes. Therefore, we believe that the performance of
read I/Os is likely to continue to have a direct impact on application performance.
As part of our analysis, we reexamine Amdahl’s rule of thumb for a balanced system
and discover that our server workloads generate on the order of 0.05 bits of physical
I/O per instruction, consistent with our earlier work using the production database
workloads of some of the world’s largest corporations [HSY01a]. The figure for the
PC workloads is seven times lower at about 0.007 bits of physical I/O per instruction.
We also find that the average request size is about 8 KB.

• Burstiness of I/O Traffic

Across all the workloads, read and write I/O requests seldom occur singly but tend
to arrive in groups. We find that the write queue is very much deeper than the read
queue. Our analysis also indicates that there is little cross-correlation in traffic vol-
ume among the server workloads, suggesting that aggregating them will likely help
to smooth out the traffic and enable more efficient utilization of resources. As for
the PC workloads, multiplexing them will remove the high frequency fluctuations in
I/O traffic but some of the time-of-day effects are likely to remain unless the PCs are
geographically distributed in different time zones. In addition, our results show that
to satisfy I/O bandwidth requirements 99% of the time, we would need to provision
for 15 times the long-run average bandwidth. Going beyond 99% of the time would
require disproportionately more resources. It turns out that for time scales ranging
from tens of milliseconds to tens and sometimes even hundreds of seconds, the I/O
traffic is well-represented by a self-similar process. This implies that the I/O system
may become overwhelmed at much lower levels of utilization than expected with
the commonly assumed Poisson model. Such behavior has to be taken into account
when designing storage systems, and in the service level agreements (SLAs) when
outsourcing storage. We recommend that I/O traffic be characterized by a three-tuple
consisting of the mean and variance of the arrival rate, and the Hurst parameter.

• Potential for Harnessing “Free” Resources

We find that our PC workloads contain a lot of processor idle time for performing
background tasks, even without having to deliberately leave the computer on when
the user is away. The storage system is also relatively idle. For all the workloads, a
system that exploits idle time can get most of the potential benefit by simply focusing
on the long idle periods. In both the PC and server environments, there are idle
periods that are both long enough and that occur frequently enough to be interesting
for offline optimizations such as block reorganization. In the server environment,
we might have to be more meticulous in using the available idle time, for instance,
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by dividing an idle-time task into several finer-grained steps that can be scheduled
whenever there is a short idle period. Our results suggest that the length of an idle
period can be predicted more accurately by conditioning on the amount of time the
system has already been idle than from the lengths of the recent idle periods.

• Opportunity for Block Reorganization

In general, I/O traffic is low enough for it to be feasible to collect a daily trace of the
blocks referenced for later analysis and optimization. We discover that only a small
fraction of the data stored is in active use, suggesting that it is probably a good idea to
identify the blocks that are in use and to optimize their layout. In addition, the amount
of data that is both actively read and updated is very small. Moreover, blocks that
are read tend not to be updated so that if blocks are reorganized or replicated based
on their read access patterns, write performance will not be significantly affected.
Because updated blocks are more likely to be updated again than to be read, if blocks
are replicated, a write-invalidate policy will tend to work better than a write-broadcast
policy.
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Chapter 3

The Real Effect of I/O Optimizations
and Disk Improvements

3.1 Synopsis

Many optimization techniques have been invented to mask the slow mechanical nature
of storage devices, most importantly disks. Data on the effectiveness of these techniques
for real workloads, however, are either lacking or are not comparable. Disk technology has
also improved steadily in multiple ways but it is not clear how the various physical improve-
ments relate to the actual performance experienced by real workloads. Therefore, in this
chapter, we use an assortment of real server and personal computer workloads to system-
atically analyze the various optimization techniques and technology improvements so as to
determine their true performance impact. The techniques we study include read caching,
sequential prefetching, opportunistic prefetching, write buffering, request scheduling, strip-
ing and short-stroking. We also break down the steady improvement in disk technology into
four major basic effects, and analyze each separately to determine their actual benefit. In
addition, we examine their historical rates of improvement and use the trends to project
the effect of disk technology scaling. As part of this study, we develop a methodology for
replaying the real workloads that more accurately models the timing of I/O arrivals and that
allows the I/O rate to be more realistically scaled than previous practice.

Our results show that sequential prefetching and write buffering are the two most effec-
tive techniques for improving read and write performance respectively. For our workloads,
improvement in the mechanical components of the disk reduces the average response time
by 8% per year. Most of this improvement results from increases in the rotational speed
rather than reduction in the seek time. In addition, we discover that increases in the record-
ing density of the disk can achieve an equally sizeable improvement in real performance,
with most of the gain coming from linear density improvement, which increases the trans-
fer rate, rather than track density scaling. For a given workload, disk technology evolution
at the historical rates can be expected to increase performance by about 8% per year if the
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disk occupancy rate is kept constant. We also observe that the disk is spending most of its
time positioning the head rather than transferring data. We believe that to effectively utilize
the available disk bandwidth, blocks should be reorganized in such a way that accesses
become more sequential.

3.2 Introduction

Because of the slow mechanical nature of many storage devices, the importance of op-
timizing I/O operations has been well recognized. As a result, a plethora of optimization
techniques including caching, write buffering, prefetching, request scheduling and paral-
lel I/O have been invented. The relative effectiveness of these techniques, however, is not
clear because they have been studied in isolation by different researchers using different
methodologies. Furthermore, many of the techniques have not been evaluated with real
workloads thus their actual effect is not known. Some of the ideas have just been pro-
posed or implemented with little or no performance results published (e.g., opportunistic
prefetching). As the performance gap between the processor and disk-based storage con-
tinues to widen [Gro00, PK98], increasingly aggressive optimization of the storage system
is needed, and this requires a good understanding of the real potential of the various tech-
niques and how they work together. In this chapter, we systematically investigate how
the different I/O optimization techniques affect actual performance by using trace-driven
simulations with a large set of traces gathered from a wide range of real-world settings, in-
cluding both server and personal computer (PC) environments. To make our findings more
broadly applicable, we focus on general rules of thumb about what can be expected from
each of these techniques rather than precise quantification of improvement for a particular
workload and a specific implementation.

Tremendous efforts have also gone into improving the underlying technology of disks.
The improvement in disk technology is usually quantified by using physical metrics such
as the tracks or bits per inch, the average seek time and the rotational speed. Relating
such physical metrics to the performance delivered to real workloads is, however, difficult.
Thus it is not apparent how an improvement in one metric compares with an improvement
in another in terms of their real-world impact. Furthermore, some of the metrics are not
focused on performance but have a significant effect on it. Increasing the recording den-
sity, for example, could improve performance because if the bits are packed more closely
together, they can be accessed with a smaller physical movement. While these metrics are
considered too low-level from a systems perspective, some of them may also not be very
useful for designing disks because they compound several basic physical effects. For in-
stance, a seek could be faster because of an increase in the track density, a reduction in the
width of the data band, mechanical improvement in the disk arm actuator, etc. Therefore,
in this thesis, we break down the steady improvement in disk technology into four major
basic effects, and analyze each separately to determine their effect on real workloads. In



47

addition, we examine their historical rates of improvement and use the trends to project the
actual performance improvement that can be expected from disk technology scaling.

In the previous chapter, we analyzed in detail the characteristics of the various work-
loads we use, specifically, (1) the I/O intensity of the workloads and the overall significance
of I/O in the workloads, (2) how the I/O load varies over time and how it will behave when
aggregated, and (3) the interaction of reads and writes and how it affects performance.
Although this chapter is self-contained, readers are encouraged to also read the preceding
chapter to better understand the workloads on which this analysis is based. The insights
gained from the current study motivated the idea of Automatic Locality-Improving Storage
(ALIS), which is a storage system that continually monitors the way it is accessed and then
automatically reorganizes selected disk blocks so that accesses become effectively more se-
quential [Chapter 4]. In fact, the results we derive here serve as the baseline for the analysis
of ALIS in the next chapter. Therefore, this chapter has an emphasis on the optimizations
that directly affect ALIS, in particular, the prefetching.

The rest of this chapter is organized as follows. Section 3.3 contains a brief overview
of previous work in evaluating I/O optimization techniques. Section 3.4 discusses our
methodology and describes the traces that we use. In Section 3.5, we analyze the effect
of the various optimization techniques. In Section 3.6, we consider the real impact of disk
technology improvement over time. Section 3.7 concludes this chapter. Because of the
huge amount of data that is involved in this study, we can only present a characteristic
cross-section in the main text. More detailed graphs and data are presented in Appendix C.
Note that figures and tables in the appendix are identified by a prefix C.

3.3 Related Work

The various I/O optimization techniques have been individually evaluated by differ-
ent researchers using dissimilar methodologies including discrete event simulation and
analytical modeling. In some cases, the simulations are based on traces of real work-
loads and in others, randomly generated synthetic workloads are used. For instance, disk
caching is extensively analyzed in [Smi85, ZS97], prefetching in [GA94, Smi78], write
buffering in [BRT93, VJ98], request scheduling in [JW91, SCO90, WGP94] and striping
in [CL95, CLG+94]. At the logical level, caching, prefetching and write buffering are well
covered in [HSY01b, NWO88]. Several researchers have also explored ways to improve
the various techniques in special situations where the reference pattern is known ahead of
time (e.g., [PGG+95]). Because of the importance of improving I/O performance, there has
been a lot of research on I/O optimization techniques. We mention only some of the more
recent work. The reader is referred to [Smi81] for a comprehensive survey of early work
on I/O optimization.
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3.4 Methodology

The methodology used in this chapter is trace-driven simulation [Smi94, UM97]. In
trace-driven simulation, relevant information about a system is collected while the system
is handling the workload of interest. This is referred to as tracing the system and is usually
achieved by using hardware probes or by instrumenting the software. In the second phase,
the resulting trace of the system is played back to drive a model of the system under study.
Trace-driven simulation is thus a form of event-driven simulation where the events are
taken from a real system operating under conditions similar to the ones being simulated. A
common difficulty in using trace-driven simulations to study I/O systems is to realistically
model timing effects, specifically to account for events that occur faster or slower in the
simulated system than in the original system. This difficulty arises because information
about how the arrival of subsequent I/Os depend upon the completion of previous requests
cannot be easily extracted from a system and recorded in the traces.

3.4.1 Modeling Timing Effects

In general, simulation models used for evaluating storage system performance can be
broadly classified into open and closed models, depending on how request arrivals are
choreographed. The closed model traditionally maintains a constant population of out-
standing requests. Whenever a request is completed, a new request is issued in its place,
sometimes after a simulated “think” time. These models essentially assume that all the
I/Os are time-critical [Gan95] so that a new I/O is issued only after a previous request is
completed. By maintaining a constant population of outstanding requests, these models
effectively smooth out any burstiness in the I/O traffic. Such an approach is clearly not rep-
resentative of real workloads, which have been shown in several studies (e.g., Chapter 2) to
have bursty I/O traffic patterns.

In the open model, requests arrive at predetermined times (e.g., traced time in [RW91]
and traced inter-arrival time scaled by a constant factor in [WGP94]), independent of the
performance of the storage system. Such models assume that the workload consists ex-
clusively of time-noncritical requests [Gan95] so that whether a preceding request is com-
pleted has no bearing on when the system is able to issue subsequent I/Os. Again, this
is clearly not true in real systems where an overloaded storage system, by being slow,
automatically exerts back pressure on the processes generating the I/Os. For example, 66-
91% of the I/Os are flagged as synchronous in PC workloads [Chapter 2] and 52-74% in
UNIX workloads [RW93]. In other words, the system generally has to wait for I/Os to be
completed before it can continue with subsequent processing. Such data highlights the im-
portance of accounting for the feedback effect between request completion and subsequent
request issuance. From a practical perspective, having a feedback mechanism also ensures
that the number of outstanding requests will not grow without bound whenever the storage
system is unable to handle the incoming workload.
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Modeling the feedback effect and thereby limiting the number of outstanding requests
is especially helpful in this study because we have a diverse set of workloads collected over
the span of several years, and a wide range of experiments in which the performance of the
storage system is significantly varied. Some of our experiments evaluate techniques that
are opportunistic, i.e., they take advantage of idle time. Therefore, we have to account for
the burstiness seen in real I/O traffic. With these requirements in mind, we came up with
a methodology that is designed to incorporate feedback between request completion and
subsequent I/O arrivals, and model burstiness.

Results in Chapter 2 show that there is effectively little multiprocessing in PC work-
loads and that most of the I/Os are synchronous. Such predominantly single-process work-
loads can be modeled by assuming that after completing an I/O, the system has to do some
processing and the user, some “thinking”, before the next set of I/Os can be issued. The
“think” time between the completion of a request and the issuance of its dependent requests
can be adjusted to speed up or slow down the workload. In short, we consider a request to
be dependent on the last completed request, and we issue a request only after its parent re-
quest has completed. For multiprocessing workloads, this dependence relationship should
be maintained on a per process basis but unfortunately process information is typically not
available in I/O traces. Therefore, in order to account for multiprocessing workloads, we
merge multiple traces to form a workload with several independent streams of I/O, each
obeying the dependence relationship described above.

In essence, we have built an out-of-order multiple issue machine that tries to preserve
the dependency structure between I/O requests. We maintain an issue window of 64 re-
quests. A request within this window is issued when the request on which it is dependent
completes and the think time has elapsed. Inferring the dependencies based on the last
completed request is the best we can do given the block level traces we have. If the work-
loads were completely described using logical and higher-level system events (e.g., system
calls and interrupts), we might be able to more accurately model feedback effects using a
system-level model (e.g., [Gan95]). In the limit, we can run the workloads on a system
simulator where we have control over the timing of events [RHWG95] or on a virtual ma-
chine [CFH+80] or on a real system with a timing-accurate storage emulator [GSS+02].
However, getting real users to release traces of reference address is difficult enough. Ask-
ing them for logical data about their computer operations is next to impossible. Moreover,
“capturing” a workload so that it can be realistically replayed may be relatively easy for
batch jobs but it is very difficult for interactive workloads. We essentially end up with
the same problem of having to decide what happens when the system reacts faster. For
instance, will the user click the mouse earlier?

3.4.2 Workloads and Traces

The traces analyzed in this study are primarily those characterized in Chapter 2. We do
not include FS2 in the analysis here since it does not contain the addresses of individual
I/Os. Most of the traces were gathered over periods of several months but to keep the
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simulation time manageable, we use only the first 45 days of the traces of which the first
20 days are used to warm up the simulator. For the DS1 trace, which is only seven days
long, we use the first three days to warm up our simulator.

In addition to the base workloads as recorded in the traces, we scale up the traces to
obtain workloads that are more intense. Results reported in the previous chapter show that
for the PC workloads, the processor utilization during the intervals between the issuance of
an I/O and the last I/O completion is related to the length of the interval by a function of the
form f(x) = 1/(ax + b) where a = 0.0857 and b = 0.0105. To model a processor that is n
times faster than was in the traced system, we would scale only the system processing time
by n, leaving the user portion of the think time unchanged. Specifically, we would replace
an interval of length x by one of length x[1 − f(x) + f(x)/n]. In this thesis, we run each
workload preserving the original think time. For the PC workloads, we also evaluate what
happens in the limit when systems are infinitely fast, i.e., we replace an interval of length
x by one of x[1 − f(x)]. We denote these sped-up PC workloads as P1s, P2s, ..., P14s and
the arithmetic mean of their results as Ps-Avg.

We also merge ten of the longest PC traces to obtain a workload with ten independent
streams of I/O, each of which obeys the dependence relationship discussed above. We
refer to this merged trace as Pm. The volume of I/O traffic in this merged PC workload is
similar to that of a server supporting multiple PCs. Its locality characteristics are, however,
different because there is no sharing of data among the different users so that if two users
are both using the same application, they end up using different copies of the application.
Pm might be construed as the workload of a system on which multiple independent PC
workloads are consolidated. For the server workloads, we merge the FS1 and TS1 traces to
obtain Sm. Note that neither method for scaling up the workloads is perfect but we believe
that they are more realistic than simply scaling the inter-arrival time, as is commonly done.
In this thesis, we often use the term PC workloads to refer collectively to the base PC
workloads, the sped-up PC workloads and the merged PC workload. The term server
workloads likewise refers to the base server workloads and the merged server workload.

3.4.3 Simulation Model

The major components of our simulation model are presented in Figure 3.1. In practice,
optimizations such as caching, prefetching, write buffering, request scheduling and striping
may be performed at multiple levels in the storage system. For instance, there may be
several storage controllers, storage adaptors and disk drives, and they may all perform
some of the optimizations to some extent. The number of combinations of who does what
and to what extent is large, and the interaction between the optimizations performed at the
various levels is complicated and obscure. In order to gain fundamental insights into the
effectiveness of each of the optimizations, we collapse the different levels and model each
of the optimizations at most once.

For instance, we model only a single level of cache instead of a disk cache, an adaptor
cache, a controller cache, etc. This approach does not expose the interference that occurs
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Read 
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(LRU) replacement. 

1% of storage used, Least-
Recently-Used (LRU) replacement. 

Prefetching 
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0.8, Least-Recently-Written (LRW) 
replacement, 30s age limit. 

0.1% of storage used, lowMark = 
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Recently-Written (LRW) 
replacement, 1 hour age limit. 

Request 
Scheduling 

Shortest Access Time First with 
age factor = 0.01 (ASATF(0.01)), 
queue depth of 8. 

Shortest Access Time First with 
age factor = 0.01 (ASATF(0.01)), 
queue depth of 8. 

Striping Stripe unit of 2MB. Stripe unit of 2MB. 

 

Figure 3.1: Block Diagram of Simulation Model Showing the Base Configurations and
Default Parameters Used to Evaluate the Various I/O Optimization Techniques and Disk
Improvements. The parameters pertaining to each technique will be described in detail in
Section 3.5.

when the different levels in the storage stack are all trying to do some of the same optimiza-
tions. But cutting down on the interference is the only way we can look at the real effect
of each of the optimizations. The interference is interesting but is beyond the scope of the
current thesis. Furthermore, a well-designed system will have a level at which a particular
technique dominates. For instance, for caching, the adaptor cache should be bigger than
the disk cache so that its effect dominates. For other techniques such as request scheduling,
there is a level where it can best be implemented. Throughout the chapter, we discuss such
issues and how we handle them in our simulator.

Even though we simulate only a single instance of each of the optimization techniques,
there are many parameters for each technique and their combination makes for a huge
design space. In order to systematically examine the effect of each technique, we pick
two reasonable base configurations and perturb them in one dimension at a time. The
default parameters used in these base configurations are summarized in Figure 3.1. As we
study each technique individually, the relevant parameters will be analyzed and described
in detail. As its name suggests, the resource-rich configuration is meant to represent an
environment in which resources in the storage system are plentiful, as may be the case when
there is a large outboard controller. The resource-poor environment is supposed to mimic
a situation where the storage system consists of only disks and low-end disk adaptors.

Our simulator is written in C++ using the CSIM simulation library [Mes94]. It is
based upon a detailed model of the mechanical components of the IBM Ultrastar 73LZX
[IBM01b] family of disks that is used in disk development and that has been validated
against test measurements obtained on several batches of the disk. The level of detail in
this model is similar to that in the publicly available DiskSim package [GWP99]. However,
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Figure 3.2: Seek Profile for the IBM Ultrastar 73LZX Family of Disks.

instead of using the same seek profile for reads and writes and accounting for the differ-
ence by a constant write settling delay, we use separate read and write seek curves to more
accurately model the disk. As shown in Figure 3.2, the seek curves for this disk can be
approximated by a power function for seeks of less than 5000 tracks and a linear function
for longer seeks.

The IBM Ultrastar 73LZX family of 10K RPM disks was introduced in early 2001
and consists of four members with storage capacities of 9.1 GB, 18.3 GB, 36.7 GB and
73.4 GB. The performance characteristics of each is almost identical, with the difference
in capacity coming from the number of platters. The higher-capacity disk should have a
longer seek time because of the increased inertia of the disk arm but the effect is small. The
average seek time is specified to be 4.9 ms and the data rate varies from 29 MB/s at the
inner edge to 57 MB/s at the outer edge. The track density for this series of disks is 27,000
tracks per inch while the linear density is as high as 480,000 bits per inch. The tracks range
in size from 160KB to 340KB. More details about the specifications of this family of disks
can be found in [IBM01b]. In order to understand the effect of disk technology evolution,
in the later part of this chapter, we scale these disk characteristics according to technology
trends which we derive by analyzing the specifications of disks introduced in the last ten
years.

For workloads with multiple disk volumes, we concatenate the volumes to create a
single address space. In the base configurations, each workload is fitted to the smallest
disk from the IBM Ultrastar 73LZX family that is bigger than the total volume size. We
leave a headroom of 20% because the results presented here are part of a larger study that
examines replicating up to 20% of the disk blocks and laying them out in a specially set
aside area of the disk [Chapter 4]. When we study parallel I/O, we will look at the effect of
striping the data across multiple disks. Note that we have a separate read cache and write
buffer to allow us to adjust the size of each independently. Results in Chapter 2 show that
there is not a lot of interaction between the reads and the writes.
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3.4.4 Performance Metrics

I/O performance can generally be measured at different levels in the storage hierarchy.
In order to quantify the effect of a wide variety of storage optimization techniques, we
measure performance from when requests are issued to the storage system, before they are
potentially broken up by the volume manager for requests that span multiple disks. The
two important metrics in I/O performance are response time and throughput. Response
time includes both the time needed to service the request and the time spent waiting or
queueing for service. Throughput is the maximum number of I/Os that can be handled per
second by the system. Quantifying the throughput is generally difficult with trace-driven
simulation because the workload, as recorded in the trace, is constant. We can try to scale
or speed up the workload to determine the maximum workload the system can sustain but
this is difficult to achieve in a realistic manner.

In this thesis, we estimate the throughput by considering the amount of critical resource
each I/O consumes. Specifically, we look at the average amount of time the disk arm is
busy per request, deeming the disk arm to be busy both when it is being moved into posi-
tion to service a request and when it has to be kept in position to transfer data. We refer
to this metric as the service time. Throughput can be approximated by taking the recipro-
cal of the average service time. One thing to bear in mind is that there are opportunistic
techniques, especially for reads (e.g., preemptible read-ahead), that can be used to improve
performance. The service time does not include the otherwise idle time that the oppor-
tunistic techniques exploit. Thus the service time of a lightly loaded disk will tend to be
optimistic of its maximum throughput.

To gain insight into the workings of the different optimization techniques, we also ex-
amine the effective miss ratio of the read cache and the write buffer. The miss ratio is
generally defined as the fraction of I/O requests that are not satisfied by the cache or buffer,
or in other words, the fraction of requests that requires physical I/O. In order to make our
results more useful for subsequent mathematical analyses and modeling by others, we fit-
ted our data to various functional forms through non-linear regression, which we solved by
using the Levenberg-Marquardt method [PFTV90].

3.5 Effect of I/O Optimizations

3.5.1 Read Caching

Caching is a general technique for improving performance by temporarily holding in
a faster memory data items that are (believed to be) likely to be used. The faster memory
is called the cache. In the context of this thesis, the data items are disk blocks requested
from the storage system, and the faster memory refers to dynamic random access memory
(DRAM). The fraction of requests satisfied by the cache is commonly called the hit ratio.
The fraction of requests that have to be handled by the underlying storage system is referred
to as the miss ratio. The data items can be entered into the cache when they are demand
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Figure 3.3: Effectiveness of Read Caching at Reducing Physical Reads.

fetched or when it is anticipated that they will likely be referenced soon. Caching usually
refers only to the former. The latter is generally called prefetching and will be studied in
detail in the next section. Note that to focus on the effect of caching, we disable prefetch-
ing. This is an exception to our general approach of perturbing, at any one time, only the
parameters for one technique from their default values listed in Figure 3.1.

Figure 3.3 shows the effectiveness of read caching at reducing physical reads. We use
the Least-Recently-Used (LRU) replacement policy since variations of it are commonly
used throughout computer systems. Notice from Figure 3.3(a) that the cache is not very
useful for sizes up to 32 MB. This is expected because we are looking at the physical
reference stream, which has been filtered by the caching going on upstream in the host
system. Today, it is common even for PC systems to have more than 100 MB of main
memory, most of which can be used for file caching. Yet most disks have only 2-4 MB of
cache with some offering an 8 MB option. Our results suggest that at such sizes, the disk
cache is not very effective. It serves primarily as a buffer for prefetching. In Figure 3.4(a),
we present the cache miss ratio when data is prefetched into the cache using the default
parameters for the resource-poor environment. Notice that with prefetching, more than
50% of the reads can be satisfied by a 4 MB cache. Increasing the cache beyond 4 MB to
32 MB achieves only diminishing returns.

Note that if the cache is large enough to hold all the blocks that will be referenced again,
the performance will obviously be very good. However, we will need a huge cache because
from Figures 3.3(b) and 3.4(b), the miss ratio, even with prefetch, continues to improve at
cache sizes that are beyond 4% of the storage used (allocated). In practice, there is a limit to
the size of the cache. For instance, physical constraints such as addressing and packaging
limitations place an upper limit on the amount of DRAM that can be installed in a system.
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Figure 3.4: Sensitivity to Cache Size when Data is Prefetched into the Cache.

Economics also constrains the size of the cache. The cost per GB for DRAM is currently
about 50 times higher than for disk storage. This means that a cache that is 1% of the
storage space, and that does nothing but helps to mask the poor performance of the disks,
will cost as much as half the disk storage. Today, most enterprise class storage controllers,
when fully loaded, have cache sizes that are in the range of 0.05% to 0.2% of the storage
space [EMC01, Hit02, IBM00]. In this study, we set the cache size aggressively to 1% of
the storage used in the resource-rich environment and 8 MB per disk in the resource-poor
environment.

In order to establish a rule of thumb relating the read miss ratio to the size of the cache,
we took the average of the five plots in Figure 3.3(b) and fitted various functional forms
to it. As shown in the figure, a good fit is obtained with a power function of the form
f(x) = a(x − b)c where a, b and c are constants. This relationship based on the physical
I/O stream turns out to be functionally similar to what has been found at the logical level for
large database systems [HSY01b]. However, at the logical level, the c value is about -0.5,
half of the -1 in our case. This means that the physical read miss ratio for our workloads
improves faster with increase in the cache size than is the case at the logical level for large
database systems. Such results suggest that caching can be effective at the physical level
provided that the cache is large enough. When data is prefetched into the cache, the c value,
at about -1.3, is even lower (Figure 3.4(b)), meaning that the read miss ratio improves even
faster as the cache size is increased.

In Table 3.1, we summarize the effectiveness of read caching at improving perfor-
mance. Throughout this thesis, we define improvement as (valueold − valuenew)/valueold

if a smaller value is better and (valuenew − valueold)/valueold otherwise. Note that some
amount of cache memory is needed as a speed matching buffer between the disk media and
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Table 3.1: Performance with Read Caching.

the disk interface with the host. In other words, we need to configure our simulator with
some small but non-zero amount of cache memory. Therefore, the improvement reported
in Table 3.1 is relative to the performance with a small 512 KB cache. As discussed earlier,
in the resource-poor environment, caching is relatively ineffective, achieving only about
6% improvement in average read response time and about 4% in average read service time.
In the resource-rich environment, the improvement ranges from about 20% in the base PC
workloads to more than 50% for the merged workloads.

Note that these numbers are for a cache block size of 4 KB. The sector or smallest
addressable unit in most disks and storage controllers today is 512 B. Managing the caches
at such a small granularity of 512 B requires a lot of control blocks, one for each cache
block, many of which may have to be updated for a single operation. To reduce the number
of control blocks needed, a cache block that is many times larger than the sector can be
used together with a bit array in each control block to indicate whether a sector within the
block is present in the cache. This is similar to the sector cache approach in processor
cache. However, a larger cache block generally reduces cache effectiveness because of
internal fragmentation. Additionally, the replacement information may not be as accurate
because it is maintained at a coarser granularity. In Figure 3.5, we evaluate the impact of
using a large cache block on the effectiveness of the cache. Observe that a cache block size
of 4 KB is reasonable for our workloads. We will use this block size for the rest of the
chapter. Note that the cache block size is the unit of cache management. It is independent
of the fetch or transfer size, which we will analyze in the following section.

3.5.2 Prefetching

Prefetching is the technique of predicting blocks that are likely to be used in the future
and fetching them before they are actually needed. The overall effectiveness of prefetching
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Figure 3.5: Sensitivity to Cache Block Size.

at improving performance hinges on (1) the accuracy of the prediction, (2) the amount of
extra resources that are consumed by the prefetch, and (3) the timeliness of the prefetch,
i.e., whether the prefetch is completed before the blocks are actually needed.

The prediction is usually based on past access patterns [Smi78, HSY01b] although in
certain situations, system-generated plans [TG84, HCL+90], user-disclosed hints [PGG+95]
and guidance from speculative execution [CG99] may be available to help with the predic-
tion. In general, the prediction is not perfect so that prefetching consumes more resources
than demand fetching. Specifically, it congests the I/O system and may pollute memory
with unused pages. Memory pollution is the loading of pages which are not referenced and
the displacement of pages that will be referenced. However, for many storage devices, par-
ticularly disk drives, a large sequential access is much more efficient than multiple small
random accesses. For such devices, prefetching of sequential pages has the potential to
increase I/O efficiency by transforming several small block I/Os into one large block I/O,
which can be more efficiently handled by the I/O device. Moreover, most workloads exhibit
sequentiality in their I/O access patterns so that sequential prefetch, especially if performed
on a cache miss, scores well on all three criteria (prediction accuracy, cost, timeliness) listed
above. Therefore, practically all storage systems today implement some form of sequential
prefetch on cache miss. We will focus on such prefetch in this chapter. By default, we
assume that data is prefetched into the cache as if it is demand fetched. The prefetched
data can also be placed in a separate buffer or be managed in the cache differently than
demand fetched data. The interested reader is referred to [HSY01b] for an evaluation of
such alternatives.

Recently, several researchers have proposed schemes for automatically matching up
access patterns with previously observed contexts, and then prefetching according to the
previously recorded reference patterns (e.g., [GA94]). Such prefetching schemes should
score well in the accuracy criteria but because they incur additional random I/Os, which
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are slow and inefficient, to perform the prefetch, they may not do as well in the cost and
timeliness criteria. We will look at an alternative to context-based prefetch in the following
chapter.

Large Fetch Unit

Sequential prefetch can be achieved relatively easily by using a large fetch unit or trans-
fer size. For example, if the fetch unit is 64 sectors or blocks, a read request for blocks
60-68 will cause blocks 0-127 to be fetched. Notice that besides prefetching the blocks im-
mediately following the requested data, a large fetch unit effectively results in the prefetch
of some of the preceding blocks. Because these preceding blocks are fetched before the re-
quested data to avoid having to wait for the preceding blocks to rotate under the disk head
in the next revolution of the disk, there is a response time penalty for having a large fetch
unit. Furthermore, we assume that the read is not considered complete until the entire fetch
unit has been returned, although this could be avoided at the cost of taking an interrupt after
the last target sector has arrived or by issuing a separate I/O to fetch the following blocks.
We consider such techniques under read-ahead below. Note that using a large fetch unit is
sometimes referred to as having a large block size.

In Figure 3.6, we plot the effect of having a large fetch unit on the read miss ratio and
the average read response time. Observe that a large fetch unit significantly reduces the
read miss ratio, with most of the effect occurring at fetch units that are smaller than about
64 KB. As the fetch unit is increased beyond 64 KB, the average read response time starts
to rise because the penalty of having to wait for the entire fetch unit begins to outweigh the
benefit of the relatively small marginal improvement in read miss ratio. Previously, a one-
track fetch unit was recommended [Smi85] but since then physical track sizes have grown
from the 10 KB range to about 512 KB today. The ability of workloads to effectively use
larger fetch units have not, however, kept pace. For all our workloads, a relatively small
fetch unit of 64 KB or 1

8
of a track works well.

Read-Ahead

In read-ahead, after the system has fetched the blocks needed to satisfy a read request,
it continues to read the blocks following, i.e., it reads ahead of the current request, hence its
name. We consider the read request to be completed once all the requested blocks have been
fetched. This typically means that two start I/Os are issued – one for the requested blocks
and another to read ahead and prefetch data. In Figure 3.7, we explore the performance
effect of reading ahead by various amounts. Observe from the figure that read-ahead of
32 KB performs well for all our workloads. Beyond 32 KB, the read response time begins
to rise slightly for some of the workloads because the read-ahead is holding up subsequent
demand requests, and the marginal improvement in read miss ratio at such large read-ahead
amounts is not enough to overcome the effect of this delay. Later in this section, we will
look at preempting the read-ahead whenever a demand request arrives.
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Figure 3.6: Effect of Large Fetch Unit on Read Miss Ratio and Response Time.
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Figure 3.7: Effect of Read-Ahead on Read Miss Ratio and Response Time.
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Table 3.2: Performance Improvement with Prefetching.

In Table 3.2, we summarize the performance improvement of the different prefetching
schemes. Observe that a large fetch unit tends to reduce the read miss ratio more than read-
ahead does. It also has a slight advantage in read service time for the PC workloads. This is
because the PC workloads tend to exhibit spatial locality and not just sequentiality. In other
words, blocks that are near, not just those following, blocks that have been recently refer-
enced are likely to be accessed in the near future. Thus a large fetch unit, by causing the
blocks around the requested data to be prefetched, can achieve a higher hit ratio. However,
because large fetch unit fetches the surrounding blocks before returning from servicing a
request, it performs worse than read-ahead in terms of response time, especially for the
server workloads.

