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Abstract

We present CCured, a type and run-time check system that bring safety to the C programming language.
CCured includes a type system for C programs that classifies pointers according to their usage and instructs a
source-to-source translator to extend the program with run-time checks in order to guarantee memory safety. We
show that the type system is sound in the presence of these run-time checks. CCured can be used on existing C
programs thanks to a simple pointer-kind inferencer; on many programs this inferencer discovers that over 80%
of the pointers are type-safe.

A significant contribution of our work with CCured is a notion of physical subtyping that is expressive enough
to capture common C programming paradigms, is sound in the presence of pointer arithmetic and is suited for
simple type inference.

This report formalizes the semantics of CCured and presents experimental evidence that such a combination
of static analysis and run-time checking for C can make real system software like Apache modules, Linux device
drivers, and network server software memory-safe with a reasonable performance cost and can find programming
errors in instances where some existing tools like Purify cannot.

1 Introduction

Memory safety is the most important partial-correctness property in extensible or security-critical systems. A
program is memory-safe when it accesses only memory addresses within the bounds of the objects it has allocated or
been granted access to. Lack of memory safety is almost always indicative of a programming error and is especially
dangerous in security-critical software that manipulates untrusted data. Memory safety is also highly desirable for
extensible component-based systems to prevent inadvertent interference between components.

Two examples of mission-critical extensible systems are the Linux kernel and the Apache web server, both of
which can be extended with dynamically loadable modules. Extensibility is critical to the success of these systems,
since it allows modules to be written by people with domain expertise but with only minimal knowledge of the
core system. However, extensibility has a steep price if memory safety cannot be guaranteed: the whole system or
some module may crash due to an error in some other module. This weakness is exacerbated by the fast pace of
development in the module space, and the lack of detailed system knowledge by module developers.

Security offers an even more compelling case for memory safety: more than half of all recent CERT security
incidents arose due to memory safety bugs in network service software [WFBAO0O]. A first step towards ending
widespread vulnerability is ensuring memory safety both for systems being developed and for those currently in use.
One way to achieve this is to write programs in a strongly typed programming language. But for the majority of
systems that are already in use and for those situations in which C is still the language of choice, it is important to
be able to execute C programs safely.

Most C programs are in fact already memory-safe, although proving this fact is beyond the capability of a C type
checker. This raises the question whether an alternate sound type system could be designed for C such that most C
programs would be typeable. In this paper we describe the CCured type system that attempts to achieve just that.
CCured keeps track of pointer usage and often discovers that most pointers in a program are used safely, requiring
only a null check before dereference. It can also detect when pointers are involved in pointer arithmetic and thus
require bounds checks before dereference. For some pointers CCured is not able to keep track statically of the type



of referenced data and it adds both bounds checking and run-time type checking. A surprising result is that even
with CCured’s simple and intuitive type system, for many benchmark and real-world programs we can reduce the
static count of pointers type-checked dynamically to under 1% of all the pointers in the program, and the number of
those that require bounds checks to under 10%. Furthermore, CCured has a linear-time whole-program pointer-kind
inference which makes it easily applicable to large, existing C programs.

Programs made type-safe by CCured typically perform within a factor of two of the original program, depending
on the effectiveness of the inference. We believe this performance penalty is within tolerable limits, and for many
programs, especially mission-critical ones, a fair price to pay for increased reliability and security.

CCured improves on previous attempts at making C safe [ABS94, JK97, KLP88, PF97] by recognizing that most
pointers do not need to be checked extensively at run time. Since CCured does a significant part of the checking
statically, it is often able to achieve an order of magnitude better performance on the processed code when compared
with purely run-time approaches. It also exhibits fewer incompatibilities between processed code and unprocessed
libraries than many prior approaches to checking C at run time. This is what enables us to use CCured on systems
code with a negligible performance cost and makes us hopeful that a similar approach could be used in deployed code
and not just during testing. In fact, CCured is not only more efficient than testing tools like Purify [HJ91] but also
more effective in finding errors, a fact demonstrated by a number of errors that Purify misses and CCured catches
in the SPECINT95 programs go, ijpeg and compress.

The CCured type system is inspired on one hand by work on dynamic types [ACPP91, Hen92] and on the other
hand by work on physical subtyping [CR99, SCB*99] (a form of subtyping for structured types based on the physical
layout of the type, not the type structure). In this respect, a novel contribution of this paper is the integration of
physical subtyping and pointer arithmetic. Both of these features must be present in a type system for C, yet their
sound combination is subtle and has not been previously explored.

In a previous paper [NMWO02a], we formalized and proved type soundness for a combination of statically typed
and dynamically typed pointers for a small language of integers and pointers. In this paper we describe the theoretical
changes that must be made to both the type system and also the type inference algorithm in order to handle a more
realistic language with pointer arithmetic, nested aggregate types and function pointers. Section 2 describes the
static and operational semantics of a C-like language that includes CCured pointer kinds. We prove that the type
system is sound in Section 3. An inference algorithm that allows existing C programs to reap the benefits of CCured
is described in Section 4. Additional C features that our implementation supports are covered in Section 5. We
then describe a number experiments using CCured for a variety of programs including SPECINT95 benchmarks,
extension modules for the Apache web server and the Linux kernel, and a File Transfer Protocol (FTP) server in
Section 6. We discuss in more detail the connections with related work in Section 7.

2 C With Pointer Annotations

This section presents the static and operational semantics for a slight abstraction of the C language that has been
extended to include pointer annotations.

2.1 The Language

Figure 1 presents a simplified version of the CCured type system that includes pointer-kind annotations. The int
type is used for all of the scalar types in C (e.g., float, short, char). T%q is the type of pointers with kind ¢
that point to objects of type 7. The kind ¢ associated with a pointer determines its capabilities and the sorts of
run-time checks that must be performed to ensure safety. voidxq behaves as it does in C: it is a pointer that cannot
be dereferenced and must be cast to another type before being used. In CCured such pointers also have associated
kinds ¢ that determine their capabilities. The pointer kinds g associated with functions and structure or union fields
are associated with pointers created by taking the address of such an object. Note that structures and unions have
the same qualifier ¢ associated with all fields. From the perspective of CCured pointer kinds, the address of the
aggregate and the address of its elements all have the same kind and capabilities.

The only difference between CCured types and standard C types is the addition of the pointer kinds ¢. All
of the other types presented can be found in existing C programs. The system as presented does not allow for
recursive types (because structure and unions are not given names) or function return values. Recursive types do



CCured Types: T int a scalar that is the same size as a pointer

Tkq a pointer to type 7 with kind ¢

voidxg a pointer with kind ¢ that cannot be dereferenced
T[n] an array of n contiguous 7s

(T15 s Tim)*q a pointer to a function with m arguments and kind ¢

struct{fi : 11 ¢,..., fn:7n q} a structure with n components
union{f; : 7 ¢,..., fn:7n ¢} a union with n disjuncts

Pointer Kinds: ¢ SAFE a null pointer or valid pointer to its declared type
SEQ a pointer with bounds information
FSEQ a pointer with upper bound information
DYN a pointer with dynamic type information

Figure 1: A simplified version 7 of the CCured type system extended to include pointer kind annotations g.

Pointer Kind Arithmetic Cast or Assign To Check On Dereference

SAFE no matching SAFE, SEQ or FSEQ pointers null check

SEQ yes, any matching SAFE, SEQ or FSEQ pointers both bounds

FSEQ yes, increments only matching SAFE, SEQ or FSEQ pointers one bound, null check

DYN yes, any any DYN pointer both bounds, run-time type check

Figure 2: A summary of CCured pointer kinds ¢ and their capabilities.

not complicate the type or inference systems we will describe and were omitted for simplicity and brevity. Function
return values can be simulated by passing a pointer as an extra argument and are likewise omitted.

Figure 2 shows a summary of CCured pointer kinds and their capabilities. SAFE pointers are either null or valid
pointers to an object described by their static type. SEQ pointers carry memory bound information with them and
may be subject to pointer arithmetic. FSEQ pointers carry upper-bound information and may be incremented via
pointer arithmetic. If a SEQ or FSEQ pointer is within bounds then it points to an object of its static type. DYN
pointers carry special meta-data information. Their static types cannot be trusted and run-time checks and tags are
used to distinguish pointer and scalar values written through DYN pointers. DYN pointer kinds typically arise when a
pointer is declared with a certain static type in the program but is later cast to an incompatible type.

Figure 3 shows an imperative language with declarations, functions, statements, expressions and simplified C-style
Ivalues. A normal C program can be converted to this language by introducing well-typed temporaries to hold the
results of intermediate memory references inside expressions [NMWO02b] and passing extra parameters to simulate
function return values. Since our analyses are flow-insensitive, control-flow beyond function calls is not modeled. It
is important to note that the language presented in Figure 3 is truly a subset of C. Some features, like local variables
and function return values, have been removed; no features have been added. The treatment of lvalues used here, for
example, does not change the underlying language and is merely a way of representing structural information in C.

A program is a list of declarations followed by an initial statement. A declaration list contains variable declarations
and function declarations. A statement either assigns an expression value to an lvalue or calls a function through a
function pointer. Expressions may be integers, compound expressions (notably including pointer arithmetic), casts
of other expressions (where both the old type and the new type are explicit in the syntax), lvalues (where the type
is again explicit in the syntax) or the addresses of lvalues. An lvalue refers to region of storage [KR88, NMWO02b].
We model lvalues as host-offset pairs where the host denotes a large region of storage and the offset moves within
that region. In the C expression var.f1.f2, var is the host and the fields .f1 and .£2 are offsets within it.

A well-formedness condition on types requires that for all 7#pyy or v : 7 DYN, every kind ¢ mentioned inside 7
is also DYN. This condition is used to enforce type-safey in CCured. Since DYN pointers are dynamically-typed, it
does not make sense to have a DYN reference to another pointer that is statically typed (e.g., a SAFE pointer). In
CCured, statically typed pointers carry strong invariants about the values of their referents. A DYN pointer could be
used (through a series of casts) to change any value within the bounds of an object it can point to. In particular,



Program: P == (D,s) a program is a list of declarations and a statement
Declarations: D == (v:7 q);D declares v to have type 7, the pointer &v has kind ¢

| (funi(vi:7 q1,...) ¢=s); D declares the function fun;, the function pointer has kind ¢

| nil
Statements: s = 5183 combines two statements in sequence

| l=:e an assignment statement copying a value of type 7

| (xep)(e1,....en) a function call through a function pointer
Expressions: e = n an integer constant

| e +es pointer or scalar arithmetic

| (1« m)e casts e from type 7 into type 7

— treat the lvalue [ as an expression with type 7

| &l treat the address of the lvalue [ as a pointer expression
Lvalue: l = (h,0) a host and offset pair defines an lvalue
Hosts: h = w the lvalue lives inside a declared variable

| xv the lvalue lives in memory
Offsets: 0 = sf.o0 accesses a structure field

|  uf.o accesses a union disjunct (syntactic sugar for a cast)

| [e].o indexes into an array

| nil

Figure 3: An imperative language that is a a slight abstraction of C.

it could change any statically-typed pointer it could reach, resulting in that statically-typed pointer referencing an
invalid address. This would break the invariant on the statically-typed pointer and is thus disallowed. The world of
DYN pointers and the world of statically-typed pointers are forever separated in CCured: DYN pointers may not point
to statically-typed pointers.

In addition, function types are constrainted so that for all (7i,...,7;,)*q, either ¢ = SAFE or ¢ = DYN and
T; = intxpyy. The ¢ = SAFE or ¢ = DYN condition captures the idea that pointer arithmetic does not make sense on
function pointers, so we need only keep track of type information. The bounds information stored with a SEQ or FSEQ
pointer would not be helpful. The condition on DYN function pointers that 7; = int*pyy simplifies the presentation
of function arguments and is not necessary in our implementation. We are asking the programmer in our simplified
language to cast DYN function arguments to pointers even if they would have been scalars and then cast them back
inside the function body. Since a DYN pointer carries enough run-time type information to remember if an integer
was stored inside it, this allows us to to simplify our presentation of the typing rules for function calls. In our
implementation, this treatment of DYN function arguments happens automatically.

