
Amdb: A Design Tool for Access Methods

Marcel Kornacker

marcel@cs.berkeley.edu

Mehul Shah

mashah@cs.berkeley.edu

Joseph M. Hellerstein

jmh@cs.berkeley.edu

Report No. UCB/CSD-3-1243

May 2003

Computer Science Division (EECS)

University of California

Berkeley, California 94720

This work was supported by NASA grant 1996-MTPE-00099,

NSF grant IRI-9703972, and a Sloan Foundation Fellowship.

Computing and network resources for this research were pro-

vided through NSF RI grant CDA-9401156. This is an updated

version of technical report UCB/CSD-99-1051.

Amdb: A Design Tool for Access Methods

Marcel Kornacker

marcel@cs.berkeley.edu

Mehul Shah

mashah@cs.berkeley.edu

Joseph M. Hellerstein

jmh@cs.berkeley.edu

May 2003

Abstract

Designing and tuning access methods (AMs) has always been more of a black art than a rigorous disci-

pline, with performance assessments being mostly reduced to presenting aggregate runtime or I/O numbers.

This paper presentsamdb, a comprehensive graphical design tool for AMs that are constructed on top of

the Generalized Search Tree abstraction. At the core ofamdb lies an an analysis framework for AMs that

defines performance metrics that are more useful than traditional summary numbers and thereby allow the

AM designer to detect and isolate deficiencies in an AM design.Amdbcomplements the analysis framework

with visualization and debugging functionality, allowing the AM designer to investigate the source of those

deficiencies that were brought to light with the help of the performance metrics. Several AM design projects

undertaken at U.C.Berkeley have confirmed the usefulness of the analysis framework and its integration with

visualization facilities inamdb. The analysis process that produces the performance metrics is fully auto-

mated and takes a workload—a tree and a set of queries—as input; the metrics characterize the performance

of each query as well as that of the tree structure. Central to the framework is the use of the optimal behavior—

which can be approximated relatively efficiently—as a point of reference against which the actual observed

performance is compared. The framework applies to most balanced tree-structured AMs and is not restricted

to particular types of of data or queries.

1 Introduction

Despite the large and growing number of access methods (AMs) that have been produced by the research

community—and also despite their increasing importance, considering the explosion of data that users find

worth querying—the design and tuning of AMs has always been more of a black art than a rigorous disci-

pline. Traditionally, performance analyses focus on summaries of observed performance, such as aggregate

runtime or page access numbers, or on performance metrics that express data-specific properties of index

pages (e.g., spatial overlap between the pages of an R-tree [9]). The drawback of aggregate numbers is that

they do not provide any insight into the causes of observed performance. As a result, it is hard to quantify

the contribution of individual design ideas or explain performance differences between competing AM de-

signs, if those deviate in more than one design aspect. Also, aggregate numbers do not allow AMs to be

assessed on their own, because competing AM designs are needed to put the numbers into perspective. In

contrast, data-specific performance metrics offer some insight into the causes of observed performance, but

they require the designer to understand their correlation with the optimization objective, i.e., the minimiza-

1

tion of aggregate runtime or page access numbers. Since such an understanding is agoal of the analysis

process, any apriori assumptions are often incorrect and misleading. If the correlation of the data-specific

performance metric with the optimization objective is not perfectly clear, using such a performance metric

to guide AM design is problematic.

In this paper we presentamdb, a comprehensive support tool for the AM analysis process. At the core of

amdb is an analysis framework that defines performance metrics that are superior both to aggregate numbers

and data-specific performance metrics. The analysis process is integrated with a collection of modules in an

interactive, easy-to-use graphical environment. Those modules are: a visualization component for the tree

structure and its contents (the latter user-extensible, so it can be adapted to a specific application domain);

a facility for interactive execution of tree searches and updates as well as breakpoints and single-stepping

through those commands, similar to functionality found in programming language debuggers; browsers for

viewing performance numbers derived from the analysis framework. The salient features ofamdb and its

analysis framework are:

Universal Applicability The analysis framework and most of theamdb visualization facilities are inde-

pendent of the semantics of the data and queries of the application domain, which makes them universally

applicable to any AM design that is based on the Generalized Search Tree (GiST) abstraction [10]. The

analysis framework treats the workload—a tree and a set of queries—as an input parameter, allowing the

designer to tune an AM for that particular workload.

Better Performance Metrics The analysis framework defines performance metrics that reflectperfor-

mance loss, measured in I/Os and derived from a comparison of observed performance with the performance

of a workload-optimal tree. This tree minimizes the total number of I/Os for the input workload and can be

approximated relatively efficiently. The advantage of these performance metrics in comparison to aggregate

I/O measurements is that they reflect the potential for performance improvement, allowing an AM design to

be assessed on its own. The loss metrics are further broken down to reflect the performance-relevant char-

acteristics of the tree, which gives the designer a clearer understanding of the effects of individual design

ideas or the differences between two competing AM designs.

Fully Automated Analysis The fully automated analysis process executes the user-supplied set of queries,

gathers tracing data, uses that to approximate an optimal tree and computes the performance metrics.

Visualization Integration The analysis framework is integrated intoamdb to the extent that the metrics

as well as tracing information gathered during workload execution are visualized using the data-independent

tree structure visualization facilities. This integration is particularly helpful, because it lets the designer in-

vestigate poorly performing parts of the tree and queries. The analysis framework and the visualization tools

are complementary: the performance metrics highlight the sources of poor performance, thereby focusing

the designer’s attention. The visualization tools are then used to investigate those parts of the tree or those

queries which have been flagged by the performance metrics.

Designing AMs is a creative process.Amdbsupports this process with an analysis framework that points

out specific sources of performance degradation and visualization tools for investigating them. The experi-

ence we have gathered so far withamdb justifies our claims about its usefulness: in two AM design projects

undertaken at U.C. Berkeley,amdb was instrumental in quickly locating performance problems in existing

2

AM designs and verifying that the remedies to those problems worked as intended.

The rest of the paper is structured as follows. Section 2 briefly introduces GiST, which lays the foundation

for an understanding of the breakdown of the performance metrics. Section 3 gives an overview ofamdb

and describes the analysis framework and its intended usage, which is illustrated in Section 4 with two

examples of AM design projects that made use ofamdb. Section 5 discusses the analysis framework in

detail, along with illustrative examples, among them a test for unindexability. Section 6 discusses related

work and Section 7 contains the conclusion and an outline of future work.

2 Generalized Search Trees

A GiST is a balanced tree that provides “template” algorithms for navigating the tree structure and modifying

the tree structure through node splits and deletes. Like all other (secondary) index trees, the GiST stores

(key, RID)pairs in the leaves; the RIDs (record identifiers) point to the corresponding records on the data

pages. Internal nodes contain(predicate, child page pointer)pairs; the predicate evaluates to true for any of

the keys contained in or reachable from the associated child page. A B+-tree [5] is a well known example

with those properties: the entries in internal nodes represent ranges which bound values of keys in the leaves

of the respective subtrees. The predicates in the internal nodes of a search tree will subsequently be referred

to assubtree predicates(SPs).

Apart from these structural requirements, a GiST does not impose any restrictions on the key data stored

within the tree or their organization within and across nodes. In particular, the key space need not be ordered,

thereby allowing multidimensional data. Moreover, the nodes of a single level need not partition or even

cover the entire key space, meaning that (a) overlapping SPs of entries at the same tree level are allowed

and (b) the union of all SPs can have “holes” when compared to the entire key space. The leaves, however,

partition the set of stored RIDs, so that exactly one leaf entry points to a given data record.1

A GiST supports the standard index operations: SEARCH, which takes a predicate and returns all leaf

entries satisfying that predicate; INSERT, which adds a(key, RID)pair to the tree; and DELETE, which

removes such a pair from the tree. It implements these operations with the help of a set of extension

methods supplied by the access method developer. The GiST can be specialized to one of a number of

particular access methods by providing a set of extension methods specific to that access method. These

extension methods encapsulate the exact behavior of the search operation as well as the organization of keys

within the tree.

We now provide a sketch of the implementation of the SEARCH and INSERToperations and how they use

the extension methods.

SearchIn order to find all leaf entries satisfying the search predicate, we recursively descendall subtrees

for which the parent entry’s predicate is consistent with the search predicate (employing the user-supplied

extension methodconsistent()).

Insert Given a new(key, RID)pair, we must find a leaf to insert it on. Note that because GiSTs allow

overlapping SPs, there may be more than one leaf where the key could be inserted. A user-supplied extension
1This structural requirement excludes R+-trees [21] from conforming to the GiST structure.

3

methodpenalty()compares a key and predicate and computes a domain-specific penalty for inserting the

key within the subtree whose bounds are given by the predicate. Using this extension method, we traverse a

single path from root to leaf, following branches with the lowest insertion penalty. If the leaf overflows and

must be split, an extension method,pickSplit(), is invoked to determine how to distribute the keys between

two leaves. If, as a result, the parent also overflows, the splitting is carried out bottom-up. If the leaf’s

ancestors’ predicates do not include the new key, they must be expanded, so that the path from the root to

the leaf reflects the new key. The expansion is done with an extension methodunion(), which takes two

predicates, one of which is the new key, and returns their union. Like node splitting, expansion of predicates

in parent entries is carried out bottom-up until we find an ancestor node whose predicate does not require

expansion.

