
A Randomized Satis�ability Procedure for Arithmetic and

Uninterpreted Function Symbols

(Full Version)

Sumit Gulwani and George C. Necula

Report No. UCB/CSD-3-1241

April 2003

Computer Science Division (EECS)
University of California
Berkeley, California 94720

A Randomized Satis�ability Procedure for

Arithmetic and Uninterpreted Function Symbols

(Full Version)

Sumit Gulwani and George C. Necula

University of California, Berkeley
fgulwani,neculag@cs.berkeley.edu

Abstract. We present a new randomized algorithm for checking the
satis�ability of a conjunction of literals in the combined theory of linear
equalities and uninterpreted functions. The key idea of the algorithm
is to process the literals incrementally and to maintain at all times a
set of random variable assignments that satisfy the literals seen so far.
We prove that this algorithm is complete (i.e., it identi�es all unsatis-
�able conjunctions) and is probabilistically sound (i.e., the probability
that it fails to identify satis�able conjunctions is very small). The algo-
rithm has the ability to retract assumptions incrementally with almost
no additional space overhead. The key advantage of the algorithm is its
simplicity. We also show experimentally that the randomized algorithm
has performance competitive with the existing deterministic symbolic
algorithms.

1 Introduction

In this paper, we consider the problem of checking the satis�ability of a formula
that involves linear equalities and uninterpreted function symbols, and explore
what can be learned about the formula by evaluating it over some randomly
chosen variable assignments.

Consider, for example, the following formulas �1 and �2.

�1 : (z = x+ y) ^ (x = y) ^ (z 6= 2x)

�2 : (z = x+ y) ^ (x = y) ^ (z 6= 0)

The formula �1 is unsatis�able because no assignment that satis�es the con-
straint (z = x + y) ^ (x = y) also satis�es the constraint (z 6= 2x). In other
words, the solution space L for the constraint (z = x+y)^ (x = y) is included in
the solution space R1 for the constraint (z = 2x), as shown in Figure 1(a). On the

This research was supported in part by the National Science Foundation Career
Grant No. CCR-9875171, and ITR Grants No. CCR-0085949 and No. CCR-0081588,
and gifts from Microsoft Research. The information presented here does not neces-
sarily re
ect the position or the policy of the Government and no oÆcial endorsement
should be inferred.

other hand, the formula �2 is satis�able because there exists at least one solution
that satis�es the constraint (z = x+y)^(x = y) as well as the constraint (z 6= 0).
In other words, the solution space L for the constraint (z = x + y) ^ (x = y)
is not included in the solution space R2 for the constraint z = 0, as shown in
Figure 1(b). In general, a conjunction of literals is unsatis�able if and only if the
solution space for all of the equality literals is included in the solution space for
the negation of one of the disequality literals.

Can we decide the satis�ability of these formulas by evaluating them over
some random values? If we choose arbitrary random values for x, y and z, then,
very likely, they will not satisfy the constraint (z = x+ y) ^ (x = y) (and hence
they will satisfy neither �1 nor �2). Thus, such a naive \test" fails to discriminate
between satis�able and unsatis�able formulas. However, if we manage to choose
random values for x, y and z from the solution space L, then they will still not
satisfy formula �1, but, very likely, they will satisfy formula �2. This is because,
as shown in Figure 1(b), there is only one point P (x = y = z = 0) in L that also
lies in R2, and it is extremely unlikely that when we choose a point randomly
on the line represented by L, we choose the point P . In general, if a formula is
unsatis�able, then any randomly chosen assignment does not satisfy the formula.
On the other hand, if a formula is satis�able, an assignment that satis�es the
equality literals in the formula, very likely also satis�es the disequality literals in
the formula. We can further reduce the probability of error by choosing several
random points from L rather than just one. These observations form the basis
for our randomized algorithm for deciding the satis�ability of a formula.

Fig. 1. The line L represents the solution space for the constraint (z = x+y)^(x= y).
If we choose points randomly on L, we can easily tell that L) R1 and L 6) R2.

The key step in our algorithm is to generate random assignments that satisfy
all of the equality literals. We do this incrementally, by starting with a set of com-
pletely random assignments and then adjusting them so that they satisfy each
equality literal in turn. The adjustment operation can be viewed geometrically
as a projection onto the hyperplane represented by an equality literal.

As we will see, this algorithm is simple and eÆcient. It avoids the need for
symbolic manipulation and construction of normal forms. Handling arithmetic
expressions becomes especially easy because we only evaluate them rather than

manipulating them symbolically. Furthermore, we require a simple data struc-
ture (a set of variable assignments and a hash table for handling uninterpreted
function symbols), and we perform only simple arithmetic operations.

We start with a discussion of the notation in Section 2. In Section 3, we
describe the algorithm for the arithmetic fragment along with the proof of com-
pleteness, and a sketch of the proof of probabilistic soundness (the complete
proof is in Appendix A) . In Section 4, we extend the algorithm to handle un-
interpreted function symbols. In Section 5, we show that it is quite easy to also
retract equality literals (a property that is useful in the context of a Nelson-
Oppen theorem prover). In Section 6, we describe our initial experience with
an implementation of this algorithm, and we compare it with a deterministic
satis�ability algorithm for the same theory.

2 Notation

Consider the following language of terms over rationals Q.

t ::= x j q j t1 + t2 j t1 � t2 j q � t j f(t1; : : ; tk)

Here q 2 Q, x is some variable and f is some k-ary uninterpreted function
symbol for some non-negative integer k. An equality literal is an equality of the
form t = 0 while a disequality literal is a disequality of the form t 6= 0 for some
term t. A formula � is a set of equality and disequality literals.