Finally, the kind associated with an array, structure or union type must be either DYN or SAFE. Such kinds are
usually associated with the pointer formed by taking the address of an object. In CCured, the address of an object
never has pointer kind SEQ or FSEQ. Instead, the address of an array of 7s is typically treated as a SAFE pointer to
an array of 7s (i.e., 7[n]*sprg) which can then be cast to a SEQ or FSEQ pointer that ranges over the individual 7s
within the array (i.e., T*sgg).

Now that we have outlined our simplified C-like language we will discuss the typing rules and static semantics
for it, paying special attention to the role played by CCured’s pointer kinds.

2.2 Static Semantics

The static semantics for our C-like language with pointer kinds is very similar to the static semantics for C but with
special attention given to casts and pointer arithmetic. Pointer kinds and the physical layout of the underlying types
in memory restrict casts, and pointer kinds restrict pointer arithmetic.

The type-checking judgments will make use of an environment I' mapping variables to types and qualifiers. The
type is the type of the variable and the qualifier is associated with the pointer formed by taking the address of the
variable. We write I[Y/F 4] to mean I modified so that v maps to 7 ¢. In addition, we will make use of a mapping V'



Programs and Global Declarations:

§-D:T V,Tks

rogram
vEms ¥
(%7 ¢k D:Ty q € {SAFE,DYN}
—— nil-decl var-decl
Fkmni:T ik (:er q); DTy
U5 )" qulbs Tl o, JF DT g€ {SAFE,DYN}
fun-decl
Ty F (funi(vr 71 @1yeeyUn i Tn qn) ¢ =35) ;D : Ty
Statements:
V,LFsi V,['F s ViTFIL:7 V,'Fe:7 7€ {int, 7', voidxy, (T1, ..., Tm)*q} )
seq assign
V,I'k 51582 V,IFl=¢
V.lkFep:(m,....mn)% V,Fei:m (1<i<mn) ,
ca
V,T F (xep)(e1, ..., €n)
Expressions:
V,lFey:nn V,I'key:int 7 € {int, 7%, (¢ # SAFE)} V,IFe:mn VEa(n)<aln) ;
) cas
V,F"@l—FEQCTl P V,Fl_(Tl(—TQ)EZTl
) F'th:m,q V,IL,qibo:im,q F'th:m,q V,ILbm,quFo:m,q2
— int lvalue &lvalue
V,Fn:int V., F (h,0)r, : T2 V,T' I &(h,0) : Taxq,
Lvalue hosts: r I(v)
v)=T V) = T
M varhost —q1q2 memhost
'tv:7,q 'txv:7m,q
Lvalue offsets:
n=7n] V,lke:int V,I',m,q1 Fo:73,¢2 .
- nil-off index
V., r,qF nil : 7,q V., m,q1 F ([e] - 0) : 13,92
71 =struct{....,f 72 q,...} V,I',7a,qaFo0:73,¢3
sfield
Var,Tl,ql F (Sf . O) S T3,43
7 =union{..,f T qa2,..} V,I',72,q2F 0:73,q3
ufield

V7F7T17q1 F (uf . 0) $ 73,43

Figure 4: Typing rules for the imperative language. V is a global description of void* equivalence classes (see
Section 2.3). «, V and < determine the physical subtyping relationship detailed in Section 2.3.



from instances of the type void* to other concrete types in the program. V can be viewed as a global description of
void* equivalence classes that is used to reason about subtyping in the presence of the otherwise-opaque type void*.
We view each appearance of void* in the C program as a type variable. This is important because C programs often
cast 7* to void* and then back again (e.g., when placing an object in a generic container). If void* were treated as
an actual empty type, then the cast from void* back to 7* would look like an unsafe downcast. Treating voidx as
a type variable (i.e., equating it with 7*) allows us to recognize additional cases when such casts are safe.

The first typing judgment is for whole programs: V + (D,s). The judgment is true if the externally-provided
void* mapping can be used to type-check the program (D, s), which is a list of declarations and an initial statement.
Our typing judgment for declarations is of the form: I'y = D : I's. The input environment is represented by I'y and
[y is the output environment. D is the declaration under consideration (information about which is typically added
to I'; to form TI'y). Our typing judgment for statements has the form V' F s.

Expressions have a typing judgment of the form V,I" - e : 7, where e is the expression under consideration and
7 is its type. Lvalue hosts (which evaluate to the beginning of a region of storage) have a typing judgment of the
form I' + h : 7,q, where 7 is the type of the object referenced by the host h and ¢ is the qualifier associated with
the pointer &(h,nil). Finally, lvalue offsets have a judgment of the form V,T',71,¢1 F 0: 72, ¢2. In that judgment, 7
and ¢; are the type and qualifier associated with the surrounding lvalue host (and the pointer formed by taking its
address) and 75 and g2 are the resulting type and qualifier when that host pointer is adjusted by the offset o.

Figure 4 gives typing rules for the imperative language in Figure 3. The form of the typing derivation for an

entire program is shown below:
OFD:T V,I'ts

VE(D,s)

program

(D, s) is the program, comprised of declarations and statements. () is an empty environment. I is formed from the
declarations in D and is then used to type-check s.
The derivation for a variable declaration is shown below:

T1[%r ¢|F D:T» q € {SAFE,DYN}
I'yE@:7Tq);D:Ty

var-decl

The environment I'; is extended to contain a mapping from v to the type 7 and the pointer kind ¢. The kind ¢ is
associated with the pointer &v and is stored in the environment so that address-of expressions can be type-checked.
In CCured, the kind associated with the address of a variable must be either SAFE or DYN. This is because pointer
arithmetic cannot be safely applied to the address of a variable without a cast: the pointer after the arithmetic will
point to another location on the stack or the data segment.! In the case of arrays, we note that C implicitly converts
between the name (and thus the address) of an array and a pointer to its first element. CCured makes this cast
explicit, turning for example a SAFE pointer to the address of an array into a SEQ pointer to its first element. The
SEQ pointer can then be used to walk over the elements of the array. Thus the address of a variable is always either
SAFE (if it is always cast in a way that can be verified statically) or DYN (if its type must be checked at run-time).
Since all of the global declarations occur before any of the statements, the typing derivations for statements and
expressions never yields a new V or I'.

The typing derivation for statements verifies that a statement is well-typed. The assignment derivation is shown
below:

V,Fl:7 V,'Fe:7 7€ {int,7'%,,voidsky, (T1,...,Tm)%*q}

V,lLFl=;¢

assign

The 7 € {int, 7%, voidsy, (T1, ..., Tm )%} restriction limits 7 to a subset of the types that can be directly assigned
in C. In C, arrays may not be assigned directly and structures and unions may be assigned directly. We forbid
assignments at the structure or union level, requiring the programmer to copy the fields pointwise. This allows us
to check the validity of each individual assignment. This restriction is based on the C language.

IFor example, the buggy C program fragment { int a,b,c; * ((int *)(&b) + 1) = 5; } will (if GCC or MSVC is used) have the
officially-undefined and compiler-dependent effect of assigning 5 to either a or ¢ depending on the stack layout. If this example is run
through CCured with the standard pointer-kind inference, the (int *) cast will be given the kind FSEQ. The cast from the SAFE pointer
&b to int#rsgg will result in an FSEQ pointer with length |int|. The write through the pointer will trigger a CCured run-time exception
because the FSEQ pointer is out of bounds after the arithmetic. The go SPEC95 benchmark exhibits errors of this form; they are caught
by CCured but missed by Purify. See Section 6 for more information.



The typing derivation for an expression verifies that the expression is well-typed and gives its type. For example:

V,lkFe:mn VEalrn) <aln)
V., (< m)e:n

ast

The V F a(r2) < a(r1) judgment checks a subtyping relationship between 71 and 75 and is detailed in Section 2.3.
Intuitively, V' F a(m2) < a(m) holds if it is safe to cast an object of type 7» into type 71. The void* equivalence
classes in V' may be required to check that a(m) < a(m) if either 71 or 75 contains or mentions voidx.

The typing derivation for lvalue hosts yields the type of the object stored in that host and the pointer kind
associated with the address of that object. The pointer kind associated with the address of the lvalue is necessary
to type-check expressions of the form &I. The memhost lvalue host judgment is shown below:

F(U) =T*q Q2
F'kFxv:r,q

memhost

Note that in the memhost example the qualifier ¢, associated with &wv is not necessary when we are considering the
host *v. In C the expressions *&v and v are the same, so when the expression xv is considered, its address is v, so the
qualifier associated with its address is the qualifier ¢; associated with v. Also notice that the form of the memhost
rule eliminates the possibility of referencing through a (statically typed) void* or function pointer, since those two
types do not match the template 7%,4,. In C it is not possible to dereference a void* or a function pointer.

The lvalue offset typing derivation takes the type of the current host and the kind associated with the address of
the current host as assumptions and yields a new type-kind pair. Lvalue offsets are used to select subregions within
one large region of storage:

T =struct{..,f ™ @,..} V., 7m,qaFo0:73,q3
V7F7T17q1 F (sf - O) t 73,43

sfield

In the case of a structure field selection the type 7 and kind ¢ associated with the structure field f are taken as
the new host and any remaining offsets o are considered in turn.

Notice that assignments and parameter passing may only occur between equal types. All type manipulations
must go through explicit casts which are governed by a special subtyping relation (defined in Section 2.3). Even
before formally specifying an operational semantics, it is important to note that well-typed programs can go wrong,
just as they can in C. The program (z : int#pyy DYN , & =ipgup, (iDt*pyy < int)0 ; *z =iny 5) type-checks but fails
at run-time under a C-like model because it dereferences a null pointer.

2.3 Physical Subtyping

The previous section gave the standard static semantics for our C-like language in terms of a special physical
subtyping relationship <. The syntactic structure of types in C is insufficient to capture all relationships between
them from the perspective of memory safety. For example, the following two C types can be viewed as physically
equivalent: struct A {short a; short b; int *c;} and struct B { char d[4]; int *e; }. A pointer to an
object of type struct A can be cast to a pointer to an object of struct B safely. The two shorts and the array
of four chars both cause the first four bytes after the beginning of the struct to be viewed as scalars, and in both
types the next four bytes are pointers to integers. In the presence of C’s unions and typedefs it is clear that the
declared textual structure of the type cannot be used directly. Instead we interpret the type as a C compiler would
when laying out space on the stack or in memory for a variable of that type. When we are comparing two types
from the perspective of memory safety, we must make sure that any pointers that occur within them “line up” and
occur at the same offsets with the same base types. This sort of reasoning is necessary to prove that casts in C
programs are in fact safe: C programmers are notorious for their use of this sort of reasoning to guide the casts in
their programs [CR99, SCB*99].