Although the GiST abstraction prescribes algorithms for searching and inserting, the AM designer still

has full control over the performance-relevant structural characteristics of the AM. These structural charac-

teristics are:

Clustering The clustering of the indexed data at the leaf level and of the SPs at the internal levels deter-

mines the amount of extra data that a query needs to access in order to retrieve its result set. An AM design

controls the clustering through thepickSplit()andpenalty()extension methods.

Page Utilization The page utilization determines the number of pages that the indexed data and the

SPs occupy and therefore also influences the number of pages that a query needs to visit. Similar to the

clustering, the page utilization is controlled by thepickSplit()andpenalty()extension methods.

Subtree PredicatesWhile the size and shape of the indexed data is part of the input,2 the size and shape

of the SPs are parameters of the design and considerably influence performance. A SP’s task is to describe,

or cover, that part of the data space which is present at theleaf level of its associated subtree (i.e., the

perfect SP would simply enumerate all the data items contained in the leaves of its subtree; of course, this

is problematic with regard to the size of the SPs). We speak of SPexcess coverageif the SP covers more

of the data space than is needed in order to represent the data contained in the subtree. If a SP exhibits

excess coverage, it may cause queries to visit more than the minimum number of pages determined by the

clustering and page utilization.

3 A Tour of Amdb

This section describesamdb’s visualization and debugging features (which are presented in greater detail

in [20]) and gives an overview of the analysis framework and its intended usage.

Amdbsupports access methods developed using the public domainlibgist package which implements

the GiST abstraction.Amdband libgist are written in Java and C++ and are portable across many ver-

sions of UNIX as well as Microsoft Windows NT. The software can be downloaded fromhttp://gist.cs.ber-

keley.edu/ .
2One could argue that the size of the indexed data can be changed by applying compression in the index. We will ignore this

possibility by assuming that a similar form of compression can be applied to the data as a pre-processing stage.

4

2

1

2

3

4

5

6

Figure 1: Amdb User Interface

3.1 Visualization Functionality

Understanding flaws in an AM design requires inspecting the corresponding tree; thus,amdb provides

interactive graphical views of the entire tree, paths and subtrees within the tree, and contents of nodes within

the tree. These are the global view, tree view, and node view, respectively (Fig 1). These views not only help

visualize the tree structure and its contents, but also help visualize profiling data and performance metrics by

associating them with nodes in the tree (discussed in detail in Section 3.4). Finally, they provide navigation

features, which enables designers to drill down to the source of a deficiency.

The highest-level,global viewprovides a manageable aggregate view of the entire index (Fig 1: 1). This

representation factors out much of the tree structure by mapping it onto a triangle with an adjustable baseline

and height. The purpose of this view is to project a user-selected tree statistic or performance metric onto

this abstract display and depict the variation of the statistics across the total tree. The user can choose both

a color map (or palette, Fig 1: 2) and a statistic; the global view assigns colors to the statistical values and

renders the nodes accordingly. Nodes are visually concatenated and merged if necessary with other nodes

on the same level. Thus, the pixel density of nodes increases geometrically with the level. The user can also

perform an approximate drill-down into an area of interest by clicking on it. Subsequently, a path from the

root node to a node in the neighborhood of the specified point will be shown in the tree view, a lower-level

view which shows more detail.

The tree viewshows the structure of the search tree (Fig 1: 3). It offers an intuitive point-and-click

interface for browsing the tree while improving on conventional tree navigation interfaces which become

cumbersome for high fanout trees. In this view, the tree’s nodes are represented by boxes and labeled with a

unique number for reference. Each node is enclosed in a scrollable and stretchable container which displays

its direct siblings. This container (Fig 1: 4) allows users to focus on nodes of interest while bounding

the amount of detail displayed. Any node can be expanded or contracted by clicking on it. When a node

5

is expanded, the container holding its children is displayed below it with a line linking the two; when

contracted, the entire subtree below the node is removed. Like the global view, the tree view represents

a user-selected tree statistic or performance metric by coloring the nodes. With these features, a user can

simultaneously focus on several paths and subtrees of interest without being overwhelmed by the width of

the search tree.

After drilling down from the global view and tree view, the user can investigate the contents of specific

nodes usingamdb’s node view (Fig 1: 5). Since tree nodes contain arbitrary user-defined predicates, the

access method designer must provide a module that displays the node given its contents. Currently,amdb

contains a suite of modules that visualize two-dimensional projections of spatial data. The node view also

allows the user to simulate a split (by calling thepickSplit()extension function) and visualize the results by

separating the items with contrasting colors. In addition to user-defined data visualization,amdbprovides a

textual description of the keys, their sizes, and associated pointers.

3.2 Debugging Functionality

The behavior of an AM can be difficult to understand without being able to observe its mechanics. Previ-

ously, only standard programming language debugging tools were available for examininglibgist AMs.

Because these tools are designed for analyzing low level actions, such as a single line of source code, they

are cumbersome for gaining an understanding of how search and update operations behave and interact with

the tree.

Amdb allows a designer to single-step through tree search and update commands. Those commands

generate events for various node-oriented actions, such as node split, node traversal,etc., which permits users

to step from event to event. Since manual stepping can become tedious,amdb also supports breakpoints.

Breakpoints can be defined on generic events, e. g., node update, or can be tied to a specific tree node, e.g.,

update of node 227. When a breakpoint event is encountered, execution is suspended, and the user has an

option to single-step through events or continue until the next breakpoint. Additionally,amdb allows batch

execution of commands via scripts so users can conveniently restore state.

3.3 Overview of the Analysis Framework

The goal of the analysis framework is to explain the observed performance of an AM running a user-supplied

workload. The single ultimate performance number is the total execution time of the entire workload.

This total depends on the number and nature of page accesses, the buffering policy and the CPU time

spent examining pages. For brevity, we concentrate on explaining observed page accesses; we discuss the

remaining components of the performance equation in Appendix B.

In Section 1 we mentioned the deficiencies of the current practice of reporting performance with aggregate

I/O numbers or data-specific metrics. To be effective and universally applicable, an analysis framework

should have three properties: (1) the performance metrics should be data-independent and not be tailored

to the semantics of a particular application domain, so that the analysis framework is applicable in the full

generality of the GiST AM design framework; (2) the performance metrics must give an indication of the

6

Optimal Clustering Utilization
Excess

Coverage

Total I/Os

Total Performance Loss
(Excess I/Os)

Figure 2: Decomposition of observed I/Os on a per-query and per-node basis.

quality of measured AM performance in terms of the optimization objective, i.e., minimization of I/Os; (3)

the metrics should give the designer an understanding of the causes of observed performance.

In order to ensure data-independence of the framework, the workload—a tree and a set of queries—is an

input parameter of the analysis and the metrics characterize the performance of an AM specifically in the

context of that workload. Also, the performance metrics directly characterize the observed performance of

the workload execution, namely the page accesses. They are not stated in terms of data or query semantics,

and are therefore data-independent.

Instead of simply reporting the number of observed page accesses, a more meaningful performance metric

is the difference between the number of page accesses in the actual tree and the optimal tree; we call

this difference theperformance loss. The optimal tree is defined as minimizing the total number of page

accesses over the entire workload. Knowing the magnitude of performance loss is a clear indication of the

quality of an AM, expressed in the units of the optimization objective, I/Os. Moreover, the performance

loss shows the potential for performance improvement, which cannot necessarily be discovered even when

comparing two competing AM designs using traditional performance metrics. We can compute aquery

performance loss, which expresses the difference in the number of I/Os of a query executed against the

actual tree and the workload-optimal tree.3 Similarly, we can compute anode performance loss, which

expresses a node’s contribution to query or aggregate workload performance loss. Furthermore, we can also

computeimplementation metricsin order to characterize aspects of the AM implementation. The extension

methodspickSplit()andpenalty()directly control the tree structure and performance loss metrics for these

functions should express to what extent they are responsible for the structural deterioration that causes

performance loss. Unlike query and node metrics, the implementation metrics cannot be derived from the

tracing information gathered during workload execution. Instead, we execute additional splits and insertions

and observe how workload performance changes. Like query and node metrics, the implementation metrics

reflect a comparison to an optimum, in this case the optimal split and insertion.

Given a particular performance loss, we can further subdivide it to reflect the fundamental performance-

relevant properties of GiST-based AMs, namely clustering, page utilization and excess coverage loss.Clus-

tering lossspecifies the part of performance loss that can be attributed to the difference between workload-

optimal and achieved (leaf-level4) clustering in the index tree;utilization lossspecifies the part that is at-

tributable to node utilization deviating from a target utilization;excess coverage lossspecifies the part that
3Having knowledge of the execution profile of the workload, in particular the result sets of the queries, allows us to approximate

the optimal tree relatively accurately. The details of how the metrics are computed are presented in Section 5.
4The reason this is restricted to leaf-level clustering is explained in Section 5.

