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Abstract 
In this paper we introduce a new approach to system performance analysis. Based on the use of a 
system monitoring database, SPADE (System Performance Analysis Database Engine) overcomes 
many of the shortcomings of traditional performance analysis tools. SPADE collects monitoring 
data from all levels of the system, including the application, and stores it in a central repository 
backed by a relational DBMS; the granularity of the system instrumentation is automatically 
matched to the application’s notion of a request, allowing the database to correlate all monitoring 
data with semantically-meaningful application requests. We demonstrate that the SQL-based 
query facility of the database enables unprecedented levels of flexibility, power, and ease-of-use in 
analyzing the data: a user of our system can write simple queries to examine the collected 
monitoring data at multiple levels of detail, to locate system bottlenecks and unusual behavior, and 
to easily test hypotheses about the system’s performance, all without having to write ad-hoc tools 
or perform multiple experiment runs.  

 
 
1  Introduction 
 
Networked servers running data-intensive applications such as web services and databases are playing an 
increasingly important role in modern computing. It has been recently argued that these “ infrastructure” 
systems will form the most significant class of large computer installations as we move into the next era 
of computing, the “Post-PC era”  [Hen99, Pat99]. One of the most critical qualities of data-intensive 
infrastructure servers is their per-request performance (i.e., response time), as this metric translates 
directly into user-perceived performance. To provide the best user experience, it is important that these 
servers be highly tuned to achieve the best performance possible. This tuning in turn requires an 
understanding of the underlying reasons why the system performs as it does and, in particular, how 
various system characteristics impact the server application’s perceived performance. 

 
However, most of today’s data-intensive servers are extraordinarily complex and exhibit 

performance characteristics that do not lend themselves to easy analysis. One of the more significant 
difficulties is that system performance is often governed by the interactions amongst many different parts 
of the system, from hardware devices (such as disks) to the operating system to the application itself. 
Traditional performance monitoring tools are not up to the task of collecting performance data from all of 
these different subsystems, correlating that data with application performance, and integrating it to 
present a unified view of the performance of all the system internals as well as of the application. For 
example, the performance tools built into most operating systems (such as systat, vmstat, netstat, top, and 
so forth) provide a wealth of detail about the internal operation of the operating system, but do so only on 
a very coarse, fixed-timestep granularity. As a result, they provide no way to correlate that data with the 
performance of any given application-level service request; at best these tools can provide limited insight 
into the aggregate throughput of an application. 

 
We believe that the solution to this predicament lies in the application of database technology to 

the problem of analyzing and understanding system performance. A relational database provides a natural 
repository through which diverse performance and monitoring data collected from all levels of the system 
can be centralized and integrated. It also provides a powerful query mechanism that can be used to 
investigate the data, to test hypotheses about the impact of various components on system performance, 
and to perform data reduction and summarization. Advanced database systems also provide the ability to 
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perform data mining and on-line analytical processing (OLAP) operations that can potentially extract 
novel and unexpected correlations in the data, providing new insight into system performance.  

 
In this paper, we describe the architecture and implementation of SPADE (System Performance 

Analysis Database Engine), a system that demonstrates the benefits of using a relational database to store 
and analyze system monitoring data. We have fully instrumented both a single-node operating system 
kernel and a web server application to collect performance data and to insert it into a relational system 
monitoring database; the application and kernel instrumentation are described in detail in Sections 3 and 
4, respectively, while Section 5 describes the process by which the monitoring data is placed into the 
database. In Section 6, we show how the database’s query capabilities can be used to transform the raw 
monitoring data into a format that correlates subsystem performance statistics with per-request application 
response time. Section 7 illustrates the power of using a system monitoring database by demonstrating 
how database queries can be used to identify regimes of poor performance and to trace the causes of that 
performance degradation, potentially providing the insight necessary to tune the system’s hardware and 
software configuration. Our prototype implementation carries out the bulk of its processing and analysis 
off-line; Section 8 examines the performance implications of moving to an online model, and considers 
the suitability of various DBMSs for this application. In Section 9 we present some directions for future 
research, considering in particular how the use of an on-line system monitoring database could provide 
the foundation for automatic application adaptation to system performance bottlenecks. Finally, we 
present related work in Section 10, and in Section 11 we conclude.  
 
2  System Overview 
 
2.1  System structure 
 
The performance data collection and analysis system that we have implemented consists of several 
components roughly partitioned into three groups: in-kernel instrumentation and data collection code, off-
line data transformation tools, and the relational database used to integrate the monitoring data collected 

Figure 1: SPADE System Overview
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and processed by the first two groups of components. A schematic overview of the system is presented in 
Figure 1. 
 
 The in-kernel instrumentation and data collection code serves two functions. First, it performs the 
actual OS- and device-level monitoring: small snippets of code spread throughout the OS kernel monitor 
and record system and device events as they occur and gather snapshots of summary statistics describing 
subsystem utilization, memory utilization, and so forth. The details of this instrumentation code are 
described further in Section 4. The other function of the in-kernel portion of our system is to provide a 
unified interface to the kernel’s monitoring functionality. We provide a set of procedures that allows the 
various pieces of monitoring code described above to store their collected data as records within a large 
circular trace buffer allocated within the kernel’s memory region; all records have a standard header, are 
automatically timestamped, and are tagged by type. The system also provides several system calls that 
allow a user process to extract the data from the buffer and to enable or disable each individual 
monitoring function. Synchronization of buffer access between the user process and the kernel is handled 
automatically by the centralized interface and is thus hidden from the code that actually performs 
monitoring or statistics gathering, keeping that code simple and fast. 
 
 The second group of components consists of tools that extract the monitoring data from the kernel 
buffer, perform some simple preprocessing and transformation of that data, and convert it into a format 
that can be directly bulk-loaded into a relational database. Our prototype system relies on three separate 
programs for this task (although they could easily be combined, and should be in a production-caliber 
implementation): the first, kmond, extracts the data from the kernel; the second, datapump, performs some 
simple computation and transformation of the data; and the third, db-insert, converts the output of 
datapump into the appropriate bulk-loading format for the particular database being used. More details on 
each of these tools can be found in Section 5. 
 
 The last component of the system is the database itself. Any relational database can be used for 
this component of the system, although we found that an industrial-strength commercial database was 
required to handle the volume and complexity of the monitoring dataset. Flexible query support is also an 
important requirement. We describe our experience with several different DBMSs in Section 8. 
 
2.2  User experience 
 
Analyzing a system’s performance using the monitoring and analysis system that we have just described 
is a multi-step process with our prototype implementation. First, the user must instrument the application 
as described in Section 3 to inform the kernel monitoring subsystem of application-level events and to log 
application-specific performance metrics. Next, the user enables the monitoring subsystem and runs the 
application, subjecting it to the workload under which the user wants to understand the system’s 
performance. If the workload in question is one that results in poor performance, the user can optionally 
monitor a second application run in which a “normal”  workload is used to obtain a baseline 
characterization of the system to use as a comparison point. After collecting the traces from these 
application runs, the user invokes the off-line data processing tool chain in order to transform the data and 
load it into the database. At this point, the user can interact with just the database, issuing queries and 
examining the query results in order to investigate the system’s performance at different points in the 
application workload, to test hypotheses about why performance might be slow, and to search for novel 
correlations between system and application performance. The key point here is that the data collection 
and analysis are completely divorced by the use of the database: the user does not need to decide on 
hypotheses or questions to ask before collecting the data, and at no point should the user need to perform 
additional tracing or application runs in order to pose and answer a different set of questions. Instead, the 
user can simply issue a new set of queries that aggregates and summarizes the collected data in a different 
manner. 
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The fact that so many steps are required in the analysis and data-collection process is primarily an 

artifact of our prototype implementation; we purposefully kept the various components and tools separate 
to allow us to change their implementations during development of the system. There is no inherent 
reason why the analysis process need be broken down into so many steps, and in fact a production 
implementation of our system would most likely combine tracing with on-line data transformation and 
database loading, eliminating all steps but the initial instrumentation and the final data analysis. We 
consider some of the issues in moving to such an online model in Section 8, below. 
 
3  Application Instrumentation 
 
Because SPADE’s focus is on correlating application performance to underlying system behavior, the 
application to be analyzed must be instrumented to collect data about relevant application-level events. 
We therefore instrumented two applications, the Apache 1.3.3 web server and the PostgreSQL 6.4.2 
database. Because we were interested in user-visible application latency, we recorded the response time 
measured between the user request being issued to the system (received by the back-end in PostgreSQL, 
received by the web server in Apache) and the response being returned to the user (returned from the 
back-end to the front-end in PostgreSQL, returned from the server in Apache). We also recorded the 
identity of the request, namely the web page requested in the case of Apache and the database query 
issued in the case of PostgreSQL. Because we examined only Apache in our application performance 
study, we describe the issues related to Apache’s instrumentation here. The required instrumentation is 
similar in PostgreSQL. 
 

There are actually two response time metrics of possible interest in Apache. One is the latency 
between the server receiving the request for a web page and the server returning the web page to the 
client; the other is the latency between the server receiving the request for a web page and the server 
closing the TCP connection with the client (after returning that page). While the extra time overhead of 
closing the TCP connection is of some interest, we are primarily interested in the code path from request 
receipt to page delivery, want the path related to the connection control aspects of the TCP protocol; 
moreover, we wanted to exclude as much as possible the impact of random variations in network 
performance which can have a significant impact on the overhead of closing a TCP connection. Thus 
while we measured the latency both including and excluding this connection-closing overhead, our 
performance study of the application used the latency measure that excludes the time spent closing the 
connection. 
 

Because it is logically multithreaded (depending on the host platform, a separate process may be 
used for each logical thread, as is the case on our NetBSD-based system), Apache introduces a slight 
complication in mapping operating system statistics to application request units (i.e., single requests for a 
web page). Because of the overhead of recording summary snapshots, it is desirable to record them only 
when necessary, i.e., at the beginning and end of each HTTP request. The difference between the two 
snapshots, which is attributable to the query running during that time interval, can be computed as a 
postprocessing step. But the multithreaded nature of Apache allows multiple requests to be 
simultaneously serviced; this means that multiple summary snapshots may be recorded between the begin 
and end records inserted by the application for a single request. To allow easy aggregation of all the 
statistics collected during the execution of a query, we divide time into “epochs.”  Initiation or completion 
of server processing of an HTTP request defines the an epoch’s boundaries; such a boundary is marked by 
the application making a system call that records a “begin request”  or “end request”  log record. An epoch 
is therefore the finest granularity on which statistics must be collected (and events timestamped) in order 
for the statistics relevant to a particular HTTP request to be computed. The epoch number can be thought 
of as a logical timestamp value, and the statistics collected during all epochs during which a query was 
running are aggregated to produce the system utilization information for that query. We will see that our 
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use of a database table mapping HTTP requests to epochs, combined with our storing summary snapshots 
and events in the database tagged by the epoch during which they were collected, allows us to easily 
aggregate the data relevant to any particular query. 
 

To support application instrumentation we added an OS system call, 
kmon_i ncr ement _epoch( ) ,  that takes an application-defined type field and an application-defined 
log record structure. It increments the “current epoch”  counter and causes summary snapshots to be 
logged into the trace buffer along with a “new epoch”  log record that includes the current time and the 
application-defined log record data. In the case of Apache the type indicates whether the call was made to 
mark the beginning or ending of the servicing of a request, and the application-defined data provides the 
ASCII representation of the requested URL. In the case of PostgreSQL the application-defined data is the 
ASCII representation of the SQL query handled.  Given this system call, instrumenting an application is 
very easy—kmon_i ncr ement _epoch( )  is simply called at the beginning and end of handling a 
request. 
 
4  Operating System Instrumentation 
 
Because we want to collect as many operating system statistics and events as possible, SPADE required 
significant operating system instrumentation. We modified the NetBSD 1.3.3 kernel to collect summary 
statistics once per epoch (i.e., once each time the application calls kmon_i ncr ement _epoch( ) ) and 
to continuously collect dynamic event traces; both types of records are tagged with the epoch during 
which they were collected as well as the hardware cycle counter timestamp at the moment the record is 
written. In this section we describe the statistics SPADE collects as summary snapshots and the events it 
records. 
 

Summary snapshots were taken primarily from five kernel subsystems: the network stack, the file 
system, disk I/O handlers, the virtual memory system, and the interrupt handler. Some of these statistics, 
e.g., those related to the network stack, were already collected by the NetBSD kernel, in which case we 
simply had to find and copy the relevant statistics into the in-memory trace buffer. Other information was 
computed by traversing kernel data structures. Determining the number of free buffer cache buffers of 
each size, the number of processes in each scheduler priority queue, and the number and type of active 
memory allocations required this type of direct examination of kernel state. Finally, kernel profiling data 
was also collected during each epoch; since a snapshot of the profiling buffer was captured at the end of 
each epoch, we classify this data as a summary statistic. In addition to the summary statistics, four types 
of events were recorded, corresponding to the occurrence of a SCSI error, a disk read or write, a process 
being descheduled on a context switch, or a system call being made. 
 

The operating system instrumentation framework was designed with extensibility in mind. To this 
end, the support code needed by the instrumentation functions for kernel-level locking, memory 
management, and synchronization with the user-level daemon process (which writes log records to disk 
when the circular buffer of log records described in Section 2 becomes more full than a user-specified 
threshold) are handled by a single function, kmon_al l ocat e_r ecor d( ) . 
Kmon_al l ocat e_r ecor d( )  also records the epoch number and time (read from the hardware cycle 
counter) during which it was called. Thus instrumentation functions merely need to call 
kmon_al l ocat e_r ecor d( )  specifying the size of the log record they wish to write, after which they 
write their data into the memory region returned. Of course additional locking may be necessary if the 
instrumentation functions themselves examine volatile kernel data structures. 
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4.1 Summary snapshots 
 
A trace record corresponding to a summary snapshot is recorded whenever an epoch boundary is 
indicated by an application call to kmon_i ncr ement _epoch( ) . To maximize efficiency, most 
snapshot data is recorded as absolute values, with per-epoch differences (i.e., deltas from the previous 
epoch) computed offline in the datapump program described in Section 5. The snapshot recording 
mechanism was designed with extensibility in mind; adding a new function to record snapshot data 
merely requires writing the function and registering it in a table of “callout”  function pointers, each of 
which is called on an epoch transition. 
 

Nine types of summary snapshot data were collected. Network statistics include information from 
all levels of the protocol stack, i.e., TCP, UDP, IP, ICMP, and IGMP. The TCP statistics contain data 
about connections (number initiated, accepted, established, dropped, and closed), packets (control, data, 
and total packets and bytes sent, received, dropped, and retransmitted), packets received containing errors 
or that were received out-of-order, and so on. UDP statistics record the number of packets sent and 
received as well as the frequency of various error conditions. The IP statistics similar to those for UDP, 
except that they also include information about fragmentation and routing events. ICMP and IGMP 
statistics are of less interest since ICMP is used primarily for network monitoring and IGMP is only used 
by hosts acting as routers (which ours was not). Disk statistics include information about the number of 
transfers and total bytes transferred during each epoch, as well as the amount of time the disk was “busy” 
during the epoch. Buffer queue statistics include the number of free file system buffer cache buffers of 
each type and size. Scheduler statistics record the number of processes in each state (idle, runnable, 
sleeping, stopped, or zombie) and the number of processes in each of the system’s 32 priority queues. 
Virtual memory statistics include information about the system’s overall memory usage, including the 
amount of in-use and available real memory, virtual memory, and shared memory, as well counts of the 
number of jobs blocked due to paging, swapping, or disk I/O. Interrupt statistics count the number of 
interrupts that occurred at each interrupt priority during the epoch. Summary statistics consolidate a 
wealth of data from various kernel subsystems (focusing mostly on the VM system), including counts of 
context switches, traps, faults, system calls, VM cache lookups, copy-on-write operations, and page-
allocation operations; information on the page-replacement algorithm (such as revolutions of the 2-
handed clock); and statistics on the number and type of active and inactive pages. 
 