An assignment � for n variables maps each variable to a rational value.
We use the notation �(x) to denote the value of variable x in assignment �.
Occasionally, in order to expose the geometric intuition behind the algorithms,
we also refer to the n variables as coordinates and to an assignment as a point in
Qn . We write [[t]]� for the meaning of term t in the assignment � (using the usual
interpretation of the arithmetic operations over Q). An assignment � satis�es an
equality t = 0 (written � j= t = 0) when [[t]]� = 0.

We refer to a sequence of assignments S as a sample and we write Si to refer
to the ith element of the sample S. In the geometric interpretation, a sample is
a sequence of points. A sample satis�es a linear equality t = 0 when all of its
assignments satisfy the equality. We write S j= t = 0 when this is the case.

An aÆne combination of two assignments �1 and �2 with weight w 2 Q

(denoted by �1 �w �2) is another assignment � such that for any variable x,
�(x) = w � �1(x) + (1� w)� �2(x). If the assignments �1 and �2 are viewed as
points in Qn then their aÆne combinations are the points situated on the line
passing through �1 and �2. The aÆne combination of two assignments has the
property that it satis�es all the linear equalities that are satis�ed by both the
assignments.

3 The Algorithm for the Arithmetic Fragment

We start with a discussion of the satis�ability algorithm for formulas that do
not contain any uninterpreted function symbols. We �rst describe the Adjust

operation and then show how it can be used to check the satis�ability of a
formula.

3.1 The Adjust Operation

The Adjust operation takes a sample S and a term e, and produces a new
sample S0 such that S0 satis�es all the linear equalities that are satis�ed by S

and exactly one more linearly independent equality e = 0. For this de�nition
to be meaningful, the Adjust operation has a precondition that S 6j= e+ c = 0
for any constant c. Note that if this precondition does not hold and c = 0, then
since S already satis�es e = 0, there is no need for the Adjust operation; and if
c 6= 0, then S0 cannot simultaneously satisfy e+ c = 0 and e = 0. In the latter
case, the formula being checked is declared unsatis�able.

The resulting sample S0 has the following properties:

A1. For any term t, if S j= t = 0, then S0 j= t = 0.
A2. S0 j= e = 0.
A3. For any term t, if S0 j= t = 0, then 9� such that S j= t+ �e = 0.

The property A1 says that the sample S0 continues to satisfy all the linear
equalities that are satis�ed by the sample S, while the property A2 says that
the sample S0 also satis�es the equality e = 0. The property A3 implies that S0

satis�es exactly one more linearly independent equality than those satis�ed by
S.

An Implementation of the Adjust Operation We now present an eÆ-
cient implementation of the Adjust operation, assuming the precondition :(9c 2
Q: S j= e+ c = 0):

1 Adjust([S1; : : ; Sk]; e = 0) =

2 pick j such that [[e]]Sj 6= [[e]]Sk.
3 pick q 2 Q such that q 6= 0 and q 6= [[e]]Si (for i = 1; : : : k).

4 let �0 = Sj �w Sk, where w = q�[[e]]Sk
[[e]]Sj�[[e]]Sk

5 for i � k � 1,
6 let S0i be the intersection of the plane

e = 0 and the line passing through �0 and Si
i.e. S0i = Si �wi

�0, where wi =
q

q�[[e]]Si
.

7 return [S01; : : ; S
0
k�1].

There are a few details in the de�nition of the Adjust procedure that deserve
discussion. Line 2 in the Adjust procedure presumes the existence of a point Sj in
sample S such that the term e evaluates to distinct values at points Sj and Sk;
this assumption is guaranteed by the pre-condition for the Adjust operation.
(Geometrically, this means that the points Sj and Sk should lie at di�erent
distances from the plane e = 0.) The operation in line 3 is a linear time operation
and the point �0 is computed such that [[e]]�0 = q. Since we choose q, �0 and
Si at di�erent distances from the hyperplane e = 0, the line joining �0 and Si

Fig. 2. An example of the Adjust procedure on a 4-point sample S, which satis�es the
equality z = x + y. The adjustment is performed with respect to the equality x = y.
The adjusted points S0

i are obtained as the intersections of the lines connecting the
original points Si with the point �0. Note that the adjusted points lie on the line that
represents the intersection of the hyperplanes z = x+ y and x = y.

intersects the hyperplane e = 0 in exactly one point. An example of the Adjust
procedure is shown in Figure 2. The sample S consists of 4 points that lie in
the plane z = x + y. We pick the point S2 to play the role of Sj (where j is as
in line 2) since the line passing through S2 and S4 is not parallel to the plane
x = y. We then pick another point �0 on the line passing through S2 and S4
such that it does not lie in the plane x = y and the lines passing through it and
any other other point in S are not parallel to the plane. Then, we obtain the
points S0i(i = 1; 2; 3) as the intersection of the the lines that pass through �0 and
Si with the plane x = y. Note that the resulting sample S0 consists of 3 points
that lie in the plane x = y as well as the plane z = x+ y.

We now prove that S0 = Adjust(S; e) has the desired properties A1, A2 and
A3. We �rst state a useful and easily provable property of the aÆne combination
operation.

Property 1 (AÆne Combination Property). Let �1 and �2 be any two points,
and let �3 be any aÆne combination of �1 and �2. If �1 and �2 satisfy any linear
equality e = 0, then �3 also satis�es the equality e = 0.

It follows from Property 1 that if all points in sample S satisfy some equality
t = 0, then so does �0 (since it is an aÆne combination of some two points in
sample S) and any point in sample S0 (since it is an aÆne combination of �0
and some point in sample S). Thus, sample S0 has property A1. The points in
sample S0 lie on the hyperplane e = 0 (by de�nition), and hence S0 j= e = 0.
Thus, sample S0 has property A2. For i � k � 1, we have S0i = Si �wi

�0. Note
that this means that there is a value w0i such that Si = S0i �w0

i
�0. Also Sk can

be expressed as an aÆne combination of S0j and �0. This means that S satis�es
all the linear equalities satis�ed by both S0 and �0. In order to show that S0 has
property A3, we assume that S0 j= t = 0 and we show that S j= t+ �e = 0, for

� = � [[t]]�0
[[e]]�0

. Since S0 j= e = 0, we have that S0 j= t+ �e = 0. It is easy to verify

that �0 j= t+ �e = 0. Thus, S j= t+ �e = 0. Hence, sample S0 has property A3.

