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Abstract

In this paper we introduce a new approach to system performance analysis. Based on the use of a
system monitoring database, SPADE (System Performance Analysis Database Engine) overcomes
many of the shortcomings of traditional performance analysis tools. SPADE collects monitoring
data from all levels of the system, including the application, and stores it in a central repository
backed by a relationa DBMS; the granularity of the system instrumentation is automatically
matched to the application’s notion of a request, allowing the database to correlate all monitoring
data with semantically-meaningful application requests. We demonstrate that the SQL-based
query facility of the database enables unprecedented levels of flexibility, power, and ease-of-use in
analyzing the data: a user of our system can write smple queries to examine the collected
monitoring data at multiple levels of detail, to locate system bottlenecks and unusual behavior, and
to easily test hypotheses about the system’s performance, all without having to write ad-hoc tools
or perform multiple experiment runs.

1 Introduction

Networked servers running data-i ntensive applications such as web services and databases are playing an
increasingly important role in modern computing. It has been recently argued that these “infrastructure”
systems will form the most significant class of large computer installations as we move into the next era
of computing, the “Post-PC erd’ [Hen99, Pat99]. One of the most critical qualities of data-intensive
infrastructure servers is their per-request performance (i.e., response time), as this metric trandates
directly into user-perceived performance. To provide the best user experience, it is important that these
servers be highly tuned to achieve the best performance possible. This tuning in turn requires an
understanding of the underlying reasons why the system performs as it does and, in particular, how
various system characteristics impact the server application’s perceived performance.

However, most of today’s data-intensive servers are extraordinarily complex and exhibit
performance characteristics that do not lend themselves to easy analysis. One of the more significant
difficulties is that system performance is often governed by the interactions amongst many different parts
of the system, from hardware devices (such as disks) to the operating system to the application itself.
Traditiona performance monitoring tools are not up to the task of collecting performance data from all of
these different subsystems, correlating that data with application performance, and integrating it to
present a unified view of the performance of al the system internals as well as of the application. For
example, the performance tools built into most operating systems (such as systat, vmstat, netstat, top, and
so forth) provide awedth of detail about the internal operation of the operating system, but do so only on
avery coarse, fixed-timestep granularity. As a result, they provide no way to correlate that data with the
performance of any given application-level service request; at best these tools can provide limited insight
into the aggregate throughput of an application.

We believe that the solution to this predicament lies in the application of database technology to
the problem of analyzing and understanding system performance. A relational database provides a natural
repository through which diverse performance and monitoring data collected from all levels of the system
can be centralized and integrated. It also provides a powerful query mechanism that can be used to
investigate the data, to test hypotheses about the impact of various components on system performance,
and to perform data reduction and summarization. Advanced database systems also provide the ability to
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Figure 1: SPADE System Overview

perform data mining and on-line analytical processing (OLAP) operations that can potentially extract
novel and unexpected correlations in the data, providing new insight into system performance.

In this paper, we describe the architecture and implementation of SPADE (System Performance
Analysis Database Engine), a system that demonstrates the benefits of using a relational database to store
and analyze system monitoring data. We have fully instrumented both a single-node operating system
kernel and a web server application to collect performance data and to insert it into a relational system
monitoring database; the application and kernel instrumentation are described in detail in Sections 3 and
4, respectively, while Section 5 describes the process by which the monitoring data is placed into the
database. In Section 6, we show how the database’s query capabilities can be used to transform the raw
monitoring datainto aformat that correl ates subsystem performance statistics with per-request application
response time. Section 7 illustrates the power of using a system monitoring database by demonstrating
how database queries can be used to identify regimes of poor performance and to trace the causes of that
performance degradation, potentially providing the insight necessary to tune the system’s hardware and
software configuration. Our prototype implementation carries out the bulk of its processing and anaysis
off-line; Section 8 examines the performance implications of moving to an online model, and considers
the suitability of various DBMSs for this application. In Section 9 we present some directions for future
research, considering in particular how the use of an on-line system monitoring database could provide
the foundation for automatic application adaptation to system performance bottlenecks. Finaly, we
present related work in Section 10, and in Section 11 we conclude.

2 System Overview
2.1 System structure
The performance data collection and analysis system that we have implemented consists of severa

components roughly partitioned into three groups: in-kernel instrumentation and data collection code, off-
line data transformation tools, and the relational database used to integrate the monitoring data collected



and processed by the first two groups of components. A schematic overview of the system is presented in
Figure 1.

Thein-kernel instrumentation and data collection code serves two functions. Firt, it performs the
actual OS- and device-level monitoring: small snippets of code spread throughout the OS kernel monitor
and record system and device events as they occur and gather snapshots of summary statistics describing
subsystem utilization, memory utilization, and so forth. The details of this instrumentation code are
described further in Section 4. The other function of the in-kernel portion of our system is to provide a
unified interface to the kernel’s monitoring functionality. We provide a set of procedures that allows the
various pieces of monitoring code described above to store their collected data as records within a large
circular trace buffer alocated within the kernel’s memory region; al records have a standard header, are
automatically timestamped, and are tagged by type. The system also provides severa system calls that
alow a user process to extract the data from the buffer and to enable or disable each individual
monitoring function. Synchronization of buffer access between the user process and the kernel is handled
automatically by the centralized interface and is thus hidden from the code that actualy performs
monitoring or statistics gathering, keeping that code simple and fast.

The second group of components consists of tools that extract the monitoring data from the kernel
buffer, perform some simple preprocessing and transformation of that data, and convert it into a format
that can be directly bulk-loaded into a relational database. Our prototype system relies on three separate
programs for this task (although they could easily be combined, and should be in a production-caliber
implementation): the first, kmond, extracts the data from the kernel; the second, datapump, performs some
simple computation and transformation of the data; and the third, db-insert, converts the output of
datapump into the appropriate bulk-loading format for the particular database being used. More details on
each of these tools can be found in Section 5.

The last component of the system is the database itself. Any relationa database can be used for
this component of the system, athough we found that an industrial-strength commercial database was
required to handle the volume and complexity of the monitoring dataset. Flexible query support is also an
important requirement. We describe our experience with several different DBM Ssin Section 8.

2.2 User experience

Analyzing a system’s performance using the monitoring and analysis system that we have just described
is a multi-step process with our prototype implementation. First, the user must instrument the application
as described in Section 3 to inform the kernel monitoring subsystem of application-level events and to log
application-specific performance metrics. Next, the user enables the monitoring subsystem and runs the
application, subjecting it to the workload under which the user wants to understand the system’'s
performance. If the workload in question is one that results in poor performance, the user can optionaly
monitor a second application run in which a “normal” workload is used to obtain a baseline
characterization of the system to use as a comparison point. After collecting the traces from these
application runs, the user invokes the off-line data processing tool chain in order to transform the data and
load it into the database. At this point, the user can interact with just the database, issuing queries and
examining the query results in order to investigate the system’s performance at different points in the
application workload, to test hypotheses about why performance might be slow, and to search for novel
correlations between system and application performance. The key point here is that the data collection
and analysis are completely divorced by the use of the database: the user does not need to decide on
hypotheses or questions to ask before collecting the data, and at no point should the user need to perform
additional tracing or application runsin order to pose and answer a different set of questions. Instead, the
user can simply issue a new set of queries that aggregates and summarizes the collected datain a different
manner.



The fact that so many steps are required in the analysis and data-collection process is primarily an
artifact of our prototype implementation; we purposefully kept the various components and tools separate
to allow us to change their implementations during development of the system. There is no inherent
reason why the analysis process need be broken down into so many steps, and in fact a production
implementation of our system would most likely combine tracing with on-line data transformation and
database loading, eliminating al steps but the initial instrumentation and the final data analysis. We
consider some of the issues in moving to such an online model in Section 8, below.

3 Application Instrumentation

Because SPADE's focus is on correlating application performance to underlying system behavior, the
application to be analyzed must be instrumented to collect data about relevant application-level events.
We therefore instrumented two applications, the Apache 1.3.3 web server and the PostgreSQL 6.4.2
database. Because we were interested in user-visible application latency, we recorded the response time
measured between the user request being issued to the system (received by the back-end in PostgreSQL,
received by the web server in Apache) and the response being returned to the user (returned from the
back-end to the front-end in PostgreSQL, returned from the server in Apache). We aso recorded the
identity of the request, namely the web page requested in the case of Apache and the database query
issued in the case of PostgreSQL. Because we examined only Apache in our application performance
study, we describe the issues related to Apache’s instrumentation here. The required instrumentation is
similar in PostgreSQL..

There are actually two response time metrics of possible interest in Apache. One is the latency
between the server receiving the request for a web page and the server returning the web page to the
client; the other is the latency between the server receiving the request for a web page and the server
closing the TCP connection with the client (after returning that page). While the extra time overhead of
closing the TCP connection is of some interest, we are primarily interested in the code path from request
receipt to page delivery, want the path related to the connection control aspects of the TCP protocol;
moreover, we wanted to exclude as much as possible the impact of random variations in network
performance which can have a significant impact on the overhead of closing a TCP connection. Thus
while we measured the latency both including and excluding this connection-closing overhead, our
performance study of the application used the latency measure that excludes the time spent closing the
connection.

Because it is logically multithreaded (depending on the host platform, a separate process may be
used for each logical thread, as is the case on our NetBSD-based system), Apache introduces a slight
complication in mapping operating system statistics to application regquest units (i.e., single requests for a
web page). Because of the overhead of recording summary snapshots, it is desirable to record them only
when necessary, i.e., a the beginning and end of each HTTP request. The difference between the two
snapshots, which is attributable to the query running during that time interval, can be computed as a
postprocessing step. But the multithreaded nature of Apache alows multiple requests to be
simultaneoudly serviced; this means that multiple summary snapshots may be recorded between the begin
and end records inserted by the application for a single request. To allow easy aggregation of all the
statistics collected during the execution of a query, we divide time into “epochs.” Initiation or completion
of server processing of an HTTP request defines the an epoch’ s boundaries; such aboundary is marked by
the application making a system call that records a “begin request” or “end request” log record. An epoch
is therefore the finest granularity on which statistics must be collected (and events timestamped) in order
for the statistics relevant to a particular HTTP request to be computed. The epoch number can be thought
of as alogical timestamp value, and the statistics collected during all epochs during which a query was
running are aggregated to produce the system utilization information for that query. We will see that our



use of a database table mapping HTTP requests to epochs, combined with our storing summary snapshots
and events in the database tagged by the epoch during which they were collected, allows us to easily
aggregate the data relevant to any particular query.

To support application instrumentation we added an OS system cal,
krmon_i ncrenent _epoch(), that takes an application-defined type field and an application-defined
log record structure. It increments the “current epoch” counter and causes summary snapshots to be
logged into the trace buffer along with a “new epoch” log record that includes the current time and the
application-defined log record data. In the case of Apache the type indicates whether the call was made to
mark the beginning or ending of the servicing of arequest, and the application-defined data provides the
ASCI|I representation of the requested URL. In the case of PostgreSQL the application-defined data is the
ASCII representation of the SQL query handled. Given this system call, instrumenting an application is
very easy—knon_i ncrenment _epoch() is smply caled a the beginning and end of handling a
request.

4 Operating System I nstrumentation

Because we want to collect as many operating system statistics and events as possible, SPADE required
significant operating system instrumentation. We modified the NetBSD 1.3.3 kernel to collect summary
statistics once per epoch (i.e., once each time the application cals knon_i ncr enent _epoch() ) and
to continuously collect dynamic event traces; both types of records are tagged with the epoch during
which they were collected as well as the hardware cycle counter timestamp at the moment the record is
written. In this section we describe the statistics SPADE collects as summary snapshots and the events it
records.

Summary snapshots were taken primarily from five kernel subsystems: the network stack, the file
system, disk 1/O handlers, the virtual memory system, and the interrupt handler. Some of these statistics,
e.g., those related to the network stack, were aready collected by the NetBSD kernel, in which case we
simply had to find and copy the relevant gtatistics into the in-memory trace buffer. Other information was
computed by traversing kernel data structures. Determining the number of free buffer cache buffers of
each size, the number of processes in each scheduler priority queue, and the number and type of active
memory allocations required this type of direct examination of kernel state. Finaly, kernel profiling data
was a'so collected during each epoch; since a snapshot of the profiling buffer was captured at the end of
each epoch, we classify this data as a summary statistic. In addition to the summary statistics, four types
of events were recorded, corresponding to the occurrence of a SCSI error, a disk read or write, a process
being descheduled on a context switch, or a system call being made.

The operating system instrumentation framework was designed with extensibility in mind. To this
end, the support code needed by the instrumentation functions for kernel-level locking, memory
management, and synchronization with the user-level daemon process (which writes log records to disk
when the circular buffer of log records described in Section 2 becomes more full than a user-specified
threshold) are handled by a single function, kmon_al | ocate_record().
Krmon_al | ocat e_recor d() aso records the epoch number and time (read from the hardware cycle
counter) during which it was caled. Thus instrumentation functions merely need to call
kmon_al | ocat e_record() specifying the size of the log record they wish to write, after which they
write their data into the memory region returned. Of course additional locking may be necessary if the
instrumentation functions themsel ves examine volatile kernel data structures.