The NetBSD kernel includes a tagged memory allocator that associates a type with every call to 
the in-kernel mal l oc( ) function. This allows us to extract memory statistics that provide a breakdown of 
operating system memory allocations by type/use, as well as by size. These statistics also include details 
on the request rate for each type and size of memory allocation, and flags that indicate whether processes 
blocked trying to acquire a certain type of memory.  
 

Finally, we modified the NetBSD kernel to periodically sample the value of the program counter 
(via a routine called from the clock interrupt). Each sampled PC value is histogrammed to produce a 
running profile of where the kernel spends its execution time. At the end of every epoch, the histogram 
buffer is dumped into the monitoring log buffer as a summary statistic; the offline processing tools 
described below in Section 5 map the PC values in this histogram to kernel functions in order to provide a 
traditional flat profile of the kernel on a per-epoch granularity. 
 
4.2 Events 
 
In addition to periodic summary snapshots, SPADE generates a log record each time certain events occur. 
A disk transfer event occurs whenever a disk request is issued; the event is actually written to the log 
when the request completes so that the response time can be recorded, along with the size, logical and 
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physical block numbers, and read/write status of the transfer. A SCSI error event is recorded whenever 
the SCSI disk driver indicates an error was returned from the device; this event contains the error code 
returned. A scheduler event is recorded whenever a process is descheduled on a context switch; this event 
logs information available from the process control block of the process, such as the process ID, the 
parent process ID, the process owner’s UID, the amount of time the process was running on the CPU 
during its most recent scheduling quantum, the process’s priority and nice values, the user and system 
time consumed during its most recent quantum, the size of the process’s text, data, and stack segments, 
and the number of page faults, block I/O operations, messages sent and received, and signals received 
during its most recent quantum. Finally, a system call event occurs each time a user process initiates a 
system call. For each system call, the kernel  instrumentation code records the system call number, the 
process ID of the process initiating the call, the arguments to the system call, the return value and er r no 
set by the call, and the elapsed time of the system call (in CPU cycles). 
 
4.3 Instrumentation overhead 
 
Unfortunately our kernel and application instrumentation resulted in significant overhead compared to an 
uninstrumented kernel and application. A workload of 1000 HTTP requests took about 19.1 ms/query 
with monitoring enabled, but only about 5.8 ms/query without monitoring, for a monitoring overhead of 
almost 300%. One obvious way to reduce this overhead is to use sampling, i.e., to record statistics for 
only a fraction of the incoming HTTP requests. SPADE provides a system call to turn monitoring on and 
off on a per-record-type granularity to allow this type of sampling. Due to time constraints we did not 
investigate the accuracy-overhead tradeoff for sampling in the context of Apache running with SPADE. 
 
5  Off-line Data Transformation and Loading 
 
In this section, we describe the process by which the monitoring data described in the previous sections is 
extracted from the kernel and transformed into a format in which it can be easily bulk-loaded into a 
relational database. This process is accomplished via a set of tools, each of which we will describe in turn. 

 
When monitoring data is collected by the kernel, it is placed into a large in-memory circular 

buffer, as described above. Thus, the first step in the data transformation and loading process is to extract 
the monitoring data from that kernel buffer and write it to a flat file. This procedure is handled by the 
kernel monitoring daemon kmond. Kmond is not an entirely off-line processing tool, as it must handle the 
complication that the kernel data buffer might fill up and thus must be periodically drained as the system 
continually collects monitoring data. Thus, kmond is structured as a daemon process that runs 
concurrently with the monitored application/OS system, and that interacts with the running monitoring 
subsystem via a series of system calls that give it synchronized access to the monitoring buffer. Kmond 
periodically wakes up (at a user-specified interval, by default 60 seconds) and executes the 
kmon_sync( )  system call. This system call momentarily quiesces the kernel’s instrumentation 
subsystem and records the current beginning and end offsets of the active data region within the circular 
buffer. It then re-enables instrumentation and returns the two offsets to kmond. If the amount of active 
data in the buffer falls above a user-specified threshold, kmond memory-maps the kernel buffer into its 
address space and appends the portion that was active at the time of the sync to an on-disk log file. It then 
calls the kmon_buf _r eset ( )  system call, which resets the kernel’s notion of the start of the active 
data area in the buffer to one record past the offset of the last record returned during the earlier call to 
kmon_sync( ) . Notice that during the time between the calls to kmon_sync( )  and 
kmon_buf _r eset ( ) , the kernel is still able to collect and log monitoring data. To reduce system 
perturbation, kmond does no further processing on the (binary) data it extracts from the kernel buffer. We 
note that during the experiments discussed in this paper, the buffer never filled up completely and thus 
kmond did not perturb the data collected. 



 8

  
Once the monitoring data file has been collected by kmond, it must be processed into a format 

suitable for loading into a database. In particular, the type of each data record collected must be identified, 
any needed processing of the data (to compute aggregates, differences, etc.) must be performed, and the 
data must be output in a delimited ASCII format readable by database loading tools. These tasks fall to 
the next program in our data-transformation tool chain, datapump. Datapump sequentially scans the trace 
file output by kmond, isolating each record in the trace and handing it to a type-specific function for 
further processing. All records begin with an initial processing step that extracts the epoch number and 
timestamp (expressed as a 64-bit cycle counter value) from the record, converts the timestamp from 
cycles to seconds, and computes from the timestamp a unique pair of signed 32-bit integers that can be 
used as a key for databases (like PostgreSQL) that do not support 64-bit primary keys. The type of 
processing that occurs next is dependent on the type of the monitoring record. For most event records 
(that is, records that indicate the occurrence of a dynamic event like a system call or an I/O operation), the 
logged binary data is simply converted to an ASCII representation and output in delimited form along 
with the epoch number, timestamp, type, and unique keys. A typical event record (in this case, for an 
open( )  system call) looks like this in the datapump output: 

 
   5| 0. 0635| 0| 22219975| KMON_SYSCALL| open| 5| 273| 596412| 0| 438| 0| 4| 0| 0. 0090 

 
For most snapshot records (that is, records that contain counters and statistics about the current 

state of the system), datapump applies a transformation that converts two snapshot records, one at the 
beginning of the epoch and one at the end, into a single output record containing the differences between 
the snapshot values at the beginning and end of the epoch. For example, one particular snapshot record 
contains a field that holds the number of context switches that have occurred since the system was booted. 
The kernel instrumentation subsystem takes a snapshot of this field at the beginning and end of every 
epoch, and datapump uses those pairs of records to compute the number of context switches that occurred 
during the epoch. The differences are taken on the appropriate fields, and these numbers are converted to 
ASCII and output in delimited form similar to the example above, along with the epoch number, 
timestamp, type, and unique keys. Note that it would be possible to compute most of these differences 
within the kernel rather than relying on an external program like datapump; we chose to separate the 
functionality in our prototype implementation to give us more flexibility and to reduce the overhead of 
our instrumentation code, although a production implementation would most likely move the differences 
inside the kernel, if for no other reason than to save space in the monitoring data buffer. 
 
 Finally, there are a few record types that datapump handles specially. The most interesting of 
these is the program-counter history record type. As described in Section 4, the kernel instrumentation 
samples the program counter (PC) value periodically during every epoch, accumulating a histogram of PC 
values, in a way similar to traditional profiling tools like gprof [GKM82]. Datapump takes this histogram 
and maps it into a per-function execution time profile. It does this by extracting the symbol table from the 
OS kernel and mapping each profiled PC value to the function that contains it. After this mapping process 
is done, datapump computes the fraction of execution time spent in each function by dividing the number 
of samples in each function by the total number of samples taken. Any functions with a non-zero fraction 
of execution time are output as records in the standard delimited format along with epoch number, time, 
etc. 
 
 The output of datapump consists of a single flat file with one line per monitoring record/statistic 
gathered by the kernel instrumentation code. Each line is tagged by the type of monitoring record that 
generated it. The lines in the datapump output correspond directly to rows in the database tables, one 
table per record type. Since the data is already in delimited ASCII format, it is essentially ready to bulk-
load into any relational database. In order to do this, however, a bit more off-line processing is required. 
The bulk-load facilities of most databases require that the data for each table be in a separate file, and 
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some require special syntax in the bulk load files (for example, PostgreSQL does not have a bulk load 
utility, but rather requires that the data file be wrapped with a SQL command and fed to the SQL 
interpreter). To transform the datapump output into the appropriate form, we feed it to db-insert, a Perl 
script that sorts the lines from the single datapump output file into separate files, one for each record type. 
It also adds any special syntax needed by the particular database that is the target for the bulk load. Note 
again that it would be possible to consolidate the tool-chain by moving db-insert’ s functionality into 
datapump; we kept it separate in our prototype to make it easy to experiment with different relational 
databases requiring different bulk-load data file formats. 
 
 Once db-insert has been run on the datapump output, a set of bulk-loadable files, one per 
database table, is produced. At this point, the data is ready to be directly loaded into the database using 
the appropriate bulk-load facility, for example bcp.exe under Microsoft SQL Server. Before the bulk load 
can be performed, however the database schema must be created, as described in the next section.  
 
6  Database Schema and Views 
 
As described in Section 5, datapump and db-insert together load each trace record into a flat file 
corresponding to its record type in preparation for bulk loading into the database. In this section we 
discuss the schema that we used for our system monitoring database and the materialized views1 we 
created over that database to simplify the writing of queries that extract from the database insight about 
performance trends and correlations. 
 
6.1 Monitoring database schema 
 
One database table was created for each log record type. The full schema appears in Appendix A. 
 

Our goal in designing the database schema was to balance adherence to the relational model with 
a desire for storage efficiency and computational efficiency of queries. A wide spectrum of schema design 
options was available, ranging from the use of one table, indexed by epoch and timestamp, to store all 
statistics and events, to the use of one table, also indexed by epoch and timestamp, for each statistic and 
event-related datum collected (i.e,. each data member of a log record). We saw this problem space as two-
dimensional: one dimension is a choice of whether to use a separate table for each statistic type 
(corresponding to a single log record type), and the other is whether to subdivide any log records (sets of 
related data gathered at the same time) so that each log record maps into multiple rows, with some subset 
of the log record’s statistics in each row. 
 

Since the instrumentation code writes a separate record to the log for each statistic type, and an 
online version of SPADE would insert log records directly into the monitoring database as they are 
created, we decided to use one table per statistic type (then each log record insertion would correspond to 
a single database INSERT operation). Even bulk loading is somewhat easier under this schema, since the 
bulk-load files can be generated by a single pass through the log, with each log record written to the bulk-
load file corresponding to its type. A single table for all statistics would require concatenating data from 
all log records written during a single epoch before insertion, in the case of either bulk loading or direct 
insertion. The only drawback of the one-table-per-type schema is that examining statistics across multiple 
tables requires a join of those tables. Our hope is that a good query optimizer can make these joins almost 
as efficient as the projection of columns that would be required to answer a query to a single large table. 
 

                                                           
1 Note that what we refer to as views in this paper are not views in the traditional sense, in that they are not updated 
automatically when their base tables are updated. They are instead simply tables that contain a transformed version 
of the data in the base tables. 



 10

We now briefly discuss the second axis, namely whether to subdivide any log record so that each 
one maps into multiple table rows. In this case some subset of the log record’s statistics would appear in 
each row, along with some identifier of the log record from which the row came (to tie together rows 
from the same log record). A single row per log record minimizes the number of insert operations that 
need to be performed and minimizes the amount of space needed for the table (since epoch number and 
timestamp need to be stored once per row). The drawback to this approach, however, is that it makes 
computing aggregates across columns awkward since the aggregation operation and its column arguments 
then have to be written explicitly in the SELECT statement. For example, in constructing the 
KMON_SS_I NQ table, we could have used one column for each scheduler priority queue. Then 
computing the number of processes in, say, the first ten queues during the first epoch would have required 
a SQL query of the form 
 
   SELECT number 0 + number 1 + number 2 + number 3 + number 4 + number 5 +  
          number 6 + number 7 + number 8 + number 9 
   FROM KMON_SS_I NQ 
   WHERE epoch=1 

 
Conversely, a long, narrow table with multiple rows per log record could require many join operations to 
reconstruct the original log record, which might be a common user request, but aggregates could be 
expressed naturally using the SQL aggregation operators. Then the query is written as 
 
   SELECT SUM( number )  
   FROM KMON_SS_I NQ 
   WHERE qno < 10 and epoch=1 

 
We expect that the query optimizer will hide any substantial query performance impact of the different 
table organizations, leading us to choose the long-and-narrow table layout for tables in which the user 
may wish to aggregate across statistics collected during a single epoch (for snapshots) or event (for 
events), e.g., KMON_SS_I NQ. 
 
6.2  Monitoring database views 
 
While a SPADE user could issue queries directly to the base tables described Section 6.1, each of those 
tables stores entries per epoch rather than per application-level request (an HTTP request in the case of 
Apache). Since we expect SPADE to be used to track down the source of application-level performance 
variations, it is important for the user to be able to easily view aggregate statistics over the lifetime of an 
application-level server request. The primary goal of SPADE’s views, then is to aggregate data on a per-
request basis and to present a set of tables with the same columns as the base tables but storing the 
statistics as per-request aggregates rather than per epoch. Aggregation is performed by joining a base 
table (indexed by epoch) with the KMON_APACHE table (which maps each application-level request to the 
epochs during which the request ran) and aggregating, for each request in the KMON_APACHE table and 
each column, all entries from the base table with epochs matching those during which the request ran. 
 

Although statistics are themselves easily aggregated across epochs to produce a total number for a 
particular request (e.g., the total number of TCP packets sent during the handling of a request can be 
computed by summing the PKTSSENT column of the KMON_NETSTATS table across all epochs during 
which the request ran), representing per-request aggregates in a meaningful way is challenging because 
most statistics are collected as absolute values rather than as rates. Since contention for an operating 
system service or hardware device can be measured in our system as requests for that service or device 
per time unit, it makes sense to represent most statistics on a per-time-unit basis. For example, a SPADE 
user might be interested in knowing whether an excessive number of received TCP packets is causing one 
server request to take longer than an identical request issued at a different time. The base table for 
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network statistics collects the number of TCP packets received per epoch, but the useful statistic for the 
user is the total number of packets per second received during the lifetime of the request under 
consideration.  

 
Of course, some statistics count space or items rather than events, e.g., the number of file system 

buffer queue buffers free at the end of each epoch or the number of processes in the run queue at the end 
of each epoch. In such cases we use the minimum, maximum, or average over all epochs since a rate 
metric is not sensible. When counting utilization of such resources (e.g., number of runnable processes) 
we generally use average or maximum (since maximum contention corresponds to maximum measured 
utilization) and when counting free resources (e.g., number of free buffer queue buffers) we generally use 
average or minimum (since maximum contention corresponds to minimal free resources). To provide a 
unified set of aggregates, SPADE’s views provide what we believe to be the appropriate per-request 
aggregations (generally average event rates over the lifetime of a request). But the system also allows 
users to directly access the base tables in order to perform their own per-request aggregations and to 
create their own views and queries. 
 
7  Performance Analysis Using Queries over the System Monitoring Database 
 
The key benefit of using a system monitoring database as a central repository of performance data is that 
it vastly simplifies the offline process of system performance analysis. Part of this improvement in “ease-
of-use”  comes from the fact that the database acts as a central repository for performance data collected 
from all levels of the system (including the application), and from the fact that every datum is keyed by 
the epoch and time at which it was collected. But the primary reason that the database simplifies 
performance analysis is that it provides a powerful, flexible query language that lets the user easily cope 
with the complexity and dimensionality of the massive performance data set. Using simple declarative 
SQL statements, the user can easily summarize performance data, progressively drill-down to examine 
the performance of a particular part of the system or application in increasing detail, join together 
seemingly unrelated data to search for unexpected correlations, or test hypotheses as to the cause of 
performance problems by searching for time periods during which those problems were exhibited and 
examining the appropriate system statistics. Most importantly, the user can perform all of these tasks in a 
unified framework, without having to write ad-hoc tools or scripts to process unwieldy flat data files, and 
without the constraints of typical performance analysis tools that restrict their data collection and analysis 
in order to simplify the final presentation of their data. 
 