3.2 The Satis�ability Procedure

The IsSatisfiable procedure described below is a randomized algorithm that
takes as input a formula � and a r-point random sample R. The only random
choice in this algorithm is the value of this initial sample R. If � is unsatis�able,
the algorithm returns false for any choice of R. If � is satis�able, the algorithm
returns true with high probability over the choice of the random sample R.

1 IsSatisfiable(�;R) =

2 let � be fti = 0gki=1 [ft
0
j 6= 0gmj=1

3 S R

4 for i = 1 to k:

5 if S j= ti + c = 0 for some c 6= 0, then return false

6 else if S 6j= ti = 0 then S Adjust(S; ti = 0)
7 for j = 1 to m:

8 if S j= t0j = 0, then return false

9 return true

The loop starting in line 4 adjusts the sample incrementally so that it sat-
is�es each equality in turn. Finally, the loop starting in line 7 checks for each
disequality if there is an assignment in the resulting sample that satis�es it.

We now state the completeness and soundness results for this algorithm.
Then, in Section 4 we show how to extend this algorithm to handle uninterpreted
function symbols as well.

Theorem 1 (Completeness Theorem). If IsSatisfiable(�;R) returns true,
then � is satis�able.

Proof. Suppose IsSatisfiable(�;R) returns true. Due to properties A1 and
A2 of the Adjust operation, at the end of the loop starting in line 4 we have
an adjusted sample S whose assignments satisfy all the equality literals of the
formula. We know from linear algebra that the formula � is satis�able if and only
if all of the formulas ft1 = 0gki=1 [ft

0
j 6= 0g (for j = 1; : : : ;m) are satis�able.

The loop starting in line 7 ensures that each such formula is satis�ed by at least
one assignment in the �nal sample.

Theorem 2 (Soundness Theorem). If � is satis�able, then
IsSatisfiable(�;R) returns true with high-probability over the random choice
of the initial sample R.

In order to prove the soundness theorem, we de�ne the notion of consistency
of a sample with a formula:

De�nition 1. Given a formula � and a sample S, we say that S is consistent
with � if

� is satis�able) (8t:S j= t = 0) � [ft = 0g is satis�able)

Intuitively, a sample S is consistent with a satis�able formula �, if S satis�es
only those linear equalities that do not contradict �. Note that any sample is
consistent with an unsatis�able formula. We have the following useful property.

Property 2. If S is consistent with the formula �[fe = 0g, then Adjust(S; e = 0)
is consistent with the same formula.

Proof. Assume that S is consistent with �[fe = 0g. Let S0 = Adjust(S; e = 0).
Assume that �[fe = 0g is satis�able. Pick an arbitrary t such that S0 j= t = 0.
This means that S j= t + �e = 0 (by property A3). Since S is consistent with
�[fe = 0g, we know that �[fe = 0; t+�e = 0gmust be satis�able. Consequently
� [fe = 0; t = 0g must be satis�able. This completes the proof.

Using Property 2, we can easily prove the following lemma:

Lemma 1. If the initial random sample R is consistent with �, and
IsSatisfiable(�;R) returns false, then � is unsatis�able.

Proof. Suppose that the initial sample is consistent with �. It follows from Prop-
erty 2 that the sample S in procedure IsSatisfiable always remains consistent
with �. Now, consider the following two cases.

{ Suppose IsSatisfiable returns false in line 5. Then S j= ti+ c = 0. Since
S is consistent with � and ti + c = 0 [f�g is unsatis�able, it must be that
� is unsatis�able.

{ Suppose IsSatisfiable returns false in line 8. Then S j= t0i = 0. Since S
is consistent with �, and also � [ft0i = 0g is unsatis�able, it must be that �
is unsatis�able.

This means that as long as we start with a sample that is consistent with
the input formula �, the algorithm is sound. The question now is how to choose
the initial sample such that it is consistent with any given formula �. The key
observation is that we can choose R randomly because there are many more
samples that are consistent with � than those that are not. This is obvious if �
is unsatis�able, because then all samples are consistent with �. If � is satis�able,
R is inconsistent with � only if there is a term t such that �) t 6= 0 and
R j= t = 0. Such a term t can be written as a linear combination of the equality
literals of � added to either the constant 1 or one of the disequality literals of
�. For any such term t, it is unlikely that we choose R such that all of its r
assignments satisfy t = 0. The following lemma provides an upper bound on the
probability that a randomly chosen sample R is inconsistent with a formula �.

Lemma 2 (Consistent Random Sample Lemma). If � is satis�able, then
the probability that the r-point random sample R is inconsistent with � is at

most (m + 1) jF j
jF j�3r

�
3r
jF j

�r�k0

, where m is the number of disequality literals in

�, jF j is the size of the �nite subset of Q from which we choose the elements
of R uniformly at random and independently of each other, and k0 � k is the
maximum number of linearly independent equality literals in �.

This lemma along with Lemma 1 proves Theorem 2 and also provides an up-
per bound for the probability that our satis�ability algorithm incorrectly reports
a satis�able formula to be unsatis�able.

