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Abstract

With the growing prevalence of sensor and wireless
networks comes a new demand for location-based ac-
cess control mechanisms. We introduce the concept of
secure location verification, and we show how it can
be used for location-based access control. Then, we
present the Echo protocol, a simple method for secure
location verification. The Echo protocol is extremely
lightweight: it does not require time synchronization,
cryptography, or highly accurate clocks. Hence, we be-
lieve that it is well suited for use in small, cheap, mobile
devices.

1 Introduction

Computer scientists are used to studying access control
mechanisms where one’s identity determines what one
is authorized to do. However, in the physical world,
identity is not the only thing that matters: often, the
physical location of the requester may also play an im-
portant role in determining access rights. This suggests
studying location-based access control.

Location-based access control in the physical world
is easy, natural, and familiar. For example, being able
to turn on or off the lights in a particular room re-
quires having a physical presence in the room. The
very design of the light switch is what enforces the
security policy. In contrast, achieving the same kind
of guarantee with information systems, such as wireless
networks, is less straightforward; it is not simply a mat-
ter of putting a switch in the right place. To enforce
location-based access control policies on information
resources, we need a way to perform location verifica-
tion, where a principal’s location is securely verified to
meet certain criteria: e.g., being inside a building.

Location verification enables location-based access
control. Once a principal’s location has been verified
using a protocol for location verification, the principal
can be granted access to a particular resource according
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to the desired policy. This approach is naturally com-
bined with physical security; guards or locks might be
used to determine who is allowed to enter a building,
then location verification employed to allow wireless
access to all those inside. In this way, the location
verification problem is the key technical challenge that
must be surmounted to implement location-based ac-
cess control.

Location-based access control has several benefits.
Most importantly, it is natural for many applications.
One simple policy might allow wireless control of only
the lights for the room you are in, or might insist that
a company server cease operating if it is taken out-
side the building. In addition, using location for access
control obviates the need to establish shared secrets
in advance. Visitors to a building need not obtain
wireless encryption keys prior to their visit; instead,
the keys could be granted automatically to all physical
occupants of the building. Likewise, at the ballpark,
fans at a baseball game could receive live scorecards
on their wireless devices, while stadium owners could
restrict this service to only those actually present in
the stadium. It would be quite cumbersome to dis-
tribute new keys to all fans attending each game, but
location-based access control allows bootstrapping off
the existing physical security measures controlling en-
try to the premises.

In this paper, we study the location verification
problem. First, we introduce and define the location
verification problem in a careful way (Section 2). Then,
we propose a new protocol for location verification,
called the Echo protocol (Section 3), and we prove its
security (Section 4). This work provides a foundation
for securely using location in wireless information sys-
tems.

2 Goals and Assumptions

2.1 Problem Statement

There are many natural variants of the secure location
problem. We focus on solving the in-region verification
problem: a set of verifiers V wish to verify whether a



prover p is in a region R of interest. R may be a
room, a building, a stadium, or other physical area.
The region typically has some sort of physical control
to restrict people’s entry into it; the purpose, then,
is to control access to resources that are not intrinsi-
cally constrained by physical security, such as wireless
networks. The verifier infrastructure V may, in some
cases, be a distributed system consisting of multiple
nodes.

The protocol must run correctly in the face of adver-
saries. Thus, when p does not in fact have a physical
presence inside R, the verifier must be careful not to ac-
cept p’s claim to be in R. Furthermore, if p does have
a presence in R, the verifier should accept p’s claim;
otherwise the protocol would not be useful in practice.
We therefore require the following two properties to
ensure that the protocol is useful and secure:

• Completeness: If p and V both behave according
to the protocol, and p is in R, then V will accept
that p is in R.

• Security: If V behaves according to the protocol
and accepts p’s claim, then p, or a party colluding
with p, has a physical presence in R.

It is important to distinguish between the problem
we are addressing, the in-region verification problem,
and the secure location determination problem. In the
latter problem, V attempts to securely discover the
physical location of p. In contrast, in the in-region
verification problem, p claims to be in a particular re-
gion, and V accepts or rejects the claim. Framing the
problem in terms of secure in-region verification, not
secure location determination, simplifies the problem
and allows different location determination algorithms
to be used.