As a result, before determining our subtyping relationship we first convert C types into memory layouts, which
can be viewed as flattened forms of C types. Arrays are flattened lazily so that the flattening process takes time
proportional to the syntactic size of a type rather than its dynamic extent at run-time. Figure 5 shows our language
of memory layouts. A partial function «a : 7 — £ maps C types to layout lists:



Layouts: o == Int(n) a contiguous series of scalars of total size n
| on] an array of n contiguous copies of o
|  FunPtr(r,...,7n,q) a function pointer with n arguments and kind ¢
|  Ptr(7) a pointer to a CCured type
| v a variable representing a voidx type
Layout List: £ == [] an empty layout list
| oL a layout list with head ¢ and tail £

Figure 5: A description of memory layouts o.

a(int) = Int(1) :: ]

a(T%q) = Ptr(rxq) 1 []
a(voids,) = v

a(r(n]) = (a(n)ln] =]

a((T1, -, Tn)*q) = FunPtr(ri, ..., 70, q) 1 ]
a(struct {fi:71 q,..,fn:im q}) = a(m) .. a(m) ]
a(union {fi:7 ¢ ... fn:Tn q}) = see text

We used a refined version of the function « where Int(i) :: Int(j) :: £ is always reduced to Int(i + j) :: £. Our
implementation also expands structure tag names and typedefs (which are present in C but not in this presentation)
and handles padding and alignment (which can be viewed as introducing extra Int(i)’s not explicitly mentioned in the
type). Unions are the only special case in the mapping. In C, a union is given enough space in memory to store its
largest member and a union access allows the value stored there to be viewed using one of many types.? We compute
a(union{ri...}) as follows. Let 7as be the type member of the union with maximal size (this must be computed
inductively because of nested unions). For every other 7; in the union, let £ys be the prefix of a(rys) that has the
same size as a(r;). If V' F Ly = a(r;) for all i, then the union is safe and a(rar) should be returned. This means
that 7, is physically equal to the prefices of all the other member types, so no matter how their elements are used
to obtain a “free cast,” the program remains safe. The suffix of 75, that starts just after the size of all other 7; can
only be reached through 73/, so it need not be compared against anything else for consistency. If these tests fails, the
union is inherently unsafe and no associated layout can be provided: the address of the union will be a DYN pointer.
One could use tagged unions that record the last type written to the union, but this does not avoid altering the layout
of the union. These layouts are a simplifying intermediate representation for physical subtyping [CR99, SCBT99]
queries on actual C types.

We will define a physical equality judgment V' = A = B and a physical subtyping judgment on V - A < B
on layouts and layout lists. Intuitively, V' = A = B means that A and B would have the same compiler-generated
memory layout with respect to scalars and that their pointers are properly aligned. The judgment V + A < B means
that an object with layout A may be safely cast to an object with layout B. We will use < to reason about the
top-level portion of objects being cast in the program and = to reason about memory areas that must be equal and
invariant (typically because they are one level of indirection below a pointer that is being cast at the top level).

It is important to note that V F A < B and V F B < A do not imply that V + A = B. The reason for this
is that memory layouts must be invariant when dereferencing matching pointers. A DYN pointer can be cast to an
integer (V' F Ptr(r*pyy) < Int(1)) and an integer may be cast to a DYN pointer (F Int(1) < Ptr(7*pyy)). However, a
SAFE pointer to a structure containing an integer may not be cast to a SAFE pointer to a structure containing a DYN
pointer. If it could, the first SAFE pointer might be dereferenced and its integer field might be modified, changing the
value of the DYN pointer (e.g., changing it from a valid pointer to an ordinary integer) without updating CCured’s
run-time type information. If the top-level SAFE pointers in that example were replaced with DYN pointers, however,
the cast would be fine. The subtyping relationship between two DYN pointers is given by the ptr-DYN rule without
inspecting what they point to.

2The C standard actually provides a weaker guarantee, but C programmers typically expect the behavior described above. The C
standard only guarantees that the first atomic type in the first member of each union will share space with the first atomic type in every
other member. In practice, programmers expect the type elements in each union member to line up contiguously and for all members to
share space.



Physical Equality:

VFEB=A VFA=B VFB=C
— reflex —— sym
VEA=A VFA=B VEA=C

Vior=0s VFEL =Ls . V(’Ui):()' .
eqlist ———— equoid
Vioy:: Ly =09 Ly Vivi=o0

VL =L VL =L .
scalar-0 scalar-i

VE Ly =Int(0) :: Ly V EInt(d) = Int(f) == L1 = Int(i + 7) = Lo
VL =L VEL =Ly n>1
array-1
VEoi[l]:: £y =01 Ly VEoin]: Ly =01 01n—1] = Lo
VEa(n)=alm) plr-SAFE-SAFE 01,02 € {Ptr(71*pyy), FunPtr(r,...,DYN) }
V |_ Ptr(Tl *SAFE) = Ptr(T2*SAFE) V |_ 01 = 09
VEa(r]) =a(n)

V' FunPtr(ry, ..., Ty, SAFE) = FunPtr(ry, ..., 7,,, SAFE)

trans

array-n

ptr-DYN

funptr-SAFE
Physical Subtyping:

. VFFA=B V|—0'1§0'2 V|—£1S£2
—— width ———— eq-leq subt
VELL] VFALB VoL <oz::Lls

o € {Ptr(rxy), FunPtr(r,...,q)} ptreint o € {Ptr(mi*g, ), FunPtr(mi,...,q1)} @1 # SAFE

(T nt-pt

VFo<lInt(l) VEint(l) <o e

VFa(n)=alr)n] g¢¢c{SEQ,FSEQ} VFa(n)=alr)[n] g¢#DYN
<

ptr-SAFE-SEQ
V F Ptr(1#sare) < Ptr(moxq) V b Ptr(r%q)

[n
ptr-to-SAFE
Ptr(TQ *SAFE)

V Fa(r)n] =a(r)[m] q,q € {SEQ,FSEQ}
V' F Ptr(m%q,) < Ptr(mo%g,)

pir-SEQ-SEQ

Figure 6: Physical subtyping judgments.
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The physical equality and physical subtyping derivation rules are shown in Figure 6. The structure a physical
equality derivation is demonstrated by the eglist rule:

V'—0'1:O'2 V|—£1:£2
Viora:Lly=09:Ls

eqlist

Two layout lists represent physically equal types if their heads are physically equal and their tails are physically
equal. The equoid derivation rule makes use of the mapping V to determine a more concrete base type for each
occurrence of voidx.

The array-1 and array-n rules allow arrays to be unrolled on demand and equate an array of length one with
its element. SAFE pointers and SAFE function pointers are only physically equal when their underlying types are
physically equal as well.

The ptr-DYN rule relies on run-time type-checking: the base types of DYN pointers and DYN function pointers are
not even considered. Normal pointers and function pointers may even be cast interchangeably: DYN pointers have all
the capabilities of normal C pointers.

Physical subtyping is primarily based on width: the source type may be larger than the destination type provided
that their common prefices are physically equal. This is the same as traditional object-oriented width subtyping.
Physical subtyping is only relevant at the top level of a cast. After the first level of indirection through a non-DYN
pointer, all types must be physically equal. The ptr-int rule allows any pointer value to be treated as an integer.
The int-ptr rule allows an integer to be disguised as a non-SAFE pointer, although CCured’s run-time checks will
prevent it from being dereferenced later. The ptr-SAFE-SEQ allows a SAFE pointer to a large object (typically an
array) to be cast to a SEQ or FSEQ pointer to smaller objects (typically the array components) provided that they tile
perfectly. The ptr-to-SAFE rule allows a SAFE, FSEQ or SEQ pointer to be treated as a SAFE pointer to something that
is a subtype of its base type. For example, a SEQ pointer to an integer might be cast to a SAFE pointer to an integer.
At run-time such a cast requires a bounds check. Finally, the ptr-SEQ-SEQ rule allows to sequence pointers to be
cast provided that there exists a tiling such that they line up perfectly. For example, a SEQ pointer to a structure
containing two integers might be cast to an FSEQ pointer to a structure containing three integers because it is possible
to tile both into layouts of length six that are physically equal. This rule provides great flexibility but it is hard to
use automatically in practice.

Note that such the subtyping judgment gives more freedom than C itself allows. For example, we can conclude
that struct {int a; int b;} is a subtype of int, but in C it is not possible to cast a structure to an integer. In C
all such casts take place with an addition level of indirection: a pointer to the structure might be cast to a pointer
to the integer. In CCured such a cast could not be made between two SAFE pointers because struct {int a; int
b;} is not physically equal to int.

Our intuitive notion of physical subtyping for pointers is different in four main ways from that of previous work.
First, we treat void*s as type variables that stand for concrete types. Second, we require the strict equality of the
common prefix of two aggregates. This is in contrast to [CR99, SCB*99] where void* is allowed in the smaller
aggregate in positions where a regular pointer is present in the larger one. Third, previous work did not consider
physical subtyping in the presence of pointer arithmetic.

The fourth and most important difference between our subtyping relation and previous formulations is that we
do not require complete static correctness. This is an essential part of CCured’s combination of static and dynamic
checks. Our static subtyping judgment allows casts from one type to another provided that type-safety is guaranteed
by run-time checks. This can be seen most clearly in the ptr-DYN rule in Figure 6, where no restriction is placed
on the base types of the dynamic pointers. Our subtyping relationship also extends previous work by handling all C
types including unions and function pointers.

2.4 Operational Semantics

Now that we have described the static semantics for CCured programs we will explain the operational semantics and
the run-time checks. Whenever the type-safety of an expression cannot be guaranteed statically, a run-time check
must be inserted. This can be as simple as a null check for a SAFE pointer or as complicated as a meta-data check,
bounds check and run-time type check when a value is read through a DYN pointer.

Our operational semantics derivations make use of a memory g that models the store. The memory p is a
partial function mapping memory addresses to values. Variable declarations extend the domain of memory. Part of
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Values and States:

Expression Values: V = n scalar
|  Safe(p) a possibly-null pointer
|  Seq(p,l,u) pointer, lower bound, upper bound
|  FSeq(p,u) pointer, upper bound
|  Dyn(p,m) pointer, meta-data pointer
Stored Values: m == Data(V) data under user control
|  Meta(l,u) lower bound, upper bound of DYN region
| FunMeta(p,n,) dynamic function pointer and argument count
| Code(vy,...,vn,s) formal parameters and function body
Memory: 7 : N-om partial function mapping addresses to values
Environment: S v—=>V partial function mapping variables names to addresses
Programs:
wﬂﬁl_D‘U’:U’hS lilaS'_SillQ
prog
= (D,s) 4
Declarations:
——— nil-decl
w, S nil §u,S
a, [y = NeWVar(T, Nl) 52 = Sl[U/Safe(a)] M2, 52 D U U3, 53
decl-SAFE
,ul,Sl Fov:7 SAFE 5 DU/J,g,Sg
Statements:
p1,SE st bps po, St sollpg pr, SE&IVVE p, Skel Ve = Write(V,7,Ve) | p2 ,
seq assign
p1, S sy 82 3 p1, Stl=rel puz, S

Figure 7: Operational semantics of programs, declarations and statements for the SAFE subset of the imperative
language. NewVar produces a fresh stack address and a new memory in which that address is is zero-filled with an
element of the given type.
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Expressions:

- pw,Sterd Vi p,Stedn Add(Vi,n)=V, wStel Vi Conv(Vi,m 1) =V .
—in o cas
wStEnln w,Ste +e Vs P 1S F (1 1m)ed Vs

w,SERIVI u,S;VitolVa phk Read(Va, 1)l V3 wSERIVE wSVikol Vs
lvalue &lvalue
p, S F (h,0)- 4 V3 1, S+ &(h,0) I Va
Lvalue hosts:
Sv)=V S(w)=ar wp(ar) = Data(V)
———— varhost memhost
wSkFuvlV w,StFxv |V

Lvalue offsets:

n; = OffsetOf(f) Vy = Add(Vi,ns) 1, S, Vot ol Vs

sfield - nil-off
w,SSVik (sf-0) V3 w, S, Vinll|V
w,Stelne Vo=AddVi,ne) w,S,Vakol Vs w, S, Vitkol Vy .
index ufield
w, S, Vit (le] o) Vs w,SSVik (uf-0) Vs

Figure 8: Operational semantics of expressions in the SAFE and SEQ subset of the imperative language. OffsetOf
gives the numerical pointer offset associated with a field of a structure.

our notion of safety requires that the program never try to read or write from an invalid address. In addition, an
environment S mapping variable names to their addresses is maintained for all of the variables in scope. Expression
values range over scalars and pointers. SAFE, SEQ, FSEQ and DYN pointers all have disjoint values with multiple parts.
The presentation is meant to be evocative of the CCured implementation where multiple words are used to store
extra pointer information (e.g., the value FSeq(p,u) would be stored using two words while the value Safe(p) would
be stored using one word, just like a normal C pointer). To simplify this presentation, all values are assumed to
be the same size. Program expression values may be stored in Data areas within memory. CCured-controlled DYN-
pointer meta-data can also be found in memory. Finally, function bodies are stored in memory but safe programs
will never read or write function code, merely invoke it. Figure 7 describes our model of program values and gives
the operational semantics for programs, declarations and statements.