 In this section, we give three examples of how an RDBMS’s query language support simplifies 
typical performance analysis tasks. We begin by illustrating the process a user might follow to investigate 
application performance anomalies, starting with an overall performance summary and drilling down to 
look for correlations. We then examine a different kind of analysis that uses different forms of 
aggregation to search for system-wide performance bottlenecks and to investigate the causes of those 
bottlenecks. Finally, we present an example of hypothesis-testing, and demonstrate how database queries 
can be used to confirm a hypothesis and suggest appropriate performance-tuning actions. All of our 
examples use a database loaded with data from a traced execution of an instrumented version of the 
Apache 1.3.3 WWW server running atop our instrumented NetBSD 1.3.3 kernel. The server was run on a 
x86 machine with an AMD K6-2/350 CPU, 128 MB of DRAM (64 of which were dedicated to the trace 
buffer), and an IBM 9ZX 10,000RPM SCSI disk. The server was driven with a workload of 
approximately 1000 HTTP 1.0 GET requests issued by a multithreaded client supporting 32 outstanding 
connections. To minimize variance due to the network, the client was run on the same machine as the 
server. The SQL shown below follows the Microsoft SQL Server 6.5 syntax.  
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7.1  Investigating per-request application performance 
 
In this section, we give an example of the process a user of our system might follow in trying to 
understand the performance differences between different application requests (in this case, HTTP 
requests). In this example, we are not explicitly looking for a problem with the system or something that 
needs to be fixed or tuned; instead, we are simply trying to investigate the system’s performance in order 
to get a better understanding of what factors do and do not influence performance. 
 
 We begin our investigation by examining the various Apache HTTP requests in order to isolate 
those which showed the most variation in performance; we will then investigate those requests further to 
see what was happening inside the system during the servicing of those requests. We start with the 
following query, which finds requests with a large variance between their minimum and maximum 
response time. Note that we group requests on their hash field; this field is a numeric hash of the f name 
(URL) field used to support databases that cannot group by a var char  field. Note also that the dev  
field should really be the standard deviation, but SQL Server does not support the st ddev( )  
aggregation function in version 6.5): 
 
   SELECT a. hash,  count ( * )  AS cnt ,   
          mi n( a. r espt i me_noc)  AS mi nr esp,   
          max( a. r espt i me_noc)  AS maxr esp,  
          avg( a. r espt i me_noc)  AS avgr esp,  
         ( max( a. r espt i me_noc) - mi n( a. r espt i me_noc) ) / avg( a. r espt i me_noc)  AS dev,  
         max( a. f name)  
   FROM kmon_apache a 
   GROUP BY hash 
   HAVI NG count ( * )  >= 2 
   ORDER BY dev 

 
This query returns a table listing every page accessed more than once during the trace, ordered by the 
“variance”  in response time. The first and the last few rows of this table are shown below: 
 
   hash        cnt   mi nr esp  maxr esp  avgr esp  dev     f name 
   - - - - - - - - - - -  - - - -  - - - - - - - -  - - - - - - - -  - - - - - - - -  - - - - - - -  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
   - 1210678261 2    0. 0925   0. 0929   0. 0927   0. 0043  / Gener al / I cons/ _WL 
   [ . . . 103 r ows el i ded. . . ]  
   552383629   15   0. 0068   0. 3649   0. 0875   4. 0919  / SDG/ Sof t war e/ Mosai c/ Docs/ _E/ _F 
   - 224651581  130  0. 0069   0. 4548   0. 0892   5. 0232  / SDG/ Sof t war e/ Mosai c/ _B 
   - 125134359  83   0. 0076   0. 4687   0. 0786   5. 8698  / SDG/ Sof t war e/ Mosai c/ _L 

 
The result of this query gives an impression of the behavior of the various requests in the workload. It 
shows that there are some queries (like the first listed above) with a very low variance in response time, 
and some with very high variance, like the last few. After examining this summary information, the next 
step is to try to understand the source of this variance by drilling down and examining the set of requests 
for one page that demonstrated a high variance. 
 
 To do this, we want to extract all of the requests corresponding to one specific hash value. In 
particular, we want to look at the statistics in other tables that correspond to the time period during which 
the requests corresponding to one hash value were running. We start this process by building a temporary 
table holding the request numbers corresponding to one hash, in this case –125134359: 
 
   SELECT seqno I NTO t emp2 
   FROM kmon_apache 
   WHERE hash = - 125134359 
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We can then issue a generic query of the following form to bring all of the appropriate data together: 
 
   SELECT b. * ,  a. r espt i me_noc 
   FROM t abl e b,  kmon_apache a 
   WHERE b. quer yno = a. seqno 
     AND b. quer yno i n ( SELECT seqno FROM t emp2)  
   ORDER BY a. r espt i me_noc 

 
where t abl e is replaced by the name of one of the materialized views described above, for example 
sumst at s  or net st at s  or vmst at s . This type of query makes it easy to visually detect patterns and 
correlations between response time and other statistics. It also provides an easy way to see exactly what 
was happening in the system during a particular request. As an example, the following is an excerpt of the 
above query for the sumst at s  table for two requests, showing an increase in context switches per 
second and hardware interrupts per second during the second (slower) request relative to the first: 
 
   quer yno     nct xsw/ sec     nhwi nt r / sec     r espt i me_noc  [ . . . ]  
   - - - - - - - - - - -  - - - - - - - - - - - - - -  - - - - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - -  
   [ . . . ]  
   445         714. 688        95. 667          0. 1777        [ . . . ]  
   399         2410. 924       142. 949         0. 4687        [ . . . ]  

 
 Besides attempting to correlate high-variance requests directly with other system statistics, 
another approach to investigating per-request application performance is to systematically break down 
each request into its constituent system calls and to study the behavior of those system calls using similar 
techniques to those we used on a full-request granularity above. We now give an example of this 
approach using the same example request set as above (those requests with hash=- 125134359). The 
first step in this process is to try to isolate the “system call fingerprint”  of an HTTP GET request. 
Obtaining this fingerprint will allow us to isolate a particular request’s actions, even if it takes place 
during a time period in which multiple requests are interleaving system calls. We can obtain this 
fingerprint by executing the following query, which looks at the set of system calls for one process 
starting at the beginning of an epoch. This query isolates the system call fingerprint for a request because 
any server process is only serving one request at a time, and that process initiates an epoch as the first 
action in serving a request: 
 
   SELECT *  
   FROM kmon_syscal l  s 
   WHERE s. epoch >= 75 and s. epoch <= 76 - -  not e:  r eq 38 execut ed ent i r el y i n epoch 75 
     AND pi d I N ( SELECT pi d FROM kmon_syscal l  WHERE t i me =  
                   ( SELECT mi n( t i me)  FROM kmon_syscal l  WHERE epoch = 75)   
                  AND epoch = 75)  

 
The results of the query give the following fingerprint (excerpted from the result table): 
 
   epoch   name                           ar g1        ar g2        r val          
   - - - - - - -  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  - - - - - - - - - - -  - - - - - - - - - - -  - - - - - - - - - - -   
   75      kmon_i ncr ement _epoch           61455       - 272640744  74           
   75      r ead                           3           438404      40           
   75      s i gact i on                      30          - 272649040  0            
   75      get t i meof day                   - 272649052  0           0            
   75      __st at 13                       596412      590068      0            
   75      open                           596412      0           4            
   75      mmap                           0           22719       1074688000   
   75      wr i t ev                         3           - 272640784  22969        
   75      c l ose                          4           0           0            
   75      get t i meof day                   - 272648932  0           0            
   75      wr i t e                          17          597348      92           
   76      kmon_i ncr ement _epoch           61455       - 272640416  75           
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   76      shut down                       3           1           0            

 
Both the r ead and wr i t ev  system calls correspond to network I/O (to read the request and write the 
response to the socket with file descriptor 3); the wr i t ev  may also cause disk I/O, as it touches the 
memory-mapped pages of the requested file (file descriptor 4) in copying them to the network socket.  
 
 Having identified Apache’s HTTP request service fingerprint, we can now go and look at the full 
system call trace for a given request (or set of requests) in order to examine the performance breakdown 
of those requests. An example set of queries to do this for four particular requests is: 
 
   SELECT *  FROM syscal l  WHERE quer yno = 237 ORDER BY pi d –-  r esponse t i me = 0. 0081 
   SELECT *  FROM syscal l  WHERE quer yno = 14  ORDER BY pi d –-  r esponse t i me = 0. 0522 
   SELECT *  FROM syscal l  WHERE quer yno = 623 ORDER BY pi d –-  r esponse t i me = 0. 0806 
   SELECT *  FROM syscal l  WHERE quer yno = 445 ORDER BY pi d –-  r esponse t i me = 0. 1777 

 
Note that these four requests were chosen by examining the subset of the kmon_apache table 
corresponding to the hash value described above, and selecting four queries that covered a range of 
response times. The results of those queries are not reproduced here for space reasons, but they do 
indicate that the (network) r ead( )  system call dominates the performance of both request #623 
(consuming 0.0709 seconds) and of request #445 (consuming 0.1686 seconds); these are the slowest of 
the queries. The next, and final, step is to try to determine what is making these calls slow. 
 
 This last step illustrates the power of the system monitoring database: whereas traditional 
performance analysis tools can provide either a system call trace or coarse-grained summary statistics, 
they cannot correlate a particular subset of a system call trace with summary statistics on the fine-grained 
timescale of one application request or epoch. However, a query like the following does exactly that (in 
this case extracting the rate at which data was being sent through the network layer during the epoch in 
which the slow r ead( )  call of request #445 was taking place): 
 
   SELECT b. dat abyt essent / b. t i me AS dat ar at e 
   FROM kmon_net st at s b 
   WHERE b. epoch I N 
      ( SELECT epoch 
       FROM kmon_syscal l  
       WHERE epoch >= ( SELECT f i r st epoch FROM kmon_apache WHERE seqno = 445)  
         AND epoch <= ( SELECT l ast epoch FROM kmon_apache WHERE seqno = 445)  
         AND pi d = 283  
         AND num = 3)  

 
This query produces the number 5385901.6, indicating that the network was very busy during the time of 
that system call. Similar queries with less restrictive WHERE clauses can be used to compare this value to 
the data rates during other epochs, or to the average data rate (1079827.7, obtained via “ SELECT 

avg( dat abyt essent / t i me)  FROM kmon_net st at s” ).  
 
7.2  Investigating system-wide performance 
 
In this section we demonstrate the usefulness of SPADE for investigating system-wide performance 
bottlenecks that impact application performance. We know from previous analysis that Apache invokes 
the wr i t ev( )  system call to send a web page over the network to the requesting client. We will find out 
whether this system call represents a large fraction of the total time the application spends in the operating 
system, and if so whether the system call exhibits a large variation in execution time. Assuming both are 
the case, we will attempt to identify the cause(s) of above-average execution time for this system call by 
examining the simultaneously-occurring operating system. 
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First we investigate whether wr i t ev( ) contributes significantly to the amount of time Apache 

spends executing operating system code. The following query computes the total time spent executing 
each type of system call during the time the Apache server was traced. 
 
   SELECT name,  sum( el apsedt i me)  as t  
   FROM kmon_syscal l   
   GROUP BY name  
   ORDER BY t  
 
   name                    t                          
   - - - - - - - - - - - - - - - - - - - - - - -  - - - - - - - - - - - - - - - - - - - - - - - -   
   __f st at 13               0. 0                       
   br eak                   0. 0                       
   f cnt l                    0. 0                       
   f st at f s                 0. 0                       
   get eui d                 0. 0                       
   get pi d                  0. 0                       
   get sockname             0. 0                       
   [ . . . ]  
   bi nd                    0. 162400000000001         
   open                    0. 282499999999989         
   __st at 13                3. 21690000000012          
   accept                   14. 5516                   
   kmon_i ncr ement _epoch    14. 5988000000001          
   wr i t ev                  16. 0345                   
   wr i t e                   35. 1766000000004          
   nanosl eep               58. 4613                   
   r ead                    60. 5455000000009          
   s i gsuspend              74. 6053                   
   f l ock                   341. 070400000001          
   sel ect                   510. 614999999999          

 
We see that wr i t ev( )  indeed represents a nontrivial amount of operating system execution 

time. Next we want to find out whether there is a significant variation in the response time of the 
wr i t ev( )  system call, and if so we want to identify one of the calls that took a significantly longer-
than-normal amount of time to complete so that we can investigate it further. The following query lists the 
elapsed time, last epoch, and first argument to all occurrences of the wr i t ev( )  system call that took 
longer than 0.01 seconds to complete. 
 
   SELECT s. name,  s. ar g1,  s. el apsedt i me,  s. epoch 
   FROM kmon_syscal l  s 
   WHERE name = ‘ wr i t ev’  and el apsedt i me > 0. 01 
   ORDER BY el apsedt i me 
 
   name                      ar g1        el apsedt i me              epoch        
   - - - - - - - - - - - - - - - - - - - - - - - - -  - - - - - - - - - - -  - - - - - - - - - - - - - - - - - - - - - - - -  - - - - - - - - - - -   
   wr i t ev                    3           0. 0101                   762          
   wr i t ev                    3           0. 0101                   1412         
   wr i t ev                    3           0. 0101                   1885         
   wr i t ev                    3           0. 0102                   1159         
   [ . . . ]  
   wr i t ev                    3           0. 4325                   1018         
   wr i t ev                    3           0. 433                    1959         
   wr i t ev                    3           0. 4599                   673          
   wr i t ev                    3           0. 6114                   875          
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There is indeed a large variation in execution time, so we decide to investigate one of the two 
instances of this call with the largest response time, namely 
 
   wr i t ev                    3           0. 4599                   673          

 
 To do this, we want to sum potentially-relevant statistics over all epochs during which the system 
call executed. We will examine the kmon_sumst at s  table for possible explanations of the long 
execution time of the call. We know that the call finished at epoch 673 and started 0.4599 seconds earlier, 
so we first need to find the epoch during which the call began. This information could have been stored 
explicitly in the kmon_syscal l  table, but we can recalculate it fairly easy by summing the time field of 
any summary snapshot table (since one snapshot is taken per epoch, there will be an epoch duration entry 
for each epoch in any such table) starting at various epochs and ending at the ending epoch of the system 
call under consideration, until we find the starting epoch that causes the sum of epoch durations to equal 
the duration of the system call. Using this method we find that the system call begins began in epoch 598. 
 

Now that we have identified the relevant span of epochs, we will examine the sumst at s  table 
to find a possible explanation for the long running times of this system call. 
 
