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Almudena Konrad, Anthony D. Joseph

Abstract tocols depends on the characteristics of the network con-
ditions. Designers of such algorithms and protocols make
In this paper, we present a novel approach that en- assumptions about the way in which a particular network
ables network researchers to quickly select the most ac-characteristic varies and encode these assumptions into the
curate modeling and analysis method for a given wired or algorithms.
wireless network path and network characteristic of inter-
est €.g, delay, loss, or error process). Amongst the net-
work models that our approach includes in its analysis are
two data preconditioning models that we have developed
as a part of theTapasproject, an investigation into new
approaches for accurately modeling and analyzing the be-
havior of various time-varying network path characteris-
tics. Traditional modeling approaches, such as Discrete
Time Markov Chains (DTMC) are limited in their ability
to model time-varying characteristics. This problem is ex-
acerbated in the wireless domain, where fading events cre-
ate extreme burstiness of delays, losses, and errors on wire
less links. We introduce a new approach to the modeling of
network characteristics, the data preconditioning method-

For example, a detailed understanding of the packet loss
process and burstiness of errors is necessary for the proper
design and parameter tuning of error control protocols, such
as Automatic Repeat reQuest (ARQ) protocols. Another ex-
ample is modeling end-to-end delay in the Internet, a pro-
cess that becomes significantly more complex when the net-
work includes a wireless link. For real-time one-way or
two-way audio/video applications, system and human per-
ceptual tolerances dictate maximum acceptable transmis-
sion delays. One-way application delays are bounded by
the willingness of a human to wait for playback to begin
‘and by system resource limitations on the size of a reason-
able playback buffer, while for two-way applications, de-

| q t the latest licati f thi thodol lays are bounded by human interaction constraints of 200
ology, and present he latest application ot this methodol- ;isaconds. In both types of applications, data packets

o ) 3 .
gy, thWOd'f'ed hidden M_arkov Mode@M_ ) Ou_r domain with greater delays are discarded since they are no longer
analysis methodology defines and classifies binary networkuseful_ The testing of the behavior of multimedia applica-

traces (.e., traces which describes the occurrence or the ;o\ o qar varying delay conditions depends upon an ac-

lack of oceurrence of a networl_< event over time), and using urate modeling of the delay behavior of the network under
these classifications, it determines the most accurate modefest

or models from a set of models.

Thus, we are led to one of the most important problems
in statistics: the choice of an appropriate model for char-
acterizing a given dataset. We encounter this same prob-
lem in computer networks, where many design decisions
are the results of some chosen simulation parameters and

Perhaps the most common method for evaluating appli-models. Floyd and Kohler [6] argue that the use of inaccu-
cation and network protocol designs while they are under rate models in computer networks leads to flaws in Internet
development is the use of network link simulation and em- research. In analyzing computer networks, researchers are
ulation. Simulation and emulation are low-cost techniques faced with measurements whose characteristics experience
that enable networking researchers to quickly, and in a re-non-stationarity (time variability) and complex patterns due
peatable manner, explore the behavior of a network or appli-to a large number of factors, including both internal network
cation protocol under a variety of network conditioesy, elements and external events. Often, it is difficult to iden-
varying loss, delay, and error conditions). However, the be- tify and thus, accurately model, the causes of these patterns.
havior and thus, the results and performance, of many pro-However, classical models have often worked surprisingly
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couldn’t be transmitted through a noisy wireless channel)
or network metrics being examined, has resulted in datasets
that cannot be adequately characterized or modeled using
classical techniques. In this paper we introduce a new mod-
eling methodology, a data preconditioning technique which
takes into consideration the time varying statistical proper-
ties of today’s networks.

The traditional approach to modeling networks is the use
of a classical network model, such as a Bernoulli, Gilbert,
high-order Discrete Time Markov Chain (DTMC), or Hid-
den Markov Model (HMM). The choice of which model to
use is usually an ad hoc one, often without adequate consid-
eration of the statistical properties of each model. For ex-
ample, the Bernoullimodel is a memory-less process, which
means that the output value at each iteration is independent gigyre 1. Optimal frame size versus error
of the previous outputs. Thus, output values will be evenly  0del.
distributed in proportion to the model's probability value.

However, a network with bursty behavior would not experi-
ence a matching even distribution of outputs. So, it would

appear that for such a network, the Bernoulli model would gjts when assuming the error process is a Bernoulli pro-

actual characteristics. each error model, we generated an artificial trace of same
length as the original GSM trace and computed the optimal
1.1 The Role of Accurate Modeling frame sizes using each model. Using the Bernoulli model,

the optimal frame size was found to be 60 bytes,(a 71

The observation that different models may yield differ- percent decrease in performance relative to the actual op-
ent statistical characteristics from a network and metric un- fimum value). The Gilbert and'$ order Markov models
der investigation is important only if it is actually the case Yiélded optimal frame sizes of 150 and 180 bytes, respec-
that the use of an accurate modeé( one with the cor- tively. We then developed a data preconditioning algorithm,
rect distribution) is critical to the correct design of proto- the Markov-based Trace Analysis (MTA) algorithm, which
cols using simulation and emulation. However, we have More accurately models the error distribution in the GSM
already demonstrated the correctness of this belief in [3]. Network. Using the MTA error model, we generated an ar-
In that paper, we observed that a naive assumption aboutificial t_race that yielded an optimgl frame size of 219 bytes
the error model used for simulation during protocol de- (S€€ Figure 1). There are two important observations to
sign could lead to a poor choice of value for the protocol's derive from this figure: the Gilbert andBorder Markov
design parameters. In particular, we evaluated alternativemodels predicted higher throughput values than expected,
logical frame sizes to the fixed data frame size used by and performance of both for larger frame sizes is substan-
the semi-reliable protocol, Radio Link Protocol (RLP), in tially less than that of the actual trace. The increased per-
a Global System for Mobility (GSM) digital cellular data formance differences are relat.ively small in this case, how-
network. More specifically, we were interested in determin- €Ver, they could lead to questions about performance if the
ing the optimal logical frame size in poor signal coverage Systém is deployed and peak performance does not match
(i.e, worst case conditions), one that balances the headePredicted performance. The decreased performance dif-
and checksum overhead associated with each frame, witHerences are important because the overall protocol design
the time to retransmit an entire corrupted frame, to yield the Would most likely be a compromise between optimizing
maximum throughput. Notice that the distribution of errors Performance under both poor and good conditions. A de-
(e.g, bursty versus more even) will affect the choice of opti- Signer who knows that performance under poor conditions
mal frame size, since bursty errors favor larger frame sizes,would only be slightly reduced by increasing the frame size
while evenly distributed errors favor smaller frame sizes. ~ could choose a larger frame size, and increase overall per-