The operational semantics judgment for programs has the form F (D, s) | which means that the program executes
without any memory-safety violations or CCured run-time exceptions. The judgment for declarations has the form
1,51 F D | po, So where py and S; are the state of memory and the environment before the declaration is considered
and po and Ss are the resulting memory and environment. Variable declarations extend the domain of memory and
the environment by allocating zero-filled space to store the declared variable. The judgment for statements has the
form py,S F s po, where p; and S are the values of memory and the environment before executing the statement
s and po is the resulting value of memory. In general us is not the same as p; if the statement has side-effects.
However, since we do not consider dynamic allocation in this simplified language the domains of p; and uo are
always identical. The judgment for expressions has the form p;, S F e | V, where u; and S are the input memory
and environment, e is the pure expression under consideration and V is its value. We evaluate lvalue hosts usings
judgments of the form p, S+ h | V, where y and S are the input memory and environment, h is the host under
consideration and V' is a pointer to the start of that host. Lvalue offsets, which adjust pointers within hosts, are
evaluated using judgments of the form u, S, Vi F o |} V5, where p and S are the input environment, V; is the current
pointer within a host, o is the offset by which it is being adjusted, and V5 is the resulting pointer.

In addition to judgments for evaluating statements and expressions, we introduce ancillary judgments for memory
reads, writes and accesses. The judgment py = Write(V,, 7, V.) |} u2 means that it is safe to write the value V, of type
7 to the address V] in the input memory pus and that the resulting memory is ps. The judgment u b Read(V;, ) | Vs
means that it is safe to read a value of type 7 from the address V; in the input memory p and that the resulting value
is V.. The judgment u F Access(V;,7) means that it is safe to access an object of type 7 at address V; in memory pu
and that a Data object is currently stored there (e.g., the address V; does not point to function code). The boxed
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Pointer Arithmetic:

Add(nl,n2) =ni + N2 Add(Seq(nl,nQ,ng),m) = Seq(m + TL4,TL2,TL3) Add(FSeq(nl,m),ng) = FSeq(m + n3,n2)

Casts to int:

Conv(Safe(n),int <— 7) =n  Conv(Seq(ni,n2,n3),int <~ 7) =n; Conv(FSeq(ni,n2), int <~ 7) =ny

Casts to SAFE:

\U#O\ \lﬁp\ ‘P+|T2|SU‘

Conv(Safe(n), Toxsppe < 71) = Safe(n) Conv(Seq(p,l,u), Toxsare < 71) = Safe(p)

‘u;«éo‘ ‘p+|72|§u‘

Conv(FSeq(p, u), To*sare < 71) = Safe(p)
Casts to SEQ:

Conv(n, Txsgg < int) = Seq(n,0,0) Conv(FSeq(p, u), To*seq < 71) = Seq(p, p, u)

Conv(Seq(p, 1, u), Toxseq < 71) = Seq(p, ,u) Conv(Safe(p), To*seq < T1*sare) = Seq(p, p, p + |11])

Casts to FSEQ:
Conv(V, Taxseq < 71) = Seq(p, [, u)

Conv(V, Taxpseq < 71) = FSeq(p, u)

Memory Accesses:

[p#0] [{ilp<i<p+Ir} € Dom(p)| |p(p) = Data(V)]

u = Access(Safe(p), 1)

Memory Reads:

u = Access(Safe(p), ) ‘ w(p) = Data(V) ‘

w F Read(Safe(p),7) 4 V
Conuv(Seq(p,l,u), Txsare < T*seg) = Safe(n) w b Read(Safe(n),7) 4 V
u = Read(Seq(p,l,u),7) § V
Conv(FSeq(p, u), T*sare ¢ T*rseq) = Safe(n) u F Read(Safe(n),7) | V
u - Read(FSeq(p,u),7) 4 V

Memory Writes:

p b= Access(Safe(p), ) pn = [p/Data(V)] Conv(FSeq(p, u), T*sare ¢ T*rseg) = Safe(n) w1 - Wrrite(Safe(n), 7, Vi) § po
p = Write(Safe(p), 7, V) U 2 p1 = Write(FSeq(p, u), 7, V1) 4 p

Conv(Seq(p,l,u), Tspre ¢ T*sgq) = Safe(n) uy F Write(Safe(n), 7, V1) 4 us
M1 F Write(Seq(p, l: U), T, Vl) U H2

Figure 9: Operational semantics for pointer arithmetic, casts, memory reads and memory writes.
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checks involving the domain of p associated with Access derivations model page-table checks that are carried out by
memory-protection hardware. They are not meant to model any software bounds checks.

Pointer arithmetic and casts are of extreme importance to the safety of our system and we introduce special
judgments for them. The judgment Add(Vi,n) = Vo means that the result of adding n to V; is Va. Typically V7 is a
pointer and n represents an offset from pointer arithmetic or array indexing. In the case of FSEQ pointers we must
ensure that the pointer always advances positively. The judgment Conv(Vi, Tnew < Toia) = Vo means that when a
value V; of type 744 is cast to type Tpew, the resulting value is V5. In C the values V; and V5 are almost always
identical (but casts from int to float may change the underlying bit pattern, for example). In CCured pointers
carry special meta-data and bounds information that must be manipulated during casts. Such casts between pointer
kinds are better viewed as conversions or coercions.

Finally, we introduce two special judgments to abstract away underlying machine and language complexity. The
@, fnew = NewVar(7, oq) function selects a new address a such that a through a + |7] are unused in 4. It returns
that address a and an updated pineq, that maps a up to a+|7| to a zero-filled object of type 7. In particular, all pointers
inside 7 are set to the null value appropriate for their pointer kind. This initialization to null is used to establish
CCured pointer kind invariants, which are usually of the form “either the pointer is null or ...” Our implementation
inserts initialization code to set all local and global variables when entering a new scope before executing any user
code. In addition, we write n = OffsetOf(f) to say that n is the numerical address offset of the beginning of
the field f from the beginning of its enclosing structure. Either assume that static type information specifies the
enclosing structure or that the program has been alpha-converted to make all structure field names unique. In our
implementation the true difficulty in computing OffsetOf is handling alignment and padding. OffsetOf and «, the
function that converts types to layouts, must agree with each other and with the underlying C compiler on the layout
of structure fields.?

We present the operational semantics for the subset of the language without function calls or DYN values first in
Figure 7. The structure of the derivation rule for programs is shown below:

@,@FDUM,S /J’1>S|_5U'/J’2
F(D,s)

1 represents the state of memory and S represents the environment. The declarations are evaluated, populating the
initial environment with zero-filled regions of storage for the declared global variables. The resulting memory and
environment are used to evaluate the program itself.

The derivation rule for declarations produces a new memory and stack extended to hold the declared variable:

a, iy = NewVar(T, /1,1) SQ = Sl[U/Safe(a)] /,LQ,SQ =D ll /1,3,53
,ul,Sl Fo:T SAFE;DUM3,53

prog

decl-SAFE

In the decl-SAFE rule, S is extended to record the fact that the address of the variable v is associated with a SAFE
pointer to the new zero-filled address a.

Evaluating a statement can change the contents of memory but cannot change the address of a variable. The
assign derivation rule is shown below:

L SE&IUVE L Shell Ve b Write(Vi, 7, Vo) U oo

asstgn
i, SEl=rel pu2,S g

The lvalue is evaluated to obtain the address it references and the expression is evaluated to obtain its value. The
judgment u; - Write(Vy, 7,Ve) | p2 performs all of the run-time checks required to write V., an object of type 7, to
the address V. If everything succeeds the returned memory ps is 1 updated with the new value.

Figure 8 shows the rules for expressions and lvalues. The judgments for expressions evaluate to a value but do
not change the program state. The cast derivation rule is highlighted below:

w,Skel Vi Conv(Vi,mo < 1) ="V
py S (g = 1)e Vs

cast

3 Agreeing with the compiler is more difficult in practice than in theory; gcc and Microsoft Visual C do not even agree with each other
on all alignment issues and the C standard leaves many details up to the compiler.
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Note that in CCured a cast may actually require a value conversion, similar to the transformation that occurs in C
when a float is cast to an int. Casting between pointer kinds may cause additional meta-data to be created or
discarded, and may even cause a run-time exception if the meta-data for the incoming pointer value indicate that it
cannot be safely cast to the outgoing pointer kind.

An lvalue hosts evaluates to the address of the beginning of that region of storage. The varhost rule is indicative
and uses the environment S to map a variable to its address:

S(v)=V
LSFulV

Lvalue offset judgments consider memory, the stack and the address associated with their current host and
evaluate to a new address within that host. The sfield derivation rule is shown below as an example:

ny = OffsetOf (f) Vo = Add(Vi,ny) p,S,Vatkol V3
,U)S)% = (sf 0) U’VB

The OffsetOf (field) operator returns the numerical offset of a field from the beginning of its structure. At run-time,
accessing a structure field behaves just like pointer arithmetic.

Figure 9 shows the rules for pointer arithmetic, casts and memory operations. Terms in || double boxes || are run-

time checks added by CCured. Terms in are run-time checks enforced by the memory management
hardware or operating system and represent a conventional notion of memory safety. In a well-typed program, the

hardware safety checks will never fail: a CCured run-time check will always fail first. Thus the single-boxed checks
need not be present and the program can still be trusted to run safely.

Pointer arithmetic (Add) adds an integer to the pointer part of a value and is not defined for SAFE pointers. FSEQ
pointer arithmetic must not decrease the pointer value. The simpler check ng > 0 would suffice in this model but
fails in the presence of wrap-around 32-bit arithmetic. Note that we need not check ny + n3 < ns at this time: that
check occurs when the pointer is dereferenced. Casts to int extract the pointer part of a value. Since SAFE pointers
are always in bounds or null (and thus can be accessed without a bounds check), casting an FSEQ or SEQ pointer
to a SAFE pointer requires a bounds check. Integers may be disguised as SEQ or FSEQ pointers. In such cases the
upper-bound component is set to 0. The cast from SAFE to SEQ requires that the original pointer be non-null. We
could also use a cast rule that takes Safe(0) to Seq(0,0,0) as a special case. Casts to FSEQ are handled by casting
to SEQ and then throwing away the lower bound. Since an FSEQ pointer must either be an integer disguised as a
pointer or have its pointer below its upper bound, we explicitly check the upper bound field when such casts are
made. Reading data through a SAFE pointer requires that the pointer not be null and that the address range (given
by the pointer and the size of the type) be valid. In addition, the pointer must point to the data segment and not
to CCured-controlled meta-data or a function body. These properties are checked using the Access judgment. SEQ
and FSEQ pointer reads are handled by first casting to SAFE (which performs any required bounds-checks) and then
reading through the resulting SAFE pointer. Memory writes of SAFE pointers first check that it is valid to access
that pointer and then update memory. Memory writes of SEQ and FSEQ values cast to SAFE (performing and bounds
checks) and then write through the resulting SAFE pointer.

The checks presented in Figure 9 are assumed to use pure arithmetic with no wraparound. When implementing
these checks using arithmetic modulo 232, special care must be taken. Despite this, it is possible to implement these
checks very efficiently. For example, when casting from a SEQ to a SAFE pointer we require that v # 0, [ < p and
p+|7m2| < u. Our implementation first checks that u # 0. If it is not, the single check p — 1 < u — suffices when — is
machine arithmetic (i.e., module 232). The reasoning is by cases. If p > [ then p—1 is positive, so p—1 < u —1 is true
exactly when p < u. If we maintain the further implementation invariant that u — pmod|m| = 0 for all SEQ and FSEQ
pointers, no other checks are needed. On the other hand, if p < I then the check is the same as 232 +p—1 <u —,
which is the same as 2°2 + p < u, which is never true, so the check will fail (which is what we want if p < [: the
pointer is out of bounds). Casts from FSEQ to SAFE are handled similarly.

varhost

sfield

2.5 Function Semantics

So far we have described the operational semantics and run-time checks associated with the subset of the language
that does not include DYN or function pointers. We will now introduce our handling of function calls and function
pointers.
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Function Declaration:

p, g2 = NewAddr(Code(vy, ..., v, 8), 1) So = Sl[funySafe(p)] p2,S2 = D | ps, Ss

fundecl-SAFE
p1, St fung(vi : T qu, . Vn i T @n) SAFE=s; D | ps3, Ss

Function Calls:
pi,S1 F e, b Safe(n,)

p,Si ke b Vi (1<i<n)

ai, i1 = NewAddr(V;, ;) (1 <i<n)

‘np € DOTH(/M) ‘ 52 — 51[”1/a1]---[””/an]
‘Ml (np) = Code(vi, ..., Um, s) ‘ Pnt1,S2 F 8 4 fingo
pra——, tn+a = Remove(upnts,ai, ..., an)

ptrcall-SAFE
1, S1E (xep)(er, s en) U pinta

Figure 10: Operational semantics for functions.