The proof of Lemma 2 is somewhat involved and is given in the Appendix.
Note that the probability of error increases linearly with the number of dise-
qualities (because we might make an independent error in handling each one of

them). The dominant factor is
�

3r
jF j

�r�k0

, which decreases with the size of the

subset from which we make random choices. (We cannot choose directly from Q

because each choice would need an in�nite number of random bits.) The proba-
bility of error also decreases exponentially when we increase r. Essentially, when
we work with more random assignments it becomes less likely that all of them
accidentally satisfy an equality. The IsSatisfiable algorithm performs at most
k Adjust operations, one for each equality literal in �. However, the Adjust op-
eration is performed only if the equality literal is not entailed by the previously
processed equalities. This means that Adjust is performed only k0 times. The
r � k0 exponent suggests that r should be at least as large as k0. This makes
sense because we have seen that each Adjust operation \looses" one assignment.

4 Extension to Uninterpreted Function Symbols

We now extend the satis�ability procedure to handle formulas that also contain
uninterpreted function symbols. We �rst introduce some notation.

For any term t, let V (t) be the term obtained from t by replacing all oc-
currences of the outermost function term by a fresh variable as follows: V (t1 +
t2) = V (t1) + V (t2), V (t1 � t2) = V (t1) � V (t2), V (f(t1; : : : ; tk)) = vf(t1;::;tk),
V (q � t) = q � V (t), V (q) = q. Let C(�) denote the formula obtained from
� after performing the Ackerman transformation [1] as follows: (1) each term
t in � is replaced by V (t), and (2) for every pair of distinct function terms
f(t1;1; : : ; t1;k) and f(t2;1; : : ; t2;k) in �, we introduce the conditional equality
(
V

i=1;::;k

V (t1;i) = V (t2;i))) (V (f(t1;1; : : ; t1;k)) = V (f(t2;1; : : ; t2;k))). Following

is an example of a formula � and the corresponding C(�):

� = ff(x+ 3) = f(z); f(y + x) = y; y = 3g
C(�) = fv1 = v2; v3 = y; y = 3; (x+ 3 = z)) (v1 = v2);

(x+ 3 = y + x)) (v1 = v3); (z = y + x)) (v2 = v3)g

Here we have introduced new variables v1; v2 and v3 for the terms f(x+3); f(x+
y) and f(y + x) respectively. The conditional equalities that are used to obtain

C(�) from � capture the essence of the congruence axiom for uninterpreted func-
tions, and one can easily show that � is satis�able if and only if C(�) is satis�able.

For any formula �, let A(�) be the formula that does not contain any unin-
terpreted function symbols or conditional equalities, and is obtained from C(�)
as follows. Each conditional equality of the form (

V
i=1;::;k

si = s0i)) (v = v0) in

C(�) is replaced with the equality v = v0 if C(�)) si = s0i for all i = 1; : : ; k, or
with the disequality v 6= v0 otherwise. For the above example, we have:

A(�) = fv1 = v2; v3 = y; y = 3; v1 = v3; v1 6= v2; v2 6= v3g

Just like C(�), A(�) is satis�able if and only if � is satis�able. Note that C(�)
is easy to compute but A(�) is not. This is not a problem because we use A(�)
only in the correctness arguments.

The IsSatisfiable0 procedure shown below decides the satis�ability of a
formula � by considering the modi�ed formula C(�). The procedure makes use
of a macro Assume that takes a sample and an equality literal as arguments, and
has the following de�nition.

Assume(S; t = 0) =

if S j= t+ c = 0 for some c 6= 0, then return false

else if S 6j= t = 0, then S Adjust(S; t = 0)

1 IsSatisfiable0(�;R) =

2 let C(�) be fti = 0gki=1 [ft
0
i 6= 0gmi=1 [f(

V
j=1;::;ki

si;j = s0i;j)) vi = v0ig
`
i

3 S R

4 for i = 1 to k:

5 Assume(S; ti = 0)
6 repeat until no changes to S occur:

7 for w = 1 to `:

8 if (
V

j=1;::;kw

S j= sw;j � s0w;j = 0), Assume(S; vw � v0w = 0)

9 for i = 1 to m:

10 if S j= t0i = 0, then return false

11 return true

Note that IsSatisfiable0(�;R) returns the correct answer if and only if
IsSatisfiable(A(�); R) returns the correct answer. It follows from Theorem 1
that if � is unsatis�able, then IsSatisfiable0(�;R) returns false. It also fol-
lows from Theorem 2 that if � is satis�able, then IsSatisfiable0(�;R) returns
true with probability (over the random choices for the r-point sample R) at

least 1� (m0 +1) jF j
jF j�3r (

3r
jF j)

r�k0

, where m0 is the number of disequality literals

in A(�), and k0 is the maximum number of linearly independent equality literals
in A(�). Clearly, m0 � m+ `2, where m is the number of disequality literals in
� and ` is the number of function terms in �. Also, k0 � k + ` since there can
be at most ` linearly independent equalities among ` function terms.

The IsSatisfiable0 algorithm as presented here emphasizes logical clarity
over eÆciency. In our experiments, we use an optimized variant of this algorithm

that does not create the conditional equalities in C(�) explicitly. Instead, we
maintain, for each function symbol f , a list of pairs of the form ([s1; : : ; sk]; v)
for each function term f(t1; : : ; tk), where si = V (ti) and v = V (f(t1; : : ; tk)). For
our example, the list corresponding to f is f([x + 3]; v1); ([z]; v2); ([y + x]; v3)g.
This allows us to �nd quickly, in line 7, the pairs of [s1; : : ; sk] and [s01; : : ; s

0
k]

such that S j= sj � s0j = 0 for all j = 1; : : ; k, by using a hash table indexed by
[[[s1]]S1; : : ; [[sk]]S1], i.e. the values of the terms sj at the point S1.

