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Abstract. Studies of office workers, web designers, and oral historians have 
found that even in the digital age (and sometimes because of it), we are using 
paper more and more. The paperless office is a myth. The paper-saturated of-
fice is not a failing of digital technology; it is a validation of our expertise with 
the physical world. We use paper, and writing surfaces more generally, in their 
myriad forms: books, notepads, whiteboards, Post-it notes, and diagrams. We 
use these physical artifacts to read, take notes, design, edit, and plan. Here, we 
present a toolkit for building vision-based tangible interfaces. We also present 
the user-centered design methods we employed to build this toolkit. 

1 Introduction: Augmenting the Physical World 

Beginning with Wellner’s Digital Desk [33], researchers have explored how to better 
integrate the physical and electronic worlds. In 1997, Ishii and Ullmer [16] proposed 
the Tangible User Interfaces (TUIs) research agenda, giving the area of tangible 
computing a more concretely shaped vision. Currently, researchers around the world 
are building physical interfaces (e.g., [18, 20, 22, 23, 32]). TUIs are an important part 
of ubiquitous computing research, as they provide the means for truly embedding 
interaction in the user’s environment. 

The Myth of the Paperless Office [28] describes field research the authors under-
took over several years at a variety of office companies. The central thesis of the 
book is that paper is often viewed as inefficient and passé, when in actuality it is a 
nuanced, efficient, highly effective technology. The authors are not asserting that 
“paper is better than digital” or vice versa, but that our naïve utopia of the paperless 
office is mistaken. Digital technologies certainly change paper practices, but they 
rarely make paper irrelevant. 

There are excellent reasons for researchers to embrace, not abandon, our interac-
tions with everyday objects in the physical world. Paper and other everyday objects: 

− Allow users to continue their familiar work practices, yielding safer inter-
faces [20]. 

− Are persistent when technology fails, and thereby more robust [22]. 
− Enable more lightweight interaction [13]. 



− Afford for fluid collocated collaboration. 
− Are higher resolution, and easier to read than current electronic displays. 

However, “tangible computing is of interest precisely because it is not purely physi-
cal” [8]. Researchers have electronically augmented paper and other everyday objects 
to offer: 

− An interactive history of an evolving physical artifact [19]. 
− Collaboration among physically distributed groups. 
− Enhanced reading. 
− Associative physical links to electronic resources. 
− Physical handles for fluid editing of electronic media. 
− Automated workflow actions. 

There are difficulties in employing paper and everyday objects as a user interface. 
When paper is used as an interactive dialog, the update cycle (printing) is much 
slower than with electronic displays. When multiple actors (computational or human) 
control the physical data (e.g. Post-it notes [19]), the application needs to reconcile 
the physical objects representing an inconsistent view. This can be handled by either 
prohibiting such actions, or by electronically mediating them. Physical sensors 
(especially computer vision) require substantial technological expertise to be built 
robustly. Many developers have excellent ideas about how physical computing can 
better support a task, but lack this technological expertise. 

The difficulties involved in building tangible interfaces today echo the experiences 
of the GUI community of twenty years ago. In 1990, Myers and Rosson found that 
48% of code and 50% of development time was devoted to the user interface. One of 
the earliest GUI toolkits, MacApp, reduced Apple’s development time by a factor of 
four or five [25]. We believe that similar reductions in development time, with 
corresponding increase in software reliability and technology portability, can be 
achieved by a toolkit supporting tangible interaction. 

While the research community has shown the substantial benefits of tangible inter-
action, these UIs are currently very difficult and time consuming to build, and the 
required technology expertise limits the development community. The difficulty of 
technology development and lack of appropriate interaction abstractions make de-
signing different variations of an application and performing comparative evaluations 
unrealistic. In each of the twenty-four research systems we have studied [17], at least 
one member of the project team was an expert in the sensing technology used. Con-
trast this with GUIs, where developers are generally experts in the domain of the 
application, not in raster-graphics manipulation.  

GUI tools have been so successful because, “tools help reduce the amount of code 
that programmers need to produce when creating a user interface, and they allow user 
interfaces to be created more quickly. This, in turn, enables more rapid prototyping 
and, therefore, more iterations of iterative design that is a crucial component of 
achieving high quality user interfaces” [24]. 