To summarize our work in [3], we collected radio link formance with a small penalty for poor conditions.
error traces from a commercial GSM network, calculated  While the results in [3] were specific to a particular net-
the throughput for different frame sizes, and determined work link and its loss process, in this paper, we generalize
that 210 bytes is the optimal frame size value for maxi- and apply our research to a broad spectrum of loss and delay
mum throughput (see Figure 1). We then compared the re-networks path traces collected from three different types of



Trace | Frames | FER | Lesp, EFeup, Lien | C | 2 Defining and Classifying Binary Network
Pl 360,385] 0.027] 0.034,0.099,0.82] 1 Path Traces

P2 331,021] 0.050| 0.002,0.099, 0.11] 82

P3 155,889 0.064| 0.057,0.099,0.79] 1

We define binary network path traces as sequences of 0’s

WLANE | 288,804| 0.063| 0.044,0.099,0.34] 5 and 1's, where a 1 denotes the occurrence of a specific event

WLAND | 188,436| 0.293| 0.046, 0.005, 0.414 41 in the network path, while a 0 denotes the lack of the event.
GSME 616,404| 0.055| 0.005,0.056,0.41) 23 For example, a 1 could represent a lost or dropped packet,
GSMD 2,579 0.055] 0.002,0.028,0.95 31 while a 0 could represent a correctly received packet. In [4],

we used the Runs Test developed by Bendat and Piersol [2]
to show that GSM binary error traces are locally stationary
binary time series [8], consisting of regions that experience
various statistical behaviors. In this paper, we extend that
work by analyzing and modeling several types of network
path traces. In particular, we analyze traces that capture the
following events: IP packet losses, wireless frame errors,
and packet delays. In a loss trace, a 1 signifies a lost packet,

ired and wirel K dth | chall fwhile in an error trace, a 1 denotes a corrupted frame, and
wired and wireless networks, and the general challenge ofy, 5 delay trace, a 1 means that the packet or frame arrived

dom]:aun angl;;_ssr:ﬂoobsn;g the ";OSt a%propnate mogel t% with a delay greater than some maximum threshol@o
USZ ?: mode !”Qt e T aviororan ar |trary Ine(;[worl pa:j generalize all these cases, whenever we encountera 1 in a
and characteristicWe also revisitour previously developed o, et or frame trace, we will refer to it as anor frame

_detltadprecondltlonlng e:lhgo:;hr;,f_ tgeh_l\élgA a,\l/?orll(thm'\,/l agdl We define the Frame Error Rate (FER) as the overall per-
|||1v|r30 ulce f_ithnew \(/)Vne';h N ho ' 'ﬁ Id en Mar OIV viode centage of frames (or packets) that have errors (or losses, or
(M?) algorithm. We then show how domain analysis can delays) relative to the total number of frames (or packets) in
be used to choose a network model that best represents th trace
characteristics of a given network path, a metric of interest, : . . .
. To understand the effectiveness of domain analysis for a
and scenario. g
broad set of network types and metrics, we analyzed traces
Overall, as we will show in this paper, the results are collected under various scenarios from several networks and

that classical models perform well for modeling some wired at different protocol layers (see Table If.1is aloss trace
network paths, but surprisingly, not all. However, classical collected by Yajniket al. [15] during an uncongested IP
models are insufficient for modeling modern wireless net- connection from Massachusetts to Swed#h2 andIP_3
work paths. In part, this is due to the more complex, bursty are IP loss traces collected by Wenyu Jiang at Columbia
behavior of these networks. We confirm this property of University (CU).IP_2 was collected during an uncongested
classical models in a detailed exploration of their behav- connection from CU to GMD (the German National Re-
ior in modeling a synthetic network in Section 8. The data Search Center for Information Technology), aifd3 was

preconditioning models are better at capturing the loss andcollected during an uncongested connection from CU to the
delay behavior of networks, but are still lacking in some University of Massachusett8/LANE was collected under
areas. good signal quality conditions from an IEEE 802.11b wire-
less LAN testbed at the Technical University of Berlin by
The rest of this paper is structured as follows. In Sec- Andreas Willig [14]. We collecte@SM.E under poor sig-
tion 2, we define binary network traces and review the con- nal quality conditions at the Circuit-Switched Data (CSD)
cept of stationarity. In Section 3, we discuss traditional radio link layer of a GSM wireless data cellular network at
modeling techniques, followed by a discussion of related the UC Berkeley campus. We also collec&&MD and
work in Section 4. In Section 5, we review our data pre- WLAND at the transport layer using UDP over a poor sig-
conditioning technique and two algorithms based on this nal quality GSM CSD link and a good signal quality IEEE
technigue. We present our approach to evaluating model ac802.11b network at the UC Berkeley campus, respectively.
curacy and our modeling methodology in Section 6, and in These two traces were collected to analyze the delays in-
Section 7, we apply we apply these techniques to two typestroduced in applications by various wireless networks. For
of network path traces collected from seven different net- GSMD, the delay threshold was chosen to be 2 seconds,
works. We introduce our domain of applicability selection
teChmque In SeCtI.on 8 and .use itto .evaluate the behaV|o_r Ofinterest and it indicates the delay value for which packets will be dropped
the various modeling techniques. Finally, we conclude with py the application.
Section 9. 2We are still in the process of collecting additio@SMD traces.

Table 1. Collected traces and their character-
istics: number of frames, Frame Error Rate
(FER), the variables (Leyp, EFesp, Laen), and
the change of state variable, C.

1The threshold value is dependent upon the particular application of



2.1 Stationarity of Network Path Traces
Lossy State  Error—free State  Lossy State

_C. c In the Tapas project, we collect and model network path
..100011100...0 00000...0000 1111011100...0 ... measurements in the form of binary traces of losses, errors,
and delays as described in Section 2. Consider a trace to be
the proces$X,, | n > 0} with a discrete spacE = {0, 1}.

A processX,, is strictly stationaryif the distribution of
(Xp+1, ., Xpyr) is the same as that d¢fX, ..., X},) for
eachp andk. X, is second-order stationarif the mean
my, = E(X,) is constant (independent 9, and the auto-
covariance only depends on the differerictor all n (i.e.,
while for WLAND, we chose a delay threshold of 20 mil- Cov(k,n) = Cov(X,,Xn —k) = Cov(k)). Given a
liseconds. Note that the delay statistics obtained$MD second-order stationary binary time series, the process
andWLANLD are the results of the effects from two links: canbe modeled as a homogeneous DTMCs, where the value
the delays due to the radio link layer between the sender andf the chain at time: is determined by the memory of the
the base station in the GSM or access point in the 802.11kprocess [8]. In a homogeneous DTMC, the transition prob-
network and the delays caused by the IP network. Analyz-abilities remain constant over time,g(, Pr(X,+1 = j |
ing each link in isolation might yield different models for X, =i) = Pr(X, = j | X; = i)).
each link. However, in this paper, we only analyze the end- However, checking a binary trace for second-order sta-
to-end effects as a superposition of the effects from the twotionarity is mathematically challenging, and, we believe,
links. In future work, we plan to explore the differences, if not necessary for network modeling. Thus, we define a bi-
any, between the composition of individual models and the nary trace astationarywhenever the statistical properties,
generation of a superposition model. Finally, we are in the such as mean, median or standard deviation do not vary over
process of collecting and analyzing loss and delay traces intime for small window sizes €., values ofk). The require-
a General Packet Radio Service (GPRS) GSM network andment on the window size to be small is necessary to be able
a Code Division Multiple Access (CDMA) 1xRTT wireless to apply high-order DTMCs, where the transitions probabil-
data network. ities do not vary over time.
) As mentioned above, we observe that empirical network