In fact, it is possible to compose an in-region verifi-
cation protocol with any location determination algo-
rithm, even a potentially insecure one, without com-
promising the security of the ultimate guarantee that
a prover is in the region. The in-region verification al-
gorithm verifies whether the claimed location is in R or
not; thus, p can use an insecure localization algorithm
to generate a claimed location that will be securely
tested for accuracy by V . At worst, p’s claim will be
rejected; in no case will V believe something about p’s
location that has not been securely checked. p thus has
the flexibility to choose any appropriate location de-
termination algorithm, even if it has not been proven
secure. After running the determination algorithm, p
will know which claims it can plausibly make.

2.2 Assumptions

It is worth considering in more detail what our partic-
ular protocol is and is not attempting to do. We list
below some of our assumptions:

• Regions, not points. We are not attempting
to verify the exact location of the prover. In
other words, the locations claims we verify are not
claims of particular point locations (plus or minus
some error distance), but rather just presence in a
particular region of interest R. This model accords
well with our anticipated applications. We assume
that, before the verification protocol begins, both
the prover and verifier know the definition of the
region R.

• Only “local” regions. It is not a requirement
to verify all location claims; and indeed, there are
some location claims we do not even attempt to
verify. More specifically, we only attempt to verify
location claims for regions R that are “near” V .
We will explore more precisely what this means in
Sections 3 and 4. The restriction makes sense in
light of the proposed application domains: if you
have sensors scattered through a building, you are
typically not interested in regions that are outside
the building.

• RF and sound capability. The verifier and
prover must both be able to communicate using
both radio frequency (RF) and sound (typically
ultrasound frequencies). We will use both trans-
mission media in our protocol.

• Bounded processing delay. The prover must
be able to bound its processing delay. We will
describe the effects that a loose bound will have
on the protocol in Section 4.

2.3 Threat Model

In order to verify the security property, we must con-
sider the protocol with respect to a particular threat
model. We assume the verifier nodes are all trusted,
and they can communicate securely amongst them-
selves. In contrast, the prover p might behave mali-
ciously, and we will consider an adversarial prover con-
sisting of multiple colluding nodes, arbitrary comput-
ing power, and secure RF (speed of light) communica-
tion amongst its own nodes as well as sound generation
and detection capability on each of its nodes.

Lastly, by definition, the adversary must not actually
have any presence in the region R. Otherwise, it would
be able to make a legitimate claim and would not need
to attack the protocol.



2.4 Design Principles

We designed our protocol according to the following
design principles:

• Make few resource demands on the prover
and verifier. We would like to limit the com-
putation power and hardware resources necessary
to participate in the protocol to an absolute min-
imum. The real goal is to enable location proofs
for a large class of devices.

• No prearranged setup. It should not be nec-
essary for the prover to have previously engaged
in a setup or registration step with the veri-
fier. This excludes many cryptographic solu-
tions; even public-key cryptography requires pre-
arranged trust relationships, and thus is not suit-
able for our purposes. By eliminating the setup
step, we are enabling access to resources to be
granted based on physical presence alone.

• Quantitative guarantees. We would like to
provide precise bounds on the uncertainty in the
protocol.

2.5 Design Setting

We initiated this work primarily in the context of
nodes such as those found in sensor networks. This
choice imposes certain design constraints. Briefly, sen-
sor networks are composed of many small, cheap nodes
equipped with a variety of environmental sensors. Ex-
amples include accelerometers, microphones, and ther-
mometers. The nodes contain a general purpose CPU,
though it is often useful only for minimal computa-
tion. Finally, the nodes communicate using a wireless
network over distances of tens of meters. Thus, the
sensing capabilities of sensor networks can be used to
help bridge the physical-computational gap.