5 Retracting Assumptions

It is often the case that we must solve a number of satis�ability problems that
share literals. Such a situation arises naturally in the context of program ver-
i�cation when the formulas correspond to paths and are constructed as con-
junction of branch conditions. For example, consider the program fragment:
if z = x + y then

if x = y then assert (z = 2x) else assert (x = z - y)
This fragment can be veri�ed by checking the unsatis�ability of the two

formulas fz = x+y; x = y; z 6= 2xg and fz = x+y; x 6= y; x 6= z�yg. If we process
these formulas independently, we end up duplicating work for assuming z = x+y.
Instead, if we have a satis�ability procedure that can retract assumptions, then
after processing the �rst formula we can retract the equality x = y and continue
with the disequalities in the second formula.

Another situation where ability to retract assumptions is important is the
context of a Nelson-Oppen theorem prover [6], in which non-convex theories
are handled using backtracking. Similarly, a Shostak [8] theorem prover handles
non-solvable theories using backtracking.

In our algorithm, a naive way to retract the last equality assumption is
to restore the current sample to the sample before the Adjust operation. One
method to do this is to remember the old samples, but this has a high space
overhead. Another method relies on the fact that we can recover the previous
sample S from the adjusted one, if we remember just the weights wi.

Next we show a technique better than the above mentioned methods. The key
observation is that we need not restore the original sample exactly, as long as we
obtain an equivalent sample in the sense that it satis�es exactly the same linear
equalities as the original one. To achieve this we extend the Adjust operation
to return not just an adjusted sample but also a point that when added to the
adjusted sample produces a sample equivalent to the original one. This means
that we need to remember only this special point and we can undo an Adjust

operation by adding this special point to the adjusted sample.

5.1 The Adjust0 Operation

Let Adjust0 be the operation that takes a sample S and a term e as input, where
S 6j= e + c = 0 for any constant c 6= 0, and returns another sample S0 and a
point �. The adjusted sample S0 satis�es the properties A1, A2, A3 mentioned
in Section 3.1, and the point � satis�es the following additional properties:

B1. For any term t, if S j= t = 0 then � j= t = 0.
B2. For any term t, if S0 j= t = 0 and � j= t = 0 then S j= t = 0.

These properties, along with property A1, mean that S satis�es exactly the same
linear equalities that are satis�ed by both S0 and �.

An Implementation of the Adjust0 Operation We now present an eÆcient
implementation of the Adjust0 operation:

1 Adjust0(S, e) =

2 let S0 Adjust(S; e).
3 pick j such that Sj 6j= e = 0.
4 return (S0, Sj)

The precondition for Adjust0 ensures that an appropriate j can be found in
line 3. It is a simple exercise to verify that (S0; �) = Adjust0(S; e) satis�es the
properties A1, A2, A3, B1, and B2.

5.2 The UnAdjust Operation

The modi�ed satis�ability procedure is just like the one described in Section 4
except that it uses the Adjust0 operation in place of the Adjust operation and
remembers the point � returned by the Adjust0.

We now de�ne the operation UnAdjust for retracting the last equality that
was adjusted for. The operation UnAdjust takes the current sample S and the
point � corresponding to the last equality and returns another sample S0 such
that S0 satis�es exactly those linear equalities that are satis�ed by both S and
�. The UnAdjust operation can be implemented eÆciently as

UnAdjust([S1; : : : ; Sk]; �) = [S1; : : : ; Sk; �].

5.3 Correctness of Retraction

Consider the algorithm IsSatisfiable0. We must retract assumptions in the
reverse order in which they were made. In order to retract an assumption ti = 0,
we must invoke UnAdjust for all of the Adjust operations that are performed in
the ith iteration of the loop starting at line 4.

Lemma 3 (The Adjust-UnAdjust Lemma). Let (S1; �) = Adjust0(S0; e =
0) and S2 a sample that satis�es the same linear equalities as S1, and S3 =
UnAdjust(S2; �). Then S3 satis�es the same linear equalities as S0.

Proof. Let t be an arbitrary term. We �rst prove that if S0 j= t = 0 then
S3 j= t = 0. Due to property A1 we know that S1 j= t = 0 and thus S2 j= t = 0.
Due to property B1, we know that � j= t = 0 and hence from the de�nition
of UnAdjust we conclude that S3 j= t = 0. Next we prove that if S3 j= t = 0
then S0 j= t = 0. From de�nition of UnAdjust we know that S2 j= t = 0 and
� j= t = 0. Hence S1 j= t = 0, and from property B2 S0 j= t = 0.

It follows from Lemma 3 that if a sample S is consistent with a formula
�, then the sample obtained from S after any number of Adjust and an equal
number of corresponding UnAdjust operations is also consistent with �.

6 Experimental Results

We have implemented the IsSatisfiable0 procedure described in Section 4
in C with some optimizations. One important optimization that we have used
is to perform arithmetic operations over the �eld Zp for some randomly chosen
prime p. This avoids the need to perform arbitrary precision arithmetic, which is
otherwise required if the operations are over rational numbers. This optimization
is problematic in an otherwise-deterministic algorithm, but for our randomized
algorithm it simply results in an additional probability of error. For lack of space,
we do not present the analysis of the error probability that results from working
over Zp rather than Q. This idea is similar to �ngerprinting mechanisms that
involve performing arithmetic modulo a randomly chosen prime [5].

We compared the running-time performance of our implementation with the
SRI's ICS (Integrated Canonizer and Solver) decision procedure package [3],
which is implemented in Ocaml. ICS is directly based on the re�nement of
Shostak's algorithm by Ruess and Shankar [7]. The implementation of ICS uses
optimization techniques such as hash-consing and eÆcient data structures like
Patricia trees for representing sets and maps eÆciently. ICS uses arbitrary pre-
cision rational numbers from the GNU multi-precision library (GMP).