We analyzed the traces in Table 1 and observed that thesgraces are non-stationary, since the traces’ statistical prop-
traces can be decomposed into clusters of 1's and 0's, angyties vary over time. However, these traces exhibit local
long clusters of just 0's. We associate these clusters Withstationarity (e, a non-stationary data set composed of de-
lossy states and error-free states (see Figure 2), by delineaigrministic regions and small stationary regions). In this pa-
ing the_trace into states (clusters) \_Ni_th lossy states beginningper, we show that neglecting the non-stationary aspects of
with a first element of 1 and containing bursts of 1's and 0's. network traces and attempting to fit traditional models onto
A lossy state ends with a burst of 0's of length equal t0 or these traces can lead to inadequate models that do not cap-
greater than @hange-of-statgariableC'. The next 0 ele- e the many possible patterns of the data and their distri-
ment following the burst of’ 0's begins an error-free state, pytion.
which is then terminated by the O preceding the next 1 ele-  \ye yse the Runs Test to analyze the stationarity of net-
ment in the trace. The value 6f is a design decision that \york path traces. The Runs Test computes the median run
we have defined as the mean plus one standard deviation; e error burst) value of the trace, divides the trace into
of the length of error bursts in a trace. In Section 5.2, we equal size segments, and plots a histogram of runs not equal
provide an analysis to optimize and justify the parameter C. i, the median value in each segment. Too few or too many

g i i f non-stationarity. If a trace is stationary.
We observe that the length distributions of lossy and runs Is a sign o Lo ’
error-free states can be approximated with an exponentialthe number of runs distribution between the 0.05 and 0.95

cut-offs will be close to 90 percent. The Runs Test can be

Figure 2. An error trace with lossy and error-
free states.

distribution function, where the smaller the exponential pa- .
rameter, the larger the average cluster length. Based or§ummar|zed as follows:
this observation, we characterize collected traces using a
tuple of three variable§L..p, EFeyp, Laen), WhereLeg,

and EF,,, are the parameters of the lossy and error-free

1. Define a run as a number of consecutive ones (also re-
ferred to as an error burst).

state length exponential distribution, aig.,, is the error 2. Divide the trace into segments of equal lengths (win-
density in the lossy staté.€., the probability of getting a 1 dow size).

inside a lossy state). Note the significant difference between

L 4., and the FER. 3. Compute the lengths of runs in each segment.
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Figure 4. Gilbert model state transition dia-
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Figure 3. The Runs Test applied to lossy sub-
trace. Figure 5. Bayesian Network of a 2nd Order
Hidden Markov Model.

4. Count the number of runs of length above and below preyiously. The Gilbert model predicts the state of the next
the median value for run lengths in the trace. frame by only considering the previously received frame.

5. Plot a histogram for the number of runs. As a result, the Gilbert model can only model relatively
, o _ short bursts of an event.
We applied the Runs Test @SME with window size of An alternative to the Gilbert model is &%Border Markov

60. Figure 3 shows that only 21.2 percent of the runs distri- model, a DTMC of order threei.€., with eight states).
bution lie between the 0.05 and 0.95 cut-offs, and 78.8 per-Compared to the Gilbert model, this model keeps track of
cent lays outside the left and right cut-offs. Thus, from the the status of the previous three frames, increasing its pre-
Runs Test, we conclude th@SM.E is a non-stationary pro-  diction accuracy at the cost of additional complexitg.(
cess for awindow size of 60. We also tested several windowthe model can model short and relatively long bursts of an
sizes, and observed that as the window size decreases thgvent). However, even with this increase in accura(:‘gl, 3
percentage of runs distribution between the boundary pointsorder Markov models don’t always accurately capture real
also decreases, (i.e., for smaller window SIGSME is network statistical characteristics (see Figure 1).
non-stationarity). For example, for a window size of 20,

only 12.3 percent of the runs distribution lie between the 3.2 The Hidden Markov Model

boundary points.

For the second model, we choose a HMM model because
3 Classical Markov Models many statisticians believe that the non-stationary charac-
teristic of empirical network traces makes Hidden Markov
In this section, we present the two types of classical Models (HMM) a good potential candidate to model net-
stochastic models for characterizing the statistical proper-work traces. In a HMM, each data pattern is associated
ties of network traces that we examine in this paper. One iswith a hidden state, giving the HMM its main advantage:
the Gilbert model, the well known and popular Markov pro- the ability to model non-stationary processes. The model
cess of memory one, and the second is the Hidden Markovparameters in a HMM are the transition probabilities be-
Model (HMM) [10]. We discuss the reasoning behind our tween hidden states, the memory of the process, and the

choices below. conditional probabilities of the observations given the cur-
rent state. In a HMM, the current observation is statisti-
3.1 The Gilbert Model cally independent of the previous observations and it only

depends on the current state, this is known as the output in-
We choose the Gilbert model because it is one of the dependence assumption. Figure 5 illustrates the Bayesian
most common models used for network simulation. The network [13] for the graphical representation of a HMM of
model is a DTMC of order one and has two states (see Fig-order 2, whereq, ..., s, ... represents the sequence of states
ure 4). In a network trace, the Gilbert model states cor- andy, ..., yx, ... represents the sequence of observation.
respond to the status of each data frafiel}, as defined We model network traces with a two-hidden-stafeat-



der hidden Markov model. The statéS;, S, } correspond  the error characteristics of a wireless channel and compare
to the lossy and error-free states defined in Section 2, whilean Independent and Identically Distributed (1ID) model to
the observation symbol§t;, Y2} correspond to the status the Gilbert model. Their work postulates that higher order
of the data framég0, 1}. We choose a high order of 4 to ac- models are not necessary.

count for possible correlations between consecutive states. In summary, the Tapas project addresses the modeling
Using an order greater than 4 improves accuracy slightly, of similar networks with non-stationary error and delay be-
but it significantly increases the computational complexity haviors, providing a new modeling methodology. Our work

of the model. is relatively novel in its approach of not only identifying
datasets with non-stationary behavior, but also identifying
4 Related Work stationary regions and modeling the entire dataset as a se-

guence of stationary components. We also focus on and
demonstrate the importance of accuracy in network model-