4.1 Summary snapshots

A trace record corresponding to a summary snapshot is recorded whenever an epoch boundary is
indicated by an application call to knon_i ncrement _epoch(). To maximize efficiency, most
snapshot data is recorded as absolute values, with per-epoch differences (i.e., deltas from the previous
epoch) computed offline in the datapump program described in Section 5. The snapshot recording
mechanism was designed with extensibility in mind; adding a new function to record snapshot data
merely requires writing the function and registering it in a table of “callout” function pointers, each of
which is called on an epoch transition.

Nine types of summary snapshot data were collected. Network statistics include information from
al levels of the protocol stack, i.e., TCP, UDP, IP, ICMP, and IGMP. The TCP statistics contain data
about connections (number initiated, accepted, established, dropped, and closed), packets (control, data,
and total packets and bytes sent, received, dropped, and retransmitted), packets received containing errors
or that were received out-of-order, and so on. UDP statistics record the number of packets sent and
received as well as the frequency of various error conditions. The IP statistics similar to those for UDP,
except that they also include information about fragmentation and routing events. ICMP and IGMP
statistics are of less interest since ICMP is used primarily for network monitoring and IGMP is only used
by hosts acting as routers (which ours was not). Disk statistics include information about the number of
transfers and total bytes transferred during each epoch, as well as the amount of time the disk was “busy”
during the epoch. Buffer queue statistics include the number of free file system buffer cache buffers of
each type and size. Scheduler statistics record the number of processes in each state (idle, runnable,
slegping, stopped, or zombie) and the number of processes in each of the system’s 32 priority queues.
Virtual memory statistics include information about the system’s overall memory usage, including the
amount of in-use and available real memory, virtua memory, and shared memory, as well counts of the
number of jobs blocked due to paging, swapping, or disk 1/O. Interrupt statistics count the number of
interrupts that occurred at each interrupt priority during the epoch. Summary statistics consolidate a
wealth of data from various kernel subsystems (focusing mostly on the VM system), including counts of
context switches, traps, faults, system calls, VM cache lookups, copy-on-write operations, and page-
alocation operations; information on the page-replacement agorithm (such as revolutions of the 2-
handed clock); and statistics on the number and type of active and inactive pages.

The NetBSD kernel includes a tagged memory allocator that associates a type with every call to
thein-kernel mal | oc () function. This allows us to extract memory statistics that provide a breakdown of
operating system memory alocations by type/use, as well as by size. These statistics also include details
on the request rate for each type and size of memory allocation, and flags that indicate whether processes
blocked trying to acquire a certain type of memory.

Finally, we modified the NetBSD kernel to periodically sample the value of the program counter
(via a routine called from the clock interrupt). Each sampled PC value is histogrammed to produce a
running profile of where the kernel spends its execution time. At the end of every epoch, the histogram
buffer is dumped into the monitoring log buffer as a summary statistic; the offline processing tools
described below in Section 5 map the PC values in this histogram to kernel functions in order to provide a
traditional flat profile of the kernel on a per-epoch granularity.

4.2 Events
In addition to periodic summary snapshots, SPADE generates a log record each time certain events occur.

A disk transfer event occurs whenever a disk request is issued; the event is actually written to the log
when the request completes so that the response time can be recorded, aong with the size, logica and



physical block numbers, and read/write status of the transfer. A SCS error event is recorded whenever
the SCSI disk driver indicates an error was returned from the device; this event contains the error code
returned. A scheduler event is recorded whenever a process is descheduled on a context switch; this event
logs information available from the process control block of the process, such as the process ID, the
parent process ID, the process owner’s UID, the amount of time the process was running on the CPU
during its most recent scheduling quantum, the process's priority and nice values, the user and system
time consumed during its most recent quantum, the size of the process's text, data, and stack segments,
and the number of page faults, block I/O operations, messages sent and received, and signals received
during its most recent quantum. Finally, a system call event occurs each time a user process initiates a
system call. For each system call, the kernel instrumentation code records the system call number, the
process ID of the process initiating the call, the arguments to the system call, the return value and er r no
set by the call, and the elapsed time of the system call (in CPU cycles).

4.3 I nstrumentation over head

Unfortunately our kernel and application instrumentation resulted in significant overhead compared to an
uninstrumented kernel and application. A workload of 1000 HTTP requests took about 19.1 ms/query
with monitoring enabled, but only about 5.8 ms/query without monitoring, for a monitoring overhead of
amost 300%. One obvious way to reduce this overhead is to use sampling, i.e., to record statistics for
only afraction of the incoming HT TP requests. SPADE provides a system call to turn monitoring on and
off on a per-record-type granularity to allow this type of sampling. Due to time constraints we did not
investigate the accuracy-overhead tradeoff for sampling in the context of Apache running with SPADE.

5 Off-line Data Transfor mation and L oading

In this section, we describe the process by which the monitoring data described in the previous sections is
extracted from the kernel and transformed into a format in which it can be easily bulk-loaded into a
relational database. This processis accomplished via aset of tools, each of which we will describe in turn.

When monitoring data is collected by the kerndl, it is placed into a large in-memory circular
buffer, as described above. Thus, the first step in the data transformation and loading process is to extract
the monitoring data from that kernel buffer and write it to a flat file. This procedure is handled by the
kernel monitoring daemon kmond. Kmond is hot an entirely off-line processing tool, asit must handle the
complication that the kernel data buffer might fill up and thus must be periodically drained as the system
continually collects monitoring data. Thus, kmond is structured as a daemon process that runs
concurrently with the monitored application/OS system, and that interacts with the running monitoring
subsystem via a series of system calls that give it synchronized access to the monitoring buffer. Kmond
periodically wakes up (at a user-specified interval, by default 60 seconds) and executes the
kmon_sync() system cal. This system call momentarily quiesces the kernel’s instrumentation
subsystem and records the current beginning and end offsets of the active data region within the circular
buffer. It then re-enables instrumentation and returns the two offsets to kmond. If the amount of active
data in the buffer falls above a user-specified threshold, kmond memory-maps the kernel buffer into its
address space and appends the portion that was active at the time of the sync to an on-disk log file. It then
calls the knon_buf reset () system call, which resets the kernel’s notion of the start of the active
data area in the buffer to one record past the offset of the last record returned during the earlier call to
kmon_sync(). Notice that during the time between the cdls to knon_sync() and
kmon_buf _reset (), the kerndl is still able to collect and log monitoring data. To reduce system
perturbation, kmond does no further processing on the (binary) datait extracts from the kernel buffer. We
note that during the experiments discussed in this paper, the buffer never filled up completely and thus
kmond did not perturb the data collected.



Once the monitoring data file has been collected by kmond, it must be processed into a format
suitable for loading into a database. In particular, the type of each data record collected must be identified,
any needed processing of the data (to compute aggregates, differences, etc.) must be performed, and the
data must be output in a delimited ASCII format readable by database loading tools. These tasks fall to
the next program in our data-transformation tool chain, datapump. Datapump sequentially scans the trace
file output by kmond, isolating each record in the trace and handing it to a type-specific function for
further processing. All records begin with an initial processing step that extracts the epoch number and
timestamp (expressed as a 64-bit cycle counter value) from the record, converts the timestamp from
cycles to seconds, and computes from the timestamp a unique pair of signed 32-bit integers that can be
used as a key for databases (like PostgreSQL) that do not support 64-bit primary keys. The type of
processing that occurs next is dependent on the type of the monitoring record. For most event records
(that is, records that indicate the occurrence of a dynamic event like a system call or an 1/0O operation), the
logged binary data is simply converted to an ASCII representation and output in delimited form along
with the epoch number, timestamp, type, and unique keys. A typica event record (in this case, for an
open() system call) looks like thisin the datapump output:

5| 0. 0635| 0] 22219975| KMON_SYSCALL| open| 5| 273| 596412| 0| 438] 0| 4| 0| 0. 0090

For most snapshot records (that is, records that contain counters and statistics about the current
state of the system), datapump applies a transformation that converts two snapshot records, one at the
beginning of the epoch and one at the end, into a single output record containing the differences between
the snapshot values at the beginning and end of the epoch. For example, one particular snapshot record
contains afield that holds the number of context switches that have occurred since the system was booted.
The kernel instrumentation subsystem takes a snapshot of this field at the beginning and end of every
epoch, and datapump uses those pairs of records to compute the number of context switches that occurred
during the epoch. The differences are taken on the appropriate fields, and these numbers are converted to
ASCIl and output in delimited form similar to the example above, along with the epoch number,
timestamp, type, and unique keys. Note that it would be possible to compute most of these differences
within the kernel rather than relying on an external program like datapump; we chose to separate the
functionality in our prototype implementation to give us more flexibility and to reduce the overhead of
our instrumentation code, although a production implementation would most likely move the differences
inside the kernel, if for no other reason than to save space in the monitoring data buffer.

Finally, there are a few record types that datapump handles specialy. The most interesting of
these is the program-counter history record type. As described in Section 4, the kernel instrumentation
samples the program counter (PC) value periodically during every epoch, accumulating a histogram of PC
values, in away similar to traditional profiling tools like gprof [GKM82]. Datapump takes this histogram
and maps it into a per-function execution time profile. It does this by extracting the symbol table from the
OS kernel and mapping each profiled PC value to the function that contains it. After this mapping process
is done, datapump computes the fraction of execution time spent in each function by dividing the number
of samples in each function by the total number of samples taken. Any functions with a non-zero fraction
of execution time are output as records in the standard delimited format along with epoch number, time,
etc.

The output of datapump consists of a single flat file with one line per monitoring record/statistic
gathered by the kernel instrumentation code. Each line is tagged by the type of monitoring record that
generated it. The lines in the datapump output correspond directly to rows in the database tables, one
table per record type. Since the data is already in delimited ASCII format, it is essentialy ready to bulk-
load into any relational database. In order to do this, however, a bit more off-line processing is required.
The bulk-load facilities of most databases require that the data for each table be in a separate file, and



some require special syntax in the bulk load files (for example, PostgreSQL does not have a bulk load
utility, but rather requires that the data file be wrapped with a SQL command and fed to the SQL
interpreter). To transform the datapump output into the appropriate form, we feed it to db-insert, a Perl
script that sorts the lines from the single datapump output file into separate files, one for each record type.
It also adds any special syntax needed by the particular database that is the target for the bulk load. Note
again that it would be possible to consolidate the tool-chain by moving db-insert’s functionality into
datapump; we kept it separate in our prototype to make it easy to experiment with different relational
databases requiring different bulk-load data file formats.

Once db-insert has been run on the datapump output, a set of bulk-loadable files, one per
database table, is produced. At this point, the data is ready to be directly loaded into the database using
the appropriate bulk-load facility, for example bcp.exe under Microsoft SQL Server. Before the bulk load
can be performed, however the database schema must be created, as described in the next section.

6 Database Schema and Views

As described in Section 5, datapump and db-insert together load each trace record into a flat file
corresponding to its record type in preparation for bulk loading into the database. In this section we
discuss the schema that we used for our system monitoring database and the materiaized views' we
created over that database to smplify the writing of queries that extract from the database insight about
performance trends and correlations.

6.1 Monitoring database schema
One database table was created for each log record type. The full schema appearsin Appendix A.

Our goal in designing the database schema was to balance adherence to the relational model with
adesire for storage efficiency and computational efficiency of queries. A wide spectrum of schema design
options was available, ranging from the use of one table, indexed by epoch and timestamp, to store dl
statistics and events, to the use of one table, also indexed by epoch and timestamp, for each statistic and
event-related datum collected (i.e,. each data member of alog record). We saw this problem space as two-
dimensiona: one dimension is a choice of whether to use a separate table for each satistic type
(corresponding to a single log record type), and the other is whether to subdivide any log records (sets of
related data gathered at the same time) so that each log record maps into multiple rows, with some subset
of the log record’ s statistics in each row.

Since the instrumentation code writes a separate record to the log for each statistic type, and an
online verson of SPADE would insert log records directly into the monitoring database as they are
created, we decided to use one table per statistic type (then each log record insertion would correspond to
asingle database INSERT operation). Even bulk loading is somewhat easier under this schema, since the
bulk-load files can be generated by a single pass through the log, with each log record written to the bulk-
load file corresponding to its type. A single table for al statistics would require concatenating data from
al log records written during a single epoch before insertion, in the case of either bulk loading or direct
insertion. The only drawback of the one-table-per-type schemais that examining statistics across multiple
tables requires ajoin of those tables. Our hope is that a good query optimizer can make these joins almost
as efficient as the projection of columns that would be required to answer aquery to asingle large table.

! Note that what we refer to as views in this paper are not views in the traditional sense, in that they are not updated
automatically when their base tables are updated. They are instead simply tables that contain a transformed version
of the datain the base tables.



