Single-mode, single-processor Giotto scheduling

Benjamin Horowitz
bhorowit@cs.berkeley. edu

Report No. UCB/CSD-03-1238
April 16, 2003
Computer Science Division (EECS)

University of California
Berkeley, California 94720

B. Horowitz: Single-mode, single-processor Giotto scheduling 1

Abstract

This report presents a new algorithm for scheduling single-mode Giotto programs for a single pro-
cessor. We extend the classical scheduling problem 1 | r;; d;; prec; pmtn | — to an infinite, periodic
variant. We present a polynomial time algorithm for this variant that finds a feasible schedule whenever
one exists. We show how to embed the problem of scheduling a class of single-mode Giotto programs
for a single processor into our more general problem. The embedding yields a pseudopolynomial-time
algorithm that allows more programs to be scheduled than previous techniques. Finally, we present
a technique to aggregate distinct activities into the same thread, and we show how to execute Giotto
programs using a single stack.

1 Introduction

In this report, we address the problem of scheduling single-mode Giotto programs for a single processor.
This is an important case, as many control algorithms have a single mode of operation, and many control
system implementations use a single processor to reduce cost, design time, and debugging effort. Instead of
developing scheduling algorithms for Giotto only, we adopt a more inclusive approach. Our strategy is to
embed the single-processor scheduling problem for single-mode Giotto programs into a more general problem.
It is this more general problem which we solve. Our hope is that the scheduling techniques that we develop
will prove useful not only for Giotto, but also for more expressive time-triggered programming languages,
e.g., languages in which the unit-delay requirements of Giotto are relaxed.

Our approach has two ingredients. The first is our use of precedence constraints to model data flow. An
execution of a Giotto program requires running a set of jobs on a CPUj if a job j writes a value to a port that
another job j’ reads, then 7 must complete before j’ begins. Besides sensors and actuators, all jobs may be ex-
ecuted at any time, subject to the precedence constraints imposed by data flow. This precedence-constrained
view of single-processor scheduling lets more Giotto programs be scheduled than was previously possible.
The second ingredient is our use of the scheduling algorithm EDF with precedence constraints [Bla76], which
we term EDF~. This algorithm provides a useful departure point, but to make it appropriate for scheduling
Giotto, we extend it to handle an infinite, periodic set of jobs. The algorithm that we develop has two
desirable properties. First, it is optimal: it finds a schedule satisfying timing and precedence constraints
whenever such a schedule exists. Second, it is reasonably fast: it runs in time polynomial in its input size,
and pseudopolynomial in the frequencies of the Giotto program. Though precedence-constrained multipro-
cessor scheduling of programming languages is an active area of research [DRV00], to the author’s knowledge
precedence-constrained single-processor scheduling of programming languages has not been extensively stud-
ied. The results of this report are not likely to generalize to a multiprocessor setting: in such a context, our
models bear a strong similarity to job shop scheduling, which is notoriously difficult, both practically and
theoretically [Pin95].

An EDF-based schedulability test was previously presented in [HKMMO02]. Precedence constraints play
no part in this algorithm. This earlier algorithm optimally schedules Giotto programs for a single processor,
under three restrictions:

1. Each task driver executes at the time instant 7; specified in the Giotto semantics.

2. Each task invocation executes in the interval [7;, 7; + 7 /w], where 7 is the period of the mode invoking
the task, and w is the invocation’s frequency.

3. Semnsors, actuators, and task drivers require “negligible” computation time. Exactly how much compu-
tation time is negligible was not specified.

It was subsequently argued in [HHKO03] that, from a semantic perspective, these restrictions can be relaxed in
a systematic way. In this report, we continue the line of argument of [HHKO3], showing how the restrictions
can be relaxed from a scheduling perspective as well. It should be noted that though our algorithm allows
more programs to be scheduled, it runs in time pseudopolynomial in the frequencies of the input program,
whereas the test of [HKMMO02] is polynomial-time. This disadvantage seems rather slight, as the frequencies
of a Giotto program are typically small.

B. Horowitz: Single-mode, single-processor Giotto scheduling 2

For simplicity, the algorithm that we develop is a pre-runtime scheduling algorithm: before runtime,
it produces a complete schedule of the implementation’s threads. This schedule specifies when to start,
suspend, resume, and stop each thread. A pre-runtime scheduling algorithm has two advantages. First, it
minimizes the complexity of the actions at runtime. The runtime “scheduler” becomes highly deterministic,
which greatly simplifies debugging. Second, the generated schedules can be independently verified prior to
runtime. This provides an important double-check in situations where safety and reliability are primary
concerns. The advantages of pre-runtime scheduling are thoroughly discussed in [Kop97]. Of course, other
approaches are also possible. For example, one might provide a schedulability test prior to runtime, but
relegate all decisions about processor allocation to a runtime scheduler. The first use of this approach
is perhaps [LL73]; a recent exemplar is [BHR93|. Additionally, one might make the runtime scheduler
more clever about how to handle situations of overload (see, e.g., [BS93]). Neither of these approaches is
inconsistent with the approach pursued here; we have adopted a pre-runtime approach only in order to study
scheduling models and algorithms in as simple a setting as possible.

The structure of this report is as follows. Section 2 presents two examples which motivate the need for
precedence-constrained scheduling. These example cannot be scheduled by the current Giotto compiler, but
can be scheduled by the algorithm in this report. Section 3 discusses models and algorithms for precedence-
constrained scheduling problems. We extend the model 1 | rj; d;; prec; pmitn | — to an infinite, periodic
variant. We then present an optimal, polynomial-time scheduling algorithm for this variant. Section 4 shows
how to translate single-mode Giotto programs into instances of the model developed in Section 3. Section 5
describes two additional optimizations, the aggregation of multiple activities into fewer operating system
threads, and the use of a single stack to execute activities.

A word on notation: the symbol Z denotes the integers, and R denotes the reals. For an ordered set S and
an element s € S, SZ° (respectively, S>*) denotes the set {s’ € S | s’ > s} (respectively, {s’ € S| s’ > s}).
Finally, the symbol [¢ .. u] denotes the set {i € Z | £ <i < u}.

2 The need for precedence-constrained scheduling

In this section, we motivate the need for precedence-constrained single-processor scheduling of single-mode
Giotto programs. We present several examples that the current Giotto compiler is not able to schedule,
but that are nonetheless schedulable. The first example, in Section 2.1, indicates that all jobs of a Giotto
program should be preemptible, not just task invocation jobs. The second example, in Section 2.2, argues
that the execution of jobs of one round of a Giotto program should be allowed to continue into the next round
of the program. These examples are two among many; we have included these particular examples in order
to argue that the scheduling requirements of the current compiler are overly restrictive (e.g., the requirement
that drivers execute “synchronously,” and that tasks finish before their “logical” deadlines; cf. [KSHP02]
and [HKMMO02]). We shall use the example of Section 2.2 as a running example in Section 3.

2.1 Preemptible drivers

Figure 1 shows a Giotto program. This program has two sensors s; and s, each taking 1 unit of time to
read.! There are two tasks t; and to, and their respective drivers d; and ds. Each of these takes 1 unit of
time to execute, except driver ds, which takes 2 units. A third driver d3 writes actuator a and takes 1 unit.
There is a single mode m with period 12. Mode m invokes t; with frequency 2, to with frequency 1, and d3
with frequency 2.

We now describe some of the timing requirements of the program of Figure 1. Figure 2 depicts these
requirements in graphical form. Thick blue boxes indicate jobs that execute at a fixed time. Thin black
boxes indicate jobs that may execute at any time, subject to precedence constraints, and timing constraints
on predecessors and successors. Note that d; reads si, and ds reads s3. To minimize jitter, both sensors
are read between times 0 and 2 (for an explanation of jitter minimization in Giotto, see [HHKO3]); thus
the jobs true(dy)[0,7] and true(ds)[0,7] must start after time 2. Similarly, since sensor s; is read between
times 6 and 7, true(dy)[1, 7] must start after time 7. Finally, note that dg reads the output ports of ¢; and 9

IWhat exactly the unit of time is, whether seconds, milliseconds, microseconds, etc., is not of importance in this report.