7

is due to accesses to leaf nodes that contain no relevant data to a query. All of these subdivisions of perfor-

mance loss are also specified in I/Os—possibly fractions of I/Os; They are summarized in Figure 2. Such a

breakdown of performance loss is more useful than aggregate numbers, because it helps the designer under-

stand the nature of the loss and thereby provides more insight into the causes of observed performance. The

breakdown of the node metrics in particular helps the designer identify anomalies in the tree structure. The

examples in Section 4 will illustrate this point.

3.4 Using theAmdbAnalysis Framework

To useamdb in order to analyze an AM design, the designer constructs an index tree and decides on a

set of queries to run against that tree. Together, these two items constitute thetarget workload. Taking

this workload as input,amdb then runs the analysis that produces the performance metrics described in

the previous section. The analysis process consists of running the queries against the index tree, gathering

tracing data such as traversal paths, and approximating an optimal tree based on the tracing data. Given

this optimal tree approximation,amdbcomputes the performance metrics for each query and the aggregate

workload. These are broken down further into per-node loss metrics, which are also computed for each

query and the aggregate workload. A detailed description of the tracing data, the nature of the optimal tree

and the computation of the performance metrics are given in Section 5.

The performance loss metrics express I/Os, not particular application-specific properties of the tree at

hand or the AM design; the metrics can therefore only serve as anindication of, not an explanation for

performance deficiencies. The explanation of performance deficiencies and a subsequent improvement of

the AM design need to be done by the AM designer, based on an understanding of the semantics of the

application domain. Gaining such an understanding is a creative process, which is helped by theamdb

visualization facilities and their integration with the analysis framework: the performance metrics “flag”

those parts of the tree and those queries that perform badly; the visualization facilities then let the designer

navigate those index nodes and queries and investigate the reasons for their above-average performance

loss. Aside from the user-extensible data visualizations,amdb also gives the designer access to a very

comprehensive set of workload statistics, including per-query aggregate page access numbers, full traversal

paths, the amount and specific location of data retrieved,etc.The performance metrics themselves are quite

voluminous—there are three loss metrics for each query and each node of the tree–which makes it necessary

to find good visualizations for them.

The node metrics are visualized by coloring nodes in the global and tree view, so that ill-behaved parts

of the tree can be identified easily without having to browse through each node’s metrics individually. The

navigation and data visualization features of these views let the developer navigate those parts of the tree

structure and examine the data contained therein. The global and tree views are also used to visualize the

per-query loss metrics and trace data on a per-node basis (for example, traversal paths can be visualized

very effectively through node coloring). This tracing data in combination with the visualizations give the

developer a very detailed view of the behavior of each query and are instrumental in understanding poorly

performing queries.

Before designing an AM for a particular workload, it is actually instructive to determine whether that

8

workload is possibly unindexable, i.e., whether no index structure will be able to outperform a sequential

scan on that workload. Theamdb analysis process produces all the data necessary to perform such a test;

the details are given in Appendix A.

The next section describes twoamdb-assisted AM design projects in which theamdbperformance met-

rics were used to assess the merits or demerits of an AM design. In these examples, traditional metrics such

as total I/Os and execution time were inconclusive or, at worst, misleading.

4 Sample Applications ofAmdb

Since the timeamdbwas implemented and made available to the public, two AM design projects undertaken

at U.C. Berkeley made use of this tool. We will describe each one in turn in order to illustrate howamdb

was used to help the design process. In both of these projects, designers were able to useamdb to achieve

significant improvements.

4.1 Content-Based Image Retrieval

An AM design project was undertaken in the context of a content-based image searching, Blobworld [1]. The

Blobworld system addresses content-based querying by breaking the images into “blobs” of homogeneous

characteristics, and searching for images by specifying the characteristics of the blobs in the desired images.

A full Blobworld query must perform computationally complex comparisons of the high-dimensional fea-

ture vectors of the blobs in the images. For the purpose of indexing this data set, the dimensionality of the

feature vectors was reduced from 218 to five dimensions by doing a singular value decomposition. The data

set was then bulk-loaded into an R-tree using the STR partitioning algorithm [15]. The details of this AM

design project are described in [22].

Usingamdb, the designers found that while clustering and utilization were good (i.e., the corresponding

losses were 3 and 1 percent of the total number of about 200,000 I/Os for the entire workload), excess

coverage contributed a very large percentage to the total I/O count (about 31 percent). The tree visualization

of the excess coverage loss statistics actually showed nodes with particularly high loss. Visualizing the data

in those nodes helped the designers come up with ideas for a more accurate encoding of the space covered

by the feature vectors. More specifically, the data visualizations showed nodes with a large fraction of empty

“corner” space; the remedy for this is to encode the SPs as polygons instead of simple hyperrectangles in

order to “cut away” empty corners.

One particular design idea for SPs was to combine two hyperrectangles instead of just a single one, as

in the standard R-tree. Running the benchmark workload inamdb quickly showed that, as implemented

(rectangles were chosen from a set of randomly constructed bounding rectangles), this design resulted in

a small total performance degradation in comparison to the original R-tree. Looking atamdb’s metrics

made it clear that this design decreased excess coverage loss at the leaf level, but increased I/Os at the

internal levels. The reason is that at internal levels, having two hyperrectangles was not an effective way

of excluding “empty” corners;5 the combination of two hyperrectangles therefore ended up being no more

5This might be an effect of the particular algorithm used to construct the SPs, but that is not the point here.

9

discriminating than just a single one, but used up more space. This particular example illustrates the value

of the performance breakdown: had only aggregate I/O numbers been available, the varying effects on the

leaf and internal levels would not have been visible, making it harder to draw the same conclusion. In

this example, the integration of the available metrics with the visualization tools was also very important,

because it facilitated examining those nodes with high excess coverage loss and drawing conclusions about

the shape of the SPs.

Similarly, theamdbanalysis also established that another design alternative—convex minimum-bounding

polygons—causes almost no excess coverage loss and is therefore close to optimal for the given workload.

Taking this into account, the designers then focused on finding an approximation to this fairly CPU-intensive

design, rather than searching for a yet more accurate SP design. In this case, theamdbperformance metrics

clarified that no substantial improvements could be gained from investigating more accurate SPs.

4.2 Multidimensional Point AM for Window Queries

As part of the graduate database class at U.C. Berkeley (CS286, Spring 1999), the students were required to

design an improved AM for a particular synthetic multidimensional point dataset (containing 8-dimensional

data arranged into 200 clusters of 100 points each). The workload consisted of 10,000 range queries centered

on randomly chosen data points. The starting point was the performance achieved with an R�-tree, which

the students needed to improve.

A confirmation of the efficacy ofamdb and the analysis framework in particular was that many of the

design groups managed to improved performance to a great extent (some by a full 50 percent), although

none of the students had previously worked on spatial point AMs (in fact, any AMs at all) and each group

only spent about a week on the assignment. We believe that withoutamdb, such results would not have

been possible.

All groups started their design process by looking at the breakdown instead of just the total numbers

of aggregate I/Os and proceeded to address one or more of the performance factors which proved to be

problematic. At the leaf level, the initial total number of 26,600 I/Os broke down into roughly 5,400 I/Os

due to clustering loss, 1,800 I/Os due to utilization loss, 9,050 I/Os due to excess coverage loss and 10,350

optimal I/Os.

One of the design ideas that the students came up with was to relax the utilization restrictions in the

R�-tree split algorithm (which allows at most a 40/60 imbalance). The purpose was to to allow a node split

to separate two clusters cleanly instead of forcing it to divide up individual clusters between two nodes to

satisfy utilization restrictions. This resulted in a substantial performance improvement, reducing the total

number of leaf I/Os to 19800. Aside from clustering and excess coverage loss, it also reduced the utilization

loss component, which was unexpected, because splits were allowed to be less balanced.6 The breakdown

of the aggregate I/O number therefore clarified the effects of this design idea and in this particular case

allowed the design group to conclude that further work on rectifying an assumed utilization problem was

not necessary. Another design group had a contrary experience: their SP design resulted in a total reduction
6The possible reason for this is that it separates clusters into their own nodes; in this particular data set, if a node contains more

than one cluster, it will be forced to split at some point.

10

of 4,000 leaf I/Os. The breakdown showed that the cause for this was a reduction of excess coverage loss

by about 5,000 I/Os, mitigated by an increase of utilization loss by about 1,000 I/Os. Again, the breakdown

conveyed more useful information that just the aggregate number and gave a more insightful assessment of

the effects of this particular design idea.

Generally speaking, all groups stated in their reports that the performance metrics were essential in find-

ing which aspects of the AM needed improvement. In addition, some groups complained that the multi-

dimensional data visualization supplied withamdb (which consists of a simple projection on the first two

dimensions) was not sufficiently powerful. This illustrates our earlier point about the complementary nature

of amdb’s data-independent performance metrics and data-specific visualizations, namely that the latter is

necessary for gaining an intuition of the nature of the problem, whereas the former tells the designer which

particular subtrees or queries to investigate.

5 Details of the Analysis Framework

The following subsection discusses the optimal tree and how to construct it. Section 5.2 derives the query

performance metrics, first for the leaf level, then for internal levels, and presents examples of analyses

conducted with these metrics. Section 5.3 derives node metrics based on the query metrics. Section 5.4

discusses the optimal split and insertion and derives metrics for thepickSplit() and penalty() extension

methods. Various examples throughout this section illustrate the performance metrics.