One consequence of considering this domain is that
many techniques, such as public-key cryptography, are
infeasible. The Berkeley Mica sensor nodes, for exam-
ple, have 4MHz 8-bit processors with 4KB of RAM [11].
What we need, then, is a lightweight way to perform lo-
cation verification given many sensor-class nodes. The
principal trying to prove its location need not be a
sensor-class node, though we do not assume that it is
more powerful. The fact that our protocol can work
within these tight constraints makes our results are
all the more meaningful, and we expect that the Echo
protocol will be broadly applicable to sensor networks,
networked embedded systems, ubiquitous computing,
wireless networks, and many other similar application
settings.

Figure 1: An illustration of our first simplification of
the problem. The prover (not shown here) will try to
convince the single verifier node v that it is inside the
region R (depicted as a shadowed circle, which in this
first scenario is assumed to be centered at v).

2.6 Our Contributions

We present the problem description for a secure in-
region verification protocol and argue that it is a better
model than trying to solve the secure location determi-
nation problem directly. We also present a provably se-
cure protocol for performing in-region verification that
can be run on minimal hardware.

3 Our Design: The Echo Proto-
col

Next, we describe the design of our proposal for loca-
tion verification, which we dub the Echo protocol. For
expository purposes, we start by considering a sim-
plified toy scenario and developing a simple protocol
for this scenario (Section 3.1); then, we extend it re-
peatedly (Section 3.2) until we obtain the full protocol
(Section 3.3).

Notation. We define s to be the speed of sound, or
331 m/s. Likewise, we will take c to be the speed of
light, or 3× 108 m/s. Define d(x, y) to be the distance
between x and y. We define R to be the area in which
we would like to verify the location of a prover p. The
set of all verifier nodes is denoted by V .

3.1 Protocol Intuition

Consider first a simplified case, where we have only a
single verifier node v, where the region R is a circle1,
and where this circle is centered at v. This scenario is
shown pictorially in Figure 1. Now, suppose that the
prover claims to be at some location ` ∈ R inside the
region.

We present a simple protocol for validating the lo-
cation claim in this restricted case. First note that if

1In practice, the region will likely be a sphere, instead of
circle. This simplification will make the protocol easier to un-
derstand and does not affect the validity of our results.



1. p
radio−−−→ v : `

2. v
radio−−−→ p : N

3. p
sound−−−−→ v : N

v accepts iff ` ∈ R and
elapsed time ≤ d(v, `) · (c−1 + s−1).

Figure 2: A protocol that solves our first simplification
of the problem.

the claimed location ` is not inside R, then the veri-
fier can reject the claim immediately. Thus, we may
safely assume that the prover claims to be inside R.
The protocol begins when the verifier node v sends a
packet containing a nonce to the prover using RF; the
prover immediately echoes the packet back to the ver-
ifier using ultrasound. The verifier node v can then
calculate how long it should take to hear the echo,
namely, the sum of the time it takes to reach ` us-
ing RF, plus the time it takes for a return packet to go
from ` to v using ultrasound. Thus, the total elapsed
time for the prover to hear the echoed nonce should
be about d(v, `)/c + d(v, `)/s. The only thing v has
to do is time this process: If the elapsed time from
the initial transmission to reception of the echo packet
is more than this amount, the verifier node v rejects
the prover’s claim; otherwise, if the elapsed time is at
most this expected amount, v accepts. This protocol
is summarized in Figure 2.

Why does this work? If the prover is able to return
the packet in sufficient time, then the verifier is assured
that the prover is within d(v, `) units of v. This means
that ` is known to be inside a circle of radius d(v, `)
centered at v. Call this circle C; then we know ` ∈ C.
Since R is defined to be a circle of radius at least d(v, `)
centered at v, we have C ⊆ R, and hence ` ∈ R. In
short, we know that the prover must be inside R.

If the prover cannot return the nonce in sufficient
time, it may be for one of two reasons. Either the
prover is more than d(v, `) away from v, or the prover
has some processing delay between receiving the RF
packet and returning the ultrasound packet. We will
explore this latter issue in the following section.