B. Horowitz: Single-mode, single-processor Giotto scheduling

sensor
port s; type int time 1
port sy type int time 1
actuator
port a type int init O
input
port ¢; type int
port iy type int
output
port o; type int init O
port o2 type int init O

task ¢; input i; output o; function f; time 1
task fo input iy output op function fy time 1

driver d; source s; guard true destination ¢; function h; time 1
driver dy source ss guard true destination io function hy time 2
driver ds source 03,02 guard true destination a function hs time 1

mode m period 12 ports 01,02
frequency 2 invoke t; driver d;
frequency 1 invoke ty driver dp
frequency 2 update dj

start m

Figure 1: Preemptible drivers program.

o
[\

read(sz2)[0, 3]

true(dy)[0,7]

true(dy)[1,7]

Figure 2: Preemptible drivers timing constraints.

true(ds)|0, 2]

-1

ol —

read(s1)[0, 3] true(dy)[0, 7] true(ds)[1, 2]
|

o

=

12

B. Horowitz: Single-mode, single-processor Giotto scheduling 4

true(ds)|[0, 2] true(ds)[0, 7] true(ds)[0, 7]
read(s1)[0, 3] true(ds)[1,2] true(ds)[2, 2]
read(s3)|0, 3] read(s1)[1, 3] read(s1)(2, 3]

true(dq)[0, 7] true(dq)[1,7] read(s2)[2, 3]
\ \ \

L [[[fspf | [J fapu] Jeuf [] |

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

0 6 12

Figure 3: Preemptible drivers schedule.

between times 5 and 6, and between times 11 and 12. Thus, the job ¢1[1,1] must complete before time 5.
Similarly, the jobs t2[2,1] and ¢1[2, 1] must start after time 11. It may be verified that no schedule can meet
these constraints unless the job true(ds)[i, 7] is preempted, for ¢ = 0,2,4,---.

Figure 3 shows a schedule for the program of Figure 1. Note that ds finishes half of its execution between
times 4 and 5. At time 5, ds is preempted by ds3, s1, di, and t;. Finally, at time 9, ds is able to finish. The
schedule from time 11 to time 23 repeats the schedule from —1 to 11, with the indices of jobs incremented
by 2. Similarly, the schedule from 23 to 34 repeats the schedule from —1 to 11, and so on forever.

2.2 Spillover

Figure 4 shows another Giotto program. Mode m invokes tasks t; and to with frequency 2. Using driver dy, 1
reads sensor s and the output port os of . Task ¢, reads only s. Using drivers ds and dg4, respectively,
mode m also updates actuators a; and as with frequencies 1 and 2. Both d3 and dy4 read the output port oy
of task t1. To read o1, aj uses d3, and as uses d4. There are two important timing requirements to note:

1. Because true(dy)[0, 7] receives an input from read(s)|0, 3], it must begin before time 1. Since the output
of t1[1, 1] is read by actuator driver true(dy)[1,2], t1[1, 1] must finish by time 10. In general, true(dy)[s, 7]
and t1[i + 1, 1] must begin after time 115+ 1 for i = 0,1,2,---. Also, true(d;)[i,7] and #;[i + 1, 1] must
finish by 115 4+ 10 for i — 0,2,4,---, and by 11i + 6 for i = 1,3,5,- - -

2. Similarly, true(dz)[0, 7] must begin after time 1. In general, true(ds)[i, 7] and t2[i+1, 1] must begin after
time 11+ 1, for i = 0,1,2,---. Note that the actuator drivers d3 and d4 read only t;’s output, not t5’s
output. Since t; reads ta’s output, ¢o inherits its deadline from ¢;. Thus, true(dz)[i, 7] and tafi + 1, 1]
must finish by time 117 + 17 for ¢ = 0,2,4,---, and by 11¢ + 21 for i = 1,3,5,- - -.

Under the assumption that sensors and actuators execute during times [11¢ — 5,11¢ + 1] for ¢ = 0,2,4, - - -,
and during times [117 — 1,117 + 1] for ¢ = 1,3,5,- -, it may be verified that no schedule can meet these
constraints unless the job ¢5[i, 1] finishes after its logical deadline at time 22i for i = 2,4,6,---. We call this
phenomenon spillover.

Figure 5 shows a schedule for the program of Figure 4. Note that the second invocation of to, t2[2, 1],
cannot complete before its logical deadline at time 22, because actuator drivers d3 and d4 need to execute.
These actuator drivers need the output of ¢1[2, 1], which is complete, so the fact that t2[2, 1] is not complete
does not cause a problem. Job t2[2,1] is able to complete at time 25, though its execution spills over into
what is logically the second round of the Giotto program. The schedule from time 33 until time 55, most
of which is not shown, repeats the schedule from 11 until 33, with the indices of jobs incremented by 2.
Similarly, the schedule from time 55 until 77 repeats that from 11 until 33, and so on forever.

B. Horowitz: Single-mode, single-processor Giotto scheduling

sensor
port s type int time 1
actuator
port a; type int init O
port as type int init O
input
port i; type int
port iy type int
output
port o1 type int init O
port oz type int init O

task t; input i; output o; function f; time 1
task to input iy output op function f, time 4

driver d; source s,0o guard true destination ¢; function h; time 1
driver dy source s guard true destination ¢y function hy time 1
driver d3 source o0; guard true destination a; function hs time 1
driver d4 source o; guard true destination ay function hy time 4

mode m period 22 ports 01,02
frequency 2 invoke t; driver d;
frequency 2 invoke t; driver do
frequency 1 update dj
frequency 2 update dy

start m
Figure 4: Spillover program.
true(ds)[0, 2] true(ds)[1, 2]
read(s)[0, 3] read(s)[1, 3]
true(dq)[0, 7] true(dq)[1, 7]
t[1, 1] t[2,1]
‘ t"ruc(dQ)[O, 7] ‘ t"r”ue(dg)[l,ﬂ
Lree@do2] | | [[| ety | [T]][[6R1]
I L e T e e e e e e
0 11
true(ds)[2, 2] true(ds)[3, 2]
read(s)[2, 3] read(s)[3, 3]
true(dy)[2,7] true(dy)[3,7]

t1[3,1] t1[4,1]

‘ t‘rue(dg)[Q,?} ‘ t‘me(dg)[iﬂ,?]
|true(d4)[2,2]| I |1‘2[2,1H ‘ ‘ ‘ t[3,1] | I | ‘ ‘ ‘@[471]‘
I L e T e e e e e e

22 33

Figure 5: Spillover schedule.

B. Horowitz: Single-mode, single-processor Giotto scheduling 6

3 Scheduling models

3.1 The three-field notation a | 3 | v

In scheduling theory, a standard notation is used to describe scheduling problems [LLK82, HLv97]. This
notation has been in use since the early 1980s. By that time, the number of scheduling problems had grown
so large (one estimate put the number at 4,536 [LLLKS82]) that mathematical methods were needed to un-
derstand the relationships between the problems. The standard notation helps to classify the computational
complexity of the problems, by making it apparent when one problem is more expressive than another. The
standard notation consists of three fields, «, 3, and v, and is typically written « | 8 | 4. The meaning of
these fields is as follows:

e « describes the machines which are to be scheduled. For example, @« = 1 means a single-machine,
a = P means parallel identical machines, and o = J means a job shop.?

e (3 describes task parameters and capabilities. To take two examples, 8 = pmitn means that preemption
is allowed, and 8 = r;; pmtn means that activities have release times and preemption is allowed.

e 7 represents the cost function. For instance, v = ()4, means the cost of a schedule is the maximum
activity completion time (also called the makespan), and v = L,,4,; means the cost is maximum activity
lateness (which assumes a deadline has been given for each activity).

We now discuss how to choose appropriate values of «, 3, and ~ for the problem of scheduling single-mode
Giotto programs on a single processor.

e Since this report is concerned with single-processor scheduling, o = 1.

e The selection of 8 is more involved. An activity that is required to execute at a fixed time can be
modeled with an appropriate choice of release time and deadline. For example, an actuator job j
that must execute just before time 0, and that requires 1 unit of time, may be modeled by setting
the release time of j equal to —1, and the deadline of j equal to 0. Thus, it is useful to have
include r; and d; (release times and deadlines). In addition, in order to model dataflow dependencies, 3
should include prec (precedences). Finally, 8 should include pmin, not only because preemption is a
common feature of real-time operating systems, but also because many problems that are otherwise
computationally easy become hard when preemption is disallowed.3

e The choice of v is simpler. Were we to adhere strictly to the standard notation, we would use the cost
function v = L4, (or maximum lateness). However, we are really only concerned with determining
whether there is a schedule for which L., < 0, and synthesizing such a schedule if so. For this reason,
we use the variant of the standard notation in which v = — [BT01]. This variant asks whether there
is a schedule in which every task finishes before its deadline.

In conclusion, the scheduling problem for single-mode, single-processor Giotto programs is similar to 1 | 7;
d;; prec; pmin | —, which asks whether a set of activities with release times, deadlines, and precedence
constraints is schedulable with preemption on a single machine such that all deadlines are met.

3.2 The problem 1 | r;; d;; prec; pmtn | —

This similarity of single-mode Giotto scheduling for a single processor to 1 | ;; dj; prec; pmin | — allows us
to use an optimal algorithm for 1 | r;; d;; prec; pmin | — as a starting point. This section precisely defines
the problem 1 | r;; d;; prec; pmtn | —, and presents an algorithm for it due to J. Blazewicz [Bla76].

2In parallel models, including o« = P, activities are allowed to migrate between machines. In shop models, including o = J,
a activity consists of a set of operations, each such operation being fixed to a particular machine. What we call activities are
commonly called jobs or tasks in the scheduling literature. The latter two terms are already reserved for entities relating to a
Giotto program (tasks and jobs are, respectively, programming-language-level and implementation-level entities that perform
computation [HHKO3]), so we use the term activities instead.