We now briefly discuss the second axis, namely whether to subdivide any log record so that each
one maps into multiple table rows. In this case some subset of the log record’ s statistics would appear in
each row, along with some identifier of the log record from which the row came (to tie together rows
from the same log record). A single row per log record minimizes the number of insert operations that
need to be performed and minimizes the amount of space needed for the table (since epoch number and
timestamp need to be stored once per row). The drawback to this approach, however, is that it makes
computing aggregates across columns awkward since the aggregation operation and its column arguments
then have to be written explicitly in the SELECT statement. For example, in constructing the
KMON_SS | NQ table, we could have used one column for each scheduler priority queue. Then
computing the number of processesin, say, the first ten queues during the first epoch would have required
a SQL query of theform

SELECT nunberQ + nunberl1l + nunber2 + nunber3 + nunber4 + nunber5 +
nunber 6 + nunber?7 + nunber8 + nunber9

FROM KMON_SS | NQ

WHERE epoch=1

Conversely, along, narrow table with multiple rows per log record could require many join operations to
reconstruct the original log record, which might be a common user request, but aggregates could be
expressed naturally using the SQL aggregation operators. Then the query iswritten as

SELECT SUM nunber)
FROM KMON_SS_| NQ
WHERE gno < 10 and epoch=1

We expect that the query optimizer will hide any substantial query performance impact of the different
table organizations, leading us to choose the long-and-narrow table layout for tables in which the user
may wish to aggregate across statistics collected during a single epoch (for snapshots) or event (for
events), e.g., KMON_SS | NQ

6.2 Monitoring database views

While a SPADE user could issue queries directly to the base tables described Section 6.1, each of those
tables stores entries per epoch rather than per application-level request (an HTTP request in the case of
Apache). Since we expect SPADE to be used to track down the source of application-level performance
variations, it is important for the user to be able to easily view aggregate statistics over the lifetime of an
application-level server request. The primary goa of SPADE’s views, then is to aggregate data on a per-
request basis and to present a set of tables with the same columns as the base tables but storing the
statistics as per-request aggregates rather than per epoch. Aggregation is performed by joining a base
table (indexed by epoch) with the KMON_APACHE table (which maps each application-level request to the
epochs during which the request ran) and aggregating, for each request in the KMON_APACHE table and
each column, all entries from the base table with epochs matching those during which the request ran.

Although statistics are themselves easily aggregated across epochs to produce a total number for a
particular request (e.g., the total nhumber of TCP packets sent during the handling of a request can be
computed by summing the PKTSSENT column of the KMON_NETSTATS table across al epochs during
which the request ran), representing per-request aggregates in a meaningful way is chalenging because
most statistics are collected as absolute values rather than as rates. Since contention for an operating
system service or hardware device can be measured in our system as requests for that service or device
per time unit, it makes sense to represent most statistics on a per-time-unit basis. For example, a SPADE
user might be interested in knowing whether an excessive number of received TCP packetsis causing one
server request to take longer than an identical request issued at a different time. The base table for
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network statistics collects the number of TCP packets received per epoch, but the useful statistic for the
user is the total number of packets per second received during the lifetime of the request under
consideration.

Of course, some statistics count space or items rather than events, e.g., the number of file system
buffer queue buffers free at the end of each epoch or the number of processes in the run queue at the end
of each epoch. In such cases we use the minimum, maximum, or average over all epochs since a rate
metric is not sensible. When counting utilization of such resources (e.g., number of runnable processes)
we generally use average or maximum (since maximum contention corresponds to maximum measured
utilization) and when counting free resources (e.g., number of free buffer queue buffers) we generally use
average or minimum (since maximum contention corresponds to minimal free resources). To provide a
unified set of aggregates, SPADE’s views provide what we believe to be the appropriate per-request
aggregations (generally average event rates over the lifetime of a request). But the system also allows
users to directly access the base tables in order to perform their own per-request aggregations and to
create their own views and queries.

7 Performance Analysis Using Queriesover the System Monitoring Database

The key benefit of using a system monitoring database as a centra repository of performance data is that
it vastly simplifies the offline process of system performance analysis. Part of thisimprovement in “ease-
of-use” comes from the fact that the database acts as a centra repository for performance data collected
from al levels of the system (including the application), and from the fact that every datum is keyed by
the epoch and time at which it was collected. But the primary reason that the database simplifies
performance analysis is that it provides a powerful, flexible query language that lets the user easily cope
with the complexity and dimensiondity of the massive performance data set. Using simple declarative
SQL statements, the user can easily summarize performance data, progressively drill-down to examine
the performance of a particular part of the system or application in increasing detail, join together
seemingly unrelated data to search for unexpected correations, or test hypotheses as to the cause of
performance problems by searching for time periods during which those problems were exhibited and
examining the appropriate system statistics. Most importantly, the user can perform all of these tasksin a
unified framework, without having to write ad-hoc tools or scripts to process unwieldy flat data files, and
without the constraints of typical performance analysis tools that restrict their data collection and analysis
in order to simplify the final presentation of their data.

In this section, we give three examples of how an RDBMS's query language support ssimplifies
typical performance analysis tasks. We begin by illustrating the process a user might follow to investigate
application performance anomalies, starting with an overall performance summary and drilling down to
look for correlations. We then examine a different kind of analysis that uses different forms of
aggregation to search for system-wide performance bottlenecks and to investigate the causes of those
bottlenecks. Finally, we present an example of hypothesis-testing, and demonstrate how database queries
can be used to confirm a hypothesis and suggest appropriate performance-tuning actions. All of our
examples use a database loaded with data from a traced execution of an instrumented version of the
Apache 1.3.3 WWW server running atop our instrumented NetBSD 1.3.3 kernel. The server was run on a
x86 machine with an AMD K6-2/350 CPU, 128 MB of DRAM (64 of which were dedicated to the trace
buffer), and an IBM 9ZX 10,000RPM SCSI disk. The server was driven with a workload of
approximately 1000 HTTP 1.0 GET requests issued by a multithreaded client supporting 32 outstanding
connections. To minimize variance due to the network, the client was run on the same machine as the
server. The SQL shown below follows the Microsoft SQL Server 6.5 syntax.
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7.1 Investigating per-request application performance

In this section, we give an example of the process a user of our system might follow in trying to
understand the performance differences between different application requests (in this case, HTTP
requests). In this example, we are not explicitly looking for a problem with the system or something that
needs to be fixed or tuned; instead, we are simply trying to investigate the system’s performance in order
to get a better understanding of what factors do and do not influence performance.

We begin our investigation by examining the various Apache HTTP requests in order to isolate
those which showed the most variation in performance; we will then investigate those requests further to
see what was happening inside the system during the servicing of those requests. We start with the
following query, which finds requests with a large variance between their minimum and maximum
response time. Note that we group requests on their hash field; thisfield is a numeric hash of the f nanme
(URL) field used to support databases that cannot group by a var char field. Note aso that the dev
field should redly be the standard deviation, but SQL Server does not support the st ddev()
aggregation function in version 6.5):

SELECT a. hash, count(*) AS cnt,
m n(a.resptime_noc) AS minresp,
max(a.resptine_noc) AS naxresp,
avg(a.resptime_noc) AS avgresp,
(max(a.resptine_noc)-nin(a.resptine_noc))/avg(a.resptinme_noc) AS dev,
max( a. f nane)
FROM krmon_apache a
GROUP BY hash
HAVI NG count (*) >= 2
CRDER BY dev

This query returns a table listing every page accessed more than once during the trace, ordered by the
“variance” in responsetime. Thefirst and the last few rows of this table are shown below:

hash cnt mnresp maxresp avgresp dev f name

-1210678261 2 0. 0925 0. 0929 0. 0927 0.0043 /General/lcons/_W

[...103 rows elided...]

552383629 15 0. 0068 0. 3649 0. 0875 4.0919 |/ SDG Sof t war e/ Mbsai ¢/ Docs/ _E/ _F
-224651581 130 0.0069 0.4548 0.0892 5.0232 /SDG Software/ Msaic/_B
-125134359 83 0. 0076 0. 4687 0.0786 5.8698 /SDJ Sof t war e/ Mbsai c/ _L

The result of this query gives an impression of the behavior of the various requests in the workload. It
shows that there are some queries (like the first listed above) with a very low variance in response time,
and some with very high variance, like the last few. After examining this summary information, the next
step isto try to understand the source of this variance by drilling down and examining the set of requests
for one page that demonstrated a high variance.

To do this, we want to extract al of the requests corresponding to one specific hash value. In
particular, we want to look at the statistics in other tables that correspond to the time period during which
the requests corresponding to one hash value were running. We start this process by building a temporary
table holding the request numbers corresponding to one hash, in this case —125134359:

SELECT segno | NTO t enp2

FROM kron_apache
WHERE hash = -125134359
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We can then issue a generic query of the following form to bring all of the appropriate data together:

SELECT b.*, a.resptine_noc
FROM t abl e b, knon_apache a
WHERE b. queryno = a. seqno
AND b. queryno in (SELECT seqno FROM tenp2)
CRDER BY a.resptinme_noc

where t abl e is replaced by the name of one of the materialized views described above, for example
sumnst at s or net st at s or virst at s. Thistype of query makesit easy to visually detect patterns and
correlations between response time and other statistics. It also provides an easy way to see exactly what
was happening in the system during a particular request. As an example, the following is an excerpt of the
above query for the sunst at s table for two requests, showing an increase in context switches per
second and hardware interrupts per second during the second (slower) request relative to the first:

queryno nct xsw' sec nhwi ntr/sec resptine_noc [...]
[-..]

445 714. 688 95. 667 0.1777 [...]
399 2410. 924 142. 949 0. 4687 [...]

Besides attempting to correlate high-variance requests directly with other system statistics,
another approach to investigating per-request application performance is to systematically break down
each request into its constituent system calls and to study the behavior of those system calls using similar
techniques to those we used on a full-request granularity above. We now give an example of this
approach using the same example request set as above (those requests with hash=- 125134359). The
first step in this process is to try to isolate the “system call fingerprint” of an HTTP GET request.
Obtaining this fingerprint will alow us to isolate a particular request’s actions, even if it takes place
during a time period in which multiple requests are interleaving system calls. We can obtain this
fingerprint by executing the following query, which looks at the set of system calls for one process
starting at the beginning of an epoch. This query isolates the system call fingerprint for a request because
any server process is only serving one request at a time, and that process initiates an epoch as the first
action in serving arequest:

SELECT *
FROM krmon_syscal | s
WHERE s. epoch >= 75 and s.epoch <= 76 -- note: req 38 executed entirely in epoch 75
AND pid IN (SELECT pid FROM knon_syscall WHERE tinme =
(SELECT min(time) FROM knon_syscall WHERE epoch = 75)
AND epoch = 75)

Theresults of the query give the following fingerprint (excerpted from the result table):

epoch nane argl arg2 rval
75 krmon_i ncr enent _epoch 61455 -272640744 74

75 read 3 438404 40

75 sigaction 30 -272649040 O

75 getti neof day -272649052 O 0

75 __stat13 596412 590068 0

75 open 596412 0 4

75 nmap 0 22719 1074688000
75 witev 3 -272640784 22969
75 cl ose 4 0 0

75 getti neof day -272648932 0 0

75 wite 17 597348 92

76 knmon_i ncr enent _epoch 61455 -272640416 75
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76 shut down 3 1 0

Both the read and wr i t ev system calls correspond to network /O (to read the request and write the
response to the socket with file descriptor 3); the wri t ev may also cause disk 1/O, as it touches the
memory-mapped pages of the requested file (file descriptor 4) in copying them to the network socket.

Having identified Apache’ s HTTP request service fingerprint, we can now go and look at the full
system call trace for a given request (or set of requests) in order to examine the performance breakdown
of those requests. An example set of queriesto do thisfor four particular requestsis:

SELECT * FROM syscal |l WHERE queryno = 237 ORDER BY pid — response tinme = 0.0081
SELECT * FROM syscall WHERE queryno = 14 ORDER BY pid — response time = 0.0522
SELECT * FROM syscall WHERE queryno = 623 ORDER BY pid — response tinme = 0.0806
SELECT * FROM syscal |l WHERE queryno = 445 ORDER BY pid — response tinme = 0.1777

Note that these four requests were chosen by examining the subset of the knon_apache table
corresponding to the hash value described above, and selecting four queries that covered a range of
response times. The results of those queries are not reproduced here for space reasons, but they do
indicate that the (network) read() system call dominates the performance of both request #623
(consuming 0.0709 seconds) and of request #445 (consuming 0.1686 seconds); these are the dowest of
the queries. The next, and final, step isto try to determine what is making these calls slow.