Conditional Sequential Prefetch

To reduce resource wastage due to unnecessary prefetch, sequential prefetch can be
initiated only when the access pattern is likely to be sequential. Generally, the amount of
resources committed to prefetching should increase with the likelihood that the prediction
is correct. For instance, previous studies [Smi78, HSY01b] have shown the benefit of
determining the prefetch amount by conditioning on the length of the run or sequential
pattern observed thus far. We refer to such schemes as conditional sequential prefetch. In
order to condition on the run length, we need to be able to discover the sequential runs
in the reference stream. This is generally difficult because of the complex interleaving of
references from different processes. In this chapter, we use a general sequential detection
scheme patterned after that proposed in [HSY01b].

The sequential detector keeps track of references at the granularity of multiple sectors
or blocks, a unit we refer to as the segment. A segment is considered to be referenced if any
page within that segment is referenced. By detecting sequentiality in segment references,
we can very effectively capture pseudo-sequential reference patterns. The sequential detec-
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Figure 3.8: Read Response Time with Conditional Prefetch (Resource-Rich).

tor maintains a directory of segments using LRU replacement. Each entry in the segment
directory has a run counter that tracks the length of the run ending at that segment. On a
read, if the corresponding segment is not already in the segment directory, we insert it. The
run counter value of the new segment entry is set to one if the preceding segment is not
in the directory, and to one plus the counter value of the preceding segment otherwise. In
the latter case, we remove the entry corresponding to the preceding segment. Note that the
segment directory tracks sequential patterns in the actual reference stream. It is therefore
updated only when read requests are encountered and not when blocks are prefetched. On
a read miss, if the run counter for the segment exceeds a threshold known as the prefetch
trigger, we initiate sequential prefetch. In this chapter, the prefetch amount is set to 2*(run
counter value)*segment size, subject to a maximum of 256 KB. The size of the segment
directory governs the number of potential sequential or pseudo-sequential streams that can
be tracked by the sequential detector. We use a generous 64 entries for all our simulations.

In Figures 3.8, 3.9, C.2 and C.3, we explore the performance sensitivity to the segment
size and the prefetch trigger. As we would expect, lower settings for the prefetch trigger
perform better because the cost of fetching additional blocks once the disk head is properly
positioned is minuscule compared to the cost of a random I/O that might have to be per-
formed later if the blocks are not prefetched. For all the workloads, the best performance is
obtained with a prefetch trigger of one, meaning that prefetch is triggered on every cache
miss. A segment size of 16 KB works well for the PC workloads. For the server workloads,
the optimal segment size is 8 KB.

In a similar fashion, we can additionally prefetch preceding blocks when a backward
sequential pattern is detected. To prevent having to wait a disk revolution for the preceding
blocks to appear under the disk head, we fetch the preceding blocks before the requested
blocks. As shown in Figures C.4 and C.5, except for a slight performance improvement in
some of the PC workloads, backward conditional prefetch turns out not to be very useful.
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Figure 3.9: Read Miss Ratio with Conditional Prefetch (Resource-Rich).

In Table 3.2, we compare the performance of conditional sequential prefetch to that of
large fetch unit and read-ahead. The three schemes achieve roughly the same average read
response time for the PC workloads, reducing it by over 30%. For the server workloads,
conditional sequential prefetch is clearly superior, improving the average read response
time by between 36% and 54%. As for read service time, the PC workloads are improved
by between 30 and 40% with large fetch unit having an edge. For the server workloads, con-
ditional sequential prefetch again reigns supreme with improvement of between 29% and
50%. In the resource-poor environment, about 40-60% of the reads remain after caching
and prefetching. In the resource-rich environment, about 25-45% remain.

Opportunistic Prefetch

Another way to reduce the potential negative impact of prefetch is to perform the
prefetch using only resources that would otherwise be idle or wasted. We refer to this
as opportunistic prefetch. In general, opportunistic prefetch can best be performed close to
the physical device where detailed information is available about the critical physical re-
sources. The net effect of prefetching, however, should be somewhat independent of which
layer in the storage stack the data is prefetched into because the cost of a disk access is much
higher than that of a semiconductor memory access. One exception is that data prefetched
into the disk cache will tend to be evicted sooner, sometimes even before they are used,
because the disk cache is typically smaller than the adaptor/controller cache. Therefore,
in the resource-rich environment, we place opportunistically prefetched data into an 8 MB
prefetch buffer. The prefetch buffer turns out to significantly reduce pollution of the large
cache in the resource-rich environment.

The simplest form of opportunistic prefetch is to read-ahead until a demand request
arrives at which point the read-ahead is terminated. This is known as preemptible read-
ahead. Preemptible read-ahead may not be practical high up in the storage stack. For
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Table 3.3: Additional Effect of Opportunistic Prefetch (Resource-Poor).

example, read-ahead by the disk is usually preemptible. But at the adaptor/controller level,
once the request is issued to the disk, it is difficult to cancel. By terminating the read-
ahead as soon as another demand request arrives, preemptible read-ahead avoids holding
up subsequent requests. Thus its performance does not degrade as the maximum read-ahead
amount is increased (Figure 3.10). However, preemptible read-ahead tends not to perform
as well as non-preemptible read-ahead, especially for the sped-up workloads, because it
may get preempted before it can perform any effective prefetch. Such results suggest a
hybrid approach of performing preemptible read-ahead in addition to the non-opportunistic
prefetching schemes discussed above. We find that with the hybrid approach, an oppor-
tunistic prefetch limit of 128 KB works well in almost all the cases (Figures C.7 - C.12).
This is the value that we will assume for the rest of the chapter. An opportunistic prefetch
limit of 128 KB means that blocks will only be opportunistically prefetched until a total of
128 KB of data has been prefetched.

In Tables 3.3 and 3.4, we summarize the performance impact of augmenting the various
non-opportunistic prefetching schemes with preemptible read-ahead. Notice that in the
resource-poor environment, preemptible read-ahead improves average read response time
by about 5% for large fetch unit and read-ahead. The improvement is less for conditional
sequential prefetch because conditional sequential prefetch already uses resources carefully
by determining the amount to prefetch based on how likely the prefetch will be useful. In
the resource-rich environment, preemptible read-ahead has a bigger effect, especially for
the server workloads which are improved by about 15-20%.
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Figure 3.10: Effect of Preemptible Read-Ahead on Read Miss Ratio and Response Time.
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Sm 1.97 13.0 1.42 24.1 1.33 22.4 1.38 20.0 1.01 34.4 0.94 33.3 0.242 14.9 0.204 28.1 0.194 25.1 

 
                                                           
i LFU: Large fetch unit, RA: Read-Ahead, CSP: Conditional sequential prefetch 
ii Improvement  over non-opportunistic prefetch ([original value – new value]/[original value]). 
iii Preemptible Read-Ahead + Read Any Free Blocks. 
iv Preemptible Read-Ahead + Read Any Free Blocks + Just-in-Time Seek. 

Table 3.4: Additional Effect of Opportunistic Prefetch (Resource-Rich).

Another opportunistic prefetching technique is to start reading once the disk head is
positioned over the correct track. This may prefetch some blocks before the requested
data and/or some blocks after, depending on when the head is properly positioned. Such
a scheme is known as read any free blocks or zero latency read. Basically, it uses the
rotational delay to perform some prefetching for free. As shown in Tables 3.3 and 3.4,
read any free blocks is quite effective at improving performance. In the resource-poor
environment, read any free block with preemptible read-ahead is able to reduce the average
read response time with read-ahead by about 20% for the PC workloads and over 10%
for the server workloads. In the resource-rich environment, the additional improvement is
over 20% for all the workloads. Again, conditional sequential prefetch is improved less
because it performs large prefetches only when they are warranted. As for large fetch unit,
it is improved the least by read any free blocks because it already prefetches some of the
preceding blocks.

The dual of read any free blocks is just-in-time seek or delayed preemption [GW02].
The idea here is that when a request arrives while the disk is performing preemptible read-
ahead, the disk should continue with the read-ahead and move the head to service the
incoming request only in time for the head to be positioned over the correct track before
the requested data rotates under. Basically, this allows the disk to prefetch more of the suc-
ceeding blocks. As shown in Tables 3.3 and 3.4, for large fetch unit, the additional use of
just-in-time seek improves performance slightly over performing only read any free blocks
and preemptible read-ahead. For read-ahead and conditional sequential prefetch, just-in-
time seek offers a marginal performance improvement on top of read any free blocks and
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Sm 31.2 41.3 42.3 35.5 42.2 43.4 48.8 48.5 49.0 26.7 47.4 50.4 30.9 49.6 52.7 47.7 55.9 58.0 

 
                                                           
i LFU: Large fetch unit, RA: Read-Ahead, CSP: Conditional sequential prefetch 
ii Preemptible Read-Ahead + Read Any Free Blocks. 
iii Preemptible Read-Ahead + Read Any Free Blocks + Just-in-Time Seek. 

Table 3.5: Overall Effect of Opportunistic and Non-Opportunistic Prefetch. Table shows
percentage improvement over a system that does not prefetch.

preemptible read-ahead for the server workloads, but loses out for the PC workloads. Dur-
ing the rotational delay, the disk can also be used to perform lower-priority or background
I/Os in what is known as freeblock scheduling [LSG02]. For instance, if the next block
to be read is halfway round the track, the disk head could be positioned to service a back-
ground request before being moved back in time to read the block as it rotates under the
head. But given that read any free blocks and just-in-time seek are effective at improving
performance, such background I/Os may not be totally free for our workloads.

In general, in both the resource-poor and resource-rich environments, read-ahead with
preemptible read-ahead and read any free blocks performs the best for the PC workloads,
improving average read response time by almost 50% over the case when there is no
prefetch (Table 3.5). For the server workloads, conditional sequential prefetch with pre-
emptible read-ahead and read any free blocks offers performance improvement of between
42% and 54% in the resource-poor environment and up to 65% in the resource-rich envi-
ronment.

3.5.3 Write Buffering

Write buffering refers to the technique of holding written data temporarily in fast, typ-
ically semiconductor, memory before destaging the data to permanent storage. A write
operation can be reported as completed once its data has been accepted into the buffer. Be-
cause writes tend to come in bursts [Chapter 2], the write buffer helps to better regulate the
flow of data to permanent storage. To prevent any loss of data if the system fails before the
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buffered data is hardened to permanent storage, the write buffer is typically implemented
with some form of non-volatile storage (NVS). In some environments, (e.g., UNIX file
system, PC disks), a less expensive approach of periodically flushing (usually every 30s)
the buffer contents to disk is considered sufficient. By delaying when the written data is
destaged to permanent storage, write buffering allows multiple writes to the same location
to be combined into a single physical write, thereby reducing the number of physical writes
that have to be performed by the system. It may also increase the efficiency of writes by
allowing multiple consecutive writes to be merged into a single big-block I/O. In addition,
more sophisticated techniques can be used to schedule the writes to take advantage of the
characteristics and the state of the storage devices.

In short, the write buffer achieves three main effects. First, it hides the latency of writes
by deferring them to some later time. Second, it reduces the number of physical writes, and
third, it enables the remaining physical writes to be performed efficiently. In this chapter,
we evaluate write buffering using a general framework that is flexible enough for us to
examine the three effects of write buffering separately. In this framework, a background
destage process is initiated whenever the fraction of dirty blocks in the write buffer exceeds
a high limit threshold, highMark. This ensures that buffer space is available to absorb
the incoming writes. To avoid impacting the read response time, destage requests are not
serviced unless there are no pending read requests or the write buffer is full. In the latter
case, destage requests are serviced at the same priority as the reads. Analysis in the prior
chapter shows that the I/O workload is bursty, which implies that the storage system has
idle periods during which the destage requests can be handled.

To reduce the number of physical writes, we use the Least-Recently-Written (LRW)
policy to decide which blocks to destage [HSY01b]. The LRW policy is similar to the LRU
policy for read caching and is so named because it selects for destage the block that was
least recently written. In order to examine the effect of limiting the age of dirty data in the
buffer, we also destage a block when its age exceeds the maximum allowed. Destage poli-
cies have been studied in some detail recently but the focus has been on selecting blocks to
destage based on how efficiently buffer space can be reclaimed. For instance, in [BRT93],
the track with the most dirty blocks is selected for destage. In [VJ98], the blocks that can
be written most quickly are selected. But a destage policy that strives to quickly reclaim
buffer space may not be effective if the blocks that are destaged will be dirtied again in the
near future. Moreover, with the layered approach of building systems, estimates of the cost
of destage operations may not be available to the destage process. For instance, the adaptor
or controller housing the write buffer typically has no accurate knowledge of the state and
geometry of the underlying disks.

The approach we take is to focus on reducing the number of physical writes, and to
rely on request scheduling to perform the remaining writes efficiently. We achieve the
latter by ensuring that there is a sizeable number of outstanding destage requests to be
scheduled. Specifically, we allow as many outstanding destage requests as the maximum
queue depth seen by the host, and once the destage process is initiated, it stops only when
the fraction of dirty blocks in the buffer drops below a low limit threshold, lowMark. By
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Figure 3.11: Improvement in Average Write Response Time from Absorbing Write Bursts.

setting lowMark to be significantly lower than highMark, we achieve a hysteresis effect
which prevents the destage process from being constantly triggered whenever new blocks
become dirty. Therefore, instead of a continual trickle of destage requests, we periodically
get a burst of destage requests which can be effectively scheduled. To further increase the
efficiency of the destage operations, whenever a destage request is issued, we include in
the same request contiguous blocks that are also dirty. The resulting disk write may span
tracks but it is a large sequential write which can be efficiently handled by the disk.

The use of hysteresis in the destage process has been previously proposed in [BRT93,
VJ98] but for a different purpose. Because the destage algorithms suggested there do not
take into account the age of the blocks, the same blocks may be selected for destage every
time the algorithms are run. For instance, if the destage algorithm selects the track with the
most dirty blocks, a track that is continuously written will tend to be selected every time
the destage process is initiated. In such situations, hysteresis, by preventing the destage
process from being constantly triggered, helps to reduce the chances that the same blocks
will be repeatedly destaged.

Absorbing Write Bursts

To investigate the amount of buffer space needed to absorb the write bursts, we set both
the highMark and lowMark to zero. This ensures that dirty blocks are destaged at the
earliest opportunity to make room for buffering the incoming writes. In Figure 3.11, we
plot the average write response time as a function of the buffer size. In order to generalize
our results across the different workloads, we also normalize the buffer size to the amount
of storage used.



70

When the write buffer is not large enough to absorb the write bursts, some of the writes
will stall until buffer space is reclaimed by destaging some of the dirty blocks. When the
buffer is large enough, all the write requests can be completed without stalling. Notice
that for all the workloads, a write buffer of between 4 MB and 8 MB or between 0.05 and
0.1% of the storage used is sufficient to effectively absorb the write bursts. In fact, for the
PC workloads, a small write buffer of about 1 MB or 0.01% of the storage used is able
to hide most of the write latency. As in the case of the read cache, we investigated the
effect of different buffer block sizes and found that 4 KB is reasonable for our workloads
(Figure C.13).

Eliminating Repeated Writes

As mentioned earlier, when data is updated again before it is destaged, the second
update effectively cancels out the previous update, thereby reducing the number of phys-
ical writes to the storage system. In this section, we focus on how much buffer space is
needed to effectively allow repeated writes to the same location to be cancelled. We set the
highMark and lowMark to one so as to maximize the probability that a write will “hit”
in the write buffer.

In Figure 3.12, we plot the write miss ratio as a function of the buffer size. We define
the write miss ratio as the fraction of write requests that causes one or more buffer blocks
to become dirty. Thus the write miss ratio is essentially the fraction of write requests that
are not cancelled. As in the case of the read cache, we took the arithmetic mean of the
plots for the five different classes of workloads and fitted various functional forms to it. As
shown in Figure 3.12(b), a power function of the form f(x) = a(x− b)c is again a good fit.
However, the exponent c at about -0.2 is significantly bigger than it is for reads, meaning
that for large buffer sizes, the write miss ratio decreases much more slowly with buffer size
increase than is the case for reads. Such a behavior of the physical I/O stream turns out to
parallel what has been observed at the logical level for large database systems where the
read and write exponents are about -0.5 and -0.25 respectively [HSY01b].

Observe from Figure 3.12(b) that for all the workloads, 60-75% of the writes are elim-
inated at buffer sizes that are less than 0.1% of the storage used. In Figure C.14, we plot
the corresponding improvement in the average write service time. In the resource-poor
environment, we limit the age of dirty blocks in the buffer to be less than 30s. There is,
therefore, less write cancellation (about 40-50%) and most of it occurs at very small buffer
sizes of about 2 MB. In general, when there is concern about losing buffered data, limits
have to be placed on the maximum age of the buffered data. In Figure 3.13, we analyze the
effect of such constraints and find that a maximum age of 1-hour is able to achieve most of
the write elimination.
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Figure 3.12: Effectiveness of Write Buffering at Reducing Physical Writes.
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Figure 3.13: Sensitivity to Maximum Dirty Age.

Combined Effect

We have studied the effects of absorbing write bursts and eliminating repeated writes
independent of each other. In practice, the two effects compete for buffer space. They
also work together because eliminating writes makes it possible to absorb write bursts in
less buffer space. Striking a balance between the two is therefore key to effective write
buffering. In this section, we investigate how to achieve this balance by appropriately
setting the highMark and lowMark threshold values.

In Figures 3.14 and C.15, we plot the average write response time as a function of
highMark. The corresponding plots for the write miss ratio are presented in Figures 3.15
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Figure 3.14: Effect of lowMark and highMark on Average Write Response Time
(Resource-Rich).
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Figure 3.15: Effect of lowMark and highMark on Write Miss Ratio (Resource-Rich).
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Figure 3.16: Effect of lowMark and highMark on Average Write Service Time
(Resource-Rich).

and C.16. As we would expect, if destage is initiated only when most of the buffer is dirty,
some of the writes will stall until buffer space becomes available and this will result in large
average write response time. On the other hand, if destage is initiated at a small highMark
value, there will be less opportunities for write cancellation. For all the workloads, we find
that a highMark value of 0.8 and a lowMark value of 0.2 strikes a good compromise. The
highMark and lowMark settings also affect how efficiently the destage operations can be
performed. From Figures 3.16 and C.17, we find that setting lowMark to significantly less
than highMark is essential to allowing the destage operations to be scheduled effectively.

A concern with background destage operations is that they may negatively impact the
read response time. For instance, when the write buffer becomes full, background destage
requests become foreground operations which may interfere with the incoming read re-
quests. Moreover, the first read request after an idle period may encounter a destage in
progress. In this study, we assume that destage operations are not preemptible. This is
generally true at the adaptor/controller level because a write request cannot be easily can-
celled once it has been issued to the disk. From Figures 3.17 and C.18, we find that the
read response time is not significantly affected by write buffering provided that there is
some hysteresis, that is lowMark is significantly lower than highMark. When there is
no hysteresis, destage operations take longer and tend to occur after every write request,
thereby increasing the chances that a read will be blocked. In addition, the constant trickle
of destage operations may lead to disk head thrashing because the locality of reference for
destage operations, which are essentially delayed writes, is not likely to coincide with that
of current read requests.

In Table 3.6, we summarize the performance benefit of write buffering. In the resource-
poor environment, about 40-50% of the writes are eliminated by write buffering. The
average write service time is reduced by between 60-80% while the average write response
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Figure 3.17: Effect of lowMark and highMark on Average Read Response Time
(Resource-Rich).
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Table 3.6: Performance with Write Buffering.
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time is reduced by more than 90%. The improvement in the resource-rich environment is
even more significant, with about 60-70% of the writes being eliminated, and as much as a
90% reduction in the average write service time.

3.5.4 Request Scheduling

The time required to satisfy a request depends on the state of the disk, specifically
whether the requested data is present in the cache and where the disk head is relative to
the requested data. In request scheduling [Den67], the order in which requests are handled
is optimized to improve performance. Request scheduling can be performed at different
levels in the storage stack. For instance, at the level of the operating system, device driver,
disk adaptor or even the disk itself. Request scheduling by the disk used to be a feature of
high-end server disks but is beginning to appear in disks that are going into PCs. One of
the aims of this section is to quantify the actual benefit such scheduling will bring to PC
workloads.

For request scheduling to be effective, the scheduler needs to have good estimates of the
service time of different requests. Such estimates are difficult to make high in the storage
stack because little information is available there. For example, modern disk protocols
(e.g., SCSI, IDE) present a flat address space so that any level above the disk has little
correct knowledge of the physical geometry of the disk. In addition, it is hard to predict
which requests will hit in the onboard disk cache. As we have seen in the previous sections,
there are a lot of hits in the onboard disk cache, and such hits can substantially affect the
effectiveness of request scheduling [WGP94]. In this chapter, we schedule only requests
that miss in the cache, since the critical resource is the disk arm and what we really want
to do is arm scheduling.

Our experiments are based on the scheduling algorithm that has been variously referred
to as Shortest Time First [SCO90], Shortest Access Time First [JW91] and Shortest Posi-
tioning Time First [WGP94]. This is a greedy algorithm that always selects the pending
request with the smallest estimated access time (seek + rotational latency). By selecting the
request with the shortest access time, the algorithm tries to reduce the amount of time the
disk arm spends positioning itself, thereby increasing the effective utilization of the critical
resource. The algorithm can be adapted to select the request with the shortest service time
so as to minimize waiting time. In order to reduce the chances of request starvation, the
requests can be aged by subtracting from each access time or positioning delay (Tpos) a
weighted value corresponding to the amount of time the request has been waiting for ser-
vice (Twait). The resulting effective positioning delay (Teff ) is used in selecting the next
request:

Teff = Tpos − (W ∗ Twait) (3.1)

We refer to this variation of the algorithm as Aged Shortest Access Time First (ASATF).
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 Average Response Time Average Service Time 

 All Requests Reads Writes All Requests Reads Writes 

 ms %i ms %i ms %i ms %i ms %i ms %i 

P-Avg. 1.51 14.2 3.34 12.8 0.227 24.6 1.74 10.8 2.22 4.03 1.41 16.5 

S-Avg. 2.39 26.0 2.67 18.7 2.13 33.0 1.57 19.0 1.91 3.13 1.32 30.6 

Ps-Avg. 1.96 19.0 3.83 14.4 0.646 31.1 1.52 16.4 2.18 6.08 1.05 27.1 

Pm 1.24 14.4 3.14 12.6 0.190 28.1 1.63 15.4 2.23 4.24 1.30 23.8 

Re
so

ur
ce

-P
oo

r 

Sm 3.43 34.8 3.37 15.1 3.48 44.7 2.06 18.8 2.67 2.71 1.57 33.6 

P-Avg. 1.19 13.5 2.66 11.6 0.218 25.4 1.14 18.1 1.79 3.40 0.700 34.7 

S-Avg. 1.00 22.3 1.20 13.3 0.831 22.6 0.689 21.6 0.886 2.68 0.535 40.9 

Ps-Avg. 1.67 18.9 3.15 12.4 0.695 32.0 1.11 19.1 1.75 5.05 0.681 35.1 

Pm 0.67 7.71 1.65 8.06 0.123 5.07 0.746 19.8 1.24 2.99 0.474 35.8 

Re
so

ur
ce

-R
ic

h 

Sm 1.253 39.4 1.38 13.2 1.16 52.8 0.963 25.4 1.10 2.32 0.855 39.8 

 
                                                           
i Improvement  over FCFS ([original value – new value]/[original value]). 
 

Table 3.7: Performance with ASATF Scheduling.

With a sufficiently large aging factor W , ASATF degenerates to First Come First Served
(FCFS). A W value of 0.0061 is recommended in [JW91, WGP94] but the range of “good”
values for W is found to be wide. In Figure 3.18, we plot the average response time in-
cluding both reads and writes, and its coefficient of variation as a function of W . The cor-
responding plots considering the reads and writes separately can be found in Figures C.19
and C.20 while the plots of the average service time as a function of W are in Figure C.21.
For all our workloads, the average response time is almost constant for W < 0.03. Observe
that as W increases, the coefficient of variation for response time decreases gradually to a
minimum and then increases rather sharply beyond that. The improvement in the coeffi-
cient of variation is gradual as we increase the aging factor from zero because our model,
unlike those used in [JW91, WGP94], takes into consideration feedback between request
completion and subsequent request arrivals so that requests are less likely to be starved.
Since the variability in response time increases rather sharply for W values beyond the op-
timal, we err on the side of caution and select a value of 0.01 as the baseline for our other
simulations.

By comparing the response time at large values of W with that at small values of W ,
we can quantify the net effect of request scheduling. We summarize the results in Table 3.7.
In general, scheduling tends to have a bigger impact in the server environments. Improve-
ment of up to 39% in average response time is seen for the server workloads. For the PC
workloads, the improvement is about 15% on average. Looking at the reads and writes
separately, we find that in most cases, the improvement in write response time is about two
to three times that for reads. This is because writes tend to come in big bursts so that if

1[WGP94] recommends 6 but if Tpos and Twait are in the same units, as one would reasonably expect,
the correct value should be 0.006.
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Figure 3.18: Effect of Age Factor, W , on Response Time.
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the destage operations are not scheduled efficiently, the write buffer is likely to become full
and cause the incoming writes to stall.

Note that request scheduling actually has two separate effects – one is to reduce the time
needed to service a request, the other is to reduce the waiting time by letting the shortest
job proceed first. The improvement in service time is also presented in Table 3.7. Observe
that the service time improvement is more consistent across the PC and server workloads
than the improvement in response time. This suggests that a lot of the response time im-
provement for the server workloads is due to less waiting. Across all our workloads, read
service time is barely improved by request scheduling while write service time is improved
by between 20-30% in the resource-poor environment and 35-40% in the resource-rich en-
vironment. The poor improvement for read requests is expected because the number of
read requests that are outstanding and can be scheduled tends to be low (see Chapter 2).
The dramatic improvement in write service time reflects our write buffering strategy, which
is specifically designed to maintain a sizeable number of outstanding destage requests so
that they can be effectively scheduled.

As we have alluded to several times, the effectiveness of request scheduling generally
increases with the number of requests that are available to be scheduled. In most systems,
the maximum number of requests that are outstanding to the storage system can be set.
The actual queue depth depends on the workload. In Table 3.8, we summarize the effect of
allowing multiple requests to be outstanding to the storage system. The data considering
reads separately from the writes are plotted in Figures C.22 and C.23. Note that as the
maximum queue depth is increased, the average service time is improved but because some
requests are deferred, the average response time may rise. For our workloads, a maximum
queue depth of eight works well. With this maximum queue depth, the average response
time for the server workloads is improved by between 30% and 40% in both the resource-
poor and resource-rich environments while the PC workloads are improved by about 20%.
In terms of average service time, both the PC and server workloads are improved by about
20%. Breaking down the requests into reads and writes, we again find that most of the
improvement is due to the writes (Table C.1).

Note that the benefit of increasing the maximum queue depth is more than that due
to scheduling the disk arm. This is because the storage system cache in effect performs
another level of scheduling by allowing subsequent cache hits to proceed. This effect,
however, tends to be secondary since the improvement in response time when the maxi-
mum queue depth is increased from one to eight (Table 3.8) generally exceeds by only a
small amount the improvement due to scheduling a maximum of eight outstanding requests
(Table 3.7).

3.5.5 Parallel I/O

A widely used technique to improve I/O performance is to distribute data among sev-
eral disks so that multiple requests can be serviced by the different disks concurrently. In
addition, a single request than spans multiple disks can be sped up if it is serviced by the
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Average Response Time Average Service Time 

Max. Q Depth = 2 4 8 16 Max. Q Depth = 2 4 8 16  

ms %i ms %i ms %i ms %i ms %i ms %i ms %i ms %i 

P-Avg. 1.68 8.59 1.56 14.8 1.51 17.8 1.52 17.2 1.99 1.44 1.79 11.1 1.74 13.7 1.70 15.8 

S-Avg. 3.71 6.46 2.77 24.1 2.39 30.4 2.17 34.8 1.97 1.58 1.69 15.5 1.57 20.9 1.49 25.0 

Ps-Avg. 2.29 5.83 2.08 14.4 1.96 19.3 1.99 18.6 1.79 2.89 1.59 13.9 1.52 18.0 1.46 21.0 

Pm 1.43 15.0 1.31 22.7 1.24 26.6 1.25 25.8 1.97 1.61 1.71 14.3 1.63 18.6 1.57 21.6 

Re
so

ur
ce

-P
oo

r 

Sm 5.32 4.41 4.02 27.7 3.43 38.3 3.12 44.0 2.52 1.76 2.19 14.5 2.06 19.8 1.95 23.8 

P-Avg. 1.35 8.94 1.25 15.3 1.19 19.0 1.23 17.2 1.38 1.71 1.21 13.7 1.14 18.8 1.08 22.9 

S-Avg. 1.70 9.42 1.23 24.9 1.00 30.4 0.889 34.6 0.895 1.72 0.747 16.3 0.689 21.2 0.635 27.4 

Ps-Avg. 1.98 4.99 1.80 13.9 1.67 19.8 1.72 18.3 1.35 2.96 1.18 14.9 1.11 19.9 1.06 23.7 

Pm 0.753 16.2 0.703 21.8 0.667 25.8 0.689 23.3 0.923 1.36 0.800 14.5 0.746 20.2 0.703 24.9 

Re
so

ur
ce

-R
ic

h 

Sm 2.02 6.33 1.48 31.3 1.25 41.8 1.14 47.0 1.27 1.04 1.06 17.8 0.963 25.1 0.889 30.9 

 
                                                           
i Improvement  over queue depth of one ([original value – new value]/[original value]). 
 

Table 3.8: Average Response and Service Times as Maximum Queue Depth is Increased
from One.

disks in parallel. The latter tends to make more sense for workloads dominated by very
large transfers, specifically scientific workloads. For most other workloads where requests
are small and plentiful, the ability to handle many of them concurrently is usually more
important.

In general, data can be distributed among the disks in various ways. The two most
common approaches are to organize the disks into a volume set or a stripe set. In a volume
set, data is laid out on a disk until it is full before the next disk is used. In a stripe set, data
is divided into units called stripe units and the stripe units are laid out across the disks in a
round robin fashion. Note that the volume set is essentially a stripe set with a stripe unit that
is equal to the size of the disk. In RAID (Redundant Array of Inexpensive Disks) [CNC+96]
terminology, the stripe set is known as RAID-0. A shortcoming of striping data across the
disks is that each disk contains some blocks of many files so that a single disk failure
could wipe out many files. There are well-known techniques such as mirroring and parity
protection to overcome this weakness but they are beyond the scope of this study. The
interested reader is referred to [CLG+94] for more details.

The choice of stripe unit has a major bearing on the performance of the storage sys-
tem. A small stripe unit could result in single requests spanning multiple disks, thereby
increasing the number of physical I/Os and tying up many disks. More importantly, it re-
sults in many small random requests, which the disks are not very efficient at handling.
Furthermore, a small stripe unit makes sequential prefetch by the disk less effective be-
cause data that appears contiguous on a disk are likely to be logically interspersed by data
that are on other disks. On the other hand, a small stripe unit evens out the load across the
multiple disks and reduces the chances that a subset of the disks will be disproportionately
busy, a condition often referred to as access skew. For parity-protected arrays of disks (e.g.,
RAID-5), a large stripe unit would make it more difficult to do a full-stripe write so that
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Figure 3.19: Average Read and Write Response Time as a Function of Stripe Unit
(Resource-Rich).

write performance might be degraded. However, full-stripe writes are not very common
in most workloads. Results of a previous study on RAID-5 striping [CL95] indicate that
for workloads that are meant to model time sharing and transaction processing workloads,
read throughput increases with stripe unit until the megabyte range while write throughput
is within 20% of the maximum at a stripe unit of 1 MB.

In Figures 3.19 and C.24, we plot the average read and write response time for our
various workloads as a function of the stripe unit, assuming that data is striped across four
disks. The corresponding plots for the service time are in Figure C.25. Observe that for
our workloads, access skew, or imbalance in the amount of work borne by the different
disks, does not seem to be a major issue until the stripe unit is larger than 100 MB. As
we increase the number of disks, access skew becomes a bigger issue so that the upward
surge in response time at large stripe units is more apparent (Figure C.26). From Figures
3.19 and C.24, a stripe unit of less than about 2 MB works well for the writes. For the
reads, performance is generally good with a stripe unit in the megabyte range with the best
performance being achieved by a stripe unit of 2 MB. In the rest of this chapter, we will
assume a stripe unit of 2 MB.