The Papier-Mâché research project seeks to provide toolkit level support for physi-
cal input. We believe that handling physical input at the toolkit level will enable 
developers to (1) quickly build paper-based tangible user interfaces and (2) change 



    

Figure 1. Collaborage. Left: Hallway with In/Out and Away boards. 
Right: Web browser view of part of the In/Out board. 
the underlying sensing technologies with minimal code changes. Papier-Mâché also 
enables further tangible interface research by providing an open-source platform for 
researchers, students, and commercial developers. 

In its full form, Papier-Mâché will support vision, bar-code, and RFID tag input. 
Vision is the most flexible, powerful, and unwieldy of these technologies. For these 
reasons, we have researched toolkit support for vision-based UIs first. Tool support in 
this domain is minimal: while software libraries such as JAI [1] and OpenCV [4] aid 
vision developers in image processing tasks, there are no tools that enable developers 
to work with vision-based UIs at the application/event level. The primary contribu-
tion of this paper is the introduction of a high-level event mechanism for vision-based 
TUIs. 

2 Application Space 

We conducted a literature survey of existing tangible user interfaces, looking specifi-
cally for examples of systems employing paper and other “everyday” objects (as 
opposed to mechatronic interfaces). 

The twenty-four representative applications fall into four broad categories: spatial, 
topological, associative, and forms.  

Spatial applications include augmented walls, whiteboards, and tables, used for 
collaboratively creating or interacting with information in a Cartesian plane. Col-
laborage (see Figure 1) is a spatial application: it is “a collaborative collage of physi-
cally represented information on a surface that is connected with electronic informa-
tion, such as a physical In/Out board connected to a people-locator database” [23]. 

Topological applications employ physical objects as avatars (e.g., for airplanes, 
media files, and PowerPoint slides). Arranging these objects determines the behavior 
of the corresponding electronic system. Paper Flight Strips [20] is a topological 



application: the system augments the flight controllers current work practice of using 
paper flight strips by capturing and displaying information to the controllers.  

With associative applications, physical objects serve as an index or “physical hy-
perlink” to digital media. Durrell Bishop’s Marble Answering Machine [6] is an 
associative application. An answering machine deposits a physical marble (with an 
embedded RFID tag) each time a message is left. To play a message, one picks up the 
marble and drops it into an indentation in the machine. 

Forms applications, such as the Paper PDA [13], provide batch processing of pa-
per interactions. Users work with paper in a traditional manner, then scan or fax it to 
initiate electronic behaviors. The Paper PDA is a set of paper templates for a day-
planner. Users work with the Paper PDA as with any other paper day-planner. They 
can then scan the pages in, and information will be electronically captured. 

These twenty-four applications share much functionality with each other, includ-
ing: 
− Physical input for arranging electronic content  
− Physical input for invoking actions (e.g., media access)  
− Electronic capture of physical structures 
− Coordinating physical input and graphical output in a geo-referenced manner. 
− An Add, Update, Remove event structure. 

In the interest of brevity, this taxonomy broadly omits several classes of interfaces: 
haptic (e.g., wheels [29]) and mechatronic (e.g., inTouch [5]) UIs, and TUIs whose 
only input is a tethered 3D tracker (e.g., Doll’s head [14]). 

3 Motivating Applications 

As part of our user-centered design process, we conducted interview surveys with 
nine researchers who have built tangible interfaces. These researchers employed a 
variety of sensing techniques including vision, various RF technologies, capacitive 
field sensing, and bar-codes. We will report on the details of this study elsewhere. 
Here, we summarize the findings from the three researchers that used vision. 

Researcher #1 has a PhD in computer vision, and was the vision expert on an inter-
disciplinary research team. His team built a wall-scale, spatial TUI. Their driving 
user experience beliefs were: 
− “People don’t want to learn or deal with formidable technology.” 
− “They’re torn between their physical and electronic lives, and constantly trying 

work-arounds.” 
− “Technology should make things more calm, not more daunting.” 

They used vision because, “it gives you information at a distance without a lot of 
hassle, wires, and instrumentation all over the place. It puts all the smarts in one 
device and instrumentation is limited. It also is possible to retrofit existing spaces.” 
His main frustration with using vision was that “getting down and dirty with the 
pixels” was difficult and time-consuming. 