There is significant interest in the area of using network ing. In previous work [3, 4], we have shown how assum-

measurements to model network behavior. Howgver, _Ver_ying the wrong error distributions has led to incorrect design
few researchers address the problem of non-stationarity iNyecisions. For example, as we show in the introduction
petwork measurements. Zhaetgal. [16]. study stgtlongr|ty choosing an incorrect error model yields a suboptimal wire-
in the Internet and introduce a new notion of stationarity that less frame size. Based on this and other observations. we

is more relevant_ to net_work prop_er_ties. T_hey call a dat_""setargue that there is a need to develop methods for choosing
operational stationaryif the statistics of interest remain the most accurate modeling algorithms that best describe

W'thm. bound; Co.ns'(.jere.d operatlonally equ|valent: Th?" and handle time-varying real world network characteristics
most interesting finding is the observation that stationarity and their statistics

depends on the time scale that is used for evaluation. Others
have looked at the stationarity behavior of network traffic,
traffic stationarity For example, Molnaet al.[11] propose
a simple approach for identifying stationary intervals and
analyzing them independently. They introduce a new tech- As We will show, classical modeling approaches are in-
nique for identifying these intervals. Lelaetlal.[9] study ~ capable of capturing all of the complexities and charac-
the stationarity of self-similar models of network traffic. ~ teristics of some datasets. We introduce a new model-
Several researchers have applied traditional models tol"9 Methodology that supports a greater degree of behav-
the analysis of non-stationary data collected in computeriOf complexity in computer networks. We then describe
networks. In particular, they have used traditional models tWO instances of this methodology, the Markov-based Trace
to characterize the loss process of various channels. Bolof\nalysis (MTA) algorithm and the Modified hidden Markov
et al.[5] use a characterization of the loss process of audio Model (M?) algorithm.
packets to determine the appropriate error control scheme o
for streaming audio. They model the loss process as a two2-1 Data Preconditioning

state Markov chain, and show that the loss burst distribu- )
tion is approximately geometric. Yajniét al. [15] char- The search for a better method for creating accurate an-

acterize the packet loss in a multicast network by examin- alytical network models that take the non-stationarity be-
ing the spatial (across receivers) and temporal (across conbavior of networks into account leads us to propose a new
secutive packets) correlation in packet loss. Of particular Féséarch methodology. This methodology consists of the
interest is their modeling of temporal loss usingrg ar- analysis and preconditioning of dateforethe data is fed
der Markov chain. Yajnik's work identifies the problem of into traditional models. Intuitively, we use pattern recogni-
non-stationarity in their datasets, and they analyze the datdion to break down datasets that experience non-stationarity
by removing these parts of the data that experience nonJnto subsets that exhibit stationary behavior, and hence are
stationary error behavior. easier to accurately model with traditional models. For a
There is also related work in wireless traffic modeling. particular network characteristic, we follow the process il-
Nguyenet al.[12] present a two-state Markov wireless error lustrated in Figure 6. First, we identify data patterns that ex-
model {.e., Gilbert model), and develop an improved model hibit stationarity and suggest an underlying process consist-
based on collected Lucent 900 MHz WaveL AN error traces. ing of some number of states. Each state is associated with
Building on this work, Balakrishnan and Katz [1] also col- @ specific data pattern corresponding to a particular network
lected error traces from a Lucent 900 MHz Wavel AN net- behavio?. For example, for the network traces presented in
work and developed a two-state Markov chain error model. Section 2, we identified two distinct states: lossy and error-
Willig et al.[14] present a special class of Markov models, free. Second, we concatenate trace regions with same states

called bipartite models Zorzi et al. [17] also investigate 3Each network behavior has certain statistical properties.

5 Modeling through Data Preconditioning
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Trace l

Subtrace 1 FEFEErres o]
Subtrace2 [ ][ [ i
Subtrace 3  [EEBEIEY FEEAREEY /

Figure 6. Data Preconditioning: in this exam- T
ple a network trace is decomposed into three |
subtraces, each consisting of a concatena-
tion of a specific data pattern.

to form stationary subtraces of the original trace, (i.e., lossy
and error-free subtraces). These subtraces have the property Figure 7. The Runs Test applied to lossy sub-
that they can be modeled using a high-order DTMC. Note trace.

that there will be as many subtraces as states. Finally, we

use Markov models (or other similar modeling techniques)

to calculate the transition probabilities between states.

| Variable C' | Percentage]

This approach can be used to model very different
characteristics of datasets from collected network mea- 25 89.3
surements, including packet loss, end-to-end latency, or 24 90.7
throughput. In particular in this paper, we demonstrate how 23 90.5
this research methodology can be applied to significantly 22 91.5

21 91.4

improve the accuracy of the modeling of the error and delay
processes in wired and wireless networks.

Table 2. Percentage of runs distribution be-
tween boundary points for a range of  C val-

5.2 Optimizing the change-of-statgariable C
ues.

Animportant design desicion in our data preconditioning

methodology is the choice of tlehange-of-stateariable C. . o
Our goal is to construct subtraces that experience stationar- N€xt, in order to optimize the’ value, we developed an
ity for a given window size. In Section 2, we defined C as algorithm that takes an original non-stationary trace and it

the mean plus one standard deviation of the length of er-executes the Runs Test for a large rang&'ofalues. The
ror bursts in the trace. In this section we will analyze our 90al is to find the greatef’ value that yields a stationary

chooice on the value C, and we will provide an optimiza- 0SSy subtrace. o
tion algorithm to find the best possible value for C. We use ~ Table 2, shows the the percentage of runs distribution
between the boundary points for varialissalues between

GSME trace for our analysis. - : Mo
We first calculate the mean and standard deviation for 21 @nd 25. We are interested in obtaining the largesalue
the error burst length iIGSME. For this trace, the mean that gives 90 percent distribution. Table 2 illustrates that
value was found to be 6 frames and the standard deviatiorF100Sing any value smaller that 25 yield a stationary lossy
was 17 frames, yielding atate-of-changeonstant value subtrace. Therefore, our intituiticve choice of 23 was inside
C of 23 6 + 17) frames. With aC' value of 23, we form this optimal range of vall_Jes. !n fact, choosing @nyalue
lossy subtrace by first identifying lossy states, as described!0S€ t0 23 will yield stationarity.
Decreasing the window size in the Runs test, put more

in Section 2, and concatenating all lossy states together. To cLTeas ! ! )
prove that lossy trace is a stationary process we apply thgestriction in the stationary behavior. The smaller the win-

Runs Test described in Section 2.1. Figure 7 shows that 90.510W size, the smaller thé value would have to be to obtain
percent of the runs distribution lie between the 0.05 and 0.95Stationary subtraces.

