
Interaction-based Rendering Optimization in Sketch-

based User Interfaces

Li, Yang and Landay, James A.

Report No. UCB/CSD-3-1248

June 2003

Computer Science Division (EECS)
University of California
Berkeley, California 94720

 1

Interaction-based Rendering Optimization in
Sketch-based User Interfaces1

Yang Li and James A. Landay
Group for User Interface Research, Computer Science Division

University of California, Berkeley
Berkeley, CA 94720-1776 USA

{yangli, landay}@cs.berkeley.edu

1 This work was supported by the National Science Foundation under Grant No. IIS-0205644.

ABSTRACT
We describe two mechanisms, rendering task scheduling and the render cache,
used to optimize graphics rendering in a scenegraph to provide continuous visual
feedback and high interactivity in large-scale sketch-based user interfaces. We
have implemented these mechanisms in SATIN, a toolkit to support development
of sketch-based user interfaces. Our experiments with DENIM, an early-stage
web site design tool built with SATIN, show that our changes significantly
improve performance.

Keywords
Sketch-based user interface, scenegraph, visual feedback, render scheduling,
render cache, SATIN, DENIM

INTRODUCTION
Sketch-based user interfaces allow natural interaction by freeform sketching.
They typically involve the semantic processing and rendering of many graphical
objects during interaction, e.g., freeform strokes. One distinct feature of sketch-
based user interfaces is continuous interaction, which requires continuous visual
feedback. This usually involves complicated transformation of graphical objects
and heavy rendering, which impedes the responsiveness of interactive systems.
One useful way to organize graphical objects in a sketch-based user interface is to
use a scenegraph [4]. SATIN [2] is a Java-based toolkit for developing sketch-
based user interfaces, which employs a scenegraph to organize freeform graphical
objects, such as strokes and patches. SATIN applications usually have large,
complicated scenegraphs. For example, a typical web site design in DENIM [3], a
web design application written with SATIN, usually has a scenegraph of

 2

thousands of nodes (see Figure 1). An interaction action usually requires
traversing the scenegraph and applying geometric transformations to many nodes.
Moreover, a change to one node can trigger rendering requests throughout the
scenegraph. All of this hinders prompt feedback and seriously affects the usability
of the application.

Figure 1: A typical web site design in DENIM, which has 1088 graphical objects

in its scenegraph.

To improve the performance and usability of sketch-based user interfaces, we
have developed techniques that optimize rendering in two ways. We first
prioritize render requests to the system and delay render tasks that do not need to
be done immediately. Then, we use the render cache to fulfill the render tasks. We
have extended SATIN to take advantage of both of these techniques.
In the following sections, we first discuss related work. Then we analyze the
interaction attributes of sketch-based user interfaces, which is followed by a
discussion of render scheduling and the render cache. After this, we briefly
describe some implementation details, usability feedback and regression tests. We
finish with a discussion and conclusion.

RELATED WORK
We have employed the concepts of task scheduling and a render cache and
applied them to sketch-based user interfaces. The render cache is an effective

 3

solution to improving rendering performance of 3D graphics, which are
computationally intensive [5], but it has not been widely adopted in 2D graphics.
Task scheduling and computational load analyses are often used to average out
load and improve efficiency in real-time or multitasking systems [6]. However, no
research has used these techniques to address the needs of interactive systems,
either from the point of view of the computer or the user. It is necessary to
optimize rendering by considering both machines and humans.

INTERACTION ANALYSIS OF SKETCH-BASED UIs
Sketch-based user interfaces based on the pen-and-paper metaphor allow people
to express their ideas in a natural manner while providing electronic support.
However, they require much higher levels of interactivity than traditional user
interfaces with discrete interactions. At the same time, lots of computation and
feedback frequently occur while the user is sketching. The feedback usually
requires many freeform graphical objects to be rendered and simultaneously
transformed, such as being moved or smoothed out.
Feedback rendering in a SATIN-based application requires frequent traversals of
the scenegraph and rendering graphical objects in detail. This is because
scenegraph-based systems collect rendering attributes and transformations by
traversing the graph and then deliver them to graphical objects. Synchronizing the
feedback with the interaction at all times takes up lots of processing time and
decreases the responsiveness of the application. However, different types of
feedback have different priorities. Some feedback must always be displayed right
away, such as ink being rendered at the moment the user draws with the pen.
However, it may be possible to delay other feedback that requires heavy semantic
processing and rendering so that it does not interfere with the user’s interaction,
e.g., when interpreting and transforming some simple strokes into a DENIM web
page. Nevertheless, it should be guaranteed that feedback is always synchronized
with the associated interaction action when there is a semantic dependency. For
example, users should get feedback immediately after they delete objects.
In sketch-based interactions, humans conduct their thinking and sketching in an
interleaved manner with a very short “time slice.” Some heavy rendering tasks
that are delayable can be carried out during the “thinking” period.

INTERACTION-BASED RENDER SCHEDULING
In our system, a rendering request has one of two priorities, low and high. When
an application issues a rendering request, it is first queued up in a FIFO buffer.
Then, if a high-priority request is pushed into the buffer, all of the requests in the
buffer are pushed out, merged together, and executed. By merging render requests

 4

in a queue, we can reduce redundant rendering requests and, thus, scenegraph
traversals. See Figure 2.