Researcher #2 built a wall-scale, spatial TUI augmented with speech and gesture 
recognition. For rapid implementation, the system was originally implemented with a 
SMART Board as the sensor. Later, this was replaced with vision for two reasons: 1) 
SMART Boards expensive and bulky, while cameras are inexpensive and small. 2) 
SMART Boards provide single-input of (x, y). Vision offers a much richer input 
space. This vision task is exactly the kind of task that Papier-Mâché can support. 

Researcher #6 built a desktop forms UI incorporating image capture. His main 
frustration was that, “The real-time aspects of camera interfacing were probably the 
hardest.” This system was designed iteratively over a number of years. At each 
iteration, user feedback encouraged making the interaction techniques more light-
weight and calmer. This echoed the experiences of the other two researchers, as well 
as our own group’s research. 

All three researchers mentioned the difficulty of working with cameras. #2 avoided 
them initially. #1 plowed through anyway, lamenting “it’s not always worth it to live 
at the bleeding edge of technology. … Make sure you have a very good reason if you 
choose to work on a problem whose solution requires pushing more than one enve-
lope at most.” 

Myers, Hudson, and Pausch [24] point to rapid prototyping as a central advantage 
of tool support. Vision is an excellent technology for rapid prototyping of interactive 
systems. It is a highly flexible, completely software configurable sensor. There are 
many applications where the final system may be built using custom hardware, but 
the prototypes are built with vision. An example application built with Papier-Mâché 
is the Physical Macros class project [7]. As discussed in section 7.1, vision enabled 
these students to rapidly prototype their system in roughly three weeks. Neither of the 
students had experience with computer vision. Given the tight time schedule of class 
projects, this system would not have been possible otherwise. 

4 Related Work 

We present related work in two areas: GUI input models and TUI input models. 

4.1 GUI Input Models 

Model, View, Controller (MVC) was one of the earliest attempts at providing guiding 
software abstractions for the developers of GUIs. MVC separates code into three 
parts: “the model which embodies the application semantics, the view which handles 
the output graphics that show the model, and the controller which handles input and 
interaction. Unfortunately, programmers have found that the code for the controller 
and view are often tightly interlinked; creating a new view usually requires creating a 
corresponding new controller” [26]. In practice, most developers write their code in 
two pieces: a model and a view-controller. While the view-controller distinction 
makes some historical sense (mice are different than displays), the two are necessarily 
blurred in practice. An Interactor-like approach [26] is much more common.  



Interactors [26] introduced multiple widgets (view-controller encapsulations) with 
equivalent APIs; a highly influential abstraction that has influenced modern GUI 
toolkit design (e.g., Java Swing). The original six interactors were: Menu selection, 
Move-grow, New-point, Angle (the angle that the mouse moves around some point), 
Text entry, and Trace (for free-hand drawing). By providing a higher-level API, 
Interactors give application developers a level of independence from implementation 
details such as windowing systems. Other researchers have continued this model-
based direction (see [30] for an excellent summary), enabling application developers 
to ask the toolkit to execute tasks without being concerned with the actual widget 
(e.g., theoretically, a menu interaction could be handled via a drop-down menu, radio 
buttons, a textbox, or even speech input). 

4.2 Tangible Computing Toolkits and Interaction Models 

Phidgets. The work most related to Papier-Mâché is Phidgets [12]. Phidgets are 
physical widgets: programmable ActiveX controls that encapsulate communication 
with USB-attached physical devices, such as a switch or motor. Phidgets are a great 
step towards toolkits for tangible interfaces. The digital ActiveX controls, like our 
Java event system, provide an electronic representation of physical state. However, 
Phidgets and Papier-Mâché address different classes of tangible interfaces. Phidgets 
primarily support tethered, mechatronic tangible interfaces that can be composed of 
wired sensors (e.g., a pressure sensor) and actuators (e.g., a motor). Papier-Mâché 
primarily supports untethered TUIs employing everyday objects. 