3For example, the problem 1 | 753 pmin | Limaz is in P, whereas 1| r; | Limae is NP-hard [Len77].

B. Horowitz: Single-mode, single-processor Giotto scheduling 7

Definition 1 (1 | ;3 dj; prec; pmitn | —). Aninstance of 1 | r;; d;; prec; pmtn | —is a tuple (4, t,7,d, <),
where:

e A is a finite set, called the set of activities.

o t: A — Z>0is a function that assigns each activity a positive integer, called the activity’s computation
time.

o r: A — 720 is a function that assigns each activity a nonnegative integer, called the activity’s release
time.

o d: A — Z>Yis a function that assigns each activity a positive integer, called the activity’s deadline.*

< C A x Ais arelation on A, called the precedence relation. We shall normally write a1 < ao instead
of (al, CLQ) SEE O

Several remarks are in order. For Giotto, an activity might be an invocation of a sensor, an actuator
driver, a task driver, or a task. However, as far as 1 | r;; d;; prec; pmin | — is concerned, an activity is
simply something that takes time. A precedence constraint a; < ap requires that a; finish before as can
begin. If a; < ag, we say that ay is a predecessor of az. An activity a may execute at any time after r(a),
as long as all its predecessors are complete, and a must finish before d(a). It will follow from the fact that
t(a) > 0 for each a € A, and from Definition 2, that an instance of 1 | r;; d;; prec; pmin | — is feasible only
if <« is acyclic.

Definition 2 (schedule, feasibility). A schedule S is a pair (I,e), where:

e [is a finite set of intervals of the real line R. Each interval in I must be nonempty and of the form
(¢,7), i.e., left-open and right-open. Intervals in I must also be non-overlapping; i.e., if i1,i2 € I and
il # ig, then il n iQ = (Z)

e ¢:] — Ais a function that assigns an activity e(¢) to each interval i. We say that the activity e(i) is
ezecuted in interval i.

Given an activity a in the range of e, let I[a] be the set of intervals in which a is executed, i.e., the set
{i € I| e(i) = a}. Given a schedule S and an activity a, we define several functions:

o The start time of activity a in S, Sg(a), is inf(y e[-
e The finish time of a in S, Fs(a), is sup(y,yerja) 7
o The total ezecution time of a in S, Ts(a), 18 34 yerq 7 — ¢

We say that schedule S satisfies (or is feasible for) problem instance P = (A,t,r,d, <) if the following
conditions are met:

e For each activity a € A, r(a) < Ss(a), Fs(a) < d(a), and t(a) = Ts(a).
e For each a1, as € A such that a1 < ag, Fs(ar) < Ss(aq).
We say that P is feasible if there is a schedule S that satisfies P. O

In 1976, J. Blazewicz developed a polynomial-time algorithm EDF~ that, given an instance P of 1 | T
dj; prec; pmin | —, finds a schedule satisfying the constraints of P if one exists. Let <* (respectively, <)
denote the transitive reflexive (respectively, transitive) closure of <. EDF~ relies on transitive release time
and deadline functions 7* and d*, defined by:

r*(a) = max r(a’
(a) (X (a’)
d*(a) = min d(a’
(a) (on (a’)

4For simplicity, we require that t(a), r(a), and d(a) are integers, for each activity a € A. The results of this chapter would
continue to hold if these quantities were allowed to be rational.

B. Horowitz: Single-mode, single-processor Giotto scheduling 8

We say that activity a is enabled at time 7 if 7*(a) < 7 and, for all @’ such that ' <™ a, a’ has executed
for at least t(a’) time units up to 7. EDF~ schedules activities according to the following rule:

At each time 7, execute an enabled activity a with minimal d*(a) value. (1)

The O(JA[*) running time of EDF~ was reduced to O(|A|log |A|) by [Kim94]. A clear proof of the optimality
of EDF™ may be found in [Bru01].?

3.3 A periodic version of 1 | r;; d;; prec; pmin | —

The problem 1 | r;; d;; prec; pmin | — is a not a perfect match for single-mode, single-processor Giotto
gy Gj

programs, since such programs have infinite, periodic streams of activities. In this section, we define a

periodic version of 1 | rj; dj; prec; pmin | —. We then develop a scheduling algorithm for this periodic

version.

Definition 3 (1 | 7;; dj; prec; pmtn; period | —). An instance of 1 | r;; d;; prec; pmin; period | — is a
tuple P = (A, t,r,d, <, II), where:

e A is the union of disjoint sets Ag, A;,---, each with the same number n € Z>? of elements. For
notational convenience, let a(i, 1), -, a(i,n) be the members of A;.

e II € Z>0 is called the period.

e The functions t, r, d, and the relation < are defined as they were in Definition 1, and must satisfy the
following additional conditions:

— t(afi, k) =t(a(0,k)) for alli € [1 .. 00o] and k € [1 .. n].
— r(a(i, k) = r(a(0, k)) +4II, and d(a(i, k)) = d(a(0, k)) +II, for all i € [1 .. oo] and k € [1 .. n].
— Forallkel..n],

r(a{0,k)) € [0 .. IT — 1] (2)
(This requirement, though not essential, simplifies the proofs below.)

— The precedence relation < satisfies the uniformity condition:
a<i1, k’1> < a(ig, k‘2> iff a(O, k‘1> < CL(ig — 11, kJ2> (3)

for all 11,19 € [0 . OO] and all k1, ks € [1 . n} (Equivalently, a<i1, k1> < a<i2, k‘g) iffa(il — 11, k'1> <
a<i2 — il, k‘2>)
— If a(i1, k1) < aia, ko) then 41 < iy for all i1,i5 € [0 .. oo] and all k1, ks € [1 .. n]. |

Definition 4 (schedule, feasibility). This definition follows Definition 2, with a modification to account
for the infinite nature of the problem instance P. A schedule S is a pair (I, e), where I is defined as it was
in Definition 2, except that I need not be finite; and e is defined as it was in Definition 2. Further, Sg, Fg,
Ts, satisfaction, and feasibility are defined as they were in Definition 2.6 |

The rest of this section extends EDF~ to our new setting. It is not immediately obvious how to do so,
since EDF~ works on finite problem instances. Section 3.3.1 develops a necessary condition on feasibility
for our periodic problem. Section 3.3.2 extends this condition into a necessary and sufficient condition that
provides us with an optimal, polynomial-time algorithm for 1 | r;; d;; prec; pmtn; period | —.

5A variant of EDF~ is presented in [SBS95], in which r*(a) and d*(a) are defined by:
r*(a) = max(r(a),max .|, «+q} 7 (@) +t(a))
d*(a) = min(d(a), ming, ,+.yd*(a’) —t(a))

and activities are scheduled according to the rule (1). This variant is also optimal.

6Note that Ss(a) may be —co, Fs(a) may be +oo, and 7g(a) may be co. A schedule in which any of these quantities is
infinite is of no interest, since it cannot satisfy P.

B. Horowitz: Single-mode, single-processor Giotto scheduling 9

3.3.1 A necessary condition on feasibility for 1 | r;; dj;; prec; pmtn; period | —

We begin our analysis with a definition of active schedules, in which the processor eagerly executes any
available activity.

Definition 5 (active schedule). Let S = (I, ¢) be a schedule. We say that 7 € R is an idle time if 7 ¢ [{, 7]
for any (¢,r) € I. An activity a € A is complete at 7 if

tla) < Y lin[-o0,7]]

1€l]a]
S is active if (1) for all idle times 7, there is no activity a € A such that 7*(a) < 7 and a is not complete

at 7, and (2) for every activity a € A, Tg(a) = t(a). O

Intuitively, a feasible schedule is active if no activity can be executed earlier without some other activity
being executed later. In the remainder of this section, we consider only active schedules. The justification
for this restriction is provided by the following proposition, which is evident:

Proposition 6. If P is a feasible instance of 1 | r;; d;; prec; pmin; period | —, then there exists an active
schedule that satisfies P.

Active schedules have the following convenient property: for any two active schedules, the amount of com-
putation pending at time 7 (the amount of computation released but not completed) is the same.

We now develop a condition that any instance P of 1 | 7;; d;; prec; pmin; period | — must satisfy in order
to be feasible. This condition centers around the notion of a rest point, an instant when no computation is
pending. We will establish several lemmas concerning rest points, leading up to Theorem 13: P is feasible
only if the set [IT .. 2II] contains a rest point.