The presentation of the metrics in this section is purposely informal and relies mainly on examples; we

felt this would improve readability. The input variables and metrics are defined and summarized in Table 1

and Table 2, respectively.7 Variables with subscriptq are query-specific and variables with subscriptp are

page-specific. The definitions are provided as references when reading through the equations. Also note

that the performance metrics are a complete partitioning of the I/Os observed for the workload; an I/O or

fraction thereof is not attributed to more than one loss category.

5.1 Construction of the Optimal Tree

The optimal tree is defined by the following characteristics:

no excess coverage,which eliminates page accesses due to overly general SPs;

target page utilization, which would ideally be 100%, but this is unattainable in practice. Instead, the

AM designer specifies a desired target page utilization, which will also be used as a parameter for the

optimal tree. For some AM design projects, this value will be determined by external considerations, e.g.,

the existence of a competing AM with a well-known average utilization.8 If no such point of reference is

available, one or more reasonable utilizations (in the 50–80% range) should be tried. The value we often

used in practice was the average workload page utilization. We will see that the absolute level of the target
7We leave out the definition of the split and penalty metrics, because these are cumbersome and can be derived from the

descriptions in Section 5.4.
8In this case, the target utilization should be in the vicinity of the known average utilization. Also, for purely static trees, a value

of 100% is attainable and should be used.

11

Q set of queriesq in workload
L set of leaf nodes in tree
I set of internal nodes in tree
C [bytes] page capacity
Rq [bytes] size of result set
Lo
q set of accessed pages in optimal clustering

Lq set of accessed leaves in actual tree
L0
q set of relevant leaves in actual tree (leaves that contain items ofq’s result set)

ut [%] target utilization
up [%] utilization
uq [%] average utilization seen by query,uq =

P
p2L0

q
up=jL

0
qj

Iq set of accessed internal nodes in tree
I 0q set of accessed internal nodes on paths toL0

q

I lq internal “leaves” of traversal tree,
I lq =

n
pjp 2 Iq n I

0
q ^ :(child(p) 2 Iq [Lq)

o
Qp set of queries that accessp
Q0

p set of queries for whichp is relevant leaf
rq optimal ratio of accessed to retrieved data,rq = jLo

qj � C � ut=Rq

Rp;q [bytes] size of fraction ofq’s result set found onp
Qo

p;q [bytes] optimal amount of accessed data,Q0
p;q = rq � Rp;q

Qo
p [bytes] optimal amount of accessed data aggregated over workload,Qo

p =P
q2Q0

p
rq � Rp;q

Table 1: Input Variables (Profiling Data, Tree Statistics and Derived Variables)

CLq clustering loss CLq = (uq=ut)jL
0
qj � jLo

qj

ELl
q leaf-level excess coverage loss ELl

q = jLqj � jL0
qj

ULl
q leaf-level utilization loss ULl

q = jL0
qj(1� uq=ut)

ELi
p;q internal-level excess coverage loss on

pagep
ELp;q =

8><
>:

0 if p 2 I 0q
1 if p 2 I lq
up=ut otherwise

ELi
q internal-level excess coverage loss ELi

q =
P

p2IqnI0q
ELi

p;q

ULi
p;q internal-level utilization loss on pagep ULp;q =

(
1�ELi

p;q if p 2 Iq n I
0
q

1� up=ut otherwise
ULi

q internal-level utilization loss ULi
q =

P
p2Iq ULi

p;q

Irq remainder of internal-level accesses Irq =
P

p2I0q
up=ut

CLp clustering loss CLp =
P

q2Q0

p
(up �Qo

p;q=C)=ut

ELl
p leaf-level excess coverage loss ELl

p = jQp nQ
0
pj

ULl
p leaf-level utilization loss ULl

p =
P

q2Qp
1� up=ut

ELi
p internal-level excess coverage loss ELi

p = j
n
qjp 2 I lq

o
j

ULi
p internal-level utilization loss ULi

p =
P
fq2Qpjp=2Ilqg

1� up=ut

Qr
p remainder of internal-level accesses Qr

p =
P
fq2Qpjp=2Ilqg

up=ut

Table 2: Performance Metrics

12

Actual Tree:

X XXXX

Optimal Clustering:

XXX XX

0

7

654

321

Figure 3: Traversal Paths and Optimal Clustering for Example Query

page utilization does not affect the significance of the performance metrics for the comparison of nodes

within the tree structure.

optimal clustering, which minimizes the total number of “relevant” page accesses (at the leaf level, those

are accesses to pages containing items of the result set of a query, see Table 1) for the entire workload.

A tree with these properties will execute the investigated workload with the minimal number of page

accesses. This tree is only a theoretical construct, since it is generally impossible to create reasonably-sized

SPs with no excess coverage. Nevertheless, it is possible to approximate this tree well enough to be able to

infer the page access pattern of the workload queries.

To construct the optimal leaf level, we partition the indexed data items so that the total number of leaf

accesses is minimized over the workload9 and the partition size is equal to the target page capacity. This

task can be converted into a hypergraph partitioning problem by modelling the workload as a hypergraph

(each indexed data item is a node with a weight that is equal to its size in bytes; each query, identified by

its result set, is a hyperedge). Hypergraph partitioning is provably NP-hard [8], but existing approximation

algorithms work reasonably well in practice (Section 5.5 discusses the implementation, in particular the

hypergraph partitioning, for which we use a public-domain tool, in more detail).

To construct the optimal internal levels, we need to create reasonably-sized SPs with no excess coverage,

which is generally not possible. Nevertheless, it is still possible to report utilization and excess coverage

loss metrics for those.

Figure 3 serves as a running example throughout the rest of this section. It shows the traversal tree of a

query (its traversal paths in the index, which form a subtree of the index) that retrieves five data items, for

which it needs to access four leaves in the actual tree and two leaves in the optimal tree. The page capacity

is four items (to keep the example simple, data items and SPs are assumed to have the same size) and the

target utilization is 75%. Occupied slots are shaded, and the pages in the actual tree are enumerated for

reference.
9Note that clustering to minimize the number of leaf accesses over theentireworkload will generally not minimize the number

of leaf accesses for each queryindividually. The minimum number of leaf accesses for a single query is the size of its result
set divided by the page size. This usually cannot be achieved for the entire workload, because the individual queries’ clustering
requirements are contradictory.

13

5.2 Query Performance Metrics

The per-query performance metrics express performance loss due to suboptimal clustering, page utilization

and SPs in the index. At the leaf level, these numbers are derived by comparing the page access pattern in

the actual tree with the corresponding pattern in the optimal tree. At the internal level, the corresponding

optimal structure is not available for comparison, but we can still derive a reduced set of the metrics, namely

excess coverage and utilization loss. The next two subsections in turn describe how the loss metrics are

derived for the leaf level and the internal levels.

5.2.1 Leaf-Level Performance Metrics

For each query, the performance loss at the leaf level—actual minus optimal leaf accesses—is divided up

into utilization, excess coverage and clustering loss. More formally:jLqj = jLo
qj+ELl

q + ULl
q + CLq:

In the example, the query experiences a performance loss of two leaf accesses when compared against the

optimal tree. We show how to compute the losses for this example.

Excess coverage lossWhen accessing a leaf during query execution that does not contain any items of

the result set, the leaf access is due to excess coverage in the leaf’s SP. Even if those pages are underutilized

they do not count toward utilization loss, because packing them more densely would not lower the total

number of leaf accesses (unless retrieved data were added, but then the accesss would not count as excess

coverage to begin with). For the same reason, the access cannot count as clustering loss, because the feature

of that node relevant to the query is its SP, not its page utilization or clustering. In the example in Figure 3,

leaf 0 is accessed but contains no matching items, and therefore the access counts as excess coverage loss.

Utilization loss Deviation from the target utilization in the remaining leaves is summed up as utilization

loss. In the example, leaf 2 has a utilization of 50%, which is2=3 of the target utilization of 75%, resulting

in a loss of1� 0:5=0:75 = 1=3. The idea behind this accounting is that if the pages had been packed more

densely, part of the accesses could have been avoided. Note that a page utilization in excess of the target

utilization counts as a negative performance loss, i.e., a performance gain.

Clustering lossClustering loss is the difference between the conceptually “tightly packed” leaves in the

index and the corresponding leaves in the optimal tree. The accessed leaves in the index become “tightly

packed” by subtracting the utilization loss. In the example, the result set is spread over three leaves, or8=3

tightly packed leaves. The difference between that and the two leaf accesses in the optimal tree is2=3, the

clustering loss.

To summarize the leaf-level metrics established for the example query: excess coverage loss is 1 I/O,

utilization loss is1=3 I/Os and clustering loss2=3 I/Os. The sum is 2 I/Os, which is the total performance

loss that the example query experiences at the leaf level.