   SELECT x. *  
   FROM kmon_sumst at s x 
   WHERE x. epoch >= 598 and x. epoch <= 673 

 
Since the full output does not fit easily on a printed page, we extract the interesting columns and 

list only them below: 
 
   epoch nct xsw   nt r aps  nsyscal l s  nhwi nt r s  nswi nt r s  nf aul t s  pzf od  nzf od_cr eat ed  
   - - - - -  - - - - - - - -  - - - - - - -  - - - - - - - - - -  - - - - - - - - -  - - - - - - - - -  - - - - - - - -  - - - - - -  - - - - - - - - - - - - -  
   598   6        3       21         0         3         0        0      0              
   599   6        11      19         0         3         8        0      0              
   600   2        2       13         0         1         1        0      0              
   601   2        2       15         1         1         1        0      0              
   602   2        2       15         0         1         1        0      0              
   603   4        4       13         1         3         1        0      1              
   604   2        3       13         0         1         2        0      0              
   605   5        11      23         0         2         9        0      0              
   606   2        2       14         0         1         1        0      0              
   607   2        2       14         0         1         1        0      0              
   608   2        7       13         1         1         6        0      0              
   609   2        4       14         0         1         3        0      0              
   610   2        2       14         0         1         1        0      0              
   611   2        7       13         0         1         6        0      0              
   612   2        7       13         0         1         12       6      0              
   613   2        2       14         0         1         2        1      0              
   614   4        4       18         1         3         2        1      0              
   615   1        1       11         1         0         2        1      1              
   616   8        4       26         0         4         0        0      0              
   617   6        3       18         0         3         0        0      0              
   618   6        3       18         0         3         0        0      0              
   619   6        3       18         1         3         0        0      0              
   620   6        3       19         0         3         0        0      0              
   621   6        3       18         0         3         0        0      0              
   622   6        3       18         0         3         0        0      0              
   623   6        3       18         0         3         0        0      0              
   624   6        3       18         1         3         0        0      0              
   625   5        4       21         0         3         1        0      0              
   626   1        0       6          0         0         0        0      0              
   627   2        3       12         0         2         1        0      0              
   628   1        0       6          2         0         0        0      0              
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   629   0        6       11         0         0         9        3      0              
   630   3        2       15         0         1         1        0      0              
   631   4        3       15         2         2         2        1      1              
   632   4        4       14         1         2         2        1      1              
   633   2        4       13         0         1         6        3      0              
   634   16       11      67         1         8         3        0      3              
   635   8        6       22         0         4         2        0      11             
   636   1        1       6          0         1         0        0      0              
   637   1        0       8          2         0         0        0      0              
   638   1        1       6          0         1         0        0      0              
   639   1        1       6          0         1         0        0      0              
   640   5        13      17         3         1         12       0      0              
   641   10       4       30         0         4         0        0      0              
   642   8        6       20         0         4         2        0      0              
   643   6        3       18         1         3         0        0      0              
   644   6        3       18         0         3         0        0      0              
   645   8        4       25         0         4         0        0      0              
   646   6        3       18         0         3         0        0      0              
   647   6        3       19         0         3         0        0      0              
   648   6        3       20         1         3         0        0      0              
   649   36       2669    733        9         5         2873     172    58470          
   650   43       484     143        1         3         498      16     7770           
   651   39       27      23         1         4         23       11     3              
   652   38       33      22         1         3         30       12     3              
   653   39       36      19         1         4         32       12     3              
   654   3        9       16         1         1         8        1      1              
   655   2        2       15         1         1         1        0      0              
   656   1        1       6          1         1         0        0      0              
   657   4        4       15         2         2         2        0      2              
   658   2        2       14         0         1         1        0      0              
   659   8        13      32         2         4         10       1      3              
   660   2        2       7          1         2         0        0      0              
   661   1        1       6          0         1         0        0      0              
   662   2        2       14         0         1         1        0      0              
   663   2        0       9          0         0         0        0      0              
   664   3        54      19         0         1         54       2      0              
   665   2        54      17         0         1         53       2      1              
   666   2        59      16         0         1         58       2      0              
   667   40       28      34         0         4         24       11     3              
   668   38       33      23         0         3         30       12     3              
   669   38       33      23         1         3         30       12     3              
   670   38       33      22         1         3         30       12     3              
   671   39       34      23         1         4         30       12     3              
   672   37       63      30         2         3         60       3      0              
   673   4        29      9          0         1         28       11     3              
 

We see a large spike in all of these statistics near the end of execution of the wr i t ev( )  call. 
The increased number of context switches (nct xsw) and on-demand zero-filled pages (pzf od and 
nzf od_cr eat ed) around epoch 649 suggests that many new processes may have been created during 
those epochs, which could have led to the increased response time for the wr i t ev( )  call. To find out if 
this is the case, we issue a query to find any calls to f or k( ) made during these epochs: 
 
   SELECT x. epoch,  x. name,  x. el apsedt i me 
   FROM kmon_syscal l  x 
   WHERE x. epoch >= 598 and x. epoch <= 673 and x. name = ‘ f or k ’  
 

This query shows that there were 32 calls to the f or k( )  system call while the wr i t ev( )  call 
was executing, all of which occurred during epoch 649. In comparison, there were only 63 calls to 
f or k( )  during the entire trace (as determined by a query l i ke SELECT count ( * )  FROM 
kmon_syscal l  WHERE name=’ f or k’ ).”  
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The increased execution latency of wr i t ev( )  contributed by these 32 calls to f or k( )  was not 

due primarily to time spent executing the f or k( )  call itself, though, since time spent executing f or k( )  
only accounts for 
 
   SELECT sum( x. el apsedt i me)  
   FROM kmon_syscal l  x 
   WHERE x. epoch >= 598 and x. epoch <= 673 and x. name = ‘ f or k ’  
 
   0. 0109                    

 
seconds. Instead, the slow wr i t ev( )  response time is due to the many new processes in the system 
resulting from the f or k( ) , which cause an increase in context switches, page faults, and on-demand 
page zero-filling. This analysis leads us to conclude that the performance of the wr i t ev( )  system call 
could, in at least some cases, be improved by a more efficient implementation of the system activities 
associated with f or k ing. From an application perspective, Apache could be less affected by the 
sensitivity of wr i t ev( )  performance to forking by using threads instead of processes (which would 
reduce the amount of forking going on in the system while Apache executes). It is conceivable that some 
of the page faults we see during and after epoch 649 are caused by the wr i t ev( )  call itself (since 
writing to the network from a memory region mapped from a file, when a portion of the file to be written 
to the network has not already been read into the virtual memory cache, will cause page faults as the file 
is read into the virtual memory cache). However, the strong temporal correlation with f or k( )  calls 
suggests that the f or k( )  calls are the primary cause of the page faults, not the application faulting in 
web pages by calling wr i t ev( ) . Finally, we note that we can attribute this forking activity to Apache 
(as opposed to other system processes) by examining the pi d of the process calling f or k( )  in epoch 
649; it is indeed the pi d of one of the Apache processes. 
 
7.3  Hypothesis testing 
 
For our last example, we consider the typical performance analysis task of hypothesis testing. The goal 
here is to formulate a hypothesis that potentially explains some performance anomaly, and then to use the 
collected performance data to verify or refute that hypothesis. In this example, we will start with an 
already-formed hypothesis: that disk writes (due to Apache adding entries to its log file) interfere with the 
service time of HTTP requests. We will demonstrate how simple queries allow the user to confirm this 
hypothesis and determine the root cause of the interference, and we will show how this knowledge 
permits the user to develop a few simple system tweaks that might improve overall performance. 
 
 The first step in the hypothesis-testing process is to construct an aggregation query to test whether 
the hypothesis is supported at the coarsest level. In this case, we construct a query that calculates the 
average response time for HTTP requests during which a write I/O occurred and compares that time to the 
average for HTTP requests during which only read I/Os occurred. The query is presented below; note that 
bi oevent s. r w is 1 during requests that contain at least one write I/O: 
 
   SELECT avg( a. r espt i me_noc)  AS t i me,  b. r w 
   FROM kmon_apache a,  bi oevent s b 
   WHERE a. seqno = b. quer yno 
   GROUP BY b. r w 
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This query returns the following output: 
 
   t i me  r w 
   - - - - - - - - - - - -  - -  
   0. 14513  0 
   0. 59088  1 

 
Requests during which writes occurred take on average more than four times longer than queries with no 
writes! Clearly, the presence of writes is negatively affecting HTTP service time (note that the writes are 
not part of the requests themselves, since all requests are GETs). 
 
 Given this initial confirmation of our hypothesis, the next step is to formulate a query that drills 
down and displays information about each HTTP request that was running at the time when a disk write 
occurred. In addition to selecting the request’s URL and URL hash, we use the database’s data 
manipulation facilities to group requests by their URL hash, to compute the number of requests 
containing writes, the min, max, and average response times for the queries containing writes, and the 
overall average response time. These statistics allow us to examine the performance difference between 
requests for the same page that did or did not contain a write. The query is: 
 
   - -  bui l d t empor ar y t abl e wi t h count s,  r esponse t i me 
   SELECT hash,  count ( * )  AS cnt ,  avg( r espt i me_noc)  AS avgr esp 
   I NTO t emp_cnt 1 
   FROM kmon_apache 
   GROUP BY hash 
   GO 
 
   - -  per f or m quer y 
   SELECT a. hash,  
          count ( * )  AS num_w_wr i t e,  
          max( t . cnt )  – count ( * )  AS num_wo_wr i t e,  
          avg( t . avgr esp)  AS over al l _avgr esp,  
          avg( a. r espt i me_noc)  AS avgr esp,  
          mi n( a. r espt i me_noc)  AS mi nr esp,  
          max( a. r espt i me_noc)  AS maxr esp,  
          max( a. f name)  as f name 
   FROM kmon_apache a,  t emp_cnt 1 t  
   WHERE seqno i n ( SELECT quer yno FROM bi oevent s WHERE r w = 1)  
     AND t . hash = a. hash 
   GROUP BY a. hash 
   ORDER BY avgr esp 
   GO 

 
This query produced output of the form below (only three of the 33 returned rows are shown): 
 
   hash        num_w_wr i t e num_wo_wr i t e over al l _avgr esp avgr esp mi nr esp maxr esp f name 
   - - - - - - - - - - -  - - - - - - - - - - -  - - - - - - - - - - - -  - - - - - - - - - - - - - - -  - - - - - - -  - - - - - - -  - - - - - - -  - - - - - -  
   - 224651581  2           128          0. 0892          0. 2079  0. 0679  0. 3479  / f i l e1 
   770285138   1           4            0. 0999          0. 2924  0. 2924  0. 2924  / f i l e2 
   - 1851629361 1           6            0. 1016          0. 2959  0. 2959  0. 2959  / f i l e3 
 
This data shows that there is a general trend across requests that requests with writes take longer than 
requests without writes. The fact that the overall average response times are low (roughly on par with the 
global average of 0.14513 for queries without writes computed above) while the response times with 
writes are high confirms that the large service times for requests with writes are a property of the writes 
and not of any peculiarities of the pages requested while writes were occurring. 
 



 20

 At this point in the analysis, the hypothesis is essentially confirmed: writes do impact the 
response time of requests active while the writes are occurring (even though the writes are not generated 
by those requests). The next step is to understand precisely why the writes have such an impact on 
performance. To do this, we drill down further by selecting one page (that with hash 770285138 in this 
case) to examine in detail. We start with a set of queries that select general information about each request 
for that page (from the kmon_apache table) and some of the interesting I/O aggregate statistics: 
 
   SELECT *  FROM kmon_apache WHERE hash=770285138 ORDER BY r espt i me_noc 
 
   SELECT seqno 
   I NTO t emp3 
   FROM kmon_apache 
   WHERE hash = 770285138 
   GO 
 
   SELECT b. * ,  a. r espt i me_noc 
   FROM bi oevent s b,  kmon_apache a 
   WHERE b. quer yno = a. seqno 
     AND b. quer yno I N ( SELECT *  FROM t emp3)  
   ORDER BY a. r espt i me_noc 

     
These queries produce the following output: 
 
   seqno    r espt i me_noc  f i r st epoch  l ast epoch  hash        f name                                                                                                                                                                                        
   - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - -  - - - - - - - - - -  - - - - - - - - - - -  - - - - - - - - - - - - -  
   107      0. 0214        214         216        770285138   / demoweb/ _CB                                        
   510      0. 0271        1022        1024       770285138   / demoweb/ _CB                                                                                                                                                                                                                                          
   944      0. 0574        1891        1896       770285138   / demoweb/ _CB                                                                                                                                                                            
   770      0. 1013        1540        1550       770285138   / demoweb/ _CB                                                                                                              
   413      0. 2924        822         842        770285138   / demoweb/ _CB 
 
   quer yno     s i ze      ser vi cet i me  r w  r espt i me_noc              
   - - - - - - - - - - -  - - - - - - - - -  - - - - - - - - - - - -  - - -  - - - - - - - - - - - - -  
   107         7168. 0    0. 0091       0   0. 0214                    
   944         8192. 0    0. 025        0   0. 0574                    
   413         6332. 63   0. 3844       1   0. 2924 
 

As can be seen from the second output table, request #413 (the only request containing a write) has a 
much higher I/O service time than the other two requests containing just reads. Note that the 
ser vi cet i me field includes the total I/O time for all requests that completed during the request, and as 
such can be larger than the request’s response time. 
 
 The last step in the process is to drop one further level of aggregation and look at the individual 
I/O requests made during each of the three requests in order to determine why the I/O service time is so 
much higher for the request with a write. The following queries dump the I/O traces from each of the 
three requests: 
 
   SELECT b. epoch,  b. r w,  b. s i ze,  b. pbl kno,  b. pbl knodi f f ,  b. ser vi cet i me,  a. r espt i me_noc  
   FROM kmon_bi oevent s b,  kmon_apache a 
   WHERE b. epoch >= a. f i r st epoch AND b. epoch <= a. l ast epoch AND a. seqno = 107 
    
   SELECT b. epoch,  b. r w,  b. s i ze,  b. pbl kno,  b. pbl knodi f f ,  b. ser vi cet i me,  a. r espt i me_noc  
   FROM kmon_bi oevent s b,  kmon_apache a 
   WHERE b. epoch >= a. f i r st epoch AND b. epoch <= a. l ast epoch AND a. seqno = 944 
 
   SELECT b. epoch,  b. r w,  b. s i ze,  b. pbl kno,  b. pbl knodi f f ,  b. ser vi cet i me,  a. r espt i me_noc  
   FROM kmon_bi oevent s b,  kmon_apache a 
   WHERE b. epoch >= a. f i r st epoch AND b. epoch <= a. l ast epoch AND a. seqno = 413 
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These queries produce the following output: 
 
   epoch  t i me    r w  s i ze   pbl kno     pbl knodi f f   ser vi cet i me  r espt i me_noc 
   - - - - -   - - - -     - -   - - - -    - - - - - -      - - - - - - - - - -   - - - - - - - - - - -   - - - - - - - - - - - -  
   215    0. 0033  0   7168   3562016    3288656     0. 0091       0. 0214                    
 
   epoch  t i me    r w  s i ze   pbl kno     pbl knodi f f   ser vi cet i me  r espt i me_noc 
   - - - - -   - - - -     - -   - - - -    - - - - - -      - - - - - - - - - -   - - - - - - - - - - -   - - - - - - - - - - - -  
   1896   0. 0001  0   8192   3225760    82816       0. 0082       0. 0574                    
   1896   0. 0094  0   8192   2166016    1059744     0. 0168       0. 0574                    
 
   epoch  t i me    r w  s i ze   pbl kno     pbl knodi f f   ser vi cet i me  r espt i me_noc 
   - - - - -   - - - -     - -   - - - -    - - - - - -      - - - - - - - - - -   - - - - - - - - - - -   - - - - - - - - - - - -  
   822    0. 0035  1   8192   155296     32          0. 0123       0. 2924                    
   822    0. 0075  1   8192   194176     38880       0. 0108       0. 2924                    
   822    0. 0173  1   8192   160        194016      0. 0137       0. 2924                    
   824    0. 0006  1   8192   271760     271600      0. 0209       0. 2924                    
   824    0. 0071  1   8192   271776     16          0. 0176       0. 2924                    
   825    0. 0033  1   8192   271792     16          0. 0129       0. 2924                    
   825    0. 0047  0   1024   274014     2222        0. 0079       0. 2924                    
   825    0. 0061  0   3072   274144     130         0. 0027       0. 2924                    
   825    0. 0062  0   2048   274150     6           0. 0015       0. 2924                    
   825    0. 0064  0   2048   274154     4           0. 0003       0. 2924                    
   825    0. 0065  0   3072   274160     6           0. 0003       0. 2924                    
   825    0. 0067  0   4096   274166     6           0. 0003       0. 2924                    
   825    0. 007   0   6144   274176     10          0. 0004       0. 2924                    
   826    0. 0029  1   8192   543376     269200      0. 0065       0. 2924                    
   827    0. 0007  1   8192   811632     268256      0. 0172       0. 2924                    
   827    0. 0082  1   8192   928048     116416      0. 0185       0. 2924                    
   828    0. 0016  1   8192   966848     38800       0. 0131       0. 2924                    
   828    0. 0088  1   8192   1160832    193984      0. 0128       0. 2924                    
   828    0. 0177  1   8192   1351520    190688      0. 016        0. 2924                    
   828    0. 0281  1   8192   1506608    155088      0. 0193       0. 2924                    
   828    0. 0326  1   8192   1545520    38912       0. 0149       0. 2924                    
   828    0. 0409  1   8192   1623008    77488       0. 0128       0. 2924                    
   828    0. 05    1   8192   1700720    77712       0. 0173       0. 2924                    
   828    0. 0601  1   4096   1852464    151744      0. 0192       0. 2924                    
   828    0. 0667  1   8192   1852480    16          0. 0168       0. 2924                    
   828    0. 0723  1   1024   1853662    1182        0. 0122       0. 2924                    
   828    0. 0786  1   8192   2162976    309314      0. 0119       0. 2924                    
   828    0. 085   1   8192   2162992    16          0. 0127       0. 2924                    
   828    0. 0932  1   4096   2625136    462144      0. 0146       0. 2924                    
   828    0. 098   1   8192   2625280    144         0. 013        0. 2924                    
   828    0. 1047  1   8192   2632384    7104        0. 0116       0. 2924                    
   829    0. 0006  0   8192   4286848    1654464     0. 0135       0. 2924                    
   829    0. 0007  0   4096   274192     4012656     0. 0069       0. 2924                    
   829    0. 0009  0   5120   274208     16          0. 0003       0. 2924                   
   829    0. 0011  0   3072   274224     16          0. 0004       0. 2924                    
   829    0. 0012  0   4096   274240     16          0. 0003       0. 2924                    
   829    0. 0015  0   8192   274256     16          0. 0005       0. 2924                    
   829    0. 0018  0   5120   274288     32          0. 0005       0. 2924 