L L L L H Render
Engine

Interaction monitor

Flush buffer

Push
render
request

Merged
render

requests

Figure 2: Render requests are buffered and merged before being executed. Low-

and high-priority requests are labeled “L” and “H,” respectively. The buffer is
flushed in two ways: a high-priority request causes the buffer to flush all

requests, or the interaction monitor flushes the buffer after it notices that there
were no events during the event window.

The buffer can also be cleared if there are only low-priority requests in the buffer.
If there are no user events during an event window starting from the user’s last
event, the buffer will be cleared after the window closes.
The next two subsections describe the event window and merging the render
requests in more detail.

Adjusting the Event Window Length
In sketch-based user interfaces, most interactions consist of pen down, drag, and
up events. We wish to find intervals between these events that are long enough to
complete a render task, yet short enough so that it will not interfere with the user’s
actions. Figure 3 shows interaction intervals for three sketching tasks in DENIM.
While most intervals are short, there are quite a few long intervals that indicate
pauses for thinking and other reasons.
To predicate whether an interval is long enough to flush the buffer and process
requests, we set up an event window as shown in Figure 4. If a pen event occurs in
that window, we do not flush the buffer. Otherwise, we flush the buffer and
process the requests.
The length of the window is adjusted using an exponential backoff algorithm. If a
pen event, e.g., Evt2 in Figure 4, occurs after the window but while processing
render requests, the decay of the exponential function is adjusted so that, after this
event, the window is longer. If there are no pen events during the window and

 5

while processing render requests (e.g., Evt3 in Figure 4 comes after rendering), the
decay is adjusted so that the window is shorter. If a pen event like Evt1 happens
during the window, the window is kept unchanged.

Samples of Interaction Intervals

0

2000

4000

6000

8000

10000

12000

In
te

rv
al

 L
en

gt
h

(m
s)

Sample1
Sample2
Sample3

Figure 3. Analysis of intervals between pen events. The events can be pen down,

drag, or up.

1

y

t

β

Evt1 Evt2 Evt3

0
Tp Tr

Figure 4: Adjustable event window. The length of the event window is Tp and Tr is

the average render time. The dotted curve is the exponential decay function,
where β is a constant and 10 << β .

Merging Render Requests
To reduce the number of traversals and rendering over the scenegraph, all render
requests are merged before being submitted to the render engine. To determine
the effectiveness En of merging n requests, we sum up the areas of the rectangular

 6

regions ai that request i covers, then divide it by the area of the smallest rectangle
An that overlaps all ai. In other words:

n

n

i
i

n A

a
E

∑
== 1

We consider merging n requests to be effective if En ≥ M, where M is a constant
that we have determined empirically as 0.3. Two examples of our effectiveness
metric are shown in Figure 5.

 1

2

3

4

5

 1

2

(a) E5 = 0.9326 (b) E2 = 0.1856
Figure 5: Two examples of the merging effectiveness metric.

Here is our algorithm, which uses the effectiveness metric, for determining which
requests to merge and send to the render engine. Note that E0 is always effective
by itself.

Given:
• q: the FIFO buffer containing the render requests
• qi: the ith item in the buffer, where 0 ≤ i < length(q)
• r: the merged render request so far
• E(i): the merging effectiveness metric for items 0 to i
while length(q) > 0:
 r := q0
 n := length(q)
 for i := 1 to n − 1:
 if E(i) < M:
 remove q0..qi-1 from q
 exit for
 merge qi into r
 submit r to render engine

 7

RENDER CACHE
To process the merged render requests, parts of the scenegraph are rendered. We
have augmented the scenegraph with the concept of a render cache. A render
cache stores a pre-rendered bitmap image of the node to which it is attached and
all of the node’s children. SATIN simply draws this image instead of rendering
the node and its descendants directly. This obviates the need to traverse the node’s
descendants, greatly improving performance.
When a node’s render cache becomes invalid, all of the render caches of the
node’s ancestors also become invalid, as shown in Figure 6. Also, it is possible
for a node not to have a render cache, in which case it will share the cache with
the closest ancestor that has one.

T F T

F

F

T

F

T

T

TT

T

Figure 6: Cache tree and invalidity propagation. The two circles with dashed

borders represent nodes without render caches.

SATIN also has support for building zoomable user interfaces [1]. Using render
caches can greatly improve performance while zooming. However, creating the
cache image for a node at the node’s current zoom level will result in the node
looking blurry while zooming in, since that is basically taking a low-resolution
bitmap of the node and zooming in on it. Therefore, before zooming in, the render
cache for the node is populated with the node rendered at a higher resolution to
reduce the blurriness.