Function calls allocate new space for their parameters on the stack and remove this space when they return. We
introduce the p, us = NewAddr(V, u1) function to handle this sort of allocation and the allocation done by CCured
when it lays out meta-data. It returns a new address p that was unused in u; and an updated memory ps such
that p2(p) = V. Allocation and initialization are performed atomically from the perspective of the program, so if
the new value being created is a pointer value there is no time at which it does not follow CCured’s invariants. In
addition, we introduce the pi,e, = Remove(uord, a1, ..., a,) function which removes the addresses a; through a,, from
the domain of the input memory pu.q and returns the result as pyeq -

Figure 10 describes the operational semantics for function declaration and function calls. In a function declaration,
the function value itself is a pieces of code in memory and the address of the function yields a SAFE function pointer
to that code.

A SAFE function call requires that the function pointer be non-null, that the pointer be in the domain of memory,
that it truly point to a Code object and that the number of actual arguments be equal to the number of formal
parameters. The arguments are then evaluated and the environment is extended to contain new locations initialized
with their actual values. Once the function body has been evaluated, the stack frame is popped using the special
Remove function.

2.6 The Dynamically-Checked Fragment

Thus far we have discussed the operational semantics and run-time checks for the subset of the imperative language
without any DYN pointers. DYN pointers keep additional information so that their types can be checked at run-time.
Once a DYN pointer is created its physical extent remains constant. However, the program may treat the values
reachable by a DYN pointer as either pointers or scalars depending on the casts used. Since those casts could not be
verified statically we must keep extra status bits associated with each word reachable through a DYN pointer. These
status bits indicate whether the last value written there was a scalar or a pointer. In this simplified model, all stored
DYN values carry such status bits: the pointer Dyn(ny, n,,) is distinguishable from the scalar Dyn(n,0) by its non-null
meta-data pointer component. In our implementation additional storage is reserved adjacent to each DYN area. This
storage is used to hold bitfields that store tags for each word in the area.

DYN function pointers expect all of their arguments to be DYN pointers as well (scalars may be disguised as DYN
pointers if necessary) and may be called with additional actual arguments. Each function with a DYN function pointer
is given a special piece of FunMeta(p,n) meta-data that records the start of the function p and its argument count
n.

Figure 11 shows the DYN fragment of the language. A DYN variable declaration (one where the address of the
variable is a DYN pointer) creates storage for the variable itself and for the meta-data. Pointer arithmetic and casts
from DYN to int work as in the SEQ case. Disguising an int as a DYN pointer yields a DYN pointer with a null meta-
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DYN Variable Declarations:

ay, 12 = NewVar(7, 1) am, pz = NewAddr(Meta(ay, ay + |7|), p2) S2 = Sl[U/Dyn(av,am)] w3, Sa = D U pg, Ss

decl-DYN
:ul,sl Fo:r DYN;-D‘U',LL4753

DYN Arithmetic and Casts to int:

Add(Dyn(nq,n2),n3) = Dyn(ny + n3, nsa) Conv(Dyn(ni,ns2),int ¢ 7) = ny

Casts to DYN:

Conv(n, Txpyy < int) = Dyn(n,0) Conv(Dyn(n1,n2), Toxpyw < T1*pyw) = Dyn(nq, no)

DYN Memory Accesses:

w<pl| o+l <n
‘nm EDom(u)‘ ‘{i|p§i<p+|7’|}CDom(u)‘
| a(nm) = Meta(ni,na) || [u(p) = Data(Dyn(ny, nn)) |

w ' Access(Dyn(p, nm), T*py)

DYN Memory Reads:

p = Access(Dyn(p, ny, ), T*pyn) ‘u(p) = Data(Dyn(np,nm)) ‘ p F Read(Dyn(n1,ns), intspyy) 4 Dyn(ngy, ny,)

w = Read(Dyn(p, ny,), Txpyy) 4 Dyn(np, nyy,) u F Read(Dyn(ny,ns), int) | n,

DYN Memory Writes:

p = Access(Dyn(p, nm), Trom)  prz = “2[2)/Data(V)] w1 B Write(Dyn(p, ny,), intpyy, Dyn(n,0) § po
M1 = Write(Dyn(p, nm)’ T*DYN, V) U’ 2 51 F Write(Dyn(p, nm): int: n) U M2

DYN Function Declarations:

e, w2 = NewAddr(Code (v, ..., Uy, S), pi1)
Toms i3 = NewAddr(FunMeta(ne,n), pa)  Sa = Si[F¥/]  pua, St D I s, S
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Figure 11: Operational semantics for DYN values.

18



data field. Casts between DYN pointers of different static types are no-ops (since the static type is not trusted), but
there are no valid casts between DYN pointers and pointers with other kinds. The DYN and SAFE worlds are separate,
although SAFE pointers may point to DYN pointers.

DYN memory reads first verify that the meta-data pointer is not null and then use it to read the meta-data. If
the pointer is within the bounds specified by the meta-data, then the pointer should also be within the domain of
memory. Finally, the value read must be a data value (and not some function code, for example). DYN memory reads
that wish to read a scalar first read the pointer stored there and then throw away the meta-data information.

DYN memory writes first perform all of the DYN memory access checks and then update memory to store the new
value. Scalars are stored as DYN pointers with null meta-data pointers. In our implementation, tag bits associated
with the meta-data are used to keep track of this run-time type information (i.e., whether the last value written to
a particular spot in a DYN region was a DYN pointer or an integer).

A DYN function declaration allocates space for the function itself, the function meta-data and the DYN pointer
associated with the address of the function. DYN function calls require more checks than their SAFE counterparts,
since the static type of the DYN function pointer cannot be trusted. First the meta-data pointer is checked (to prevent
attempts to call through an integer). If it is not null, the meta-data pointer must point to function meta-data (and
not meta-data for a user data object). There must be at least as many actual arguments as formal parameters.
Additional actual arguments are discarded as they are in C. The remaining evaluation is carried out as per SAFE
function calls.

3 Type Soundness

A well-typed program can still go wrong during memory reads, memory writes and calls through function pointers.
A well-typed program can only fail double-boxed (i.e., CCured) checks; it will never failed single-boxed checks (i.e.,
memory hardware). Thus a well-typed program will either run to completion or trigger a CCured run-time check; it
will never access invalid memory. As a result, the single-boxed checks need not actually be implemented or included
in the program: the CCured checks suffice. This is particularly desirable in embedded environments where memory
management hardware may not be present, or in the case of loadable modules that run in the main program’s address
space, or in the case of systems composed from components.

Theorem 1 (Safety) Given a program (D,s) and a typing environment V', if V & (D, s), then either:

1. 0,0+ (D,s) |, the program evaluates without any memory-safety violations.

2. No derivation (), - (D, s) |} can be constructed because a term cannot be proved.

CCured static and dynamic checks ensure a number of program invariants. These invariants characterize program
values and are used in the proof of the Safety Theorem (which will be presented in the next section). Essentially, the
invariants state that SAFE, SEQ and FSEQ pointers can be trusted to be either null, out of bounds or pointers to data
objects. DYN pointers are either invalid or contain valid pointers to meta-data or a dynamic function descriptor.

Invariant 2 (SAFE Data Values) If a program type-checks and at any point we have the judgment V + e : Txsppg
with an associated operational semantics judgment pu, S+ e V or a judgment V F 1 : 7 with V F &l : Txsppe and
w, S, F &L UV, then V will be either:

1. Safe(0). A null pointer.
2. Safe(n) with n € Dom(p) and T # (71, ...,Tm) and p(n) = Data(V). A valid data pointer.

3. Safe(n) with n € Dom(p) and 7 = (11, ..., 7)) and p(n) = Code(vy, ...,vm, s). A valid function pointer.

Invariant 3 (SEQ Values) If a program type-checks and at any point we have the judgment V & e : Txggq with
an associated operational semantics judgment p,S F e Uy V or a judgment V &= 1 : 7 with V F &l : Txsgg and
w, S, E&LUV, then V will be either:

1. Seq(ni,n2,0). A null pointer or an integer disguised as a pointer.
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2. Seq(p,l,u). If l <p < u, then p € Dom(u) and u(p) = Data(V). A valid data pointer.

Invariant 4 (FSEQ Values) If a program type-checks and at any point we have the judgment V & e : Txpsgq with
an associated operational semantics judgment pu,S = e V or a judgment V &= 1 : 7 with V F &l : Txpsgq and
w,S,F &LV, then V will be either:

1. FSeq(n,0). A null pointer or an integer disguised as a pointer.
2. FSeq(p,u). If p < u, then p € Dom(u) and p(p) = Data(V'). A valid data pointer.

Note that the global scope of these invariants helps to imply the type-safety of the memory referenced by SAFE,
FSEQ and SEQ pointers. For example, consider the program fragment:

(int*sprep SAFE ; funo(arg : intssyre*sareSAFE) = (P, nil) =intug, *arg ; (xp, nil) =iny 5)

The function fung takes a SAFE pointer to a SAFE pointer to an integer and sets that integer to 5. To prove this
program safe, we need to know that the assignment to (xp,nil) will really be a a valid memory write. Since the
assignment statement type-checks, we know V' F (xp,nil) : int and V b &(*p,nil) : int*spee in this program. We
know from the assign rule in Figure 7 that the V in pu,S F &(xp,nil) | V is the address written to by the final
assignment statement. The SAFE Value Invariant provides enough information to prove this. By that invariant V is
either null, a SAFE function pointer or a SAFE data pointer. Since the base type 7 is int, we the function pointer
case does not apply. Thus the pointer is either null or it points to a valid region in memory. The p + Access(V, int)
judgment in the operational semantics for assignments (see Figure 8) will perform the null-check at run-time. If the
null-check passes, the invariant guarantees that all of the single-boxed checks in the Access derivation will pass. So
the invariant was strong enough to prove the statement safe. Intuitively, the safety of the write through (xp,nil)
requires that the last value stored in p adhere to the invariants. The first value stored in p was 0 (by our NewVar
zero-filling function) and any subsequent changes to p had to have been through well-typed assignment statements
like this one. In fact, this particular value of p comes from the previous assignment statement. But since the value
being stored in p is the same as the value of the pointer expression *xarg, the invariant is upheld: the value of
xarg adheres to the invariants and since it is copied unchanged to p, p continues to adhere to the invariants. In
this manner, pointer values start out safe (and null) and can only be changed to other safe values as the program
progresses. We will present more detail on this intuition below.

Invariant 5 (DYN Values) If a program type-checks and at any point we have the judgment V & e : Tspyy with
an associated operational semantics judgment u, S + e 4 V or a judgment V. - 1 : 7 with V + &l : Txpyy and
w,S,F &LV, then V will be either:

1. Dyn(n,0). A null pointer or an integer disguised as a pointer.

2. Dyn(ny,ns) with no € Dom(pu) and p(ne) = Meta(ng,ny,). If ny < ny < ny, then ny € Dom(p) and p(ny) =
Data(V). A valid data pointer.