What if the prover tries to cheat by delaying his
response? This attack only increases the total elapsed
time of the process, thereby making the verifier reject.
Intuitively, the longer it takes to complete the protocol,
the farther away the prover appears to be. It is not
in the prover’s interest to appear to be farther from
v, because this will put the prover’s apparent location
outside of R, hence making v reject the prover’s claim.

Figure 3: Diagram illustrating a single verifier at the
center of a circular region R where the prover has an
upper bound of ∆p on its processing delay. The dia-
gram illustrates the relationship between ROA(v,∆p)
and ROA(v, 0), which is equal to R in this case.

Can the prover cheat by starting the transmission of
the response early? No, this attack is not possible. The
nonce in the packet prevents the prover from sending
a reply before it has received the outgoing RF packet.
Hence, the speed of light and sound prevents the prover
from pretending to be closer to v than he really is.

3.2 Processing Delay & Nonuniform
Regions

In this section, we present a slightly more advanced
protocol that addresses two additional issues: the fact
that the prover has a non-zero processing delay ∆p and
that R may not be a circle. We base this protocol on
the simple protocol presented in the previous section.

Processing delay. Let us first address the process-
ing delay. We will start with the configuration men-
tioned in Section 3.1 with a single verifier located at
the center of a circular region R. In the ideal case,
the prover can receive the RF packet from the veri-
fier node and send out the response over ultrasound
instantly; practically, this is not possible, as the prover
will require some time to process the incoming packet.
Suppose the prover can bound its processing delay to
be at most ∆p and makes the verifier node aware of this
maximum delay. Then, if the prover claims to be at
`, the verifier node can compute the time for a prover
actually at ` to get the packet back: the time for the
RF signal to travel from v to `, a processing delay of at
most ∆p, and finally the time for the sound to travel
from ` back to v.

Now we have a problem: A malicious prover could
submit a location claim ` at the border of R and grossly
overstate its true processing delay to be some very
large ∆m. If, however, the prover’s true processing de-
lay were zero, then it could fool the verifier node into
thinking that it was inside R when in fact it wasn’t.



Since the verifier allows up to ∆m processing delay
while the adversary has no delay, the adversary could
be ∆m · (c−1 + s−1)−1 ≈ ∆m · s units outside of R and
the verifier would still accept the claimed location, vi-
olating our security condition.

The solution to such a problem is for the verifier
node to shrink the allowable region in which location
claims are accepted. If the prover claims a maximum
processing delay of 0, then the protocol presented ear-
lier in Section 3.1 is sufficient. If, however, the prover
claims a processing delay of ∆p > 0, the verifier should
not engage in the protocol if the claimed location ` is
within ∆p · s of the outside border. Thus, we define
the term Region of Acceptance (ROA) to be the area
in which the verifier node v is sure that it can cor-
rectly verify claims for a prover. Note that this region
depends on ∆p. We write ROA(v,∆p) to indicate the
region where location claims are permitted by v, if the
claimed processing delay is ∆p. See Figure 3 for an
illustration.

As stated above, ROA(v,∆p) is a circle centered at
v and fully contained within R. Its radius is ∆p · s less
than R’s radius (since R was assumed to be a circle).
Amending our prior protocol, the verifier should engage
in the protocol only if the location claim ` is within
ROA(v,∆p). For ∆p = 0, we have ROA(v, 0) = R, and
so the simple protocol presented earlier is a special case
of the amended protocol.

We note at this point that if the prover has a process-
ing delay of ∆p, the protocol is not complete. Recall
that the completeness condition from Section 2.1 re-
quires that the verifier always accept if the prover is
inside R and behaving properly. Yet, for a processing
delay of ∆p, our verifier will not accept location claims
that are in the annulus R\ROA(v,∆P ), so our protocol
cannot be fully complete.

This suggests an alternate way to view ROA(v,∆p):
it is the region for which the protocol is complete. In
other words, ROA(v,∆p) is the region where a verifier
will accept location claims from a correctly functioning
prover with processing delay less than ∆p. We will
define the coverage of the ROA as the ratio between the
area of the ROA and the area of R. A coverage of 100%
indicates that the protocol is complete; a coverage of
less than 100% indicates only partial completeness.