Figures 3.20 and C.27 show the performance achieved as we increase the number of
disks that are striped across. Recall that the read miss ratio is defined as the fraction of
read requests that requires physical I/O. Therefore, when there are multiple disks each with
a cache, the read miss ratio is the arithmetic mean of the read miss ratio of each disk,
weighted by the number of reads to that disk. The write miss ratio is similarly defined.
Observe that for all our workloads, striping data across four disks is sufficient to reap
most of the performance benefit. In Table 3.9, we summarize the improvement in average
response time, service time and miss ratio when data is striped across four disks. Overall,
average read response time is improved by about 45% in the resource-poor environment
and by about 40% in the resource-rich environment. Write response time is reduced a lot
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Figure 3.20: Performance as a Function of the Number of Disks (Resource-Rich).
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Read Write 
 

Avg. Resp. Time Avg. Serv. Time Miss Ratio Avg. Resp. Time Avg. Serv. Time Miss Ratio 

 ms %i ms %i  %i ms %i ms %i  %i 

P-Avg. 1.72 48.0 1.56 30.1 0.333 22.8 0.105 43.7 1.34 4.75 0.596 1.62 

S-Avg. 1.37 49.6 1.30 34.6 0.275 22.8 0.149 70.4 1.04 18.2 0.480 7.72 

Ps-Avg. 1.91 50.1 1.56 28.6 0.350 22.5 0.149 74.6 0.915 13.4 0.503 3.50 

Pm 1.77 43.7 1.66 25.5 0.364 18.7 0.102 46.4 1.26 3.14 0.577 3.52 

Re
so

ur
ce

-P
oo

r 

Sm 1.93 42.7 1.91 28.5 0.385 17.7 0.223 93.6 1.13 28.1 0.495 13.4 

P-Avg. 1.47 43.7 1.37 24.0 0.261 16.9 0.137 27.0 0.628 10.4 0.425 -0.434 

S-Avg. 0.734 35.1 0.669 23.3 0.145 12.6 0.214 54.0 0.435 20.1 0.296 -0.936 

Ps-Avg. 1.68 46.2 1.37 22.1 0.268 16.5 0.268 57.9 0.608 10.8 0.420 -2.15 

Pm 1.02 38.5 0.981 20.7 0.195 13.7 0.100 19.4 0.411 13.3 0.333 -0.582 

Re
so

ur
ce

-R
ic

h 

Sm 0.869 36.8 0.812 26.2 0.171 16.2 0.321 72.3 0.685 19.9 0.383 -0.979 

 
                                                           
i Improvement  over single disk ([original value – new value]/[original value]). 
 

Table 3.9: Performance with Striping across Four Disks.

more for the server workloads than the PC workloads – as high as 94% in the resource-poor
environment and 74% in the resource-rich environment. This is because, as noted earlier,
writes tend to come in large bursts in the server workloads and with more disks, these writes
can be handled with much less waiting time.

Note that we are using identical disks so the total capacity of the system grows as we
increase the number of disks. Therefore, part of the performance improvement reported
in Table 3.9 results from short-stroking or using less of each disk. An alternative is to
compare performance using smaller-capacity disks as the number of disks increases so as
to keep the total storage capacity constant, but such a comparison is not necessarily more
insightful. Moreover, the storage required for many of our workloads is already smaller
than the capacity offered by a 1-surface disk. We believe that a more interesting approach
would be to quantify the performance effect of short-stroking the disks.

Observe from Table 3.9 that in the resource-poor environment, the read miss ratio de-
creases with the number of disks. This is because in this environment, each disk has an
8 MB cache so that as the number of disks increases, we in effect have more cache. In the
resource-rich environment, the cache is supposed to reflect a large adaptor/controller cache
and thus the total size is fixed at 1% of the storage used2. However, there is a per-disk
prefetch buffer, which explains why the read miss ratio also decreases with the number of
disks. But notice that the read service time improves more than the read miss ratio as we
increase the number of disks from one to four. In the resource-poor environment, the read
miss ratio improves by about 20% while the read service time is reduced by around 30%.
In the resource-rich environment, the read miss ratio improves by about 15% while the

2Note that we distributed the cache equally among the disks to simplify our simulation model. This is a
reasonable approximation except when the stripe unit is very large, causing access skew among the disks.
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 Average Read Service Time Average Write Service Time 

 Number of Disks Number of Disks 

 2 3 4 5 6 7 8 2 3 4 5 6 7 8 

P-Avg. 5.16 7.83 9.37 10.2 10.8 11.3 11.2 0.610 2.08 2.58 3.39 3.72 4.63 4.13 

S-Avg. 8.88 12.4 14.1 15.1 15.9 16.2 15.8 7.40 8.11 10.3 12.1 10.4 10.4 12.3 

Ps-Avg. 4.07 6.78 8.33 9.11 9.71 10.2 10.3 2.93 4.87 5.54 6.08 5.94 6.66 5.94 

Pm 5.34 7.79 9.06 9.75 10.3 10.7 10.9 0.523 1.29 1.17 2.02 2.24 1.96 1.83 

Re
so

ur
ce

-P
oo

r 

Sm 8.04 11.2 13.4 14.8 15.7 16.5 16.8 8.52 10.1 13.9 14.5 15.3 16.0 16.0 

P-Avg. 3.83 6.13 7.23 7.91 8.09 8.69 8.44 5.82 8.92 10.3 11.1 11.1 11.5 11.6 

S-Avg. 7.89 10.6 11.7 12.0 12.2 12.2 11.0 13.1 17.2 20.0 20.4 21.1 21.0 22.0 

Ps-Avg. 2.59 4.69 5.71 6.35 6.51 7.11 7.01 5.30 8.76 10.6 11.7 11.7 12.4 12.4 

Pm 4.58 6.68 7.49 8.07 8.60 8.75 8.87 7.72 11.0 13.3 14.7 16.2 17.0 17.5 

Re
so

ur
ce

-R
ic

h 

Sm 7.76 10.5 14.7 13.4 13.9 15.5 16.4 11.9 15.4 19.8 22.3 23.8 22.6 26.0 

 

Table 3.10: Improvement in Average Service Time as the Number of Disks Striped Across
is Increased from One while the Total Cache and Buffer Space are Kept Constant.

read service time is reduced by almost 25%. Such data suggests that short-stroking could
account for roughly a 10% performance improvement.

To further confirm that the benefit of short-stroking is in the 10% range, we rerun the
experiments keeping the total cache and buffer size constant as we increase the number of
disks. Results presented in Figures C.28 and C.29 show that the miss ratio is constant as we
increase the number of disks in these experiments. Therefore, all the resulting service time
improvement can be attributed to the effect of short-stroking. In Table 3.10, we summarize
this improvement. Observe that the service time improvement saturates beyond about four
disks or when less than a quarter of the disk is used. Largely in agreement with the results
above, we find that short-stroking improves the average read service time by up to 10-15%
for our workloads. For writes, the improvement ranges from 2% to 16% in the resource-
poor environment and from 12% to 26% in the resource-rich environment.

3.6 Effect of Technology Improvement

At its core, disk storage is composed of a set of rotating platters on the surfaces of which
data is recorded. There is typically a read-write head for each surface and all the heads are
attached to the disk arm so that they move in tandem. A simple high-level description such
as this already suggests that there are multiple dimensions to the performance of the disk.
For instance, the rate at which the platters rotate, how fast the arm moves, and how closely
packed the data is, all affect, in some way, how quickly data can be accessed. Moreover,
the effective performance of a disk depends on which blocks are accessed and in what
order. Therefore, it is not clear what effect technology improvement or scaling in any one
dimension has on real-world performance. In this section, we try to relate scaling in the
underlying technology to the actual performance of real workloads. The goal is to quantify
the real impact of improvement in each dimension so as to establish some rules of thumb
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that can be used by disk designers and system builders who select and qualify the disks.
Note that there are sometimes discontinuities in the technology. For instance, the transition
from 51

4
-inch disk to 3 1

2
-inch disk. Our analysis focuses on the overall trend rather than

such discrete effects.
The result of technology improvement in the different dimensions are generally dif-

ficult to isolate and systematically quantify because the performance metrics that we are
familiar with (e.g., seek time, rotational latency) are often metrics that compound the effect
of improvement in multiple dimensions. For instance, the often quoted ten percent yearly
improvement in the access time of disks results from a combination of increase in rotational
speed which reduces the rotational latency, decrease in seek time due to improvement in
the disk arm actuator, and smaller diameter disks or narrower data band which reduces the
seek distance. In practice, for a given workload, the actual seek time is also affected by im-
provement in areal density because the head has to move a smaller physical distance to get
to the data. Changes in areal density also lead to changes in storage capacity which could
potentially affect the number of disks and the mapping of data to disks. In this section, we
break down the continuous improvement in disk technology into four major basic effects,
namely seek time reduction due to actuator improvement, spin rate increase, linear density
improvement and increase in track density.

Note that the disk heads for the different surfaces are attached to the disk arm and move
in tandem. In the past, this means that tracks within a cylinder are vertically aligned and
no additional seek was required to read the next track in the cylinder. However, in modern
disks, only one of the heads is positioned to read or write at any one time because the disk
arm flexes at the high frequency it is operated at. Therefore, when the head reaches the
end of a track, there is a delay before the next head is positioned to start transferring the
data. To prevent having to wait an entire revolution after a track switch, the tracks in a
cylinder are laid out at an offset known as the track-switch skew. There is also a delay for
moving the head to an adjacent cylinder so tracks are laid out at an offset known as the
cylinder-switch skew across cylinder boundaries. As we scale the performance of the disk,
we adjust the skews to make sure that the disk does not “miss revolutions” for transfers that
span multiple tracks.

3.6.1 Mechanical Improvement

We begin by examining the improvement in the mechanical or moving parts of the disk.
Figure 3.21 presents the historical rates of change in the average seek time and rotational
speed for the IBM family of server disks. The average seek time is generally taken to be
the average time needed to seek between two random blocks on the disk. The average
access time is defined as the sum of the average seek time and the time needed for half a
rotation of the disk. Observe that on average, seek time decreases by about 8% per year
while rotational speed increases by about 9% per year. Putting the two together, average
random access performance improves by just over 8% per year.
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Figure 3.21: Historical Rates of Change in Average Seek Time, Rotational Speed and
Access Time (IBM Server Disks).
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Figure 3.22: Change in Seek Profile over Time.

Seek Time

As shown in Figure 3.2 on page 52, the seek time is a non-linear function of the seek
distance. We know that historically, the average seek time improves by about 8% per year
but how does this affect the seek time for different seek distances? It turns out that a good
way to model the improvement in seek time is to simply scale the seek profile vertically
by a constant factor. For instance, in Figure 3.22, we show how the seek profile changes
across two generations of a disk family. Beginning with the seek profile of the earlier disk,
we first scale it horizontally to account for the increase in the track density. Subsequent
scaling in the vertical direction results in a curve that fits the seek profile of the later disk
almost perfectly.

In Figures 3.23 and C.30, we plot the effect of seek time improvement on the average
response time for our various workloads. The corresponding plots for the average service
time are similar and are presented in Figure C.31. Besides plotting the improvement in
average response time as a function of the improvement in seek time (Figure 3.23(a)), we
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Figure 3.23: Effect of Improvement in Seek Time on Average Response Time (Resource-
Rich).

also show how the improvement in average read response time varies over time, assuming
the historical 8% yearly improvement in seek time (Figure 3.23(b)). To generalize our
results, we fitted a curve to the arithmetic mean of the five classes of workloads. As shown
in the figures, a linear function of the form f(x) = ax where a is a constant turns out to be a
good fit. Specifically, we find that a 10% improvement in seek time translates roughly into
a 4% gain in the actual average response time, and that a year of seek time improvement
at the historical rate of 8% per year results in just over 3% improvement in the average
response time.

Rotational Speed

Figures 3.24 and C.32 show how increasing the rotational speed of the disk affects the
average response time for our various workloads. Again, the corresponding plots for the
service time are similar and are in Figure C.33. Notice that the S-Avg. plot in Figure C.32
shows a little performance loss as the rotational speed is increased. This is due to the fact
that DS1, one of the components of S-Avg., is sensitive to how the blocks are laid out in
tracks because some of its accesses, especially the writes, occur in specific patterns. As we
scale the rotational speed and adjust the track and cylinder-switch skews, there are cases
where consecutively accessed blocks are poorly positioned rotationally, even with request
scheduling. Such situations highlight the need for automatic block reorganization such as
that proposed in the following chapter.
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Figure 3.24: Effect of RPM Scaling on Average Response Time (Resource-Rich).

Observe from the figures that the improvement in average response time as a function
of the increase in rotational speed can be accurately described by a function of the form
f(x) = a(1 − e−bx) where a and b are constants. Such a function suggests that as we
increase the rotational speed keeping other factors constant, the marginal improvement
diminishes so that the maximum improvement is a. Taking into account the historical rate
of increase in rotational speed (9% per year), we find that a year’s worth of scaling in
rotational speed corresponds to about a 5% improvement in average response time.

3.6.2 Increase in Areal Density

In Figure 3.25, we present the rate of increase in the recording or areal density of disks
over the last ten years. Observe that the linear density has been increasing by approxi-
mately 21% per year while the track density has been going up by around 24% per year.
Areal density has increased especially sharply in the last few years so that with a least
squares estimate (no weighting), the compound growth rate is as high as 62%. If we min-
imize the sum of squares of the relative (instead of absolute) distances of the data points
from the fitted line so that the large areal densities do not dominate (“1/y2 weighting”),
the compound growth rate is about 49%. Combining the growth rate in rotational speed
and in linear density, we obtain the rate of increase in the disk data rate. As shown in
Figure 3.26, this turns out to be 40% per year, which is dramatically higher than the 8%
annual improvement in average access time. The result is a huge gap between random and
sequential performance, and is one of the primary motivations for reorganizing disk blocks
to improve the spatial locality of reference [Chapter 4].
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Figure 3.25: Historical Rates of Increase in Linear, Track and Areal Density (IBM Server
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Figure 3.26: Historical Rate of Increase in Maximum Data Rate (IBM Server Disks).

Linear Density

Increasing the areal density reduces the cost and therefore the price-performance of
disk-based storage. Areal density improvement also directly affects performance because
as bits are packed more closely together, they can be accessed with a smaller physical
movement. Figures 3.27 and C.34 show how increases in the linear density reduce the
average response time for our various workloads. Observe that there is a discontinuity
in the plots at a linear-density improvement of around -20%. This is because as linear
density is reduced, we require more disks to hold the same amount of data. The jump
reflects the performance gain from having an additional disk arm and the associated disk
cache or prefetch buffer. Most of the gain comes from the ability to service more requests
concurrently. As we would expect, the service time is impacted less by having an additional
disk (Figure C.35).

Focusing on the long continuous segment of the plots, we find that the improvement in
average response time as a function of the increase in linear density can again be accurately
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Figure 3.27: Effect of Increased Linear Density on Average Response Time (Resource-
Rich).

modeled by a function of the form f(x) = a(1 − e−bx) where a and b are constants. The
effect is similar to that of increasing the rotational speed but is quantitatively less per unit of
improvement because increasing the linear density does not reduce the rotational latency.
We find that every year of improvement in linear density at the historical rate of 21% per
year results in a 6-7% reduction in average response time.

Track Density

Packing the tracks closer together means that the arm has to move over a shorter phys-
ical distance to get to the same track. This effect is similar to that of improving the seek
time but the quantitative effect on the average response time per unit of improvement tends
to be much smaller because of the shape of the seek profile. In particular, the marginal
cost of moving the arm is relatively small once it is moved. In Figures 3.28 and C.36, we
present the effect of increasing the track density on the average response time. Observe
that a year’s worth of track density scaling (24%) buys only about 3-4% improvement in
average response time.

Again, DS1 is not well-behaved because it is sensitive to how blocks are laid out in
tracks, and this sensitivity causes the jagged nature of the plot for S-Avg. On the surface,
this result is surprising because changing the track density should not affect how blocks are
laid out in tracks. A deeper analysis reveals that the block layout does get affected because
changes in the track density lead to changes in the zoning of the disk. In general, to take
advantage of the fact that tracks are longer the further they are from the center of the disk,
the disk is divided into concentric zones or bands within which each track has the same
number of sectors. As track density changes, we assume that the physical dimensions of
each zone or band remains constant but the number of tracks within each zone increases.
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Figure 3.28: Effect of Increased Track Density on Average Response Time (Resource-
Rich).
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Figure 3.29: Overall Effect of Disk Improvement on Average Response Time.

3.6.3 Overall Improvement over Time

In Figures 3.29 and C.38, we put together the effect of mechanical improvement and
areal density scaling to obtain the overall performance effect of disk technology evolution.
As shown in the figures, the actual improvement in average response and service times as
a function of the years of disk improvement at the historical rates can best be described
by an exponential function of the form f(x) = a(1 − e−bx) where a and b are constants.
However, to project outward for the next couple of years, a linear function is a reasonably
good fit. Observe that for our various workloads, the average response time and service
time are projected to improve by about 15% per year. The different classes of workloads
have almost identical plots, which increases confidence in our result. The rate of actual
performance improvement (15%) turns out to be significantly higher than the widely quoted
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Figure 3.30: Effect of Mechanical Improvement on Average Response Time.

“less than 10%” yearly improvement in disk performance because it takes into account the
improvement in areal density and assumes that the workload and the number of disks used
remain constant so that the disk occupancy rate is diminishing.

To estimate the yearly improvement in the more realistic situation where the increased
capacity of the newer disks is utilized so that the disk occupancy rate is kept constant, we
examine the effect of improving only the mechanical portions of the disk (seek and rota-
tional speed). This is presented in Figures 3.30 and C.39 which show that the average re-
sponse and service times improve by about 8% per year. We also explore the scenario where
only the areal density is increased (Figure 3.31 and C.40) and discover that the average re-
sponse and service times are improved by about 9% per year. This improvement comes
about because as areal density rises, the data is packed closer together and can be accessed
with a smaller physical movement. Note that the overall yearly performance improvement,
at 15%, is slightly lower than the sum of the effects of the mechanical improvement and the
areal density increase. This is because the two effects are not orthogonal. For instance, as
the recording density is increased, each access will likely entail less mechanical movement
so that the benefit of having faster mechanical components is diminished.

Another rule of thumb that is useful to system designers is one that relates the actual
access time to the advertised or specified performance parameters of a disk. There is often a
wide disparity between the actual and specified performance numbers because the specified
figures are obtained under assumptions that the workload exhibits no locality. Specifically,
the average seek time is defined as the time taken to seek between two random blocks on
the disk and the rotational latency is generally taken to be the time for half a revolution of
the disk. In practice, there is locality in the reference stream so we would expect the actual
access time to be significantly lower. In Figure 3.32, we look at the actual seek time and
rotational latency of our various workloads as a percentage of the average values specified
by the disk manufacturer. As shown in the figure, the actual seek time is about 35% of
the advertised average seek time and the time taken for the correct block to rotate under
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Figure 3.31: Effect of Areal Density Increase on Average Response Time.
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Figure 3.32: Actual Average Seek/Rotational Time as Percentage of Manufacturer Speci-
fied Values.

the head is about 80% of that specified. The seek percentage decreases slightly over time
because of the improvement in areal density but the effect is not very significant.

To gain further insight into where a request is spending most of its time, we break down
the average read response time and write service time into their components in Figure 3.33.
In the figure, the component identified as “processing” refers to the disk command pro-
cessing time, which varies with the type of request (read or write) and with whether the
previous request is a cache hit. For all our workloads, the command processing time is not
significant and averages less than 5% of the read response time for all our workloads. We
define waiting time, also known as queueing time, as the difference between response time
and the sum of service time and processing time.

Notice that even with a 10,000 RPM disk, rotational latency constitutes a major portion
(30-40%) of both the read response time and the write service time. The seek time is also
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Figure 3.33: Breakdown of Average Read Response and Write Service Time.
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very significant, accounting for about 25% of the read response time and 45% of the write
service time. Note that request scheduling affects how the disk head positioning time is
proportioned between seek and rotational time, especially for writes which we issue in
batches. In any case, for both reads and writes, most of the time is spent positioning the
disk head. The transfer time, on the other hand, accounts for less than 5% of the read
response time and only about 10% of the write service time. As the data rate continues to
rise dramatically, the transfer time will diminish further. Note that the transfer time is the
only time during which data is being read or written. In other words, the disk bandwidth
will become less and less effectively utilized. Thus we should consider reorganizing disk
blocks to better take advantage of the available disk bandwidth [Chapter 4]. Observe further
that the waiting time is very significant for reads and is in fact the largest component for
some workloads. This, however, does not mean that the read response time will ultimately
be limited by the waiting time because improving the performance of the disk will reduce
the waiting time proportionately.

3.7 Conclusions

In this chapter, we systematically study various I/O optimization techniques to establish
their actual effectiveness at improving I/O performance. Our results, which are based on
analyzing the physical I/Os of a variety of real server and PC workloads, are summarized
in Table 3.11. The table shows for each technique, the average improvement over five
classes of workloads – PC workloads, server workloads, sped-up PC workloads, merged
PC workloads and merged server workloads. We find that prefetching offers by far the
most significant improvement in read performance, reducing the average read response and
service times by about half. As for writes, buffering has the potential to most dramatically
increase performance, reducing the average write response time by more than 90% and the
average write service time by more than 70%.

More specifically, we find that at the storage or physical level, small read caches are
not very useful because some amount of caching is performed upstream. The small amount
of memory in the disk serves primarily as a prefetch buffer. However, if the cache is large
enough, read caching at the storage level can be effective. We find that the read miss
ratio decreases as the inverse of the ratio of cache size to storage used. In addition, our
results clearly indicate that sequential prefetch is extremely valuable. In a resource-poor
environment such as one where the storage system consists of only disks and low-end disk
adaptors, sequential prefetch together with caching is able to filter out 40-60% of the read
requests. In a resource-rich environment where there is a large outboard controller, only
about 40% of the read requests require a physical I/O if caching and sequential prefetching
are performed. The additional use of opportunistic prefetch makes a significant difference,
further reducing the miss ratio to about 35-45% in the resource-poor environment and to
20-30% in the resource-rich environment.
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Read Caching 4.49 4.14 4.45 0 0 0 
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Request Queuing 16.2 2.8 0 49.9 30.5 0 

Re
so

ur
ce

-P
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Parallel I/O 46.8 29.5 20.9 65.7 13.5 5.96 

Read Caching 37.4 36.1 35.1 0 0 0 

Prefetching 51.1 50.3 59.7 0 0 0 

Write Buffering 0 0 0 96.0 86.2 63.1 

Request Queuing 17.0 1.8 0 46.2 38.4 0 

Re
so

ur
ce

-R
ic

h 

Parallel I/O 40.0 23.3 15.2 46.1 14.9 -1.02 

 

Table 3.11: Performance Effect of Various I/O Optimization Techniques. Table shows im-
provement (|[value without technique - value with technique]|/[value without technique])
averaged over the five classes of workloads. Table entries are shaded to reflect the relative
magnitude of improvement with darker shades representing larger improvements.

Our analysis demonstrates that write buffering can dramatically improve write perfor-
mance through three distinct effects. First, by absorbing the incoming writes and perform-
ing them in the background, write buffering is able to improve write response time by over
90%. Second, by delaying when the physical writes are carried out, repeated writes to the
same blocks can be eliminated. For all our workloads, 40% of the writes are eliminated by
a small write buffer of less than 1 MB. For larger write buffers, we find that the write miss
ratio follows a fifth root rule, meaning that the miss ratio goes down as the inverse fifth
root of the ratio of buffer size to storage used. We also discover that most of the benefit of
write elimination can be achieved without requiring dirty data to remain in the buffer be-
yond an hour. Third, by carrying out the physical writes in batches, write buffering makes
it possible to schedule the writes so that they are carried out more efficiently. On average,
write buffering is able to reduce the write service time by about 70% in the resource-poor
environment and by as much as 90% in the resource-rich environment.

Compared to caching, prefetching and write buffering, we find that request scheduling
tends to have a smaller effect. In particular, we observe that having a queue depth beyond
one improves average response time by 30-40% for the server workloads and by about
20% for the PC workloads. Most of the improvement comes from scheduling the requests
to minimize the time spent positioning the disk arm. The remaining benefit comes from
allowing requests that can be satisfied by the read cache or the write buffer to proceed
out of order. As for striping data across multiple disks to allow parallel I/O, we discover
that a large stripe unit in the megabyte range is good. By striping at such a granularity
across four disks, average read response time can be reduced by 40-45% over the one-disk
case. Practically all the improvement stems from being able to service requests in parallel
because of the extra disk arms. The short-stroking effect of using less of each disk only
accounts for up to a 10-15% reduction in the service time. For the server workloads, writes
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Resource-Poor Resource-Rich 
% Avg. Resp. 

Time 
Avg. Service 

Time 
Avg. Resp. 

Time 
Avg. Service 

Time 

Linear Density 6.21 5.39 7.08 6.73 

Track Density 3.48 3.28 3.42 3.29 

Areal Density 8.58 7.97 9.31 9.07 

Disk Arm (Seek Time) 3.24 3.39 3.08 3.18 

Rotational Speed 5.08 5.11 5.41 5.30 

Mechanical Components 8.24 8.49 8.33 8.45 

Overall 15.4 14.9 15.3 15.9 

 

Table 3.12: Performance Effect of Disk Technology Evolution at the Historical Rates. Ta-
ble shows yearly improvement(|[original value - new value]|/[new value]) averaged over
the five classes of workloads. Table entries are shaded to reflect the relative size of im-
provement with darker shades representing larger improvements.

tend to come in bursts so the write response time is improved even more by the additional
disk arms.

In addition to evaluating the various I/O optimization techniques, we also analyze how
the continuous improvement in disk technology affects the actual I/O performance seen by
real workloads. The results are summarized in Table 3.12, which shows the yearly perfor-
mance improvement that can be expected if disk technology were to continue evolving at
the historical rates. In the last ten years, the average seek time of the disk has decreased
by about 8% per year while the disk rotational speed has gone up by around 9% per year.
At these rates of improvement, seek time reduction achieves about a 3% per year improve-
ment in the actual response time seen by a workload while increases in rotational speed
account for around 5% per year. Together, the mechanical improvements bring about an
8% improvement in performance per year. Increases in the recording density are often ne-
glected when projecting effective disk performance. But our results clearly demonstrate
that areal density improvement has as much of an impact on the effective I/O performance
as the mechanical improvements. Historically, linear density increases at a rate of 21% per
year while track density grows at 24% per year. Such growth rates translate into respective
yearly improvement of 6-7% and 3-4% in the actual average response time, and a combined
9% per year improvement in performance. Overall, we expect the I/O performance for a
given workload with a constant number of disks to increase by about 15% per year due to
the evolution of disk technology. In the more realistic situation where we take advantage
of the larger storage capacity of the newer disks so that the disk occupancy rate is kept
constant, the yearly improvement in performance should be approximately 8%.

Because of locality of reference and request scheduling, we find that for our workloads,
the average actual seek time is about 35% of the advertised average seek time for the
disk, and the average actual rotational latency is about 80% of the value specified. Further
analysis shows these figures to be relatively stable as disk technology evolves. We also
observe that the disk spends most of its time positioning the head and very little time



97

actually transferring data. With technology trends being the way they are, it will become
increasingly difficult to effectively utilize the available disk bandwidth. Therefore, we have
to consider reorganizing disk blocks in such a way that accesses become more sequential.
This is the subject of the following chapter.
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Chapter 4

The Automatic Improvement of Locality
in Storage Systems

4.1 Synopsis

Disk I/O is increasingly the performance bottleneck in computer systems. Furthermore,
managing the performance of disk-based storage has become progressively more difficult.
In this chapter, we note that although disk access time has been relatively stable, disk trans-
fer rates have risen dramatically. Given that processing power is increasingly available, we
propose Automatic Locality-Improving Storage (ALIS), an introspective storage system
that automatically reorganizes selected disk blocks based on the dynamic reference stream
to increase the spatial locality of reference and leverage the rapidly growing disk transfer
rate. ALIS is based on the observation that only a small fraction of the stored data is in
active use, and there often exist long repeated read sequences. Unlike earlier work which
was aimed at reducing the seek distance, ALIS focuses on eliminating physical I/Os by
increasing the effectiveness of sequential prefetch, an effect unlikely to diminish over time
with disk technology trends. Using trace-driven simulation with a large set of real work-
loads, we demonstrate that ALIS considerably outperforms prior techniques, improving the
average read performance by up to 50% for server workloads and by about 15% for per-
sonal computer workloads. Since disk performance in practice is increasing only by about
8% per year [Chapter 3], the benefit of ALIS may correspond to as much as several years
of technological progress.

4.2 Introduction

Processor performance has been increasing by more than 50% per year [HP96] while
disk access time, being limited by mechanical delays, has improved by only about 8% per
year [Gro00]. As the performance gap between the processor and the disk continues to
widen, disk-based storage systems are increasingly the bottleneck in computer systems,
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Figure 4.1: Time Needed to Read an Entire Disk as a Function of the Year the Disk was
Introduced.

even in personal computers (PCs) where I/O delays have been found to highly frustrate
users [Cor98]. To make matters worse, disk recording density has risen by more than 50%
per year [Gro00], far exceeding the rate of decrease in access density (I/Os per second per
gigabyte of data), which has been estimated to be only about 10% per year in mainframe
environments [McN95]. The result is that although the disk arm is only slightly faster
in each new generation of the disk, each arm is responsible for serving a lot more data.
For example, Figure 4.1 shows that the time to read an entire disk using random I/O has
increased from just over an hour for a 1992 disk to almost 80 hours for a disk introduced
in 2002.

Although the disk access time has been relatively stable, disk transfer rates have risen by
as much as 40% per year due to the increase in rotational speed and linear density [Gro00].
Given the technology and industry trends, such improvement in the transfer rate is likely to
continue, as is the almost annual doubling in storage capacity. Therefore, a promising ap-
proach to increasing effective disk performance is to replicate and reorganize selected disk
blocks so that the physical layout mirrors the logically sequential access. As more com-
puting resources become available or can be added relatively easily to the storage system
[Chapter 5], sophisticated techniques that accomplish this transparently, without human
intervention, are increasingly possible.

The ability to autonomically [IBM01a] manage storage performance is especially at-
tractive because of the growing cost and complexity of managing storage performance.
For instance, even in the simple case of a storage system with only a single disk, its per-
formance depends not just on where data is placed and how data is accessed, but also on
what was accessed previously. The dynamics of even a relatively simple operation is fur-
ther complicated by the increasingly complicated storage hierarchy with its various levels
of virtualization. Therefore, in this chapter, we propose an autonomic [IBM01a] storage
system that adapts itself to a given workload by automatically reorganizing selected disk
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blocks to improve the spatial locality of reference. We refer to such a system as Automatic
Locality-Improving Storage (ALIS).

ALIS currently optimizes disk block layout based on the observation that only a portion
of the stored data is in active use [Chapter 2] and that workloads tend to have long repeated
sequences of reads. ALIS exploits the former by clustering frequently accessed blocks
together while largely preserving the original block sequence, unlike previous techniques
(e.g., [AS95, BHMW98, RW91]) which fail to recognize that spatial locality exists and end
up rendering sequential prefetch ineffective. For the latter, ALIS analyzes the reference
stream to discover the repeated sequences from among the intermingling requests and then
lays the sequences out sequentially so that they can be effectively prefetched. Trace-driven
simulations using a large collection of real server and PC workloads show that ALIS con-
siderably outperforms previous techniques to improve read performance by up to 50% and
write performance by as much as 22%.

The key insight behind such impressive results is that placing data items close together
to reduce the seek distance (e.g., [AS95, BHMW98, RW91]) is not very effective at im-
proving performance since it does not lessen the rotational latency, which constitutes about
40% of the read response time [Chapter 3]. Moreover, because of inertia and head settling
time, there is but a relatively small time difference between a short seek and a long seek,
especially with newer disks. Therefore, for ALIS, reducing the seek distance is only a sec-
ondary effect. Instead, ALIS focuses on reducing the number of physical I/Os, an effect
that should not diminish over time with disk technology trends. Specifically, it locates data
close together in the sequence that they are likely to be accessed so that sequential prefetch
performed by the storage system to exploit the increasing disk transfer rate will likely be
useful. In other words, ALIS transforms the request stream to exhibit more sequentiality.

By operating at the level of the storage system, ALIS transparently improves the per-
formance of all I/Os, including memory-mapped I/O, paging I/O, file system metadata I/O,
and other system generated I/O which may constitute well over 60% of the I/O activity in a
system [RW91]. Moreover, it increases the performance of applications, even legacy ones,
without requiring any changes to the operating system, file system software or application.
By reducing the number of physical I/Os, ALIS is also likely to improve disk acoustics and
reduce power consumption but these effects are beyond the scope of this thesis.

The rest of this chapter is organized as follows. Section 4.3 contains an overview of
related work. In Section 4.4, we present the architecture of ALIS. This is followed in Sec-
tion 4.5 by a discussion of the methodology used to evaluate the effectiveness of ALIS.
Details of some of the algorithms are presented in Section 4.6 and are followed in Sec-
tion 4.7 by the results of our performance analysis. Section 4.8 concludes this chapter. To
keep the chapter focused, we highlight only portions of our results in the main text. More
detailed graphs and data are presented in Appendix D. Figures and tables in the appendix
are identified by a prefix D.
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4.3 Background and Related Work

Various heuristics have been used to lay out data on disk so that items (e.g., files) that
are expected to be used together are located close to one another (e.g., [MJLF84, Pea88,
MK91, GK97]. The shortcoming of these a priori techniques is that they are based on
static information such as the name space relationships of files, which may not reflect the
actual reference behavior. Furthermore, files become fragmented over time. The blocks
belonging to individual files can be gathered and laid out contiguously in a process known
as defragmentation [McD88, Exe01]. But defragmentation does not handle inter-file access
patterns and its effectiveness is limited by the file size which tends to be small [BHK+91,
RLA00]. Moreover, defragmentation assumes that blocks belonging to the same file tend to
be accessed together which may not be true for large files [RLA00] or database tables, and
during application launch when many seeks remain even after defragmentation [Cor98].