3. Dyn(nq,ns) with ny € Dom(p) and p(ne) = FunMeta(ng,ng). If ni = ng, then ny € Dom(p) and p(ni) =
Code(vy, ..., Un,,s). A valid function pointer.

The DYN Value invariant is similar to the invariants for SAFE, SEQ and FSEQ pointers but takes CCured meta-data
into account.

Theorem 6 (Progress) Given a program (D,s) and a typing environment V, if V. F (D,s), then at all points
during the evaluation of the program the above invariants will hold and all boxed checks will always be satisfied.

The Safety Theorem above is an easy corollary of this Progress Theorem. The proof of this Theorem is by
induction on the structure of the program. Assume that the invariants hold and that the boxed checks are satisfied
for all structurally simpler programs. Consider the next bit of syntax in the program. Many of the cases (for example,
the sequencing construct) are elided because they do not directly create, modify or use pointer values. Essentially,
every time a pointer value is created, we show that it adheres to the invariants, and that information allows us to
show that the boxed checks never fail.
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All four of the declaration rules create values satisfying the invariants (see Figure 7). The SAFE declaration rule
decl-SAFE creates a valid SAFE pointer referencing the variable declared. The fundecl-SAFE rule creates a valid function
pointer (i.e., u(p) = Code(...)). The decl-DYN rule (see Figure 11) sets up meta-data and a DYN pointer for the address
of the variable declared. The fundecl-DYN initializes the function code itself, the pointer and the function meta-data
associated with the declared function. Finally, since NewVar(7, u) zero-fills the returned memory address by type,
any internal pointers also adhere to the invariants. For example, in the declaration b : struct{int %4 £1d;} SAFE,
the pointer value b.,£1d is created with 0 in all components. Thus, all declarations create valid pointer values.

The statement, expression and lvalue rules do not contain checks or create new pointer values directly. However,
they do return new pointer values created by pointer arithmetic (Add(V1,n)), casts (Vi : 11 — 72 = V») and memory
reads (Read(Va,7)). They also perform memory writes (Write(Vy,7,Ve)). We next handle each of these cases in
turn.

Pointer arithmetic is safe for SEQ and DYN values because they are allowed to go arbitrarily out-of-bounds (they
will be checked when used). FSEQ pointers can only be advanced, so pointer arithmetic on them must contain a
run-time check. If the check succeeds, then the new FSEQ value upholds the FSEQ invariant.

Casting to SAFE requires that the result be either 0 or a valid pointer. By induction, the pointer before the cast
upholds the invariants associated with its old pointer kind. Thus a SEQ or FSEQ pointer is either null, out of bounds
or valid. Run-time checks cover the null and out-of-bounds cases, so all values cast to SAFE that do not fail the
run-time checks are valid SAFE pointers.

Casting to SEQ requires that the result either have a 0 upper bound, be out of bounds or be a valid pointer.
Integers disguised as SEQ pointers are marked by 0 upper bounds. FSEQ pointers copy the current pointer value as
the lower bound. If the FSEQ pointer had a 0 upper bound, then the new SEQ pointer has a 0 upper bound. If the
FSEQ pointer was out-of-bounds, then the new SEQ pointer is out-of-bounds. If the FSEQ pointer was in bounds, then
the new SEQ pointer is in bounds. Finally, casting a SAFE pointer to a SEQ pointer requires a null check. If it passes,
the SAFE pointer can be considered as a SEQ pointer with one element. If not, the SAFE pointer can be cast to a
null SEQ pointer, but we omit this case from our semantics for brevity. Casts to FSEQ behave identically but drop
the lower-bound component. Since FSEQ pointers are always assumed to be above their lower-bound, we must first
check that an incoming SEQ pointer is above its lower-bound before converting it to an FSEQ pointer. Casts between
DYN values have no associated run-time checks because the static type of a DYN pointer is disregarded. Note that
since the program is well-typed there will never be any casts between DYN and non-DYN pointers or non-trivial casts
involving SAFE function pointers.

Memory reads from SAFE pointers require only a null check. The SAFE pointer invariant tells us that a SAFE value
is either 0, a valid pointer or a valid function pointer. The null check handles the first case, and a well-typed program
cannot read through a SAFE function pointer, so the boxed checks (which require that the pointer actually point to
something in memory) will always be satisfied by the SAFE invariant. Reads from FSEQ and SEQ values first cast the
pointer to SAFE (which performs all necessary bounds checks and null-upper-bounds checks) and then read as above.

DYN memory reads are more complicated. By the invariant, a DYN pointer may be a disguised integer. The DYN
memory read rule checks for that by doing a null-check on the meta-data pointer. If meta-data pointer is not null,
then by the invariant it points to something in memory. That piece of meta-data could either be a Meta(l,u) object
or a FunMeta(...) value. We check at the time of the read that the program is not trying to read through a function
pointer. If the meta-data is a Meta(l,u) object, then by the invariant the pointer is valid if it is between the bounds
[ and u. A run-time check verifies that the pointer is in-bounds. If it is, then the invariant guarantees that it is in
the domain of memory and points to a Data value.

We must also verify that the value returned by the memory read upholds the invariants. This is usually true by
structural induction: it was a valid value when last written there. The one exception to this is when the address of a
function parameter (or a local variable in C) is stored in memory and then accessed after that function has returned.
The pointer now references an invalid stack location. See Section 5 for CCured’s handling of this case.

Memory writes are modeled by verifying that a memory access using that same pointer would succeed (which
requires all of the checks above). If it does, then the address already points to a valid location in memory and we
can update that location with the new value. By induction, the value being written adheres to the invariants. As
with reads, FSEQ and SEQ writes are handled by casting the pointers to SAFE (which performs bounds and null-upper-
bound checks). DYN memory writes always write DYN pointers, so an attempt to write a scalar n by the program
actually writes Dyn(n, 0).
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Function calls require that the pointer be valid and that it point to Code(...). That is, the program should not
jump to the data segment. In the case of SAFE pointers, by the invariant a SAFE value is either 0, a valid data pointer
or a valid function pointer. If the program is well-typed, then a function call will not involve a SAFE data pointer.
The funcall-SAFE rule makes a null check and is then assured that the boxed checks will go through by the invariant.
In particular, since casts and pointer arithmetic are disallowed on SAFE function pointers, a SAFE function pointer
can only have been passed around since it was created with the fundecl-SAFE rule.

DYN function calls are similar. A run-time check verifies that the meta-data component is not null. If it is not,
then by the invariant it points to something in memory. We must verify at run-time that it points to FunM eta (and
not some data object meta-data, which could happen if the program casts a data pointer to a function pointer). If
it does, we check that the stored pointer value in the function meta-data and the actual pointer value agree (i.e.,
there has been no pointer arithmetic on this function pointer). If they do, then by the invariant the function pointer
actually points to a C'ode object. Finally, since it is possible to cast between different DYN function pointers, we
must check that we are calling with at least as many actual arguments as there are formal parameters. Additional
arguments are evaluated and then discarded.

In summary, the Progress Theorem holds by structural induction: the value invariants are always true, and only
the double-boxed checks may fail. It follows easily that the Safety Theorem holds: a well-typed program can only
go wrong if the double-boxed checks fail. Thus the boxed checks need not even be present.

4 Pointer Kind Inference

A well-typed program with the appropriate run-time checks cannot go wrong, but existing C programs do not come
with CCured pointer kind annotations. Given a program without pointer-kind annotations, can we infer a value for
each pointer kind such that the program successfully type-checks? One conservative solution is to make every kind
DYN. This works because DYN pointers can do anything a C pointer can do. However, this discards the static typing
information in the program and defers all checks to run-time. The DYN solution is sound but overly conservative: the
run-time checks associated with DYN pointers slow the program dramatically.

Our pointer kind inference algorithm is a flow-insensitive analysis that tries to minimize the number of DYN
pointers. Some pointers may have to be DYN because they are involved in casts that cannot type-check otherwise.
Among the remaining pointers it tries to make as few pointers SEQ as possible without causing the program to fail
run-time checks more often than necessary. Some non-DYN pointers may have to be SEQ because they are involved
in negative pointer arithmetic or are assigned to variables that are. Finally, the inference algorithm tries to make
as few pointers FSEQ as possible (i.e., all those pointers that are involved in positive pointer arithmetic). All of the
remaining pointers are made SAFE.

4.1 Inference Algorithm

Conceptually, pointer kind inference works by constraint resolution. It can be implemented as a graph algorithm
that takes time proportional to the number of casts and pointer types in the program. Every pointer kind in the
program is treated as a variable ranging over {SAFE, SEQ, FSEQ,DYN}. The inference algorithm must also generate a
mapping V that maps each void* as a type variable in the input program to a concrete type.

The first step is to determine which pointer kinds must be DYN. Since DYN pointers are required only to handle
casts that cannot be verified statically, every cast in the program is examined with respect to the physical subtyping
relation <. Consider a cast (71 ¢ 72). For the resulting program to type-check, we must assign kinds such that
V Fa(r) < a(rn). We compute £1 = a(r1) and Lo = a(r). If either of these fail (e.g., because one of the types
contains an unsafe union) then all kinds within 71 and 7» are set to DYN (and thus the cast will type-check using the
ptr-DYN rule). Similarly, if |71| > |m2| (which usually corresponds to a downcast in the program), then all pointer
kinds involved are made DYN. Otherwise, we attempt to prove V = Lo < £; recursively using the width, subt, scalar,
array and equoid rules from Figure 6. If this succeeds, then this part of the program will type-check without adding
any more DYN pointers. If not, the process continues below.

The second step is to generate the partition V. If the head of one layout list is v; and the other is Ptr(7%,) and
V' has no mapping for v;, we update V so that V(v;) = m*,. This builds up a minimal mapping V' linking all voidx
pointers that must be congruent because of subtyping requirements. If the head of one list is Ptr(7%,) and the other
is not a pointer, then ¢ and all kinds within 7 must be made DYN. The cast will then type-check using the int-ptr
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rule (if the other was a scalar of some sort) or pér-DYN rule (if the other was a function pointer). If the head of one
list is Ptr(7%,, ) and the head of the other is Ptr(my%,,) we emit the constraint that ¢; = ¢» and recursively consider
71 and 7». If they are not equal under are subtyping relation then we set g1 = g2 = DYN (and all kinds in 7y and 7
are made DYN as well).

This inference for matched pointers is a coarse approximation to the flexibility allowed by the subtyping judgment.
For example, the subtyping rules allow for a SAFE pointer to a structure with four int fields to be cast to a SEQ
pointer to an int. The operational semantics described in Figure 9 would allow the resulting SEQ pointer a range
over all of the elements in the original structure. The inference presented above would make both pointers DYN. In
essence, we infer pointer kinds so that the n and m in the ptr-SAFE-SEQ , ptr-to-SAFE , and ptr-SEQ-SEQ rules will
always be 1. More ambitious inference algorithms that take advantage of those rules could yield fewer DYN pointers.
In our experience, however, the benefit is minute: less than 1% of all casts fall into this category.

Finally, if the head of one list is a function pointer and the other is not, the function pointer (and all its arguments)
must be made DYN. If both are function pointers and the arguments are physically equal then both may remain SAFE.
Otherwise both must be DYN.

This recursive examination of all of the types involved in casts yields a set of pointer kinds that must be DYN,
a valid V for the program, and a set of constraints ¢; = g; for pointer congruence. Since DYN values can never be
assigned to variables with non-DYN types, we then examine all assignment statements, cast expressions, and parameter
passing in function call statements in the program. If a DYN value is involved on either side of such a transfer, then
the other side must also be DYN. If we have a constraint ¢; = ¢; and either variable is DYN, the other is made DYN as
well. Finally, for every 7%, with ¢ = DYN, we set all ¢ inside 7 to be DYN as well. This process is repeated until no
new DYN pointers are added.

Once this is done we have an approximation to the smallest set of DYN values required to make the program
type-check. Since DYN pointers are only required to handle certain casts and to verify well-formedness constraints,
nothing else in the program will require that a pointer kind be DYN.