Non-circular regions. Up until now, we have been
assuming that R is a circle centered at v. However, that
is not always a realistic assumption: perhaps we are
interested in verifying location claims in a square room,
for instance. We will now relax that assumption and
assume that the verifier node is contained somewhere
within an arbitrarily shaped region R. This causes a
larger area to be incomplete, or non-verifiable, as shown

Figure 4: A single verifier v, inside a irregular region R.
We are interested in proving that the prover is within
R. The larger circle represents ROA(v, 0), the area in
which v is useful for location verification proofs. This
is the largest circle centered at v and wholly contained
within R. The inner circle represents ROA(v,∆), the
region in which v will accept location claims from a
device that is able to bound its processing delay by ∆.

in Figure 4. We will address incompleteness in the next
section with our final iteration of the protocol.

Previously, ROA(v, 0) had been equivalent to R. But
this will not work when R is not a circle centered at v.
Since we are assuming that radios are omni-directional,
the ROA must be a circle. Furthermore, the ROA must
be wholly contained within R. By definition, the ROA
is the region where the verifier will accept a correctly
functioning prover; if the ROA were not fully contained
within R, the prover could accept a location claim for
a prover outside of R. Furthermore, we would like
to maximize the area of the ROA since a larger ROA
leads to a larger coverage. Thus, ROA(v, 0) should be
the largest circle that fits within R; in other words, it
should be the largest circle that is tangent to R and
still contained within it.

We now extend the protocol to handle non-circular
regions R where the verifier can bound its processing
delay to be at most ∆p. Recall that both the prover
node and verifier node know R a priori. Using this,
the verifier node can compute ahead of time the region
ROA(v, 0).

The protocol then proceeds as follows: the prover
first broadcasts its claimed location ` and processing
delay ∆p to the verifier. If ` 6∈ ROA(v,∆p), the veri-
fier should immediately reject the location claim since
it will not be able to definitively validate the claim.
Otherwise, the verifier node broadcasts a nonce to the
prover; the prover echoes the nonce back over ultra-
sound. The verifier can again time the communication:
if it is no greater than the time for the signal to travel
out and back and allowing for processing delay, the



Figure 5: The relationship between ROA(v) (for a sin-
gle verifier v) and the aggregate ROA. Each gray circle
represents ROA(v,∆) for a particular verifier v. Taken
collectively, the gray region represents ROA(∆), the
aggregate region in which the set of verifiers can suc-
cessfully verify the location of a prover that features
a processing delay less than ∆. Note that ROA(∆) is
wholly contained within R.

verifier accepts the location claim.

3.3 Full Protocol Description: The
Echo Protocol

In the final iteration of the protocol, we introduce mul-
tiple verifier nodes in an attempt to increase the cov-
erage of R. Recall that if R is not a circle, no single
node can provide 100% coverage. Consequently, mul-
tiple verifiers are needed. Intuitively, we will run the
protocol presented in Section 3.2 after selecting one
verifier from among the set of verifiers V .

The protocol is quite simple. See Figure 6 for the
complete definition. First, a verifier is chosen so that
the claimed location ` lies within that verifier’s ROA.
If no such verifier exists, execution is aborted, since the
claim can not be verified. After choosing a verifier v to
participate, v sends a packet to p using RF, which is
echoed back to it using ultrasound. v can calculate how
long it should take to hear the echo, namely, the sum
of the time it takes to reach ` using RF, plus ∆p, plus
the time it takes for a return packet to go from ` to v
using ultrasound. If the measured elapsed time exceeds
this anticipated time, v rejects the location claim. The
nonce in the packet prevents the prover from sending
a reply before it has received the outgoing RF packet.

The extra verifier nodes serve to expand the region of
acceptance within R. Thus, while ROA(v,∆p) refers to
the region that one particular verifier node can accept,
we define ROA(∆p) to be the region where at least one

Communication Phase:

1. p
radio−−−→ broadcast : (`,∆p).

The prover broadcasts its claimed location `
and processing delay ∆p.

2. v
radio−−−→ p : N .