5.2.2 Internal-Level Performance

Although it is not possible to construct the optimal internal levels for the workload in a manner similar to

the leaf level, the characteristics of the accessed internal nodes in the actual tree still allow us to derive two

14

of the three metrics, namely excess coverage loss and utilization loss. The remaining internal-node accesses

cannot be subdivided any further. More formally:jIqj = Irq +ELi
q + ULi

q:

Excess coverage lossSimilar to the leaf-level metric, accesses to internal nodes without any matching

entries are counted as excess coverage loss. In addition, we also count internal pages that do not lead to

any leaves containing retrieved data; these internal pages are accessed due to excess coverage of SPs in the

subtree. In the example, page 6 does not carry any matching SPs and its access is fully counted as excess

coverage loss. Page 4 has a matching SP, but it only matches because of excess coverage in page 0’s SP, so

we count its utilization,2=3 of the target utilization, as excess coverage. The remaining1=3 are counted as

utilization loss, because, unlike the leaves of the traversal tree, the property of relevance of these nodes is

not their SP but the SPs of their children,i. e., the data contained in this node.

Utilization loss Similar to the corresponding leaf-level metric, the sum of the deviations from the target

utilization is the utilization loss, excluding from consideration leaf nodes of the traversal tree of the query. In

the example, only page 4 causes the query to experience utilization loss at the internal levels in the amount

of 1=3 I/Os.

To summarize the preceding observations: of the4 page accesses to internal nodes,5=3 are caused by ex-

cess coverage and1=3 by underutilization. The remaining 2 accesses to nodes5 and7 cannot be subdivided

any further.

5.3 Node Performance Metrics

The per-node loss numbers are derived from the per-query loss numbers and show which parts of the tree

contribute to performance deterioration. More specifically, these metrics show how a node’s utilization and

clustering properties as well as its SP affect workload performance. Generally, we sum up the per-query

loss metrics across the nodes to arrive at per-node metrics. Similar to per-query metrics, we subdivide the

accumulated performance loss of a leaf page into excess coverage, utilization and clustering loss. More

formally: jQpj = Qo
p + ELl

p + ULl
p + CLp; p 2 L: At the internal levels, we can only identify excess

coverage and utilization loss; the remaining accesses cannot be subdivided any further. More formally:

jQpj = Qr
p +ELi

p + ULi
p; p 2 I: Figure 3 will again be used as our running example.

Excess coverage lossA node’s excess coverage loss is simply the number of times the node was accessed

but no matching data was found. This does not take into account accesses to internal nodes that are caused

solely by excess coverage in the children’s SP, which are also classified as excess coverage loss. In this

particular case it is the shared responsibility of the children, and it needs to be apportioned to them in some

way. It is not clear how that should be done, so this type of excess coverage loss is presently not accounted

for in the node performance metrics.10

In the example, we have pages 0 and 6 with excess coverage loss of 1 I/O each. The excess coverage loss

of page 0 should also include the data accessed in page 4, but apportitioning this excess coverage loss to the

children is not generally possible, as explained in the preceding paragraph.

Utilization loss A node’s utilization loss is the product of its traversal count (minus those accesses caused
10In the experiments conducted so far, those accesses played an insignficant role in comparison to the workload total. Note that

the termQr
p also includes excess coverage loss created by child nodes that cannot be apportioned to the child nodes themselves.

15

by excess coverage) and its deviation from target utilization. In the example, pages 2 and 4 both have a

utilization of 50%, a deviation of1=3 from the 75% target utilization.11 If each of these were traversed 100

times across the entire workload, each one would contribute331
3

accesses to the entire workload perfor-

mance.

Clustering loss Each query’s clustering loss needs to be distributed according to how much each ac-

cessed, non-empty leaf contributes to total clustering loss. We use as the guiding principle the quality of the

clustering in a nodefor the particular query in question.The quality of clustering can be expressed as the

ratio of accessed to retrieved data, and the optimal clustering establishes a benchmark ratio against which

the accessed leaves in the actual tree will be measured.12 In the example, the query accesses 2 leaves in the

optimal tree to retrieve 5 data items, which fill up5=3 pages, resulting in a benchmark ratio of1:2. At leaf 3,

the example query accesses 1 page worth of data in order to retrieve1=3rd of the page, although according

to the benchmark ratio it should only have accessed1=3 � 1:2 = 40% of a page. The difference of 60%

is the clustering loss that the node contributes to this query. The corresponding numbers for pages 1 and

2 are�0:2 and4=15. The sum across these leaves is2=3, which is the total clustering loss for the query

established in Section 5.2.1. The total per-node clustering loss is simply the sum of the per-node losses over

the queries.

5.3.1 Example 1: Comparison of R- and R�-Trees

This example illustrates how to make an initial performance assessment with the help of the per-query

and per-node metrics. We compare R- and R�-trees for range queries over 8-dimensional point data; we

purposely chose to compare two well-known data structures, because knowing how they work will make the

results of the analysis easier to follow.

The data set used in the experiment consists of 40000 8-dimensional points, with each dimension limited

to the interval[0; 100), arranged into clusters of 100 points each. The clusters are box-shaped and have a

diameter of 10; the center points of the clusters are distributed randomly. The trees were produced by bulk-

loading 20000 randomly selected data items and individually inserting the remaining 20000. This ensures

that the split and insertion strategies are reflected in the resulting trees. Bulk-loading was done using the

STR technique [15], which partitions the data points into iso-oriented tiles. We ran 20000 square range

queries over the trees, each with a side length of 12. The center points of the queries were randomly selected

items from the data set, so that every query intersected with a cluster. On average, each query retrieved 20.6

items.

The aggregate results of this analysis are summarized in Table 3. We only report leaf-level performance

numbers, since for this type of workload, R- and R�-trees are relatively short and the upper levels can be

buffered. Section B talks more about how to account for buffering.

11Conversely, if the target utilization is 45%, those pages would have recorded a utilization gain. Since utilization metrics record
deviationfrom a constant, changing this constant does not affect performance difference between any two nodes.

12More formally: the pages inL0

q cause a loss ofCLq that needs to be distributed according to how much each page inL0

q

contributes. GivenLo
q , we define a benchmark overhead ratiorq = jLo

q j � C � ut=Rq . Given that ratio, we expect to access
rq �Rq;p on each pagep if clustering in the actual tree were as efficient as in the optimal tree. The differenceup � C � rq � Rq;p

is p’s contribution to queryq’s clustering loss.

16

R�-tree [I/Os] R-tree [I/Os]
actual tree, total 72,044 97,414
optimal clustering 23,262 23,224
utilization loss 4,650 3,906
excess coverage loss 16,895 30,171
clustering loss 27,237 40,113
sum 72,044 97,414

Table 3: Comparison of leaf-level performance in R- and R�-trees

The performance numbers indicate that R�-trees outperform R-trees, which is what is expected, but that

there’s is still room for improvement.

Low utilization losses indicate that underutilization is not a problem. The target utilization was set to 80%

and the average workload utilizations are close to that number (74.28% for the R�-tree and 75.75% for the

R-tree).

Comparing clustering losses with those in the initial bulk-loaded tree confirms that the initial clustering is

deteriorated by splits and insertions, although only to a moderate extent in the case of R�-trees. This can be

deduced from the clusteringoverhead, which is the ratio of optimal accesses plus clustering loss to optimal

accesses. For the R�-tree, this ratio is(23262 + 27237)=23262 = 2:17 and for the initial bulk-loaded tree it

is (10412+8903)=10412 = 1:86. A possible reason for the relatively high clustering loss in the bulk-loaded

tree is that by creating equi-distant partitions along each dimension, the STR algorithm cuts through clusters

that exist in the data; since the queries are centered on the data points, breaking up clusters will also cause

more page accesses.

Usingamdb, we can see that in both cases the clustering loss is not spread evenly across the entire leaf

level, but mostly confined to a few hot spots (this is shown in the global view, which is described in Section 3;

we omit a screen shot of this particular scenario here for brevity). The difference is that for the R-tree, these

hot spots are more frequent and more stretched out.

Looking at per-node excess coverage loss in both trees, we can see that this is roughly co-located with

clustering loss. This seems to suggest that the SP design works well for the clustering requirements of the

workload, because we do not experience excess coverage loss where clustering loss is low. Intuitively, this is

what we expect for minimum-bounding rectangles, because good clusters for this workload are rectangular,

which results in tightly-fitting MBRs.

5.3.2 Example 2: Comparison of SPs for Nearest-Neighbor Searches on Multidimensional Points

This example illustrates how to evaluate and compare different SP designs independently of the remaining

AM design aspects. We compare three different SP designs for a popular type of workload, nearest-neighbor

queries on multidimensional point data. The three types of SPs are: minimum bounding rectangles, as

employed in R�-trees [3]; minimum bounding spheres, as employed in SS-trees [23]; a combination of the

two, which is used in SR-trees [12]. The latter two AMs were specifically designed for the type of workload

that underlies our comparison.

The data set used in the experiment consists of 40000 8-dim points, with each dimension limited to the

17

interval [0; 100), arranged into (uniformly distributed) clusters of 100 points each. The clusters are box-

shaped and have a diameter of 10. The query set consists of 20000 nearest-neighbor queries, each centered

on a randomly selected (without replacement) data point and retrieving 20 items. In order to eliminate the

effects of page utilization and clustering, we built the R�-, SS- and SR-trees by bulk-loading the leaf level,

so that only their internal levels differ.