This last step illustrates the power of the system monitoring database: whereas traditiona
performance anaysis tools can provide either a system call trace or coarse-grained summary statistics,
they cannot correlate a particular subset of a system call trace with summary statistics on the fine-grained
timescale of one application request or epoch. However, a query like the following does exactly that (in
this case extracting the rate at which data was being sent through the network layer during the epoch in
whichthedow r ead() call of request #445 was taking place):

SELECT b. dat abytessent/b.time AS datarate
FROM krmon_netstats b
WHERE b. epoch I'N
( SELECT epoch
FROM krmon_syscal |
WHERE epoch >= (SELECT firstepoch FROM knon_apache WHERE seqno = 445)
AND epoch <= (SELECT | ast epoch FROM knon_apache WHERE segno = 445)
AND pid = 283
AND num = 3)

This query produces the number 5385901.6, indicating that the network was very busy during the time of
that system call. Similar queries with less restrictive WHERE clauses can be used to compare this value to
the data rates during other epochs, or to the average data rate (1079827.7, obtained via “ SELECT
avg(dat abyt essent/time) FROM knmon_net stats”).

7.2 Investigating system-wide performance

In this section we demonstrate the usefulness of SPADE for investigating system-wide performance
bottlenecks that impact application performance. We know from previous analysis that Apache invokes
thewr it ev() system call to send aweb page over the network to the requesting client. We will find out
whether this system call represents alarge fraction of the total time the application spends in the operating
system, and if so whether the system call exhibits a large variation in execution time. Assuming both are
the case, we will attempt to identify the cause(s) of above-average execution time for this system call by
examining the simultaneously-occurring operating system.
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First we investigate whether wr i t ev( ) contributes significantly to the amount of time Apache
spends executing operating system code. The following query computes the total time spent executing
each type of system call during the time the Apache server was traced.

SELECT nane, sun(el apsedtine) as t
FROM krmon_syscal |
GROUP BY nane

ORDER BY t

name t

__fstatl3 0.0

br eak 0.0

fentl 0.0

fstatfs 0.0

geteuid 0.0

getpid 0.0

get socknane 0.0

[---]

bi nd 0. 162400000000001
open 0.282499999999989
__stat13 3.21690000000012
accept 14. 5516

knmon_i ncr enent _epoch 14. 5988000000001
witev 16. 0345

wite 35. 1766000000004
nanosl| eep 58. 4613

read 60. 5455000000009
si gsuspend 74. 6053

flock 341. 070400000001
sel ect 510. 614999999999

We see that wri t ev() indeed represents a nontrivial amount of operating system execution
time. Next we want to find out whether there is a significant variation in the response time of the
writev() system cal, and if so we want to identify one of the calls that took a significantly longer-
than-normal amount of time to complete so that we can investigate it further. The following query liststhe
elapsed time, last epoch, and first argument to all occurrences of the wri t ev() system call that took
longer than 0.01 seconds to complete.

SELECT s. nanme, s.argl, s.elapsedtine, s.epoch
FROM krmon_syscal | s

WHERE nane = ‘witev’ and el apsedtine > 0.01
ORDER BY el apsedti nme

nane argl el apsedti ne epoch
witev 3 0.0101 762
witev 3 0.0101 1412
witev 3 0.0101 1885
witev 3 0. 0102 1159
(-]

witev 3 0. 4325 1018
witev 3 0. 433 1959
witev 3 0. 4599 673
witev 3 0.6114 875
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There is indeed a large variation in execution time, so we decide to investigate one of the two
instances of this call with the largest response time, namely

witev 3 0. 4599 673

To do this, we want to sum potentialy-relevant statistics over al epochs during which the system
call executed. We will examine the knon_sunst at s table for possible explanations of the long
execution time of the call. We know that the call finished at epoch 673 and started 0.4599 seconds earlier,
so we first need to find the epoch during which the call began. This information could have been stored
explicitly inthekrmon_syscal | table, but we can recalculate it fairly easy by summing the time field of
any summary snapshot table (since one snapshot is taken per epoch, there will be an epoch duration entry
for each epoch in any such table) starting at various epochs and ending at the ending epoch of the system
call under consideration, until we find the starting epoch that causes the sum of epoch durations to equal
the duration of the system call. Using this method we find that the system call begins began in epoch 598.

Now that we have identified the relevant span of epochs, we will examine the sunst at s table
to find a possible explanation for the long running times of this system call.

SELECT x. *
FROM krmon_sunst ats X
WHERE x. epoch >= 598 and x.epoch <= 673

Since the full output does not fit easily on a printed page, we extract the interesting columns and
list only them below:

epoch nctxsw ntraps nsyscalls nhwintrs nswintrs nfaults pzfod nzfod_created

598 6 3 21 0 3 0 0
599 6 11 19 0 3 8 0 0
600 2 2 13 0 1 1 0 0
601 2 2 15 1 1 1 0 0
602 2 2 15 0 1 1 0 0
603 4 4 13 1 3 1 0 1
604 2 3 13 0 1 2 0 0
605 5 11 23 0 2 9 0 0
606 2 2 14 0 1 1 0 0
607 2 2 14 0 1 1 0 0
608 2 7 13 1 1 6 0 0
609 2 4 14 0 1 3 0 0
610 2 2 14 0 1 1 0 0
611 2 7 13 0 1 6 0 0
612 2 7 13 0 1 12 6 0
613 2 2 14 0 1 2 1 0
614 4 4 18 1 3 2 1 0
615 1 1 11 1 0 2 1 1
616 8 4 26 0 4 0 0 0
617 6 3 18 0 3 0 0 0
618 6 3 18 0 3 0 0 0
619 6 3 18 1 3 0 0 0
620 6 3 19 0 3 0 0 0
621 6 3 18 0 3 0 0 0
622 6 3 18 0 3 0 0 0
623 6 3 18 0 3 0 0 0
624 6 3 18 1 3 0 0 0
625 5 4 21 0 3 1 0 0
626 1 0 6 0 0 0 0 0
627 2 3 12 0 2 1 0 0
628 1 0 6 2 0 0 0 0
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629 0 6 11 0 0 9 3 0
630 3 2 15 0 1 1 0 0
631 4 3 15 2 2 2 1 1
632 4 4 14 1 2 2 1 1
633 2 4 13 0 1 6 3 0
634 16 11 67 1 8 3 0 3
635 8 6 22 0 4 2 0 11
636 1 1 6 0 1 0 0 0
637 1 0 8 2 0 0 0 0
638 1 1 6 0 1 0 0 0
639 1 1 6 0 1 0 0 0
640 5 13 17 3 1 12 0 0
641 10 4 30 0 4 0 0 0
642 8 6 20 0 4 2 0 0
643 6 3 18 1 3 0 0 0
644 6 3 18 0 3 0 0 0
645 8 4 25 0 4 0 0 0
646 6 3 18 0 3 0 0 0
647 6 3 19 0 3 0 0 0
648 6 3 20 1 3 0 0 0
649 36 2669 733 9 5 2873 172 58470
650 43 484 143 1 3 498 16 7770
651 39 27 23 1 4 23 11 3
652 38 33 22 1 3 30 12 3
653 39 36 19 1 4 32 12 3
654 3 9 16 1 1 8 1 1
655 2 2 15 1 1 1 0 0
656 1 1 6 1 1 0 0 0
657 4 4 15 2 2 2 0 2
658 2 2 14 0 1 1 0 0
659 8 13 32 2 4 10 1 3
660 2 2 7 1 2 0 0 0
661 1 1 6 0 1 0 0 0
662 2 2 14 0 1 1 0 0
663 2 0 9 0 0 0 0 0
664 3 54 19 0 1 54 2 0
665 2 54 17 0 1 53 2 1
666 2 59 16 0 1 58 2 0
667 40 28 34 0 4 24 11 3
668 38 33 23 0 3 30 12 3
669 38 33 23 1 3 30 12 3
670 38 33 22 1 3 30 12 3
671 39 34 23 1 4 30 12 3
672 37 63 30 2 3 60 3 0
673 4 29 9 0 1 28 11 3

We see a large spike in al of these statistics near the end of execution of thewr it ev() call.
The increased number of context switches (nct xsw) and on-demand zero-filled pages (pzf od and
nzf od_cr eat ed) around epoch 649 suggests that many new processes may have been created during
those epochs, which could have led to the increased response time for thewr i t ev() call. To find out if
thisisthe case, weissue aquery to find any callsto f or k() made during these epochs:

SELECT x. epoch, x.nane, Xx.elapsedtine
FROM krmon_syscal | x
WHERE x. epoch >= 598 and x.epoch <= 673 and x.nane = ‘fork’

This query shows that there were 32 calsto the f or k() system call whilethewr it ev() call
was executing, al of which occurred during epoch 649. In comparison, there were only 63 calls to
fork() during the entire trace (as determined by a query |i ke SELECT count(*) FROM
kmon_syscal | WHERE nanme=’fork’).”
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The increased execution latency of wri t ev() contributed by these 32 callsto f or k() was not
due primarily to time spent executing the f or k() call itself, though, since time spent executing f or k()
only accountsfor

SELECT sum(x. el apsedti ne)
FROM krmon_syscal | x
VWHERE x. epoch >= 598 and x.epoch <= 673 and x.name = ‘fork’

0. 0109

seconds. Instead, the slow wri t ev() response time is due to the many new processes in the system
resulting from the f or k() , which cause an increase in context switches, page faults, and on-demand
page zero-filling. This analysis leads us to conclude that the performance of thewri t ev() system call
could, in at least some cases, be improved by a more efficient implementation of the system activities
associated with f or king. From an application perspective, Apache could be less affected by the
sengitivity of wri t ev() performance to forking by using threads instead of processes (which would
reduce the amount of forking going on in the system while Apache executes). It is conceivable that some
of the page faults we see during and after epoch 649 are caused by the wri t ev() cdl itsef (since
writing to the network from a memory region mapped from afile, when a portion of the file to be written
to the network has not already been read into the virtual memory cache, will cause page faults as the file
is read into the virtual memory cache). However, the strong temporal correlation with f or k() calls
suggests that the f or k() calls are the primary cause of the page faults, not the application faulting in
web pages by callingwri t ev() . Finally, we note that we can attribute this forking activity to Apache
(as opposed to other system processes) by examining the pi d of the process calling f or k() in epoch
649; it isindeed the pi d of one of the Apache processes.

7.3 Hypothesistesting

For our last example, we consider the typical performance analysis task of hypothesis testing. The goal
here is to formulate a hypothesis that potentially explains some performance anomaly, and then to use the
collected performance data to verify or refute that hypothesis. In this example, we will start with an
aready-formed hypothesis: that disk writes (due to Apache adding entriesto itslog file) interfere with the
service time of HTTP requests. We will demonstrate how simple queries allow the user to confirm this
hypothesis and determine the root cause of the interference, and we will show how this knowledge
permits the user to develop afew simple system tweaks that might improve overall performance.

Thefirst step in the hypothesis-testing processis to construct an aggregation query to test whether
the hypothesis is supported at the coarsest level. In this case, we construct a query that calculates the
average response time for HT TP requests during which awrite 1/0 occurred and compares that time to the
average for HTTP requests during which only read 1/Os occurred. The query is presented below; note that
bi oevent s. rwis1 during requeststhat contain at least one write 1/O:

SELECT avg(a.resptime_noc) AS time, b.rw
FROM krmon_apache a, bioevents b

WHERE a. segno = b. queryno

GROUP BY b.rw
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This query returns the foll owing outpult:

tinme rw
0. 14513 0
0. 59088 1

Requests during which writes occurred take on average more than four times longer than queries with no
writes! Clearly, the presence of writes is negatively affecting HTTP service time (note that the writes are
not part of the requests themselves, since al requests are GETS).