Figure 3 shows the time (excluding the parsing time) in milliseconds taken
by our implementation and ICS on several examples. Column Rand shows the
time taken by our implementation when run with the best possible parameters,
which include working with as few points as required, and performing arithmetic
operations over a small �eld (in this case Z268435399, so that the arithmetic can
be performed using 32-bit integers). The experiments were performed on a 1.7
GHz Pentium 4 machine running Linux 2.4.5. The examples used in our experi-

Example #equalities ICS Rand ICS/Rand #points #adjusts
(ms) (ms)

arith-dense 26 386.4 2.3 168.0 30 25

arith-sparse 25 84.8 1.3 65.2 20 14

both-dense 20 37.0 3.4 10.8 40 29

both-sparse1 50 73.9 7.5 9.9 50 42

both-sparse2 150 165.0 20.2 8.2 60 55

both-sparse3 300 325.3 51.0 6.4 70 80

uf-single 5 1.7 0.7 2.4 20 16

uf-copies 25 4.0 1.0 4.0 20 16

uf-wrong 35 23.1 9.6 2.4 40 72

Fig. 3. This table compares the time (in milliseconds) taken by our implementation
and ICS on several examples. Column ICS shows the time taken by ICS, while column
Rand shows the time taken by our implementation when run with the number of
points mentioned in column #points. Column #adjusts denotes the number of Adjust
operations performed by our implementation. Column #equalities denotes the number
of equality literals.

ments can be classi�ed based on the size, number, and type of equality literals,
and the number of equivalence classes on terms and sub-terms of the formula.
The �rst two examples, arith-dense and arith-sparse, involve only linear arith-
metic. arith-dense contains equalities, each of which has many sub-terms, while
arith-sparse contains equalities with a small number of sub-terms in each literal.
The next four examples, both-dense, both-sparse1, both-sparse2 and both-sparse3
involve both linear arithmetic and uninterpreted functions. Of these both-dense
contains dense equalities, while the rest contain sparse equalities. All of these
examples were generated randomly. The next three examples uf-single, uf-copies
and uf-wrong involve only uninterpreted functions, and have been taken from
the paper by Bachmir and Tiwari [2] that compared the performance of sev-
eral congruence closure algorithms. uf-single contains �ve equalities that induce
a single equivalence class. uf-copies is same as uf-single, except that it contains
�ve copies of all the equalities. uf-wrong consists of equalities that result in many
Adjust operations. Note that for some examples, #adjusts is less than #equali-
ties. This is because of the following optimization that we use. While processing
an equality literal, if a variable is encountered for the �rst time, then instead of
adjusting the current sample, we simply set the value of that variable in the sam-
ple such that the equality literal is satis�ed. Also note that for some examples,
#points is less than #adjusts. This is because of another optimization where for
each equality, we adjust only those variables that are dependent on some variable
in that equality. This allows us to work with fewer points than the number of
adjust operations.

Following observations can be drawn from our experiments. Our algorithm
has a maximum speed-up over the ICS package when there is more arithmetic
involved. This is expected since randomization helps to reason about the arith-
metic faster. When the equalities get sparser, and contain more uninterpreted
functions, the speed-up of our algorithm over ICS decreases.

Working with more points reduces the error probability, but increases the
running-time. Theoretically, the running-time of our algorithm grows quadrati-
cally with the number of points in the initial random sample. Fortunately, the
error probability decreases exponentially with the number of points.

7 Related Work

A notable di�erence between the algorithm that we have described here and
the existing deterministic algorithms that solve a similar problem is the han-
dling of the arithmetic. Instead of manipulating symbolic expressions we sim-
ply evaluate the arithmetic expression. This is a simpler operation and even
gives us a slight advantage in the presence of non-linear arithmetic. For exam-
ple, our algorithm can very naturally prove the unsatis�ability of the formula
x = y ^ x2�2xy+ y2 6= 0. However, the advantage is slight because the Adjust
operation we have does not work with non-linear equalities, which means that
we can handle non-linearity only in the disequalities and as arguments to unin-
terpreted function symbols.

The existing deterministic algorithms for the combination of linear equalities
and uninterpreted function symbols are typically constructed from two separate
satis�ability procedures for the two theories, along with a mechanism for com-
bining satis�ability procedures. One such mechanism is described by Nelson and
Oppen [6] and requires the individual satis�ability procedures to communicate
only equalities between variables. Our algorithm has a similar communication
mechanism, speci�cally implemented by the loop in line 6 in the de�nition of
IsSatisfiable0. The di�erence is that we detect an equality between terms
when they have equal values in all the random assignments.

Shostak [8] gave a more eÆcient algorithm, which works for the theory of
uninterpreted functions and for solvable and canonizable theories. The theory
of linear arithmetic is canonizable and solvable. A canonizer � for linear arith-
metic must rewrite terms into an ordered sum-of-monomials form. A solver for

linear arithmetic may take an equality of the form c +
nP
i=1

aixi = 0 and return

x1 = �(� c
a1

+
nP
i=2
� ai

a1
), where a1 6= 0. The ICS tool that we have used in our

performance comparisons uses Shostak's algorithm.

There are similarities between Shostak's algorithm and our randomized algo-
rithm. Our Adjust operation is similar to the solve procedure used in Shostak's
algorithm since both serve the purpose of propagating a new equality. The sam-
ple S maintained by the randomized algorithm at each step can be regarded
as a canonizer, since for any term t, [[[t]]S1; : : ; [[t]]Sr] is a probabilistic canonical
form for t in the following sense. Two terms that are congruent have the same
canonical form, while there is a small probability that two non-congruent terms
have the same canonical forms.

The soundness of Shostak's algorithm is straightforward, but its completeness
and termination have resisted proofs for a couple of decades. Shostak's original
algorithm and several of its subsequent variations are all incomplete and poten-
tially non-terminating. Recently, Ruess and Shankar [7] have presented a correct
version of the algorithm along with rigorous proofs for its correctness. Similar
diÆculties in carrying out the correctness proof seem to arise for randomized al-
gorithms, but here the diÆculties are not due to the complexity of the algorithm
but due to the complexity of probability analysis. This is typical of randomized
algorithms, which are usually easy to describe, simple to implement, but require
subtle proofs to bound the error probability.