cut-offs. Therefore, this result proves that lossy subtrace,

constructed with & value of 23, is a stationary process for 5.3 The Markov-based Trace Analysis Algorithm
a window size of 60. Recall in Section @SME only had

21.2 percent of the runs distribution between the boundary The basic concept behind the Markov-based Trace Anal-
ysis (MTA) algorithm [4] is that a trace can be decomposed

points.



into the lossy and error-free states described in Section 25.4 The Modified hidden Markov Model Algo-
The lossy states are concatenated to form the lossy sub- rithm
trace, while the error-free states are concatenated to form
the error-free subtrace. Lossy subtrace exhibits stationar- The Modified hidden Markov Model (#) modeling al-
ity and it can be modeled using a high-order DTMC. Next, gorithm is the most recent application of our data precon-
the MTA algorithm models lossy subtrace as a DTMC and ditioning methodology. Unlike the MTA algorithm, the M
computes the memory and transitions probabilities. algorithm is capable of modeling traces with two or more

The last step of the MTA algorithm is to determine the data patterns and non-exponential state length distributions.
best fitting distribution for the lengths of both lossy and Similar to a HMM, the M views each data pattern as a hid-
error-free states. MTA approximates the states’ lengthsden state, and it models the transition among states with
distribution using an exponential distribution function and a high order DTMC. Using the data preconditioning ap-
computes the exponential function’s parameters using a fit-proach, the M algorithm concatenates subtraces from each
ting function. The Cumulative Distribution Function (CDF) of the same hidden states encountered in the original trace to
of the empirical trace is plotted along with exponential dis- form subtraces, and then models each subtrace with a high
tributions with parameter values ranging from 0 to 1 in steps order DTMC. Intuitively, this new algorithm can be viewed
of 0.001. MTA then chooses the exponential parameter thatas a new type of hidden Markov process [10], where the out-
yields a CDF curve that is the best approximation to the em- putindependent assumptiomisttaken. Figure 8 shows the
pirical CDF curve. The best approximation is determined Bayesian network representation of & Model of order 2.
by calculating the correlation coefficient, as explained in In this diagram, we assume that o, sx—1, Sk, Sk+1, Sk+2
Section 6, between the original CDF curve and the expo-are the same hidden state and, if we have several hidden
nential approximations. states, each hidden state would generate a subtrace.

We define two random processes with a discrete space

E=1{0,1,2,..}: W
(s) s (8 ) ——(3) S

e Thelossy state lengtprocess{B,, | n > 0}, where = = \J = >
B,, represents the number of elements inithelossy \ \
state (i.e. the length of the state). M ! L g L

e The error-free state lengtlprocess{G,, | n > 0},
whereG,, represents the!” error-free statdength.

. . 3
The application of the MTA algorithm to an input trace Figure 8. Bayesian Network of a 2nd Order M

can be summarized as follows: Model.
1. Calculate the meam{,) and standard deviatiord.) In Section 2, we identified two hidden states in our net-
values for error burst lengths in the trace. work tracesi(e., the error-free and lossy states). Using this
2. SetC, thechange-of-stateariable, equal ton, + sd.. ?O?E)?/\C\slétlon’ we summarize the steps of thealgjorithm as

3. Partition the trace inttossy stateanderror-free state

portions using the following definitions: e Similar to the method used for MTA, Mirst identifies

the states in the original trace and it creates subtraces
e Lossy stateruns of 1’s and 0's, with the first el- by concatenating same states.
ement being a 1, and with runs of only 0’s that

have length less than or equal to tHe 1. Create lossy subtrace from the lossy state por-
tions of the error trace.

Error-free state runs of only O’s that have length
* y g 2. Model lossy subtrace as a DTMC, and calculate

reater thart'. . . e
g its order and transition probabilities.

4. Creatdossy sub-tracey concatenating the lossy state 3. Model the error-free state as a deterministic pro-
portions of the error trace. cess, where each elementis 0.

5. Modellossy sub-traceas a DTMC, and calculate its o Next, M? determines the transitions between error-free
order and transition probabilities. and lossy states:

6. Determine the best fitting exponential distributions for 1. Createstate trace This trace corresponds to the
the length processés,, andG.,. collected dataset(g, GSM.E trace), with lossy



states (as defined by the first step) replaced by all burst size) for each observedvalue (see Figure 9). Thus,
1's and error-tree states (as defined by the first the percentage reduction indicates the decrease in size of the

step) remaining all 0’s. mean error burst of an artificial trace relative to the mean
2 Model state trace as a DTMC. and calculate its €Tor burst of the reference trace. Figure 9 shows that an
order and transition probabilities. artificial trace with acc of 0.99, yields a mean error burst

of 160 frames or only an 8 percent reduction. Asdhéde-
In summary, the M algorithm applies traditional creases, the percentage of reduction increasescamadues
Markov process properties to local stationary data by iden-smaller than or equal to 0.96 will yield percentages greater
tifying stationary regions and modeling these regions and than or close to 50 percent. Based on these observations,

the transition between them using DTMCs. we choose to associate values smaller than or equal to
0.96 (.e., mean percentage reduction greater that 50 per-
6 Model Accuracy and Validation cent) with inaccurate models.

In this section, we provide three necessary mechanisms:
an approach for evaluating the accuracy of a particular
model, a method for determining the minimum size of a col-
lected trace that is necessary to extract model parameters for | Reference trace
a specific network, and a process for validating that the cre-
ated models are representative of a particular network path
scenario €.g, poor signal quality, uncongested, etc.) and
metric of interest.

B mean error burst

8%

i
=)
S

i
=
S

i
)
S

[N
o
S3

-3
S

6.1 Measuring Model Accuracy

@
S

Mean Error Burst (Frames)

We are interested in evaluating model accuracy for two
classical modeld.g., Gilbert and A order HMM) and two
data preconditioning algorithmsé., MTA and M?). Us- 1 o o098 097 096 095 0ol 05
ing each model with the collected traces in Table 1, we can Correlation Coefficient
generate artificial traces and compare each trace’s result-
ing statistics with the original traces’ statistics. We then  Figure 9. Mean error burst and percentage
need to quantify the accuracy of each model. We do this by  reduction for different correlation coefficient
first plotting the error and error-free burst Cumulative Dis-  values.
tribution Functions (CDF) for each artificial trace. Then, for
each trace, we calculate the correlation coefficiest [2]
between the error and error-free CDFs of artificial trace and
the CDFs of the original trace. We use theas a measure
of how closely each artificial trace approximates the origi-
nal trace. Acc of 1 signifies that the two traces experience
the same error or error-free statistics, whilecaf 0 indi-
cates no statistical correlation between the traces.