Leaves Internal Total
R� 15061 51486 66547
SR 15003 61699 76702
SS 134094 173350 307444

Table 4: Comparison of SPs of R�-, SS- and SR-trees

The measured excess coverage losses for the entire workload are shown in Table 4. Essentially, R�- and

SR-tree SPs cause about the same amount of excess coverage loss, whereas the spheres of the SS-tree have

about 10 times as much excess coverage loss. The reason is that the point sets in the leaves form clusters for

which the MBRs have an aspect ratio that significantly deviates from 1. The corresponding spheres, which

have a similar diameter as the MBRs, suffer from a much higher volume. The higher excess coverage loss

of the SR-tree in comparison to the R�-tree is due to the increased storage requirements of their SPs, which

decreases the fanout of internal nodes. Reducing the fanout leads to an increase in the number of nodes,

which also increases the number of traversals caused by excess coverage.

The bad performance of spherical SPs in this example may well be an artifact of bulk-loading, which

produces clusters that are often skinny along one or more dimensions. If the clusters would have a spherical

shape, the result of the comparison might even favor spherical SPs. Intuitively, though, spherical SPs are

less robust regarding the shape of the clusters, because, unlike rectangles, they have the same extent in all

dimensions.

This example illustrates the value of the excess coverage metric and the importance of separating indi-

vidual aspects of an AM design. Another performance study that compares sphere and rectangle SPs [12]

comes to a conclusion contrary to ours, namely that spheres result in smaller-diameter SPs, because three

separate elements of AM designs were evaluated together: by comparing insertion-loaded SR- and R�-trees,

the insertion and split strategies also come into play and mask the performance effects of the SP design.

5.4 Implementation Performance Metrics

In addition to analysing existing tree structures, we also want to assess the performance of the structure-

shaping extension methods,pickSplit()andpenalty(). Our goal is to measure how these functions deteriorate

the tree structure, expressed by the derioration of the workload performance caused by splits and insertions.

This cannot be derived from the tracing information, because the workload only contains queries, and the

effects of structure changes cannot be inferred indirectly. Instead, we simulate splits and insertions and

observe the changes in workload performance; the splits and insertions are not carried to avoid actually

deteriorating the tree during the evaluation process. Similar to the query and structural metrics, the imple-

mentation metrics should reflect the performance loss in comparison to the optimum, which we obtain by

18

comparing the effects of a split of a particular node or insertion of a particular data item with the effects of

an optimal split or insertion. The following two subsections in turn derive the split and penalty metrics.

5.4.1 Split Performance Metrics

We evaluate a split of a particular leaf node by comparing the actual split as produced by thepickSplit()

extension method to the optimal split. The optimal split minimizes the total number of page accesses to the

two post-split nodes by (a) producing perfect SPs with no excess coverage and (b) optimally partitioning

the items on the leaf node so that non-empty accesses to the successor nodes are also minimized. Like the

optimal tree, the optimal split is a theoretical construct, because partitioning the leaf items optimally will

generally not result in SPs that completely eliminate excess coverage loss.

This definition of an optimal split actually ignores the effects of page utilization or the balance of the

page utilizations produced by the split. The balance of a split clearly has an effect on the performance of a

dynamic tree structure, since a perfectly balanced split is usually better at maintaining overall higher page

utilization (in an unbalanced split, the fuller node is more likely to be the next node to be split again—

assuming subsequent insertions are not biased toward the less utilized node—which will result in an overall

lowered page utilization). On the negative side, a perfectly balanced split might have less desirable clustering

properties. Unfortunately, the effects of the degree of balance of a split cannot be quantified, at least not in

the workload context we consider. For that reason, we leave page utilization out of our split analysis and

simply stipulate that the optimal split should be at least as balanced as the actual split. This way, both the

utilization properties and the clustering of the optimal split are at least as good as that of the actual split.

Excess coverage lossAssuming that the optimal split eliminates excess coverage, the excess coverage

loss of the actual split is the combined excess coverage in the left and right post-split nodes. A split is also

an opportunity to improve SPs: describing data that previously resided on a single node with two SPs allows

the description to be more specific. The success metric is the ratio of the decrease in excess coverage loss

to the pre-split excess coverage loss, which constitutes the maximal improvement. Note that this ratio can

drop below0, if the split produces SPs with more excess coverage loss than the original SP.

Clustering loss The quality of clustering is expressed by the ratio of accessed to retrieved data: the higher

the ratio, the more data a query needs to access in order to retrieve its result set and the poorer the clustering

from that query’s perspective. The amount of data that is accessed but not retrieved expresses clustering-

related overhead, which the optimal split minimizes. The clustering loss of a split therefore is the difference

in overhead data—limited to the left and right nodes of a split—between the actual and the optimal split.

This is the same as the difference in the total amount of accessed data, because the volume of retrieved data

remains unchanged by the splits. Note that the total amount of accessed data on a node cannot go up after

a split: even if each query in the workload that visits the original node would have to visit both successor

nodes. We call the amount by which data access decreasesclustering savings. The ratio of actual clustering

savings to optimal clustering savings serves as a “success’ metric of the split that expresses to what extent

the split realizes the potential for improvement of clustering.

19

5.4.2 Penalty Performance Metrics

We compare a penalty-guided insertion of a particular data item with the corresponding optimal insertion.

The optimal insertion is defined as: (a) not adding to the excess coverage of the optimal target leaf and

(b) choosing as the target the leaf which causes the smallest number of additional accesses in the workload.

Note that the optimal target leaf does not correspond to the one that, if the data item were inserted and the SP

actually updated, would result in the smallest number of total additional page accesses, including those due

to excess coverage. Rather, it represents the true theoretical optimum, which optimizes each performance

factor independently.

Performing a top-down, penalty-guided insertion has the disadvantage of accumulating the effects of

multiple penalty computations. This could be avoided by scanning directly the level above the leaves for

the minimum penalty leaf. However, a top-down traversal is more realistic and also reflects the quality of

internal SPs.

In our analysis of the penalty function, we will again ignore the effects on page utilization. In the GiST

framework, the shape of the SP cannot take the page utilization into account—theunion() method is not

informed of it—so thatpenalty()cannot direct an insertion based on the page utilization at the leaf level. For

that reason, we assume change in the page utilization in response to insertions to be more or less random.

Excess coverage lossThis is the number of additional excess coverage accesses to the actual target leaf

after the insertion, assuming that optimally no additional excess coverage would be produced. When de-

termining pre-insertion excess coverage, those queries that intersect with the new key need to be ignored,

because they would falsely show up as a reduction in excess coverage.

Clustering loss The change in clustering quality in response to an insertion is reflected by the change

in overhead data that the workload queries need to access. By definition, the optimal insertion minimizes

additional overhead data access. The clustering loss is the difference in overhead data access between the

actual and the optimal split.

5.4.3 Example 4: Comparison of R-tree and R�-tree Split and Insertion Strategies

This example continues the analysis begun in Section 5.3.1. We compare the split and insertion strategies

of R- and R�-trees on a workload similar to that used in the previous example. For the implementation

analysis, we use the intial bulk-loaded tree containing 20000 data items, and a correspondingly scaled back

set of only 10000 queries. Using identical input trees for both the R-tree and R�-tree analysis simplifies the

comparison, because the metrics reflectchangesin workload performance due to splits and insertions.

Table 5 summarizes the split and insertion performance numbers. As expected, the R�-tree strategies are

superior to those of the R-tree. The R�-tree split produces a better clustering and is also more effective at

eliminating excess coverage than the R-tree split; the R�-tree insertion strategy also creates better clusters

and marginally better SPs.

20

R�-tree R-tree
Splits

pre-split accesses 75.44
post-split accesses 40.04 44.62
pre-split exc. cov. loss 26.6
post-split exc. cov. loss 20.8 33.0

Insertions
clustering loss 1.28 1.88
excess coverage loss 8.74 8.8

Table 5: Performance numbers for R- and R�-tree split and insertion strategies

5.5 Implementation

During the execution of the workload,amdb collects profiling data for each query individually, consisting

of query result sets (references to retrieved items), visited pages, the number of bytes retrieved per page, etc.

The burden this puts on the workload execution is almost negligible. The size of the stored profiling data

and performance metrics depends on a number of factors, but the sizes are fairly moderate.

Hypergraph partitioning is used to construct the optimal leaf level used for the query and node analysis,

the optimal tree used for the implementation analysis. This task is performed by the public domain package

hMetis from the University of Minnesota [11].HMetis employs heuristics to approximate the optimal

partitioning (which itself is NP-hard). Although designed primarily with VLSI applications in mind, we

nevertheless found it to produce high-quality partitionings. As an example, we compared an R-tree bulk-

loaded with 2-dimensional, Hilbert-value-sorted points with the equivalenthMetis -partitioned leaf level.

The latter even slightly improved the clustering of the Hilbert-sorted leaf level. We also found cases where

thehMetis -produced clustering was inferior to space-partitioned [15], bulk-loaded leaf levels, but the per-

formance difference was minuscule and the two clusterings were practically identical. Using hypergraph

partitioning to arrive at a clustering of the data items requires that each data item be covered by a suffi-

ciently large number of queries, and furthermore that the queries themselves are sufficiently diverse (where

establishing “sufficiently” is an area of future work). For the experimental results presented earlier, we tried

to be conservative and executed half as many queries as there were data items. The queries themselves were

centered on uniformly selected data items so that even coverage was ensured.