All of the remaining pointer kinds could be made SEQ and the program would type-check. However, that assign-
ment would yield more run-time overhead than necessary (especially if many of the pointers are never involved in
pointer arithmetic). We examine every appearance of pointer arithmetic or array indexing in the program. If we
cannot verify that the increment is positive, then that pointer kind is set to SEQ. In addition, we trace back through
assignments, casts, parameter passing and ¢; = g; constraints and set the kind of all pointers that could flow into
p to be SEQ as well. For pointers associated with the addresses of variables, this is not possible. In such cases
those pointers remain SAFE and the ptr-SAFE-SEQ rule will be used to prove that the cast is valid. This processes
is repeated with all instances of clearly positive explicit pointer arithmetic or array indexing, setting all affected
pointers and their antecedents to be FSEQ. All remaining (unconstrained) pointers become SAFE.

The backwards tracing with SEQ and FSEQ pointers is to ensure that if a pointer needs an upper or lower bound,
then that bound will be carried with it from its creation. Casts from SEQ or FSEQ down to SAFE lose bounds
information. Although a program with a SAFE pointer in the middle of a chain of SEQ pointers might type-check it
might also fail a run-time check that it would not otherwise fail if all of the pointers in the chain carried bounds
information.

4.2 Inference Safety

Theorem 7 (Inference Safety) Assuming that all parts of a program (D, s) can be type-checked without pointer
kinds, if the inference algorithm produces a new program (D', s') and a void* assignment V, then V = (D', s").

The proof of the theorem is by structural induction on the program. The only cases that require attention are
the op, index and cast rules, as well as the requirement that pointer kinds be well-formed.

The well-formedness condition on DYN kinds is established by the step of the inference algorithm that propagates
DYN. The algorithm assigns all pointers involved in pointer arithmetic or indexing non-SAFE kinds, so the op and index
rules are satisfied. Only the cast rule requires a non-trivial argument. The new program must be annotated such
that all casts type-check according to the subtyping judgment. As detailed in Section 4.1, the recursive examination
of all of the types in casts does exactly that. The resulting program will type-check using a restricted subset of the
rules listed in Figure 6. In practice we have implemented a CCured type-checker that is run on the results of the
inference.
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5 Support for Special C Features
This section describes implementation details for handling other C features that we chose not to model formally.

5.1 Variable-Argument Functions

Our CCured implementation supports variable-argument functions that use C’s <stdarg.h> macros. An example of
a printf-like function using that scheme is:

void my_printf(char *format, ...) {
va_list args; // list of variable args
va_start(args); // initialize variable args
while (1) // loop forever

switch (next_token(format)) {
case "Ys": char * p = va_arg(args, char *);
case "%d": int i = va_arg(args, int);
case "Jg": double d = va_arg(args, double);
case NULL: va_end(args); return;

3

Note that my_printf does not know in advance the order, number or types of its arguments. The va_arg macro
extracts the next argument from the va_list assuming that it has the given type (the type is used to compute the
number of bytes to read from the stack). This is unsafe in C because the programmer can pass any type (and thus
any size) to the va_arg macro even if the caller did not pass that type or even a type of that size. If the function is
expecting a pointer and the caller passed an integer, the function will receive an unsafe pointer. If the caller did not
pass enough arguments and the function continues to ask for them, the function will read arbitrary data from the
stack and interpret it using the given type. CCured adds run-time checks to prevent this sort of behavior.

For each va_list we ask the programmer to define a union containing all possible types that might be passed in
for those variable arguments. For example, for printf-like functions we might declare:

union printf_arguments {
int a;
double b;
char * c;

};

At the call-site of a variable-argument function we mark in a global structure the number of actuals and the type of
each actual (as an index into that union). It is an error to call such a function with an argument of a type that does
not match some element of the union.

Inside the body of the variable-argument function the contents of the global array is immediately copied to a local
temporary associated with the va_1ist. Within a variable-argument function, the va_start(va_list) and va_arg(
va_list, expected_type) macros are used to access the extra arguments in sequence. CCured redefines these
macros. At each appearance of va_arg() we check that there are still arguments remaining and that the expected
type is the same as the stored type of the actual argument. This method allows multiple variable argument lists
to be processed in parallel and also to be stored and passed to other functions (such as the family of vprintf-like
functions). With these modifications to the <stdarg.h> macros, and after the programmer declares the types of
expected arguments, CCured is able to process the unmodified body of all variable-argument functions that we have
encountered in our experiments, including an actual implementation of printf.

5.2 C Strings

CCured includes special handling for a common C idiom: null-terminated strings. In C it is common to manipulate
strings that are represented as arrays of characters bounded by a terminating 0. CCured would normally view
such strings as FSEQ pointers and keep separate length information. However, this length information is redundant
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given the usual C string invariant. To handle this special case, our CCured implementation has a pointer kind,
STRING, that behaves like FSEQ but maintains the C string invariant. STRING pointers are stored as a single word
(like SAFE pointers) and when their length is needed (e.g., for pointer arithmetic or conversion to SEQ) a call to
strlen() is made. Advancing a STRING pointer requires checking that we do not go past the string end: s++ requires

‘ s#0 w(s) # Data(0) ‘ Note that in many cases the C compiler will be able to remove this assertion based on

a similar check existing in the program itself. The user may read through a non-null STRING pointer and may write
through a non-null STRING pointer provided that it does not point to a terminator. This has the advantages of speed
(over FSEQ pointers) and safe compatibility with external libraries. The disadvantage is that the program may lose
capabilities over time: writing a 0 into the middle of a STRING may prevent the user from later accessing the second
half of that STRING. Code that does so may use SEQ pointers, however, and this has not proved to be a problem
in practice. In the Apache modules we examined, on average 8% of all pointers (which is one half of the non-SAFE
pointers) were STRING. The method described so far maintains invariants about null-terminated strings. To establish
those invariants we can extend NewVar(7, 1) to allocate || + 1 zero-filled bytes. This last byte will then never be
over-written.

5.3 Address of a Local

In C it is possible to store the address of a local variable and then return from the invoked function, thus creating
a pointer that references an invalid stack frame location. Our CCured implementation handles this by checking on
every memory write of a pointer value that the value written is not the address of a local variable. This is done by
comparing the address being written to the stack pointer register.

If a program uses pointers to local variables in a way that violates this restriction, those variables must be allocated
on the heap instead of the stack. The CCured translator will automatically do this for any variable annotated with
a special annotation, “heapify”. In future work we plan to add such annotations automatically.

6 Experimental Results

We tested our system on numerous C programs ranging in size from a few hundred to 30,000 lines of code. This
allowed us to measure the performance cost of run-time checks inserted for safety and the manual intervention
required to make existing C programs work with our system. In general, computationally expensive kernels like the
Spec95, Olden and Ptrdist benchmarks showed the greatest slowdown (ranging from 0-200% overhead). Apache and
Linux kernel modules and a complete FTP demon showed no noticeable performance penalty: the cost of run-time
checks is dwarfed by the cost of inter-process communication. Our experiments allowed us to detect a number of bugs
in existing programs and run safety-critical code without fear of memory-based security errors (e.g., buffer overruns
or stack-smashing attacks).

Figure 12 shows test cases taken from the Spec95 [SPE95], Olden [Car96] and Ptrdist-1.1 [ABS94] benchmark
suites. The Spec benchmarks involve integer computations, the Olden benchmarks are compute-intensive kernels
and the Ptrdist programs are pointer-intensive data structure manipulations. The benchmarks have been used in
previous safe C projects with poorer running times (e.g., at least a factor of 10 in [LYHRO1]). Minor source changes
(such as adding or correcting prototypes or marking printf-like functions) were required for some programs. A few
benchmarks required changing sizeof or moving local variables to the heap. On average we had to change 1 in 100
lines. The execution time used to compute the slowdown is the median of five trials taken on a quiescent 1GHz AMD
Athlon Linux machine. The last column shows the slowdown when the programs (but not the system libraries) are
instrumented with Purify (version 2001A) [HJ91], a tool that works on C binaries and detects memory leaks and
access violations by keeping two status bits per byte of allocated storage. Purify does not catch pointer arithmetic
between two separate valid regions [JK97], a property that Fischer and Patil [PF97] show to be important. Purify
tends to slow programs down by a factor of 10 or more, much more than CCured. Of course, Purify does not require
source code, so it may be applicable in more situations. Purify did find the uninitialized variable in go, but none
of the other bugs, because the accesses in question did not stray far enough to be noticed. To quantify our earlier
comments about the speed of inference, an unmodified gcc compilation of go takes 8.83 seconds, our inference takes
0.05 seconds, and adding the run-time checks takes 1.43 seconds. Other programs give similar timings.

In the process, we discovered a number of bugs in these benchmarks: ks passes a FILE* to printf where a char*
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Name Lines % | CCured | Purify
of code | sf/sq/d ratio ratio
SPECINT95
compress 1590 | 87/12/0 1.20 28
go 20315 | 96/04/0 | 1.14 51
ijpeg 31371 | 79/20/1 | 1.43 30
1i 7761 | 93/06/0 1.79 50
Olden
bh 2053 | 80/18/0 1.45 94
bisort 707 | 90/10/0 1.08 42
em3d 557 | 85/15/0 1.42 7
health 725 | 93/07/0 1.08 25
mst 617 | 87/10/0 | 1.45 5
perimeter 395 | 96/04/0 1.08 544
power 763 | 95/06/0 1.35 53
treeadd 385 | 85/15/0 1.40 500
tsp 561 | 97/04/0 1.08 66
Ptrdist-1.1
anagram 661 | 80/12/3 1.31 34
bc 7323 | 90/10/0 1.17 100
£t 2194 | 92/06/2 | 1.02 12
ks 793 | 92/08/0 1.11 31
yacr2 3999 | 87/13/0 | 1.66 26

Figure 12: CCured versus original performance. The measurements are presented as ratios, where 2.00 means the
program takes twice as long to run when instrumented with CCured. The “sf/sq/d” column show the percentage of
(static) pointer declarations which were inferred SAFE, SEQ and DYN, respectively.
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is expected, compress and ijpeg contain array bounds violations and go has eight array bounds violations and one
use of an uninitialized variable as an array index. Most of the go bugs are involved in multi-dimensional arrays. This
demonstrates an important advantage of our type-based approach: if we viewed the entire multi-dimensional array
as one large object, some of those bugs would not be detected.

One ks error is near line 52 of KS-1.c which contains code like the following:

void ReadNetList(char *fname) {

FILE *inFile;

inFile = fopen(fname,"r");

if (inFile == NULL) {
fprintf (stderr,"unable to open input file [%s]",inFile);
/* BUG: should be ‘fname’, not ‘inFile’ */
exit(1);

}

3

CCured’s printf handling notices statically that the type expected by the argument string (char *) does not match
the type of the actual argument (FILE *) and flags an error. Even if the format string were not available statically
the CCured version of printf would catch the error at run-time when the type of the next expected argument and
the next actual argument failed to match.

One go error is near line 2241 of g25.c which contains code like the following:

int 1nbn[841];
int so;
for(ptr = nblbp[s]; ptr != EOL; ptr = links[ptr]){
if (edge[list[ptr]] == edgels])
so = list[ptr];
if (edge[list[ptr]l] < edgels])
dir2 = list[ptr]l-s;
}
if (Inbn[so] !'= 4) { /* BUG: ‘so’ may be uninitialized */

}

CCured’s pointer kind inference classifies 1nbn as a safe pointer to an array of 841 integers. When it is used as an
array it is cast to a SEQ pointer to an integer and CCured ensures that &1lnbn <= &lnbn[so] < &lnbn[841]. When
so is uninitialized it may fall out of that valid range and trigger a CCured run-time exception. Testing fails to reveal
this bug as a segmentation fault if the value of so is small or other data structures are placed just before or after
1nbn in memory.