To better understand the relationship betweeralues
and model accuracy, we calculated the error burst statis-
tics of several generated traces and computed theigl-
ues for a given reference trace. First, we generated a ref-
erence trace with fixed set @Lc,p, EFeyp, Laen) values
of (0.006, 0.1, 1.0). Next, we generated artificial traces
by changing the valué.,, from 0.0065 to 0.02 in steps
of 0.0005, while keepin@@F,,, and L4, constantice.,
(EFegp, Laen) = (0.1,1)), and we computed the associ-
ated cc value for each artificial trace. Finally, using the
reference trace’s mean error burst size as a reference point
(i.e,, 173 frames), we plotted the mean error burst and its
percentage reduction (relative to the reference trace’s error

N
S

o

Figure 10. WLANE error path modeling: mean
and standard deviation correlation coefficient
values for different subtrace lengths.



Figure 11. GSME error path modeling: mean
and standard deviation correlation coefficient
values for different subtrace lengths.
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Figure 12. Error burst distribution for GSME

model.

6.2 Minimum Trace Length for Accurate Model-
ing

Another important aspect in the generation of accurate
models is determining the minimum trace length required

erence trace of 200,000 frames will generate 2 subtraces of
100,000 frames, 4 subtraces of 50,000 frames, 8 subtraces
of 25,000 frames, 16 subtraces of 12,500 frames, 32 sub-
traces of 6,250 frames, 64 subtraces of 3,125 frames, and
128 subtraces of 1,562 framese(, m = 7 is the maxi-
mum value that yields a subtrace length greater than 1,000
frames). Then, we calculate thevalue of each subtrace to
the reference trace. The value indicates the degree of sta-
tistical correlation between the subtraces and the reference
trace. As previously discussed,caof 0.96 or less signi-
fies an inaccurate model, therefore a subtrace with sueh a
value should not be used to obtain a model’s parameters.
As an example, we perform this analysis WiLANE
and GSME. First, we calculate theimaxEFB values
to be 81,493 and 20,447, respectively, and take the first
200,000 frames of each trace to construct the reference
traces,ref WLANE andref. GSME. We choosen 6,
which generates a total of 126 subtraces of similar and dif-
ferent lengths. For the reference traceEWLANE and
ref. GSME, Figures 10 and 11 illustrate the mean and stan-
dardcc values for each subtrace length. F88ME, sub-
traces of sizes as small as 25,000 frames yieldalues
greater than 0.96. Subtraces of size equal or smaller than
12,500 frames can givwe values greater that 0.96, but there
is a greater chance that tlee value will be smaller than
0.96. FOrWLANLE, any trace smaller than 100,000 frames
will have a high probability of having ac value smaller
than 0.96, and even the 100,000 length subtraces have some
likelihood of havingec values of 0.96 or less. From this
analysis, we conclude that given a particular path, the min-
imum length required to extract the model parameters is a
somewhat arbitrary choice that depends on the path’s typ-
ical maxEFB. A reasonable, safe length would be to use
a trace of length equal to or greater than the double of the
maxEFB. For WLANE, the doublednaxEFBis 162,986,
which is greater than 100,000 frames, the maximum sub-
trace length that we found in our earlier analysis. 6&M
the doubledmaxEFB is 40,894, and our analysis shows
than any length equal to or greater than 25,000 will lead
to accurate model parameters.

to precisely capture model parameters. To address this is-

sue, we provide the following analysis method. Given a
specific network path, scenario, and metric of interest, we
collect a very large traceg(g, a 200,000 frame trace repre-
senting over an hour's worth of data), we call this trace the
reference traceNext, we calculate the maximum error-free
burst fnax EFB) encountered in this trace. fiax EFB is
close to the size of the collected tra¢e.( 200,000 in this

6.3 Modeling Technique Validation

The final step in validating our modeling methodology is
to guarantee that a generated model is an accurate represen-
tation of the network path, and metric of interest for a given
scenarioi(e., will the model accurately describe the charac-
teristics of additional traces collected from the network path

case), then a larger trace must be collected. Once we havéor the same scenario?). To verify that the answer is yes, we

the typicalmax EFB and a reference trace of lengéf_len,
we divide this trace into subtraces of siZ&“", where
j=1,2,3,...,m. The maximum value of (i.e., m) is cho-
sen such that<" > 1,000 frames. For example, a ref-
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perform an experiment that determines the best model using
a subsection of areference trace, and then uses this model to
create an artificial trace. We then compare artificial trace’s
statistics to those of a different reference trace subsection



and to the entire reference trace itself. for the Gilbert and the HMM model are not good approxi-
We extracted 200,000 frames fro®@SME trace, and mations to the real distribution, therefore we may conclude
called this reference tradeB. We dividedAB into two sub- thatce values of 0.74 and 0.89 indicate poor correlations be-
traces of 100,000 frames each, and called these subthaces tween the artificial traces and the actual trace. On the other
andB. Next, we calculated the best model for subtréce hand, acc value of 0.99 yields a very good approximation.
using thecc metric to determine model accuracy (see Sec-  Tables 4 and 5 show the maximum, mean, and standard
tion 6.1). The M model yielded the highest value, there-  deviation values of the error and error-free bursts for the
fore we chose this model to create a 100,000 frame artificial original and artificial traces for each of the models. Note
traceM?,. that those models with mean values that are similar to the
To determine the accuracy of the statistics of artificial reference traces’ mean values in general have higheal-
trace,M?3, we calculated thec of the error burst and error-  ues.
free burst CDFs (see Section 6.1) betwd€nand traces\ Overall, the results show two important observations:
(0.98and 0.90)B (0.98and 0.95), andB (0.99and 0.93).  different models have varying degrees of success in cap-
The computed:c values betweeM? andA and between  turing the statistical properties of the networks, metric of
M3, andB are relatively close in value (especially for for interest, and scenario, and, as shown by the modeling of
error bursts), which indicates that the artificial trace gener- [P_2 andGSM.D, we still need better models for capturing
ated by M reasonably accurately models other regions of a network path behaviors. The Gilbert model performs well
reference trace. when modeling wired IP networks, however, surprisingly,
This analysis shows that our model generation techniqueit is not always accurate for IP networks.g, IP_2). The
is not biased by a particular section of a trace we are ana-HMM model accurately captures error bursts in some wired
lyzing, but rather it demonstrates that a captured trace cametworks, but is fairly inaccurate at modeling wireless net-
be used to accurately model the statistics of a particular netiworks. The data preconditioning models perform well at

work characteristic over a long period of time. modeling many of the networks, especially the error burst
portions. However, in general, as shown in Table 5, they are
7 Choosing the Best Network Path Model not as accurate in modeling the error free bursts. Note that

the same observation is true for both the Gilbert and HMM
In this paper we have presented two classical and tWomodels. We believe that future research should focus on

data preconditioning models that capture the error andoptimizing the modeling oboth error burst and error free

error-free statistics of network traces. In this section, we PUrSt behavior.