Papier-Mâché provides stronger support for the “insides of the application” than 
Phidgets. Phidgets facilitates the development of widget-like physical controls (such 
as buttons and sliders), but provide no support for the creation, editing, capture, and 
analysis of physical data. This data is the insides of the application that Papier-Mâché 
supports. With Phidgets, all servo-motors are equivalent; the physical artifacts are 
generic. With Papier-Mâché, the physical artifacts are non-generic; the application 
can have different behavior depending on the content or identity of the physical 
objects. 

One reason for Phidgets’ success is that the authors’ original research agenda was 
building applications, not a toolkit. The difficulty and frustration of building and 
evaluating one-off applications led the authors to the Phidgets concept. Experiential 
knowledge is very powerful—toolkit designers with prior experience building rele-
vant applications are in a much better position to design truly useful abstractions. Our 
research group has a similar vantage point: we have spent four years building physi-
cal interfaces. Our motivation for building a toolkit also comes through this important 
experiential knowledge. 

Emerging frameworks for tangible user interfaces. In [31], Ullmer and Ishii 
provide an excellent taxonomy of existing tangible interfaces. We have drawn heavily 
on both this taxonomy and the innovative ideas of their Tangible Media Group in 
creating our list of inspirational applications. They also propose MCRpd as analogue 



to MVC for the physical world. M is the model and C is the controller. The difference 
is that the view is split into two components: Rp, the physical representation, and Rd, 
the digital representation. We believe this interaction model is flawed for three 
reasons. First, MVC is not an appropriate starting point because real application 
developers rarely write idealized MVC code; Interactors are a more commonly used 
abstraction. Second, from an implementation standpoint, it is unclear whether explic-
itly separating physical and digital outputs is beneficial. In fact, for reasons of appli-
cation portability, it is important that the event layer is agnostic to whether the im-
plementation is physical or digital (e.g., for usability studies, it would be great to be 
able to create and compare physical and electronic versions of an application with 
minimal code changes). Third, the approach is untested; no toolkit or applications 
were ever built explicitly using the MCRpd approach. 

iStuff. iStuff [3] provides some compelling extensions to the Phidgets concept, 
primarily that it supports wireless devices. iStuff provides fast remapping of input 
devices into their iRoom framework, enabling standard GUIs to be controlled by 
novel input technologies. By providing a multi-user, multi-device event-based soft-
ware API, “the technology does not matter to those who access the device in their 
software applications” [3]. iStuff and Papier-Mâché are highly complementary; it 
very well might be possible to use iStuff to drive distributed Papier-Mâché applica-
tions. 

There are two main differences in our research agenda: First, while Papier-Mâché 
offers no explicit support for retargeting existing applications, iStuff offers novel 
control of existing applications. To the extent that applications already have a correct 
input model, iStuff is a huge win. However, the tangible interfaces Papier-Mâché 
supports do not operate on the GUI input model. Second, like Phidgets, iStuff targets 
the mechatronic subspace of tangible interfaces, rather than the augmented paper 
subspace of tangible interfaces. (For example, it would not be possible to build The 
Designers’ Outpost [18] using iStuff.) 

Image Processing With Crayons. Fails and Olsen have implemented a highly 
compelling system for end-user training of vision recognizers, “Image Processing 
with Crayons” [10]. It enables end-users to draw on training images, selecting the 
areas of the images (e.g., hands or note-cards) that they would like the vision system 
to recognize. They employ decision trees as their classification algorithm, using 
Integral Images as the feature set. The resulting recognizers can be exported as 
serialized Java objects for incorporation into standard Java software. Crayons com-
plements our work well, offering a compelling interaction technique for designating 
objects of interest. Papier-Mâché’s recognition methods (e.g., edge detection and 
perspective correction) are higher-level than the pixel-level processing employed by 
Crayons. We also offer higher-level object information (e.g., orientation), and most 
importantly, an event mechanism for fluidly integrating vision events into applica-
tions. Papier-Mâché also supports ambiguity [21], an important feature unavailable in 
Crayons. 
 



5 High Level Design 

The primary contribution of this paper is the introduction of high-level events for 
vision-based TUIs. In contemporary vision-based applications, the information that 
the vision system provides to the application tends to be ad-hoc and written in tech-
nology-centered terms. Papier-Mâché introduces an event mechanism that makes 
much more sense from an application developer’s perspective. 