The posteriori approach utilizes information about the dynamic reference behavior to
arrange items. An example is to identify data items – blocks [RW91, AS95, BHMW98],
cylinders [VC90], files [SGM91, Whi94, Sym01] – that are referenced frequently and to
relocate them to be close together. Rearranging small pieces of data was found to be par-
ticularly advantageous [AS95] but in doing so, contiguous data that used to be accessed
together could be split up. There were some early efforts to identify dependent data and
to place them together [CR89, RW91], but for the most part, the previous work assumed
that references are independent, which has been shown to be invalid for real workloads
(e.g., [Smi85, HSY01a, HSY01b]). Furthermore, the previous work did not consider the
aggressive sequential prefetch common today, and was focused primarily on reducing only
the seek time.

The idea of co-locating items that tend to be accessed together has been investigated in
several different domains – virtual memory (e.g., [Fer76]), processor cache (e.g., [Hei94]),
object database (e.g., [TN92]) etc. The basic approach is to pack items that are likely to
be used contemporaneously into a superunit, i.e., a larger unit of data that is transferred
and cached in its entirety. Such clustering is designed mainly to reduce internal fragmen-
tation of the superunit. Thus the superunits are not ordered nor are the items within each
superunit. The same approach has been tried to pack disk blocks into segments in the
log-structured file system (LFS) [MRC+97]. However, storage systems in general have no
convenient superunit. Therefore such clustering merely moves related items close together
to reduce the seek distance. A superunit could be introduced but concern about the response
time of requests in the queue behind will limit its size so that ordering these superunits will
still be necessary for effective sequential prefetch.

Some researchers have also considered laying out blocks in the sequence that they are
likely to be used. However, the idea has been limited to recognizing very specific patterns
such as sequential, stepped sequential and reverse sequential in block address [CLTR98],
and to the special case of application starts [Cor98] where the reference patterns likely to
be repeated are identified with the help of external knowledge.
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Figure 4.2: Block Diagram of ALIS.

There has also been some recent work on identifying blocks or files that tend to be used
together or in a particular sequence so that the next time a context is recognized, the files
and blocks can be prefetched accordingly (e.g., [PZ91, GAN93, GA94, KL96, LD97]). The
effectiveness of this approach is constrained by the amount of locality that is present in the
reference stream, by the fact that it does not improve fetch efficiency, and by the burstiness
in the I/O traffic which makes it difficult to prefetch in time.

4.4 Architecture of ALIS

ALIS consists of four major components. These are depicted in the block diagram
in Figure 4.2. First, a workload monitor collects a trace of the addresses referenced as
requests are serviced. This is a low overhead operation and involves logging four to eight
bytes worth of data per request. Since the ratio of I/O traffic to storage capacity tends to
be small [Chapter 2], collecting a reference trace is not expected to impose a significant
overhead. For instance, we find in Chapter 2 that logging eight bytes of data per request
for the Enterprise Resource Planning (ERP) workload at one of the nation’s largest health
insurers will create only 12 MB of data on the busiest day.

Periodically, typically when the storage system is relatively idle, a workload analyzer
examines the reference data collected to determine which blocks should be reorganized and
how they should be laid out. Because workloads tend to be bursty, there should generally
be enough lulls in the storage system for the workload analysis to be performed daily
[Chapter 2]. The analysis can also be offloaded to a separate machine if necessary. The
workload analyzer uses two strategies, each targeted at exploiting a different workload
behavior. The first strategy attempts to localize hot, i.e., frequently accessed, data in a
process that we refer to as heat clustering. Unlike previously proposed techniques, ALIS
localizes hot data while preserving and sometimes even enhancing spatial locality. The
second strategy that ALIS uses is based on the observation that there are often long read
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sequences or runs that are repeated. Thus it tries to discover these runs to lay them out
sequentially so that they can be effectively prefetched. We call this approach run clustering.
The various clustering strategies will be discussed in detail in Section 4.6.

Based on the results of the workload analysis, a reorganizer module makes copies of
the selected blocks and lays them out in the determined order in a preallocated region of the
storage space known as the reorganized area (RA). This reorganization process can proceed
in the background while the storage system is servicing incoming requests. The use of a
specially set aside reorganization area as in [AS95] is motivated by the fact that only a
relatively small portion of the data stored is in active use [Chapter 2] so that reorganizing a
small subset of the data is likely to achieve most of the potential benefit. Furthermore, with
disk capacities growing very rapidly [Gro00], more storage is available for disk system
optimization. For the workloads that we examined, a reorganized area 15% the size of the
storage used is sufficient to realize nearly all the benefit.

In general, when data is relocated, some form of directory is needed to forward re-
quests to the new location. Because ALIS moves only a subset of the data, the directory
can be simply a lookaside table mapping only the data in the reorganized area. Assuming
8 bytes are needed to map 8 KB of data and the reorganized area is 15% of the storage
space, the directory size works out to be equivalent to only about 0.01% of the storage
space (15%*8/8192 ≈ 0.01%). The memory required for the directory can be further re-
duced by using well-known techniques such as increasing the granularity of the mapping
or restricting the possible locations that a block can be mapped to. The directory can also
be paged. Such actions may, however, affect performance.

Note that there may be multiple copies of a block in the reorganized area because a
given block may occur in the heat-clustered region and in multiple runs. The decision
of which copy to fetch, either original or one of the duplicates in the reorganized area is
determined by the traffic redirector which sits on the I/O path. For every read request, the
traffic redirector looks up the directory to determine if there are any up-to-date copies of
the requested data in the reorganized area. If there is more than one up-to-date copy of a
block in the system, the traffic redirector can select the copy to fetch based on the estimated
proximity of the disk head to each of the copies and the expected prefetch benefit. A simple
strategy that works well in practice is to give priority to fetching from the runs. If no run
matches, we proceed to the heat-clustered data, and if that fails, the original copy of the
data is fetched. We will discuss the policy of deciding which copy to select in greater detail
in Section 4.6.

For reliability, the directory is stored and duplicated in known, fixed locations on disk.
The on-disk directory is updated only during the process of block reorganization. When
writes to data that have been replicated and laid out in the reorganized area occur, one or
more copies of the data have to be updated. Any remaining copies are invalidated. We
will discuss which copy or copies to update later in Section 4.7.3. It suffices here to say
that such update and invalidate information is maintained in addition to the directory. At
the beginning of the block reorganization process, any updated blocks in the reorganized
region are copied back to the home or original area. Since there is always a copy of the
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data in the home area, it is possible to make the reorganization process resilient to power
failures by using an intentions list. With care, block reorganization can be performed while
access to data continues.

The on-disk directory is read on power-up and kept static during normal operation. The
update or invalidate information is, however, dynamic. Losing the memory copy of the di-
rectory is thus not catastrophic, but having non-volatile storage (NVS) would make things
simpler for maintaining the update/invalidate information. Without NVS, a straightforward
approach is to periodically write the update/invalidate information to disk. When the sys-
tem is first powered up, it checks to see if it was shut down cleanly the previous time. If
not, some of the update/invalidate information may have been lost. The update/invalidate
information in essence tracks the blocks in the reorganized area that have been updated or
invalidated since the last reorganization. Therefore, if the policy of deciding which blocks
to update and which to invalidate is based on regions in the reorganized area, copying all
the blocks in the update region back to the home area and copying all the blocks from the
home area to the invalidate region effectively resets the update/invalidate information.

ALIS can be implemented at different levels in the storage hierarchy, including the disk
itself, if predictions about embedding intelligence in disks [Gra98, KPH98b, RGF98] come
true. We are particularly interested in the storage adaptor and the outboard controller, which
can be attached to a storage area network (SAN) or an internet protocol network (NAS),
because they provide a convenient platform to host significant resources for ALIS, and the
added cost can be justified, especially for high performance controllers that are targeted at
the server market and which are relatively price-insensitive [Chapter 5]. For the personal
systems, a viable alternative is to implement ALIS in the disk device driver. More generally,
ALIS can be thought of as a layer that can be interposed somewhere in the storage stack.
ALIS does not require a lot of knowledge about the underlying storage system. So far, we
have simply assumed that the storage system downstream is able to service requests that
exhibit sequentiality much more efficiently than random requests. This is a characteristic
true of all disk-based storage systems and it turns out to be extremely powerful, especially
in view of the disk technology trends.

Note that some storage systems such as RAID (Redundant Array of Inexpensive Disks)
[CLG+94] adaptors and outboard controllers implement a virtualization layer or a virtual
to physical block mapping so that they can aggregate multiple storage pools to present
a flat storage space to the host. ALIS assumes that the flat storage space presented by
these storage systems performs largely like a disk so that virtually sequential blocks can
be accessed much more efficiently than random blocks. This assumption tends to be valid
because, for practical reasons such as to reduce overhead, any virtual to physical block
mapping is typically done at the granularity of large extents so that virtually sequential
blocks are likely to be also physically sequential. Moreover, file systems and applications
have the same expectation of the storage space so it behooves the storage system to ensure
that the expectation is met.
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Figure 4.3: Block Diagram of Simulation Model Showing the Optimized Parameters
[Chapter 3] for the Underlying Storage System.

4.5 Performance Evaluation Methodology

We apply the methodology developed in Chapter 3 to evaluate the effectiveness of
ALIS. The methodology is essentially trace-driven simulation with an improved method
for replaying the traces that allows us to model both the feedback effect between request
completion and subsequent I/O arrivals, and the burstiness in the I/O traffic. We could have
simply played back the trace maintaining the original timing as in [RW91] but that would
result in optimistic performance results for ALIS because it would mean more free time for
prefetching and fewer opportunities for request scheduling than in reality. The same traces
as in Chapter 3 are used here.

4.5.1 Simulation Model

The simulator that we use to quantify the benefit of ALIS is based on that described in
detail in the previous chapter. Its major components are presented in Figure 4.3.

A wide range of techniques such as caching, prefetching, write buffering, request
scheduling and striping have been invented for optimizing I/O performance. Each of these
optimizations can be configured with different policies and parameters, resulting in a huge
design space for the storage system. In Chapter 3, we systematically explore the entire
design space to establish the effectiveness of the various techniques for real workloads, and
to determine the best practices for each technique. Here, we leverage our previous results
and use the optimal settings we derived to set up the baseline storage system for evalu-
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ating the effectiveness of ALIS. As in the preceding chapter, we consider two reasonable
configurations the parameters of which are summarized in Figure 4.3.

Recall that for workloads with multiple disk volumes, we concatenate the volumes
to create a single address space. Each workload is fitted to the smallest disk from the
IBM Ultrastar 73LZX [IBM01b] family that is bigger than the total volume size, leaving
a headroom of 20% for the reorganized area. When we scale the capacity of the disk
and require more than one disk to hold the data, we stripe the data using the previously
determined stripe size of 2 MB. We do not simulate RAID protection since it is for the
most part orthogonal to ALIS.

As we shall see, infrequent block reorganization is sufficient to realize most of the ben-
efit of ALIS. In addition, our analysis of the workloads reveals that there are relatively
idle periods during which the reorganization can be performed [Chapter 2]. Therefore, in
this study, we make the simplifying assumption that block layout can be changed instan-
taneously, as in previous work (e.g., [RW91]). Later in Section 4.7.4, we will empirically
validate this assumption.

4.5.2 Performance Metrics

I/O performance can be measured at different levels in the storage hierarchy. In order to
fully quantify the effect of ALIS, we measure performance from when requests are issued
to the storage system, before they are potentially broken up by the ALIS redirector or the
volume manager for requests that span multiple disks. The two important metrics in I/O
performance are response time and throughput. As in the previous chapter, we approximate
throughput by the reciprocal of the average service time, which we define as the average
amount of time the disk arm is busy per request, deeming the disk arm to be busy both when
it is being moved into position to service a request and when it has to be kept in position to
transfer data.

Recall that the main benefit of ALIS is to transform the request stream so as to increase
the effectiveness of sequential prefetch performed by the storage system downstream. To
gain insight into this effect, we also examine the read miss ratio of the cache (and prefetch
buffer) in the storage system. The read miss ratio is defined as the fraction of read requests
that are not satisfied by the cache (or prefetch buffer), or in other words, the fraction of
requests that requires physical I/O. It should take on a lower value when sequential prefetch
is more effective.

Note that we tend to care more about read response time and less about write response
time because write latency can often be effectively hidden by write buffering [Chapter 3].
In fact, write buffering can also dramatically improve write throughput. Moreover, because
workloads tend to be bursty [Chapter 2], the physical writes can generally be deferred until
the system is relatively idle. On the other hand, despite predictions to the contrary, both
measurements of real systems (e.g., [BHK+91]) and simulation studies (e.g., [Chapter 3]
and [DMW+94, HSY01b]) show that large caches, while effective, have not eliminated
read traffic.
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Pm 3.14 2.23 0.447 1.30 1.65 1.24 0.226 0.474 

Sm 3.37 2.67 0.468 1.57 1.38 1.10 0.204 0.855 

 
 

Table 4.1: Baseline Performance Figures.

Therefore in this chapter, we focus primarily on the read response time, read service
time, read miss ratio, and to a lesser extent, on the write service time. In particular, we look
at how these metrics are improved with ALIS where improvement is defined as (valueold−
valuenew)/valueold if a smaller value is better and (valuenew − valueold)/valueold oth-
erwise. We use the performance figures obtained previously in Chapter 3 as the baseline
numbers. These are summarized in Table 4.1.

4.6 Clustering Strategies

In this section, we present in detail various techniques for deciding which blocks to
reorganize and how to lay these blocks out relative to one another. We refer to these tech-
niques collectively as clustering strategies. We will use empirical performance data to mo-
tivate the various strategies and to substantiate our design and parameter choices. General
performance analysis of the system will appear in the next section.

4.6.1 Heat Clustering

In Chapter 2, we observe that only a relatively small fraction of the data stored on disk
is in active use. The rest of the data are simply there, presumably because disk storage is
the first stable or non-volatile level in the memory hierarchy, and the only stable level that
offers online convenience. Given the exponential increase in disk capacity, the tendency
is to be less careful about how disk space is used so that data will be increasingly stored
on disk just in case they will be needed. Figure 4.4 depicts the typical situation in a stor-
age system. Each square in the figure represents a block of data and the darkness of the
square reflects the frequency of access to that block of data. The squares are arranged in
the sequence of the corresponding block address such that the square at the extreme right
of a row immediately precedes that at the extreme left of the next row. There are some
hot or frequently accessed blocks and these are distributed throughout the storage system.
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Accessing such active data requires the disk arm to seek across a lot of inactive or cold
data, which is clearly not the most efficient arrangement.

This observation suggests that we should try to determine the active blocks and cluster
them together so that they can be accessed more efficiently with less physical movement.
As discussed in Section 4.3, over the last two decades, there have been several attempts to
improve spatial locality in storage systems by clustering together hot data [VC90, SGM91,
RW91, Whi94, AS95, BHMW98, Sym01]. We refer to these schemes collectively as heat
clustering. The basic approach is to count the number of requests directed to each unit
of reorganization over a period of time, and to use the counts to identify the frequently
accessed data and to rearrange them using a variety of block layouts. For the most part
however, the previously proposed block layouts fail to effectively account for the fact that
real workloads exhibit sequentiality, and that there is a dramatic and increasing difference
between random and sequential disk performance.

Organ Pipe and Heat Placement

For instance, previous work rely almost exclusively on the organ pipe layout [Knu98]
in which the most frequently accessed data is placed at the center of the reorganized area,
the next most frequently accessed data is placed on either side of the center, and the process
continues alternating between the two sides of the center until the least-accessed data has
been placed at the edges of the reorganized region. This is illustrated in Figure 4.4. If we
visualize the block access frequencies in the resulting arrangement, we get an image of
organ pipes, hence the name.

Considering the disk as a 1-dimensional space, the organ pipe heuristic minimizes disk
head movement under the conditions that data is demand fetched, and that the references
are derived from an independent random process with a known fixed distribution and are
handled on a first-come-first served (FCFS) basis [Knu98]. However, disks are really 2-
dimensional in nature, and the cost of moving the head is not an increasing function of
the distance moved. A small backward movement would, for example, require almost an
entire disk revolution. Furthermore, storage systems today perform aggressive prefetch
and request scheduling, and in practice, data references are not independent nor are they
drawn from a fixed distribution. See for instance [Smi85, HSY01a, HSY01b] where real
workloads are shown to clearly generate dependent references. In other words, the organ
pipe arrangement is not optimal in practice and may in fact end up splitting contiguous
data, thereby rendering sequential prefetch ineffective and causing some requests to require
multiple I/Os. This is especially the case when the unit of reorganization is small, as was
recommended previously (e.g., [AS95]) in order to cluster hot data as closely as possible.

In Figures 4.5 and D.1, we present the performance effect of heat clustering with the
organ pipe layout on our various workloads. These figures assume that reorganization is
performed daily and that the reorganized area is 10% the size of the total volume and is lo-
cated at a byte offset 30% into the volume with the volume laid out inwards from the outer
edge of the disk. We will evaluate the sensitivity to these parameters in Section 4.7. As
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Figure 4.4: Block Layout Strategies for Heat Clustering.
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Figure 4.5: Effectiveness of Organ Pipe Placement at Improving Read Performance
(Resource-Rich).

discussed, the organ pipe heuristic performs very poorly. Contrary to previous recommen-
dations, a small reorganization unit is especially bad, dramatically degrading performance
for all the workloads. Observe that with larger reorganization units, the performance degra-
dation is reduced. This is because spatial locality is preserved within the reorganization
unit. In the limit, the organ pipe layout converges to the original block layout and achieves
performance parity with the base unreorganized case.

To prevent the disk arm from having to seek back and forth across the center of the
organ pipe arrangement, an alternative is to arrange the hot reorganization units in decreas-
ing order of their heat or frequency counts. In such an arrangement, the most frequently
accessed reorganization unit is placed first, followed in order by the next most frequently
accessed unit, and so on. This is referred to as heat layout in Figure 4.4. As shown in
Figures D.2 and D.3, the heat layout, while better than the organ pipe layout, still degrades
performance substantially for all but the largest reorganization units.

Link Closure Placement

An early study did identify the problem that when sequentially accessed data is split
on either side of the organ pipe arrangement, the disk arm has to seek back and forth
across the disk resulting in decreased performance [RW91]. A technique of maintaining
forward and backward pointers from each reorganization unit to the reorganization unit
most likely to precede and succeed it was proposed. This scheme is similar to the heat
layout except that when a reorganization unit is placed, the link closure formed by following
the forward and backward pointers is placed at the same time. As shown in Figures 4.6
and D.4, this scheme, though better than the pure organ pipe heuristic, still suffers from the
same problems because it is not accurate enough at identifying data that tend to be accessed
in sequence.
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Figure 4.6: Effectiveness of Link Closure Placement at Improving Read Performance
(Resource-Rich).

Packed Extents and Sequential Layout

Since only a portion of the stored data is in active use, clustering the hot data, in effect
short-stroking or using a small fraction of the disk, should yield a substantial improvement
in performance. The key to realizing this potential improvement is to recognize that there
is some existing spatial locality in the reference stream, especially since the original block
layout is the result of many optimizations (see Section 4.3). When clustering the hot data,
we should therefore attempt to preserve the original block sequence, particularly when
there is aggressive read-ahead as is the case today.

With this insight, we develop a block layout strategy called packed extents. As before,
we keep a count of the number of requests directed to each unit of reorganization over
a period of time. During reorganization, we first identify the n reorganization units with
the highest frequency count, where n is the number of reorganization units that can fit in
the reorganized area. These are the target units, i.e., the units that should be reorganized.
Next, the storage space is divided into extents each the size of many reorganization units.
These extents are sorted based on the highest access frequency of the reorganization units
within each extent. If there is a tie, the next highest access frequency is compared. For
instance, if the extent size is a row of blocks in Figure 4.4 and the extents are numbered
from top to bottom, the sorted extent list is 9,3,6,1,10,5,7,2,8. In the packed extents layout,
the target reorganization units are arranged in the reorganized region in ascending order of
their extent rank in the sorted extent list, and their offset within the extent. In the example
of Figure 4.4, there are 18 target units in extent nine and eight in extent three. Because
extent nine and extent three are respectively the first and second extents in the sorted extent
list, the 18 target units of extent nine are laid out in address sequence before the eight
target units in extent three, and so on. The packed extents layout essentially packs hot data
together while preserving the sequence of the data within each extent, hence its name.
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Figure 4.7: Effectiveness of Packed Extents Layout at Improving Read Performance
(Resource-Rich).

The main effect of the packed extents layout is to reduce seek distance without decreas-
ing prefetch effectiveness. By moving data that are seldom read out of the way, it actually
also improves the effectiveness of sequential prefetch, as can be seen by the reduction in the
read miss ratio in Figures 4.7 and D.5, which assume a 4 KB reorganization unit. Observe
from the figures that this scheme turns out to perform very well for large extents, improving
average read response time in the resource-rich environment by up to 12% and 31% for the
PC and server workloads respectively. That the performance increases with extent sizes up
to the gigabyte range implies that for laying out the hot reorganization units, preserving
existing spatial locality is more important than concentrating the heat.

This suggests that simply arranging the target reorganization units in increasing order of
their original block address should work well. Such a sequential layout is the special case
of packed extents with a single extent. While straightforward, the sequential layout tends
to be sensitive to the original block layout, especially to user/administrator actions such as
the order in which workloads are migrated or loaded onto the storage system. But for our
workloads, the sequential layout works well. Observe from Figures 4.8 and D.6 that with
a reorganization unit of 4KB, the average read response time is improved by up to 29% in
the resource-poor environment and 31% in the resource-rich environment. It turns out that
sequential layout was considered in [AS95] where it was reported to perform worse than
the organ pipe layout. The reason was that the earlier work did not take into account the
aggressive caching and prefetching common today, and was focused primarily on reducing
the seek time. In this chapter, unless explicitly mentioned otherwise, we use the sequential
layout for heat clustering.

To increase stability in the effectiveness of heat clustering, the reference counts can be
aged such that

Countnew = αCountcurrent + (1 − α)Countold (4.1)
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Figure 4.8: Effectiveness of Sequential Layout at Improving Read Performance (Resource-
Rich).

0

10

20

30

40

0 0.2 0.4 0.6 0.8 1
Age Factor, �  

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich
0

10

20

30

40

0 0.2 0.4 0.6 0.8 1
Age Factor, �  

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

Figure 4.9: Sensitivity of Heat Clustering to Age Factor, α (Resource-Rich).

where Countnew is the reference count used to drive the reorganization, Countcurrent is
the reference count collected since the last reorganization and Countold is the previous
value of Countnew. The parameter α controls the relative weight placed on the current
reference counts and those obtained in the past. For example, with an α value of 1, only
the most recent reference counts are considered. In Figures 4.9 and D.9, we study how
sensitive performance with the sequential layout is to the value of the parameter α. The
PC workloads tend to perform slightly better for smaller values of α, meaning when more
history is taken into account. The opposite is true, however, of the server workloads on
average but both effects are small. As in [RW91], all the results in this chapter assume a
value of 0.8 for α unless otherwise indicated.
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Run 1 Run 2

Figure 4.10: Block Layout with Run Clustering.

4.6.2 Run Clustering

Our analysis of the various workloads also reveals that the reference stream contains
long read sequences that are often repeated. The presence of such repeated read sequences
or runs should not be surprising since computers are frequently asked to perform the same
tasks over and over again. For instance, PC users tend to use a core set of applications, and
each time the same application is launched, the same set of files [ZS99] and blocks [Cor98]
are read. The existence of runs suggest a clustering strategy that seeks to identify these runs
so as to lay them out sequentially in the reorganized area. We refer to this strategy as run
clustering. Figure 4.10 illustrates the basic idea behind run clustering assuming that two
runs are discovered. Note that the blocks in each of the runs are laid out in the reorganized
region in the discovered sequence so that they can be effectively prefetched the next time
the same sequence is encountered.

Representing Access Patterns

The reference stream contains a wealth of information. The first step in run clustering is
to extract relevant details from the reference stream and to represent the extracted informa-
tion compactly and in a manner that facilitates analysis. This is accomplished by building
an access graph where each vertex represents a unit of reorganization and the weight of
an edge from vertex i to vertex j represents the desirability for reorganization unit j to be
located close to and after reorganization unit i. For example, a straightforward method for
building the access graph is to set the weight of edge i→j equal to the number of times
reorganization unit j is referenced immediately after unit i. But this method represents
only pair-wise patterns. Moreover, at the storage level, any repeated pattern is likely to
be interspersed by other requests because the reference stream is the aggregation of many
independent streams of I/O, especially in multi-tasking and multi-user systems. Further-
more, the I/Os may not arrive at the storage system in the order they were issued because
of request scheduling or prefetch. Therefore, the access graph should represent not only
sequences that are exactly repeated but also those that are largely or pseudo repeated.

Such an access graph can be constructed by setting the weight of edge i→j equal to the
number of times reorganization unit j is referenced shortly after accessing unit i, or more
specifically the number of times unit j is referenced within some number of references,
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Figure 4.11: Access Graph with a Context Size of Two.

τ , of accessing unit i [MSNO74]. We refer to τ as the context size. As an example,
Figure 4.11(a) illustrates the graph that represents a sequence of two requests where the
first request is for reorganization unit R and the second is for unit U . In Figure 4.11(b),
we show the graph when an additional request for unit N is received. The figures assume
a context size of two. Therefore, edges are added from both unit R and unit U to unit
N . Figure 4.11(c) further illustrates the graph after an additional four requests for data are
received in the sequence R, X , U , N . The resulting graph has three edges of weight two
among the other edges of weight one. These edges of higher weight highlight the largely
repeated sequence R, U , N . This example shows that by choosing an appropriate value
for the context size or τ , we can effectively filter out intermingled references. We will
investigate good values for τ for our workloads later.

An undesirable consequence of having the edge weight represent the number of times
a reorganization unit is referenced within τ references of accessing another unit is that we
lose information about the exact sequence in which the references occur. For instance,
Figure 4.12(a) depicts the graph for the reference string R,U ,N ,R,U ,N . Observe that reor-
ganization unit R is equally connected to unit U and unit N . The edge weights indicate that
units U and N should be laid out after unit R but they do not tell the order in which these
two units should be arranged. We could potentially figure out the order based on the edge
of weight two from unit U to unit N . But to make it easier to find repeated sequences, the
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Figure 4.12: The Effect of Graduated Edge Weight (Reference String = R,U,N,R,U,N,
Context Size = 2).

actual sequence of reference can be more accurately represented by employing a graduated
edge weight scheme where the weight of edge i→j is a decreasing function of the number
of references between when those two data units are referenced. For instance, suppose Xi

denotes the reorganization unit referenced by the i-th read. For each Xn, we add an edge
of weight τ − j + 1 from Xn−j to Xn, where j ≤ τ . In the example of Figure 4.11(b), we
would add an edge of weight one from unit R to unit N and an edge of weight two from
unit U to unit N . Figure 4.12(b) shows that with such a graduated edge weight scheme, we
can readily tell that unit R should be immediately followed by unit U when the reference
string is R,U ,N ,R,U ,N .

More generally, we can use the edge weight to carry two pieces of information – the
number of times a reorganization unit is accessed within τ references of another, and the
distance or number of intermediate references between when these two units are accessed.
Suppose f is a parameter that determines the fraction of edge weight devoted to represent-
ing the distance information. Then for each Xn, we add an edge of weight 1−f +f ∗ τ−j+1

τ

from Xn−j to Xn, where j ≤ τ . We experimented with varying the weighting of these two
pieces of information and found that f = 1 tends to work better although the difference is
small (Figure D.10). The effect of varying f is small because our run discovery algorithm
(to be discussed later) is able to determine the correct reference sequence most of the time,
even without the graduated edge weights.

In Figures 4.13 and D.11, we analyze the effect of different context sizes on our various
workloads. The context size should generally be large enough to allow pseudo repeated
reference patterns to be effectively distinguished. For our workloads, performance clearly
increases with the context size and tends to stabilize beyond about eight. Unless otherwise
indicated, all the results in this chapter assume a context size of nine. Note that the reor-
ganization units can be of a fixed size but the results presented in Figures 4.14 and D.12
suggest that this is not very effective. In ALIS, each reorganization unit represents the data
referenced in a request. By using such variable-sized reorganization units, we are able to
achieve much better performance since the likelihood for a request to be split into multiple
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Figure 4.13: Sensitivity of Run Clustering to Context Size, τ (Resource-Rich).
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Figure 4.14: Effectiveness of Run Clustering with Fixed-Sized Reorganization Units
(Resource-Rich).

I/Os is reduced. Prefetch effectiveness is also enhanced because internal fragmentation is
avoided so that any discovered sequence is likely to contain only the data that is actually
referenced. In addition, this approach allows the same data block to potentially appear in
multiple runs, and helps to distinguish among different access sequences that include the
same block.

Various pruning algorithms can be used to limit the size of the graph. In this thesis,
we remove the vertices and edges with weight below some threshold which we set at the
respective 10th percentile. In other words, we remove vertices weighing less than 90% of
all the vertices and edges with weight in the bottom 10% of all the edges. The weight of a
vertex is defined as the weight of its heaviest edge. This simple bottom pruning policy adds
no additional memory overhead and preserves the relative connectedness of the vertices so
that the algorithm for discovering the runs is not confused when it tries to determine how
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Figure 4.15: Sensitivity of Run Clustering to Graph Size (Resource-Rich).

to sequence the reorganization units. To model the graph size, we tabulated the size of
the vertex and adjacency list structures. The vertex structure requires the following fields -
vertex ID (6 bytes), a pair of adjacency list pointers (2x4 bytes), pointer to next vertex (4
bytes), status byte (1 byte). Note that the graph is directed so we need a pair of adjacency
lists for each vertex to be able to quickly determine both the incoming and the outgoing
edges. Accordingly, there are two adjacency list entries (an outgoing and an incoming)
for each edge. Each of these entries consists of the following fields – pointer to vertex (4
bytes), weight (2 bytes), pointer to next edge (4 bytes). Therefore each vertex in the graph
requires 19 bytes of memory while each edge occupies 20 bytes.

Figures 4.15 and D.13 show the performance improvement that can be achieved as a
function of the size of the graph. Observe from the figures that a graph smaller than 0.5%
of the storage used is sufficient to realize most of the benefit of run clustering. This is
the default graph size we use for the simulations reported in this chapter. Memory of
this size should be available when the storage system is relatively idle because caches
larger than this are needed to effectively hold the working set [Chapter 3]. A multiple-
pass run clustering algorithm can be used to further reduce memory requirements. Note
that high-end storage systems today host many terabytes of storage but the storage is used
for different workloads and are partitioned into logical subsystems or volumes. These
volumes can be individually reorganized so that the memory required at any one time for
run clustering is greatly reduced from 0.5% of the total storage in use.

An idea for speeding up the graph build process and reducing the graph size is to pre-
filter the reference stream to remove requests that do not occur frequently. The basic idea
is to keep reference counts for each reorganization unit as in the case of heat clustering.
In building the access graph, we ignore all the requests whose reference count falls below
some threshold. Our experiments show that pre-filtering tends to reduce the performance
gain (Figure D.14) because it is, for the most part, not as accurate as the graph pruning
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Figure 4.16: Sensitivity of Run Clustering to Age Factor, β (Resource-Rich).

process in removing uninteresting information. But in cases where we are constrained by
the graph build time, it could be a worthwhile option to pursue.

As in heat clustering, we age the edge weights to provide some continuity and avoid
any dramatic fluctuations in performance. Specifically, we set

Weightnew = βWeightcurrent + (1 − β)Weightold (4.2)

where Weightnew is the edge weight used in the reorganization, Weightcurrent is the
edge weight collected since the last reorganization and Weightold is the previous value
of Weightnew. The parameter β controls the relative weight placed on the current edge
weight and those obtained in the past. In Figures 4.16 and D.15, we study how sensitive
run clustering is to the value of the parameter β. Observe that as in heat clustering, the
workloads are relatively stable over a wide range of β values with the PC workloads per-
forming better for smaller values of β, meaning when more history is taken into account,
and the server workloads preferring larger values of β. Such results reflect that fact that the
PC workloads are less intense and have reference patterns that are repeated less frequently
so that it is useful to look further back into history to find these patterns. This is espe-
cially the case for the merged PC workloads where the reference pattern of a given user can
quickly become aged out before it is encountered again.

Throughout the design of ALIS, we try to desensitize its performance to the various
parameters so that it is not catastrophic for somebody to “configure the system wrongly”.
To reflect the likely situation that ALIS will be used with a default setting, we base our
performance evaluation on parameter settings that are good for an entire class of workloads
rather than on the best values for each individual workload. Therefore, the results in this
chapter assume a default β value of 0.1 for all the PC workloads and 0.8 for all the server
workloads. A useful piece of future work would be to devise ways to set the various param-
eters dynamically to adapt to each individual workload. Figures 4.16 and D.15 suggest that
the approach of using hill-climbing to gradually adjust the value of β until a local optimum
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is reached should be very effective because the local optimum is also the global optimum.
This characteristic is generally true for the parameters in ALIS.