6 Related Work

6.1 Index Performance

Pagel, et al. [17] study index clustering in a manner very similar to that of our analysis framework, also

using an idealized goal of an optimal clustering to establish lower bounds on page accesses. They focus on

window queries over multidimensional datasets, and apply simulated annealing to find an approximation to

the optimal clustering. In their complexity analysis, they use a graph model for clustering that is not unlike

our use of hypergraph partitioning.

The literature is rife with performance studies of various index structures, especially for multidimensional

21

querying. Gaede and G¨unther survey over 50 different multidimensional index structures [7], most of which

were introduced with a performance study to demonstrate their efficacy. [7] also surveys a number of

comparative studies of multidimensional indexes, and attempts to unify the results into a partial ordering of

quality; this is complicated by the variance in the workloads that the studies examine.

Most of the studies in the literature do not analyze performance results beyond comparing the number of

page accesses on a given workload. Some studies provide analyses or intuitions of varying complexity to

justify the page access measurements, often with domain- and workload-specific arguments. As an example,

[3] explains (and visually illustrates) the efficacy of their node split technique with arguments about the

virtues of square bounding boxes, which are not clearly translatable to other data domains, or to workloads

of queries with high aspect ratio.

There is also a body of work on describing or predicting multidimensional index performance using

formal models ([6, 17] are two examples). These papers provide insight into the performance of different

indexing techniques on various synthetic workloads of queries and data. They often make rather strict

assumptions about the workloads they model (e.g., many study only square queries). These models shed

light on the challenges of multidimensional indexing in general, but are not necessarily helpful to a user

studying a particular workload of queries and data. Mapping from a user’s workload to one of these models

is not generally possible.

6.2 Index Visualization and Animation

To our knowledge,amdb is the first tool of its kind to allow index developers to debug and analyze their

implementations. Naturally, its various visualization and debugging components have precedents in the

literature.Amdbsignificantly extends many of these approaches, and unifies them into a single framework

for index developers.

There are a number of tools for visualizing and animating search tree data structures and algorithms; a

compendium of references is maintained on the World-Wide Web.13 Most of these tools focus on displaying

tree structures, typically in a “nodes and arrows” visualization. This is useful only for pedagogical purposes,

since such diagrams do not scale to the size of database indexes.

Brabec and Samet provide a suite of Java applets for a variety of 2-dimensional spatial database search

trees, including R-trees and a host of quad-tree variants [4]. The visualizations focus on a geographic, 2-

dimensional view of thedata domain, akin toamdb’s “node view” but spanning all nodes of one or more

levels. Users may observe SPs and data items during insertion, deletion and splitting, with a large but fixed

set of split algorithms. Some simple domain-specific statistics are displayed per level. Again, the focus

of these tools seems to be pedagogic; the authors note that the visualizations do not scale to the fanouts

typical in most trees. DEVise [16] is a general-purpose data exploration and visualization system, which has

been demonstrated to be effective in helping R-tree development and debugging. As in the work of Brabec

and Samet, DEVise was used in this scenario to visualize a 2-dimensional space containing data points and

bounding rectangles. DEVise itself provides no facility for animating index algorithms or characterizing

performance.

13http://www.cs.hope.edu/ alganim/ccaa/ccaa.html

22

The visualization techniques introduced in Section 3 are the focus of [20], which describes them in detail

and relates them to popular visualization paradigms. This paper and [20] are complementary: this paper

derives and explains performance metrics, whereas [20] concentrates solely on user interface issues, treating

the analysis process as a “black box”.

7 Conclusion

This paper presents an analysis framework for tree-structured balanced AMs that can be used to evaluate the

page access performance of user-defined query workloads. The framework is independent of the particular

type of data to index or the nature of the queries. It only requires as input the data and tracing information

gathered during query execution. The performance metrics it produces reflect actual performance loss,

obtained by comparing the observed performance against that of an assumed optimal tree structure. The loss

numbers are further decomposed to reflect the three fundamental structural performance factors: clustering,

page utilization and the subtree predicates.

The AM design toolamdb incorporates the analysis framework as well as other features that support

the design of GiST-compliant AMs.Amdb lets the user single-step through individual index operations

and set breakpoints on events of interest. The visualization features allow navigation and inspection of the

tree structure and the data contained in tree nodes. The latter is user-extensible, so that the visualization is

not tied to a fixed set of data types. To facilitate the analysis process,amdb gathers the required tracing

information during workload execution and displays the computed performance metrics both visually and

textually.

In amdb, the framework is combined with tree and data visualization and animation functionality to create

a powerful design tool for access methods. The analysis process begins with the inspection of performance

metrics to locate sources of deficiencies. Unlike data-dependent measures, these metrics objectively reflect

access method performance. The visualization and animation functionality then enable users to investi-

gate those sources of performance loss and gain an understanding of how domain-specific properties affect

performance. Based on this understanding, the designer incorporates improvements into the design and re-

peats the analysis process to evaluate their efficacy. This methodology was employed in several projects at

U.C. Berkeley, in whichamdbwas an indisposable tool that allowed effective fine-tuning of AMs, showing

significant improvements in a short amount of time.

There are several questions we want to investigate in more detail in the future. Section 5 mentions that

for the hypergraph partitioning to produce “good” clusters—those that reflect semantic proximity of the

data items—the queries in the workload must not only be representative, but also cover the entire data set

to a sufficient degree. What the required number and shape of queries in a workload should be needs to

be established more clearly. We also plan on extending the analysis framework to other, more exotic tree-

structured access methods (such as non-balanced trees or key-transforming trees, such as R+-trees) and

hash-based access methods. The main challenge will be the construction of optimal structures for these

AMs. Furthermore, we want to add functionality toamdb that allows it to compute user-defined metrics

for queries, nodes and the split and insertion strategies. The metrics would express properties of the data

23

and their organization within the tree that the designer believes to affect performance (for example, “small

minimum-bounding rectangle overlap in R-trees results in good performance”). Comparing the user-defined

metrics with those produced by our framework lets the designer verify the accuracy of his intuition and forces

him to revise it, if necessary.

Acknowledgements

Paul Aoki not only gave valuable comments on the paper and contributed greatly to the clarity of the presen-

tation, he also implemented thelibgist R-, SS- and SR-trees and provided us with an STR partitioning

tool for spatial data. We also thank Remzi Arpaci-Dusseau, Alex Berg, Vijayshankar Raman and Noah

Treuhaft for their comments.

References

[1] S. Belongie, C. Carson, H. Greenspan, and J. Malik. Color- and Texture-Based Image Segmentation Using EM and its

Application to Content-Based Image Retrieval. InProc. of the 6th ICCV, 1998.

[2] S. Berchtold, C. B¨ohm, and H.-P. Kriegel. The Pyramid-Technique: Towards Breaking the Curse of Dimensionality. InProc.

ACM-SIGMOD Conf., 1998.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R�-Tree: An Efficient and Robust Access Method for Points

and Rectangles. InProc. ACM SIGMOD Conf., 1990.

[4] Frantisek Brabec and Hanan Samet. Visualizing and Animating R-Trees and Spatial Operations in Spatial Databases on the

Worldwide Web. InProc. of Visual Database Systems, 1998.

[5] D. Comer. The Ubiquitous B-Tree.ACM Computing Surveys, 11(4):121–137, 1979.

[6] Christos Faloutsos and Ibrahim Kamel. Beyond Uniformity and Independence: Analysis of R-trees Using the Concept of

Fractal Dimension. InProc. 13th ACM SIGACT-SIGMOD-SIGART PODS, 1994.

[7] Volker Gaede and Oliver G¨unther. Multidimensional Access Methods.ACM Computing Surveys, 30(2), 1998.

[8] M. Garey and D. Johnson.Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, 1979.

[9] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. InProc. ACM SIGMOD Conf., 1984.

[10] J. Hellerstein, J. Naughton, and A. Pfeffer. Generalized Search Trees for Database Systems. InProc. 21st VLDB, 1995.

[11] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel Hypergraph Partitioning: Applications in VLSI Domain. In

Proc. ACM/IEEE 34th Design Automation Conference, 1997.

[12] N. Katayama and S. Satoh. The SR-Tree: An Index Structure for High-Dimensional Nearest Neighbor Queries. InProc.

ACM-SIGMOD Conf., 1997.

[13] M. Kornacker, M. Shah, and J. Hellerstein. amdb: An Access Method Debugging Tool. InProc. ACM-SIGMOD Conf., 1998.

[14] S. T. Leutenegger and M. A. L´opez. The Effect of Buffering on the Performance of R-Trees. InProc. 14th ICDE, 1998.

[15] S. T. Leutenegger, M. A. L´opez, and J. M. Edgington. STR: A Simple and Efficient Algorithm for R-tree Packing. InProc.

13th ICDE, 1997.

[16] Miron Livny, Raghu Ramakrishnan, Kevin Beyer, Guangshun Chen, Donko Donjerkovic, Shilpa Lawande, Jussi Myllymaki,

and Kent Wenger. DEVise: Integrated Querying and Visual Exploration of Large Datasets. InProc. ACM-SIGMOD Conf.,

1997.