A well-specified event API enables a separation of concerns between algorithms 
development and interface development. Of concern to the application developer is, 
“When a user places a light-bulb on the work surface, display visual output based on 
the bulb’s location and orientation.” A savvy application developer is also likely 
interested in mediation techniques [21] if an object was recognized with low confi-
dence. These issues live above the event layer. The details of the recognition algo-
rithms are hidden by the event layer. The techniques for object detection can change 
completely, and the event API (and thereby, application code) does not need to be 
changed. 

Papier-Mâché is Java software written using the Java Media Framework (JMF) [2] 
and Java Advanced Imaging (JAI) [1] APIs. JMF supports any camera with a stan-
dard camera driver, including high-quality cameras such as the Sony 1394 cameras 
(we use the VL-500) as well as inexpensive webcams. Papier-Mâché is open source 
software available on the web at *anonymized URL*. 

We remind the reader: the contribution of this paper is not in the domain of vision 
algorithms. Our contribution is a novel set of APIs for building interactive systems 
and a toolkit that employs well-known algorithms that are effective for this task. 

5.1 Motivating scenario: building The Designers’ Outpost with Papier-Mâché 

We introduce the software architecture with a scenario of how Papier-Mâché would 
help a developer build The Designers’ Outpost [18], a tool that supports information 
design for the web. Web designers use pens, paper, walls, and tables for explaining, 
developing, and communicating ideas during the early phases of design [27]. Outpost 
embraces and extends this paper-based practice through a large electronic wall with a 
tangible user interface (see Figure 2). 

Users have the same fundamental capabilities in the Outpost system as in a paper 
and whiteboard system. One can create new pages by writing on new Post-it notes, 
add them to the electronic wall and organize a site by physically moving Post-it notes 
around on the board. Paper in the physical world becomes an input device for the 
electronic world. A camera mounted inside the board captures the location of notes, 
detecting when notes are added, removed, or moved. 
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igure 2. The Designers’ Outpost, a system for collaborative web design
ost is a spatial TUI. To build Outpost, a developer would begin by instantiat-
mera source for the internal camera. She would then instantiate a PMWindow 
l component capable of partaking in camera calibration) as the main canvas 
board. She would add an EventFilter that filtered for Post-it note sized 
as a listener to the camera’s event stream. She would then instantiate a 
lAnalogueFactory as a listener to the note filter, and perhaps add a 
nlessTranslator to filter out hand motions. She would have the factory 
isual forms with a faint yellow shadow. With just this code, the developer has 
system that tracks Post-it notes placed on the screen and presents visual 
k. To support users tapping on notes, she could add standard Java mouse 
s to the visual forms the factory creates. To extend the system with a remote 
ss shadow [9], she would add a second EventFilter to the camera. This 
ilter for person-sized objects. This filter would have a corresponding factory 
ated the outline shadow using the outline pixel data from the events source. 

ision Events 

tral piece of the toolkit is the VisionEvent class. Applications receive 
nEvents from an ImageSourceManager by registering 
nListeners (see Figure 3). A VisionListener receives events about 
cts larger than a specified minimum size. (This minimum size constraint is 
or performance; it avoids an inappropriately large number of events from 
enerated.) VisionEvents have a similar API to Java’s MouseEvents, a 
ant of the Interactors research. There are several important differences, 
r. 



 

Figure 3. Event dispatching in Papier-Mâché. There can be multiple vision listeners. 

1) A mouse is a heavyweight (i.e., “always present”), generic input device; the 
meaning of its input is constructed entirely through the graphical display. In tradi-
tional GUIs there is always exactly 1 mouse. (Some research systems offer multi-
ple mice.) In contrast, tangible interfaces nearly always employ multiple input de-
vices. In many TUIs, the meaning is constructed entirely by the physical and 
visual form of the object. In other TUIs, the form and a graphical display both de-
termine behavior. In these systems, the input devices are lightweight; multiple ob-
jects appear and disappear frequently at runtime. So while MouseEvents offer 
only position updates, VisionEvents offer Add, Update, and Remove meth-
ods. 