There are similarities between this randomized algorithm and the random
interpretation that we have described in an earlier paper [4] for the purpose of
discovering linear equalities in a program. The contributions of this paper are
a modi�ed Adjust algorithm that also handles uninterpreted function symbols
and allows for retracting assumptions, and a more general proof of soundness.
In our earlier paper the proof of probabilistic soundness relies on the fact that
the analysis is performed over a �nite �eld. In this paper, mostly because the
application domain is simpler, we are able to give a di�erent proof that does not
rely on the �niteness of the �eld over which the satis�ability is checked.

8 Conclusion and Future Work

We have described a randomized algorithm for deciding the satis�ability of a
conjunction of equalities and disequalities involving linear arithmetic and unin-
terpreted function symbols. The most notable feature of this algorithm is sim-
plicity of its data structures and of the operations it performs. The cost for this
simplicity is that, in rare occasions, it might incorrectly decide that a satis�able
formula is not satis�able. However, we have shown that the probability that this
happens is very small and can be controlled by varying the number of points in
the initial random sample or the size of the set from which the random values
are chosen. Thus, the error probability can be reduced to an in�nitesimally small
value so that it is negligible for all practical purposes.

An interesting direction for future work is to explore whether these ideas can
be extended to other theories, such as inequalities, or arrays. One possible ap-
proach is suggested by the observation that when we evaluate terms in a random
sample we essentially compute a hash value for the term, such that if two terms
have the same hash values then, with high probability, they are equal. For arith-
metic this is naturally achieved by just performing arithmetic on some random
inputs. Perhaps we can �nd similar hash functions for other theories. Another
promising direction for future research is integration of symbolic techniques with
randomized ones.

References

1. W. Ackermann. Solvable Cases of the Decision Problem. Studies in Logic and the
Foundations of Mathematics. North-Holland, Amsterdam, 1954.

2. L. Bachmair and A. Tiwari. Abstract congruence closure and specializations. In
D. McAllester, editor, Conference on Automated Deduction, CADE '2000, volume
1831 of Lecture Notes in Arti�cial Intelligence, pages 64{78, Pittsburgh, PA, June
2000. Springer-Verlag.

3. J.-C. Filliâtre, S. Owre, H. Rue�, and N. Shankar. ICS: Integrated Canonization
and Solving. In G. Berry, H. Comon, and A. Finkel, editors, Computer-Aided Ver-
i�cation, CAV '2001, volume 2102 of Lecture Notes in Computer Science, pages
246{249, Paris, France, July 2001. Springer-Verlag.

4. S. Gulwani and G. C. Necula. Discovering aÆne equalities using random inter-
pretation. In The 30th Annual ACM Symposium on Principles of Programming
Languages, pages 74{84. ACM, Jan. 2003.

5. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
1995.

6. G. Nelson and D. Oppen. Simpli�cation by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems, 1(2):245{257, Oct. 1979.

7. H. Ruess and N. Shankar. Deconstructing Shostak. In 16th Annual IEEE Symposium
on Logic in Computer Science (LICS '01), pages 19{28, Washington - Brussels -
Tokyo, June 2001. IEEE.

8. R. E. Shostak. Deciding combinations of theories. Journal of the ACM, 31(1):1{12,
Jan. 1984.

A Proof of Consistent Random Sample Lemma

Lemma 2 (Consistent Random Sample Lemma). If � is satis�able, then
the probability that the r-point random sample R is inconsistent with � is at

most (m + 1) jF j
jF j�3r

�
3r
jF j

�r�k0

, where m is the number of disequality literals in

�, jF j is the size of the �nite subset of Q from which we choose the elements of
R uniformly at random and independently of each other, and k0 is the maximum
number of linearly independent equality literals in �.

Proof. Without any loss of generality, let us assume that fti = 0gk
0

i=1 is any
maximal set of linearly independent equalities in the satis�able formula �. Then
R is not consistent with � i� there exists a t such that �) t 6= 0 and R j= t = 0.
It follows from linear algebra that t can be written as a linear combination of
ti (for i = 1; : : ; k0) added to either the constant 1 or one of t0j (where j 2
f1; : : ;mg). The error probability for each of these m+ 1 cases can be obtained
by instantiating t in the following Lemma 4 with either the constant 1 or one of
the t0j . The desired bound on the probability of error can now be obtained by
multiplying the probability of error in each case by m+ 1.

Lemma 4. Let t1; : : ; tk0 be linearly independent terms in variables x1; : : ; xn
and t an additional term, such that the formula ftj = 0gk

0

j=1 [ft 6= 0g is satis�-
able. Then,

PrR[9�1; : : ; �k0 such that R j= (t+
k0P
i=1

�iti = 0)] � jF j
jF j�3r

�
3r
jF j

�r�k0

.

Proof. Let E be the event that there exist �1; : : ; �k0 such that R j= (t+
k0P
i=1

�iti =

0). Let L be the following system of r equations in variables z1; : : ; zk0 :

f[[t]]Rj +
k0P
i=1

([[ti]]Rj)zi = 0grj=1.

Event E occurs if and only if L has a solution. Let Cr�k0 and ~Cr�(k0+1) be the
coeÆcient matrix and the augmented matrix1 respectively for L. L has a solution
i� for all i 2 f1; : : ; rg if the ith row of C is linearly dependent on the �rst i� 1
rows of C, then the ith row of ~C is also linearly dependent on the �rst i�1 rows
of ~C.