Definition 7 (pending computation function, rest point). Let
T(i) = > t(a)
{a€A | r*(a) =i}

T'(¢) is the amount of computation whose transitive release time is i. Note that T'(i) = T'(i+II) for i € [0 .. o).
We define the pending computation function p : Z29 — 720 as follows:

e p(0) =T(0).
e For i > 0,
iy =10+ { B0 D)

Let p~ : Z29 — Z29 be defined by:

e p—(0)=0.

e For ¢ > 0, ‘ . .

r- {0

Note that p~ (i) = p(i) — T'(i). We say that i € Z=0 is a rest point if p~(i) = 0.” Note that 0 is a rest point,
since p~(0) = p(0) — T(0) = T'(0) — T'(0). O

Example 8. We use an example to illustrate the concept of a rest point. Suppose that
T(0)=5 T()=3 T6)=1 T(9) =3 T(12) =2 T(14) =1

and that T'(¢) = 0 for ¢ € [0.. 14] \ {0,5,6,9,12,14}. Figure 6 presents an graph of the pending computa-
tion p(¢). Times i € {0,5,9,12,14} are rest points. All other ¢ € [0 .. 14] are not rest points. O

B. Horowitz: Single-mode, single-processor Giotto scheduling

pending
computation
p(i)
A
5
4
3
) AN AN
1 \
0
> time ¢
0 5 6 9 12 14 15

Figure 6: An illustration of the concept of rest points.

pending
computation

p(i)

N

N

i1 ia i+ 11

Figure 7: A diagram for Lemma 9.

I
I
I
I
I
I
I
I
i
io + 11

10

time ¢

B. Horowitz: Single-mode, single-processor Giotto scheduling 11

We next derive a simple but useful fact about the pending computation function.

Lemma 9. Let i; < iz be nonnegative integers. If p(i) > 0 for ¢ € [iy .. i) U [i1 + I .. i2 +II], then for
xS [21 . ig],

p+1I) = p(i)—p (i) +p (ir +1I) (4)
p(i+1) = p(i) = p(ia) + p(ir +1T) (5)
Figure 7 may aid the reader in understanding the significance of the Lemma.
Proof. Since p(i) > 0 for i € [i1 .. ia],
i
p(i) =p~(i1) = (i — i)+ > T(k) (6)
k=i,

Similarly, since p(i + IT) > 0 for ¢ € [iy .. 2],

11
p(i + 1) =p~ (i + 1) = ([+ 1) = (ih + 1))+ > T(k) (7)
=iy +11
Since Zi:il T(k) = E;::}IJFH T(k), (7) simplifies to
p(i+ 1) =p~ (s + 1) = (i — i) + Y T(k) (8)
k=i
Comparing (6) and (8), we see that
p(i+T0) = p(i) —p~ (i) +p~ (ia +10) (9)
which yields (4). Since p(i) = p~(¢) + T(3), and T'(¢) = T'(i + II),
—p (i) +p (a+1) = T(ir) —p(ir) = T(ix + 1) + p(ix + 1)
= —p(ir) + plir +10) (10)

From (9) and (10),
p(i +10) = p(i) = p(ir) + p(ir +10)
which yields (5). 0

Lemma 10. If there is no rest point in [II .. 2II], then p(2II) > p(II).

Proof. Let r be the latest rest point in [0 .. IT]. Since 0 is a rest point, there is at least one such rest point.
We now verify that the conditions of Lemma 9 are satisfied for 11 = r and i, = II. Since r is the latest rest
point, p(#) > 0 for ¢ € [r .. II]. Since there is no rest point in [II .. 2I1], a fortiori p(i) > 0 for i € [II + r .. 211).
The conditions of Lemma 9 are thus fulfilled. Applying (4) with ¢ = II, we obtain:

p(2Il) = p(Il) — p~(r) +p~ (Il + 1) (11)
Since r is a rest point, p~(r) = 0, and since II+ 7 is not a rest point, p~ (II4+7) > 0. Thus, by equation (11),
p(2I1) > p(II). O

Lemma 11. Let k be a member of Z=°. If p(i) > 0 for i € [KII .. (k + 2)II], then

p((k +2)IT) = 2p((k + 1IT) — p(kIT)

"If p were defined on R29 instead of Z29, then a rest point would be an instant 7 at which lim_,_,_— p(t') = 0. The
definition of p as a function on Z29 is simpler, though it makes the definition of a rest point less intuitive.

B. Horowitz: Single-mode, single-processor Giotto scheduling 12

Proof. Let iy = kII and i3 = (k + 1)II. The conditions of Lemma 9 are fulfilled. Setting ¢ = (k + 1)II, and
applying (5), we obtain that

p((k+ DII+1II) = p((k + DII) — p(kII) + p(kII 4 II)
which yields our result. O
Lemma 12. If there is no rest point in [II .. 2I1], then for £k = 1,2,---:

e there is no rest point in [kIT .. (k + 1)II], and

p((k + D) = p(IT) + k(p(21T) — p(IT)).

Proof. For k = 1, the lemma reduces to the claims (1) that there is no rest point in [II .. 2II], which is true
by assumption, and (2) that p(2II) = p(IT) + (p(2II) — p(II)), which is trivially true. For the induction step,
suppose as induction hypothesis that the lemma is true for all j < k. We need to show that the lemma
remains true for k + 1.

By Lemma 10, p(2IT) > p(II). From this, and the induction hypothesis for k, it follows that p((k+1)II) >
p(kII). Also, by the induction hypothesis for k, there is no rest point in [kII .. (k + 1)II]. Thus, there is
no rest point in [(k + 1)II .. (k + 2)II], since in this range the initial pending computation is greater. Since
[FII .. (k + 2)II] contains no rest point, p(¢) > 0 for £ € [KII .. (k + 2)II]. By Lemma 11,

p((k +2)IT) = 2p((k + 1)) — p(KII) (12)
By the induction hypothesis,
p((k + DI = p(IT) + k(p(21T) — p(11)) (13)
Also by the induction hypothesis,
p((k + DIT) — p(kIT) = p(21T) — p(IT) (14)
Thus,
((+2)T1) = [p((k+)T] + [((k =+ 1)T1) = p(kTD)| (by (12))
= [p() +)]+ [pem) - p)] (by (13) and (14))
= p(Il) + (k+1)((2) p(ID))
as desired. 0

If there is no rest point in [II .. 2I1], then Lemma 12 states that at the successive times 211, 31, - - - | the
amount of pending computation increases by p(2I1) — p(II). By Lemma 10, the quantity p(2I1) — p(II) is
positive. Thus, the amount of pending computation at times iIl increases without bound. Intuitively, this
indicates that eventually some activity must be late. The following theorem confirms this intuition.

Theorem 13. An instance P = (A,t,7,d, <) of 1| r;; dj; prec; pmtn; period | — is feasible only if the set
[IT .. 211] contains a rest point.

Proof. We will use Lemma 12 to show that if [II .. 2II] contains no rest point, then P is infeasible. Let
D = max,eca (d*(a) —r*(a)). If, at time 4II, some activity a with 7*(a) < Il — D is not complete, then a
or some successor of a has missed its deadline. We now examine how large ¢ has to be so that the following
stronger condition attains:

D
At time 411, some activity a with r*(a) < <z - [ﬁ—‘) IT is not complete.

B. Horowitz: Single-mode, single-processor Giotto scheduling 13

Let T'=), 4, t(a). By the pigeonhole principle, if p(iIl) > T', then some activity a with r*(a) < Il is
not complete at time II. Similarly, if p(¢II) > kT, then some activity a with r*(a) < (i — k + 1)II is not
complete at time (i — k + 1)II. Thus, we need to choose k such that

= (fR)

D
> | —
k{ -‘—i—l

We now choose i such that p(iII) > k7. By Lemma 12, p(iII) = p(II) + (¢ — 1)(p(2II) — p(II)). Setting
p(II) + (i — 1)(p(2II) — p(II)) > kT, and solving for i, we obtain

It suffices to set

kT + p(2IT) — 2p(TT)

p(2II) — p(IT)
Choosing any i satisfying this inequality (e.g., one plus the ceiling of the right hand side) will suffice. We
have shown that by time ¢II some activity will have missed its deadline. Thus, P is infeasible. O

3.3.2 A necessary and sufficient condition on feasibility for 1 | r;; d;; prec; pmtn; period | —

The previous section presented a necessary condition on feasibility for an instance P of 1 | r;; d;; prec; pmin;
period | —, namely, that there be a rest point in [IT .. 2II]. However, P may have such a rest point, but
still be infeasible; this occurs if the activities cannot be scheduled to meet their deadlines. In this section,
we extend Theorem 13 into a necessary and sufficient condition on feasibility (Theorem 16). This extension
relies on an attractive property of the pending computation function, namely, that if ¢ € [II .. 2II] is a rest
point, then p “looks the same” on the intervals

[T .i—1], [i.i+T—1], [i+T.i+20—1],
In other words, p is periodic, with period II, beginning at ¢ — II, as we now show.
Lemma 14. If there is a rest point in ¢ € [II .. 2II], then p(k) = p(k +1I) for k € [i — II .. o0].
Proof. Recall that T'(-) is periodic, i.e., T'(k) = T(k — II) for k € [II .. o0]. Note that p(0) < p(II), since
p(0) = T(0) = T(IT) < T(IT) + p~ (II) = p(II)

Suppose that i € [II .. 2II] is a rest point. Then p~(i — II) = 0, since T'(+) is periodic and the initial pending
computation p(0) is greater than p(II). Since T'(-) is periodic, and both ¢ — IT and ¢ are rest points,

plk)=plk+M)forke i —1. i—1]
A simple argument by induction establishes that for all £ = 1,2, -,
plk)=plk+) forkei—1II..¢—1] O
A similar argument establishes the following lemma.