2) With a traditional mouse, the only input is (x, y) position and button presses. With 
physical objects on a plane, we have (x, y) position, orientation (θ ), size, shape 
information, and visual appearance. Currently, Papier-Mâché also provides 
bounding box, edge pixel set, and major and minor axis lengths as shape informa-
tion. We currently provide the mean color, as well as access to the source image 
data, for visual appearance. 

3) Papier-Mâché provides a lightweight form of classification ambiguity. This is 
discussed in section 5.3. 

4) Because of the substantial interpretation involved in moving from camera data to 
high-level events, events provide a method to get the raw source image from 
which the event was generated. Having access to the original pixel data, and the 
region of interest (ROI) for the event provides a lightweight way for developers to 
extend the toolkit for their own needs. For example, a developer might want to 
extend the image processing, or capture the raw image data for subsequent dis-
play. 

5.3 Event filtering, classification, and translation 

Nearly all applications are interested in only certain classes of events. For example, 
Outpost is only looking for Post-it notes and user shadows. Events can be filtered 
using EventFilters (see Figure 4). Filters are both event listeners and producers. 
They listen to input events, filter according to a specified criteria, and pass along 
relevant events to the VisionListeners registered with the filter. Most filters 
filter events that meet a certain classification criteria. The three currently imple-



 

Figure 4. Filters can serve as intermediary listeners. 

mented classifiers are MeanColorClassifier, ROIClassifier, and 
SizeClassifier. 

The MeanColorClassifier passes along events about objects whose color is 
within distance ε of an ideal color. The ROIClassifier passes along events about 
objects in a particular region of interest of the camera view. And the 
SizeClassifier passes along events for objects whose size is within a Euclidean 
distance ε of an ideal size. We plan to implement more classifiers, most notably 
shape-based classifiers. In our Outpost example, the developer would 1) filter for 
Post-it note sized objects and 2) filter for person-sized objects. 

Additionally, we provide a MotionlessTranslator. Many interactive sys-
tems optionally employ human body/hand input along with inanimate physical 
objects. The MotionlessTranslator filters out human body/hand input by 
ignoring moving objects; the remaining events are inanimate. Each of these classifiers 
returns a confidence value from the classification. These confidence values provide 
the application with more than just a simple “yes/no.” 

5.4 Visual Analogues 

In all of the interactive vision-based UIs in our taxonomy, camera input drives some 
form of graphical output. In some cases, physical input and visual output are visually 
combined, yielding augmented direct manipulation interaction. In other cases, graphi-
cal presentation of the physical objects occurs on another collocated or remote  
display. To support this, we offer a VisualAnalogueFactory, a factory class 
that creates graphical components representing physical objects. It does so by regis-
tering itself as a VisionListener. This simplifies three important tasks: graphical 
feedback/augmentation and event handling. In our Outpost example, physical notes 
cast a graphical shadow on the board. The shadow provides lightweight feedback, 
informing the user the note has been recognized. Additionally, users can tap on a note 
to invoke a graphical context menu. By having a graphical component geo-referenced 
with the physical object, handling a tap on the SMART Board is as simple as adding a 
mouse listener to the component. 



5.5 Wizard of Oz simulation of camera input 

We provide a Wizard of Oz simulation mode for times when a camera is not readily 
available, or more importantly when the developer needs to be able to guarantee a 
concrete input stream for testing purposes. Wizard of Oz prototyping has a long 
history. In sensor-rich environments, WOz approaches are particularly beneficial 
because of the substantial time investment in building sensors and recognizers to 
produce the desired data. Another benefit of a WOz mode is that developers can 
continue to work when sensors are unavailable (e.g., on a laptop). In Papier-Mâché’s 
WOz mode, camera input is simulated with a directory of user-supplied images. 
These images can be either raw images before recognition or bi-level images after 
recognition. In the bi-level image, all pixels are either white (object) pixels or black 
(background) pixels. Post-recognition images are useful for prototyping on the 
assumption the vision will work as planned. 

6 Vision implementation details 

We now present the vision processing pipeline in Papier-Mâché, including details on 
the implementation of our algorithms. 

6.1 Processing Pipeline 

The vision processing in Papier-Mâché has three phases: 1) camera calibration, 2) 
image segmentation, and 3) creating and dispatching events. These methods form the 
body of a processFrame() method called by a VisionThread. For the duration 
of the application, the thread calls processFrame() and then sleeps, allowing other 
application code to execute. 