A single verifier v responds with a random
nonce. We require ` ∈ ROA(v,∆p).
If no such verifier exists, abort.

3. ts ← time ().
the verifier starts its timer.

4. p
sound−−−−→ v : N .

The prover echoes the nonce over ultrasound.
Verifier Computation Phase:

5. tf ← time ().
The verifier records the finish time.

6. if sent nonce differs from received nonce
return false

7. if tf − ts > d(v,`)
c + d(v,`)

s + ∆p

return false
8. Otherwise, return true

Figure 6: Formal description of the Echo protocol,
which can perform location verification in an arbitrary
region R with multiple verifier nodes. We represent
the prover node as p and the verifier node that runs
the protocol as v.

verifier node can prove location claims. It is then clear
that

ROA(∆p) ≡
⋃

v∈V

ROA(v,∆p)

since the set of verifiers can accept a location proof
if the claimed location is inside at least one verifier’s
region of acceptance.

In the Echo protocol, the infrastructure chooses a
single verifier node to participate in the protocol. A
verifier v may participate if ` ∈ ROA(v,∆p), since by
definition that is the region that it can perform se-
cure location verification proofs. Note that the claimed
location ` may be inside ROA(v,∆p) for many differ-
ent verifier nodes v, hence more than one verifier node
might be eligible for participation in the protocol. We
only require one to be chosen, and we allow the veri-
fiers to use some mechanism to choose which particular
verifier node will run the protocol. They may have a
purely deterministic mechanism for electing verifiers,
or they may use a dynamic algorithm in an attempt to
conserve power, for example.



4 Analysis

4.1 Security Analysis

As explained in Section 3, the Echo protocol relies on
timing: the amount of time it takes to get a response
from the prover bounds how far the prover can be from
the verifier. We will now show that it is impossible for
an adversary outside R to convince the verifier that it
is in R.

Proof of security. The heart of the argument is that
an attacker would not be able to get the sound signal
to the verifier in time. In order to confirm that the
prover is at `, all a particular verifier node v must do
is verify that the incoming sound signal, which includes
the outgoing nonce, is received within

tmax ≤ d(v, `)
c

+
d(v, `)

s
+ ∆p seconds,

where d(v, `) is the distance from the verifier to the
claimed location, c is the speed of radio propagation
(approximately the speed of light), s is the speed of
sound, and ∆p is the prover’s processing delay. Re-
call that v agrees to run the protocol only if ` ∈
ROA(v,∆p), i.e., if the circle of radius d(v, `) + ∆p · s
lies wholly within R. By definition, the attacker A is
outside R; thus we have

d(v,A) > d(v, `) + ∆p · s.
Since the attacker needs to receive the initial sig-

nal and respond, the minimum time required for the
attacker to get a response to v is

tAmin =
d(v,A)

c
+

d(v,A)
s

>
d(v, `) + ∆p · s

c
+

d(v, `) + ∆p · s
s

≥ d(v, `)
c

+
d(v, `)

s
+

∆p · s
c

+
∆p · s

s

≥ d(v, `)
c

+
d(v, `)

s
+ ∆p.

Consequently, the attacker’s signal cannot reach the
verifier before the deadline. Note that nowhere in our
analysis did we rely on which verifier node was used.
The only difference would be in the magnitude of the
error terms and, therefore, in the chance that the lo-
cation claim would even be accepted for verification.
The attacker does not gain any advantage by selecting
a different verifier from the one elected to participate.

Attacks. One possible attack could exploit the dif-
ference in propagation speed of sound in different me-
dia. If the verifier’s estimation of s is slower than the

actual one, then the inequality above does not hold. If
this is a valid threat model—say there is a lot of metal
near the verification region that is capable of transmit-
ting sound from the outside—then the verifier’s esti-
mation of s should be adjusted. This can be done once
on a site-specific basis. An alternate defense would be
to have other verifier nodes confirm the estimate of s
based on when the sound signals are received.