IMPLEMENTATION
We have implemented a render scheduler and merger in SATIN, and we have
augmented graphical objects (which are nodes in SATIN’s scenegraph) so that
render caches can be attached to them.
Any graphical object can issue a render request by calling its method
damage(int flag, Rectangle2D area). The flag indicates scheduling

 8

priority of the render request, either DAMAGE_IDLE for low-priority requests or
DAMAGE_NOW for high-priority requests. The area specifies the region to be
repainted, which is the bounding box of the graphical object by default. The
render cache stores the bitmap image using Java’s BufferedImage.

PERFORMANCE TESTS
We conducted regression performance tests on DENIM, the most sophisticated
application built on SATIN. We tested four of the most common interaction tasks
in DENIM: sketching, dragging, zooming, and panning. For each task, we created
12 different samples. Each sample was run 6 times in both DENIM 1.1, which
uses the rendering scheduler and render cache, and DENIM 1.0, which does not
include the new optimizations. Tests were performed by a combination of manual
control and automatic mouse event replay via Java’s Robot class. All tests were
performed on an IBM ThinkPad laptop (700 MHz Pentium III) running Windows
2000 and Java 2 SDK 1.4.1, with 128 MB memory and an S3 display adapter with
8 MB memory.
As shown in Figure 7, we found that sketching with DENIM 1.1 is consistently
faster than DENIM 1.0, an average of 2.26 times. However, the performance
speedup of animated zooming, panning and dragging varies greatly from sample
to sample. The more complicated the scenegraph or the dragged object is, the
larger the performance speedup. Speedup of animated zooming varies from 1.06
to 2.23. Speedup of panning varies from 1.17 to 2.77. Speedup of dragging ranges
from 2.41 to 18.62.

Performance Speedup

1x

4x

7x

10x

13x

16x

19x

1 2 3 4

Interaction Tasks

Sp
ee

du
p

Pan ZoomDragSketch

Figure 7: Performance speedup for 4 typical DENIM tasks.

 9

These performance improvements enable DENIM to more effectively handle
large-scale web site design and make an important step towards making it a
practical tool.

DISCUSSION
Our own experience with DENIM 1.1 indicates that our algorithms do a good job
in rendering high-priority requests immediately, and that low-priority requests are
usually rendered when the user is not interacting with DENIM. DENIM 1.1 also
seems more responsive, because heavyweight feedback no longer interferes with
sketching.
We found that our interactions with DENIM 1.1 interfered with rendering tasks
less and less often, the more we used it. One reason is that the length of the event
window adapts over time. Perhaps another reason is that we adapted our behavior
subconsciously.
In using a scenegraph-based toolkit like SATIN, it is hard for application
developers to completely avoid issuing redundant render requests and they often
try to merge render requests by themselves. By using the DAMAGE_IDLE flag,
they can submit requests wherever they think it is required without considering
redundancy.
To simplify the implementation we have used an empirically obtained average
time Tr to estimate the load of render requests. In the future, we intend to refine
our measurement of render loads. For example, we can use the render area of a
request as a rough evaluation of task load.

CONCLUSION
We have implemented two mechanisms, render scheduling and the render cache,
to improve the performance of SATIN, a toolkit for creating sketch-based,
zoomable user interfaces. We have demonstrated that these methods have
significantly improved the performance of DENIM, a web site design tool that is
the most sophisticated application written with SATIN.
DENIM 1.1 along with a new version of SATIN, which includes the performance
improvements described in this paper, are available at
http://guir.berkeley.edu/denim.

ACKNOWLEDGEMENTS
We would like to thank James Lin for improving this paper. Thanks to James Lin
and Jason Hong for helping us with SATIN and DENIM. Also thanks to James
Lin, Marc Ringuette, Anoop Sinha and Zhiwei Guan for helpful discussions on

 10

this topic. This work was supported by the National Science Foundation under
Grant No. IIS-0205644.

REFERENCES
1. Bederson, B.B., J. Meyer, & L. Good. (2000). Jazz: An Extensible Zoomable

User Interface Graphics Toolkit in Java. In Proceedings of the ACM
Symposium on User Interface Software and Technology: UIST 2000. San
Diego, CA. pp. 171–180, Nov. 5–8, 2000.

2. Hong, J.I. and J.A. Landay. SATIN: A Toolkit for Informal Ink-based
Applications. In Proceedings of the ACM Symposium on User Interface
Software and Technology: UIST 2000. San Diego, CA. pp. 63–72.

3. Lin, J., M.W. Newman, J.I. Hong, and J.A. Landay. DENIM: Finding a
Tighter Fit Between Tools and Practice for Web Site Design. In CHI Letters:
Human Factors in Computing Systems, CHI 2000, 2000. 2(1): pp. 510–517.

4. Strauss, P.S. An Object-Oriented 3D Graphics Toolkit. ACM Computer
Graphics, 26(2). July 1992. pp. 341–349.

5. Walter, B., G. Drettakis, and S. Parker. Interactive Rendering Using the
Render Cache. In the Proceedings of the 10th EG Workshop on Rendering:
Rendering Techniques ’99. June 1999. Granada, Spain.

6. Wolski, R., Spring, N. and Hayes, J., Predicting the CPU Availability of
Time-shared Unix Systems on the Computational Grid. In Proceedings of the
8th High Performance Distributed Computing Conference, August, 1999.