Camera calibration. We have implemented camera calibration using perspective 
correction. Perspective warp is an effective, efficient method; most contemporary 
graphics hardware, and the JAI library, provide perspective warp as a primitive. 
(More computationally expensive and precise methods exist, see [11], Chapters 1–3 
for an excellent overview of the theory and methods). Calibration takes place on 
application start-up and is accomplished using a projector1. The projector projects a 
white border around the area of interest (image I1), the camera captures I1, the projec-
tor displays an empty (all-black) image I2, and the camera captures I2. We then 
subtract I2 from I1, and the resultant pixels are the border pixels. We conduct line-
fitting on the resultant border image, and the intersections of these four lines are the 

                                                           
1 We provide a default implementation of a CalibrationListener that works with a 

projected display. Camera calibration is also possible when visual projection is unavailable 
(e.g., Collaborage). In this case, developers implement their own implementation that pro-
vides one image with a border around the desired region of interest and another image with-
out this border. 



four corners. We initialize a perspective warp with these four corners, and this warp 
is used in all subsequent frames. 

Image segmentation. Segmentation partitions an image into objects and back-
ground. (See [11], Chapters 14–16 for an overview of image segmentation.) We 
employ edge detection, a common technique, to generate a bi-level image where 
white pixels represent object boundaries and all other pixels are black. We then group 
the labeled foreground pixels into objects (segments) using the connected compo-
nents algorithm [15], standard fare for this task. 

Generating events. In the connected components algorithm, we build 
VisionEvents. Connected components labels each pixel with a segment ID. When 
we come across a new segment ID, we create a new VisionEvent. As we find 
subsequent pixels with the same ID, we update information about the event: its center 
of mass, second-order moments (used for moment-based orientation), and bounding 
box. 

The ImageSourceManager fires the events. In each time-step, objects present 
for the first time yield a visionAdd(VisionEvent) call, objects present before 
yield a visionUpdate(VisionEvent) call, and objects that are no longer 
present yield a visionRemove(VisionEvent) call to all registered listeners. 
This mechanism for deciding on event types can be overriden. Temporal methods of 
object-finding explicitly generate remove events, for example. 

6.2 Finding object orientation 

We compute an object’s orientation using one of two methods. First, we compute the 
major and minor axis eigenvector using image moments [15]. The major axis is the 
long axis of the object; the minor axis is the short axis. If the eigenvectors are robust 
(i.e., the eigenvalues are significantly above 0), then we use the major eigenvector as 
an object’s orientation. The eigenvectors are unstable when an object is symmetrical 
about both the X and the Y axes (e.g., squares and circles). When we can’t use 
eigenvectors, we perform line-finding to find linear edge segments. We use the 
longest linear edge as the orientation. The particular algorithm we use for line-finding 
is the Hough transform because it is fast, and robust enough for our purposes. (See 
[11], Chapters 15–16 for a thorough discussion of line and curve fitting.) 

We remind the reader that our interest is in API design; our vision algorithms are 
drawn from the literature, they are not the subject of our research. Additionally, each 
of these processing steps can be overridden by application developers if they are so 
inclined. 

7 Evaluation 
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Figure 5. The physical macros class project. Left: the application recognizes a rescale 
block (the last item in the four element chain), and projects a slider, prompting the 

user for more input. Top-right: The composition is displayed on the output monitor. 
Bottom-center: user performs function composition by saving a chain in a save block. 

Bottom-right: The blocks. 
e present three types of evaluation for the system. Most importantly, we discuss 
wo class projects that were built using Papier-Mâché. Second, we discuss some 
erformance results. Last, we show a bare-bones “hello vision world” application. 

.1 Applications Built With Papier-Mâché 

wo groups in a Spring 2003 offering of the graduate HCI class at our university 
uilt projects using Papier-Mâché. 
hysical Macros. Physical Macros [7] is a topological TUI. The students were 

nterested in researching a physical interface to macro programming environments 
uch as “actions” in Adobe Photoshop. For their domain, they chose image editing. 
he system provides function blocks (see Figure 5, bottom-right) that can be com-
osed (see Figure 5, left). As the user composes the function set, the graphical display 
see Figure 5, top-right) is updated accordingly. A set of functions can be saved in a 
ave block for later reuse. 