Lemma 15. Let k be a positive integer, and let ¢ be a member of [0 .. IT — 1]. If i + kII is a rest point, then
i+ K'II is a rest point for all nonnegative integers k' = 0,1,---.

Intuitively, Lemmas 14 and 15 allow the timeline to be divided into sections [i — IT .. 4 — 1], [¢ .. ¢ + IT — 1],
etc., each of length II; these sections may be scheduled using EDF~. Indeed, suppose that (1) there is a rest
point i in [IT .. 211}, and (2) EDF~ produces a feasible schedule S for activities released in [i — IT .. i — 1].
Under these conditions, one can create a feasible schedule for all of P by “pasting together” successive copies
of S, as the following theorem shows.

B. Horowitz: Single-mode, single-processor Giotto scheduling 14

Theorem 16. An instance P of 1 | r;; dj;; prec; pmin; period | — is feasible if and only if
1. there is a rest point ¢ in [II .. 2I1], and
2. EDF™ produces a feasible schedule for activities a with r*(a) € [i —IT .. i — 1].

Proof. If the first condition does not hold, then Theorem 13 shows that P is infeasible. If the first condition
holds but the second does not, then since EDF~ is optimal, P is infeasible. We have established the “only if”
part. For the “if” part, suppose that i € [II .. 2I1] is a rest point, and that EDF ~ produces a feasible schedule
S = (I,e) for activities a with r*(a) € [—II .. ¢ — 1]. For the “if” part, suppose that ¢ € [II .. 2I1] is a rest
point, and that EDF~ produces a feasible schedule S = (I,¢) for activities a with r*(a) € [i — I .. i — 1].
We use (I, e) to construct an infinite sequence (I, er) of schedules: for k =0,1,---, let

o I, ={({+KIL,r+ KII) | (£,7) € I}.
o ¢ (¢ + KIL,r + KII) = a{m + k,n), where a(m,n) = e({,r).

Since (I,e) is feasible for activities a with r*(a) € [i —II .. 4 — 1], (I, ex) is feasible for activities a with
r*(a) € [i —II 4+ EIT .. i — 1 + KII].

In addition, we need to construct a schedule (I_y1,e_1) for activities a with r*(a) € [0..4 —II—1]. A
technical point is that for these activities we must do something slightly different from the above, since I
may contain intervals that intersect [0,II] (subtracting II from these intervals, as suggested by the above
definition of Ij, would amount to scheduling [—II,0]). Similarly, the activities executed in I may include
members of Ay (subtracting 1 from the first index of these activities would yield activities in the nonexistent
set A_1). Fortunately, all members of A; are executed after II, since a € Ay implies 7*(a) > II. We therefore
let

o [={({—-1ILr—1II)| (4,r) € T and e(¢,r) € A1 }.
o e_1(¢{—1II,r —II) = a{m — 1,n), where a(m,n) =e({,r) € A;.

It is straightforward to verify that (I_;,e_1) is feasible for activities @ with r*(a) € [0 .. i — IT — 1]. Finally,
let Too = Upe 1 Ik, let eso = Upe 4 €k, and let Sog = (I, €0). (Ioo, €00) satisfies P, thus establishing the
“if” part. O

Example 17. We now present an example to illustrate how Theorem 16 schedules an instance P of 1 | r;;
d;; prec; pmin; period | —. (This example is the problem instance generated by the Giotto program of
Figure 4. Section 4 explains how to generate an instance of 1| r;; d;; prec; pmin; period | — from a Giotto
program.) Let P = (A, t,r, d, <, II), where:

e The set of activities, A, is Ak, where Ay = {a(k,?) | ¢ € [1..13]}.5

e For each activity a, the execution time of a, t(a), is:
talk, 1)) = 1 t(a(k,2)) = 4 t(a(k,3)) = 1
t(alk,4)) = 1 t(a(k,5)) = 1 t(a(k,6)) = 1
t(alk,7)) = 4 talk,8)) = 1 t(alk,9)) = 1
t(alk,10)) =1 t(alk,11)) = 1 t(a(k,12)) = 1
t(a(k,13)) = 4
8The correspondence between these activities and the activities generated by the program of Figure 4 is as follows:
a(k, 1) = true(ds)|[2k, 2] a(k,2) = true(ds)|[2k, 2] a(k,3) = read(s)[2k, 3]
a(k,4) = true(dq)[2k, 7] a(k,b5) = true(d2)[2k, 7] alk,6) = t1[2k + 1,1]
alk,7) = ta2[2k + 1,1] (k,8) = true(ds)[2k + 1, 2] a(k,9) = read(s)[2k + 1, 3]
a(k,10) = true(d1)[2k + 1, 7] a(k,11) = true(dz2)[2k + 1, 7] a(k,12) = ¢1[2k + 2,1]
a(k,13) = t2[2k + 2, 1]

B. Horowitz: Single-mode, single-processor Giotto scheduling

e For each activity a, the release time of a, r(a), is:

r(a(k,1)) = kIl r(a(k,2)) = kIl
r(a{k,4)) = kII+5 r(a(k,5)) = kII+5
r(a(k, 7)) = kIl +5 r(a(k,8)) = kIl + 15
r(a(k,10)) = k11 + 16 r(a{k,11)) = k11 + 16
r(a(k,13)) = kIl + 16
e For each activity a, the deadline of a, d(a), is:
d(alk,1)) = kII+5 d(a(k,2)) =kII+5
d(a(k,4)) = k11 4+ 16 d(alk,5)) = kII + 27
d(a(k,7)) = kII 4 27 d(a(k,8)) = kIl + 16
d(a(k,10)) = kII + 27 d(a{k,11)) = kII + 38
d(a(k,13)) = kII + 38
e The following precedence constraints comprise <
a(k,3) < a(k,4) a(k,3) < a(k,b)
alk,5) < alk,7) a(k,6) < a(k,8)
a(k,9) < a(k, 10) a(k,9) < a(k,11)
alk,11) <« a(k,13) a(k,12) < a(k +1,1)
a(k,13) < a(k+1,4)

These precedence constraints are illustrated in Figure 8.

e Finally, IT = 22.

r(a(k,3)) = kIl +5
r(a(k,6)) = kII+5
r(a(k,9)) = kII + 16
r(a(k,12)) = kIl + 16
d(a(k,3)) =kII+6
d(a(k,6)) = KII + 16
d(alk,9)) = kI + 17
d(alk,12)) = kII + 27

a(k,4) < a(k,6)
alk,7) < a(k,10)
alk,10) < alk,12)
alk,12) < a(k +1,2)

Figure 9 presents the pending computation function p for our example; p is defined by:

5—k
8—(k—5)
0
1

Pk) =9 s (k—16)
7— (k—22)
10 — (k — 27)
ple —22)

The first rest point in [IT .. 2I1] is at ¢ = 37.

as claimed by Lemma 14. Figure 10 presents a feasible schedule for activities a with r*(a) € [i —II .

for k € [0 .. 4]

forke5
for k =14
for k=15

for k € [16 ..

for k € [22
for k € [27
for k € [37

. 13]

Note that p is periodic, with period Il = 22, starting at i —1II

15

=15,
Ci—1].

Figure 11 shows a prefix of the schedule for P that is produced by the proof of Theorem 16. This schedule

satisfies P, as desired.

4 From Giotto programs to instances of
1| r;; dj; prec; pmin; period | —

O

In this section, we will obtain a pseudopolynomial-time schedule synthesis algorithm for a class of single-
mode Giotto programs. Our strategy will be to generate an instance of 1 | rj; dj; prec; pmitn; period | —
given a program in this class, and then to apply the scheduling algorithm of Section 3.3.2 to this instance.

B. Horowitz: Single-mode, single-processor Giotto scheduling 16

a(0,1)

a(0,2)

[a(0,4) -+ a(0,6) -+ a(0,8) |

a(0,3)
[a(0,5) -+ a(0,7) F+1a(0,10) F~a(0,12)] a(1, 1) |
a(l,2)
(0, 11) |~{a(0,13) |-+ a(1,4) |+ a(1,6) | ~{ a(1,8) |
a(l,3)
[a(1,5) -+ a(1,7) Fa(1,10) F+{a(1,12) o a(2,1) |
a(1,9> a<22>
la(1,11) F+{a(1,13)|
Figure 8: Precedence constraints for Example 17.
pending
computation
p
10
8
6
4 \
2
0 N O\ N
Lrrrrrrrrrrererrrrrrrrrerrrrrrrrrrr et r e time
0 11 22 33 44 55

Figure 9: Pending computation function p for Example 17. Times 5, 13, 14, 15, 37, 38, 59, and 60 are rest
points. For i € [0 .. co], times 15 + 227 and 16 + 224 are rest points.