Variants. One might also consider the implications
of other variants of the protocol, where the use of
sound and radio for the outgoing and incoming sig-
nals is changed from (radio, sound) to (radio, radio),
(radio, sound), or (sound, sound). If radio communica-
tion is used in both directions, then the error term ∆ ·c
would be very large (105 to 106 times as large as the
sound case), and it is quite likely that the verifier would
not accept location claims at all, since the error might
exceed the size of R itself! If sound is used in the outgo-
ing direction, one attack could be to use a laser-based
“bugging” attack, where sound-induced vibrations in-
side R could be picked up optically from outside R,
thus effectively speeding up the transmission speed of
the sound wave and invalidating our proof above.

4.2 Coverage

The Echo protocol requires that all the verifiers must
be inside the region of interest, R. Furthermore, the
region of acceptance is a subset of the region of inter-
est and is determined by the placement of the verifiers
within R. Thus, a natural question to ask is how well
the verifiers “cover” a given region R. We define cover-
age to be the fraction of the region in which successful
location claims can be validated. Obviously, the ideal
scenario would allow full coverage with only a few ver-
ifiers. In that case, the verifiers would be complete,
according to our definition in Section 2.1. Recall that
the completeness condition requires that the verifiers
accept if the prover has a presence inside R. When
the coverage is less than 100%, completeness is only
partial.

To measure this effect, we ran simulations to mea-
sure the coverage in two scenarios with only a few
nodes. In Figure 7(a), we placed 10 nodes in a 100m
by 100m room. The nodes were randomly placed with
the constraint that each node had to be 20m away from
every other node. This condition shows the effects of
sprinkling the nodes over the entire room. In this trial,
the placement achieved a 81% coverage; averaging 5
trials yielded a mean of 78% coverage.

By manually placing 5 nodes, we were able to achieve
a coverage of 93% in a similar room (see Figure 7(b)).
Thus, with very few verifier nodes, the ROA covers a
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(a) 10 randomly placed nodes; the nodes were
constrained so that they were at least 20m away
from all other nodes. This corresponds to a rea-
sonable, but not precise, dispersement of nodes.
These 10 verifiers covered 81.5% of the room.
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(b) 5 manually placed nodes to maximize the cov-

erage area (93.3%)

Figure 7: Simulation results showing the effective ROA coverage area that a few verifier nodes can achieve in a
100m by 100m square room. The simulations show that the Echo protocol is quite effective, even with only a
small number of verifier nodes.

significant fraction of the region that we are interested
in. The regions with the least amount of coverage are
as expected: at the edges and corners of the region.

Hence, there are a number of policies that can help
with verifier placement in the room; using these simple
policies can cover significant fractions of R using only
a few verifier nodes.

4.3 Evaluation

The Echo protocol is explicitly designed to make few
demands on the prover and verifier.

First, we do not use cryptography. By avoiding the
use of both public- and private-key cryptography, we
achieve two goals. We lower the CPU and memory
requirements on both the prover and verifier, and per-
haps more significantly, we remove the need for any
prior agreement between the prover and verifier with
respect to keys or certificates. This means that if R
is, say, a baseball stadium, then any fan attending the
game with a suitable small device can act as a prover.

The approach taken by Waters and Felten [19] re-
quires processing speeds fast enough that distance er-
rors are small even with speed-of-light communication.
In contrast, error in our scheme is correlated to the
speed of sound, which is 105 to 106 times slower than

radio communications. That means that a correspond-
ingly greater processing delay can be tolerated, which
is crucial, if low-cost devices are to participate.

Lastly, our protocol does not require time synchro-
nization between any two nodes. It only requires that
each node have a clock that can measure real time with
some precision. For example, taking the speed of sound
to be 331 m/s, each 1ms of clock skew in the receiver
would increase uncertainty by about 1/3 of a meter. If
the prover and verifier are 50m apart, the protocol run-
time is about 150ms; clock skew is unlikely to be more
than a few microseconds during this interval [8], so the
uncertainty added would be on the order of millime-
ters, which is acceptable for our application domain.