When the students wrote their system, Papier-Mâché had no visual analogue facili-
ies. Looking through their code, we found that geo-referenced event handling and 
raphical presentation was a substantial portion of the code. Reflecting on this, we 
ealized that many of our inspiring applications, including [18], also require this 
eature. For this reason, we introduced the visual analogue classes. 



  

Figure 6. SiteView. Left: A light-bulb physical icon on the floor-plan, with projected 
feedback above. Right: The six physical icons. 

SiteView. SiteView is a spatial UI with similarities to Underkoffler et al’s urban 
planning system [32]. SiteView presents physical interaction techniques for end-user 
control of home automation systems. On a floor plan of a room, users create rules by 
manipulating physical icons representing conditions and actions. The system provides 
feedback about how rules will affect the environment by projecting photographs onto 
a vertical display. It employs a ceiling mounted camera and three RFID sensors. The 
camera tracks the objects whose locations the application needs. The RFID reader is 
used when only the presence or absence of the physical icon is necessary. 

SiteView uses EventFilters to find the location and orientation of the thermo-
stat and the light bulbs on the floor-plan. The thermostat is distinguished by size, the 
bulbs are distinguished by size and color. In general, the system worked well, but 
human hands were occasionally picked up. This inspired our addition of a 
MotionlessTranslator. With this in place, human hands do not seem to 
interfere with recognition. SiteView is roughly 3000 lines of code (includes com-
ments); of this only about 30 lines access Papier-Mâché code; we consider this a 
tremendous success. (Outpost, built on top of OpenCV, required several thousand 
lines of code to achieve a comparable amount of vision functionality.) 

7.2 Lowering the threshold: “Hello Vision World” 

Hello World has often been a simple example of how much code is needed to create a 
simple application. Here is our Hello Vision World, a simple application that graphi-
cally displays the objects found by the vision system. It is only three lines of code! 

1 ImageSourceManager mgr = new CameraImageSourceManager 
(SHOW_WINDOW, MIN_SIZE, SLEEP); 

2 VisionListener l = new VisualAnalogueFactory(new 
PMWindow(manager, CALIBRATE).getContentPane(), 
JPanel.class); 



3 mgr.addVisionListener(l); 

7.3 Performance 

On contemporary hardware, Papier-Mâché runs at interactive rates. On a dual Pen-
tium III, we achieve performance of 3.5 frames/second. On a dual Pentium 4, runs at 
5.5fps at processor load of 30%. (It’s possibly the way Java handles memory access 
causes excessive blocking.) SiteView was run on the student’s Pentium III laptop, 
and here performance began to be a consideration. Here, it runs at 2fps, which is 
acceptable for this application, but lower performance would not be. Surprisingly, the 
three Phidget RFID readers accounted for a substantial portion of the laptop’s proc-
essing time. 

Within Papier-Mâché, the processing is, not surprisingly, bound by the image 
processing computations. These performance numbers should be considered lower 
bounds on performance, as our image processing code is entirely unoptimized.  

8 Conclusions 

We have presented a toolkit for building vision-based tangible interfaces. Our event 
abstractions shield developers from having to get “down and dirty” working with 
cameras. The toolkit is open-source, written in Java, and available for download at 
*anonymized URL*. Applications can be built with real camera input, or they can be 
prototyped with a Wizard of Oz image slide show. The two class projects built using 
our system show how vision-based applications can be built by developers without 
vision experience. The primary contribution of this paper is the introduction of high-
level events for vision-based TUIs.  

We are continuing to analyze the results of our survey with nine TUI researchers. 
Our next major goal in the Papier-Mâché project is to create an event layer that has 
some independence from the underlying technology, enabling developers to experi-
ment with this technology. For example, a developer may be unsure whether vision or 
RFID is a more appropriate technology for their application. Our goal is to make it 
easy to switch between the two. The exact design of this event layer will be based on 
the results of our survey. With our vision system, we plan to incorporate support for 
high-resolution still cameras (still cameras do not have a video driver). This will be 
useful for applications that incorporate document capture. 
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