We partition the event E into cases depending on which set of rows in C are
linearly independent of the previous rows. For any subset I of f1; : : ; rg, let EI be
the event that for any i 2 I , the ith row of C is linearly independent of the �rst
i�1 rows of C, and for any i 2 f1; : : ; rg�I , the ith row of C is linearly dependent
on the �rst i� 1 rows of C. The set of events fEI j I � f1; : : ; rg; 1 2 I; jI j � k0g

1 The augmented matrix is obtained from the coeÆcient matrix by adding a column
corresponding to the constants.

is a disjoint partition of the underlying probability space since there can be at
most k0 linearly independent rows in Cr�k0 . Thus,

Pr
R
[E] =

X
I�f1;::;rg;12I;jIj�k0

Pr
R
[E \ EI] (1)

It now follows from the Claim stated and proved below that

Pr
R
[E \ EI] �

�
1

jF j

�r�jIj
(2)

Here is some intuition behind Equation 2. Note that the event E \EI occurs only
when all the rows d 2 f1; : : : ; rg � I are linearly dependent on some rows in the
set I , both in the coeÆcient matrix C and in the augmented matrix ~C. For each
such row d, the probability of choosing the assignment Rd with elements from
the �nite set F such that this row is linearly dependent on the rows in I is at
most 1

jF j .

The desired probability for event E can now be obtained from Equations 1
and 2 as follows:

Pr
R
[E] �

X
I�f1;::;rg;12I;jIj�k0

�
1

jF j

�r�jIj

=
X

i2f1;::;k0g

�
r � 1

i� 1

�
�

�
1

jF j

�r�i

�
X

i2f1;::;k0g

�
(r � 1)e

r � i

�r�i
�

�
1

jF j

�r�i

�
X

i2f1;::;k0g

�
3r

jF j

�r�i

�
jF j

jF j � 3r
�

�
3r

jF j

�r�k0

Claim. For any subset I of f1; : : ; rg, PrR[E \ EI] �
�

1
jF j

�r�jIj
.

Proof. For any subset I of f1; : : ; rg and for any i 2 I , let FI;i be the event that
the ith row of C is linearly independent of the �rst i�1 rows of C. For any subset
I of f1; : : ; rg and for any i 2 f1; : : ; rg�I , let GI;i be the event that the i

th row of

C is linearly dependent on the �rst i�1 rows of C, and let ~GI;i be the event that

the ith row of ~C is linearly dependent on the �rst i� 1 rows of ~C. By de�nition
of event EI , for any subset I , the event EI occurs i� the events fFI;igi2I and the
events fGI;igi2f1;::;rg�I occur. Thus, PrR[EI] = PrR[

V
i2I

FI;i ^
V

i2f1;::;rg�I

GI;i].

Let I be any subset of f1; : : ; rg such that 1 2 I and I contains at most k0

elements. It follows from the de�nition of ~GI;i and the necessary and suÆcient

condition for event E mentioned at the end of the �rst paragraph in the proof
of Lemma 4 that

Pr
R
[E \ EI] = Pr

R
[
^
i2I

FI;i ^
^

i2f1;::;rg�I

~GI;i]

=
Y
i2I

Pr
R
[FI;i j

^
j2I;j<i

FI;j ^
^

j2f1;::;rg�I;j<i

~GI;j]

�
Y

i2f1;::;rg�I

Pr
R
[~GI;i j

^
j2I;j<i

FI;j ^
^

j2f1;::;rg�I;j<i

~GI;j]

�
Y

i2f1;::;rg�I

Pr
R
[~GI;i j

^
j2I;j<i

FI;j ^
^

j2f1;::;rg�I;j<i

~GI;j] (3)

For any i 2 f1; : : ; rg � I , let Ii be the set fj 2 I j j < ig and let ni = jIij. Let
Mni�k0 be the sub-matrix of C that consists of the rows of C with indices from
set Ii. Let ~M(ni+1)�(k0+1) be the sub-matrix of A that consists of the rows of A
with indices from set Ii [fig.

Consider any i 2 f1; : : ; rg � I . We now bound the quantity
PrR[~GI;i j

V
j2I;j<i

FI;j ^
V

j2f1;::;rg�I;j<i

~GI;j]. Suppose that the assignments

R1; : : ; Ri�1 have been chosen such that the events fFI;jgj2Ii and the events

f ~GI;jgj2f1;::;i�1g�Ii occur, and we have to choose the assignment Ri. Since the
events fFI;jgj2Ii occur, the rows inM are linearly independent, i.e. Rank(M) =
ni. Thus, there exists a sub-matrix Tni�ni of M such that Rank(T) = ni,
i.e. Det(T) 6= 0. Let T 0(ni+1)�(ni+1) be the sub-matrix of M 0 that has T as a

sub-matrix and an additional row corresponding to the ith row of A and an ad-
ditional column that contains all 10s. Since the events f ~GI;jgj2f1;::;rg�Ii occur,

the event ~GI;i occurs i� the assignment Ri is chosen such that the ith row of A
turns out to be linearly dependent on the rows of A with indices from set Ii,
which implies that Rank(~T) = ni, or, equivalently, Det(~T) = 0. Since we have
not yet chosen the assignment Ri, Det(~T) is a linear multivariate polynomial
in variables x1; : : ; xn. Note that Det(~T) is not identically equal to 0 because
otherwise we can write 1 as a linear combination of the terms t1; : : ; tk0 (expand
the determinant with respect to the row not present in sub-matrix T) which will
contradict the assumption that ftj = 0gk

0

j=1 is satis�able. The probability that
some polynomial of degree 1 that is identically not equal to zero, evaluates to
zero when the values for its variables are chosen independently and u.a.r. from
the set F is at most 1

jF j . Thus,

Pr
R
[~GI;i j

^
j2I;j<i

FI;j ^
^

j2f1;::;rg�I;j<i

~GI;j] �
1

jF j
(4)

The required result now follows from Equations 3 and 4.