Mining Access Patterns

The second step in run clustering is to analyze the access graph to discover desirable
sequences of reorganization units, which should correspond to the runs in the reference
stream. This process is similar to the graph-theoretic clustering problem with an important
twist that we are interested in the sequence of the vertices. Let G be an access graph built
as outlined above and R, the target sequence or run. We use |R| to denote the number of
elements in R and R[i], the ith element in R. By convention we refer to R[1] as the front
of R and R[|R|] as the back of R. The following outlines the algorithm that ALIS uses to
find R.

1. Find the heaviest edge linking two unmarked vertices.

2. Initialize R to the heaviest edge found and mark the two vertices.

3. Repeat

4. Find an unmarked vertex u such that
headweight =

∑Min(τ,|R|)
i=1 Weight(u,R[i]) is maximized.

5. Find an unmarked vertex v such that
tailweight =

∑Min(τ,|R|)
i=1 Weight(R[|R| − i + 1], v) is maximized.

6. if headweight > tailweight

7. Mark u and add it to the front of R.

8. else

9. Mark v and add it to the back of R.

10. Goto Step 3.

In steps 1 and 2, we initialize the target run by the heaviest edge in the graph. Then
in steps 3 to 10, we inductively grow the target run by adding a vertex at a time. In each
iteration of the loop, we select the vertex that is most strongly connected to either the head
or tail of the run, the head or tail of the run being, respectively, the first and last τ members
of the run and τ is the context size used to build the access graph. Specifically, in step 4,
we find a vertex u such that the weight of all its edges incident on the vertices in the head
is the highest. Vertex u represents the reorganization unit that we believe is most likely to
immediately precede the target sequence in the reference stream. Therefore, if we decide
to include it in the target sequence, we will add it as the first entry (Step 7). Similarly, in
step 5, we find a vertex v that we believe is most likely to immediate follow the target run
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in the reference stream. The decision of which vertex u or v to include in the target run is
made greedily. We simply select the unit that is most likely to immediate precede or follow
the target sequence, i.e., the vertex that is most strongly connected to the respective ends of
the target sequence (Step 6).

By selecting the next vertex to include in the target run based on its connectedness to the
first or last τ members of the run, the algorithm is following the way the access graph is built
using a context of τ references to recover the original reference sequence. For instance, in
Figure 4.17, we show the operation of the algorithm on a graph for the reference string
A,R,U ,N ,B,A,R,U ,N ,B. For simplicity, we assume that we use uniform edge weights
and the context size is two. Without loss in generality, suppose we pick the edge R→U in
step 1. Since the target sequence has only two entries at this point, the head and tail of the
sequence are identical and contain the units R and U . By considering the edges of both unit
R and unit U , the algorithm easily figures out that A is the unit most likely to immediate
precede the sequence R,U while N is the unit most likely to immediately follow it. Note
that looking at unit U alone, we would not be able tell whether N or B is the unit most
likely to immediately follow the target sequence. To grow the target run, we can either add
unit A to the front or unit N to the rear. Based on Step 6, we add unit N to the rear of the
target sequence. Figure 4.17(c) shows the next iteration in the run discovery process where
it becomes clear that head refers to the first τ members of the target run while tail refers to
the last τ members. Note that the use of a context of τ references also allows the algorithm
to distinguish between repeated patterns that share some common reorganization units.

The process of growing the target run continues until headweight and tailweight fall
below some edge weight threshold. The edge weight threshold ensures that a sequence
(e.g., u→head) becomes part of the run only if it occurs frequently. The threshold is there-
fore conveniently expressed relative to the value that headweight or tailweight would
assume if that sequence were to occur once in every reorganization interval. In Figures
4.18 and D.16, we investigate the effect of varying the edge weight threshold on the effec-
tiveness of run clustering. Observe that being more selective in picking the vertices tends
to reduce performance except at very small threshold values for the PC workloads. As we
have noted earlier, the PC workloads tend to have less repetition and a lot more churn in
their reference patterns so that it is necessary to filter out some of the noise and look further
into the past to find repeated patterns. The server workloads are much easier to handle and
respond well to run clustering even without filtering. The jagged nature of the plot for the
average of the server workloads (S-Avg.) results from DS1, which being only seven days
long is too short for the edge weights to be smoothed out. In this chapter, we assume a
default value of 0.1 for the edge weight threshold for all the workloads.

A variation of the run discovery algorithm is to terminate the target sequence whenever
headweight and tailweight are much lower than (e.g., less than half) their respective val-
ues in the previous iteration of the loop (steps 3-10). The idea is to prevent the algorithm
from latching onto a run and pursuing it too far, or in other words, from going too deep
down what could be a local minimum. Another variation of the algorithm is to add u to the
target run only if the heaviest outgoing edge of u is to one of the vertices in head and to
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Figure 4.17: The Use of Context in Discovering the Next Vertex in a Run (Reference String
= A,R,U ,N ,B,A,R,U ,N ,B, Context Size = 2).
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Figure 4.18: Sensitivity of Run Clustering to Edge Threshold (Resource-Rich).

add v to the run only if the heaviest incoming edge of v is from one of the vertices in tail.
We experimented with both variations and found that they do not offer consistently better
performance. As we shall see later, the workloads do change over time so that excessive
optimization based on the past may not be productive.

The whole algorithm is executed repeatedly to find runs of decreasing desirability. In
Figure D.17, we study whether it makes sense to impose a minimum run length. Runs that
are shorter than the minimum are discarded. Intuitively, the context size is chosen to allow
pseudo repeated patterns to be effectively distinguished. Thus a useful run should be at
least as long as the context size. This turns out to agree with our experimental results. Note
that the run-discovery process is very efficient, requiring only O(e · log(e) + v) operations,
where e is the number of edges and v, the number of vertices. The e · log(e) term results
from sorting the edges once to facilitate step 1. Then each vertex is examined at most once.

After the runs have been discovered and laid out in the reorganized area, the traffic
redirector decides whether a given request should be serviced from the runs. This decision
can be made by conditioning on the context or the recent reference history. For example,
suppose that a request matches the kth reorganization unit in run R. We define the context
match as the percentage of the previous τ requests that are in R[k − τ ]... R[k − 1], and we
redirect a request to R only if the context match exceeds some value. For our workloads,
we find that it is generally better to always try to read from a run (Figure D.18).

4.6.3 Heat and Run Clustering Combined

A trend that stands out throughout our analysis of run clustering is that the improvement
in read miss ratio significantly exceeds the improvement in read response and service time,
especially for the PC workloads. It turns out that this is because many of the references
cannot be clearly associated with any repeated sequence. For instance, we find that for
the PC workloads, only about 20–30% of the disk read requests can be satisfied from the
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(a) Heat Clustering.
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(b) Run Clustering.
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(c) Heat and Run Clus-
tering Combined.

Figure 4.19: Percent of Disk Reads Satisfied in Reorganized Area (Resource-Rich).

reorganized area with run clustering (Figures 4.19(b) and D.19(b)). Thus in practice, the
disk head has to move back and forth between the runs in the reorganized area and the
remaining hot spots in the home area. In other words, although the number of disk reads is
reduced by run clustering, the time taken to service the remaining reads is lengthened. In
the next section, we will study placing the reorganized region at different offsets into the
volume. Ideally, we would like to locate the reorganized area near the remaining hot spots
but these are typically distributed across the disk so that no single good location exists.
Besides, figuring out where these hot spots are a priori is difficult. We believe a more
promising approach is to try to satisfy more of the requests from the reorganized area. One
way of accomplishing this is to simply perform heat clustering in addition to run clustering.
Figure 4.20 illustrates the idea.

Since the runs are specific sequences of reference that are likely to be repeated, we
assign higher priority to them. Specifically, on a read, we first attempt to satisfy the request
by finding a matching run. If no such run exists, we try to read from the heat-clustered
region before falling back to the home area. The reorganized area is shared between heat
and run clustering, with the runs being allocated first. In this chapter, all the results for
heat and run clustering combined assume a default reorganized area that is 15% of the
storage size and that is located at a byte offset 30% into the volume. We will investigate the
performance sensitivity to these parameters in the next section. We also evaluated the idea
of limiting the size of the reorganized area that is devoted to the runs but found that it did
not make a significant difference (Figure D.20). Sharing the reorganized area dynamically
between heat and run clustering works well in practice because a workload with many runs
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Run 1 Run 2

Figure 4.20: Block Layout with Heat and Run Clustering Combined.
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Figure 4.21: Sensitivity of Heat and Run Clustering Combined to Edge Threshold
(Resource-Rich).

is not likely to gain much from the additional heat clustering while one with few runs will
probably benefit a lot.

As shown in Figures 4.19(c) and D.19(c), when run clustering is augmented with heat
clustering, the majority of the disk read requests can be satisfied from the reorganized area.
This suggests that when heat clustering is performed in addition to run clustering, we can
be more selective about what we consider to be part of a run because even if we are overly
selective and miss some blocks, these blocks are likely to be found nearby in the adjacent
heat-clustered region so that there is no need to go all the way to the original location of
the blocks. We therefore reevaluate the edge weight threshold used in the run discovery
algorithm. Figures 4.21 and D.21 summarize the results. Notice that compared to the
case of run clustering alone (Figures 4.18 and D.16), the plots are much more stable and
the performance is less sensitive to the edge weight threshold, which is a nice property.
As expected, the performance is better with larger threshold values when heat clustering is
performed in addition to run clustering. Thus, we increase the default edge weight threshold
for the PC workloads to 0.4 when heat and run clustering are combined.
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Figure 4.22: Performance Improvement with the Various Clustering Schemes (Resource-
Rich).

4.7 Performance Analysis

4.7.1 Clustering Algorithms

In Figures 4.22 and D.22, we summarize the performance improvement achieved by the
various clustering schemes. In general, the PC workloads are improved less by ALIS than
the server workloads. This could be because the PC workloads, being more recent than the
server workloads, have comparatively more caching upstream in the file system where a lot
of the repeated references are satisfied. Therefore, the references remaining downstream
at the physical level are less predictable. The disparity in the effectiveness of ALIS at
speeding up the PC workloads and the server workloads could also result from the different
file systems used and the increased availability of storage space in the more recent (PC)
workloads. We would expect that when more storage space is available, fragmentation
would be reduced so that there is less potential for ALIS to improve the block layout.
However, most of the storage space in one of the server workloads, DS1, is updated in place.
Such storage should have little fragmentation. Yet ALIS is able to improve the performance
for this workload by a lot more than for the PC workloads. Note that fragmentation would
not be completely eliminated when more storage space is available. Fragmentation occurs
when files are deleted and the freed space is reused. Even though recent PCs have big disks
so that the user seldom needs to explicitly remove files to make room, a lot of files (e.g., log,
backup) in this environment are automatically installed/created and deleted. Furthermore,
in order to preserve locality and reduce fragmentation, recently freed space is reallocated
even when there is a big chunk of empty space that has yet to be used.

A deeper analysis of some of the PC workloads for which we have process and filename
information shows that a user who starts an application will tend not to launch it again for
several days. More generally, the PC is a general purpose device that manages the range of
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activities of a single user while the servers are more specialized, handling the same kinds
of tasks for many different users. Thus the access pattern for the PC workloads tends to
be more diverse and less predictable. In particular, any repetition in the PC workloads
results from the same user performing the same task and this occurs much less frequently
than in the case of the server workloads where the same task can be performed by many
different users. Therefore for the PC workloads, there is less benefit in optimizing the disk
block layout based on how the blocks were previously accessed. This intrinsic difference
between the two kinds of workloads also explains why run clustering, which is predicated
on the repetition of specific access patterns, is less effective for the PC workloads than heat
clustering, which simply clusters frequently accessed data together, while the opposite is
true for the server workloads.

Observe further that combining heat and run clustering enables us to achieve the greater
benefit of the two schemes. In fact, the performance of the combined scheme is clearly
superior to either technique alone in practically all the cases. Specifically, the read response
time for the PC workloads is improved on average by about 17% in the resource-poor
environment and 14% in the resource-rich environment. The sped-up PC workloads are
improved by about the same amount while the merged PC workload is improved by just
under 10%. In general, the merged PC workload is difficult to optimize for because the
repeated patterns, already few and far in between, are spread further apart than in the case
of the base PC workloads. For the base server workloads on average, the improvement
in read response time ranges from about 30% in the resource-rich environment to 37% in
the resource-poor environment. The merged server workload is improved by as much as
50%. Interestingly, one of the PC users, P10, the chief technical officer, was running the
disk defragmenter, Diskeeper [Exe01]. Yet in both the resource-poor and resource-rich
environments, run and heat clustering combined improves the read performance for this
user by 15%, which is about the average for all the PC workloads.

4.7.2 Reorganized Area

Earlier in the chapter, we said that reorganizing a small fraction of the stored data is
enough for ALIS to achieve most of the potential performance improvement. In Figures
4.23 and D.23, we quantify what we mean by a small fraction. Observe that for all our
workloads, a reorganized area less than 10% the size of the storage used is sufficient to
realize practically all the benefit of heat clustering. For run clustering, the reorganized
region required to get most of the advantage is even smaller. Combining heat and run
clustering, we find that by reorganizing only about 10% of the storage space, we are able
achieve most of the potential performance improvement for all the workloads except the
server workloads which require on average about 15%. Given the technology trends, we
believe that, in most cases, this 15% storage overhead in the form of the reorganized area
is well worth the resulting increase in performance.

Note that performance does not increase monotonically with the size of the reorganized
region, especially for small reorganized areas. In general, blocks are copied into the re-
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(a) Heat Clustering.
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(b) Run Clustering.
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(c) Heat and Run Clustering Combined.

Figure 4.23: Sensitivity to Size of Reorganized Area (Resource-Rich).
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organized region and rearranged based on the prediction that the new arrangement will
outperform the original layout. For some blocks, the prediction turns out to be wrong so
that as more blocks are reorganized, the performance sometimes decline. Heat clustering,
in particular, is sensitive to the size of the reorganized area because the size determines the
number of blocks that are rearranged. If the reorganized region is small, only a small num-
ber of the hottest blocks are reorganized. In this case, these blocks would be moved into
the reorganized area and away from other blocks that are not as frequently accessed but that
could be accessed in sequence. On the other hand, if the reorganized area is large, many
blocks, including those that are not very frequently accessed, would be reorganized and
this would dilute the heat that is being clustered. We could introduce a threshold to prevent
the reorganization of blocks that are not very frequently accessed but for this study, that es-
sentially only adds a parameter that serves the same function as the size of the reorganized
area.

Besides the size of the reorganized region, another interesting question is where to lo-
cate it. If there is a constant number of sectors per cylinder and accesses are uniformly
distributed, we would want to place the reorganized area at the center of the disk. However,
modern disks are zoned so that the linear density, and hence the data rate, at the outer edge
is a lot higher than at the inner edge. To leverage this higher sequential performance, the
reorganized region should be placed closer to the outer edge. The complicating factor is
that in practice, accesses are not uniformly distributed so that the optimal placement of the
reorganized area depends on the workload characteristics. Specifically, it is advantageous
to locate the reorganized area near to any remaining hot regions in the home area but de-
termining these hot spots ahead of time is difficult. Besides, they are typically distributed
across the disk so that no single good location exists.

In Figures 4.24 and D.24, we see these various effects at work in our workloads. We
assume the typical situation where volumes are laid out inwards from the outer edge of
the disk. Recall that heat and run clustering combined has the nice property that most of
the disk reads are either eliminated due to the more effective sequential prefetch, or can be
satisfied from the reorganized area. Any remaining disk reads will tend to exhibit less lo-
cality and be spread out across the disk. In other words, the remaining disk reads will likely
be uniformly distributed. Therefore, in this case, we can predict that placing the reorga-
nized area somewhere in the middle of the disk should minimize any disk head movement
between the reorganized region and the home area. Empirically, we find that for all our
workloads, locating the reorganized area at a byte offset 30-40% into the storage space
works well. Given that there are more sectors per track at the outer edge, this corresponds
to roughly a 24-33% radial distance offset from the outer edge.

A shortcoming of replicating and reorganizing data is that a piece of data may have
multiple names or addresses and that these names could change after each reorganization.
The effectiveness of any cache downstream of the redirector could potentially be affected
as a result. For example, after a block is copied into the reorganized region, any request for
that block would likely be directed to the copy in the reorganized area. If the data is cached
downstream of the redirector under its address in the home area, the cached data will be
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(c) Heat and Run Clustering Combined.

Figure 4.24: Sensitivity to Placement of Reorganized Area (Resource-Rich).
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useless. The cached data will, however, eventually be replaced. Therefore, the effect of
the changing names should not be significant. In Figures D.25 and D.26, we confirm this
by remapping the cache contents after each reorganization. Specifically, if a cached block
is copied into the reorganized region, we change its label in the cache to its address in the
reorganized area. We find that such remapping does not significantly improve performance
except for the merged PC workload in the resource-rich environment where the underlying
cache is huge in relation to the working set of the workload. In practice, the effect of
the changing names is likely to be even smaller because the process of moving blocks
around could alter the contents of the underlying cache and this has not been modeled in
our simulations. The results in this thesis assume that the cache contents are remapped
after each reorganization. An alternative is to prime the cache, by issuing spurious I/O
for example, with the pages most likely to be referenced next but this would introduce an
orthogonal effect and obscure our results.

4.7.3 Write Policy

In general, writes or update operations complicate a system and throttle its performance.
For a system such as ALIS that replicates data, we have to ensure that all the copies of a
block are either updated or invalidated whenever the block is written to. In our analysis of
the workloads in Chapter 2, we discover that blocks that are updated tend to be updated
again rather than read. This suggests that we should update only one of the copies and
invalidate the others. But the question remains of which copy to update. A second issue
related to how writes are handled is whether the read access patterns differ from the write
access patterns, and if it is possible to lay the blocks out to optimize for both. We know
that the set of blocks that are both actively read and written tend to be small [Chapter 2]
so it is likely that read performance can be optimized without significantly degrading write
performance. But should we try to optimize for both reads and writes by considering writes
in addition to reads when tabulating the reference count and when building the access
graph?

In Figures 4.25 and D.27, we show the performance effect of the different policies for
handling writes. Observe that for heat clustering, updating the copy in the reorganized area
offers the best read and write performance. Incorporating writes in the reference count
speeds up the writes and in the case of the PC workloads, also improves the read perfor-
mance. The results in this chapter therefore assume that writes are counted in heat clus-
tering. Figures 4.26 and D.28 present the corresponding results for run clustering. Notice
that including write requests in the access graph improves the write performance for some
of the workloads but decreases read performance across the board. Therefore, the default
policy in this chapter is to consider only reads for run clustering. As for which copy to up-
date, the simulation results suggest updating the runs for the server workloads. For the PC
workloads, updating the runs increases read performance slightly but markedly degrades
write performance. Therefore, the default policy for the PC workloads is to update the
home copy. That the read performance for PC workloads increases only slightly when runs
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Figure 4.25: Effect of Various Write Policies on Heat Clustering (Resource-Rich).
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Figure 4.26: Effect of Various Write Policies on Run Clustering (Resource-Rich).

are updated is not surprising since the runs in this environment are often repeated reads of
application binaries, and these are written only when the applications were first installed.

Next, we investigate write policies for the combination of heat and run clustering in
Figures 4.27 and D.29. We introduce a policy called RunHeat that performs a write by first
attempting to update the affected blocks in the run-clustered region of the reorganized area.
If a block does not exist in the run-clustered region, the policy tries to update that block in
the heat-clustered region. If the block does not exist anywhere in the reorganized area, the
original copy in the home area is updated. As shown in the figures, RunHeat is the best
write policy for all the workloads as far as read performance is concerned. Furthermore,
it does not degrade write performance for any of the workloads, and in fact achieves a
sizeable improvement of about 5-10% in the average write service time for most of the
workloads and up to 22% for the base server workloads in the resource-poor environment.
This is the default write policy we use for heat and run clustering combined.
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Figure 4.27: Effect of Various Write Policies on Heat and Run Clustering Combined
(Resource-Rich).

4.7.4 Workload Stability

The process of reorganizing disk blocks entails a lot of data movement and may po-
tentially affect the service rate of any incoming I/Os. In addition, resources are needed to
perform the workload analysis and the optimization that produces the reorganization plan.
Therefore it is important to understand how frequently the reorganization needs to be per-
formed and the tradeoffs involved. Figures 4.28 and D.30 present the sensitivity of the
various clustering strategies to the reorganization interval.

We would expect daily reorganization to perform well because of the diurnal cycle. Our
results confirm this. They also show that less frequent reorganization tends to only affect
the improvement gradually so that reorganizing daily to weekly is generally adequate. This
is consistent with findings in [RW91]. The only exception is for the average of the server
workloads where the effectiveness of ALIS plummets if we reorganize less than once every
three days. Recall that one of the components of this average is DS1, which is only seven
days long. Because we use the first three days of this trace for warm up purposes, if we
reorganize less frequently than once every three days, the effect of the reorganization will
not be fully reflected. Note that for run clustering and combined heat and run clustering,
reorganizing more than once a day performs poorly. This is because the workloads do vary
over the course of a day so that if we reorganize too frequently, we are always “chasing the
tail” and trying to catch up. Unless otherwise stated, all the results in this chapter are for
daily reorganization.

More generally, the various clustering strategies are all based on the reference history.
They try to predict future reference patterns by assuming that these patterns are likely to
be those that have occurred in the past. The effectiveness of these algorithms is therefore
limited by the extent to which workloads vary over time. The above results suggest that
there are portions of the workloads that are very stable and are repeated daily since there
is but a small effect in varying the reorganization frequency from daily to weekly. To gain
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(c) Heat and Run Clustering Combined.

Figure 4.28: Sensitivity to Reorganization Interval (Resource-Rich).
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further insight into the stability of the workloads, we consider the ideal case where we can
look ahead and see the future references of a workload. In Figures 4.29 and D.31, we show
how much better these algorithms perform when they have knowledge of future reference
patterns as compared to when they have to predict the future reference patterns from the
reference history.

In the figures, the “realizable” performance is that obtained when the reorganization
is performed based on the past reference stream or the reference stream seen so far. This
is what we have assumed all along. The “lookahead” performance is that achieved when
the various clustering algorithms are operated on the future reference stream, specifically
the reference stream in the next reorganization interval. Observe that for heat clustering,
the difference is small, meaning that the workload characteristic heat clustering exploits is
relatively stable. On the other hand, for run clustering and combined heat and run cluster-
ing, the reference history is not that good a predictor of the future. With a reorganization
frequency of once a day, having forward knowledge outperforms history-based prediction
by about 40-50%. In other words, significant portions of the workloads are time-varying
or cannot be predicted from past references. This suggests that excessive mining of the
reference history for repeated sequences or runs may not be productive.

Based on our prior result that there is a lot of time during which the storage system is
relatively idle [Chapter 2], we made the assumption earlier in the chapter that the block
layout can be changed instantaneously. Here we validate the assumption by showing that
the process of physically copying blocks into the reorganized region takes up only a small
fraction of the idle time available between reorganizations, given that the reorganizations
are performed at most daily. In this set of experiments, we populate the reorganized area
from beginning to end by performing the reads in batches so that request scheduling by
the disk is likely to be effective. Since the disk in our simulations has a default maximum
queue depth of eight, we use a batch size of eight. The data read in each batch is written to
the reorganized area in large sequential writes before the next batch of reads are issued.

As shown in Figures 4.30 and D.32, such a simple process is able to efficiently copy
selected disk blocks into the reorganized area, achieving a rate of about 10 MB/s. The copy
rate is especially high for heat clustering because the sequential layout means that the reads
occur in elevator order. Notice that the copy rate is higher for the PC workloads than the
server workloads, suggesting that the reads for copying the blocks are more sequential for
these workloads, or in other words, that the original block layout for the PC workloads is
closer to the optimized layout. This is consistent with our finding that the PC workloads is
less responsive to ALIS than the server workloads. Observe further that the copying process
is slightly faster in the resource-poor environment than in the resource-rich environment.
This is because the extra caching and buffering in the resource-rich environment is not
effective when there is no block reuse, as is the situation when copying blocks into the
reorganized region.

In the worst case, it takes just over 10 minutes to copy the selected disk blocks into
the reorganized region. Since the results presented in Chapter 2 show that the storage
system is relatively idle more than 90% of the time, 10 minutes represent but a tiny fraction
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(c) Heat and Run Clustering Combined.

Figure 4.29: Performance with Knowledge of Future Reference Patterns (Resource-Rich).
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Figure 4.30: Rate of Copying Blocks into the Reorganized Region (Resource-Rich).

of the idle time available in a day. Therefore, it is likely that ALIS will be able to find
time to physically reorganize the blocks without affecting the performance of incoming
I/Os. Furthermore, as we have described earlier, the block reorganization process may be
performed incrementally, whenever the load on the storage system is low. In addition, if the
physical block copy time do become an issue, we can try to adjust the current contents of
the reorganized region to match a subsequent reorganization plan rather than to start from
scratch and copy all the selected blocks into the reorganized area.

4.7.5 Effect of Improvement in the Underlying Disk Technology

Disk technology is constantly evolving. Mechanically, the disk arm is becoming faster
over time and the disk is spinning at a higher rate. The recording density is also increasing
with each new generation of the disk so that there are more sectors per track and more
tracks per inch. The net effect of these trends is that less physical movement is needed to
access the same data, and the same physical movement takes a shorter amount of time. We
have demonstrated that ALIS is able to achieve dramatic improvement in performance for a
variety of real workloads. An interesting issue is whether the effect of ALIS, which tries to
reduce both the number of physical movements and the distance moved, will be increased
or diminished as a result of these technology trends. It has been pointed out previously that
as disks become faster, the benefit of reducing the seek distance will be lessened [RW91]. In
ALIS, we emphasize clustering strategies that not only reduce the seek distance but, more
importantly, also eliminate some of the I/Os by increasing the effectiveness of sequential
prefetch. This latter effect should not diminish with technology trends. In this section, we
will empirically verify that the benefit of ALIS persists as disk technology evolves.



138

Mechanical Improvement

We begin by examining the effect of improvement in the mechanical or moving parts
of the disk, specifically, the reduction in seek time and the increase in rotational speed.
The average seek time is generally taken to be the average time needed to seek between
two random blocks on the disk. Based on the performance characteristics of server disks
introduced by IBM over the last ten years, we found that on average, seek time decreases
by about 8% per year while rotational speed increases by about 9% per year [Chapter 3].
Together, the improvement in the seek time and the rotational speed translate into an 8%
yearly improvement in the average response and service times for our various workloads
[Chapter 3]. This scenario of improving only the mechanical portions of the disk provides
insights into situations where the increased capacity of newer disks are utilized so that the
disk occupancy rate is kept constant.

In Figures 4.31, D.33 and D.34, we investigate how the effect of ALIS changes as the
disk is improved mechanically at the historical rates. Observe from the figures that the ben-
efit of ALIS is practically constant over the four-year period. In fact, the plots show a slight
upward trend, especially for the server workloads in the resource-poor environment. This
slight increase in the effectiveness of ALIS stems from the fact that as the disk becomes
faster, it will have more free resources (time) to perform more opportunistic prefetch and
with ALIS, such opportunistic prefetch is more likely to be useful. There is an abrupt rise
in some of the S-Avg. plots at the end of the four-year period because DS1, one of the
components of S-Avg., is sensitive to how the blocks are laid out in tracks since some of its
accesses, especially the writes, occur in specific patterns. As the disk is sped up, the layout
of blocks in the tracks have to be adjusted to ensure that transfers spanning multiple tracks
do not “miss revolutions”. In some cases, consecutively accessed blocks become poorly
positioned rotationally [Chapter 3] so that the benefit of ALIS is especially pronounced.
Such situations highlight the value of ALIS in ensuring good performance and reducing
the likelihood of unpleasant surprises due to poor block layout.

That the effectiveness of ALIS does not decrease with faster disks may be somewhat
surprising. At the very least, we would expect any performance improvement resulting
from seek distance reduction to be diminished because the seek profile should become flat-
ter as disks become faster so that reducing the seek distance would become less effective.
It turns out that as shown in Figure 4.32, while a flatter seek profile is usually associated
with faster disks (e.g., [RW91]), the main cause of a flatter seek profile is the increase in
track density, which we will examine next.

Increase in Recording Density

Increasing the recording or areal density reduces the cost of disk-based storage. Areal
density improvement also directly affects performance because as bits are packed more
closely together, they can be accessed with a smaller physical movement. Historically,
linear density increases by about 21% per year while track density rises by approximately
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(c) Heat and Run Clustering Combined.

Figure 4.31: Effectiveness of the Various Clustering Techniques as Disks are Mechanically
Improved over Time (Resource-Rich).
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Figure 4.32: Change in Seek Profile Over Time.

24% per year [Chapter 3]. For our workloads, the average response and service times are
improved by about 9% per year as a result of the increase in areal density [Chapter 3].

In Figures 4.33, D.35 and D.36, we analyze how areal density improvement affects the
effectiveness of ALIS. Observe that there is a sharp change in some of the plots when we
go backwards in time. This is because as areal density is reduced, we require more disks to
hold the same amount of data and with more disks, there are more resources to effectively
perform prefetch and to better take advantage of the improved locality that ALIS offers.
This is especially the case in the resource-poor environment where the cache size increases
with the number of disks. In the resource-rich environment, there is also a noticeable
increase in the effectiveness of heat clustering at reducing the read miss ratio when there
are more disks. A deeper analysis reveals that with heat clustering, most of the data that are
opportunistically prefetched turn out to be useful so that having more disks and therefore
more prefetch buffers helps to increase the benefit of ALIS.

Observe further that there is a downward trend in most of the plots, especially those that
relate to heat clustering. This is expected because heat clustering derives part of its benefit
from seek distance reduction which is less effective as disks become denser and the differ-
ence between a long and short seek is reduced. The improvement in write performance,
being also dependent on a reduction in seek distance, shows a similar downward trend.
On the other hand, the performance benefit of run clustering is relatively insensitive to the
increase in areal density since the main effect of run clustering is to reduce the number of
I/Os by increasing the effectiveness of sequential prefetch. The same is true of heat and
run clustering combined. Such a result is quite remarkable because at the historical rate of
increase in areal density, two years of improvement translates into more than a doubling of
disk capacity. This means that in going forward two years in time in Figures 4.33, D.35
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(c) Heat and Run Clustering Combined.

Figure 4.33: Effectiveness of the Various Clustering Techniques as Disk Recording Density
is Increased over Time (Resource-Rich).
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and D.36, we are seriously short-stroking the disk by using less than half the available disk
space. Yet ALIS is still able to achieve a dramatic improvement in performance.

Overall Effect of Disk Technology Trends

Putting together the effect of mechanical improvement and areal density scaling, we
obtain the overall performance effect of disk technology evolution. For our various work-
loads, the average response and service time are projected to improve by about 15% per
year [Chapter 3]. In Figures 4.34, D.37 and D.38, we plot the additional performance
improvement that ALIS can provide. Note that except for the aforementioned transition
effects as the number of disks required changes, the benefit of ALIS with heat and run
clustering combined is generally stable over time with only a very slight downward incli-
nation. In the worst case, going forward two years in time reduces the improvement with
ALIS from 50% to 48% for the merged server workload in the resource-rich environment.
As discussed earlier, this is quite impressive because at the end of the two-year period, we
are using less than half the available disk space. In the more realistic situation where we
try to take advantage of the increased disk space, the benefit of ALIS will be even more
enduring. Note that we did not re-optimize any of the parameters of the underlying storage
system for ALIS. We simply use the settings that have been found to work well for the
base system [Chapter 3]. If we were to tune the underlying storage system to exploit the
increasing gap between random and sequential performance, and the improved locality that
ALIS provides, the benefit of ALIS should be all the more stable and substantial.

4.8 Conclusions

In this chapter, we propose ALIS, an introspective storage system that continually an-
alyzes I/O reference patterns to replicate and reorganize selected disk blocks so as to im-
prove the spatial locality of reference, and hence leverage the dramatic improvement in
disk transfer rate. Our analysis of ALIS suggests that disk block layout can be effectively
optimized by an autonomic storage system, without human intervention. Specifically, we
find that the idea of clustering together hot or frequently accessed data has the potential to
significantly improve storage performance, if handled in such a way that existing spatial lo-
cality is not disrupted. In addition, we show that by discovering repeated read sequences or
runs and laying them out sequentially, we can greatly increase the effectiveness of sequen-
tial prefetch. By further combining these two ideas, we are able to reap the greater benefit
of the two schemes and achieve performance that is superior to either technique alone. In
fact, with the combined scheme, most of the disk reads are either eliminated due to the
more effective prefetch or can be satisfied from the reorganized data, an outcome which
greatly simplifies the practical issue of deciding where to locate the reorganized data.

Using trace-driven simulation with a large collection of real server and PC workloads,
we demonstrate that ALIS is able to far outperform prior techniques in both an environ-



143

0

10

20

30

40

-2 -1 0 1 2
Time (Years Relative to Present)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich
0

5

10

15

20

25

-2 -1 0 1 2
Time (Years Relative to Present)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

(a) Heat Clustering.