Given this initial confirmation of our hypothesis, the next step is to formulate a query that drills
down and displays information about each HTTP request that was running at the time when a disk write
occurred. In addition to selecting the request's URL and URL hash, we use the database's data
manipulation facilities to group requests by their URL hash, to compute the number of requests
containing writes, the min, max, and average response times for the queries containing writes, and the
overall average response time. These statistics allow us to examine the performance difference between
requests for the same page that did or did not contain awrite. The query is:

-- build tenporary table with counts, response tine
SELECT hash, count(*) AS cnt, avg(resptinme_noc) AS avgresp
I NTO tenp_cnt1

FROM krmon_apache

GROUP BY hash

(Co]

-- perform query

SELECT a. hash,
count(*) AS numw wite,
max(t.cnt) — count(*) AS numwo_wite,
avg(t.avgresp) AS overall _avgresp,
avg(a.resptime_noc) AS avgresp,
m n(a.resptime_noc) AS mnresp,
max(a.resptime_noc) AS maxresp,
max(a. f name) as fnane

FROM krmon_apache a, tenp_cntl t

WHERE seqno in (SELECT queryno FROM bi oevents WHERE rw = 1)

AND t. hash = a. hash

GROUP BY a. hash

ORDER BY avgresp

GO

This query produced output of the form below (only three of the 33 returned rows are shown):

hash numw wite numwo_wite overall _avgresp avgresp m nresp naxresp fnanme

-224651581 2 128 0. 0892 0.2079 0.0679 0.3479 /filel
770285138 1 4 0. 0999 0.2924 0.2924 0.2924 /file2
-1851629361 1 6 0. 1016 0.2959 0.2959 0.2959 /file3

This data shows that there is a general trend across requests that requests with writes take longer than
requests without writes. The fact that the overall average response times are low (roughly on par with the
global average of 0.14513 for queries without writes computed above) while the response times with
writes are high confirms that the large service times for requests with writes are a property of the writes
and not of any peculiarities of the pages requested while writes were occurring.
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At this point in the analysis, the hypothesis is essentially confirmed: writes do impact the
response time of requests active while the writes are occurring (even though the writes are not generated
by those requests). The next step is to understand precisely why the writes have such an impact on
performance. To do this, we drill down further by selecting one page (that with hash 770285138 in this
case) to examine in detail. We start with a set of queriesthat select general information about each request
for that page (from the knon_apache table) and some of the interesting 1/O aggregate statistics:

SELECT * FROM knon_apache WHERE hash=770285138 ORDER BY respti nme_noc

SELECT segno

I NTO t enp3

FROM krmon_apache
WHERE hash = 770285138
(co]

SELECT b.*, a.resptine_noc
FROM bi oevents b, knmon_apache a
WHERE b. queryno = a.seqno
AND b. queryno IN (SELECT * FROM t enp3)
CORDER BY a.resptine_noc

These queries praduce the following outpuit:

seqgno resptine_noc firstepoch |astepoch hash f nanme

107 0.0214 214 216 770285138 /denpweb/ _CB
510 0.0271 1022 1024 770285138 / demoweb/ _CB
944 0. 0574 1891 1896 770285138 /denpweb/ _CB
770 0.1013 1540 1550 770285138 / demoweb/ _CB
413 0. 2924 822 842 770285138 /denpweb/ _CB
quer yno si ze servicetine rw resptine_noc

107 7168.0 0. 0091 0 0.0214

944 8192.0 0. 025 0 0. 0574

413 6332.63 0.3844 1 0.2924

As can be seen from the second output table, request #413 (the only request containing a write) has a
much higher I/O service time than the other two requests containing just reads. Note that the
servi ceti ne field includes the total 1/O time for al requests that completed during the request, and as
such can be larger than the request’ s response time.

The last step in the process is to drop one further level of aggregation and look at the individual
1/0 requests made during each of the three requests in order to determine why the I/O service time is so
much higher for the request with a write. The following queries dump the 1/O traces from each of the
three requests:

SELECT b. epoch, b.rw, b.size, b.pblkno, b.pblknodiff, b.servicetinme, a.resptine_noc
FROM krmon_bi oevents b, knon_apache a

WHERE b. epoch >= a.firstepoch AND b. epoch <= a.l| astepoch AND a. seqno 107

SELECT b. epoch, b.rw, b.size, b.pblkno, b.pblknodiff, b.servicetinme, a.resptine_noc
FROM krmon_bi oevents b, knon_apache a
VWHERE b. epoch >= a.firstepoch AND b. epoch <= a.lastepoch AND a.segno = 944

SELECT b. epoch, b.rw, b.size, b.pblkno, b.pblknodiff, b.servicetinme, a.resptine_noc
FROM krmon_bi oevents b, knon_apache a

WHERE b. epoch >= a.firstepoch AND b. epoch <= a.l| astepoch AND a. seqno 413
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These queries produce the following outpuit:

epoch tine rw size pbl kno pbl knodi ff servicetine resptime_noc
215 0.0033 0 7168 3562016 3288656 0. 0091 0.0214
epoch tine rw size pbl kno pbl knodi ff servicetine resptime_noc
1896 0.0001 O 8192 3225760 82816 0. 0082 0. 0574
1896 0.0094 0 8192 2166016 1059744 0.0168 0. 0574
epoch tine rw size pbl kno pbl knodi ff servicetine resptinme_noc
822 0.0035 1 8192 155296 32 0.0123 0. 2924
822 0.0075 1 8192 194176 38880 0.0108 0. 2924
822 0.0173 1 8192 160 194016 0.0137 0. 2924
824 0.0006 1 8192 271760 271600 0. 0209 0. 2924
824 0.0071 1 8192 271776 16 0.0176 0. 2924
825 0.0033 1 8192 271792 16 0.0129 0. 2924
825 0.0047 0 1024 274014 2222 0. 0079 0. 2924
825 0.0061 0 3072 274144 130 0. 0027 0. 2924
825 0.0062 0 2048 274150 6 0. 0015 0. 2924
825 0.0064 0 2048 274154 4 0. 0003 0. 2924
825 0.0065 0 3072 274160 6 0. 0003 0. 2924
825 0.0067 0 4096 274166 6 0. 0003 0. 2924
825 0.007 O 6144 274176 10 0. 0004 0. 2924
826 0.0029 1 8192 543376 269200 0. 0065 0. 2924
827 0.0007 1 8192 811632 268256 0.0172 0. 2924
827 0.0082 1 8192 928048 116416 0.0185 0. 2924
828 0.0016 1 8192 966848 38800 0.0131 0. 2924
828 0.0088 1 8192 1160832 193984 0.0128 0. 2924
828 0.0177 1 8192 1351520 190688 0.016 0. 2924
828 0.0281 1 8192 1506608 155088 0.0193 0. 2924
828 0.0326 1 8192 1545520 38912 0.0149 0. 2924
828 0.0409 1 8192 1623008 77488 0.0128 0. 2924
828 0. 05 1 8192 1700720 77712 0.0173 0. 2924
828 0.0601 1 4096 1852464 151744 0.0192 0. 2924
828 0.0667 1 8192 1852480 16 0.0168 0. 2924
828 0.0723 1 1024 1853662 1182 0.0122 0. 2924
828 0.0786 1 8192 2162976 309314 0.0119 0. 2924
828 0. 085 1 8192 2162992 16 0.0127 0. 2924
828 0.0932 1 4096 2625136 462144 0.0146 0. 2924
828 0. 098 1 8192 2625280 144 0.013 0. 2924
828 0.1047 1 8192 2632384 7104 0.0116 0. 2924
829 0.0006 0 8192 4286848 1654464 0.0135 0. 2924
829 0.0007 0 4096 274192 4012656 0. 0069 0. 2924
829 0.0009 0 5120 274208 16 0. 0003 0. 2924
829 0.0011 0 3072 274224 16 0. 0004 0. 2924
829 0.0012 0 4096 274240 16 0. 0003 0. 2924
829 0.0015 0 8192 274256 16 0. 0005 0. 2924
829 0.0018 0 5120 274288 32 0. 0005 0. 2924

We observe a few interesting patterns. First, the one 1/0 in epoch 215 for the first request is most likely
the original read of the requested page (the page's file size is 6169 bytes, which, when rounded up to a
multiple of the 1KB fragment size used in our file system, resultsin an 1/O size of 7168). Since the data
set was small enough to be mostly cached, and since that physical block number never reappears, we can
assume that all other I/Osin the output are not generated by the requests in question. The most interesting
patterns shows up in the third output table (for request #413, the one with the write). First, notice that the
write I/Os tend to have significantly larger service times than the read I/Os. Notice also that the writes are,
for the most part, non-sequential, incurring large seeks (the value of pbl knodi ff indicates the
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approximate seek distance in blocks). The large seeks combined with the fact that writes are not
completed until they have been physically written to the disk medium probably account for the long write
times. The writes also interrupt a string of very tightly-clustered reads; in this case, the reads are delayed
by the time for the intervening writes to complete, although the performance of any individual read is not
significantly degraded (probably because our high-end disk has a very large track buffer that services al
but the first few of those reads), but with less sophisticated disks the interrupted reads would most likely
suffer in performance as well.

One find important pattern to notice is that when the writes occur, alarge number of them occur
in direct succession. Further analysis of the data stored in the knmon_bi oevent s table (using a query
such as“ SELECT DI STI NCT epoch FROM knon_bi oevents WHERE rw = 1", results omitted here
for space reasons) shows that all of the writes in the trace occur within a 25-epoch span covering 0.32
seconds of real time. This suggests that we are seeing the effects of the NetBSD file system buffering
policy. In NetBSD, asistypica in a UNIX-like system, writes are absorbed by the buffer cache and sent
to disk in asingle batch whenever the system updat e daemon periodically wakes up.

At this point we have thoroughly verified our initial hypothesis and have investigated its cause.
We have determined that the poor response time of queries during which writes took place is due to a
combination of the overhead of large seeks, potentialy unbuffered writes at the disk, and the fact that a
large number of writes are sent to disk at once, blocking the progress of other queries running during that
time. One task remains: to figure out what we might do to lessen the performance impact of writes. One
simple solution would be to direct writes to a separate 1/0 subsystem. In the case of Apache, the only
writes being generated are Apache' s own log updates, so by moving the log files to a separate disk on a
separate controller, the writes would not be able to interfere with the I/O of other running queries. If
adding hardware is not an option, another solution would be to modify the OS buffer cache write palicy.
Since response time is the key metric for applications like web servers, it would be preferable to spread
the writes out in time rather than batching them together. If this were done, more requests would show
degraded performance, but the degradation would most likely be much smaller, and potentialy would be
lost in the noise of variations in network latency. This analysis suggests that the standard OS buffer cache
policy iswrong for a single-application server running a web server, and that the cache policy for such a
system should be tuned to drain writes to disk shortly after receiving them, rather than waiting for the
updat e daemon to run.

Thus we have shown in this example that our system monitoring database provides a powerful
tool for hypothesis testing and investigation. We have also seen an example of how the system makes it
possible to detect performance problems and to identify possible approaches for tuning. Note, however,
that we began with an already-formulated hypothesis. A natura extension would be to use data mining
techniques to generate new hypotheses from the trace data set, and to then use the process just described
to test and act on those hypotheses.

8 Suitability to Task

In the course of developing SPADE we investigated the suitability of four databases for supporting
monitoring-data storage and querying: PostgreSQL 6.4.2, Microsoft Access 97, IBM DB2 5.2 for Linux,
and Microsoft SQL Server 6.5. Our dataset poses a reasonably challenging workload for these
databases—for example, our longest table had more than 175,000 rows and our widest table had 120
columns.
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Our primary criteriain selecting a database were, in rough order of decreasing importance,
e robustness (i.e., no serious bugs tickled by our workload)
« sufficient speed for bulk loading, view creation, and querying
e user interface support for browsing large tables
e support for the necessary datatypes

PostgreSQL is an open-source object-relational database based on the POSTGRES database
developed at the University of California, Berkeley. We found its bulk loading performance to be
acceptable, but it crashed when processing queries to generate our “views.” Another problem with this
database was its text-mode front end, which limits easily-viewable table widths to the largest window
width displayable on the user’s terminal (i.e., there is no ability to scroll horizontally). Additionaly,
PostgreSQL did not alow primary keys on 64-bit values, which we wanted to use for our timestamps
(since the log records use the 64-bit CPU cycle counter as their timestamp). This forced us to split the
timestamp into two unsigned 32-bit quantities. Finally, PostgreSQL provided very poor error reporting
during bulk loading. In particular, any error or inconsistency in an input table caused the connection from
the PostgreSQL server to the client to be unceremoniously dropped, resulting in a cryptic error message
from the client and no indication of which line in the input file caused the error. In one case the “error”
was not really an error in our input file at al, but rather a bug in PostgreSQL. On the other hand,
PostgreSQL does have at least one nice feature for our application, namely the SELECT | NTO command
that allows a new table to be created directly from a base table without requiring explicit declaration of a
schema for the new table. Types and column names are inferred from the SELECT statement that
generates the new table. But due to itsinability to handle our queries, we were unable to use PostgreSQL .

Microsoft Access 97 isthe relational database component of the Microsoft Office suite. We found
its bulk loading to be relatively fast, but the impossibility of scripting the bulk loading process made
repeated bulk loading (necessary as we gathered and examined various traces from the web server)
painful. The most serious drawback of Access was itsinordinately slow query speed—generating a view
table took several minutes in some cases. On the other hand, Access supports an easy-to-use graphical
user interface and allows horizontal scrolling via its spreadsheet-like display mode.

DB2 is IBM’s object-relational database product. We found its bulk loading to be dow and its
guery response time to be very slow. This latter fact surprised us, but we suspect that DB2 would have
exhibited much faster response time had we tuned the appropriate configuration parameters. A relatively
thorough search of the documentation did not reveal the appropriate parameters to tune, so we gave up on
DB2. Another problem we had with DB2 that could probably have been solved by issuing the correct
administrative command was DB2's running out of transaction log space during creation of materialized
views. We suspect that DB2 was logging the changes made by each table insert operation, requiring a
large amount of log space for each SELECT | NTO query. Unfortunately we were unable to determine
the proper mechanism for increasing the available transaction log space or telling DB2 to disable
transactions for SELECT | NTOoperations. Another drawback of DB2 isits text-mode output which, like
PostgreSQL’s, prevents horizontal scrolling of wide output tables.