[17] B.-U. Pagel, H.-W. Six, and M. Winter. Window query-optimal clustering of spatial objects. InProc. 14th ACM SIGACT-

SIGMOD-SIGART PODS, 1995.

[18] Erik Riedel. A Performance Study of Sequential I/O on Windows NT 4. InProc. 2nd USENIX Windows NT Symposium,

Seattle, WA, 1998.

24

[19] U. Shaft, K. Beyer, J. Goldstein, and R. Ramakrishnan. When Is “Nearest Neighbor” Meaningful? In7th ICDT, 1999.

[20] M. Shah, M. Kornacker, and J. Hellerstein. Amdb: A Visual Access Method Development Tool InUser Interfaces to Data

Intensive Systems, Edinburgh, UK, 1999.

[21] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-Tree: A Dynamic Index for Multidimensional Objects. InProc. 13th

VLDB, 1987.

[22] M. Thomas, C. Carson, and J. Hellerstein. Creating a Customized Access Method for Blobworld. InProc. ICDE, 2000.

[23] D. A. White and Jain. R. Similarity Indexing with the SS-Tree. InProc. 12th ICDE, 1996.

A Unindexability Test

As part of constructing the optimal leaf level, we can perform a simple test that will tell us if a workload

is not indexable,14 even if it were possible to construct an optimal tree for it. This test is not limited to

GiST-compliant AMs, but applies to all index structures that store indexed data on fixed-size pages.

The test can be stated as follows:If in the optimal tree the aggregate number of leaf access for the entire

workload takes longer than sequentially scanning the leaf level for each query, the workload should be

considered unindexable.The aggregate number of leaf accesses in the optimal tree is a lower bound on the

total number of page accesses for the entire workload, because minimally each query needs to access its

result set. If this lower bound takes longer to execute than a sequential scan of the leaf level for each query,

no actually constructed tree can be expected to outperform sequential scans. Since index accesses usually

result in random accesses, a relatively small number of leaf accesses will take as long as a sequential scan

of the entire level. The exact ratio of sequential to random accesses depends on the disk drives and the OS

overhead, and we will assume a ratio of 14:1 as a conversion ratio representative of current technology.15

Note that this test cannot be reversed: failing this criterion does not necessarily mean that a workload is

indexable, because it might not be possible in practice to come close enough to the optimal clustering and

SPs to achieve performance that will on average be better than a sequential scan. Also note that this test

does not constitute a proof of unindexability, since in practice we can only approximate the optimal leaf-

level clustering. Rather, the test should be seen as a strong hint, which becomes particularly compelling if

one is unable to improve on the generated clustering by hand.

To illustrate the usefulness of the test, we look at two different kinds of workloads: nearest-neighbor

queries on both uniform and clustered synthetic point data of moderate dimensionality (16 and 32). Such

datasets are very popular for performance studies of access methods for high-dimensional data such as

feature vectors ([2] is one example). The datasets we use for the analysis contain 10000 points each (exper-

iments with 20000 and 40000 points give identical results for appropriately scaled result set sizes). When

applying the unindexability test, the average result set size of the workload queries is important: if the

average result set contains fewer items than the number of leaf pages divided by the conversion ratio, unin-

dexability cannot be established. For the 16-dimensional data set, with with a target page capacity of around

14This test assumes that total execution time of the workload under consideration is dominated by page access cost.
15Using Seagate Barracuda ultra-wide SCSI-2 drives, [18] measures a throughput of ca. 9MB/s under Windows NT. The average

seek time and rotational delay for this drive are 7.1ms and 4.17ms, respectively. For 8KB transfers, this results in a ratio of 14
sequential I/Os for each random I/O. In the past years, raw drive throughput has increased faster than seek times and rotational
delay have decreased, so the conversion ratio is likely to increase in the future.

25

40 points and 250 leaves, the threshold result set size is 18 points, or0:18% of the data set. There is also a

corresponding upper bound for the result set size, beyond which unindexability is ensured: a result set size

in excess of the size of the data set divided by the conversion ratio. For the preceding example, this upper

threshold is at around 7% of the data set.

Figure 4 plots the leaf accesses as a function of the result set size for the example data sets. To establish

unindexability, it is sufficient for a workload to access more than 7% of the leaves. For the uniform 16-

dimensional workload, this threshold is reached when result set sizes exceed about0:3% of the data set

size, a surprisingly small number. For the uniform 32-dimensional workload, the situation is a little better,

because doubling the number of dimensions also doubles the storage size. Note, though, that the threshold

result set size does not double as well. In contrast to uniformly distributed data sets, unindexability cannot

be established for corresponding workloads involving clustered data sets, even for much larger result set

sizes.

0 0.2 0.4 0.6 0.8 1 1.2
0

5

10

15

20

Result Set Size (% of Data Set Size)

P
ag

e
A

cc
es

se
s

(%
 o

f L
ea

f L
ev

el
)

16−d, uniform

32−d, uniform

16−d, clustered

32−d, clustered

unindexability threshold

Figure 4: Unindexability Test: 16- and 32-dimensional uniformly distributed and clustered data

Unindexability of uniformly-distributed high-dimensional point data is confirmed by a recently published

theoretical analysis of nearest-neighbor queries [19], which notes that for this type of data, increasing the

dimension decreases the distance between the nearset and the farthest points. This implies that a given point

is more likely to be a “nearest neighbor” for any query point in higher dimensions than in lower dimensions.

As a result, a given point can be co-retrieved with a larger variety of points, making it more difficult to

co-locate with all co-retrieved points. Note that our unindexability test is able to reach the same conclusion

without knowledge of the data domain or the particular indexing problem. It can therefore be used as an

automated first step in the AM design process.

Even if unindexability cannot be established, it is still instructive to look at the ratio of the number of

workload leaf accesses in the optimal clustering to the number of pages needed to store the result sets. This

ratio, which we will call the workload-optimal access overhead, is a measure of the inter-query “tension”

in the workload: the higher this overhead, the more extra data must be accessed, even if the index achieves

26

optimal clustering and is able to construct SPs without excess coverage. For example, the optimal access

overhead of B-tree workloads is never worse than 2, and that of 2-dimensional uniform point data is1:5 on

average for 20-item result sets. On the other hand, that of 16-dimensional uniform point data is12:2 and for

32 dimensions the corresponding ratio is16:3. A correspondingly defined query-optimal access overhead

can be used to find “atypical” queries in a workload, for which the overhead deviates noticeably from the

average.

B Other Performance Factors

In the analysis framework presented so far we completely ignored a number of components of the perfor-

mance equation (CPU time, buffering, and comparison with approximations). We will now address these

components individually and also comment on the usefulness of approximation numbers as the basis for our

comparisons.

CPU Time Although CPU time can play an important role in the overall performance of an AM, we

excluded it from the analysis framework. Since CPU time is not amenable to the same type of analysis as

page accesses, it is unclear how to construct a model of optimal CPU time behavior. Another drawback of

CPU time is that it depends on the quality of the implementation and the particular hardware platform on

which the analysis is run. This implies that these metrics are less general than page access-related metrics.

Since CPU time can play an important role in overall execution cost, we suggest that an AM designer weigh

it judiciously against the page access metrics of our framework when deciding which aspects of the AM

implementation need to be improved.

Buffering Buffering has been shown to reduce the number of I/Os for AM queries [14] and its presence—

a standard feature in all commericial DBMS—will therefore change observed workload performance. We

will outline several ways of taking buffering into account in the context of our analysis framework. A popular

buffering technique for tree-structured AMs is to pin the first few levels of the tree ([14] mentions that in

their experiments, this technique never performed worse than LRU replacement). Modifying the analysis

metrics to take this into account is straightforward: the observed page accesses to those upper levels can

simply be subtracted. For other buffering techniques, we can estimate an average hit rate and reduce the

performance metrics uniformly by that rate. Either way, buffering can be dealt with separately and need

not be integrated into our framework. Note that in order to integrate a realistic view of buffering into the

framework, it is not sufficient to simulate a buffer pool/replacement strategy against a serial execution of

the queries. In real DBMSs, queries are typically executed concurrently and index access is most likely

interleaved.

Comparison with Approximation Numbers The performance metrics use the optimal tree as a point of

reference. Unfortunately, in practice we can only approximate the optimal tree, which questions the useful-

ness of reported performance numbers. First, note that in the optimal tree, only clustering is approximated.

Page utilization and SPs are stipulated to be perfect, and therefore the corresponding numbers accurately

reflect the true performance loss. However, since no bounds on clustering quality are known for the heuris-

tic algorithm we use for optimal clustering, the reported clustering loss numbers are only with regard to

27

a “good” clustering rather than the optimum. Nevertheless, those numbers are still useful information for

the AM designer: if the reported clustering loss is positive, clustering in the actual tree cannot be optimal

and should therefore be a target for performance improvement. The number of cases in which negative

clustering loss will be reported depends on the effective quality of the clustering algorithms. With the al-

gorithm currently in use, we have not seen a single workload for which substantial negative clustering loss

was reported.

28