-10

0

10

20

30

40

50

-2 -1 0 1 2
Time (Years Relative to Present)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

-5

0

5

10

15

-2 -1 0 1 2
Time (Years Relative to Present)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

(b) Run Clustering.

0

10

20

30

40

50

-2 -1 0 1 2
Time (Years Relative to Present)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich
0

5

10

15

-2 -1 0 1 2
Time (Years Relative to Present)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich
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Figure 4.34: Effectiveness of the Various Clustering Techniques as Disk Technology
Evolves over Time (Resource-Rich).
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ment where the storage system consists of only disks and low-end disk adaptors, and one
where there is a large outboard controller. For the server workloads, read performance is
improved by between 31% and 50% while write performance is improved by as much as
22%. The read performance for the PC workloads is improved by about 15% while the
writes are faster by up to 8%. Given that disk performance, as perceived by real work-
loads, is increasing by about 8% per year assuming that the disk occupancy rate is kept
constant [Chapter 3], such improvements may be equivalent to as much as several years of
technological progress at the historical rates. As part of our analysis, we also examine how
improvement in disk technology will impact the effectiveness of ALIS and confirm that the
benefit of ALIS is relatively insensitive to disk technology trends.
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Chapter 5

The Performance Effect of Offloading
Application Processing to the Storage
System

5.1 Synopsis

Recent developments in both hardware and software have made it increasingly feasible
to offload general purpose processing from the host system to the storage system. In partic-
ular, low-cost processing power is increasingly available, and software can be made robust,
secure and mobile. In this chapter, we propose a general Smart Storage (SmartSTOR) ar-
chitecture in which a processing unit that is coupled to one or more disks can be used to
perform such offloaded processing. A major part of the chapter is devoted to understanding
the performance potential of the SmartSTOR architecture for decision support workloads.
Our analysis suggests that there is a definite performance advantage in using fewer but more
powerful processors. As for software architecture, we find that the offloading of database
operations that involve only a single relation is not very promising. In order to achieve
significant speedup, we have to consider the offloading of multiple-relation operations. In
general, for the storage system to effectively handle application processing such as running
decision support queries, we need parallel software systems that are scalable and that can
efficiently utilize the large number of processing units that will likely be in such a storage
system.

5.2 Introduction

Typical I/O devices consist of the physical device hardware (e.g., disk platters, read/write
heads), device specific electronics (e.g., sense amplifiers) and generic electronics to control
the device and handle the interface to the host. With the rapid growth in processing power
per processor (estimated at a rate of 60% per year [HP96]), it is reasonable to consider
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implementing and treating some of the generic electronics in the I/O device as a general
purpose processor, and not just as a dedicated microprogrammed embedded controller. For
instance, a 33 MHz ARM7TDMI embedded processor has recently been used to imple-
ment all the functions of a disk controller, including the servo control [AO97]. In addition,
many of today’s storage adapters as well as outboard and Network Attached Storage (NAS)
controllers already contain several general purpose commodity processors to handle func-
tions such as RAID [CLG+94] protection and network protocol processing. If a moderately
powerful general purpose microprocessor is combined with a reasonable amount of local
memory, and placed either in a disk controller or a storage controller (i.e., a controller
which controls multiple devices), then there will exist a general purpose outboard CPU
with substantial excess processing capacity.

Recent advances in software technology make using this processing capacity easier than
previously. In particular, software fault isolation techniques [WLAG93] as well as robust
and secure languages such as Java [GM96] enable applications to be effectively isolated
so that they can be safely executed on a machine without causing malicious side effects.
Recent emphasis on architectural neutrality and the portability of languages [GM96] fur-
ther enhances code mobility and eases the way for code to be moved to different machines
for execution. For example, in SUN’s Jini framework [Sun99], application code can be
downloaded to the device as needed. The convergence of these hardware and software de-
velopments provide an opportunity for a fundamental shift in system design by potentially
allowing application code to be offloaded to the peripherals for execution.

In this chapter, we propose a general Smart Storage (SmartSTOR) architecture in which
a processing unit that is coupled to one or more disks can be used to perform general
purpose processing offloaded from the host. Essentially, we envision a system in which the
host supervises a number of SmartSTORs, each of which consists of a powerful processing
unit, a useful amount of local memory, and a number of I/O devices, usually disks. The
host processor may generate tasks specific to one SmartSTOR (i.e., only needing data local
to that SmartSTOR) and delegate that work to the SmartSTOR, which would then deliver
the result to the host. Alternatively, the SmartSTOR can be handed more complicated tasks
that require coordination with other SmartSTORs. If the generation and delegation of these
tasks can be sufficiently automated and reliable, and if the load balancing is successful, then
the processing power of the SmartSTORs and the host becomes additive, and the result is
a much more powerful system.

Besides allowing processing to be offloaded from the host processor, the Smart Storage
architecture also reduces data movement between the host and storage subsystem. In addi-
tion, it allows processing power to be automatically scaled with increasing storage demand.
An important feature of a SmartSTOR is that it may be configured as NAS so that the pro-
cessing power in the SmartSTOR would be available to any system mounting that storage.
The processing power embedded in the storage system could also be used to simplify the
costly task of system management [BOK+98].

An essential element to the success of the Smart Storage architecture lies in convinc-
ing software developers that SmartSTOR is a viable and attractive architecture. Projecting
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the performance potential of the SmartSTOR architecture relative to the required software
effort is an important first step in this direction. Since decision support workloads are
increasingly important commercially [Ber98], a major part of this chapter is devoted to
understanding how these workloads will perform on the SmartSTOR architecture. In par-
ticular, we evaluate the performance of the Transaction Processing Performance Council
Benchmark D (TPC-D) [Tra97], which is the industry-standard decision support bench-
mark, on various SmartSTOR-based systems.

Our methodology is based on projecting SmartSTOR performance from current sys-
tem performance and parameters. More specifically, we use the system configurations of
published TPC-D results to determine the number of SmartSTORs that will be needed.
In addition, we examine the query execution plans from two certified TPC-D systems to
establish the fraction of work that can be offloaded to the SmartSTORs. We also use the
TPC-D results to empirically derive the system scalability relationship so that we can esti-
mate the effectiveness of distributing a query among many SmartSTORs. There are clearly
limits to this projection approach but we believe that it is the most effective and appropriate
methodology at this early stage.

The rest of this chapter is organized as follows. In the next section, we discuss related
work and highlight some of the unique features of the SmartSTOR architecture that make
it more viable than other previous proposals. In Section 5.4, we describe the hardware and
software architecture for SmartSTOR. This is followed in Section 5.5 by a discussion of
the methodology used to project the performance of TPC-D on systems with SmartSTOR.
Performance analysis results are presented in Section 5.6. Section 5.7 concludes this chap-
ter.

5.3 Related Work

There have been some recent proposals for embedding intelligence in disks [Gra98]
and these include the Intelligent Disk (IDISK) [KPH98b] and the Active Disk [AUS98a,
RGF98]. The processors that can be used in these disk-centric proposals are subject to the
power budget and stringent cost constraints of the disk environment – generally disks are
fungible and are sold almost entirely on the basis of price. The market for high cost/high
performance/high functionality disks is very limited, and thus prices for disks in this market
segment are higher than they would otherwise be due to the loss of efficiencies of scale.

On the other hand, SmartSTOR, by operating at the level of the storage (i.e., multiple
device) controller, can offer processing units that are more substantial and therefore easier
to effectively use. Moreover, by allowing a processing unit to be coupled to one or more
disks, the SmartSTOR architecture allows for more flexible scaling of processing power to
increasing storage demand. In the nearer term, the SmartSTOR architecture is likely to be
easier to accomplish because increasing the processing power on an adapter or controller
to handle general purpose processing is less risky than modifying the actual disk design. It
also lowers the barrier of entry and opens up the architecture to the creativity of more than
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…

Figure 5.1: SmartSTOR Hardware Architecture.

just the few disk companies. Finally, it separates the manufacturing of low cost disks, most
of which go into personal computers (PCs), from high performance controllers which can
go into servers, clusters and mainframes, and which are relatively price-insensitive.

The idea of moving processing closer to the disk was studied extensively in the form
of database machines during the late 1970s and early 1980s [DH81, HMP89]. Most of
those database machines relied on costly special-purpose hardware which had to be specif-
ically programmed and which prevented the database machines from taking advantage of
algorithmic advancements and improvements in commodity hardware. In most cases, the
functionality of the database machines was limited; they could not do arbitrary database
operations. Furthermore, the reliance on highly-specialized hardware made it difficult to
develop succeeding generations of the system so that it was not worthwhile to expend sig-
nificant effort programming these machines.

In contrast, the SmartSTOR architecture leverages commodity general purpose hard-
ware which allows the system to track the continual improvements in both hardware and
software. In particular, a SmartSTOR can be based on a standard CPU (e.g., PowerPC,
MIPS, X86, ARM etc.), for which there are extensive software tools, a great deal of sup-
port, and a long projected life. In addition, the technology that is now available for de-
veloping portable and architecturally-neutral software can help reduce the need to program
specifically for any particular implementation of the SmartSTOR architecture. Further-
more, shared nothing database algorithms and technology have matured to the point where
we should be able to exploit some of the parallelism present in the SmartSTOR architecture.

5.4 The SmartSTOR Architecture

The proposed Smart Storage architecture consists of a processing unit that is coupled
to one or more disks. Figure 5.1 depicts such an architecture. We define the cardinality of
a SmartSTOR to be the number of disks it contains. A SmartSTOR with a cardinality of
one contains a single disk and is conceptually equivalent to an IDISK/Active Disk in our
performance analysis.

A SmartSTOR-based system is similar in many aspects to a cluster of general purpose
computing nodes made up of commodity parts but there are several important differences.
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Figure 5.2: Possible Software Architectures.

In general, SmartSTORs can be built by increasing the processing power of existing stor-
age adapters or controllers, many of which are based on commodity components. Such
an approach allows us to save on the supporting infrastructure (e.g., chipset, power distri-
bution, physical packaging). Another approach to building SmartSTORs is to perform a
limited amount of custom packaging and “decontenting”, i.e., removing parts that are not
needed or will not be noticed, on a standard PC design. For example, we could easily put
together a package consisting of an X86 processor, a power supply, a network card and
several disks to serve as the hardware for a SmartSTOR. This allows us to leverage the
most cost effective parts and to achieve more efficient packaging and reduced component
count. Besides saving on the upfront equipment cost, SmartSTOR also has the potential to
reduce operating costs through more efficient packaging which takes up less floor space. In
addition, SmartSTORs can be made easier to manage than general purpose PCs, especially
since they are designed to handle specific tasks that are offloaded from the host through a
well-defined interface.

Ultimately, the success of the SmartSTOR architecture hinges on the availability of
software that can take advantage of its unique capabilities. Figure 5.2 shows a spectrum
of software options, each having different performance potential and requiring different
amounts of software engineering effort. At this point in time, it is not apparent which
software architecture, if any, will provide enough benefits to justify its development cost
but through the performance projection that we will perform later in this chapter, we hope
to gain some understanding that will help developers reach their own conclusions.

Intuitively, data intensive operations like filtering and aggregation should be offloaded
to the SmartSTOR. More generally, operations that rely solely on local data belonging to a
single base relation are good candidates for offloading. In this study, we refer to operations
that work on a single relation as single-relation operations. Such operations are the basis of
database queries and includes table/index scan, sort, group by and partial aggregate func-
tions. Note that single-relation operations can operate on base relations as well as derived
relations that result, for example, from join operations. Because the derived relations may
not be local to the smartSTOR, the offloading of single-relation operations that work on
derived rather than base relations is generally more complicated and the benefit less clear.
In this chapter, when we refer to the offloading of single-relation operations, we generally
mean the offloading of single-relation operations that use only base relations.

Although single-relation operations are the basis of database queries, a typical decision
support query involves a lot more than just these basic operations. To distribute more
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processing to the SmartSTORs, we have to consider offloading multiple-relation operations
such as joins that may involve data in one or more SmartSTORs. At the extreme, this is
functionally equivalent to running a complete shared-nothing database management system
(DBMS) [DGS+90, LDSY91] such as IBM’s DB2/EEE [IBM98] and an operating system
on each SmartSTOR. Such an approach has hefty resource requirements but it may be
possible to trim the DBMS to contain only the functionality profitable for offloading and to
use less memory-intensive algorithms.

5.5 Projection Methodology

In this section, we outline the methodology that we use to assess the effectiveness of
the SmartSTOR architecture and the relative merits of the various hardware and software
organizations. There has been some recent work on evaluating the performance of Active
Disks [AUS98a, AUS98b, RGF98, UAS98] but these have concentrated on image process-
ing applications and basic database operations. Because decision support workloads repre-
sent an increasing fraction of the commercial workload [Ber98] and are growing so rapidly
as to be pushing the limits of current system designs [WA97, WA98], we focus primarily
on projecting how well they will perform on a SmartSTOR architecture. Our projection is
based on the Transaction Processing Performance Council Benchmark D (TPC-D) [Tra97],
which is the industry standard benchmark for decision support. A brief description of the
benchmark is provided in Appendix A. Readers who are interested in the characteristics of
the benchmark are referred to [HSY01a, HSY01b], which contain a comprehensive anal-
ysis of the benchmark characteristics and how they compare with those of real production
database workloads.

The results reported in this chapter are based on TPC-D version 1 since at the time of
this study, it has the largest number of published results. When there are enough TPC-
H [Tra99] results, it would be interesting to redo this analysis to see whether the same
trends are observed with the new benchmark. The current study examines results that
were published between July 1998 and January 1999. Results after January 1999 have
been omitted because we believe that these setups have been so fine-tuned for running the
benchmark that attempting to lump them in with the other results would be meaningless. In
particular, the aggressive use of Automatic Summary Tables (ASTs), i.e., auxiliary tables
that contain partially aggregated data, enable processing to be effectively pushed to the
database load phase, which is not part of the TPC-D performance metric, so that very little
processing needs to be performed when executing the queries. Nevertheless, if we have
enough such results, it might be interesting to apply the same analysis to them as a separate
group.
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5.5.1 I/O Bandwidth

There are two likely performance advantages to the SmartSTOR architecture: (a) the
amount of data that needs to be moved from the disks to the host for processing should be
significantly reduced; (b) the actual processing can be offloaded from the host and done in
parallel by the many processors within the whole system. Since decision support workloads
are very data intensive, it is generally believed that they will benefit substantially from the
potential decrease in I/O traffic.

Based on measurements1 performed on several certified TPC-D setups, we have been
able to establish a simple rule of thumb relating the TPC-D scale factor to the physical
I/O bandwidth required. More specifically, we find that for a database of scale S, a total
of about 3 · S GB of data are transferred between the host and storage system during a
TPC-D power test. With improvements in the memory capacity of the host system and
more sophisticated database optimization, the constant 3 is expected to gradually decrease
over time. Our measurements also indicate that the peak bandwidth requirement is about
3.3 times the average. Therefore, we can estimate the I/O bandwidth consumed during a
TPC-D run by:

Average I/O bandwidth ≈ 3 · S
total run time

(5.1)

Peak I/O bandwidth ≈ 10 · S
total run time

(5.2)

Note that these rules of thumb are based on measurements conducted without the use of
ASTs. With ASTs, the I/O bandwidth required will be lower.

In Table 5.1, we apply these rules of thumb to estimate the I/O bandwidth consumed
in the TPC-D benchmark runs with results published during the period between July 1998
and January 1999. The highest per node I/O bandwidth consumption (1252 MB/s peak) is
observed on a 32-processor system with a 12.5 GB/s system bus and which can be config-
ured with 32 PCI buses each having a peak bandwidth of 528 MB/s. This puts the peak
bandwidth consumed at about 10% of the bandwidth available. The highest per processor
I/O bandwidth consumption is about 48.4 MB/s peak and occurs on an 8-processor system
with a 3.2 GB/s system bus. This system can be configured with eight 528 MB/s PCI buses.
Such results suggest that decision support workloads similar to TPC-D may not impose ex-
tra I/O bandwidth burden over that required for other workloads that today’s systems are
designed to handle.

To further understand this rather surprising finding, we examine the query execution
plans from one of the TPC-D setups certified during the selected period. These plans are
presented in Appendix E. Of the 17 TPC-D queries, only Query 16 uses a table scan and it
is of the SUPPLIER table which contains only about 0.1% of the total number of records
in the database. All the other accesses rely on an index in one way or another. In this
particular TPC-D setup, a total of twenty-six indices are defined over the eight relations.

1Measurements taken in IBM benchmark labs.
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Average MB/s Peak MB/s  
System 

Per Node Per Processor Per Node Per Processor 

Sun Enterprise 3500 116 14.5 387 48.4 

NEC Express 5800 HV8600 74.3 9.28 248 30.9 

IBM Netfinity 7000 M10 36.7 9.16 122 30.5 

IBM RS/6000 S70 55.0 4.58 183 15.3 

IBM NetFinity 7000 M10 37.1 9.27 124 30.9 

Compaq ProLiant 7000 41.3 10.3 138 34.4 

NCR 4400 24.4 6.09 81.2 20.3 

Compaq Digital Alpha 4100 20.2 5.06 67.4 16.9 

10
0G

B 

Average 50.6 8.54 169 28.5 

IBM RS/6000 SP model 550 10.8 2.69 35.9 8.97 

Compaq Alpha Server GS140 42.8 4.27 143 14.2 

Sequent NUMA-Q 2000 150 4.68 499 15.6 

SGI Origin 2000 91.3 2.85 304 9.50 

HP 9000 V2250 70.6 4.41 235 14.7 

HP NetServer LXr 8000 25.4 6.36 84.7 21.2 

NCR 4400 22.8 5.71 76.1 19.0 

30
0G

B 

Average 59.1 4.42 197 14.8 

Sun Starfire Enterprise 10000 375 5.87 1252 19.6 

IBM Netfinity 7000 M10 9.81 2.45 32.7 8.17 

Sequent NUMA-Q 2000 239 3.73 796 12.4 

Sun Starfire Enterprise 10000 281 4.40 938 14.7 

1T
B 

Average 226 4.11 754 13.7 

 

Table 5.1: Estimated I/O Bandwidth Consumed during TPC-D Power Test.



153

 System # Host 
Processors # Disks Ratio 

Sun Enterprise 3500 8 138 17.3 

NEC Express 5800 HV8600 8 129 16.1 

IBM Netfinity 7000 M10 4 94 23.5 

IBM RS/6000 S70 12 215 17.9 

IBM NetFinity 7000 M10 4 94 23.5 

Compaq ProLiant 7000 4 84 21.0 

NCR 4400 4 43 10.8 

Compaq Digital Alpha 4100 4 57 14.3 

10
0G

B 

Average 6 107 18.0 

IBM RS/6000 SP model 550 96 816 8.50 

Compaq Alpha Server GS140 40 512 12.8 

Sequent NUMA-Q 2000 32 263 8.22 

SGI Origin 2000 32 209 6.53 

HP 9000 V2250 16 202 12.6 

HP NetServer LXr 8000 4 89 22.3 

NCR 4400 4 63 15.8 

30
0G

B 

Average 32 308 12.4 

Sun Starfire Enterprise 10000 64 1085 17.0 

IBM Netfinity 7000 M10 128 928 7.25 

Sequent NUMA-Q 2000 64 809 12.6 

Sun Starfire Enterprise 10000 64 1085 17.0 

1T
B 

Average 80 977 13.5 

 

Table 5.2: Disk/Processor Ratio of TPC-D Setups with Results Published between July
1998 and January 1999.

Perhaps as a reflection of the fact that the TPC-D benchmark has been well studied and
understood, there are many cases of index-only-access in which all the required fields are
defined in the indices. The results suggest that the judicious use of techniques such as
indices can be extremely effective at reducing the amount of I/O bandwidth required to
support a TPC-D-like decision support workload. Therefore, for the rest of this chapter, we
will concentrate on the other potential advantage of SmartSTOR, namely the ability to use
the processing power in the storage system to perform some host processing.

5.5.2 System Configuration

The first step in projecting the performance of TPC-D on the SmartSTOR architecture
is to determine the number of SmartSTORs that will be in the system and the processing
power that they will possess. As is typical of forward-looking studies, we assume that some
aspect of the system, in this case the number of disks, will remain the same. Table 5.2
summarizes the relevant configuration information for the selected TPC-D results. Recall
that cardinality is the number of disks per SmartSTOR. For each setup, we project the



154

number of SmartSTORs in the corresponding future system by:

num-SmartSTOR =
num-disk

cardinality
(5.3)

In order to describe the processing power available in the SmartSTORs without using
absolute and therefore time frame dependent numbers, we introduce the notion of perfor-
mance per disk (perf-per-disk), which is the effective processing power per disk relative to
the host processor.

perf-per-disk =
processing power per SmartSTOR

processing power of host processor · cardinality
(5.4)

The actual value of perf-per-disk depends on the cardinality, family and generation of pro-
cessors used, the power budget, the system design, etc. and is open to debate. In general, we
believe that if the processor is embedded in the disk as opposed to the adapter or outboard
controller, it will tend to have lower performance because of the smaller power budget
and the much more stringent cost constraints in the disk environment. For an intelligent
adapter or controller, the embedded processor may perhaps be even as powerful as a host
processor, although that is unlikely to be cost effective. In either case, the embedded pro-
cessor is likely to be used also for tasks, some of which are real-time, that are previously
performed in special-purpose hardware. Since it is premature to specify precise values for
perf-per-disk, we perform sensitivity analysis on the parameter later in this chapter.

5.5.3 Performance with Single-Relation Offloading

Recent work has shown that single-relation operations such as SQL select and aggre-
gation can be very effectively offloaded to suitably enhanced disks [AUS98a]. However, a
typical decision support query is comprised of many operations other than those that rely
on data from a single relation. Moreover, in most cases, the results of the single-relation
operations are combined through joins to create new derived relations that are further oper-
ated on. Therefore, to establish the actual performance effect of single-relation offloading,
we need to determine the fraction of work represented by the single-relation operations and
that can be delegated to the SmartSTOR.

Our method for determining the portion of work that can be offloaded is to analyze the
query execution plans. Measuring the CPU time needed for each individual operation in a
query execution plan is extremely difficult because the operations are executed simultane-
ously in parallel or in a pipelined fashion. Therefore, we use the CPU costs estimated by
the query optimizer. The results presented in this chapter are based on the query execution
plans from two certified TPC-D setups. In order to understand the possible range of values
in the fraction of work that can be offloaded, we consider both a shared-everything and a
shared-nothing DBMS. The first system we consider is a Symmetric Multiprocessor System
(SMP) running IBM’s DB2/UDB [IBM97], a shared-everything DBMS, while the second
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Query System 1        
(Shared-Everything) 

System 2        
(Shared-Nothing) 

1 100 99.9 

2 6.8 2.3 

3 0.3 12.9 

4 4.0 2.7 

5 5.2 94.6 

6 41.8 44.1 

7 0.2 53.4 

8 21.8 9.0 

9 9.0 5.5 

10 2.1 1.6 

11 0.4 0.1 

12 8.0 7.8 

13 0.3 6.4 

14 13.3 91.6 

15 48.2 41.9 

16 0.0 0.2 

17 0.1 49.1 

 

Table 5.3: Percent of Work that can be Offloaded by Single-Relation Offloading.

system is a cluster-based setup running the shared-nothing IBM DB2/EEE [IBM98]. The
complete set of plans from the first system is available in Appendix F.

Table 5.3 summarizes the fraction of processing that can be offloaded by single-relation
offloading for the two TPC-D setups. From the table, Query 1 is the only query that can
be offloaded by more than 50% in System 1. Observe further that only five out of the
17 queries can be offloaded by more than 10% in System 1. System 2 is generally more
amenable towards single-relation offloading but it is still the case that less than half of
the queries can be offloaded by more than 10%. According to Amdahl’s Law [HP96],
these statistics suggest that the performance potential of single-relation offloading may be
limited. However, the fact that there is substantial difference between the figures for the
two setups suggest that there may be considerable room for improving the plans generated
to better take advantage of the SmartSTOR architecture. This is an area that requires further
research.

Suppose that f is the fraction of processing that can be performed by the SmartSTOR.
Assuming that host and SmartSTOR processing are maximally overlapped, the speedup
that can be achieved by single-relation offloading is:

speedup =
1

Max(1 − f, f
s
)

where

s =
num-disk

num-host-proc
· perf-per-disk

is the aggregate processing power available in the SmartSTORs relative to that in the host.
If we further assume that the system will be intelligent enough to offload operations only
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when it makes sense to do so, the speedup is:

speedup = Max(1,
1

Max(1 − f, f
s
)
) (5.5)

As we shall see, even with such optimistic assumptions, the performance potential of
single-relation offloading is rather limited.

Assuming that the current run time for query i is QI(i), we can project the run time for
the query on a SmartSTOR architecture, QI(i)′, by:

QI(i)′ =
QI(i)

speedup
(5.6)

The TPC-D benchmark defines both a power metric and a throughput metric [Tra97].
Since we are primarily interested in speedups in this study, we focus on the power metric,
QppD. In determining the average performance improvement possible in a SmartSTOR
architecture with single-relation offloading, we use the projected query run times, QI(i)′s,
to determine the increase in QppD for each of the 19 selected TPC-D systems. Then we
take the arithmetic mean over the 19 setups to obtain an average improvement in QppD.
Note that QppD includes the execution times of two update functions, which we assume
cannot be offloaded by SR. Also, as discussed in Appendix E and [Tra97], the definition
of QppD limits the run time of any query to be at most 1000 times shorter than that of the
slowest query.

5.5.4 Performance with Multiple-Relation Offloading

In general, when work is distributed across multiple processing units, skew comes into
play so that the performance of the system scales sublinearly with the number of processing
units. For a well-understood workload such as TPC-D, we can try to distribute the tuples in
the base relations evenly across the SmartSTORs so as to minimize any data skew. There-
fore, for single-relation offloading, the portion of work offloaded is likely to be sped up by
the extra processing power available in the SmartSTORs. However, for more complicated
operations that involve redistributing tuples or that involve derived relations, there is likely
to be an unequal distribution of relevant tuples across the SmartSTORs.

In order to project the performance of TPC-D when multiple-relation operations are
offloaded, we need to understand how effectively the work can be distributed across the
SmartSTORs, i.e., we need to understand the scalability of the system. Since we are not
aware of any generally accepted model of scalability for TPC-D, we empirically derive
a model by using the TPC-D results published during the selected period. Because these
results were obtained on systems with different processors, we have to first normalize them.
Let:

database efficiency =
QppD

SPECintbase95 · num-host-proc
(5.7)
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Figure 5.3: Scalability of TPC-D Systems.

SPEC measurements [Sta95] are more indicative of performance on CPU intensive inte-
ger and floating point workloads, rather than on the CPU portion of database system and
operating system workloads, but we are not aware of any better alternative; we therefore
normalize TPC-D performance by SPEC numbers [Sta95]. We believe that the errors in-
troduced should be small.

Figure 5.3 plots the database efficiency of the 300 GB TPC-D results. We choose to use
the 300 GB results because the benchmark setups for this scale factor have a wide range in
the number of processors used. Observe that the set of points can be roughly approximated
by C

3
√

num-host-proc
, where C is a constant. We refer to this scalability rule as the cube

root rule because the per processor efficiency is halved when the number of processors is
increased by a factor of eight. We expect the scalability of the system to improve with
advances in both hardware and software. Therefore, we use the fourth root rule to consider
future TPC-D system scalability. With the fourth root rule, the per processor efficiency
is halved when the number of processors is increased by a factor of 16. Note that real
workloads are unlikely to be as well understood and tuned as the TPC-D benchmark and
the processing will tend to be less well distributed. In other words, real workloads will
probably scale more poorly with the number of processors. Therefore, we also consider the
square root rule.

Using these scalability rules, we can establish a relationship between QppD and the
number of processors and their processing power.

QppD = database efficiency · SPECintbase95 · num-host-proc

= C · SPECintbase95 · num-host-proc1− 1

n (5.8)
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Figure 5.4: Projected Improvement in TPC-D Performance with Single-Relation Off-
loading.

where

n =











2 for the square root rule,
3 for the cube root rule,
4 for the fourth root rule.

In a SmartSTOR environment,

QppD = C · SPECintbase95SmartSTOR · num-SmartSTOR1− 1

n (5.9)

= C · perf-per-disk · cardinality · SPECintbase95host · num-SmartSTOR1− 1

n

Therefore, assuming that the system will be intelligent enough to offload operations
only when it improves performance, the speedup is:

speedup = Max(1, perf-per-disk · cardinality ·
(

num-SmartSTOR
num-host-proc

)1− 1

n

) (5.10)

Using this result, the improvement in QppD can be projected for each of the 19 selected
TPC-D systems. As in the case for single-relation offloading, we take the arithmetic mean
over the 19 setups to obtain the average projected improvement in QppD.

5.6 Analysis of Performance Results

Based on the steps outlined in the previous section, we can analytically derive the
improvement in QppD for the various hardware and software options. The results for
single-relation offloading are summarized in Figure 5.4 while those for multiple-relation
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Figure 5.5: Projected Improvement in TPC-D Performance with Multiple-Relation Off-
loading.

offloading are in Figure 5.5. In these figures, we plot the projected speedup for the vari-
ous alternatives as a function of the effective processing power per disk. As in the rest of
this dissertation, we define improvement or speedup as (valueold − valuenew)/valueold if
a smaller value is better and (valuenew − valueold)/valueold otherwise.

For multiple-relation offloading, we plot the projected performance improvement with
the square, cube and fourth root scalability rules to indicate the range of speedup that can
be expected. For single-relation offloading, we plot the speedup given by the two sets
of offloading fractions discussed in Section 5.5.3 and presented in Table 5.3. Note that the
figures make no cost statement. This is deliberate since accurate cost information are gener-
ally closely guarded and in any case, are very technology and time frame dependent. Given
a set of cost estimates, Figures 5.4 and 5.5 can be used to determine whether SmartSTOR
is a cost-effective approach and if so, the configuration that should be used.

Recall from our scalability model that for multiple-relation offloading, TPC-D perfor-
mance tends to scale rather sublinearly with the number of processors used. This shows
up in Figure 5.5 in that for the same perf-per-disk, a larger cardinality has a performance
advantage. In other words, for a given aggregate processing power, it is significantly more
effective to share powerful processors among multiple disks than to have less powerful
per-disk processors. This may not be the most cost effective solution, however; current
pricing policies are such that prices go up more than linearly with processor speed. Note
also that the performance effect of sharing a processor among multiple disks is limited by
the fact that there are no arbitrarily powerful processors. In this chapter, we assume that
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the embedded processor is at most as powerful as the host processor so that the maximum
perf-per-disk is given by 1

cardinality .

Observe from Figures 5.4 and 5.5 that multiple-relation offloading clearly outperforms
single-relation offloading for practically all values of perf-per-disk. However, by distribut-
ing more processing to the SmartSTORs and harnessing more of the parallelism in the
system, multiple-relation offloading is likely to require a lot more resources, particularly
memory, in the SmartSTORs. As we have discussed earlier, multiple-relation offloading in
its broadest sense is functionally equivalent to running a complete shared-nothing DBMS
and an operating system on each SmartSTOR. An interesting research question is whether
it is possible to effectively separate out the functionality profitable for offloading and to
use new algorithms that are less memory-intensive. However, as we have alluded to earlier,
the performance potential of the SmartSTOR architecture has to be evaluated relative to the
cost of any software reengineering, and to the cost of building the SmartSTORs themselves.

Our results can also be used to estimate the potential performance benefit of the IDISK
and the Active Disk. These per-disk proposals are conceptually identical to an intelligent
adapter or controller of cardinality one with the exception that they are likely to have a
lower perf-per-disk. As discussed earlier, the exact value of perf-per-disk is arguable but
with the much more stringent power and cost constraints in the disk environment, the pro-
cessors that are embedded in the disk are likely to be significantly less powerful than those
in a SmartSTOR. With a perf-per-disk value of 0.25, which is likely in a per-disk envi-
ronment, the projected improvement in QppD ranges from 1.16 to 1.39 for single-relation
offloading and from 1.05 to 1.88 for multiple-relation offloading. For comparison, this ratio
of processing power (0.25) is about equivalent to that between a 200 MHz Intel Pentium
MMX and a 575 MHz Compaq Alpha 21264 (based on SPECintbase95).

As mentioned earlier, a possible approach to building SmartSTORs is to decontent stan-
dard PCs. In this case, a rough value of perf-per-disk for a SmartSTOR may be 0.8

cardinality .

Based on this perf-per-disk value, the projected speedup in QppD for cardinalities of 1, 2
and 4 with multiple-relation offloading ranges from 3.05 to 6.02, from 2.15 to 3.58 and
from 1.52 to 2.13 respectively. For single-relation offloading, the corresponding ranges are
1.20-1.59, 1.17-1.48 and 1.15-1.35.

An important point to note is that among all the published TPC-D results so far, the
largest number of processors used is only 192 while the largest number of disks used is
over 1,500. Therefore, to effectively take advantage of the large number of processors
that are likely to be in a SmartSTOR-based system, we have to focus on improving the
scalability of parallel software systems.