 
We observe a few interesting patterns. First, the one I/O in epoch 215 for the first request is most likely 
the original read of the requested page (the page’s file size is 6169 bytes, which, when rounded up to a 
multiple of the 1KB fragment size used in our file system, results in an I/O size of 7168). Since the data 
set was small enough to be mostly cached, and since that physical block number never reappears, we can 
assume that all other I/Os in the output are not generated by the requests in question. The most interesting 
patterns shows up in the third output table (for request #413, the one with the write). First, notice that the 
write I/Os tend to have significantly larger service times than the read I/Os. Notice also that the writes are, 
for the most part, non-sequential, incurring large seeks (the value of pbl knodi f f  indicates the 
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approximate seek distance in blocks). The large seeks combined with the fact that writes are not 
completed until they have been physically written to the disk medium probably account for the long write 
times. The writes also interrupt a string of very tightly-clustered reads; in this case, the reads are delayed 
by the time for the intervening writes to complete, although the performance of any individual read is not 
significantly degraded (probably because our high-end disk has a very large track buffer that services all 
but the first few of those reads), but with less sophisticated disks the interrupted reads would most likely 
suffer in performance as well. 

 
One final important pattern to notice is that when the writes occur, a large number of them occur 

in direct succession. Further analysis of the data stored in the kmon_bi oevent s  table (using a query 
such as “ SELECT DI STI NCT epoch FROM kmon_bi oevent s WHERE r w = 1” , results omitted here 
for space reasons) shows that all of the writes in the trace occur within a 25-epoch span covering 0.32 
seconds of real time. This suggests that we are seeing the effects of the NetBSD file system buffering 
policy. In NetBSD, as is typical in a UNIX-like system, writes are absorbed by the buffer cache and sent 
to disk in a single batch whenever the system updat e daemon periodically wakes up. 
 
 At this point we have thoroughly verified our initial hypothesis and have investigated its cause. 
We have determined that the poor response time of queries during which writes took place is due to a 
combination of the overhead of large seeks, potentially unbuffered writes at the disk, and the fact that a 
large number of writes are sent to disk at once, blocking the progress of other queries running during that 
time. One task remains: to figure out what we might do to lessen the performance impact of writes. One 
simple solution would be to direct writes to a separate I/O subsystem. In the case of Apache, the only 
writes being generated are Apache’s own log updates, so by moving the log files to a separate disk on a 
separate controller, the writes would not be able to interfere with the I/O of other running queries. If 
adding hardware is not an option, another solution would be to modify the OS buffer cache write policy. 
Since response time is the key metric for applications like web servers, it would be preferable to spread 
the writes out in time rather than batching them together. If this were done, more requests would show 
degraded performance, but the degradation would most likely be much smaller, and potentially would be 
lost in the noise of variations in network latency. This analysis suggests that the standard OS buffer cache 
policy is wrong for a single-application server running a web server, and that the cache policy for such a 
system should be tuned to drain writes to disk shortly after receiving them, rather than waiting for the 
updat e daemon to run. 
 

Thus we have shown in this example that our system monitoring database provides a powerful 
tool for hypothesis testing and investigation. We have also seen an example of how the system makes it 
possible to detect performance problems and to identify possible approaches for tuning. Note, however, 
that we began with an already-formulated hypothesis. A natural extension would be to use data mining 
techniques to generate new hypotheses from the trace data set, and to then use the process just described 
to test and act on those hypotheses. 
 
8  Suitability to Task 
 
In the course of developing SPADE we investigated the suitability of four databases for supporting 
monitoring-data storage and querying: PostgreSQL 6.4.2, Microsoft Access 97, IBM DB2 5.2 for Linux, 
and Microsoft SQL Server 6.5. Our dataset poses a reasonably challenging workload for these 
databases—for example, our longest table had more than 175,000 rows and our widest table had 120 
columns.  
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Our primary criteria in selecting a database were, in rough order of decreasing importance, 
• robustness (i.e., no serious bugs tickled by our workload) 
• sufficient speed for bulk loading, view creation, and querying 
• user interface support for browsing large tables 
• support for the necessary datatypes 

 
PostgreSQL is an open-source object-relational database based on the POSTGRES database 

developed at the University of California, Berkeley. We found its bulk loading performance to be 
acceptable, but it crashed when processing queries to generate our “views.”  Another problem with this 
database was its text-mode front end, which limits easily-viewable table widths to the largest window 
width displayable on the user’s terminal (i.e., there is no ability to scroll horizontally). Additionally, 
PostgreSQL did not allow primary keys on 64-bit values, which we wanted to use for our timestamps 
(since the log records use the 64-bit CPU cycle counter as their timestamp). This forced us to split the 
timestamp into two unsigned 32-bit quantities. Finally, PostgreSQL provided very poor error reporting 
during bulk loading. In particular, any error or inconsistency in an input table caused the connection from 
the PostgreSQL server to the client to be unceremoniously dropped, resulting in a cryptic error message 
from the client and no indication of which line in the input file caused the error. In one case the “error”  
was not really an error in our input file at all, but rather a bug in PostgreSQL. On the other hand, 
PostgreSQL does have at least one nice feature for our application, namely the SELECT I NTO command 
that allows a new table to be created directly from a base table without requiring explicit declaration of a 
schema for the new table. Types and column names are inferred from the SELECT statement that 
generates the new table. But due to its inability to handle our queries, we were unable to use PostgreSQL. 
 

Microsoft Access 97 is the relational database component of the Microsoft Office suite. We found 
its bulk loading to be relatively fast, but the impossibility of scripting the bulk loading process made 
repeated bulk loading (necessary as we gathered and examined various traces from the web server) 
painful. The most serious drawback of Access was its inordinately slow query speed—generating a view 
table took several minutes in some cases. On the other hand, Access supports an easy-to-use graphical 
user interface and allows horizontal scrolling via its spreadsheet-like display mode. 
 

DB2 is IBM’s object-relational database product. We found its bulk loading to be slow and its 
query response time to be very slow. This latter fact surprised us, but we suspect that DB2 would have 
exhibited much faster response time had we tuned the appropriate configuration parameters. A relatively 
thorough search of the documentation did not reveal the appropriate parameters to tune, so we gave up on 
DB2. Another problem we had with DB2 that could probably have been solved by issuing the correct 
administrative command was DB2’s running out of transaction log space during creation of materialized 
views. We suspect that DB2 was logging the changes made by each table insert operation, requiring a 
large amount of log space for each SELECT I NTO query. Unfortunately we were unable to determine 
the proper mechanism for increasing the available transaction log space or telling DB2 to disable 
transactions for SELECT I NTO operations. Another drawback of DB2 is its text-mode output which, like 
PostgreSQL’s, prevents horizontal scrolling of wide output tables. 
 

Microsoft SQL Server 6.5 is the object-relational database component of the Microsoft 
BackOffice suite. We found both its bulk load and query response times to be good. Additionally, SQL 
Server supports horizontal scrolling of query results, allowing wide tables to viewed relatively easy. We 
were also quite impressed with SQL Server’s support for multiple simultaneous networked clients and its 
GUI administrative and tuning tools. On the other hand, the product has two serious drawbacks for our 
application. First, it does not support the standard deviation or median SQL aggregate functions; these 
would have been extremely useful for finding table columns with high variance and for finding a 
representative median value for a collection of data points. Second, SQL Server does not allow storage of 
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64-bit integers, or even of unsigned 32-bit integers. This forced us to represent time as a floating point 
value rather than as the 64-bit hardware cycle counter value stored with each log record. Moreover, we 
were forced to use as keys the two 32-bit values we originally introduced to address PostgreSQL’s 
inability to handle 64-bit primary keys, because it is not possible to guarantee that two different 64-bit 
timestamps will map to unique floating point timestamps. Despite these drawbacks, SQL Server was by 
far the best database of the four we considered due to its lack of serious bugs, its support for horizontal 
scrolling, and its excellent out-of-the-box (untuned) performance. In the following table we present the 
performance of SQL Server on the most common database operations used by SPADE. 
 

Operation Time (min:sec) 

run datapump 0:49 

run db-insert 2:08 

bulk-load database 
3:27 

(2000 rows/sec) 

create view tables 6:36 

 
The following table summarizes our impressions of the various databases that we examined: 
 

Database Robustness 
Bulk Load 

Performance 

View Table 
Creation 

Performance 

User 
Interface 

Data Type 
Support 

PostgreSQL �� ��� N/A �� ��� 

Access 97 ��� ��� � ��� ��� 

DB2 �� �� �� � ��� 

SQL Server ���� ���� ���� ��� �� 

 
 
9  Future Work 
 
SPADE might serve as the basis for future work both within the framework of the current system and in 
the context of longer-term projects. First, several minor tweaks on the current prototype are possible. 
Automatic compression of the in-kernel trace buffer would allow kmond to run less frequently, imposing 
lower overhead for periodically writing the buffer to disk. Many of the values collected in the trace are 
small diffs or equal to zero, suggesting that the compression techniques would work well.2 Also, 
datapump and db-insert could be integrated; we wrote them as separate programs simply because C (used 
to write datapump) is better at manipulating raw binary files (the format used in the log files written out 
by kmond) directly, while Perl (used to write db-insert) is better at handling text and file operations. 
                                                           
2 Of course the overhead of performing this compression must be balanced with benefit of reduced I/O for 
writing the buffer to disk, but since SPADE is targeted to data-intensive servers that are likely to be I/O 
bound, and CPU speeds are increasing much faster than is I/O system performance, the tradeoff is likely 
to favor compression. 
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Finally, appropriate user-defined (i.e., not standard in SQL) statistical aggregates over some of the table 
columns might be used to address some of the difficulties we experienced in expressing using SQL 
meaningful aggregates for some statistics. For example, while it is very useful to know how much seeking 
a disk performed during the service of a web request, the average seek distance per time (which is the 
most meaningful summary statistic we could express in SQL for this column) does not tell the whole 
story—it makes a continuous stream of medium-sized seeks look the same as a small number of blocks of 
giant-seek-followed-by-sequential-read. 
 

Within the framework of the current system, several follow-on projects to improve online data 
collection and offline analysis are possible. Fine-grained resource accounting with some notion of 
application-level accounting units (e.g., individual HTTP requests), such as resource containers 
[BDM99], would allow resource usage to be attributed precisely to the appropriate application-level 
entity, allowing more detailed per-request performance analysis. Measuring the time each application-
level accounting unit spends waiting for each system resource would provide similarly useful data, and 
would help greatly in pinpointing the location and severity of system bottlenecks and in assessing the 
impact of those bottlenecks on response time. Instead of guessing that an HTTP response experienced 
increased latency because certain system resources happen to be highly contended while the request was 
being processed, we could know exactly for which resources the request was waiting, and for how long.  
 

In lieu of such accounting, some mechanism for low-overhead continuous fine-grained event 
recording would at least allow all relevant system events to be logged individually rather than being 
aggregated into snapshots taken only once per epoch. Unfortunately our monitoring trace buffer already 
fills up at an alarmingly fast rate, so finer-grained statistics collection would require application of data 
reduction techniques. Sampling at the granularity of logical application-level units, as suggested in 
Section 4.3, represents one possible approach to data reduction. Additionally, some statistics that we 
currently collect may not be useful to any potential subsequent analysis, and some others might be 
derivable from a small set of base statistics. Identifying the minimal set of statistics that must be collected 
in order to avoid constraining subsequent analysis offers fertile ground for future investigation. Finally, 
one might use SPADE as the basis for integrating existing performance analysis tools into a single data 
collection framework, allowing a range of analyses not possible using any single existing tool. 
 

Any number of additions to our existing offline data analysis framework could potentially allow 
for even more sophisticated insights than those presented in this paper. For example, we are interested in 
adapting existing data mining algorithms to find the cause of performance variations and bottlenecks 
using the data collected by our monitoring tool. Association rule algorithms like Apriori [AS94] work 
well for binary data (e.g., discovering that when one item is purchased in a transaction, another item is 
very often also purchased in that transaction) but require substantial modification to work with continuous 
numeric data of the type collected in SPADE. Existing binary association rules algorithms could 
potentially be applied to our data set if we could set arbitrary delineations between “normal/acceptable”  
and “abnormal/unacceptable”  performance for each metric and then treat an “abnormal/unacceptable”  
measurement made during a particular epoch as an item “purchased”  in the transaction corresponding to 
that epoch. But setting these cutoff points seems highly workload dependent and those points are likely to 
change over time even within a single workload. As another potential addition to our offline data analysis 
framework, integrating online query processing (e.g., the tools developed in the CONTROL project at 
Berkeley) into the database query process would alleviate some of the annoyance due to the poor database 
performance we experienced. It would allow for more sophisticated (i.e., time-consuming) queries to be 
constructed in the process of exploring possible correlations in the data, since the user would not need to 
wait for the entire dataset to be processed before initial results would be returned. Indeed the scenarios 
presented in [HAR99] have strong analogies to the process of probing the SPADE database for 
performance insight. 
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A somewhat simpler starting point for improved offline data analysis would be to develop or use 
existing visualization tools, such as graphing or OLAP packages, for analyzing the SPADE database. 
Simply graphing two or more statistics with respect to time on the same set of axes could enable visual 
identification of correlations that are obscured when statistics are represented in purely numeric, tabular 
form. Though we did not have time to investigate it, Microsoft Excel allows the construction and issuing 
of SQL queries to a remote database, as well as the importing of the result tables. This facility could be 
used to load result tables for graphing by Excel’s built-in graphing tool. 
  

SPADE might also serve as the first step in a number of longer-term projects that require 
substantial additions to, or reworking of, the current framework. The insertion of monitoring data into the 
database could be moved online if the overhead of the loading process could be reduced. While we have 
shown in this project that existing full-featured databases do not offer adequate performance for 
continuous realtime insertion of monitoring statistics of the type we collect in SPADE, we are interested 
in determining whether embedded database backends such as Berkeley DB [Sleepycat] might offer an 
adequately-performing alternative to full RDBMSs while still offering useful query features like access 
methods and application-aware caching. 
 