B. Horowitz: Single-mode, single-processor Giotto scheduling 17

a(0, 8) a(l,1)
a{0,9) a(l,3)
a(0, 10) a{0,13)
a(0,12) a(l,4)
a(0,11) a(l,6
OT<O7 13) a‘<17 5)
LIT [l [ea2 JT] [[] «an |
e e e L
15 22 33 37

Figure 10: Feasible schedule for activities of Example 17 that are released between ¢ — Il and i — 1 (i = 37
is a rest point).

a(0,8)
a(0,1) a(0,9)
a0, 3) a(0,10)
a(0,4) a(0, 12)
a0, 6) a(0,11)
a‘((), 5) a‘<0, 13)
L 02 I [[e0n | [T][[] |
e O L
0 11 15 22
a(l,1) a(l,8
a(l,3) a(l1,9)
a(0,13) a(1,10)
a(l,4 a(l,12)
a(1,6) a(0,11)
(1‘(1,5) a\(l,lS)
Lew2 JT] [[1] an []]1]] |
T T e A O
22 33 37 44

Figure 11: Prefix of a feasible schedule for Example 17.

B. Horowitz: Single-mode, single-processor Giotto scheduling 18

sensor
port s type int time 1
actuator
port a type int init O
output
port o; type int init O
port os type int init O

task f; input ¢; output o; function f;
task ty input i, output oo function f,

driver d; source s guard true destination ¢; function h;
driver dy source o guard true destination 49 function ho
driver d3 source o0 guard true destination a function hz time 1

mode m period 10 ports 01,02
frequency 1 invoke ¢; driver d;
frequency 1 invoke to driver ds
frequency 1 update d3

start m

Figure 12: An unconditional Giotto program.

4.1 Actuator- and sensor-dependent Giotto programs

We now define the class of single-mode Giotto programs for which we synthesize schedules. To begin with,
we shall limit our attention to Giotto programs which are unconditional:

Definition 18 (unconditional program). A single-mode Giotto program is unconditional if the guard of
every driver is true, i.e., for every driver d € Drivers and every port valuation v € Vals[Ports], g[d](v) = true. O

We will shortly define the subclass of unconditional programs that interests us. For unconditional Giotto
programs, the result of every driver and task invocation needs to be obtained. Unconditional programs
therefore represent the worst case for the scheduler. Figure 12 shows an unconditional Giotto program that
serves as a running example in this section. This program has two tasks and one actuator, all of which are
invoked with frequency 1. Task t; reads sensor s (via driver dy). Task ¢2 reads the output of task t; (via
driver ds). Actuator driver ds reads the output of ts.

We now review elements of the presentation from [HHKO03]. An execution F of a Giotto program is
an infinite sequence Cy, (1, -+ of configurations. Configuration C; occurs at time 7;, when actuators are
updated, sensors are read, and task drivers and tasks are invoked. For a single-mode Giotto program,
7; = i(m/w), where 7 is the period of the single mode m, and w is the lem of the frequencies of task
invocations and actuator updates of m. An execution E gives rise to a set Jg of jobs j[i, k]. Here, the job
action j is the job type; the first index i is the index of configuration C;; and the second index k is the Giotto
micro step at which the action is performed. Jobs of unconditional Giotto programs have four combinations
of j and k:

e Tusk jobs are of the form t[i, 1].
e Actuator driver jobs are of the form true(d)[i,2].
o Sensor read jobs are of the form read(s)l[, 3].

o Tuask driver jobs are of the form true(d)[s, 7).

B. Horowitz: Single-mode, single-processor Giotto scheduling 19

Communication between jobs constrains the permissible order of their execution: if job j/[¢, k'] reads a port
last written by j[i, k], then j[i, k] precedes j'[i’, k'] (in symbols, j[i,k] <g j'[¢',k’]). Task jobs and task
driver jobs may be executed at any time, subject to the constraints of <g, and are thus called floating jobs.
Actuator driver jobs d[i, 2] and sensor read jobs s[i, 3] must be executed close to time 7;, and are thus called
fized jobs. For any executions E and E’ of an unconditional program, Jg = Jg and <g=<pg. We thus
write J and < instead of Jg and <g. Let <™ denote the transitive closure of <. A platform annotation is
a function wcet mapping each action j to a positive integer weet(j), the worst-case execution time of j.
We now further focus on the class of single-mode programs of interest.

Definition 19 (actuator- and sensor-dependent program). A Giotto program is actuator-dependent
if for every floating job j[i, k], there exists a fixed job j'[¢’, k'] such that j[i, k] < j'[¢,k’]. A Giotto program
is sensor-dependent if there exists i* € ZZ° such that for every floating job j[i,k] € J with i > i*, there
exists a fixed job j'[i', k'] € J such that j'[¢/, k'] < j[i, k]. O

In an actuator-dependent program, every floating job precedes some fixed job.” In a sensor-dependent
program, there is some configuration C;- after which every floating job is preceded by some fixed job.

Example 20. To illustrate the definition of actuator- and sensor-dependence, consider Figure 13, which
shows a portion of the graph (A, <) of the Giotto program of Figure 12. As the figure shows, every floating
job precedes some fixed job; thus, the program of Figure 12 is actuator-dependent. Some floating jobs, for
example true(ds)[0,7], are not preceded by a fixed job. However, every floating job j[i, k] with ¢ > 2 is
preceded by a fixed job; thus, the program of Figure 12 is sensor-dependent. O

For sensor-dependent programs, a floating job not preceded by a fixed job can be computed prior to runtime;
moreover, some floating jobs j[i, k] may be computed considerably earlier than 7;. Sensor- and actuator-
dependent programs form an important class of Giotto programs, since Giotto is designed for applications
that process sensor data and use the results to effect actuators. In the remainder of this report, all Giotto
programs will be unconditional, sensor- and actuator-dependent.

4.2 A scheduling problem for Giotto

We now define the scheduling problem for which we will develop an algorithm. We are concerned with
scheduling only those jobs in J that are preceded by a fixed job. We wish to schedule these jobs so that
(1) the constraints of < are respected, (2) every job j[i, k] is scheduled for at least wecet(j) time units, and
(3) for fixed jobs j[i, k] the temporal difference between 7; and the time at which j[é, k] is scheduled is
minimized. We now formalize these requirements.

Definition 21 (e-feasibility). Let the set J* be defined as follows: j[i, k] € J* if and only if j[i, k] € 7,
and either j[i, k] is fixed or there exists a fixed job j'[i’, k'] with j'[i’, k'] <% j[i,k]. A Giotto program G is
e-feasible if there exists a schedule S such that for every job j[i, k] € J*:

e The total execution time 7g(j[¢, k]) equals weet().

o If j[i, k] precedes some job j'[i, k'], then Fs(j[i, k]) < Ss(5'[7', k']).

o If j[4, k] is an actuator driver job, then 7; — e < Sg(j[i, k]) and Fs(j[i, k]) < 7.

e If j[i, k] is a sensor read job, then 7; < Ss(j[¢, k]) and Fs(j[i,k]) < 7 + . O

The quantity & was termed jitter tolerance in [HHKO03]. A large jitter tolerance is clearly undesirable. In
particular, for jitter tolerances larger than m/w, the sensor and actuator jobs of one configuration C; can
be executed at 7;_1 or 741, which is unacceptably early or late. This motivates the following problem
statements:

Problem 22. Does a program G have an e-feasible schedule for some ¢ < 7/w?

9 An weaker but equivalent definition of actuator-dependence is that a program is actuator-dependent if there exists i* € 720
such that for every floating job j[i, k] with i > *, there exists a fixed job j'[i’, k'] such that j[i,k] < 5[/, k']. However, the
weak and strong definitions for sensor-dependence are not equivalent.

B. Horowitz: Single-mode, single-processor Giotto scheduling

y
true(ds)[1, 2]
read(s)[1, 3]

v
true(dy)[1, 7]

true(ds)[2, 2]

[
read(s)[2, 3]
v

[

true(dy)[2, 7]

true(ds)[2, 7]

Figure 13: The dataflow graph (A, <) of the Giotto program of Figure 12.

B. Horowitz: Single-mode, single-processor Giotto scheduling 21

Problem 23. If so, what is the smallest €* such that G has an e*-feasible schedule?
Problem 24. Given this minimum &*, synthesize an £*-feasible schedule.

For a technical reason, we shall assume that actuator values, once written, are never read. The purpose
of this assumption is to ensure that any e-feasible schedule S can be transformed into another e-feasible
schedule S’ in which all actuator drivers of configuration C; are executed without interruption immediately
prior to each time 7;. This transformation is necessary to prove Theorem 31 below. We wish to emphasize
that this assumption is merely technical; it may be removed by splitting each actuator driver into two parts,
one that is purely functional (it computes and writes the actuator port value), and another that is purely
operational (it reads the port value and interacts with the device).