Microsoft SQL Server 6.5 is the object-relational database component of the Microsoft
BackOffice suite. We found both its bulk load and query response times to be good. Additionally, SQL
Server supports horizontal scrolling of query results, allowing wide tables to viewed relatively easy. We
were aso quite impressed with SQL Server’s support for multiple simultaneous networked clients and its
GUI administrative and tuning tools. On the other hand, the product has two serious drawbacks for our
application. Firgt, it does not support the standard deviation or median SQL aggregate functions; these
would have been extremely useful for finding table columns with high variance and for finding a
representative median value for a collection of data points. Second, SQL Server does not allow storage of
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64-bit integers, or even of unsigned 32-bit integers. This forced us to represent time as a floating point
value rather than as the 64-bit hardware cycle counter value stored with each log record. Moreover, we
were forced to use as keys the two 32-bit values we originaly introduced to address PostgreSQL’s
inability to handle 64-bit primary keys, because it is not possible to guarantee that two different 64-bit
timestamps will map to unique floating point timestamps. Despite these drawbacks, SQL Server was by
far the best database of the four we considered due to its lack of serious bugs, its support for horizontal
scrolling, and its excellent out-of-the-box (untuned) performance. In the following table we present the
performance of SQL Server on the most common database operations used by SPADE.

Operation Time (min:sec)
run datapump 0:49
run db-insert 2:08
3:27
bulk-load database (2000 rows/sec)
create view tables 6:36

The following table summarizes our impressions of the various databases that we examined:

Bulk Load View T_able User Data Type
Database | Robustness Creation
Performance Interface | Support
Perfor mance
PostgreSQL * * x % N/A * * * % K
Access 97 * Kk % * Kk * * % % * % %
DB2 * * * K * K * * K %
SQL Server * Kk k * * K Kk Kk * % %k %k * K % * %

9 FutureWork

SPADE might serve as the basis for future work both within the framework of the current system and in
the context of longer-term projects. First, several minor tweaks on the current prototype are possible.
Automatic compression of the in-kernel trace buffer would allow kmond to run less frequently, imposing
lower overhead for periodically writing the buffer to disk. Many of the values collected in the trace are
small diffs or equal to zero, suggesting that the compression techniques would work well.? Also,
datapump and db-insert could be integrated; we wrote them as separate programs simply because C (used
to write datapump) is better at manipulating raw binary files (the format used in the log files written out
by kmond) directly, while Perl (used to write db-insert) is better at handling text and file operations.

2 Of course the overhead of performing this compression must be balanced with benefit of reduced 1/0 for
writing the buffer to disk, but since SPADE istargeted to data-intensive servers that are likely to be I/0
bound, and CPU speeds are increasing much faster than is 1/0 system performance, the tradeoff is likely
to favor compression.
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Finally, appropriate user-defined (i.e., not standard in SQL) statistical aggregates over some of the table
columns might be used to address some of the difficulties we experienced in expressing using SQL
meaningful aggregates for some statistics. For example, whileit is very useful to know how much seeking
a disk performed during the service of a web request, the average seek distance per time (which is the
most meaningful summary statistic we could express in SQL for this column) does not tell the whole
story—it makes a continuous stream of medium-sized seeks ook the same as a small number of blocks of
giant-seek-foll owed-by-sequential -read.

Within the framework of the current system, several follow-on projects to improve online data
collection and offline analysis are possible. Fine-grained resource accounting with some notion of
application-level accounting units (e.g., individua HTTP requests), such as resource containers
[BDM99], would allow resource usage to be attributed precisely to the appropriate application-level
entity, allowing more detailed per-request performance analysis. Measuring the time each application-
level accounting unit spends waiting for each system resource would provide similarly useful data, and
would help greatly in pinpointing the location and severity of system bottlenecks and in assessing the
impact of those bottlenecks on response time. Instead of guessing that an HTTP response experienced
increased latency because certain system resources happen to be highly contended while the request was
being processed, we could know exactly for which resources the request was waiting, and for how long.

In lieu of such accounting, some mechanism for low-overhead continuous fine-grained event
recording would at least allow all relevant system events to be logged individually rather than being
aggregated into snapshots taken only once per epoch. Unfortunately our monitoring trace buffer already
fillsup at an aarmingly fast rate, so finer-grained statistics collection would require application of data
reduction techniques. Sampling at the granularity of logical application-level units, as suggested in
Section 4.3, represents one possible approach to data reduction. Additionally, some statistics that we
currently collect may not be useful to any potential subsequent analysis, and some others might be
derivable from a small set of base statistics. Identifying the minimal set of statistics that must be collected
in order to avoid constraining subsequent analysis offers fertile ground for future investigation. Finally,
one might use SPADE as the basis for integrating existing performance analysis tools into a single data
collection framework, allowing a range of analyses not possible using any single existing tool.

Any number of additions to our existing offline data analysis framework could potentially allow
for even more sophisticated insights than those presented in this paper. For example, we are interested in
adapting existing data mining algorithms to find the cause of performance variations and bottlenecks
using the data collected by our monitoring tool. Association rule agorithms like Apriori [AS94] work
well for binary data (e.g., discovering that when one item is purchased in a transaction, another item is
very often also purchased in that transaction) but require substantial modification to work with continuous
numeric data of the type collected in SPADE. Existing binary association rules algorithms could
potentially be applied to our data set if we could set arbitrary delineations between “normal/acceptable”
and “abnormal/unacceptable” performance for each metric and then treat an “abnormal/unacceptable”’
measurement made during a particular epoch as an item “purchased” in the transaction corresponding to
that epoch. But setting these cutoff points seems highly workload dependent and those points are likely to
change over time even within a single workload. As another potential addition to our offline data analysis
framework, integrating online query processing (e.g., the tools developed in the CONTROL project at
Berkeley) into the database query process would alleviate some of the annoyance due to the poor database
performance we experienced. It would allow for more sophisticated (i.e., time-consuming) queries to be
constructed in the process of exploring possible correlations in the data, since the user would not need to
wait for the entire dataset to be processed before initial results would be returned. Indeed the scenarios
presented in [HAR99] have strong analogies to the process of probing the SPADE database for
performance insight.
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A somewhat smpler starting point for improved offline data analysis would be to develop or use
exigting visualization tools, such as graphing or OLAP packages, for anayzing the SPADE database.
Simply graphing two or more statistics with respect to time on the same set of axes could enable visua
identification of correlations that are obscured when statistics are represented in purely numeric, tabular
form. Though we did not have time to investigate it, Microsoft Excel allows the construction and issuing
of SQL queries to a remote database, as well as the importing of the result tables. This facility could be
used to load result tables for graphing by Excel’ s built-in graphing tool.

SPADE might also serve as the first step in a number of longer-term projects that require
substantial additions to, or reworking of, the current framework. The insertion of monitoring datainto the
database could be moved online if the overhead of the loading process could be reduced. While we have
shown in this project that existing full-featured databases do not offer adequate performance for
continuous realtime insertion of monitoring statistics of the type we collect in SPADE, we are interested
in determining whether embedded database backends such as Berkeley DB [Sleepycat] might offer an
adequately-performing aternative to full RDBMSs while still offering useful query features like access
methods and application-aware caching.

We are also interested in applying the techniques developed in SPADE to guide automatic
adaptation by applications and operating systems. The extra system support needed to fully realize this
goal includes online data analysis (in addition to the existing online data collection) and triggers. Our goal
is develop a system that, guided by a user-specified policy, sets appropriate triggers that fire to invoke
adaptation code when the system reaches a state in which adaptation is required. This goal can be thought
of as encoding the logic a human administrator would use to manage a system (with respect to both
performance tuning and maintenance of availability) using triggers over the database of monitoring data,
and appropriate adaptation code to execute in response to those triggers. To this end, we aso need to
determine what statistics should be monitored to enable automatic system adaptation. We are currently
investigating these and other related issues within the context of the ISTORE project [BOK+99].

Finally, the SPADE framework could be extended to collect data from a cluster of nodes, for
example to analyze the performance of a cluster-based server such as an Internet search engine. Some
mechanism for synthesizing a global time across nodes would be essential to correlating statistics
collected simultaneoudy on different machines, and node identifiers would need to be added to the
database schema. Data could be stored localy on each node and bulk loaded into a distributed database
running on each node in the cluster, or it could be transferred to a single anaysis node (in bulk fashion or
continuously as gtatistics are collected) running a single-node database.

10 Related Work

SPADE is by no means the first system aimed at monitoring system performance and correlating
application-level performance variations to their underlying causes. But by using a database as its
structuring principle, it does offer the possibility of integrating a number of existing tools and simplifying
the construction of new tools.

SPADE might be used as a building block in a system such as that proposed in [SS97]. In that
paper the authors suggest continuously profiling an extensible operating system in order to determine
when and how the kernel should be adapted via extension. Performance data is deposited into a
monitoring database and adaptation is driven by querying that database. Since the goal of this adaptation
isto improve application performance, a system like SPADE that collects and correl ates application-level
behavior with operating system performance data is well-suited to guiding the desired adaptation.
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The CARD project [AP97] used relationa database technology to monitor computer clusters.
Like SPADE, CARD recorded data about CPU, network, and I/O system utilization in a relational
database, and allowed users to analyze the data using SQL queries. But unlike SPADE, CARD gathered
data at a coarse time scale and did so simultaneously from multiple machinesin a cluster, rather than on a
fine granularity and from a single node. Additionally, CARD only used data available from user-level
administrative utilities, it did not instrument the kernel to obtain additional statistics and traces of
operating system events. This difference in approach stems from CARD’s goals of enabling system
administrators to monitor resource utilization across all the machines they administer and to detect
abnormal conditions, in contrast to SPADE’ s focus on correlating application performance with low-level
system behavior to enable a programmer to tune an application and/or operating system.

The use of data mining to detect unusual patternsis closely related to SPADE’s proposed use of
data mining to analyze application performance. For example, in [LSM99] the authors build a system that
mines system audit data (e.g., shell commands issued, system calls made, and network connections
established or accepted) associated with individua users, in order to distinguish normal system usage
from that associated with an intrusion. The goal of this mining differs from that which we propose for
SPADE in that [LSM99] seeks to detect abnormal events and assumes an administrator will trace the
cause, while the mining we propose for SPADE should both detect abnormal events and provide an
indication of their underlying cause. But the two ideas are similar in that they attempt to use data mining
to classify monitoring data as indicative of “normal” or “abnormal” system behavior.

Hardware and software performance monitoring tools date back to the earliest computers. A
number of standard Unix utilities gather statistics similar to SPADE’s “snapshot” data, though their
output is designed to be human readable rather than processed automatically, and they provide no facility
for correating the collected data with user-level application behavior or with the data collected by one
another. These utilities include netstat (network statistics), iostat (1/0 system statistics), nfsstat (network
file system statistics), ps (per-process accounting statistics), pstat (various OS-level data structure
statistics), vmstat (process, virtual memory, disk, trap, and CPU activity statistics), and systat (which
combines the functionality of many of the other utilities). Additionaly, a number of tools allow
applications to be instrumented to collect user-level runtime statistics which are then post-processed to
reveal performance bottlenecks. Such tools include gprof [GKM82], QPT [LAR93], Pixie [MIPSA0],
Atom [SE94], and EEL [LS95]. A third set of tools use hardware performance counters to collect
statistics and correlate those statistics to application-level causes. Such tools include VTune [VTUNE]
and DCPI [ABD+97]. Once appropriate schema are defined, SPADE allows any tool to be used to gather
performance information. Thus any of these existing systems could be used as additional data sourcesin
the SPADE system, increasing the scope and/or detail of the queries that could be made to the database.

Like our web server study, previous projects have attempted to study the causes of application
latency. [EWC+96] propose techniques for evaluating interactive system performance by measuring
event-handling latency. As we did in our web server study, they focus on latency rather than throughput
as key to the user experience. They examined three variants of Windows, replacing the operating system
idle loop with their own loop that reads the Pentium hardware counters. Their system also derives
information by intercepting events going to and from the Win32 message queue. They did not instrument
the operating system, so they were somewhat limited in their ability to correlate application events (as
seen through the message queue) to underlying operating system causes.

Other studies have attempted to correlate application performance with the performance of
operating system and hardware primitives [BS97, Bro97]; unlike SPADE, however, the systems described
in those studies take a static approach, relying on the user to manually isolate the OS and hardware
primitives that govern application performance, then predicting the application’s performance based on
microbenchmark measurements of those primitives. In contrast, SPADE dynamically determines which
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OS subsystems and hardware components govern application performance at every point in time, and can
thus detect transient bottlenecks due to variations in the patterns of system utilization.

Finally, operating system adaptation based on runtime monitoring has been suggested by a
number of researchers. In [PAB+95] the authors describe “ optimistic incremental specialization,” a policy
by which operating system code is incrementaly optimized for common cases and dynamically “fixed
up” when the assumed constraints are violated. More recently, [SSS96] proposes to profile the behavior
of operating system modules in the context of each application that uses them, and to then use this
information to re-optimize modules (creating a new copy for each client application) for improved
performance when used by that application. Both of these ideas are similar in spirit to the automatic
adaptation we propose as future work in SPADE, though they focus on compiler-driven automatic
modification to operating system components rather than on explicitly built-in adaptive behavior of
applications or operating systems.