We are also interested in applying the techniques developed in SPADE to guide automatic 
adaptation by applications and operating systems. The extra system support needed to fully realize this 
goal includes online data analysis (in addition to the existing online data collection) and triggers. Our goal 
is develop a system that, guided by a user-specified policy, sets appropriate triggers that fire to invoke 
adaptation code when the system reaches a state in which adaptation is required. This goal can be thought 
of as encoding the logic a human administrator would use to manage a system (with respect to both 
performance tuning and maintenance of availability) using triggers over the database of monitoring data, 
and appropriate adaptation code to execute in response to those triggers. To this end, we also need to 
determine what statistics should be monitored to enable automatic system adaptation. We are currently 
investigating these and other related issues within the context of the ISTORE project [BOK+99]. 
 

Finally, the SPADE framework could be extended to collect data from a cluster of nodes, for 
example to analyze the performance of a cluster-based server such as an Internet search engine. Some 
mechanism for synthesizing a global time across nodes would be essential to correlating statistics 
collected simultaneously on different machines, and node identifiers would need to be added to the 
database schema. Data could be stored locally on each node and bulk loaded into a distributed database 
running on each node in the cluster, or it could be transferred to a single analysis node (in bulk fashion or 
continuously as statistics are collected) running a single-node database. 
 
10  Related Work 
 
SPADE is by no means the first system aimed at monitoring system performance and correlating 
application-level performance variations to their underlying causes. But by using a database as its 
structuring principle, it does offer the possibility of integrating a number of existing tools and simplifying 
the construction of new tools. 
 

SPADE might be used as a building block in a system such as that proposed in [SS97]. In that 
paper the authors suggest continuously profiling an extensible operating system in order to determine 
when and how the kernel should be adapted via extension. Performance data is deposited into a 
monitoring database and adaptation is driven by querying that database. Since the goal of this adaptation 
is to improve application performance, a system like SPADE that collects and correlates application-level 
behavior with operating system performance data is well-suited to guiding the desired adaptation. 
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The CARD project [AP97] used relational database technology to monitor computer clusters. 
Like SPADE, CARD recorded data about CPU, network, and I/O system utilization in a relational 
database, and allowed users to analyze the data using SQL queries. But unlike SPADE, CARD gathered 
data at a coarse time scale and did so simultaneously from multiple machines in a cluster, rather than on a 
fine granularity and from a single node. Additionally, CARD only used data available from user-level 
administrative utilities; it did not instrument the kernel to obtain additional statistics and traces of 
operating system events. This difference in approach stems from CARD’s goals of enabling system 
administrators to monitor resource utilization across all the machines they administer and to detect 
abnormal conditions, in contrast to SPADE’s focus on correlating application performance with low-level 
system behavior to enable a programmer to tune an application and/or operating system. 
 

The use of data mining to detect unusual patterns is closely related to SPADE’s proposed use of 
data mining to analyze application performance. For example, in [LSM99] the authors build a system that 
mines system audit data (e.g., shell commands issued, system calls made, and network connections 
established or accepted) associated with individual users, in order to distinguish normal system usage 
from that associated with an intrusion. The goal of this mining differs from that which we propose for 
SPADE in that [LSM99] seeks to detect abnormal events and assumes an administrator will trace the 
cause, while the mining we propose for SPADE should both detect abnormal events and provide an 
indication of their underlying cause. But the two ideas are similar in that they attempt to use data mining 
to classify monitoring data as indicative of “normal”  or “abnormal”  system behavior. 
 

Hardware and software performance monitoring tools date back to the earliest computers. A 
number of standard Unix utilities gather statistics similar to SPADE’s “snapshot”  data, though their 
output is designed to be human readable rather than processed automatically, and they provide no facility 
for correlating the collected data with user-level application behavior or with the data collected by one 
another. These utilities include netstat (network statistics), iostat (I/O system statistics), nfsstat (network 
file system statistics), ps (per-process accounting statistics), pstat (various OS-level data structure 
statistics), vmstat (process, virtual memory, disk, trap, and CPU activity statistics), and systat (which 
combines the functionality of many of the other utilities). Additionally, a number of tools allow 
applications to be instrumented to collect user-level runtime statistics which are then post-processed to 
reveal performance bottlenecks. Such tools include gprof [GKM82], QPT [LAR93], Pixie [MIPS90], 
Atom [SE94], and EEL [LS95]. A third set of tools use hardware performance counters to collect 
statistics and correlate those statistics to application-level causes. Such tools include VTune [VTUNE] 
and DCPI [ABD+97]. Once appropriate schema are defined, SPADE allows any tool to be used to gather 
performance information. Thus any of these existing systems could be used as additional data sources in 
the SPADE system, increasing the scope and/or detail of the queries that could be made to the database. 
 

Like our web server study, previous projects have attempted to study the causes of application 
latency. [EWC+96] propose techniques for evaluating interactive system performance by measuring 
event-handling latency. As we did in our web server study, they focus on latency rather than throughput 
as key to the user experience. They examined three variants of Windows, replacing the operating system 
idle loop with their own loop that reads the Pentium hardware counters. Their system also derives 
information by intercepting events going to and from the Win32 message queue. They did not instrument 
the operating system, so they were somewhat limited in their ability to correlate application events (as 
seen through the message queue) to underlying operating system causes.  

 
Other studies have attempted to correlate application performance with the performance of 

operating system and hardware primitives [BS97, Bro97]; unlike SPADE, however, the systems described 
in those studies take a static approach, relying on the user to manually isolate the OS and hardware 
primitives that govern application performance, then predicting the application’s performance based on 
microbenchmark measurements of those primitives. In contrast, SPADE dynamically determines which 
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OS subsystems and hardware components govern application performance at every point in time, and can 
thus detect transient bottlenecks due to variations in the patterns of system utilization. 
 

Finally, operating system adaptation based on runtime monitoring has been suggested by a 
number of researchers. In [PAB+95] the authors describe “optimistic incremental specialization,”  a policy 
by which operating system code is incrementally optimized for common cases and dynamically “ fixed 
up”  when the assumed constraints are violated. More recently, [SSS96] proposes to profile the behavior 
of operating system modules in the context of each application that uses them, and to then use this 
information to re-optimize modules (creating a new copy for each client application) for improved 
performance when used by that application. Both of these ideas are similar in spirit to the automatic 
adaptation we propose as future work in SPADE, though they focus on compiler-driven automatic 
modification to operating system components rather than on explicitly built-in adaptive behavior of 
applications or operating systems. 
 

While SPADE differs in various ways from the above systems, it provides a framework that could 
increase the ease of writing new performance monitoring tools and/or the usefulness of many of these 
existing tools. SPADE provides a standard interface between tools that gather monitoring data and tools 
that use the data—its schema defines the available data and the data’s format, while SQL defines the 
syntax used for querying and updating the data repository. Thus while our project examined the 
usefulness of making static queries to a database of performance information collected through relatively 
simple operating system and application instrumentation, the database framework we have developed 
offers the potential to enable much more sophisticated monitoring and adaptation using new or existing 
tools, and to allow these tools to interact and to be composed in ways that are impossible when each tool 
uses its own data collection, storage, and analysis mechanisms. 
 
11  Conclusions 
 
The tasks of analyzing, understanding, and tuning the performance of large server systems are becoming 
increasingly important as computing transitions to a model of data-centric infrastructure services backed 
by large servers. Unfortunately, traditional performance measurement and analysis tools are incapable of 
meeting the demands of this environment, as they are not designed to provide the detailed, fine-grained, 
application-correlated data needed to understand and optimize the key user-driven metrics of latency and 
response time. Furthermore, most of these traditional tools are constrained by an artificial integration of 
system instrumentation, data storage, and data analysis that limits their flexibility. 
 

In this paper, we presented the architecture and implementation of SPADE, a performance 
analysis system that overcomes these failings of traditional performance tools by using the facilities of a 
relational database to mediate the interactions of the software components responsible for 
instrumentation, storage, and analysis. SPADE’s database decouples data collection from data analysis, 
allowing for flexible analysis unconstrained by the design of the system instrumentation. At the same 
time, it also provides a centralized store where detailed operating system and application-level 
performance monitoring data can be integrated, enabling system performance analysis to encompass all 
levels of the system simultaneously. 

 
To implement the system we instrumented the NetBSD single-node operating system kernel and 

the Apache web server to collect performance data, wrote a background daemon process and offline 
utilities to insert the data into a relational database, and created “materialized views”  of the resulting 
tables to correlate low-level operating system behavior with per-request application response time. We 
showed how a user can write queries over the database to identify application-level server requests and 
operating system functions exhibiting poor performance and to track down the cause(s) of that poor 
performance. In particular, we described three such user sessions. First, we showed how a user can 
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identify server application requests that perform identical operations but exhibit a variation in response 
time, and can extract insight about the potential underlying causes of that variation by exploring data 
collected at different levels of the system. We next showed that SPADE can be used to investigate the 
performance of important operating system primitives and to determine possible causes for unusually 
slow system call response times. Finally, we demonstrated the use of SPADE to test a hypothesis about 
the cause of variability in application-level response time. In the course of developing our system we 
investigated the suitability of four existing databases for SPADE with respect to their robustness, loading 
and query performance, user interface, and support for needed datatypes. We discovered that none offered 
sufficient performance for continuous online updating of the database. Finally, we consider how the 
concepts in SPADE form the natural foundation for a new class of adaptive, self-tuning systems ideally 
suited for infrastructure applications. 

 
The use of a database as the central metaphor of SPADE vastly simplifies the process of 

investigating and analyzing the voluminous and unwieldy data sets generated by a fully-instrumented 
system. We have demonstrated through example that the ability to issue queries over SPADE’s database 
enables users to easily investigate and correlate performance data gathered from all levels of a system; our 
experience with our sample application (Apache) only hints at SPADE’s potential for guiding users to 
new insights into the underlying causes of system performance bottlenecks and application performance 
variability. 
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Appendix A: Monitoring Database Schema 
 
- -  Thi s set  of  SQL commands cr eat es t he t abl es f or  t he moni t or i ng dat abase 
 
cr eat e t abl e KMON_LOAD (  
        epoch           i nt ,     - -  epoch 
        t i me            f l oat ,   - -  t i mest amp,  i n seconds 
        uni quehi         i nt ,     - -  l ow 32 bi t s of  cycl es t i mest amp 
        uni quel ow       i nt ,     - -  hi gh 32 bi t s of  cycl es t i mest amp 
        nr unnabl e       i nt ,     - -  number  of  r unnabl e pr ocesses 
        PRI MARY KEY ( epoch)  
) ;  
 