4.3 The reduced dataflow graph

The remainder of this section develops an algorithm for these problems. Our approach is, given G and wcet,
(1) to generate an instance P[G,wcet] of 1| r;; d;; prec; pmin; period | —, and (2) to apply the algorithm of
Section 3.3.2 to P[G, weet]. For (1), we must first determine which jobs are in J*, and we must partition J*
into Ag, A1,---. To this end, we introduce the reduced dataflow graph, which captures the time delays of an
execution of the program G:1°

Definition 25 (reduced dataflow graph). The reduced dataflow graph of an unconditional Giotto program
is a edge-weighted directed graph (V, E, W), where the vertices V, edges E C V x V, and weight function
W : E — Z29 are defined as follows:

o Theset Vis {j[i,k]€ A|i€[0..w—1]}.
e The pair e = (j[i, k], j'[¢/,k']) € V x V is in E if:

— jli, k] < 7', K']. In this case, we define W(e) =i’ —i.
— jli, k] < §'[i’ + w, k']. In this case, we define W(e) =4’ +w — i. O

The reduced dataflow graph lets us determine an upper bound on the latest time at which a floating
activity j[i, k] € J* may execute. Let £ =i mod w. Let L ;) be the minimum path length in the reduced
dataflow graph from j[¢, k] to any fixed activity j'[¢, k'] € V. The earliest configuration that invokes a fixed

transitive successor of j[i, k] is Citr,, ;- Thus:

Proposition 26. Let S be a e-feasible schedule for any € > 0. Then:
Fs(iliskl) < (i + Lijen) (m/w)

Similarly, the reduced dataflow graph lets us determine a lower bound on the earliest time at which a
floating activity j[i, k] € J* may execute. Again let £ =i mod w, and let Ej; ;) be the minimum path length
in the reduced dataflow graph from any fixed activity j'[¢/,k'] € V to j[¢, k]. The latest configuration that

invokes a fixed transitive predecessor of j[i, k] is Ci—p,, ,,. Thus:

Proposition 27. Let S be a e-feasible schedule for any € > 0. Then:
Ss(jli k) =2 (i = Ejjep))(m/w)

Finally, the reduced dataflow graph lets us determine the set J* of jobs which cannot be computed
prior to runtime. Consider a floating job j[i, k]: the latest fixed job which transitively precedes j[i, k] has
a configuration number of i — Ejjg 4. If i — Ejjp 5 < 0, then no fixed job transitively precedes jli, k], and
jli, k] ¢ J*. Thus:

Proposition 28. J* is the union of the following two sets:

{jli, k] € T | jli, k] is a fixed job}
{jli,k] € T | jli, k] is a floating job and i — Ejj;) > 0}

10The concept of a reduced dataflow graph first appeared in [KMW67], where the delays were allowed to be multidimensional.
[KMW67] shows that multidimensional delays necessitate the buffering of unboundedly much data as time progresses; fortu-
nately, our delays are unidimensional. Reduced dataflow graphs are commonly used to study the parallelization of programming
languages (cf. [DRV00]).

B. Horowitz: Single-mode, single-processor Giotto scheduling 22

4.4 The scheduling problem generated by a Giotto program

We are now in a position to define the scheduling problem instance P[G,wcet] generated by a Giotto pro-
gram G and execution times wcet:

Definition 29 (the scheduling problem generated by a Giotto program). P[G,wcet] is a tuple
(A, t,r,d, <, 1I), defined as follows:

e For {=0,1,---, let
Ay = {fixed jobs jli,k] € T | i€ [w .. ((+ Dw — 1]}
U {floating jobs j[i,k] € J | i — Ej{i mod w,k € [lw .. (£ + 1)w — 1]}
Let A= {J,2, A
e For j[i, k] € A, let t(j[i, k]) = weet(5).

e Let Act; be the actuator driver jobs with configuration number 4, i.e., the set {d[¢, 2] € J}, and let Sense;
be the sensor read jobs with configuration number 4, i.e., the set {s[i,3] € J}. For j[i, k] € Act;,

r(ili k) = i(l/w) = 345 9jeact, Weet(d)
d(jli, k) = i(lljw)
For j[i, k] € Sense;,

r(li, k) = i(ll/w)

d(jli, k) = i(Il/w) 4+ 32 5jesense; WEEL(S)
Otherwise, j[i, k] is a floating job, and
T(][ka]) = (Z - Ej[z mod w,k])(H/w)
d(][l,k]) - (Z +Lj[i mod w,k])(H/w)

e The relation < is defined as follows. Let j[i, €], j'[', '] be two members of A. Then
jli k) <G K il k) < 5T R
e Finally, II is the period 7 of mode m. O

It may be verified that P[G, wcet] satisfies the conditions of Definition 1, with the exception of condition (2).
We now investigate the extent to which (2) holds. Note that for a € Ay,

r(a) € |- Z weet(d) .. 7 — 7/w (15)

dlw,2]€Act,,
Consider two adjacent configurations C; and C; 1, where i € [0 .. w — 1]. If it is not the case that
> weet(s) + > weet(d) < 7w (16)
s[i,3)€Sense; d[i+1,2]€Act; 11

then the program G cannot be e-feasible for any ¢ < 7/w. Whether (16) holds may be checked in time polyno-
mial in P[G, weet], by examining all activities in AgUA;. Suppose on the other hand that (16) holds for all i €
[0.. w—1], and in particular for i = w—1. If 3~ ;1 sjcace, Weet(d) = m/w, then 3= 3 ccense, , Weet(s) = 0.
In this case, Sense,,_1 =), so that the upper bound of (15) is strict, i.e., for a € A,

rla) < m—m/w

= 71— Z weet(d)

d[w,2]€Act,,

B. Horowitz: Single-mode, single-processor Giotto scheduling 23

If >~ 0w 2)eace, Weet(d) < m/w, then by (15), for a € Ay,

ra) < 7m—7/w

< - Z weet(d)

dlw,2]€Act,,
We have established the following proposition:

Proposition 30. Whether (16) holds may be checked in time polynomial in P[G,wcet]. If (16) does not
hold, then G is not e-feasible for any ¢ < 7/w. If (16) holds, then

rl@e|— Y weet(d).m—1— > weet(d) (17)

dw,2]€Act,, d[w,2]€Act,,

The fact that the release times of P[G,wcet| satisfy the modified condition (17) presents no difficulties
for the scheduling algorithm of Section 3.3.2. Suppose that (16) holds, and let S denote the schedule
obtained by running the algorithm of Section 3.3.2 on input P[G,wcet]. Suppose there exists an ¢’-feasible
schedule S’ for some ¢’ < 7/w. Using an exchange argument, it may be shown that S’ can be transformed
into S, and that S is e-feasible for some ¢ < &’. Further, it may be verified that S is feasible. Thus,
if G has an &'-feasible schedule for some &’ < 7/w, then S is feasible. The converse also holds: by the
construction of P[G,wcet], if S is feasible, then S is e-feasible for some ¢ < 7/w. Note that all sensors
and actuators drivers are executed at configuration Cy. Thus, the maximum jitter in S occurs at Cy, i.e.,
€* = max {ZaeActo weet(a), Y, csenses weet(a) }. Finally, since the jitter tolerance ¢ attained by S is at most
the jitter tolerance £’ obtained by an arbitrary schedule S/, € is the minimum jitter tolerance £*, and S is
a e*-feasible schedule. We have established the following:

Theorem 31. Problems 22, 23, and 24 may be solved as follows:
1. G has an e-feasible schedule for some ¢ < 7/w if and only if S is feasible.
2. If S is feasible, then £* = max {3, cace, Weet(a), D, csense, Weet(a) }-
3. If S is feasible, then S is an e*-feasible schedule.

The problem instance P[G,wcet] may be generated in time pseudopolynomial in the frequencies of the task
invocations and actuator updates of mode m. Since the algorithm of Section 3.3.2 is polynomial time, we
conclude that Problems 22, 23, and 24 may be solved in pseudopolynomial time. Whether a fully polynomial-
time algorithm for these problems exists is an open question.

5 Additional optimizations

We now describe two ways to optimize a runtime system that executes an instance of 1 | r;; d;; prec; pmin;
period | —. The first optimization (Section 5.1) is to aggregate distinct activities into the same thread. This
reduces the number of threads, and consequently the memory footprint and the context switch overhead.
The second optimization (Section 5.2) is to use a single stack to execute activities. This makes a context
switch not much more expensive than a function call [Wir96].

5.1 Activity aggregation
Consider an instance P of 1 | r;; d;; prec; pmin; period | —, and the set of activities
v={a€Alr*(a) =rand d*(a) = d}

At runtime, the activities in A}, are executed in some number of threads. How many threads are necessary?
We claim that a single thread T); suffices. T} executes the activities in A}, in any linear order consistent

B. Horowitz: Single-mode, single-processor Giotto scheduling 24

with the partial order <. The scheduler uses an earliest deadline first policy to schedule threads, where the
deadline of T} is d. Further, the scheduler resolves ties between threads with the same deadline in favor of
the thread 7); with minimum release time r. The question here is, given that each activity a may run for less
than its worst-case time t(a) to run, can some precedence constraint is violated? To answer this question,
consider two activities a1 and ag such that a; < as. If a; and as are in the same set A}, then a; will finish
before ay begins, since 17 linearizes <. Suppose that a; and as are in distinct sets Agll #* AZ; respectively.
By the definition of * and d*, since a; < ag, 11 < 19 and d; < ds. There are two cases to consider:

L. If di < dg, then T};' will execute in preference to 7. Thus a; will finish before as begins.
2. If dy = da, since A}l # A}, 11 < r2. Again in this case, 7' will execute in preference to T},”.