While SPADE differsin various ways from the above systems, it provides a framework that could
increase the ease of writing new performance monitoring tools and/or the usefulness of many of these
exigting tools. SPADE provides a standard interface between tools that gather monitoring data and tools
that use the data—its schema defines the available data and the data’'s format, while SQL defines the
syntax used for querying and updating the data repository. Thus while our project examined the
usefulness of making static queries to a database of performance information collected through relatively
simple operating system and application instrumentation, the database framework we have developed
offers the potentia to enable much more sophisticated monitoring and adaptation using new or existing
tools, and to allow these tools to interact and to be composed in ways that are impossible when each tool
uses its own data collection, storage, and analysis mechanisms.

11 Conclusions

The tasks of analyzing, understanding, and tuning the performance of large server systems are becoming
increasingly important as computing transitions to a model of data-centric infrastructure services backed
by large servers. Unfortunately, traditional performance measurement and analysis tools are incapable of
meeting the demands of this environment, as they are not designed to provide the detailed, fine-grained,
application-correlated data needed to understand and optimize the key user-driven metrics of latency and
response time. Furthermore, most of these traditional tools are constrained by an artificial integration of
system instrumentation, data storage, and data analysis that limits their flexibility.

In this paper, we presented the architecture and implementation of SPADE, a performance
analysis system that overcomes these failings of traditional performance tools by using the facilities of a
relational database to mediate the interactions of the software components responsible for
instrumentation, storage, and analysis. SPADE’s database decouples data collection from data analysis,
allowing for flexible analysis unconstrained by the design of the system instrumentation. At the same
time, it also provides a centralized store where detailed operating system and application-level
performance monitoring data can be integrated, enabling system performance analysis to encompass all
levels of the system simultaneoudly.

To implement the system we instrumented the NetBSD single-node operating system kernel and
the Apache web server to collect performance data, wrote a background daemon process and offline
utilities to insert the data into a relational database, and created “materialized views’ of the resulting
tables to correlate low-level operating system behavior with per-request application response time. We
showed how a user can write queries over the database to identify application-level server requests and
operating system functions exhibiting poor performance and to track down the cause(s) of that poor
performance. In particular, we described three such user sessions. First, we showed how a user can
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identify server application requests that perform identical operations but exhibit a variation in response
time, and can extract insight about the potential underlying causes of that variation by exploring data
collected at different levels of the system. We next showed that SPADE can be used to investigate the
performance of important operating system primitives and to determine possible causes for unusualy
slow system call response times. Finally, we demonstrated the use of SPADE to test a hypothesis about
the cause of variability in application-level response time. In the course of developing our system we
investigated the suitability of four existing databases for SPADE with respect to their robustness, loading
and query performance, user interface, and support for needed datatypes. We discovered that none offered
sufficient performance for continuous online updating of the database. Finally, we consider how the
concepts in SPADE form the natural foundation for a new class of adaptive, self-tuning systems ideally
suited for infrastructure applications.

The use of a database as the central metaphor of SPADE vastly simplifies the process of
investigating and analyzing the voluminous and unwieldy data sets generated by a fully-instrumented
system. We have demonstrated through example that the ability to issue queries over SPADE’s database
enables users to easily investigate and correlate performance data gathered from all levels of a system; our
experience with our sample application (Apache) only hints at SPADE’s potential for guiding users to
new insights into the underlying causes of system performance bottlenecks and application performance
variability.
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Appendix A: Monitoring Database Schema

-- This set of SQL commands creates the tables for the nonitoring database

create tabl e KMON_LQAD (

epoch int, -- epoch

tinme float, -- timestanp, in seconds

uni quehi int, -- low 32 bhits of cycles tinestanp
uni quel ow int, -- high 32 bits of cycles tinestanp
nrunnabl e int, -- nunber of runnabl e processes

PRI MARY KEY (epoch)
)

create tabl e KMON_NETSTATS (
-- all are reported as diffs from begi nning of epoch
-- sys/netinet/tcp_var.h::struct tcpstat

epoch int, -- epoch

time float, -- timestanp, in seconds

uni quehi int, -- low 32 bits of cycles tinestanp
uni quel ow int, -- high 32 bits of cycles tinestanp
coninitiated int, -- connections initiated

conaccept ed int, -- connections accepted
connest abl i shed int, -- connections established

conndr opped int, -- connections dropped

embconndr opped int, -- enbryoni ¢ connections dropped
conncl osed int, -- conn. closed (includes drops)
segstryrtt int, -- segs where we tried to get rtt

ti messucceeded int, -- times we succeeded

del ayedacksent int, -- del ayed acks sent

cdirxmtineout int, -- conn. dropped in rxm tineout
retransti meout int, -- retransmt tinmeouts
persisttimeout int, -- persist tineouts

kal i veti nmeout int, -- keepalive tinmeouts

kpr obessent int, -- keepalive probes sent

cdropkal i ve int, -- connections dropped in keepalive
cdr opper si st int, -- connections dropped in persist
cdropnenshrtge int, -- connections drained due to nenory shortage
pkt ssent int, -- total packets sent

dat apkt ssent int, -- data packets sent

dat abyt essent int, -- data bytes sent

dat apktsrtrans int, -- data packets retransmitted

dat abytesrtrans int, -- data bytes retransmtted

ackonl ysent int, -- ack-only packets sent

wndwpr obessent int, -- w ndow probes sent

pkt surgonly int, -- packets sent with URG only
wndwupdonl ypkts int, -- w ndow updat e-only packets sent
ctrl pkt ssent int, -- control (SYN FIN RST) packets sent
pktsrcvd int, -- total packets received

pkt srcvdi nseq int, -- packets received in sequence

byt esrcvdi nseq int, -- bytes received in sequence

pkt srcvdckerr int, -- packets received with ccksumerrs
pkt srcvdbadoff int, -- packets received with bad of fset
pkt sdropnonem int, -- packets dropped for |ack of nenory
pkt srcvdt ooshrt int, -- packets received too short

duponl yprcvd int, -- duplicate-only packets received
duponl ybrcvd int, -- duplicate-only bytes received
pkt swdupdat a int, -- packets with some duplicate data
dupbyt esi npdp int, -- dup. bytes in part-dup. packets
ooopkt srcvd int, -- out-of-order packets received
ooobyt esrcvd int, -- out-of-order bytes received

pkt swi t hdaw int, -- packets with data after w ndow
byt esr cvdaw int, -- bytes rcvd after w ndow
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pktsrcvdaftrcls int, -- packets rcvd after "cl ose"

r cvdwndpr obepkt int, -- rcvd wi ndow probe packets

r cvddupacks int, -- rcvd duplicate acks

rcvdacksunsent int, -- rcvd acks for unsent data
rcvdackpkts int, -- rcvd ack packets

byt esackbyrcvda int, -- bytes acked by rcvd acks

r cvdwndwupdpkts int, -- rcvd wi ndow updat e packets

segdr oppaws int, -- segnents dropped due to PAWS

hdr pr edokack int, -- tinmes hdr predict ok for acks

hdr pr edokdat a int, -- tines hdr predict ok for data pkts
i nppkt nopcbhash int, -- input packets missing pcb hash

t cpnosockonport int, -- no socket on port

rcvdacknosyncnp int, -- received ack for which we have no SYN in conpressed

state
-- these statistics deal with the SYN cache

entri esadded int, -- # of entries added
connsconpleted int, -- # of connections conpleted
entriestimeout int, -- # of entries tined out

dr oppedovf | w int, -- # dropped due to overflow

dr oppedr st int, -- # dropped due to RST

dr oppedi cnpunr int, -- # dropped due to | CMP unreach

dr oppedbucket int, -- # dropped due to bucket overflow
nentri esabrtmemint, -- # of entries aborted (no nmem
dupsynr cvd int, -- # of duplicate SYNs received
synsdropped int, -- # of SYNs dropped (no route/nem
hashcol li sions int, -- # of hash collisions

-- sys/netinet/udp_var.h

-- input statistics

toti nput pkts int, -- total input packets

pkt shortrthanhd int, -- packet shorter than header
cksunerror int, -- checksum error

dat al engrtrpkt int, -- data length |l arger than packet
udpnosockonport int, -- no socket on port

arrasbroadcast int, -- of above, arrived as broadcast
not del i vered int, -- not delivered, input socket ful

i npkt nopcbhash int, -- input packets missing pcb hash

-- output statistics

t ot out put pkts int, -- total output packets

-- sys/netinet/ip_var.h

t ot pkt srcvd int, -- total packets received

cksunbad int, -- checksum bad

pktt ooshort int, -- packet too short

not enoughdat a int, -- not enough data

i phdrlenltdata int, -- ip header length < data size

i pl enltiphdrlen int, -- ip length < ip header |ength
fragsrecvd int, -- fragnents received

fragsdr opped int, -- frags dropped (dups, out of space)
fragsti medout int, -- fragnments tinmed out

pkt sf orwar ded int, -- packets forwarded

pkt srcvddeunrch int, -- packets rcvd for unreachabl e dest
pkt sfwdsanmenet int, -- packets forwarded on sanme net
unkunsuppr ot o int, -- unknown or unsupported protoco
dgr andel t oupper int, -- datagranms delivered to upper |eve
total i ppktsgend int, -- total ip packets generated here

| ost pkts int, -- lost packets due to nobufs, etc.
pkt sreassenbok int, -- total packets reassenbl ed ok

dgr anokf rag int, -- datagrans sucessfully fragmented
outfragscrtd int, -- output fragnents created

nof r agf | agset int, -- don't fragnent flag was set, etc.
errorinoptprocs int, -- error in option processing
dscrdnor out e int, -- packets discarded due to no route
i pver snot f our int, -- ip version !=4

rawi ppkt sgend int, -- total raw ip packets generated
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fragbadl engt h int, -- mal forned fragments (bad | ength)
fragdropnonem int, -- frags dropped for lack of nenory
i pl ent ool ong int, -- ip length > max i p packet size
-- sys/netinet/icnp_var.h

-- statistics related to icnp packets generated

call stoi cnperr int, -- # of calls to icnp_error
noerrol di pshrt int, -- no error 'cuz old ip too short
noerrol di cnp int, -- no error 'cuz old was icnp

-- statistics related to i nput nessages processed

i cmpcodeoutrng int, -- icnp_code out of range
pktlticnpminlen int, -- packet < ICVMP_M NLEN

badcksum int, -- bad checksum

boundni smat ch int, -- cal cul at ed bound m snatch
nresponses int, -- nunber of responses [ignp_var.h follows]
-- sys/netinet/ignp_var.h

i gmpnsgr cvd int, -- total | GW messages received

i gnpf ewbyt es int, -- received with too few bytes

i gmpbadcksum int, -- received with bad checksum

i gnprcvdmengry i nt, -- received nenbership queries

i gnpi nval qry int, -- received invalid queries

i gnmpr cvdmenr pt i nt, -- received nenbership reports

i gnprcvdi nvlrpt int, -- received invalid reports

i gnmpr cvdourgrp int, -- received reports for our groups
i gnpsent menr pt  int, -- sent menbership reports

PRI MARY KEY (epoch)

)

create tabl e KMON_DI SKSTATS (
epoch int, -- epoch
tinme float, -- timestanp, in seconds
uni quehi int, -- low 32 bits of cycles tinestanp
uni quel ow int, -- high 32 bits of cycles tinestanp
di sknane var char ( 8), -- di sk nanme
transfers int8§, -- total # of transfers (this epoch)
i ndepseekops int8§, -- # of independent seek ops (this epoch)
byt esxferred int8§, -- # of bytes xferred (this epoch)
ti mebusysec int, -- total tinme spent busy (this epoch)
ti mebusyusec int, -- total time spent busy (this epoch)
PRI MARY KEY (epoch, disknane)

)

create tabl e KMON BQUEUESTATS (
epoch int, -- epoch
time float, -- timestanp, in seconds
uni quehi int, -- low 32 bits of cycles tinestanp
uni quel ow int, -- high 32 bits of cycles tinestanp
freebuf g0 int, -- nunber of free buffers of type LOCKED
freebufql int, -- nunber of free buffers of type LRU
freebuf g2 int, -- nunber of free buffers of type AGE
freebuf g3 int, -- nunber of free buffers of type EMPTY
freespaceqO int, -- total free space of type LOCKED
freespaceql int, -- total free space of type LRU
freespaceq2 int, -- total free space of type AGE
freespaceq3 int, -- total free space of type EMPTY
PRI MARY KEY (epoch)