cr eat e t abl e KMON_NETSTATS (  
        - -  al l  ar e r epor t ed as di f f s f r om begi nni ng of  epoch 
        - -  sys/ net i net / t cp_var . h: : st r uct  t cpst at  
        epoch           i nt ,     - -  epoch 
        t i me            f l oat ,   - -  t i mest amp,  i n seconds 
        uni quehi         i nt ,     - -  l ow 32 bi t s of  cycl es t i mest amp 
        uni quel ow       i nt ,     - -  hi gh 32 bi t s of  cycl es t i mest amp 
        coni ni t i at ed    i nt ,     - -  connect i ons i ni t i at ed  
        conaccept ed     i nt ,     - -  connect i ons accept ed  
        connest abl i shed i nt ,     - -  connect i ons est abl i shed  
        conndr opped     i nt ,     - -  connect i ons dr opped  
        embconndr opped  i nt ,     - -  embr yoni c connect i ons dr opped  
        conncl osed      i nt ,     - -  conn.  c l osed ( i ncl udes dr ops)   
        segst r yr t t       i nt ,     - -  segs wher e we t r i ed t o get  r t t   
        t i messucceeded  i nt ,     - -  t i mes we succeeded  
        del ayedacksent   i nt ,     - -  del ayed acks sent   
        cdi r xmt t i meout   i nt ,     - -  conn.  dr opped i n r xmt  t i meout   
        r et r anst i meout   i nt ,     - -  r et r ansmi t  t i meout s  
        per si st t i meout   i nt ,     - -  per si st  t i meout s  
        kal i vet i meout    i nt ,     - -  keepal i ve t i meout s  
        kpr obessent      i nt ,     - -  keepal i ve pr obes sent   
        cdr opkal i ve     i nt ,     - -  connect i ons dr opped i n keepal i ve  
        cdr opper si st     i nt ,     - -  connect i ons dr opped i n per si st   
        cdr opmemshr t ge  i nt ,     - -  connect i ons dr ai ned due t o memor y shor t age 
        pkt ssent         i nt ,     - -  t ot al  packet s sent   
        dat apkt ssent     i nt ,     - -  dat a packet s sent   
        dat abyt essent    i nt ,     - -  dat a byt es sent   
        dat apkt sr t r ans  i nt ,     - -  dat a packet s r et r ansmi t t ed  
        dat abyt esr t r ans i nt ,     - -  dat a byt es r et r ansmi t t ed  
        ackonl ysent      i nt ,     - -  ack- onl y packet s sent   
        wndwpr obessent   i nt ,     - -  wi ndow pr obes sent   
        pkt sur gonl y     i nt ,     - -  packet s sent  wi t h URG onl y  
        wndwupdonl ypkt s i nt ,     - -  wi ndow updat e- onl y packet s sent   
        ct r l pkt ssent     i nt ,     - -  cont r ol  ( SYN| FI N| RST)  packet s sent   
        pkt sr cvd        i nt ,     - -  t ot al  packet s r ecei ved  
        pkt sr cvdi nseq   i nt ,     - -  packet s r ecei ved i n sequence  
        byt esr cvdi nseq  i nt ,     - -  byt es r ecei ved i n sequence  
        pkt sr cvdcker r    i nt ,     - -  packet s r ecei ved wi t h ccksum er r s  
        pkt sr cvdbadof f   i nt ,     - -  packet s r ecei ved wi t h bad of f set   
        pkt sdr opnomem   i nt ,     - -  packet s dr opped f or  l ack of  memor y  
        pkt sr cvdt ooshr t  i nt ,     - -  packet s r ecei ved t oo shor t   
        duponl ypr cvd    i nt ,     - -  dupl i cat e- onl y packet s r ecei ved  
        duponl ybr cvd    i nt ,     - -  dupl i cat e- onl y byt es r ecei ved  
        pkt swdupdat a    i nt ,     - -  packet s wi t h some dupl i cat e dat a  
        dupbyt esi npdp   i nt ,     - -  dup.  byt es i n par t - dup.  packet s  
        ooopkt sr cvd     i nt ,     - -  out - of - or der  packet s r ecei ved  
        ooobyt esr cvd    i nt ,     - -  out - of - or der  byt es r ecei ved  
        pkt swi t hdaw     i nt ,     - -  packet s wi t h dat a af t er  wi ndow  
        byt esr cvdaw     i nt ,     - -  byt es r cvd af t er  wi ndow  
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        pkt sr cvdaf t r c l s i nt ,     - -  packet s r cvd af t er  " c l ose"   
        r cvdwndpr obepkt  i nt ,     - -  r cvd wi ndow pr obe packet s  
        r cvddupacks     i nt ,     - -  r cvd dupl i cat e acks  
        r cvdacksunsent   i nt ,     - -  r cvd acks f or  unsent  dat a  
        r cvdackpkt s     i nt ,     - -  r cvd ack packet s  
        byt esackbyr cvda i nt ,     - -  byt es acked by r cvd acks  
        r cvdwndwupdpkt s i nt ,     - -  r cvd wi ndow updat e packet s  
        segdr oppaws     i nt ,     - -  segment s dr opped due t o PAWS  
        hdr pr edokack    i nt ,     - -  t i mes hdr  pr edi ct  ok f or  acks  
        hdr pr edokdat a   i nt ,     - -  t i mes hdr  pr edi ct  ok f or  dat a pkt s  
        i nppkt nopcbhash i nt ,     - -  i nput  packet s mi ssi ng pcb hash  
        t cpnosockonpor t  i nt ,     - -  no socket  on por t   
        r cvdacknosyncmp i nt ,     - -  r ecei ved ack f or  whi ch we have no SYN i n compr essed 
st at e 
        - -  t hese st at i st i cs deal  wi t h t he SYN cache 
        ent r i esadded    i nt ,     - -  # of  ent r i es added  
        connscompl et ed  i nt ,     - -  # of  connect i ons compl et ed  
        ent r i est i meout   i nt ,     - -  # of  ent r i es t i med out   
        dr oppedovf l w    i nt ,     - -  # dr opped due t o over f l ow  
        dr oppedr st       i nt ,     - -  # dr opped due t o RST  
        dr oppedi cmpunr   i nt ,     - -  # dr opped due t o I CMP unr each  
        dr oppedbucket    i nt ,     - -  # dr opped due t o bucket  over f l ow  
        nent r i esabr t mem i nt ,     - -  # of  ent r i es abor t ed ( no mem)   
        dupsynr cvd      i nt ,     - -  # of  dupl i cat e SYNs r ecei ved  
        synsdr opped     i nt ,     - -  # of  SYNs dr opped ( no r out e/ mem)   
        hashcol l i s i ons  i nt ,     - -  # of  hash col l i s i ons  
        - -  sys/ net i net / udp_var . h 
        - -  i nput  st at i st i cs 
        t ot i nput pkt s    i nt ,     - -  t ot al  i nput  packet s  
        pkt shor t r t hanhd i nt ,     - -  packet  shor t er  t han header   
        cksumer r or       i nt ,     - -  checksum er r or   
        dat al engr t r pkt   i nt ,     - -  dat a l engt h l ar ger  t han packet   
        udpnosockonpor t  i nt ,     - -  no socket  on por t   
        ar r asbr oadcast   i nt ,     - -  of  above,  ar r i ved as br oadcast   
        not del i ver ed    i nt ,     - -  not  del i ver ed,  i nput  socket  f ul l   
        i npkt nopcbhash  i nt ,     - -  i nput  packet s mi ssi ng pcb hash  
        - -  out put  st at i st i cs 
        t ot out put pkt s   i nt ,     - -  t ot al  out put  packet s 
        - -  sys/ net i net / i p_var . h 
        t ot pkt sr cvd     i nt ,     - -  t ot al  packet s r ecei ved  
        cksumbad        i nt ,     - -  checksum bad  
        pkt t ooshor t      i nt ,     - -  packet  t oo shor t   
        not enoughdat a   i nt ,     - -  not  enough dat a  
        i phdr l enl t dat a  i nt ,     - -  i p header  l engt h < dat a s i ze  
        i pl enl t i phdr l en i nt ,     - -  i p l engt h < i p header  l engt h  
        f r agsr ecvd      i nt ,     - -  f r agment s r ecei ved  
        f r agsdr opped    i nt ,     - -  f r ags dr opped ( dups,  out  of  space)   
        f r agst i medout    i nt ,     - -  f r agment s t i med out   
        pkt sf or war ded   i nt ,     - -  packet s f or war ded  
        pkt sr cvddeunr ch i nt ,     - -  packet s r cvd f or  unr eachabl e dest   
        pkt sf wdsamenet   i nt ,     - -  packet s f or war ded on same net   
        unkunsuppr ot o   i nt ,     - -  unknown or  unsuppor t ed pr ot ocol   
        dgr amdel t oupper  i nt ,     - -  dat agr ams del i ver ed t o upper  l evel  
        t ot al i ppkt sgend i nt ,     - -  t ot al  i p packet s gener at ed her e  
        l ost pkt s        i nt ,     - -  l ost  packet s due t o nobuf s,  et c.   
        pkt sr eassembok  i nt ,     - -  t ot al  packet s r eassembl ed ok  
        dgr amokf r ag     i nt ,     - -  dat agr ams sucessf ul l y f r agment ed  
        out f r agscr t d    i nt ,     - -  out put  f r agment s cr eat ed  
        nof r agf l agset    i nt ,     - -  don' t  f r agment  f l ag was set ,  et c.   
        er r or i nopt pr ocs i nt ,     - -  er r or  i n opt i on pr ocessi ng  
        dscr dnor out e    i nt ,     - -  packet s di scar ded due t o no r out e  
        i pver snot f our    i nt ,     - -  i p ver si on ! = 4  
        r awi ppkt sgend   i nt ,     - -  t ot al  r aw i p packet s gener at ed  
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        f r agbadl engt h   i nt ,     - -  mal f or med f r agment s ( bad l engt h)   
        f r agdr opnomem   i nt ,     - -  f r ags dr opped f or  l ack of  memor y  
        i pl ent ool ong    i nt ,     - -  i p l engt h > max i p packet  s i ze 
        - -  sys/ net i net / i cmp_var . h 
        - -  st at i st i cs r el at ed t o i cmp packet s gener at ed 
        cal l st oi cmper r   i nt ,     - -  # of  cal l s t o i cmp_er r or   
        noer r ol di pshr t   i nt ,     - -  no er r or  ' cuz ol d i p t oo shor t   
        noer r ol di cmp    i nt ,     - -  no er r or  ' cuz ol d was i cmp  
        - -  st at i st i cs r el at ed t o i nput  messages pr ocessed 
        i cmpcodeout r ng  i nt ,     - -  i cmp_code out  of  r ange  
        pkt l t i cmpmi nl en i nt ,     - -  packet  < I CMP_MI NLEN  
        badcksum        i nt ,     - -  bad checksum  
        boundmi smat ch   i nt ,     - -  cal cul at ed bound mi smat ch  
        nr esponses      i nt ,     - -  number  of  r esponses [ i gmp_var . h f ol l ows]  
        - -  sys/ net i net / i gmp_var . h 
        i gmpmsgr cvd     i nt ,     - -  t ot al  I GMP messages r ecei ved  
        i gmpf ewbyt es    i nt ,     - -  r ecei ved wi t h t oo f ew byt es  
        i gmpbadcksum    i nt ,     - -  r ecei ved wi t h bad checksum  
        i gmpr cvdmemqr y  i nt ,     - -  r ecei ved member shi p quer i es  
        i gmpi nval qr y    i nt ,     - -  r ecei ved i nval i d quer i es  
        i gmpr cvdmemr pt   i nt ,     - -  r ecei ved member shi p r epor t s  
        i gmpr cvdi nvl r pt  i nt ,     - -  r ecei ved i nval i d r epor t s  
        i gmpr cvdour gr p  i nt ,     - -  r ecei ved r epor t s f or  our  gr oups  
        i gmpsent memr pt   i nt ,     - -  sent  member shi p r epor t s  
        PRI MARY KEY ( epoch)  
) ;  
 
cr eat e t abl e KMON_DI SKSTATS (  
        epoch           i nt ,     - -  epoch 
        t i me            f l oat ,   - -  t i mest amp,  i n seconds 
        uni quehi         i nt ,     - -  l ow 32 bi t s of  cycl es t i mest amp 
        uni quel ow       i nt ,     - -  hi gh 32 bi t s of  cycl es t i mest amp 
        di skname        var char ( 8) ,      - -  di sk name 
        t r ansf er s       i nt 8,    - -  t ot al  # of  t r ansf er s ( t hi s epoch)  
        i ndepseekops    i nt 8,    - -  # of  i ndependent  seek ops ( t hi s epoch)  
        byt esxf er r ed    i nt 8,    - -  # of  byt es xf er r ed ( t hi s epoch)  
        t i mebusysec     i nt ,     - -  t ot al  t i me spent  busy ( t hi s epoch)  
        t i mebusyusec    i nt ,     - -  t ot al  t i me spent  busy ( t hi s epoch)  
        PRI MARY KEY ( epoch,  di skname)  
) ;  
 
cr eat e t abl e KMON_BQUEUESTATS (  
        epoch           i nt ,     - -  epoch 
        t i me            f l oat ,   - -  t i mest amp,  i n seconds 
        uni quehi         i nt ,     - -  l ow 32 bi t s of  cycl es t i mest amp 
        uni quel ow       i nt ,     - -  hi gh 32 bi t s of  cycl es t i mest amp 
        f r eebuf q0       i nt ,     - -  number  of  f r ee buf f er s of  t ype LOCKED 
        f r eebuf q1       i nt ,     - -  number  of  f r ee buf f er s of  t ype LRU 
        f r eebuf q2       i nt ,     - -  number  of  f r ee buf f er s of  t ype AGE 
        f r eebuf q3       i nt ,     - -  number  of  f r ee buf f er s of  t ype EMPTY 
        f r eespaceq0     i nt ,     - -  t ot al  f r ee space of  t ype LOCKED 
        f r eespaceq1     i nt ,     - -  t ot al  f r ee space of  t ype LRU 
        f r eespaceq2     i nt ,     - -  t ot al  f r ee space of  t ype AGE 
        f r eespaceq3     i nt ,     - -  t ot al  f r ee space of  t ype EMPTY 
        PRI MARY KEY ( epoch)  
) ;  
 
cr eat e t abl e KMON_BI OEVENTS (  
        epoch           i nt ,     - -  epoch 
        t i me            f l oat ,   - -  t i mest amp,  i n seconds 
        uni quehi         i nt ,     - -  l ow 32 bi t s of  cycl es t i mest amp 
        uni quel ow       i nt ,     - -  hi gh 32 bi t s of  cycl es t i mest amp 
        r w              i nt ,     - -  0 == r ead,  1 == wr i t e 
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        s i ze            i nt ,     - -  xf er  s i ze,  i n byt es 
        l bl kno          i nt ,     - -  l ogi cal  bl ock number  
        l bl knodi f f       i nt ,     - -  l ogi cal  bl ock seek di st ance f r om pr evi ous 
        pbl kno          i nt ,     - -  physi cal  bl ock number  
        pbl knodi f f       i nt ,     - -  physi cal  bl ock seek di st ance f r om pr evi ous 
        PRI MARY KEY ( epoch,  uni quehi ,  uni quel ow)  
) ;  
 
cr eat e t abl e KMON_SCSI EVENTS(  
        epoch           i nt ,     - -  epoch 
        t i me            f l oat ,   - -  t i mest amp,  i n seconds 
        uni quehi         i nt ,     - -  l ow 32 bi t s of  cycl es t i mest amp 
        uni quel ow       i nt ,     - -  hi gh 32 bi t s of  cycl es t i mest amp 
        er r code         i nt ,     - -  SCSI  sense er r or  code 
        PRI MARY KEY ( epoch,  uni quehi ,  uni quel ow)  
) ;  
 
cr eat e t abl e KMON_SCHEDSTATS_I NSTATE (  
        epoch           i nt ,     - -  epoch 
        t i me            f l oat ,   - -  t i mest amp,  i n seconds 
        uni quehi         i nt ,     - -  l ow 32 bi t s of  cycl es t i mest amp 
        uni quel ow       i nt ,     - -  hi gh 32 bi t s of  cycl es t i mest amp 
        ni dl e           i nt ,     - -  SI DL 
        nr un            i nt ,     - -  SRUN 
        nsl eep          i nt ,     - -  SSLEEP 
        nst op           i nt ,     - -  SSTOP 
        nzomb           i nt ,     - -  SZOMB 
        PRI MARY KEY ( epoch)  
) ;  
 
cr eat e t abl e KMON_SCHEDSTATS_I NQ (  - -  col l ect i ng t hese st at s i s br oken at  t he moment  
        epoch           i nt ,     - -  epoch 
        t i me            f l oat ,   - -  t i mest amp,  i n seconds 
        uni quehi         i nt ,     - -  l ow 32 bi t s of  cycl es t i mest amp 
        uni quel ow       i nt ,     - -  hi gh 32 bi t s of  cycl es t i mest amp 
        qno             i nt ,     - -  queue number  ( 0- 31)  
        number           i nt ,     - -  number  i n t hat  queue 
        PRI MARY KEY ( epoch,  qno)  
) ;  
 
cr eat e t abl e KMON_SCHEDEVENTS (  
        epoch           i nt ,     - -  epoch 
        t i me            f l oat ,   - -  t i mest amp,  i n seconds 
        uni quehi         i nt ,     - -  l ow 32 bi t s of  cycl es t i mest amp 
        uni quel ow       i nt ,     - -  hi gh 32 bi t s of  cycl es t i mest amp 
        pi d             i nt ,     - -  pi d 
        t i mei n          f l oat ,   - -  t i mest amp when schedul ed i n,  i n seconds 
        t i meout          f l oat ,   - -  t i mest amp when schedul ed out ,  i n seconds 
        pr i o            i nt ,     - -  pr ocess pr i or i t y 
        user pr i o        i nt ,     - -  user  pr i or i t y based on p_cpu and p_ni ce 
        pni ce           i nt ,     - -  pr ocess ni ce val ue 
        hi t user          i nt 8,    - -  st at c l ock hi t s i n user  mode ( t hi s quant um)  
        hi t syst em       i nt 8,    - -  st at c l ock hi t s i n syst em mode ( t hi s quant um)  
        hi t i nt r          i nt 8,    - -  st at c l ock hi t s i n handl i ng i nt er r upt s ( t hi s 
quant um)  
        r eal t i mesec     i nt ,     - -  r eal  t i me,  seconds ( t hi s quant um)  
        r eal t i meusec    i nt ,     - -  r eal  t i me,  mi cr oseconds ( t hi s quant um)  
        cput i cks        i nt ,     - -  t i cks of  CPU t i me ( t hi s quant um)  
        avgcpt i cks      i nt ,     - -  t i me aver aged val ue of  cpt i cks 
        ppi d            i nt ,     - -  par ent  pr ocess i d 
        user usedsec     i nt ,     - -  user  t i me used,  seconds ( t hi s quant um)  
        user usedusec    i nt ,     - -  user  t i me used,  mi cr oseconds ( t hi s quant um)  
        sysusedsec      i nt ,     - -  syst em t i me used,  seconds ( t hi s quant um)  
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        sysusedusec     i nt ,     - -  syst em t i me used,  mi cr oseconds ( t hi s quant um)  
        maxr ss          i nt ,     - -  max r ss 
        shar edt xt memsz  i nt ,     - -  i nt egr al  shar ed t ext  memor y s i ze 
        unshar eddat asz  i nt ,     - -  i nt egr al  unshar ed dat a s i ze 
        unshar edst acksz i nt ,     - -  i nt egr al  unshar ed st ack s i ze 
        pgr ecl ai ms      i nt ,     - -  page r ecl ai ms,  t hi s quant um 
        pgf l t s          i nt ,     - -  page f aul t s,  t hi s quant um 
        swaps           i nt ,     - -  swaps,  t hi s quant um 
        bi ops           i nt ,     - -  bl ock i nput  oper at i ons,  t hi s quant um  
        boops           i nt ,     - -  bl ock out put  oper at i ons,  t hi s quant um 
        msgssent         i nt ,     - -  messages sent ,  t hi s quant um 
        msgsr cvd        i nt ,     - -  messages r ecei ved,  t hi s quant um 
        s i gr cvd         i nt ,     - -  s i gnal s r ecei ved,  t hi s quant um        
        vol ct xt swx      i nt ,     - -  vol unt ar y cont ext  swi t ches,  t hi s quant um 
        i nvol ct xt swx    i nt ,     - -  i nvol unt ar y cont ext  swi t ches,  t hi s quant um 
        r ui d            i nt ,     - -  r eal  user  i d 
        PRI MARY KEY ( epoch,  uni quehi ,  uni quel ow)  
) ;  
 