5 Related Work

A number of authors have proposed using time-of-
flight measurements and the speed of light to se-
curely gain location information about untrusted par-
ties. Brands and Chaum proposed a time-bounded
challenge-response protocol [4] as a defense against
man-in-the-middle attacks on cryptographic identifi-
cation schemes. Hu, et al., proposed using temporal
packet leashes for wireless networks to defend against



similar attacks [12]. However, a major limitation of
these schemes is that both the prover and verifier send
RF signals, requiring the access to a much more ac-
curate timing system at the verifier as well as tight
real-time processing guarantees on both the prover and
verifier for accurate readings. For these reasons, we be-
lieve our algorithm is more suited to mobile devices.

Waters and Felten present a scheme that uses round-
trip time-of-flight of RF signals to achieve goals simi-
lar to ours [19]. Their architecture is similar to ours,
in that they, too, suggest focusing on secure location
verification rather than on secure location determina-
tion. However, their use of RF seems likely to limit de-
ployment, like the previous proposals mentioned above.
Also, their system only proves the location of tamper-
resistant, trusted devices.

Coarse-grained location authentication has been
used in the television industry to prevent cloning of set-
top boxes [9]. Gabber and Wool propose four coarse-
grained techniques, relying on extensive telecommu-
nications infrastructure such as satellites, paging and
cellular networks. Their techniques rely on tamper-
resistant hardware.

Location-limited channels provide a communication
mechanism that is restricted to a short range and pro-
vides both endpoints a mechanism to guarantee the au-
thenticity of each participant [16]. Balfanz, et al., have
proposed using location-limited channels for location-
based access control [3], and many others have also pro-
posed use of limited-range radio broadcasts as a way to
verify proximity [13, 6, 5]. However, there are no strong
security guarantees that the communication range will
always be limited as desired: an adversary with more
powerful equipment may be able to participate in the
protocols even if they are substantially further away
than non-malicious parties.

Finally, there are many techniques to help localize
devices [2, 14, 15, 10, 18, 1], GPS being one of the
most widely deployed. However, none of those works
addressed security, and in fact, GPS signals can be
spoofed [17, §3.2.2]. Nonetheless, we have noted that
combining a localization mechanism with our secure
location verification technique yields a secure localiza-
tion algorithm. Thus, insecure localization protocols
should be seen as complementary to our work on se-
cure location verification.

Many authors have commented on the value of
location-based access control [7, 5, 3, 13, 6].

6 Future Work

One area for future work is performing more precise
region verification using intersection. The idea is that

if verifier v1 can verify ROA(v1,∆) and v2 can verify
ROA(v2,∆), then together they should be able to ver-
ify ROA(v1,∆) ∩ ROA(v2,∆). The intuition is simple:
if a prover is verified to be present in both regions,
then it must be in their intersection. The allure of this
approach is considerable: under our current scheme,
a verifier node is required inside R, whereas in princi-
ple nodes at the edges of, or even outside, R could be
used. There are significant challenges, though. First,
the verifications would have to be done simultaneously;
if not, the prover could move from location to another
between the two runs. One way to do this is to have the
prover receive both nonces and return a hash of their
concatenation to both verifiers, who would have ex-
changed nonce information in advance. Another prob-
lem is that this approach is not robust against collusion
attacks by attackers with multiple nodes: such an ad-
versary may legitimately have one node in ROA(v1,∆)
and one node in ROA(v2,∆) independently without
having any presence in ROA(v1,∆) ∩ ROA(v2,∆).

7 Conclusion

We introduced the in-region verification problem.
Then, we designed provably secure, lightweight proto-
col to address it, named the Echo protocol. The Echo
protocol does not require cryptography, time synchro-
nization, or any prior agreement between the prover
and verifier, making it suitable for low-cost devices
such as those in sensor networks. It is robust against a
malicious adversary with unbounded computing power;
the security rests on physical properties of sound and
RF signal propagation. We showed that for a rea-
sonable scenario, coverage of 80–90% could be easily
achieved, i.e., the Echo protocol could guarantee in-
region verification for 80–90% of legitimate location
claims. Consequently, we expect the Echo protocol
to be a useful contribution in contexts where physical
presence is used for access control.
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