apply the model validation methods described in the previ-

ous section to the collected traces listed in Table 1. We show/.2 Model Computational Complexity

that the various models yield differing degrees of accuracy

when used to emulate a network path, metric of interest, and  Another important feature to consider when choosing a

scenario. Then, we compare the computational complexitynetwork model is the model's computational complexity.

and performance of the various models. One measure of the complexity of a model is its execution

time. For example, on a 1.8GHz Intel Pentium 4 proces-

7.1 Choosing Accurate Models for Collected sor, the modeling of th#P_1 trace took 8 seconds using the

Traces Gilbert model, 57 seconds using the HMM model, 7 sec-
onds using the MTA algorithm, and 59 seconds using M
For each of the collected traces in Table 1, we determinedNote that the M uses two B order DTMCs, resulting in

the model parameters for the two classical and two data pre-a total of 32 states. The HMM model consists of a single

conditioning models. We list theé: values for the error and 4t order DTMC, and it calculates the output according to

error-free bursts CDF of the traces, the best model choice the state. The cost of the HMM is similar to the’ Mhodel.

and the associated best averagevalue in Table 3. Ex- The MTA model consists of one smaffYorder DTMC for

amining the error burst CDEc values for theGSME trace modeling the lossy subtrace portion of the trace, while the

shows values for the Gilbert, HMM, MTA, and Mmodels Gilbert model uses one Iargétbrder DTMC for modeling

of 0.74, 0.89, 0.99, and 0.99 respectively. As we discussecdthe original trace. The MTA model has a lower computa-

in the previous sectioree values less than or equal to 0.96 tion cost than the Gilbert because it only needs to calculate

indicate models that poorly capture the statistics of the net-the transition probability for the lossy subtrace, which is a

work and metric being investigated. To better clarify the much smaller trace than the original trace. Overall, we ob-

differences between @ of 0.99 and acc of 0.74, we plot  serve that the Mis the highest cost model.

the error burst CDF for th&SME trace models in Fig- Thus, the choice of model may also depend on the type

ure 12. Examining this figure, we can see that the CDFsof simulation being done. If a trace can be generated in
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| Trace | Gilbert | HMM | MTA [ M? | BestModel | Best Averagecc |
IP_1 0.99 0.98] 0.99 0.66 0.72,0.95| 0.99 0.98 | Gilbert or M 0.990r0.99
IP_2 0.92,0.81] 0.19,0.68| 0.95,0.62| 0.98 0.94 [YE 0.96
IP_3 0.990.99| 0.980.75| 0.76,0.96| 0.99 0.98 Gilbert 0.99
WLANE | 0.92,0.74| 0.73,0.51| 0.990.87| 0.99 0.73 MTA 0.93
WLAND | 0.93,0.80| 0.29,0.37| 0.99 0.54| 0.98 0.95 M3 0.97
GSME 0.74,0.92| 0.89,0.92| 0.99 0.96 | 0.99 0.94 MTA 0.98
GSMD 0.27,0.74| 0.71,0.96| 0.91,0.84| 0.82,0.82 MTA 0.88

Table 3. Artificial traces, their correlation coefficient (error burst CDF, error-free burst CDF), best
model(s), and average correlation coefficient for best model(s).

| Trace | Original | Gilbert | HMM | MTA | M3 |
IP_1 23,1,0 51,0 7,1,0 62,4,4 13,1,0
IP_2 6374, 2, 80 4,1,0 594,102,103| 37,2,4 169, 2,9
IP_3 13,1,0 51,0 7,1,0 34,3,3 10,1,1
WLANE 42,2,3 | 4,1.67,0.54| 140,13,15 | 23,2,2| 28, 2.68, 2.68
WLAND | 2212, 4, 37 8,11 1448, 194, 206 61,4, 6 122,4,8
GSME 626,6,17 | 6,1.86,0.40] 124,16,16 | 44,5,6| 72,6.37,8.21
GSMD 38,20,11 2,1.5,0.87 36,12,12 7,3,3 52,26,18

Table 4. Original and artificial traces’  error burststatistics: maximum, mean, and standard deviation.

advance, model complexity will be less of an issue. How- burst type. For example, in Table 3 for tHe 1 trace, the

ever, for real-time trace generation, developers may need tdGilbert, the HMM, and the M models give ac for the error

consider both the complexity and the accuracy of a model. burst distribution of 0.99, however, tlee for the error-free
burst distribution in the HMM is only 0.66.

To generate artificial traces for our exploration of domain
analysis, we first choose three fixed values for the parame-

In this section, to better understand the behavior of ter La., 0f 0.2, 0.4, and 0.7, while for the.,, and EF,,

each of the four models, we observe them while they at- parameters, we vary the values of each from 0.001 to 0.1

tempt to capture the properties of a synthetic network. in steps of 0.001. We use the fixdd.,, values to gener-

We first use the three parameters for classifying tracesate Bernoulli process-based random errors inside the lossy
(Lewp; EF.0p, Laen, defined in Section 2) to capture the state. Note that this means that inside a lossy state the occur-
properties of a synthetic network and network characteris-rence of errors are memoryles®( the next frame’s value

tic of interest, and then identify the domain of applicability doesn’t depend on the previous frame’s value). The effect

for each modelfor a given characteristic of a trace, which  Of using a Bernoulli process to generate errors is, for small

model performs best at modeling that characteristic? values ofL .., that it biases the domain analysis results to-
wards the simpler Gilbert model, instead of more complex

higher order models. However, as the valyg,, increases,

so does the likelihood of occurrence of multiple consecu-
tive error; and thus, the bias switches towards higher order
models being better choices. Since most real network traces
will experience some degree of memory, using them for do-
main analysis would yield results that were almost always

8 Determining the Domain of Applicability

8.1 Generating Artificial Traces

We answer this question with the following process, we
begin by generating artificial traces (using a method de-
scribed below) for various values dif.,,, EF.;,, and

L4.n. Next, for each model and each trace, we calculate biased g based dels. Th
the cc for the error and error-free burst CDFs, and the av- lased towards memory process-based models. us, we

erage value of these twa: values. Note that the accuracy choose an artificial trace generation method that will allow
of the cc for the error bursts CDF is equally as important us to explore the full range of domain analysis and results.

as the accuracy of the error-free burst CDF. However, one  We determine the lossy and error-free bursts lengths
could add a weight to either one depending on the impor-by using the inverse transformation method [7]. Given a
tance of obtaining the correct distribution accuracy for each random variableX with a CDF F(z), the variableu is
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| Trace | Original | Gilbert | HMM | MTA | M3 |

IP1 977,40,70 383,121,90 3500,1033,791 260,55,46 486,156,118
IP_2 3079,50,193 404,239,195 | 5973,1400,1220 15205,3743,325]1 5769,325,489
IP_3 607,17,27 146,81,66 678,254,193 149,45,38 240,68,51