It follows that no precedence constraint can be violated.
In the example of Figures 12 and 13, the sets A7, are:

Agt = {true(ds)[0,2]}
A} = {read(s)[0,3]}
Ay = {true(dy)[0,7], t1[1,1], true(d2)[1,7], t2[2,1]}
Ay = {true(ds)[1,2]}
ARy = {read(s)[1,3]}
AR = {true(d1)[1,7), t1[2,1], true(d2)[2,7], t2[3,1]}

The jobs true(ds)[0, 7] and t2[1, 1] appear neither in A nor in A7, since these jobs may be computed before
runtime.

5.2 Single-stack implementation

Definition 32 (balanced schedule). Let S be a schedule, as defined by Definition 2 or Definition 4. We
say that S is balanced if for any two activities ay, as € A, it is not the case that Sg(a1) < Sg(a2) < Fs(ar) <
.7:,5‘ (CLQ). ([l

Such schedules are called balanced because they correspond to strings in a balanced parenthesis language,
where each opening parenthesis (, denotes the start of activity a, and each closing parenthesis), denotes
the completion of a. EDF~ and the algorithm of Section 3.3 always produce balanced schedules, since if
activity a; preempts activity as, then a; has an earlier deadline than as, and a; will complete before ay.!!
These properties hold not only for the schedules produced by EDF-based algorithms, but for balanced
schedules in general. The following proposition, which may be proved using an exchange argument, makes
this notion precise.

Proposition 33. Any balanced schedule S = (I, e) may be transformed into a balanced schedule S* = (I’ ¢’)
with the following properties:

1. For any activity a in the range of e,
T5(a) Ts/(a)
Ss(a) < Sg(a)
Fgr(a) < Fs(a)

Thus, if S satisfies an instance P of 1 | r;; d;; prec; pmin; period | —, then S also satisfies P.
2. Let a1 and ag be activities in the range of e such that
Ssr(a1) < Ssr(az) < Fsr(az) < Fer(ar)

Then €'(i') # a; for any interval i’ € I’ such that i’ N [Sg (a2), Fsr(az)] # 0. In other words, if as
preempts a1, then as finishes before a; executes again.

1 The rate monotonic scheduling algorithm [LL73] also produces balanced schedules.

B. Horowitz: Single-mode, single-processor Giotto scheduling 25

Balanced schedules are attractive for two additional reasons. First, in a balanced schedule the overhead
due to context switches may be bounded: each thread gets charged one context switch when its starts, and
one when it finishes. For finite schedules this bound is 2tc, where ¢ is the number of threads and c is the time
required for a context switch. This observation is originally due to A.K. Mok and M.L. Dertouzos [MD78]
for schedules produced by EDF-based algorithms. Second, balanced schedules may be implemented using a
single stack. In most current programming language implementations, each thread uses a pushdown stack to
execute function calls. Operating systems, including most real-time operating systems, typically use separate
stacks for distinct threads. For balanced schedules, the same stack space may be used by different threads,
as we will explain below. This has the advantage of saving time during context switches: as we will see,
preemption becomes no more expensive than a jump into an interrupt service routine, plus an invocation of
the (minimal) runtime scheduler, plus a function call. Storing and restoring additional per-thread information
is no longer necessary. The observation that a single stack suffices for fixed-priority systems is due to N.
Wirth [Wir96]. The generalization to arbitrary balanced schedules is, we believe, original.

We now explain how to share a single stack in a balanced schedule. We focus on time instants when
the runtime scheduler is active: (1) thread startup (Sg(a) for some activity a), and (2) thread termina-
tion (Fs(a)).'? At thread startup, the runtime scheduler receives control; this is frequently accomplished
using a timer interrupt. The stack is in the state in which the interrupted thread has left it. The runtime
scheduler places the program counter of the interrupted thread on the stack. The runtime scheduler then
jumps to the start address of the thread being started. The new thread runs for some time, perhaps getting
preempted by other threads. We assume that the new thread leaves the stack in the same state in which
it found it, i.e., with the program counter of the preempted thread on top. At thread termination, the
runtime scheduler pops and returns to the program counter of the interrupted thread. Because the schedule
is balanced, the interrupted thread need not execute (and thus use the stack) between the start time and
the finish time of the interrupting thread.

6 Conclusion

This report presented an approach to scheduling single-mode Giotto programs for a single processor. To
account for the infinite nature of Giotto programs, we extended the classical scheduling problem 1 | r;; d;;
prec; pmin | — to a periodic version. We developed an optimal algorithm for this extended problem, based on
the concept of rest points. We then showed how to translate a class of single-processor, single-mode Giotto
programs into instances of this extended problem. This resulted in a pseudopolynomial-time scheduling
algorithm for our class of programs.

References

[B*01) J. Blazewicz et al. Scheduling Computer and Manufacturing Processes. Springer-Verlag, 2nd
edition, 2001.

[BHR93] S.K. Baruah, R.R. Howell, and L.E. Rosier. Feasibility problems for recurring tasks on one
processor. Theoretical Computer Science, 118(1):3-20, 1993.

[Bla76] J. Blazewicz. Scheduling dependent tasks with different arrival times to meet deadlines. In Proc.
Intl. Workshop on Modelling and Performance Evaluation of Computer Systems, pages 57—65.
North-Holland, 1976.

[Bru01] P. Brucker. Scheduling Algorithms. Springer-Verlag, 2001.

[BS93] G.C. Buttazzo and J.A. Stankovic. RED: Robust earliest deadline first scheduling. In Proc. 3rd
Intl. Workshop on Responsive Computer Systems, pages 100-111. IEEE, 1993.

12The scheduler may also be active if a thread terminates before its scheduled finish time. This commonly occurs if the actual
execution time of the thread is less than its worst-case execution time. At such times, the scheduler may execute soft real-time
threads, using separate stacks if necessary. Here we discuss the use of a single stack only for hard real-time threads.

B. Horowitz: Single-mode, single-processor Giotto scheduling 26

[DRVO0]

[HHK03]

[HKMMO02]

[HLv97]

[Kim94]

[KMW67]

[Kop97]

[KSHP02]

[Len77]

[LL73]

[LLKS82]

[LLLK82]

[MD78]

[Pin95]

[SBS95]

[Wir96]

A. Darte, Y. Robert, and F. Vivien. Scheduling and Automatic Parallelization. Birkh&user,
2000.

T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Giotto: a time-triggered language for embedded
programming. Proceedings of the IEEFE, 91(1):84-99, 2003.

T.A. Henzinger, C.M. Kirsch, R. Majumdar, and S. Matic. Time safety checking for embed-
ded programs. In Proc. 2nd Intl. Workshop on Embedded Software, LNCS 2491, pages 76-92.
Springer-Verlag, 2002.

J.A. Hoogeveen, J.K. Lenstra, and S.L. van de Velde. Sequencing and scheduling. In Annotated
Bibliographies in Combinatorial Optimization, pages 181-197. Wiley, 1997.

Y.S. Kim. An optimal scheduling algorithm for preemptable real-time tasks. Information Pro-
cessing Letters, 50(1):43-48, 1994.

R.M. Karp, R.E. Miller, and S. Winograd. The organization of computations for uniform recur-
rence equations. Journal of the ACM, 14(3):563-590, 1967.

H. Kopetz. Real-time systems: design principles for distributed embedded applications. Kluwer,
1997.

C.M. Kirsch, M.A.A. Sanvido, T.A. Henzinger, and W. Pree. A Giotto-based helicopter control
system. In Proc. 2nd Intl. Workshop on Embedded Software, LNCS 2491, pages 46-60, 2002.

J.K. Lenstra. Sequencing by enumerative methods. Technical Report 69, Mathematisch Cen-
trum, Amsterdam, 1977.

C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard-real-time envi-
ronment. Journal of the ACM, 20(1), 1973.

E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Recent developments in deterministic
sequencing and scheduling: a survey. In Deterministic and Stochastic Scheduling, pages 35—73.
Reidel, 1982.

B.J. Lageweg, J.K. Lenstra, E.L. Lawler, and A.H.G Rinnooy Kan. Computer-aided complexity
classification of combinatorial problems. Communications of the ACM, 25(11):817-822, 1982.

A K. Mok and M.L. Dertouzos. Multiprocessor scheduling in a hard real-time environment. In
Proc. Tth Texas Conference on Computing Systems, pages 5.1-5.12, 1978.

E. Pinson. The job shop scheduling problem: A concise survey and some recent developments.
In Scheduling Theory and its Applications, pages 276-293. Wiley, 1995.

M. Spuri, G.C. Buttazzo, and F. Sensini. Robust aperiodic scheduling under dynamic priority
systems. In Proc. 16th IEEE Real-Time Systems Symposium, pages 210-219. IEEE, 1995.

N. Wirth. Tasks versus threads: An alternative multiprocessing paradigm. Software: Concepts
and Tools, 17:6-12, 1996.