As a final example, compress features a pointer that walks off the end of an array near line 867 of compress95.c.
This particular example has been reproduced in its entirity in order to give a flavor for how subtle these bugs can be
and how this bug might have escaped manual detection despite the frequent use of this code as a benchmark. The
comments of the form /* BUG: were added.

code_int
getcode() {
/*
* On the VAX, it is important to have the register declarations
* in exactly the order given, or the asm will break.
*/
register code_int code;
static int offset = 0, size = 0;
static char_type buf[16]; /* BUG: we can walk off this array! */
register int r_off, bits;
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}

register char_type *bp = buf; /* BUG: using this ‘bp’ pointer */

if ( clear_flg > 0 || offset >= size || free_ent > maxcode ) {
/*
* If the next entry will be too big for the current code
* size, then we must increase the size. This implies reading
* a new buffer full, too.

*/
if ( free_ent > maxcode ) {
n_bits++;
if ( n_bits == maxbits )
maxcode = maxmaxcode; /* won’t get any bigger now */
else
maxcode = MAXCODE(n_bits);
}

if ( clear_flg > 0) {
maxcode = MAXCODE (n_bits = INIT_BITS);
clear_flg = 0;
}
size = readbytes( buf, n_bits );
if ( size <=0 )
return -1; /* end of file */
offset = 0;
/* Round size down to integral number of codes */
size = (size << 3) - (n_bits - 1);
}
r_off = offset;
bits = n_bits;
/%
* Get to the first byte.
*/
bp += (r_off >> 3); /* BUG: increase bp by (r_off >> 3)
* which is the same as (offset >> 3) */
r_off &= 7;
/* Get first part (low order bits) */
code = (xbp++ >> r_off);
bits -= (8 - r_off);
r_off = 8 - r_off; /* now, offset into code word */
/* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
if ( bits >=8 ) {

code |= *bp++ << r_off;
r_off += 8;
bits —= 8;

}

/* high order bits. */

code |= (xbp & rmask[bits]) << r_off; /* BUG: ‘*bp’ out of bounds! */
offset += n_bits;

return code;

It turns out that the final dereference of bp in the code can produce an out-of-bounds error. This particular error
is very difficult to catch by inspection and relies on the fact that the variable offset is static (meaning that it
keeps the same value between different invocations of this procedure) and can continue to increase unless a certain
condition is met (the first and second ifs in the procedure) and it is reset to zero. If it becomes sufficiently high,
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Module Lines % | CCured
Name of code | sf/sq/d | Ratio
asis 149 | 72/28/0 0.96
expires 525 | 77/23/0 1.00
gzip 11648 | 85/15/0 | 0.94
headers 281 | 90/10/0 1.00
info 786 | 86/14/0 | 1.00
layout 309 | 82/18/0 1.01
random 131 | 85/15/0 0.94
urlcount 702 | 87/13/0 1.02
usertrack 409 | 81/19/0 1.00
WebStone n/a n/a 1.04

Figure 13: Apache Module Performance. A ratio of 1.04 means that the CCured module was 4% slower than the
original. Any slowdown is within the noise.

the line bp += (r_off >> 3) and the successive xbp++ expressions? can push bp beyond buf+15, its maximal legal

value. At that point the final read from bp reads random data allocated next to bp. Both Purify and testing fail to
find this memory error because the pointer does not stray sufficiently far from the original object. In CCured the
assignment bp = buf is treated as a cast from the SAFE pointer to the array buf into the SEQ pointer bp and the
bounds information (i.e., buf < bp < buf + 16) stays with bp. A run-time exception is raised at the point of the
invalid dereference.

As a second experiment we used CCured to make memory-safe versions of a number of Apache 1.2.9 modules and
then we compared their performance (measured as the total number of bytes transmitted by the server divided by the
time to receive the last byte) to that of the originals. (Measurements of time-to-first-byte were similar). Figure 13
shows the results: any slowdown is within the noise. Each line represents 1,000 requests with file sizes of 1K, 10K
and 100K. In all cases the module code made safe by CCured was executed on every request. The modules perform
standard webserver duties: asis provides special raw file support, expires prepends timeout header information,
gzip compresses the file contents, usertrack provides cookie management, and so on. WebStone is 100 iterations of
the manyfiles WebStone 2.5 benchmark with every request affected by the expires, gzip, headers, urlcount and
usertrack modules. To prevent physical network latency from masking the cost of run-time checks, the experiments
were conducted with both the client and the server on the same Linux machine: throughput averaged 1150 K/s.
Buffer overruns and other security errors with Apache modules have led to a least one remote security exploit [Sec00].
That particular bug was a format string problem that is prevented by the variable argument handling described in
Section 5.

Converting Apache modules to CCured required manual intervention. We inspected the modules for void*
casts and extended the Apache module API with CCured wrappers for Apache’s array-handling functions. We
marked Apache’s internal alloc and free functions as malloc-like and noted printf-like debugging functions. We
also constructed the appropriate unions for some variable-argument functions (e.g., ap_strcat(...)). Finally, we
annotated data structures that are created by Apache and passed to the module so that they would be inferred as
having lean pointers (e.g., STRING instead of SEQ for passed filenames).

We also used CCured to instrument two Linux kernel device drivers. pcnet32 is a PCI Ethernet network driver
and sbull is a ramdisk block-device driver. Both were compiled and run using Linux 2.4.5. We replaced Linux inline
assembly macros with calls to wrapper functions. This had the advantage of allowing us to insert appropriate run-
time checks into otherwise opaque assembly (e.g., we perform bounds-checks for the Linux internal memcpy routines).
Some Linux macros (like INIT_REQUEST) were assumed to be part of the trusted interface. Finally, some low-level
casts were trusted as part of the interface. Porting sbull involved changing about 20 lines of the driver source,
pcnet32 required only 5 changes (mostly removing casts to void *). The performance measurements are shown in
Figure 14. pcnet32 measures maximal throughput; “ping” measures latency. sbull measures blocked reads (writes
and character I/O were similar); “seeks” measures the time to complete a set number of random seeks.

4In C the expression *bp++ dereferences bp and saves the result, increments bp by one times the size of bp’s base type and then returns
the saved result.
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Lines % | CCured
Name of code| sf/sq/d | Ratio
pcnet32 1661 92/8/0 0.99
ping 1.00
sbull 1013 | 85/15/0 | 1.00
seeks 1.03
ftpd 6553 | 79/12/9 | 1.01

Figure 14: Linux Device Driver and FTP server performance. A ratio of 1.03 means the CCured version is 3% slower
than the original.

Finally, we ran £tpd-BSD-0.3.2-5 through CCured. This involved writing wrappers for some networking func-
tions, but has the strong advantage of eliminating all memory safety security errors. In fact, this version of ftpd has
a known vulnerability (buffer overflow) in the replydirname function, which we verified that CCured prevents. The
biggest hurdle was writing a 70-line wrapper for the glob function. As Figure 14 shows, we could not measure any
significant performance difference between the CCured version and the original. As with the Apache modules, the
client and server were run on the same machine to avoid I/O latency.

7 Related Work

An entire body of research [ACPP91, AWL94, CF91, Hen92, KF93, SSJ98, Tha90, WC97] examines the notion of a
Dynamic type whose values are (type, ptr) pairs. Such a value can only be used by first extracting and checking the
type. In particular, one can only write values that are consistent with the packaged type. Because the underlying
value’s static type is carried within the Dynamic package, and checked at every use, there is not a problem with
Dynamic aliases for statically-typed data.

This is in contrast to CCured’s DYN, which allows arbitrary interpretation of the value read (except that the tags
prevent misinterpreting a pointer base field), and arbitrary types to be written. Thus, a memory word’s type may
change during execution. This flexibility is built into CCured because we expect some C programs to allocate large
areas of memory and re-use that memory in different ways. However, its cost is that DYN must be a closed world, with
no aliases of statically-typed data. The inference algorithm in CCured bears some resemblance to Henglein’s inference
algorithm [Hen92], but we consider physical subtyping, pointer arithmetic and updates. Henglein’s algorithm has
the nice feature that it does not require any type information to be present in the program. We believe that his
algorithm does not extend to the more complex language we consider here and that existing C types contain valuable
information that should be used to make inference both simpler and predictable (in terms of when a pointer will be
inferred DYN ).

Another line of research tries to find subsets of C which can be verified as type-safe at compile time. Chandra and
Reps [CR99] present a method for physical type checking of C programs based on structure layout in the presence
of casts. Their inference method can reason about casts between various structure types by considering the physical
layout of memory. Siff et al. [SCBT99] identify that many casts in C programs are safe upcasts and present a tool to
check such casts. CCured includes similar support, somewhat modified for soundness reasons and extended to handle
pointer arithmetic. Smith et al. [SV98] present a polymorphic and provably type-safe dialect of C that includes most
of C’s features (and higher-order functions, which our current system handles weakly) but lacks casts and structures.
Ramalingam et al. [RFT99] have presented an algorithm for finding the coarsest acceptable type for structures in C
programs. Each of these approaches requires programs to adhere to their particular subset, otherwise the program
is rejected. CCured’s static type system has comparable expressivity (CCured does well with arrays, some systems
do better with polymorphism), but CCured can fall back on its very flexible DYN pointers to handle the corner cases.

A third popular approach is to add run-time checks to C programs. Kaufer et al. [KLP88] present an interpretive
scheme called Saber-C that can detect a rich class of errors (including uninitialized reads and dynamic type mis-
matches but not all temporal access errors) but runs about 200 times slower than normal. Austin et al. [ABS94] store
extra information with each pointer and achieve safety at the cost of a large (up to 540% speed and 100% space)
overhead and a lack of library compatibility. Jones and Kelly [JK97] store extra information for run-time checks in a
splay tree, allowing safe code to work with unsafe libraries. This results in a slowdown factor of five to six. Fischer
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and Patil have presented a system that uses a second processor to perform the bounds checks [PF95]. Loginov et
al. [LYHRO1] store type information with each memory location, incurring a slowdown factor of five to 158. This
extra information allows them to perform more detailed checks, and they can detect when stored types mismatch
declared types or union members are accessed out of order. The approaches of Austin et al. and Jones and Kelly
are comparable to the implementation of CCured’s DYN pointers. However, beyond array bounds check elimination,
none of these techniques use type-based static analysis to aggressively reduce the overhead of the instrumented code.

8 Conclusions

Our paper presents a way to brings safety to the C programming language. Our novel finding is that most pointers
in a C program are already used in a type-safe way. What is needed is a type system that can keep track of pointers.
For this purpose, we describe the CCured type system, which for the first time combines dynamic types with physical
subtyping and pointer arithmetic. Furthermore, we show a relatively simple inference algorithm that is able to infer
that, as expected, most pointers do not need extensive run-time checking.

The CCured type system is not only expressive enough to handle many common C paradigms, but also intuitive.
We found it easy to annotate programs by hand with pointer-kind information, or to predict the behavior of the
inferencer and consequently to interpret any error messages. In some cases, however, we found that the type system
is too simple to keep track of unusual invariants. For example, consider a word value that is to be interpreted as a
pointer whenever it is a multiple of four. To handle these cases we might want to allow the program to declare new
pointer kinds in such a way that the soundness of CCured is not compromised.

CCured has a number of disadvantages. When the inference algorithm infers that a pointer should be wide and
that type passed to or from an external library, the program will fail to link correctly. In such cases a wrapper
must be written to strip away the CCured-specific metadata before calling the external function. Work is currently
underway to automate the generation of wrappers and store CCured metadata in a compatible manner.

At the moment, we are doing little in terms of optimizing the run-time checks. We remove the locally-redundant
run-time checks, but we do not perform global optimizations or array-bounds checking optimizations. Since CCured
is type-safe we could soundly add optimizations which would be unsound in C, such as those designed for Java.
CCured is also in position to benefit from an improved garbage collector. Unlike C, in CCured we have enough
information about pointers (either statically or at run-time) that we could use a copying garbage collector.

We believe CCured would be most useful either for mission-critical programs such as network services or for
components in extensible system. Another potential application that we have not explored yet is to use CCured
to make Java native methods or inline C code in C# provably type safe and thus first-class citizens. For those
applications it would be possible and useful to produce proof-carrying code automatically from C programs, not only
from Java programs as it is possible today [CLNT00].
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