5.7 Conclusions

In this chapter, we propose a general Smart Storage (SmartSTOR) architecture in which
general purpose processing can be performed by a processing unit that is shared among
one or more disks. The SmartSTOR architecture provides two key performance advan-



161

tages, namely a reduction in I/O movement between the host and I/O subsystem, and the
ability to offload some of the work from the host processor to the processing units in the
SmartSTORs.

In order to understand the performance potential of the SmartSTOR architecture for
decision support workloads, as well as the various hardware and software tradeoffs, we
project the performance of the industry-standard decision support benchmark, TPC-D, on
various SmartSTOR-based systems. In particular, we perform measurements on several
certified TPC-D systems to estimate the I/O bandwidth required for supporting such work-
loads. We also examine the query execution plans from two TPC-D systems to determine
the amount of processing that can potentially be offloaded to the SmartSTORs. In addition,
we analyze published TPC-D performance figures to empirically establish a scalability rule
that can be used to project the effectiveness of distributing query execution among a large
number of SmartSTORs.

Our results indicate that I/O bandwidth may not be that serious a bottleneck for TPC-
D. Therefore the main advantage of using SmartSTORs for workloads similar to TPC-D
appears to be the ability to offload some of the processing from the host. Further anal-
ysis reveals that offloading database operations that involve only a single base relation
tends to have limited performance benefit. The offloading of operations that involve mul-
tiple relations appears much more promising, but requires significantly more resources.
For multiple-relation offloading, we find that performance scales rather sublinearly with
the number of processors used. Therefore, for the same aggregate processing power, it is
much more effective to share powerful processing units among multiple disks than to have
a greater number of less powerful processors. Our analysis also suggests that to effec-
tively offload processing to the storage system, we need parallel software systems that can
efficiently utilize the large number of processing units that will likely be in the system.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The slow mechanical nature of I/O devices, most importantly disks, compared to the
speed of electronic processing, has long been recognized. In order to keep the processor
supplied with data, systems rely on aggressive I/O optimization techniques that can be
tuned to specific workloads. But as the improvement in processor performance continues
to far exceed the improvement in disk access time, the I/O bottleneck is increasingly an
issue. We now resort more and more to expensive measures for increasing I/O performance
such as configuring systems with large amounts of memory as the I/O cache or using many
more disks than storage requirements warrant. As systems continue to grow in complexity
over and beyond our ability to cost-effectively manage them, what is really needed is a
storage system that delivers good performance without requiring a lot of resources and
time to configure and tune, even as the workloads evolve.

This dissertation has explored mechanizable techniques for improving I/O performance
by dynamically optimizing disk block layout in response to the actual usage pattern. It is
based on the observation that it is much more efficient to read a large contiguous chunk of
data than many small chunks scattered throughout the disk. Users, however, typically have
only limited knowledge and control of how their data are laid out on the disk, and most
would rather not be thus burdened. The file system or application can guess how blocks are
likely to be used based on static logical information such as name space relationships but
such information may not accurately reflect the actual dynamic usage pattern. On the other
hand, technology trends are such that disk space and processing power are increasingly
available for performing sophisticated optimizations without user involvement. Therefore
we contend that it is useful and practical for the storage system to automatically adapt block
layout to the dynamic reference behavior so as to increase the spatial locality of reference
and allow it to effectively fetch data in larger chunks.

The major contributions of this work have been as follows. First, we investigated how
storage systems are actually being used to gauge both the feasibility and the effectiveness
of automatically optimizing the block layout. Our analysis, which is based on multi-week
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traces of the I/O activity of a wide variety of both personal computer and server systems,
indicates that improving I/O performance is important, and that there are idle resources that
can potentially be used to perform any optimization. In addition, we find that collecting a
daily trace of the requests for later analysis and optimization is feasible. We also discover
that only a small fraction of the data stored is in active use, which suggests that it will
likely be useful to identify the blocks that are in use and to optimize their layout. A deeper
analysis of the dependencies between the read and write requests suggests that if blocks are
reorganized or replicated based on their read access patterns, write performance will not be
significantly affected, and that if blocks are replicated, we should update only one of the
copies and invalidate the rest.

As part of our analysis, we reexamine Amdahl’s rule of thumb for a balanced system
and discover that our server workloads generate on the order of 0.05 bits of physical I/O
per instruction, consistent with our earlier work using the production database workloads of
some of the world’s largest corporations [HSY01a]. We also find that the average request
size is about 8 KB. In addition, we observe that the I/O traffic is bursty in a self-similar
sense, which implies that the I/O system may become overwhelmed at much lower levels of
utilization than expected with the commonly assumed Poisson model. Such behavior has to
be taken into account when designing storage systems, and in the service level agreements
(SLAs) when outsourcing storage. To make our results more generally applicable, we also
study the effect of increased upstream caching on the traffic characteristics seen by the
storage system and show that it affects our analysis only quantitatively.

Based on the results of our workload characterization, we next discuss the importance of
modeling both the burstiness in the I/O traffic and the feedback between request completion
and subsequent I/O arrivals, and develop a simulation methodology that incorporates both
effects. Using this methodology, we systematically study the many previously proposed I/O
optimization techniques to establish their actual and relative effectiveness at improving I/O
performance. In the process, we obtain several new insights about the various techniques
and establish an optimized baseline configuration for our subsequent experiments.

Our results show that sequential prefetch, especially when coupled with the ability to
prefetch opportunistically, offers by far the most significant improvement in read perfor-
mance, reducing the average read response and service times by about half. In addition,
we develop a framework for effectively performing write buffering that not only hides the
latency of writes but also reduces the number of physical writes and enables the remain-
ing physical writes to be performed efficiently. Our simulations show that write buffering,
when properly performed, is able to reduce the average write response time by more than
90% and the average write service time by more than 70%. We also demonstrate that a
large stripe unit in the megabyte range performs well, and that short-stroking or using less
of each disk improves performance by only up to 10-15%.

In addition to evaluating the various I/O optimization techniques, we also analyze how
the continuous improvement in disk technology affects the actual I/O performance seen
by real workloads. Increases in the recording density are often neglected when projecting
effective disk performance. But our results clearly indicate that areal density improvement
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has as much of an impact on effective I/O performance as the mechanical improvements.
Overall, we expect the I/O performance for a given workload with a constant number of
disks to increase by about 15% per year due to the evolution of disk technology. If the
workloads are scaled up or fewer disks are used to take advantage of the larger capacity of
the new disks, we expect the improvement to be about 9% per year.

Along the way, we also establish several rules of thumb that are generally useful for
system designers. For instance, we discover that the read miss ratio of the storage cache
decreases as the inverse of the ratio of cache size to storage used (allocated). For larger
write buffers, our results indicate that the write miss ratio follows a fifth root rule, meaning
that the miss ratio goes down as the inverse fifth root of the ratio of buffer size to storage
used. Because of locality of reference and request scheduling, we observe that for our
workloads the average actual seek time is about 35% of the advertised average seek time
for the disk, and the average actual rotational latency is about 80% of the value specified.

Our results confirm that the disk spends most of its time positioning the disk head
and very little time actually transferring data. With technology trends being the way they
are, it will become increasingly difficult to effectively utilize the available disk bandwidth.
Therefore, we next present ALIS, an introspective storage system that continually analyzes
I/O reference patterns to replicate and reorganize selected disk blocks so as to improve the
spatial locality of reference, and hence leverage the dramatic improvement in disk transfer
rate. Our analysis of ALIS suggests that disk block layout can be effectively optimized by
an autonomic storage system, without human intervention. Specifically, we find that the
idea of clustering together hot or frequently accessed data has the potential to significantly
improve storage performance, if handled in such a way that existing spatial locality is
not disrupted. In addition, we show that by discovering repeated read sequences or runs
and laying them out sequentially, we can greatly increase the effectiveness of sequential
prefetch. By further combining these two ideas, we are able to reap the greater benefit of
the two schemes and achieve performance that is superior to either technique alone.

Using extensive trace-driven simulations, we demonstrate that the mechanizable tech-
niques we develop for reorganizing data can dramatically improve performance despite
efforts already made by the database and the file system to optimize the layout of data. Our
results clearly show that ALIS is able to far outperform prior reorganization techniques
in both an environment where the storage system consists of only disks and low-end disk
adaptors, and one where there is a large outboard controller. For the server workloads, read
performance is improved by between 31% and 50% while write performance is improved
by as much as 22%. Given that disk performance, as perceived by real workloads, is in-
creasing by about 9% per year assuming that the disk occupancy rate is kept constant, such
improvements may be equivalent to as much as several years of technological progress at
the historical rates. The read performance for the PC workloads is improved by about 15%
while the writes are faster by up to 8%. In general, the PC workloads tend to be improved
less than the server workloads because the tasks typically handled by a PC are more di-
verse and less repetitive. Servers, on the other hand, tend to perform similar tasks for many
different users so that their access patterns are more predictable. We also examine how



165

improvement in disk technology will impact the effectiveness of ALIS and confirm that the
benefit of ALIS is relatively insensitive to disk technology trends.

Besides enabling sophisticated optimizations such as ALIS, the increasingly available
processing power in the storage system can also be used to offload application processing,
parts of file system functionality (e.g., object-based storage), etc. from the host system.
Furthermore, recent advances in software technology make it easier than previously to use
this processing capacity for application processing. In the final part of this dissertation,
we turn our attention to analyzing the effectiveness of offloading application processing to
the storage system. We devise a methodology to estimate the effectiveness of distributing
a database query among multiple processing units in the storage system by empirically
deriving the system scalability relationship using the published results for the industry-
standard benchmark for decision support workloads, namely the Transaction Processing
Performance Council Benchmark D (TPC-D) [Tra97]. In addition, we examine the query
execution plans from two certified TPC-D systems to establish the fraction of work that
can potentially be offloaded. We find that for the same aggregate processing power, it
is much more effective to share powerful processing units among multiple disks than to
have a greater number of less powerful processors. Our results also suggest that to take
full advantage of the ability to offload database operations to a large number of processing
units in the storage system, significant advances and reengineering of the database system
are needed.

6.2 Future Directions

We believe that because of the widening gap between processor and disk performance,
and the soaring costs of system management, much interesting and important work remains
to be done in the area of I/O performance, especially in methods to achieve good perfor-
mance right out of the box, without intricate tuning.

We have evaluated the various I/O optimization techniques assuming that each is per-
formed at most once in the storage stack. This helps us to systematically focus on the real
effect of the optimizations. In practice, however, each of the optimizations may be per-
formed independently at multiple levels in the storage hierarchy. For instance, there may
be several storage controllers, storage adaptors and disk drives, and they may all perform
some of the optimizations to some extent. It will be interesting to study the interaction
between the optimizations performed at the various levels to understand the effect and to
minimize any destructive interference.

ALIS currently behaves like an open-loop control system that is driven solely by the
workload and a simple performance model of the underlying storage system, namely that
it is able to service sequential I/O much more efficiently than random I/O. Because the
performance of disks today is so much higher when data is read sequentially rather than
randomly, this simple performance model is sufficiently accurate to produce a dramatic
performance improvement. But for increased robustness, it would be worthwhile to explore
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the idea of incorporating some feedback into the optimization process to, for example, turn
ALIS off when it is not performing well or, at a finer granularity, influence how blocks are
laid out.

In the design of ALIS, we try to desensitize its performance to the various parameters
so that it is not catastrophic for somebody to “configure the system wrongly”. To reflect
the likely situation that ALIS will be used with a default setting, we base our performance
evaluation on parameter settings that are good for an entire class of workloads rather than
on the best values for each individual workload. A useful piece of future work would
be to devise ways to set the various parameters dynamically to adapt to each individual
workload. The general approach of using hill-climbing to gradually adjust each knob until
a local optimum is reached should be very effective for ALIS because the results of our
various sensitivity studies suggest that for the parameters in ALIS, the local optimum is
also likely to be the global optimum.

In run clustering, the edges of the access graph represent the desirability for reorga-
nization units to be located one after another. But if the reorganization units are already
located sequentially, it might not be necessary to replicate and reorganize them. We believe,
however, that copying these units into the reorganized region would still be beneficial. Nev-
ertheless, it would be interesting to explore the effect of a subtle change to make the edges
reflect the desirability for reorganization units to be relocated so that they are positioned
one after another. In this case, when we add an edge from vertex i to vertex j, we would
weight it by some estimate of the current cost of reading reorganization unit j after reading
unit i.

After a reorganization unit is added to a run, the run clustering algorithm marks it to
prevent it from being included again in any run. An interesting variation of the algorithm
would be to allow multiple copies of a reorganization unit to exist either in the same run
or in different runs. This is motivated by the fact that some data blocks, for instance those
corresponding to shared libraries, may appear in more than one access pattern. The basic
idea in this case would be to not mark a vertex after it has been added to a run. Instead, we
would remove the edges that are used to include that particular vertex in the run.

By using extensive trace-driven simulations, we have demonstrated that ALIS has the
potential to very significantly improve I/O performance. The simulations enable us to ex-
plore many aspects of the design, especially on the algorithmic front. Our simulator is
based on a disk model that is used by a disk development team and that has been validated
against several batches of the disk. Furthermore, because our simulator has been used suc-
cessfully to explore a wide variety of I/O optimization techniques, we are confident that it
accurately models most of the important effects. However, a full implementation and de-
ployment of ALIS will help to ensure that all the complexities of the real world have been
accounted for, and will give us some indication of the overheads that may be involved.

Finally, in analyzing the effectiveness of offloading application processing to the stor-
age system, our results are somewhat limited by the small number of TPC-D benchmark
results that are available. But the same methodology can be applied elsewhere and on dif-
ferent benchmarks. Since our study, the TPC-D benchmark has been superseded by the
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TPC-H [Tra99] benchmark. It will be worthwhile to see if the same trends are observed
with the new benchmark.
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Appendix A

Additional Results for Chapter 2
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Figure A.1: Footprint vs. Number of References.
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Figure A.2: Average Queue Depth on Arrival. Bars indicate standard deviation.
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P4� 0.0784� 0.0533� 0.0115� 1� 0.0399� 0.0262� 0.0496� 0.0484� 0.0994� 0.0278� 0.0593� 0.0109� 0.0742� 0.0446� 0.0480� 0.0247� 0.0376� 0.0144� -�

P5� 0.0773� 0.0759� 0.0518� 0.0399� 1� 0.0342� 0.0939� 0.0512� 0.0765� 0.0281� 0.0349� 0.0118� 0.048� 0.04� 0.0510� 0.021� 0.0263� 0.00529� -�

P6� 0.027� 0.0251� 0.0263� 0.0262� 0.0342� 1� 0.0673� 0.0333� 0.0615� 0.0538� 0.0352� 0.0299� 0.0434� 0.0528� 0.0397� 0.0197� 0.0201� 0.0331� -�

P7� 0.097� 0.0834� 0.0324� 0.0496� 0.0939� 0.0673� 1� 0.105� 0.0857� 0.0475� 0.0532� 0.0317� 0.0431� 0.0722� 0.0663� 0.0303� 0.0315� 0.0776� -�

P8� 0.0798� 0.0423� 0.0272� 0.0484� 0.0512� 0.0333� 0.105� 1� 0.0509� 0.038� 0.0294� 0.0431� 0.0309� 0.0362� 0.0474� 0.015� 0.0248� 0.0463� -�

P9� 0.074� 0.159� 0.0371� 0.0994� 0.0765� 0.0615� 0.0857� 0.0509� 1� 0.0497� 0.0731� 0.0233� 0.0366� 0.0941� 0.0708� 0.0288� 0.0576� 0.0196� -�

P10� 0.0393� 0.0195� 0.0428� 0.0278� 0.0281� 0.0538� 0.0475� 0.038� 0.0497� 1� 0.0353� 0.0143� 0.0209� 0.0429� 0.0354� 0.00701� 0.0149� 0.0134� -�

P11� 0.0419� 0.0285� 0.0487� 0.0593� 0.0349� 0.0352� 0.0532� 0.0294� 0.0731� 0.0353� 1� 0.0077� 0.0311� 0.057� 0.0412� 0.0404� 0.0456� 0.0164� -�

P12� 0.0329� 0.0116� 0.0132� 0.0109� 0.0118� 0.0299� 0.0317� 0.0431� 0.0233� 0.0143� 0.0077� 1� 0.0112� 0.0149� 0.0197� 0.000939� 0.00489� 0.00926� -�

P13� 0.0262� 0.0283� 0.0192� 0.0742� 0.048� 0.0434� 0.0431� 0.0309� 0.0366� 0.0209� 0.0311� 0.0112� 1� 0.0625� 0.0366� 0.0368� 0.0216� 0.0246� -�

P14� 0.0368� 0.0544� 0.0447� 0.0446� 0.04� 0.0528� 0.0722� 0.0362� 0.0941� 0.0429� 0.057� 0.0149� 0.0625� 1� 0.0502� 0.0129� 0.0614� 0.0775� -�

Avg.i� 0.0558� 0.0519� 0.0327� 0.0480� 0.0510� 0.0397� 0.0663� 0.0474� 0.0708� 0.0354� 0.0412� 0.0197� 0.0366� 0.0502� 0.0462� -� -� -� -�

FS1� 0.00962� 0.00249� 0.0285� 0.0247� 0.021� 0.0197� 0.0303� 0.015� 0.0288� 0.00701� 0.0404� 0.000939� 0.0368� 0.0129� -� 1� 0.0242� 0.0222� 0.0232�

TS1� 0.0219� 0.046� 0.0192� 0.0376� 0.0263� 0.0201� 0.0315� 0.0248� 0.0576� 0.0149� 0.0456� 0.00489� 0.0216� 0.0614� -� 0.0242� 1� 0.042� 0.0331�

DS1� 0.00331� 0.00056� 0.0175� 0.0144� 0.00529� 0.0331� 0.0776� 0.0463� 0.0196� 0.0134� 0.0164� 0.00926� 0.0246� 0.0775� -� 0.0222� 0.042� 1� 0.0321�

Avg.ii� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -� 0.0232� 0.0331� 0.0321� 0.0295�

Average�

Average�

Table A.1: Cross-Correlation of Per-Minute Volume of I/O Activity.
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�

�
�
�������������������������������������������������
i�Average�of�cross�correlation�with�other�PC�workloads,�excluding�self.�
ii�Average�of�cross�correlation�with�other�server�workloads,�excluding�self.��

� P1� P2� P3� P4� P5� P6� P7� P8� P9� P10� P11� P12� P13� P14� Avg.i� FS1� TS1� DS1� Avg.ii�

P1� 1� 0.16� 0.108� 0.129� 0.228� 0.118� 0.233� 0.22� 0.16� 0.106� 0.123� 0.08� 0.0812� 0.0832� 0.141� 0.0262� 0.0505� 0.0179� -�

P2� 0.16� 1� 0.0807� 0.132� 0.217� 0.0925� 0.183� 0.126� 0.35� 0.0486� 0.0898� 0.0392� 0.0858� 0.125� 0.133� 0.00882� 0.078� -0.00217� -�

P3� 0.108� 0.0807� 1� 0.0311� 0.141� 0.111� 0.101� 0.0788� 0.11� 0.113� 0.131� 0.026� 0.0619� 0.0944� 0.091� 0.0619� 0.0356� 0.0549� -�

P4� 0.129� 0.132� 0.0311� 1� 0.12� 0.072� 0.115� 0.107� 0.194� 0.061� 0.113� 0.035� 0.176� 0.0743� 0.105� 0.0481� 0.0706� 0.0321� -�

P5� 0.228� 0.217� 0.141� 0.12� 1� 0.137� 0.216� 0.167� 0.211� 0.0959� 0.107� 0.0321� 0.147� 0.107� 0.148� 0.0579� 0.0506� 0.0397� -�

P6� 0.118� 0.0925� 0.111� 0.072� 0.137� 1� 0.187� 0.114� 0.183� 0.141� 0.129� 0.0743� 0.142� 0.145� 0.127� 0.0524� 0.0486� 0.0885� -�

P7� 0.233� 0.183� 0.101� 0.115� 0.216� 0.187� 1� 0.255� 0.201� 0.0971� 0.119� 0.0667� 0.0945� 0.136� 0.154� 0.0608� 0.0569� 0.141� -�

P8� 0.22� 0.126� 0.0788� 0.107� 0.167� 0.114� 0.255� 1� 0.115� 0.0825� 0.0906� 0.0947� 0.0832� 0.0819� 0.124� 0.0338� 0.0518� 0.106� -�

P9� 0.16� 0.35� 0.11� 0.194� 0.211� 0.183� 0.201� 0.115� 1� 0.108� 0.143� 0.0441� 0.0962� 0.173� 0.161� 0.059� 0.108� 0.0323� -�

P10� 0.106� 0.0486� 0.113� 0.061� 0.0959� 0.141� 0.0971� 0.0825� 0.108� 1� 0.0771� 0.0344� 0.0546� 0.0914� 0.085� 0.0184� 0.0392� 0.0394� -�

P11� 0.123� 0.0898� 0.131� 0.113� 0.107� 0.129� 0.119� 0.0906� 0.143� 0.0771� 1� 0.0193� 0.108� 0.108� 0.104� 0.0869� 0.0993� 0.0294� -�

P12� 0.08� 0.0392� 0.026� 0.035� 0.0321� 0.0743� 0.0667� 0.0947� 0.0441� 0.0344� 0.0193� 1� 0.0229� 0.0248� 0.046� 0.000372� 0.00633� 0.03� -�

P13� 0.0812� 0.0858� 0.0619� 0.176� 0.147� 0.142� 0.0945� 0.0832� 0.0962� 0.0546� 0.108� 0.0229� 1� 0.145� 0.100� 0.0815� 0.0424� 0.0513� -�

P14� 0.0832� 0.125� 0.0944� 0.0743� 0.107� 0.145� 0.136� 0.0819� 0.173� 0.0914� 0.108� 0.0248� 0.145� 1� 0.107� 0.0267� 0.106� 0.119� -�

Avg.i� 0.141� 0.133� 0.091� 0.105� 0.148� 0.127� 0.154� 0.124� 0.161� 0.085� 0.104� 0.046� 0.100� 0.107� 0.116� -� -� -� -�

FS1� 0.0262� 0.00882� 0.0619� 0.0481� 0.0579� 0.0524� 0.0608� 0.0338� 0.059� 0.0184� 0.0869� 0.000372� 0.0815� 0.0267� -� 1� 0.0462� 0.0405� 0.0434�

TS1� 0.0505� 0.078� 0.0356� 0.0706� 0.0506� 0.0486� 0.0569� 0.0518� 0.108� 0.0392� 0.0993� 0.00633� 0.0424� 0.106� -� 0.0462� 1� 0.04� 0.0431�

DS1� 0.0179� -0.00217� 0.0549� 0.0321� 0.0397� 0.0885� 0.141� 0.106� 0.0323� 0.0394� 0.0294� 0.03� 0.0513� 0.119� -� 0.0405� 0.04� 1� 0.0403�

Avg.ii� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -� 0.0434� 0.0431� 0.0403� 0.0422�

Average�

Average�

Table A.2: Cross-Correlation of Per-10-Minute Volume of I/O Activity.

�

�
�
�������������������������������������������������
i�Average�of�cross�correlation�with�other�PC�workloads,�excluding�self.�
ii�Average�of�cross�correlation�with�other�server�workloads,�excluding�self.��

� P1� P2� P3� P4� P5� P6� P7� P8� P9� P10� P11� P12� P13� P14� Avg.i� FS1� TS1� DS1� Avg.ii�

P1� 1� 0.376� 0.298� 0.262� 0.484� 0.329� 0.39� 0.434� 0.292� 0.215� 0.207� 0.126� 0.199� 0.202� 0.293� 0.0413� 0.147� 0.071� -�

P2� 0.376� 1� 0.244� 0.258� 0.479� 0.302� 0.384� 0.344� 0.418� 0.138� 0.186� 0.15� 0.233� 0.342� 0.296� 0.0272� 0.145� 0.058� -�

P3� 0.298� 0.244� 1� 0.106� 0.306� 0.29� 0.181� 0.199� 0.295� 0.206� 0.242� 0.0813� 0.151� 0.207� 0.216� 0.142� 0.121� 0.062� -�

P4� 0.262� 0.258� 0.106� 1� 0.231� 0.168� 0.278� 0.271� 0.323� 0.154� 0.249� 0.0963� 0.347� 0.165� 0.224� 0.0812� 0.155� 0.11� -�

P5� 0.484� 0.479� 0.306� 0.231� 1� 0.38� 0.372� 0.344� 0.384� 0.227� 0.223� 0.0619� 0.296� 0.22� 0.308� 0.0903� 0.131� 0.082� -�

P6� 0.329� 0.302� 0.29� 0.168� 0.38� 1� 0.376� 0.258� 0.356� 0.252� 0.213� 0.14� 0.327� 0.291� 0.283� 0.11� 0.142� 0.241� -�

P7� 0.39� 0.384� 0.181� 0.278� 0.372� 0.376� 1� 0.454� 0.361� 0.177� 0.171� 0.156� 0.187� 0.241� 0.287� 0.121� 0.119� 0.188� -�

P8� 0.434� 0.344� 0.199� 0.271� 0.344� 0.258� 0.454� 1� 0.255� 0.164� 0.183� 0.157� 0.193� 0.187� 0.265� 0.0764� 0.129� 0.267� -�

P9� 0.292� 0.418� 0.295� 0.323� 0.384� 0.356� 0.361� 0.255� 1� 0.263� 0.216� 0.126� 0.197� 0.331� 0.294� 0.088� 0.169� 0.0909� -�

P10� 0.215� 0.138� 0.206� 0.154� 0.227� 0.252� 0.177� 0.164� 0.263� 1� 0.15� 0.0763� 0.136� 0.209� 0.182� 0.0247� 0.144� 0.107� -�

P11� 0.207� 0.186� 0.242� 0.249� 0.223� 0.213� 0.171� 0.183� 0.216� 0.15� 1� 0.0297� 0.19� 0.244� 0.193� 0.145� 0.187� 0.0627� -�

P12� 0.126� 0.15� 0.0813� 0.0963� 0.0619� 0.14� 0.156� 0.157� 0.126� 0.0763� 0.0297� 1� 0.0355� 0.0485� 0.099� -0.00785� 0.0473� 0.06� -�

P13� 0.199� 0.233� 0.151� 0.347� 0.296� 0.327� 0.187� 0.193� 0.197� 0.136� 0.19� 0.0355� 1� 0.298� 0.215� 0.16� 0.131� 0.12� -�

P14� 0.202� 0.342� 0.207� 0.165� 0.22� 0.291� 0.241� 0.187� 0.331� 0.209� 0.244� 0.0485� 0.298� 1� 0.230� 0.0355� 0.243� 0.161� -�

Avg.i� 0.293� 0.296� 0.216� 0.224� 0.308� 0.283� 0.287� 0.265� 0.294� 0.182� 0.193� 0.099� 0.215� 0.230� 0.242� -� -� -� -�

FS1� 0.0413� 0.0272� 0.142� 0.0812� 0.0903� 0.11� 0.121� 0.0764� 0.088� 0.0247� 0.145� -0.00785� 0.16� 0.0355� -� 1� 0.076� 0.0832� 0.0796�

TS1� 0.147� 0.145� 0.121� 0.155� 0.131� 0.142� 0.119� 0.129� 0.169� 0.144� 0.187� 0.0473� 0.131� 0.243� -� 0.076� 1� 0.0422� 0.0591�

DS1� 0.071� 0.058� 0.062� 0.11� 0.082� 0.241� 0.188� 0.267� 0.0909� 0.107� 0.0627� 0.06� 0.12� 0.161� -� 0.0832� 0.0422� 1� 0.0627�

Avg.ii� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -� 0.0796� 0.0591� 0.0627� 0.0671�

Average�

Average�

Table A.3: Cross-Correlation of Hourly Volume of I/O Activity.
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�

�
�
�������������������������������������������������
i�Average�of�cross�correlation�with�other�PC�workloads,�excluding�self.�
ii�Average�of�cross�correlation�with�other�server�workloads,�excluding�self.��

� P1� P2� P3� P4� P5� P6� P7� P8� P9� P10� P11� P12� P13� P14� Avg.i� FS1� TS1� DS1� Avg.ii�

P1� 1� 0.579� 0.241� 0.488� 0.659� 0.647� 0.492� 0.684� 0.544� 0.38� 0.116� 0.205� 0.315� 0.18� 0.425� 0.065� 0.341� -0.0254� -�

P2� 0.579� 1� 0.115� 0.319� 0.631� 0.513� 0.628� 0.736� 0.565� 0.317� 0.243� 0.253� 0.537� 0.464� 0.454� -0.118� 0.445� 0.184� -�

P3� 0.241� 0.115� 1� 0.136� 0.312� 0.26� -0.0361� 0.201� 0.37� 0.354� 0.249� -0.0782� 0.171� 0.12� 0.186� 0.288� 0.401� 0.176� -�

P4� 0.488� 0.319� 0.136� 1� 0.323� 0.277� 0.219� 0.516� 0.502� 0.35� 0.434� 0.224� 0.469� 0.203� 0.343� 0.0703� 0.552� -0.466� -�

P5� 0.659� 0.631� 0.312� 0.323� 1� 0.592� 0.507� 0.618� 0.566� 0.452� 0.0851� -0.0555� 0.382� 0.17� 0.403� 0.135� 0.344� -0.0191� -�

P6� 0.647� 0.513� 0.26� 0.277� 0.592� 1� 0.569� 0.406� 0.619� 0.426� 0.141� 0.25� 0.591� 0.321� 0.432� 0.0314� 0.476� 0.414� -�

P7� 0.492� 0.628� -0.0361� 0.219� 0.507� 0.569� 1� 0.597� 0.563� 0.162� 0.0476� 0.373� 0.455� 0.324� 0.377� 0.0792� 0.204� 0.278� -�

P8� 0.684� 0.736� 0.201� 0.516� 0.618� 0.406� 0.597� 1� 0.542� 0.224� 0.132� 0.266� 0.369� 0.22� 0.424� -0.0358� 0.333� 0.23� -�

P9� 0.544� 0.565� 0.37� 0.502� 0.566� 0.619� 0.563� 0.542� 1� 0.728� 0.0909� 0.352� 0.404� 0.376� 0.479� 0.175� 0.629� -0.0133� -�

P10� 0.38� 0.317� 0.354� 0.35� 0.452� 0.426� 0.162� 0.224� 0.728� 1� 0.116� 0.0664� 0.431� 0.584� 0.353� 0.062� 0.472� -0.0131� -�

P11� 0.116� 0.243� 0.249� 0.434� 0.0851� 0.141� 0.0476� 0.132� 0.0909� 0.116� 1� 0.0112� 0.272� 0.387� 0.179� 0.163� 0.518� 0.387� -�

P12� 0.205� 0.253� -0.0782� 0.224� -0.0555� 0.25� 0.373� 0.266� 0.352� 0.0664� 0.0112� 1� 0.23� 0.11� 0.170� -0.163� 0.0531� -0.201� -�

P13� 0.315� 0.537� 0.171� 0.469� 0.382� 0.591� 0.455� 0.369� 0.404� 0.431� 0.272� 0.23� 1� 0.586� 0.401� 0.0261� 0.59� 0.133� -�

P14� 0.18� 0.464� 0.12� 0.203� 0.17� 0.321� 0.324� 0.22� 0.376� 0.584� 0.387� 0.11� 0.586� 1� 0.311� -0.297� 0.523� 0.13� -�

Avg.i� 0.425� 0.454� 0.186� 0.343� 0.403� 0.432� 0.377� 0.424� 0.479� 0.353� 0.179� 0.170� 0.401� 0.311� 0.353� -� -� -� -�

FS1� 0.065� -0.118� 0.288� 0.0703� 0.135� 0.0314� 0.0792� -0.0358� 0.175� 0.062� 0.163� -0.163� 0.0261� -0.297� -� 1� 0.133� -0.343� -0.105�

TS1� 0.341� 0.445� 0.401� 0.552� 0.344� 0.476� 0.204� 0.333� 0.629� 0.472� 0.518� 0.0531� 0.59� 0.523� -� 0.133� 1� 0.18� 0.157�

DS1� -0.0254� 0.184� 0.176� -0.466� -0.0191� 0.414� 0.278� 0.23� -0.0133� -0.0131� 0.387� -0.201� 0.133� 0.13� -� -0.343� 0.18� 1� -0.0815�

Avg.ii� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -0.105� 0.157� -0.0815� -0.0100�

Average�

Average�

Table A.4: Cross-Correlation of Daily Volume of I/O Activity.
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Figure A.3: Autocorrelation of the Sequence of Idle Period Duration.
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Figure A.4: I/O Traffic at Different Time Scales during the High-Traffic Period (One-hour
period that contains more I/O traffic than 95% of other one-hour periods).
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Figure A.5: Hazard Rate for the Distribution of Idle Period Duration.
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Appendix B

Details on Self-Similarity

B.1 Estimating the Degree of Self-Similarity

The degree of self-similarity is expressed using a single parameter, the Hurst parameter
H. For a self-similar series, 1/2 < H < 1, and as H → 1, the degree of self-similarity
increases. For smooth Poisson traffic, H is 1/2. Mathematically, self-similarity is mani-
fested in several equivalent ways and different methods that examine specific indications
of self-similarity are used to estimate the Hurst parameter. In this paper, we focus on the
R/S method and the variance-time plot. Newer inference methods that are more sensitive
to different types of scaling phenomena (e.g., [AV98]) have been developed but are beyond
the scope of this thesis.