)

create tabl e KMON_BI OEVENTS (
epoch int, -- epoch
time float, -- timestanp, in seconds
uni quehi int, -- low 32 bits of cycles tinestanp
uni quel ow int, -- high 32 bits of cycles tinestanp
rw int, -- 0==read, 1 ==wite
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si ze int, -- xfer size, in bytes

| bl kno int, -- logical block nunber
I bl knodi f f int, -- logical block seek distance from previous
pbl kno int, -- physi cal bl ock nunber
pbl knodi f f int, -- physical block seek distance from previous
PRI MARY KEY (epoch, uni quehi, uni quel ow)
)
create tabl e KMON_SCSI EVENTS(
epoch int, -- epoch
tinme float, -- timestanp, in seconds
uni quehi int, -- low 32 bits of cycles tinestanp
uni quel ow int, -- high 32 bits of cycles tinestanp
err code int, -- SCSI sense error code
PRI MARY KEY (epoch, uni quehi, uni quel ow)
)
create tabl e KMON_SCHEDSTATS_ | NSTATE (
epoch int, -- epoch
tinme float, -- timestanp, in seconds
uni quehi int, -- low 32 bhits of cycles tinestanp
uni quel ow int, -- high 32 bits of cycles tinestanp
ni dl e int, -- SIDL
nrun int, -- SRUN
nsl eep int, -- SSLEEP
nst op int, -- SSTOP
nzonb int, -- SZOowB
PRI MARY KEY (epoch)
)
create tabl e KMON_SCHEDSTATS INQ ( -- collecting these stats is broken at the nonent
epoch int, -- epoch
time float, -- timestanp, in seconds
uni quehi int, -- low 32 bits of cycles tinestanp
uni quel ow int, -- high 32 bits of cycles tinestanp
gno int, -- queue number (0-31)
nunber int, -- nunber in that queue
PRI MARY KEY (epoch, qgno)
)
create tabl e KMON_SCHEDEVENTS (
epoch int, -- epoch
tinme float, -- timestanp, in seconds
uni quehi int, -- low 32 bits of cycles tinestanp
uni quel ow int, -- high 32 bits of cycles tinestanp
pi d int, -- pid
timein float, -- timestanp when scheduled in, in seconds
ti meout float, -- timestanp when schedul ed out, in seconds
prio int, -- process priority
userprio int, -- user priority based on p_cpu and p_nice
pni ce int, -- process nice val ue
hi tuser int8§, -- statclock hits in user node (this quantum
hi tsystem int8§, -- statclock hits in system nmode (this quantum
hitintr int8§, -- statclock hits in handling interrupts (this
guant um
real tinesec int, -- real tinme, seconds (this quantum
real ti meusec int, -- real time, mcroseconds (this quantum
cputicks int, -- ticks of CPU tine (this quantum
avgcpti cks int, -- tinme averaged val ue of cpticks
ppi d int, -- parent process id
userusedsec int, -- user time used, seconds (this quantum
user usedusec int, -- user tine used, mcroseconds (this quantum
sysusedsec int, -- systemtine used, seconds (this quantum
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sysusedusec int, -- systemtinme used, mcroseconds (this quantum
maxrss int, -- max rss
sharedt xt memsz int, -- integral shared text nenory size
unshareddatasz int, -- integral unshared data size
unshar edst acksz int, -- integral unshared stack size
pgr ecl ai ns int, -- page reclains, this quantum
poflts int, -- page faults, this quantum
swaps int, -- swaps, this quantum
bi ops int, -- block input operations, this quantum
boops int, -- bl ock output operations, this quantum
nsgssent int, -- messages sent, this quantum
nsgsrcvd int, -- messages received, this quantum
sigrcvd int, -- signals received, this quantum
vol ct Xt swx int, -- voluntary context sw tches, this quantum
i nvol ct xt swx int, -- involuntary context sw tches, this quantum
ruid int, -- real user id
PRI MARY KEY (epoch, uni quehi, uni quel ow)
)
create tabl e KMON_VMSTATS (
epoch int, -- epoch
time float, -- timestanp, in seconds
timehi int, -- high 32 bits of tine
tinelo int, -- low 32 bits of tine
gueuel en int, -- length of run queue
ndi skwai t int, -- #jobs in disk wait
npagewai t int, -- jobs in page wait
nsl eepcore int, -- jobs sleeping in core
nswpr unnabl e int, -- swapped out runnabl e/short bl ock jobs
-- remaining stats are all in units of pages
total vm int, -- total virtual nenory
activevm int, -- active virtual nenory
total rmem int, -- total real menory in use
activernmem int, -- active real nenory
t ot al shnrem int, -- shared virtual nenory
activeshnmem int, -- active shared virtual nenory
t ot al shr nem int, -- shared real menory
activeshrnmem int, -- active shared real nenory
freepgs int, -- free nmenory pages
PRI MARY KEY (epoch)
)
create tabl e KMON_POSTGRES (
epoch int, -- epoch
time float, -- timestanp, in seconds
timehi int, -- high 32 bits of tine
tinelo int, -- low 32 bits of tine
query var char (1023), -- query string
PRI MARY KEY (epoch)
)
create tabl e KMON_MEMBUCKETSTATS (
epoch int, -- epoch
time float, -- timestanp, in seconds
ti mehi int, -- high 32 bits of tine
timelo int, -- low 32 bits of tine
bucket si ze int, -- size of bucket in bytes
nused int, -- nunber of allocations in use
nfree int, -- nunber of free allocations
nreqs int, -- nunber of requests made for this size buf
hi ghwat er int, -- hi gh wat er mar k
overfl ow int, -- nunber of allocations beyond hi gh waternmark
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PRI MARY KEY (epoch, bucketsize)

)
create tabl e KMON_MEMIYPESTATS (
epoch int, -- epoch
time float, -- timestanp, in seconds
timehi int, -- high 32 bits of tinme
tinelo int, -- low 32 bits of tine
type varchar (15), -- type as ascii string
itype int, -- itype (integer type)
nused int, -- numobjs of this type in use
nenmused int, -- memused by this type (KB)
del t anem int, -- change in nem usage over epoch
maxused int, -- maxi mum nunber of these objects used
nmaxal | owed int, -- max nunber of these objects allowed to exist
nreqs int, -- requests made for this type over this epoch
Ii mbl ocks int, -- #tinmes requests blocked hitting the limt
kmapbl ocks int, -- #times requests blocked for kernel nmap
nm nsi ze int, -- mn size of this type
maxsi ze int, -- max size of this type
nedi ansi ze int, -- median size of this type (not weighted!)
PRI MARY KEY (epoch, itype)
)
create tabl e KMON_| NTRSTATS (
epoch int, -- epoch
time float, -- timestanp, in seconds
timehi int, -- high 32 bits of tine
tinelo int, -- low 32 bits of tine
intr0 int, -- count for interrupt O
intrl int, -- count for interrupt 1
intr2 int, -- count for interrupt 2
intr3 int, -- count for interrupt 3
intr4 int, -- count for interrupt 4
intr5 int, -- count for interrupt 5
intr6 int, -- count for interrupt 6
intr?7 int, -- count for interrupt 7
intr8 int, -- count for interrupt 8
intr9 int, -- count for interrupt 9
intrl10 int, -- count for interrupt 10
intrll int, -- count for interrupt 11
intrl2 int, -- count for interrupt 12
intrl3 int, -- count for interrupt 13
intrl4 int, -- count for interrupt 14
intrl15 int, -- count for interrupt 15
intrl6 int, -- count for interrupt 16
intrl7 int, -- count for interrupt 17
intrl8 int, -- count for interrupt 18
intrl19 int, -- count for interrupt 19
intr20 int, -- count for interrupt 20
intr21 int, -- count for interrupt 21
intr22 int, -- count for interrupt 22
intr23 int, -- count for interrupt 23
intr24 int, -- count for interrupt 24
intr25 int, -- count for interrupt 25
intr26 int, -- count for interrupt 26
intr27 int, -- count for interrupt 27
intr28 int, -- count for interrupt 28
intr29 int, -- count for interrupt 29
intr30 int, -- count for interrupt 30
intr31 int, -- count for interrupt 31
intrOr int, -- rate for interrupt O
intrlr int, -- rate for interrupt 1
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intr2r int, -- rate for interrupt 2
intr3r int, -- rate for interrupt 3
i ntrdr int, -- rate for interrupt 4
intr5r int, -- rate for interrupt 5
intré6r int, -- rate for interrupt 6
intr7r int, -- rate for interrupt 7
intr8r int, -- rate for interrupt 8
intror int, -- rate for interrupt 9
i ntr10r int, -- rate for interrupt 10
intrllr int, -- rate for interrupt 11
intrl2r int, -- rate for interrupt 12
intrl13r int, -- rate for interrupt 13
i ntr14r int, -- rate for interrupt 14
i ntr15r int, -- rate for interrupt 15
intrl6r int, -- rate for interrupt 16
intrl7r int, -- rate for interrupt 17
intrl18r int, -- rate for interrupt 18
intr19r int, -- rate for interrupt 19
i ntr20r int, -- rate for interrupt 20
intr2lr int, -- rate for interrupt 21
intr22r int, -- rate for interrupt 22
intr23r int, -- rate for interrupt 23
i ntr24r int, -- rate for interrupt 24
i ntr25r int, -- rate for interrupt 25
i ntr26r int, -- rate for interrupt 26
intr27r int, -- rate for interrupt 27
i ntr28r int, -- rate for interrupt 28
intr29r int, -- rate for interrupt 29
i ntr30r int, -- rate for interrupt 30
intr31r int, -- rate for interrupt 31
PRI MARY KEY (epoch)

)

create tabl e KMON_SUMSTATS (
epoch int, -- epoch
time float, -- timestanp, in seconds
ti mehi int, -- high 32 bits of tine
timelo int, -- low 32 bits of tine
nct xsw int, -- #context switches
ntraps int, -- #calls to trap()
nsyscal | s int, -- #syscalls
nhwintrs int, -- #device interrupts
nswintrs int, -- #software interrupts
nfaul ts int, -- total #faults taken
vntachel ookups int, -- VM obj ect cache | ookups
vnctachehits int, -- VM obj ect cache hits
vhtachehitrate float, -- VMobject cache hit rate (% floating-point)
naddrnenfaults int, -- #"address nenory" faults
ncows int, -- H#CON
nswapi ns int, -- #swapins
nswapout s int, -- #swapout s
npswappedi n int, -- #pages swapped in
npswappedout int, -- #pages swapped out
npagei ns int, -- #pageins
npageout s int, -- #pageouts
nppagedi n int, -- #pages paged in
nppagedout int, -- #pages paged out
npf bl ktransi t int, -- #pfaults blocked b/c req'd page in transit
npreactivat ed int, -- #pages reactivated fromthe free |ist
cl ockhandr evs int, -- revolutions of the clock hand
pagedenonscans int, -- scans in pageout daenon
pfreeddaenon int, -- pages freed by daenon
pfreedprocs int, -- pages freed by exiting processes
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)

pzf od int, --
nzfod_created int, --
nker npgs int, --
freetarget int, --
m nfree int, --
npfree int, --
npwi r ed int, --
npactive int, --
i nactivetarget int, --
npi nactive int, --

PRI MARY KEY (epoch)

create tabl e KMON_SYSCALL (

)

epoch int, --
tinme float, --
ti mehi int, --
timelo int, --
name var char ( 40)
num int, --
pi d int, --
argl int, --
arg2 int, --
arg3 int, --
arg4 int, --
rval int, --
errno int, --
el apsedti ne float, --

PRI MARY KEY(epoch, tinehi

create tabl e KMON_PCH ST (

)

epoch int, --
time float, --
ti mehi int, --
timelo int, --
f nnane var char ( 40)
nticks int, - -
timefrac float, --

PRI MARY KEY(epoch, fnnane)

create tabl e KMON_APACHE (

pages zero-fill ed-on-demand

# of zfod pages created (not necc. filled)
#pages in use by kernel (snapshot)

target #of pages to keep free (snapshot)

mn # of pages to keep free (snapshot)

# of free pages (snapshot)

# of wired pages (snapshot)

# of active pages (snapshot)

target #of pages to keep inactive (snapshot)
# of inactive pages (snapshot)

epoch

ti mestanp, in seconds

high 32 bits of tine

low 32 bits of tine

, -- systemcall name (ascii string)
system cal | numnber

pid of process issuing system cal
argurment #1 to system cal

argunment #2 to system cal

argurment #3 to system cal

argunment #4 to system cal

return val ue of system cal

error (errno) set by systemcal

el apsed time for systemcall in seconds
timel o)

epoch

ti mestanp, in seconds

high 32 bits of tine

low 32 bits of tine

, -- function nanme (ascii string)

#profiling ticks accumul ated during epoch
%inme spent in this fn during the epoch (fp)

seqgno int, -- request sequence nunber

resptime_c float, -- response tine for serving request, w close
respti ne_noc float, -- response tine for serving request, wo close
firstepoch int, -- first epoch in which request was active

| ast epoch int, -- last epoch in which request was active

f name var char (255), -- requested fil enane

PRI MARY KEY( seqno)
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