 
cr eat e t abl e KMON_VMSTATS (  
        epoch           i nt ,     - -  epoch 
        t i me            f l oat ,   - -  t i mest amp,  i n seconds 
        t i mehi           i nt ,     - -  hi gh 32 bi t s of  t i me 
        t i mel o          i nt ,     - -  l ow 32 bi t s of  t i me 
        queuel en        i nt ,     - -  l engt h of  r un queue 
        ndi skwai t        i nt ,     - -  #j obs i n di sk wai t  
        npagewai t        i nt ,     - -  j obs i n page wai t  
        nsl eepcor e      i nt ,     - -  j obs s l eepi ng i n cor e  
        nswpr unnabl e    i nt ,     - -  swapped out  r unnabl e/ shor t  bl ock j obs 
        - -  r emai ni ng st at s ar e al l  i n uni t s of  pages 
        t ot al vm         i nt ,     - -  t ot al  v i r t ual  memor y 
        act i vevm        i nt ,     - -  act i ve v i r t ual  memor y 
        t ot al r mem       i nt ,     - -  t ot al  r eal  memor y i n use 
        act i ver mem      i nt ,     - -  act i ve r eal  memor y 
        t ot al shmem      i nt ,     - -  shar ed vi r t ual  memor y 
        act i veshmem     i nt ,     - -  act i ve shar ed vi r t ual  memor y 
        t ot al shr mem     i nt ,     - -  shar ed r eal  memor y 
        act i veshr mem    i nt ,     - -  act i ve shar ed r eal  memor y 
        f r eepgs         i nt ,      - -  f r ee memor y pages 
        PRI MARY KEY ( epoch)  
) ;  
 
cr eat e t abl e KMON_POSTGRES (  
        epoch           i nt ,     - -  epoch 
        t i me            f l oat ,   - -  t i mest amp,  i n seconds 
        t i mehi           i nt ,     - -  hi gh 32 bi t s of  t i me 
        t i mel o          i nt ,     - -  l ow 32 bi t s of  t i me 
        quer y           var char ( 1023) ,  - -  quer y st r i ng 
        PRI MARY KEY ( epoch)  
) ;  
 
cr eat e t abl e KMON_MEMBUCKETSTATS (  
        epoch           i nt ,     - -  epoch 
        t i me            f l oat ,   - -  t i mest amp,  i n seconds 
        t i mehi           i nt ,     - -  hi gh 32 bi t s of  t i me 
        t i mel o          i nt ,     - -  l ow 32 bi t s of  t i me 
        bucket si ze      i nt ,     - -  s i ze of  bucket  i n byt es 
        nused           i nt ,     - -  number  of  al l ocat i ons i n use 
        nf r ee           i nt ,     - -  number  of  f r ee al l ocat i ons 
        nr eqs           i nt ,     - -  number  of  r equest s made f or  t hi s s i ze buf  
        hi ghwat er        i nt ,     - -  hi gh wat er mar k 
        over f l ow        i nt ,     - -  number  of  al l ocat i ons beyond hi gh wat er mar k 
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        PRI MARY KEY ( epoch,  bucket si ze)  
) ;  
 
cr eat e t abl e KMON_MEMTYPESTATS (  
        epoch           i nt ,     - -  epoch 
        t i me            f l oat ,   - -  t i mest amp,  i n seconds 
        t i mehi           i nt ,     - -  hi gh 32 bi t s of  t i me 
        t i mel o          i nt ,     - -  l ow 32 bi t s of  t i me 
        t ype            var char ( 15) ,  - -  t ype as asci i  st r i ng 
        i t ype           i nt ,     - -  i t ype ( i nt eger  t ype)  
        nused           i nt ,     - -  num obj s of  t hi s t ype i n use 
        memused         i nt ,     - -  mem used by t hi s t ype ( KB)  
        del t amem        i nt ,     - -  change i n mem usage over  epoch 
        maxused         i nt ,     - -  maxi mum number  of  t hese obj ect s used 
        maxal l owed      i nt ,     - -  max number  of  t hese obj ect s al l owed t o exi st  
        nr eqs           i nt ,     - -  r equest s made f or  t hi s t ype over  t hi s epoch 
        l i mbl ocks       i nt ,     - -  #t i mes r equest s bl ocked hi t t i ng t he l i mi t  
        kmapbl ocks      i nt ,     - -  #t i mes r equest s bl ocked f or  ker nel  map 
        mi nsi ze         i nt ,     - -  mi n s i ze of  t hi s t ype 
        maxsi ze         i nt ,     - -  max si ze of  t hi s t ype 
        medi ansi ze      i nt ,     - -  medi an si ze of  t hi s t ype ( not  wei ght ed! )  
        PRI MARY KEY ( epoch,  i t ype)  
) ;  
 
cr eat e t abl e KMON_I NTRSTATS (  
        epoch           i nt ,     - -  epoch 
        t i me            f l oat ,   - -  t i mest amp,  i n seconds 
        t i mehi           i nt ,     - -  hi gh 32 bi t s of  t i me 
        t i mel o          i nt ,     - -  l ow 32 bi t s of  t i me 
        i nt r 0           i nt ,     - -  count  f or  i nt er r upt  0 
        i nt r 1           i nt ,     - -  count  f or  i nt er r upt  1 
        i nt r 2           i nt ,     - -  count  f or  i nt er r upt  2 
        i nt r 3           i nt ,     - -  count  f or  i nt er r upt  3 
        i nt r 4           i nt ,     - -  count  f or  i nt er r upt  4 
        i nt r 5           i nt ,     - -  count  f or  i nt er r upt  5 
        i nt r 6           i nt ,     - -  count  f or  i nt er r upt  6 
        i nt r 7           i nt ,     - -  count  f or  i nt er r upt  7 
        i nt r 8           i nt ,     - -  count  f or  i nt er r upt  8 
        i nt r 9           i nt ,     - -  count  f or  i nt er r upt  9 
        i nt r 10          i nt ,     - -  count  f or  i nt er r upt  10 
        i nt r 11          i nt ,     - -  count  f or  i nt er r upt  11 
        i nt r 12          i nt ,     - -  count  f or  i nt er r upt  12 
        i nt r 13          i nt ,     - -  count  f or  i nt er r upt  13 
        i nt r 14          i nt ,     - -  count  f or  i nt er r upt  14 
        i nt r 15          i nt ,     - -  count  f or  i nt er r upt  15 
        i nt r 16          i nt ,     - -  count  f or  i nt er r upt  16 
        i nt r 17          i nt ,     - -  count  f or  i nt er r upt  17 
        i nt r 18          i nt ,     - -  count  f or  i nt er r upt  18 
        i nt r 19          i nt ,     - -  count  f or  i nt er r upt  19 
        i nt r 20          i nt ,     - -  count  f or  i nt er r upt  20 
        i nt r 21          i nt ,     - -  count  f or  i nt er r upt  21 
        i nt r 22          i nt ,     - -  count  f or  i nt er r upt  22 
        i nt r 23          i nt ,     - -  count  f or  i nt er r upt  23 
        i nt r 24          i nt ,     - -  count  f or  i nt er r upt  24  
        i nt r 25          i nt ,     - -  count  f or  i nt er r upt  25 
        i nt r 26          i nt ,     - -  count  f or  i nt er r upt  26 
        i nt r 27          i nt ,     - -  count  f or  i nt er r upt  27 
        i nt r 28          i nt ,     - -  count  f or  i nt er r upt  28 
        i nt r 29          i nt ,     - -  count  f or  i nt er r upt  29 
        i nt r 30          i nt ,     - -  count  f or  i nt er r upt  30 
        i nt r 31          i nt ,     - -  count  f or  i nt er r upt  31 
        i nt r 0r           i nt ,     - -  r at e f or  i nt er r upt  0 
        i nt r 1r           i nt ,     - -  r at e f or  i nt er r upt  1 
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        i nt r 2r           i nt ,     - -  r at e f or  i nt er r upt  2 
        i nt r 3r           i nt ,     - -  r at e f or  i nt er r upt  3 
        i nt r 4r           i nt ,     - -  r at e f or  i nt er r upt  4 
        i nt r 5r           i nt ,     - -  r at e f or  i nt er r upt  5 
        i nt r 6r           i nt ,     - -  r at e f or  i nt er r upt  6 
        i nt r 7r           i nt ,     - -  r at e f or  i nt er r upt  7 
        i nt r 8r           i nt ,     - -  r at e f or  i nt er r upt  8 
        i nt r 9r           i nt ,     - -  r at e f or  i nt er r upt  9 
        i nt r 10r          i nt ,     - -  r at e f or  i nt er r upt  10 
        i nt r 11r          i nt ,     - -  r at e f or  i nt er r upt  11 
        i nt r 12r          i nt ,     - -  r at e f or  i nt er r upt  12 
        i nt r 13r          i nt ,     - -  r at e f or  i nt er r upt  13 
        i nt r 14r          i nt ,     - -  r at e f or  i nt er r upt  14 
        i nt r 15r          i nt ,     - -  r at e f or  i nt er r upt  15 
        i nt r 16r          i nt ,     - -  r at e f or  i nt er r upt  16 
        i nt r 17r          i nt ,     - -  r at e f or  i nt er r upt  17 
        i nt r 18r          i nt ,     - -  r at e f or  i nt er r upt  18 
        i nt r 19r          i nt ,     - -  r at e f or  i nt er r upt  19 
        i nt r 20r          i nt ,     - -  r at e f or  i nt er r upt  20 
        i nt r 21r          i nt ,     - -  r at e f or  i nt er r upt  21 
        i nt r 22r          i nt ,     - -  r at e f or  i nt er r upt  22 
        i nt r 23r          i nt ,     - -  r at e f or  i nt er r upt  23 
        i nt r 24r          i nt ,     - -  r at e f or  i nt er r upt  24  
        i nt r 25r          i nt ,     - -  r at e f or  i nt er r upt  25 
        i nt r 26r          i nt ,     - -  r at e f or  i nt er r upt  26 
        i nt r 27r          i nt ,     - -  r at e f or  i nt er r upt  27 
        i nt r 28r          i nt ,     - -  r at e f or  i nt er r upt  28 
        i nt r 29r          i nt ,     - -  r at e f or  i nt er r upt  29 
        i nt r 30r          i nt ,     - -  r at e f or  i nt er r upt  30 
        i nt r 31r          i nt ,     - -  r at e f or  i nt er r upt  31 
        PRI MARY KEY ( epoch)  
) ;  
 
cr eat e t abl e KMON_SUMSTATS (  
        epoch           i nt ,     - -  epoch 
        t i me            f l oat ,   - -  t i mest amp,  i n seconds 
        t i mehi           i nt ,     - -  hi gh 32 bi t s of  t i me 
        t i mel o          i nt ,     - -  l ow 32 bi t s of  t i me 
        nct xsw          i nt ,     - -  #cont ext  swi t ches 
        nt r aps          i nt ,     - -  #cal l s t o t r ap( )  
        nsyscal l s       i nt ,     - -  #syscal l s 
        nhwi nt r s        i nt ,     - -  #devi ce i nt er r upt s 
        nswi nt r s        i nt ,     - -  #sof t war e i nt er r upt s 
        nf aul t s         i nt ,     - -  t ot al  #f aul t s t aken 
        vmcachel ookups  i nt ,     - -  VM obj ect  cache l ookups 
        vmcachehi t s     i nt ,     - -  VM obj ect  cache hi t s 
        vmcachehi t r at e  f l oat ,   - -  VM obj ect  cache hi t  r at e ( %,  f l oat i ng- poi nt )  
        naddr memf aul t s  i nt ,     - -  #" addr ess memor y"  f aul t s 
        ncows           i nt ,     - -  #COWs 
        nswapi ns        i nt ,     - -  #swapi ns 
        nswapout s       i nt ,     - -  #swapout s 
        npswappedi n     i nt ,     - -  #pages swapped i n 
        npswappedout     i nt ,     - -  #pages swapped out  
        npagei ns        i nt ,     - -  #pagei ns 
        npageout s       i nt ,     - -  #pageout s 
        nppagedi n       i nt ,     - -  #pages paged i n 
        nppagedout       i nt ,     - -  #pages paged out  
        npf bl kt r ansi t    i nt ,     - -  #pf aul t s bl ocked b/ c r eq' d page i n t r ansi t  
        npr eact i vat ed   i nt ,     - -  #pages r eact i vat ed f r om t he f r ee l i s t  
        c l ockhandr evs   i nt ,     - -  r evol ut i ons of  t he c l ock hand 
        pagedemonscans  i nt ,     - -  scans i n pageout  daemon 
        pf r eeddaemon    i nt ,     - -  pages f r eed by daemon 
        pf r eedpr ocs     i nt ,     - -  pages f r eed by exi t i ng pr ocesses 
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        pzf od           i nt ,     - -  pages zer o- f i l l ed- on- demand 
        nzf od_cr eat ed   i nt ,     - -  # of  zf od pages cr eat ed ( not  necc.  f i l l ed)  
        nker npgs        i nt ,     - -  #pages i n use by ker nel  ( snapshot )  
        f r eet ar get       i nt ,     - -  t ar get  #of  pages t o keep f r ee ( snapshot )   
        mi nf r ee         i nt ,     - -  mi n # of  pages t o keep f r ee ( snapshot )  
        npf r ee          i nt ,     - -  # of  f r ee pages ( snapshot )  
        npwi r ed         i nt ,     - -  # of  wi r ed pages ( snapshot )  
        npact i ve        i nt ,     - -  # of  act i ve pages ( snapshot )  
        i nact i vet ar get   i nt ,     - -  t ar get  #of  pages t o keep i nact i ve ( snapshot )  
        npi nact i ve      i nt ,     - -  # of  i nact i ve pages ( snapshot )  
        PRI MARY KEY ( epoch)  
) ;  
 
cr eat e t abl e KMON_SYSCALL (  
        epoch           i nt ,     - -  epoch 
        t i me            f l oat ,   - -  t i mest amp,  i n seconds 
        t i mehi           i nt ,     - -  hi gh 32 bi t s of  t i me 
        t i mel o          i nt ,     - -  l ow 32 bi t s of  t i me 
        name            var char ( 40) ,  - -  syst em cal l  name ( asci i  st r i ng)  
        num             i nt ,     - -  syst em cal l  number  
        pi d             i nt ,     - -  pi d of  pr ocess i ssui ng syst em cal l  
        ar g1            i nt ,     - -  ar gument  #1 t o syst em cal l  
        ar g2            i nt ,     - -  ar gument  #2 t o syst em cal l  
        ar g3            i nt ,     - -  ar gument  #3 t o syst em cal l  
        ar g4            i nt ,     - -  ar gument  #4 t o syst em cal l  
        r val             i nt ,     - -  r et ur n val ue of  syst em cal l  
        er r no           i nt ,     - -  er r or  ( er r no)  set  by syst em cal l  
        el apsedt i me     f l oat ,   - -  el apsed t i me f or  syst em cal l  i n seconds 
        PRI MARY KEY( epoch,  t i mehi ,  t i mel o)  
) ;  
 
cr eat e t abl e KMON_PCHI ST (  
        epoch           i nt ,     - -  epoch 
        t i me            f l oat ,   - -  t i mest amp,  i n seconds 
        t i mehi           i nt ,     - -  hi gh 32 bi t s of  t i me 
        t i mel o          i nt ,     - -  l ow 32 bi t s of  t i me 
        f nname          var char ( 40) ,  - -  f unct i on name ( asci i  st r i ng)  
        nt i cks          i nt ,     - -  #pr of i l i ng t i cks accumul at ed dur i ng epoch 
        t i mef r ac        f l oat ,   - -  %t i me spent  i n t hi s f n dur i ng t he epoch ( f p)  
        PRI MARY KEY( epoch,  f nname)  
) ;  
 
cr eat e t abl e KMON_APACHE (  
        seqno           i nt ,     - -  r equest  sequence number  
        r espt i me_c      f l oat ,   - -  r esponse t i me f or  ser vi ng r equest ,  w/ cl ose 
        r espt i me_noc    f l oat ,   - -  r esponse t i me f or  ser vi ng r equest ,  w/ o c l ose 
        f i r st epoch      i nt ,     - -  f i r st  epoch i n whi ch r equest  was act i ve 
        l ast epoch       i nt ,     - -  l ast  epoch i n whi ch r equest  was act i ve 
        f name           var char ( 255) ,  - -  r equest ed f i l ename 
        PRI MARY KEY( seqno)  
) ;  
        