WLANE | 81493,42.00,130¢ 393,195,159 1799,415,356 331,63,53 2689,219,258
WLAND 5893, 11, 132 148,50,40 | 2295, 1724,1558 2094,294,305| 1830, 42,90

GSME 20447,114,550 888,535,438 3258,654,563 2927,477,420 | 3453,574,550
GSMD 907,347,253 | 1107,2805,227) 523,674,488 2160,4516,3528 864,1688,1194

Table 5. Original and artificial traces’  error free burststatistics: maximum, mean, and standard devia-
tion.

uniformly distributed between 0 and 1. We can gener- 8.2 Model Statistical Accuracy

ate a sample value oX by generating: and calculating

x = F~!(u). For an exponential function with parameter In this section, we explore the statistical accuracy of an-
a,u = F(r) =1-e ", Thus, we can determinefrom alytical models for describing a network characteristics. In

z = —In(u)/a. particular, we evaluate two well-known classical models
We summarize the algorithm for generating an artificial and our two data preconditioning models by analyzing Do-
trace as follows: main Applicability Plot (DAP) diagrams.

Figures 14, 15, and 16 show the DAPs for,,, values of
1. Choose the number of frame, to generate in the 0.2, 0.4, and 0.7, respectively. Observe that/fgy, = 0.2
artificial trace. (see Figure 14), the Gilbert model is best for a large portion
of the graph. The result is as we expected because of the
2. The algorithm repeats the following steps until&ll ~ use of a Bernoulli process to generate losses in the lossy
frames have been generated: state. Here, the error burst length is relatively small. As a
result, for a large portion of points in this plot, the Gilbert

(a) Determin@len, the error-free state |ength from model is the Optlmal choice. HOWeVer, as the probablllty of

the error-free state length distributione(, ex- error in the lossy statg,,,, increases, the error burst length
ponential distribution function with parameter increases and thus, the region occupied by the Gilbert model
EF,,,). decreases and the3\ind MTA become better choices.

) Further examination of the results shows that the mean
(b) Determineb;.,, the lossy state length from the  ..\a\ue in this area for the Gilbert model is 0.99, while for
lossy state lengthistribution (.., exponential  thi5 same region the meaavalue for thed/* model is 0.98

distribution function with parametdr.., ). (see Table 6). Thus, while the Gilbert model yields the best
(c) Generatey.,, error-free framesif., a sequence  results, thed?* also performs very well for this “optimal-
of “0” of length gen). Gilbert” region (see Section 6 for an explanation of the rela-

_ tionship betweenc values and a model’s accuracy). For the
(d) Generaté,., frames, where each frame is an er- region where tha/? is optimal (the “optimaldZ>” region),
ror frame with probabilityZ se.. the meare value for thed/® model is 0.97, while the mean
cc for the Gilbert model in this region is 0.96. In Section 6,
In examining the artificial trace generator’s results, it is we showed thatc values smaller than or equal to 0.96 yield
important to consider that some of the parameter values exinaccurate models. Therefore, we can conclude that, for this
plored by the trace generator are not found in real networks.network, anl 4., value of 0.2, using thé/3 model always
As a point of reference, Table 1 shows the parameter valuesjields highly accurate models, while the Gilbert model only
for several sample traces of real networks. performs best for a subset of the network parameter space.
We construct Domain Applicability Plots (DAP) for each Next, we examine the model choices foriapn,, value of
L., value, where each point in the DAP diagram indicates 0.4 (see Figure 15). In this DAP diagram, there are three op-
the best model for eactL(,,, EF,,,) pair. The best model timal regions. In the “optimal-Gilbert” region, the mean
is defined as the model with a corresponding maximum av-value for the Gilbert model is 0.99. Table 6 shows the mean
eragezc value. Note that, on both the x and y axes, as the ex-cc values for the other models in this “optimal-Gilbert” re-
ponential distribution parameter increases, the state lengthlgion. The MTA model performs the best over the largest re-
decreases (see Figure 13). gion of the plot, with a meaer value for the model of 0.98.
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Figure 16. Optimal model for

Lden:O-4-

Figure 15. Optimal model for

The other models in this “optimal-MTA” region have mean 9 Conclusion

cc values of less than or equal to 0.96, which indicates that
they are inaccurate representations for these regions. For
the “optimal-M”, the meancc value for the model is 0.97,

As we have shown in this paper, accurate network path

modeling can enable the creation of both models and artifi-

while the other models for this region have mearvalues

cial traces that are statistically indistinguishable from traces

of less than 0.93i., they are inaccurate models for this

region).

from real networks. We believe that such models can pro-

vide both predictive and descriptive power and can yield a

Finally, we examine the model choices for a high value better understanding of network’s and their characteristics.
of Lyen, 0.7. For this high value, almost the entire DAP These models can also be used in network path simulators

and emulators to optimize both new and existing protocols.

value for the model of 0.98. In this region, the MTA model's We have developed two data preconditioning approaches to

mearce value was 0.97, which is also very good, while both network modeling that are better able to model some net-
the Gilbert and HMM perform very poorly. We believe that Work paths and metrics of interest than classic models.

diagram consists of an “optimal-Nregion with a mearc
this result can be explained as the inability of traditional

The main contribution of this paper is to aid network and

models to capture the long error bursts inside lossy statesapplication protocol developers in developing and choosing
In contrast, the data preconditioning models are capable ofappropriate models for simulation of network conditions.

accurately capturing both low and high error densities inside As such, in this paper, we have proposed the characteriza-

lossy states.

tion of network conditions using a triplet of values to ex-

14



Optimal Model Region
Lgen,=0.2 Lgen, =0.4 Lgen, =0.7
Model | Gilbert | M? | Gilbert | MTA | M? | MTA | M?
Gilbert | 0.99 | 0.96| 0.99 0.96 | 0.91| 0.90 | 0.92
HMM 0.90 | 0.92| 0.89 0.91 | 0.92| 0.64 | 0.77
MTA 0.89 | 0.82| 0.97 0.98 | 0.91| 0.99 | 0.97
M3 0.98 | 0.97| 0.96 0.96 | 0.97| 0.99 | 0.98

Table 6. Correlation coefficient for each

Lgen value (0.2, 0.4, 0.7) and each optimal region.

press the lengths of error-free and lossy regions and thg[10] lain L. MacDonald and Walter Zucchini. Hidden

error rate in the lossy region. We also propose a simple
methodology for evaluating model accuracy and choosing

the best models for characterizing a network.
The primary conclusion from our analyses is that classic [11]
modeling techniques work well for some, but importantly,

not all wired networks. However, when modeling delay and
losses in wireless networks, the data preconditioning ap-

proaches are more accurate. Another important conclusiorIlZ]

is that more work remains to be done in the search for ac-

curate models, as our evaluation shows that all models have

accuracy limitations depending on the characteristics of the

network under measurement.
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