B.1.1 The R/S Method

One of the manifestations of the self-similar property is that the autocorrelations of the
process decay hyperbolically rather than exponentially. This behavior is known as long-
range dependence and it provides an explanation for an empirical law known as the Hurst
effect [LTWW94].

The R/S or rescaled adjusted range statistic for a set of observations Xk : k = 1, 2, ..., n
having mean X(n) and sample variance S2(n) is defined by

R(n)

S(n)
=

1

S(n)
[max(0,W1,W2, ...,Wn) − min(0,W1,W2, ...,Wn)] (B.1)

where

Wk = (X1 + X2 + ... + Xk) − kX(n), k ≥ 1.

It turns out that

E

[

R(n)

S(n)

]

∼ cnH (B.2)
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where H = 0.5 for short-range dependent processes and 0.5 < H < 1 for long-range
dependent processes. This difference between short and long-range dependent processes
is known as the Hurst effect and forms the basis for the R/S method of inferring the Hurst
parameter.

Taking logarithm on both sides of Equation B.2,

log

(

E

[

R(n)

S(n)

])

∼ Hlog(n) + log(c) (B.3)

Therefore, we can estimate H by plotting log(E[R(n)/S(n)]) versus log(n) for different
values of n. In practice, we divide a set of N observations into K disjoint subsets each
of length N/K and compute log(E[R(n)/S(n)]) for each of these subsets using logarith-
mically spaced values of n. The resulting plot of log(E[R(n)/S(n)]) versus log(n) is
commonly referred to as a pox plot. For a long-range dependent time series, the pox plot
should fluctuate in a straight street of slope H , 0.5 < H < 1 [Ber94].

In Figure B.1, we present the pox plots for our various workloads for the high-traffic
period. Observe that the pox plots for all the workloads appear to fluctuate around straight
streets with slope ranging from 0.6 to almost 0.9. In other words, all the workloads exhibit
long-range dependence and self-similarity in their I/O traffic patterns. In Figure B.2, we
present the corresponding pox plots for the filtered traces. The same behavior is observed.

B.1.2 Variance-Time Plot

Suppose X is an incremental process indexed by i. Another manifestation of self-
similarity is that the variance of the aggregated process X (m) decrease more slowly than
the reciprocal of m, where

X(m)(k) = (1/m)
km
∑

i=(k−1)m+1

X(i), k = 1, 2, ....

More formally,

V ar(X(m)) ∼ cm−β, 0 < β < 1. (B.4)

Taking logarithm on both sides,

log(V ar(X(m))) ∼ log(c) − βlog(m). (B.5)

Thus for a self-similar process, the variance-time plot, i.e., the plot of log(V ar(X (m)))
against log(m), should be a straight line with a slope (−β) between -1 and 0. The degree
of self-similarity is given by H = 1 − β/2.

The variance-time plots for our various workloads are presented in Figures B.3 and B.4.
Observe that for the high-traffic period, the variance-time plots for all the workloads are
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Figure B.1: Pox Plots to Detect Self-Similarity.
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Figure B.2: Pox Plots to Detect Self-Similarity (Filtered Traces).
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Figure B.3: Variance-Time Plots to Detect Self-Similarity.
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Figure B.4: Variance-Time Plots to Detect Self-Similarity (Filtered Traces).
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very linear with slopes that are more gradual than -1. This indicates that the I/O traffic for
the workloads is self-similar in nature. Notice though that the self-similarity does not span
all time scales but appears to break down beginning just beyond 10s for the database server.
In other words, for time scales ranging from tens of milliseconds to tens and sometimes
even hundreds of seconds, the I/O traffic is well-represented by a self-similar process but
not beyond that. Interestingly, the filtered traces appear to be self-similar to larger time
scales although some of them have a steeper slope, meaning that they are less self-similar.

For the low-traffic period, all the plots again have linear segments with slope of less
than -1 but these segments are shorter than in the high-traffic case, particularly in the case
of the database server. In addition, the slope of the linear regions is noticeably steeper
than for the high-traffic period. This means that I/O traffic during the low-traffic period
is self-similar but less so and over a smaller range of time scales than during the high-
traffic period. As discussed in the main text, the self-similarity could be caused by the
superposition of I/O generated by different processes in the system where each process
behaves as an independent I/O source with heavy-tailed on periods. During the low-traffic
period, we would expect that there are fewer processes running in the system and therefore
fewer independent sources of I/O so that the aggregated traffic is less self-similar. This is
in line with observations in [GS99].

Table B.1 summarizes the Hurst parameter values that we obtained using the R/S method
and the variance-time plot. These two methods provide independent estimates of the degree
of self-similarity and discrepancies between their results can be expected. In view of this,
the figures we obtained are reasonably consistent, which adds confidence to our analysis
and results.

B.2 Generating Self-Similar I/O Traffic

There are several ways to generate self-similar traffic but models such as those based
on F-ARIMA and Fractional Guassian Noise processes are generally computationally ex-
pensive. An alternative traffic generator based on the superposition of independent and
identical fractal renewal processes is attractive because it has a physical correspondence to
the superposition of I/O traffic generated by different processes, and is relatively easy to
construct. The Superposition of Fractal Renewal Processes model is completely character-
ized by M , the number of fractal renewal processes, and p(τ), the inter-arrival probability
density function. A convenient probability density function is the following where the
parameter A serves as a threshold between exponential behavior and power-law behavior:

p(τ) =

{

γ
A
e
−γτ

A , τ ≤ A,
γe−γAγτ−(γ+1), τ > A

(B.6)

The interested reader is referred to [RN96] for more details about the model.
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High�Traffic� P-Avg.� Pf-Avg.� FS1� FS2� TS1� DS1� S-Avg.� Sf-Avg.�

Slope�of�
Fitted�Line� -0.35� -0.40� -0.17� -0.12� -0.11� -0.053� -0.11� -0.38�

Var.-
Time� Hurst�

Parameter� 0.83� 0.80� 0.92� 0.94� 0.94� 0.97� 0.94� 0.81�

Slope�of�
Fitted�Line� 0.80� 0.79� 0.84� 0.90� 0.88� 0.85� 0.86� 0.80�

Pox�
Hurst�

Parameter� 0.80� 0.79� 0.84� 0.90� 0.88� 0.85� 0.86� 0.80�

�
� (a) High Traffic.

High�Read�Traffic� P-Avg.� Pf-Avg.� FS1� FS2� TS1� DS1� S-Avg.� Sf-Avg.�

Slope�of�
Fitted�Line� -0.26� -0.29� -0.20� -0.10� -0.13� -0.10� -0.14� -0.13�

Var.-
Time� Hurst�

Parameter� 0.87� 0.85� 0.90� 0.95� 0.94� 0.95� 0.93� 0.93�

Slope�of�
Fitted�Line� 0.77� 0.74� 0.85� 0.92� 0.79� 0.76� 0.80� 0.77�

Pox�
Hurst�

Parameter� 0.77� 0.74� 0.85� 0.92� 0.79� 0.76� 0.80� 0.77�

�
� (b) High Read Traffic.

High�Write�Traffic� P-Avg.� Pf-Avg.� FS1� FS2� TS1� DS1� S-Avg.� Sf-Avg.�

Slope�of�
Fitted�Line� -0.50� -0.55� -0.29� -0.12� -0.28� -0.068� -0.21� -0.49�

Var.-
Time� Hurst�

Parameter� 0.75� 0.73� 0.85� 0.94� 0.86� 0.97� 0.89� 0.76�

Slope�of�
Fitted�Line� 0.79� 0.78� 0.81� 0.76� 0.88� 0.82� 0.83� 0.79�

Pox�
Hurst�

Parameter� 0.79� 0.78� 0.81� 0.76� 0.88� 0.82� 0.83� 0.79�

�
� (c) High Write Traffic.

Table B.1: Degree of Self-Similarity.
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B.2.1 The Inputs

The inputs to the traffic generator are:

1. H , the Hurst parameter which measures the degree of self-similarity [Ber94].

2. µ, the average number of arrivals during intervals of duration Ts.

3. σ2, the variance in the number of arrivals during intervals of duration Ts.

B.2.2 Model Setup

The three inputs described above were chosen to be relatively easy to measure and
understand. Before we begin to generate the traffic, however, we need to convert the inputs
into a more convenient form:

1. Calculate

α = 2H − 1 (B.7)

2. Calculate

γ = 2 − α (B.8)

3. Calculate

λ =
µ

Ts

(B.9)

4. Calculate

To =
Ts

( σ2

λTs
)

1

α − 1
(B.10)

5. Calculate

A =

[

T α
o 2γ2(γ − 1)eγ

(2 − γ)(3 − γ)[1 + (γ − 1)eγ]2

]
1

α

(B.11)

6. Calculate

M =

⌊

Aλ

γ

[

1 +
1

(γ − 1)eγ

]⌋

(B.12)
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B.2.3 The Algorithm

Let T
(j)
i denote the ith inter-arrival time for process j. The following algorithm calcu-

lates the T
(j)
i by spawning M independent threads. This multi-threaded approach is useful

when actual I/Os are to be issued. For pure simulations or where I/O calls return immedi-
ately after they have been issued, a single-threaded version can be easily constructed.

1. Spawn M threads

2. For each thread

3. Generate a random variable U uniformly distributed in [0,1)

4. Calculate

V =
1 + (γ − 1)eγ

γ
U (B.13)

5. Calculate

τ (j)
o =







−γ−1A ln[U γV −1
γV −U

], V ≥ 1,

AV
1

1−γ , V < 1
(B.14)

6. Repeat

7. Generate a random variable U uniformly distributed in [0,1)

8. Calculate

τ
(j)
i =

{ − 1
γ
A ln[U ], U ≥ e−γ ,

1
e
AU

−1

γ , U < e−γ
(B.15)

9. Until enough arrivals are generated
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Appendix C

Additional Results for Chapter 3
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Figure C.1: Effect of Read-Ahead on Average Read Service Time.
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197

0

1

2

3

4

5

0 8 16 24 32
Segment�Size�(KB)

Av
er

ag
e�

Re
ad

�R
es

po
ns

e�
Ti

m
e�

(m
s)

1
2
4
No�Pf

P-Avg.

Resource-Poor

Prefetch�Trigger

2

3

4

0 8 16 24 32

S-Avg.

0

1

2

3

4

5

6

0 8 16 24 32

Ps-Avg.

0

1

2

3

4

5

0 8 16 24 32

Pm

0

1

2

3

4

5

0 8 16 24 32

Sm

0

0.1

0.2

0.3

0.4

0.5

0.6

0 8 16 24 32
Segment�Size�(KB)

Re
ad

�M
iss

�R
at

io

1
2
4
No�Pf

P-Avg.

Resource-Poor

Prefetch�Trigger

0

0.1

0.2

0.3

0.4

0.5

0 8 16 24 32

S-Avg.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 8 16 24 32

Ps-Avg.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 8 16 24 32

Pm

0

0.1

0.2

0.3

0.4

0.5

0.6

0 8 16 24 32

Sm

Figure C.4: Additional Effect of Backward Conditional Prefetch (Resource-Poor).



198

0

1

2

3

4

0 8 16 24 32
Segment�Size�(KB)

Av
er

ag
e�

Re
ad

�R
es

po
ns

e�
Ti

m
e�

(m
s)

1
2
4
No�Pf

P-Avg.

Resource-Rich

Prefetch�Trigger

0

1

2

0 8 16 24 32

S-Avg.

0

1

2

3

4

5

0 8 16 24 32

Ps-Avg.

0

1

2

3

0 8 16 24 32

Pm

0

1

2

3

0 8 16 24 32

Sm

0

0.1

0.2

0.3

0.4

0.5

0 8 16 24 32
Segment�Size�(KB)

Re
ad

�M
iss

�R
at

io

1
2
4
No�Pf

P-Avg.

Resource-Rich

Prefetch�Trigger

0

0.1

0.2

0.3

0 8 16 24 32

S-Avg.

0

0.1

0.2

0.3

0.4

0.5

0 8 16 24 32

Ps-Avg.

0

0.1

0.2

0.3

0.4

0 8 16 24 32

Pm

0

0.1

0.2

0.3

0.4

0 8 16 24 32

Sm

Figure C.5: Additional Effect of Backward Conditional Prefetch (Resource-Rich).
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Figure C.6: Effect of Preemptible Read-Ahead on Average Read Service Time.
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Figure C.7: Performance of Large Fetch Unit with Preemptible Read-Ahead (Resource-
Poor).
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Figure C.8: Performance of Large Fetch Unit with Preemptible Read-Ahead (Resource-
Rich).



200

0

1

2

3

4

5

6

0 128 256 384 512
Opportunistic Prefetch Limit (KB)

Av
er

ag
e 

Re
ad

 R
es

po
ns

e 
Ti

m
e 

(m
s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

0

1

2

3

4

0 128 256 384 512
Opportunistic Prefetch Limit (KB)

Av
er

ag
e 

Re
ad

 S
er

vic
e 

Ti
m

e 
(m

s)
P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

0

0.1

0.2

0.3

0.4

0.5

0.6

0 128 256 384 512
Opportunistic Prefetch Limit (KB)

Re
ad

 M
iss

 R
at

io

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

Figure C.9: Performance of Read-Ahead with Preemptible Read-Ahead (Resource-Poor).
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Figure C.10: Performance of Read-Ahead with Preemptible Read-Ahead (Resource-Rich).
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Figure C.11: Performance of Conditional Sequential Prefetch with Preemptible Read-
Ahead (Resource-Poor).
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Figure C.12: Performance of Conditional Sequential Prefetch with Preemptible Read-
Ahead (Resource-Rich).

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2 0.25
Buffer�Size�(%�Storage�Used)

Av
er

ag
e�

W
rit

e�
Re

sp
on

se
�T

im
e�

(m
s) 0.5

1
2
4
8
16
32

Buffer�Block�Size�(KB)

Resource-Rich

P-Avg.

0

2

4

6

8

0 0.05 0.1 0.15 0.2 0.25

S-Avg.

0

0.5

1

1.5

2

0 0.05 0.1 0.15 0.2 0.25

Ps-Avg.

0

0.05

0.1

0.15

0.2

0 0.05 0.1 0.15 0.2 0.25

Pm

0

2

4

6

8

0 0.05 0.1 0.15 0.2 0.25

Sm

Figure C.13: Sensitivity to Buffer Block Size.
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Figure C.14: Improvement in Average Write Service Time from Eliminating Repeated
Writes.
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Figure C.15: Effect of lowMark and highMark on Average Write Response Time
(Resource-Poor).
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Figure C.16: Effect of lowMark and highMark on Write Miss Ratio (Resource-Poor).

0

0.4

0.8

1.2

1.6

2

0 20 40 60 80 100
highMark�(%�Buffer)

Av
er

ag
e�

W
rit

e�
Se

rv
ice

�T
im

e�
(m

s)

5
10
20
40
60
80
90
95

lowMark�
(%�Buffer)

P-Avg. Resource-Poor

0

0.4

0.8

1.2

1.6

2

0 20 40 60 80 100

S-Avg.
0

0.4

0.8

1.2

1.6

0 20 40 60 80 100

Ps-Avg.

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

Pm
0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

Sm

Figure C.17: Effect of lowMark and highMark on Average Write Service Time
(Resource-Poor).
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Figure C.18: Effect of lowMark and highMark on Average Read Response Time
(Resource-Poor).
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Figure C.19: Effect of Age Factor, W , on Response Time (Resource-Poor).
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Figure C.20: Effect of Age Factor, W , on Response Time (Resource-Rich).
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Figure C.21: Effect of Age Factor, W , on Service Time.
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Figure C.22: Average Response and Service Times as a Function of the Maximum Queue
Depth (Resource-Poor).
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Figure C.23: Average Response and Service Times as a Function of the Maximum Queue
Depth (Resource-Rich).
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Average Read Response Time Average Read Service Time 

Max. Q Depth = 2 4 8 16 Max. Q Depth = 2 4 8 16  

ms %i ms %i ms %i ms %i ms %i ms %i ms %i ms %i 

P-Avg. 3.58 7.45 3.41 11.5 3.34 13.2 3.41 11.7 2.24 2.34 2.20 4.03 2.22 3.03 2.18 4.76 

S-Avg. 3.21 6.89 2.82 16.8 2.67 20.1 2.58 22.7 1.91 1.58 1.88 2.79 1.91 0.549 1.86 3.52 

Ps-Avg. 4.08 5.73 3.93 8.96 3.83 11.1 3.99 7.75 2.23 4.11 2.17 6.49 2.18 5.94 2.15 7.40 

Pm 3.44 10.5 3.26 15.4 3.14 18.4 3.20 16.8 2.24 2.98 2.20 4.50 2.23 3.44 2.19 4.98 

Re
so

ur
ce

-P
oo

r 

Sm 3.82 7.30 3.51 14.7 3.37 18.2 3.32 19.3 2.68 0.889 2.65 1.96 2.67 0.982 2.63 2.64 

P-Avg. 2.88 8.08 2.74 12.2 2.66 14.8 2.77 11.8 1.80 2.31 1.77 3.78 1.79 2.67 1.76 4.43 

S-Avg. 1.39 10.0 1.25 16.9 1.20 18.3 1.16 21.5 0.879 1.37 0.865 2.68 0.886 -0.896 0.856 3.57 

Ps-Avg. 3.36 5.66 3.25 8.61 3.15 11.7 3.35 6.40 1.78 3.65 1.74 5.75 1.75 5.12 1.72 6.48 

Pm 1.83 11.3 1.73 15.7 1.65 19.8 1.72 16.6 1.24 2.32 1.23 3.55 1.24 2.58 1.22 3.93 

Re
so

ur
ce

-R
ic

h 

Sm 1.55 9.94 1.43 17.4 1.38 20.2 1.35 22.0 1.09 0.619 1.08 1.56 1.10 -0.310 1.07 2.31 

 
                                                           
i Improvement  over queue depth of one ([original value – new value]/[original value]). 
 

(a) Reads.

Average Write Response Time Average Write Service Time 

Max. Q Depth = 2 4 8 16 Max. Q Depth = 2 4 8 16  

ms %i ms %i ms %i ms %i ms %i ms %i ms %i ms %i 

P-Avg. 0.375 19.2 0.277 38.2 0.227 47.7 0.202 52.3 1.80 0.672 1.51 16.8 1.41 22.3 1.37 24.6 

S-Avg. 3.99 14.7 2.67 40.7 2.13 50.3 1.82 56.2 2.03 1.75 1.55 24.4 1.32 34.8 1.21 39.8 

Ps-Avg. 1.04 8.38 0.782 30.2 0.646 41.8 0.576 48.0 1.48 1.74 1.18 21.5 1.05 30.1 0.982 34.7 

Pm 0.323 34.7 0.228 53.9 0.190 61.7 0.174 64.9 1.82 0.651 1.44 21.1 1.30 29.2 1.22 33.2 

Re
so

ur
ce

-P
oo

r 

Sm 6.49 3.02 4.42 34.0 3.48 48.0 2.95 55.9 2.39 2.51 1.83 25.3 1.57 36.1 1.42 42.1 

P-Avg. 0.348 16.4 0.261 34.5 0.218 43.5 0.197 48.1 1.09 1.11 0.831 24.6 0.700 36.3 0.622 43.3 

S-Avg. 1.90 14.1 1.18 37.3 0.831 45.4 0.673 49.0 0.904 2.08 0.654 29.3 0.535 42.4 0.465 50.1 

Ps-Avg. 1.08 4.04 0.832 24.7 0.695 36.4 0.617 43.2 1.05 2.34 0.804 25.0 0.681 36.3 0.608 42.9 

Pm 0.161 37.6 0.133 48.5 0.123 52.1 0.121 53.2 0.746 0.460 0.565 24.7 0.474 36.8 0.416 44.5 

Re
so

ur
ce

-R
ic
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Sm 2.38 4.36 1.52 39.0 1.16 53.6 0.981 60.6 1.41 1.29 1.04 27.5 0.855 40.3 0.745 48.0 

 
                                                           
i Improvement  over queue depth of one ([original value – new value]/[original value]). 
 

(b) Writes.

Table C.1: Average Response and Service Times as Maximum Queue Depth is Increased
from One.
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Figure C.24: Average Read and Write Response Time as a Function of Stripe Unit
(Resource-Poor).
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Figure C.25: Average Read and Write Service Time as a Function of Stripe Unit.
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Figure C.26: Average Read and Write Response Time as a Function of Stripe Unit (8
Disks).
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Figure C.27: Performance as a Function of the Number of Disks (Resource-Poor).
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Figure C.28: Performance as a Function of the Number of Disks and with Constant Total
Cache and Buffer Space (Resource-Poor).
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Figure C.29: Performance as a Function of the Number of Disks and with Constant Total
Cache and Buffer Space (Resource-Rich).
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Figure C.30: Effect of Improvement in Seek Time on Average Response Time (Resource-
Poor).
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Figure C.31: Effect of Improvement in Seek Time on Average Service Time.
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Figure C.32: Effect of RPM Scaling on Average Response Time (Resource-Poor).
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Figure C.33: Effect of RPM Scaling on Average Service Time.
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Figure C.34: Effect of Increased Linear Density on Average Response Time (Resource-
Poor).
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Figure C.35: Effect of Increased Linear Density on Average Service Time.



223

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

Increase in Track Density (%)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

sp
on

se
 T

im
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

f(x)=16.4(1-e-0.0101x)
r2=0.999

-20

0

20

40

60

-3 -2 -1 0 1 2 3

Time (Years Relative to Present)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

sp
on

se
 T

im
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

f(x)=3.48x
r2=0.999

Figure C.36: Effect of Increased Track Density on Average Response Time (Resource-
Poor).
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Figure C.37: Effect of Increased Track Density on Average Service Time.
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Figure C.38: Overall Effect of Disk Improvement on Average Service Time.
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Figure C.39: Effect of Mechanical Improvement on Average Service Time.
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Figure C.40: Effect of Areal Density Increase on Average Service Time.
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Figure C.41: Actual Average Seek/Rotational Time as Percentage of Specified Values
(Resource-Rich).



227

Appendix D

Additional Results for Chapter 4
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Figure D.1: Effectiveness of Organ Pipe Placement at Improving Read Performance
(Resource-Poor).



228

-150

-100

-50

0
1 10 100 1000 10000

Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

-150

-100

-50

0
1 10 100 1000 10000

Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

-150

-100

-50

0
1 10 100 1000 10000

Reorganization Unit (KB)
Im

pr
ov

em
en

t i
n 

Av
er

ag
e 

Re
ad

 S
er

vic
e 

Ti
m

e 
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

Figure D.2: Effectiveness of Heat Layout at Improving Read Performance (Resource-
Rich).
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Figure D.3: Effectiveness of Heat Layout at Improving Read Performance (Resource-
Poor).
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Figure D.4: Effectiveness of Link Closure Placement at Improving Read Performance
(Resource-Poor).
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Figure D.5: Effectiveness of Packed Extents Layout at Improving Read Performance
(Resource-Poor).
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Figure D.6: Effectiveness of Sequential Layout at Improving Read Performance (Resource-
Poor).
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(a) Organ Pipe.

-50

-40

-30

-20

-10

0

10

1 10 100 1000 10000
Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 S

er
vic

e 
Ti

m
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(b) Link Closure.
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(c) Packed Extents.
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(d) Sequential.

Figure D.7: Improvement in Average Read Service Time for the Various Block Layouts in
Heat Clustering (Resource-Rich).
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(a) Organ Pipe.
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(c) Packed Extents.
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Figure D.8: Improvement in Average Read Service Time for the Various Block Layouts in
Heat Clustering (Resource-Poor).
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Figure D.9: Sensitivity of Heat Clustering to Age Factor, α (Resource-Poor).
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(a) Resource-Poor.
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Figure D.10: Sensitivity of Run Clustering to Weighting of Edges.
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Figure D.11: Sensitivity of Run Clustering to Context Size, τ (Resource-Poor).
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Figure D.12: Effectiveness of Run Clustering with Fixed-Sized Reorganization Units
(Resource-Poor).
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Figure D.13: Sensitivity of Run Clustering to Graph Size (Resource-Poor).
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(a) Resource-Poor.
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(b) Resource-Rich.

Figure D.14: Effect of Pre-Filtering on Run Clustering.



238

-10

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1
Age Factor, 

�
 

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg.

S-Avg.

Ps-Avg.

Pm

Sm

Resource-Poor

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1
Age Factor, �  

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

Figure D.15: Sensitivity of Run Clustering to Age Factor, β (Resource-Poor).
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Figure D.16: Sensitivity of Run Clustering to Edge Threshold (Resource-Poor).
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Figure D.17: Effect of Imposing Minimum Run Length.
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Figure D.18: Effect of Using a Run only when the Contexts Match (Resource-Poor).
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(a) Heat Clustering.
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Figure D.19: Percent of Disk Reads Satisfied in Reorganized Area (Resource-Poor).
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Figure D.20: Effect of Limiting the Total Size of Runs in the Reorganized Area.
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Figure D.21: Sensitivity of Heat and Run Clustering Combined to Edge Threshold
(Resource-Poor).
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Figure D.22: Performance Improvement with the Various Clustering Schemes (Resource-
Poor).



244

-20

-10

0

10

20

30

0 5 10 15 20
Size of RA (% Storage Used)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

-20

-10

0

10

20

30

0 5 10 15 20
Size of RA (% Storage Used)

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(a) Heat Clustering.

-10

0

10

20

30

40

50

0 5 10 15
Size of RA (% Storage Used)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

0

10

20

30

40

50

0 5 10 15
Size of RA (% Storage Used)

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

(b) Run Clustering.

-10

0

10

20

30

40

50

0 4 8 12 16 20
Size of RA (% Storage Used)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

0

10

20

30

40

0 4 8 12 16 20
Size of RA (% Storage Used)

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

(c) Heat and Run Clustering Combined.

Figure D.23: Sensitivity to Size of Reorganized Area (Resource-Poor).
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(c) Heat and Run Clustering Combined.

Figure D.24: Sensitivity to Placement of Reorganized Area (Resource-Poor).
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(c) Heat and Run Clustering Combined.

Figure D.25: Effect of Remapping Cache Contents (Resource-Rich).
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(c) Heat and Run Clustering Combined.

Figure D.26: Effect of Remapping Cache Contents (Resource-Poor).



248

-20

-10

0

10

20

30

40

Home Heat All Home Heat All
Copy to Update

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg. Ps-Avg.
Pm Sm

Resource-Poor

Count Reads 
and Writes

Count Reads 
Only

-20

-10

0

10

20

30

40

Home Heat All Home Heat All
Copy to Update

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 M

iss
 R

at
io

 T
im

e 
(%

)

P-Avg. S-Avg. Ps-Avg.
Pm Sm

Resource-Poor

Count Reads 
and Writes

Count Reads 
Only

-30

-20

-10

0

10

20

30

Home Heat All Home Heat All
Copy to Update

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

Count Reads 
and Writes

Count Reads 
Only

Figure D.27: Effect of Various Write Policies on Heat Clustering (Resource-Poor).
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Figure D.28: Effect of Various Write Policies on Run Clustering (Resource-Poor).
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Figure D.29: Effect of Various Write Policies on Heat and Run Clustering Combined
(Resource-Poor).
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(c) Heat and Run Clustering Combined.

Figure D.30: Sensitivity to Reorganization Interval (Resource-Poor).
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(c) Heat and Run Clustering Combined.

Figure D.31: Performance with Knowledge of Future Reference Patterns (Resource-Poor).
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Figure D.32: Rate of Copying Blocks into the Reorganized Region (Resource-Poor).
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(c) Heat and Run Clustering Combined.

Figure D.33: Effectiveness of the Various Clustering Techniques as Disks are Mechanically
Improved over Time (Resource-Poor).
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Figure D.34: Effectiveness of the Various Clustering Techniques at Reducing Read Miss
Ratio as Disks are Mechanically Improved over Time (Resource-Rich).
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Figure D.35: Effectiveness of the Various Clustering Techniques at Reducing Read Miss
Ratio as Disk Recording Density is Increased over Time (Resource-Rich).
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(c) Heat and Run Clustering Combined.

Figure D.36: Effectiveness of the Various Clustering Techniques as Disk Recording Den-
sity is Increased over Time (Resource-Poor).



255

0

10

20

30

40

-2 -1 0 1 2
Time (Years Relative to Present)

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich
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(c) Heat and Run Clus-
tering Combined.

Figure D.37: Effectiveness of the Various Clustering Techniques at Reducing Read Miss
Ratio as Disk Technology Evolves over Time (Resource-Rich).
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(c) Heat and Run Clustering Combined.

Figure D.38: Effectiveness of the Various Clustering Techniques as Disk Technology
Evolves over Time (Resource-Poor).
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Appendix E

Overview of the TPC-D Benchmark

The Transaction Processing Performance Council Benchmark D (TPC-D) [Tra97] is
a decision support benchmark that models the analysis end of the business environment
where trends are analyzed and refined to support sound business decisions. It consists of
eight relations, 17 read-only queries and two update functions. The 17 read-only queries
have different complexities, varying from single table aggregation (e.g., Query 1) to 8-way
join (e.g., Query 2).

Eight scale factors (SF) are defined – 1, 10, 30, 100, 300, 1,000, 3,000, and 10,000.
The scale factor is approximately the logical database size measured in GBs. Each bench-
mark configuration may define different indices. With index and database storage overhead
(e.g., free space), the actual database size may be much bigger than the logical database
size defined by the benchmark. Only results measured against the same scale factor are
comparable.

TPC-D introduces two performance metrics and a single price-performance metric.
They are the TPC-D power metric (QppD@Size), TPC-D throughput metric (QthD@Size)
and TPC-D price/performance metric (Price-per-QphD@Size). The power metric is de-
fined as follows:

QppD@Size =
3600

19

√

(RI(1) ∗ RI(2) ∗ ... ∗ RI(17) ∗ UI(1) ∗ UI(2))
∗ SF (E.1)

where

• RI(i) = MAX(QI(i), 1
1000

MAXQI).

• QI(i) is the run time, in seconds, of query i during the power test.

• MAXQI = MAX(QI(1), QI(2), ..., QI(17)).

• UI(j) is the run time, in seconds, of update function j during the power test.
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• Size is the database size chosen for the measurement and SF, the corresponding scale
factor.

The power test runs one query at a time in the order defined by the benchmark. The 3600
translates QppD to a query per hour measurement. Since QppD is a geometric mean of
query rates, each query or update function has an equal weight. If the performance of any
query or update function is improved by a factor of 2, the QppD@Size measurement will
be increased by about 3.7%. If a system’s execution time scales linearly with SF, QppD at
any database size will be the same.

In the throughput test, one or more query streams are run concurrently on the system.
The throughput metric is defined as follows:

QthD@Size =
S ∗ 17 ∗ 3600

Ts

∗ SF (E.2)

where

• S is the number of query streams used in the throughput test.

• Ts is the interval, in seconds, between when the query streams are started and when
the last query stream completes.

• Size is the same as in the definition of QppD.

Notice that QthD@Size is based on the arithmetic mean of the query execution times. Thus
queries with longer execution times have more weight in the metric.

The TPC-D power metric and the TPC-D throughput metric are combined to form a
composite query-per-hour rating, QphD@Size, which is the geometric mean of QppD@Size
and QthD@Size. Finally, the price/performance metric is defined as:

Price-per-QphD@Size =
$

QphD@Size
(E.3)
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Appendix F

Query Execution Plans for TPC-D

In this appendix, we show the query execution plans of all 17 TPC-D queries from
a recently certified TPC-D result on an SMP system. In each execution plan, sub-trees
rooted by rectangular boxes are what we call SR sub-trees; all operations in a SR sub-tree
are single-base-relation operations that can be delegated to a SmartSTOR by single-relation
offloading. Each query execution plan tree is rooted by a return operation, which returns
the qualified tuples to the application. We use a double-circle for tables and indices. These
include base tables, base indices, and optimizer generated subqueries and table functions.
The legend is as follows:

• AST: automatic summary table
ASTs are auxiliary tables that contain partially aggregated data.

• FETCH: table scan through index

• FILTER: predicate evaluation
This is for the predicates that are not pushed down to the scans.

• [HS|MS|NL]JOIN: [hash|merge-scan|nested-loop] join

• [IX|TB]SCAN: [index|table] scan
IXSCAN is different from FETCH in that the former is an index-only scan, i.e., the
corresponding table does not have to be read to get the needed fields.

• L[M]TQ: local [merge] table queue
Table queue is a mechanism to exchange data among operations. The plans are from
an SMP system, thus, all table queues are local table queues. Regular LTQ collects
data in any order while LMTQ collects data in a specific order.

• GRPBY: group by

• RETURN: return to host

• SORT: sort
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Figure F.1: Execution Plans for Queries 1 and 2.
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Figure F.2: Execution Plans for Queries 3 and 4.
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Figure F.3: Execution Plans for Queries 5 and 6.
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Figure F.5: Execution Plan for Query 8.
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Figure F.6: Execution Plan for Query 9.
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Figure F.7: Execution Plan for Query 10.
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Figure F.9: Execution Plans for Queries 12 and 13.
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Figure F.10: Execution Plans for Queries 14 and 15.
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Figure F.11: Execution Plans for Queries 16 and 17.


