
 1

Failure Analysis of Internet Services
Archana Ganapathi

Computer Science Division
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley.

1. Introduction

In the post-PC era, research on reliable Internet
Services (IS) is gaining increased attention. The
proliferation of networks and information
technology places an enormous demand on IS. In
particular, the 24 hours a day, 7 days a week
delivery of service to customers requires
dependable availability. Failures are a fact and
recovery/repair is the only solution [16].

Un-availability can be quantitatively defined as
the ratio of MTTR (mean time to repair) to the
sum of MTTR (mean time to repair) and MTTF
(mean time to failure). Decreasing MTTR is as
valuable as increasing MTTF. By learning why
systems fail, failure distribution across parts of
an IS, we attempt to envision a plausible model
for future Information Technology (IT). In this
endeavor, we focus on discovering and
characterizing failure causes, and suggesting
methods to improve recovery from failures,
consequently increasing availability. As an
example, pervasive use of redundancy improves
disaster tolerance. Improving recovery from
failures automatically improves availability.

The size, complexity and use of IS often
necessitate a globally distributed
communications infrastructure. Most IS contain
a significantly large number of nodes that are
usually geographically distributed, often
clustered in collocation sites. With such
architectures, dependability is an enormous
challenge. Services may fail in multifaceted
ways due to numerous diverse components and
interactions between them. An improved
understanding of failures and their classification
is essential to improve availability. One approach
to distinguish failures is to partition them into
component failures and service failures. While
both are due to faulty components, only service
failures are visible to the customers.

Previous research in the area of Fault Tolerant
Systems (FTS) has attacked this problem from a
different perspective. These approaches focus
primarily on hardware redundancy to enhance
reliability, e.g., using triple modular redundancy

and voter logic. They focus on graceful
degradation and redundancy to mask failures
thereby improving fault tolerance [4, 18]. The
Berkeley/Stanford Recovery-Oriented-
Computing Project (ROC) emphasizes recovery
from failures rather than failure-avoidance [19].
The major motivation for this approach is the
observation that most robust systems continue to
occasionally encounter failures due to human
operator errors, transient or permanent hardware
failure, and software anomalies due to
"Heisenbugs" or software aging. Software
failures are inevitable and a detailed
understanding of the causes of downtime is
important [12]. ROC's approach collaborates
with industry to obtain real data on failure
causes, analyze patterns, develop benchmarks
that test old systems and generate new ideas to
measure improvement, providing support for
humans to operate services [16].

Initially, our primary motivation and goals are to
study the operational characteristics and failure
data of several large-scale IS. Our focus has been
to verify and increase the statistical validity of
results presented in [15, 3]. We study how
maturity affects the number of failures. We
provide case studies and data, and in some cases,
broaden the range of metrics. This effort will
facilitate better approximation of failure models
in order to improve the accuracy of
benchmarking. These studies also analyze
several failure mitigation techniques that
improve availability.

Oppenheimer presents data from three Internet
services whose architectures are classified as
Online, Readmostly and Content [15]. We
analyze the Online and Content services in finer
detail. The on-line service/Internet portal is
termed Online. The global content hosting
service is termed Content. The high traffic read-
mostly IS is termed Readmostly. All three
systems distribute their servers geographically in
collocation facilities. The primary differences
between these services are their load, read/write
ratio and the use of standard web browsing or
special purpose software offered to the customer.
See figure 1. The Online service receives

 2

approximately 100 million hits per day with a
medium relative read/write ratio. It has two
collocation sites with about 500 machines
running Solaris on SPARC and x86
architectures. The Content service receives
approximately 7 million hits per day and also has
a medium relative read/write ratio [15]. This
service has 15 collocation sites with
approximately 500 machines running open-
source x86 OS.

Oppenheimer suggests taxonomies for
classification of failures such as root cause,
immediate trigger and type [15]. We define root
cause as the chronologically first event in a
sequence of events that leads to a service failure.
The immediate trigger is the final event
preceding the service failure. The focus of failure
fixes has been to reduce problem recurrence.
Furthermore, an attempt is made to identify
components that are frequently involved in a
singleton or cascading service failures. Service
failures due to multiple component failures are
analyzed to identify and understand recurring
patterns that cause such failures. This
information can be used to build systems that are
immune to such patterns and consequently avoid
fault propagation and service failures.

2. Related Research

The explosion and popularity of IS in the past
decade has placed an unprecedented demand on
the reliability of these round-the-clock services
[16]. Although failures have been studied
extensively in the past within the context of
fault-tolerant computing, large scale IS
operations focus on issues such as increased rate
of software upgrades. Companies such as
Amazon Inc., Google Inc. and Yahoo! Inc. serve

both as a repository for data in ubiquitous
computing systems as well as a platform for
building new global-scale applications and
services. Potentially, they can provide
fascinating solutions to hard problems. It is now
expected that these services offer 100%
availability to customers of e-commerce,
enterprise applications, on-line services and
ISPs. Unfortunately, service outages are frequent
and outage costs are high, for example, consider
the infamous NASDAQ stock-market outage
resulting in several million-dollar loss in
revenues [2]. In general, in IS, outage costs are
enormous. Apart from the social effects that
include negative press repercussion and loss of
customers who "click over" to competition, the
loss in revenues range from half a million to five
million dollars per hour [16].
Contemporaneously, rapid deployment of new
software, applications and user-interfaces
necessitate the change of operational software
while continually providing service. Other
important facets of IS include maintainability to
reduce the burden on system administrators and
evolutionary growth to allow easy system
expansion over time without sacrificing
availability or maintainability.

Researchers on large-scale IS have concentrated
on appropriate architectures for such sites [1,
12]. Several studies are pertinent to causes of
failures in various types of computer systems,
albeit non-IS specific [5]. Kuhn examined data
on failures in Public Switched Telephone
Systems [9]. He concluded that human error had
a significant customer impact on these failures.
Enriquez extended this study, considering
blocked-calls metric collected from outage
reports [3]. She concluded that human error was

Figure 1: Distinguishing character istics of Internet Services der ived from [15].

 3

responsible for over fifty percent of outages,
customer minutes and blocked calls.

Failures in networks of workstations have been
studied in [25]. A large number of outages are
due to planned maintenance, software
installation and configuration. System software
and planned maintenance caused the largest
amount of total downtime. Several researchers
have examined failures in enterprise server
environments [10, 11, 23]. Relevant research in
the area of system monitoring, diagnosis and
configuration include [6, 7, 24].

In the on-going effort to work with industry to
obtain real data on failure causes and patterns;
[15] surveys three sites and [3] provides a survey
of FCC switch failure data. The results presented
in this paper are an extension of these efforts.
Parts of the results corroborate their findings and
the remainder provides additional insights into
the analysis, considering data gathered over an
extended period.

3. Data collection

Once a failure occurs, the first observation is
related to the location of the failure. These
locations can be the service front-end, mail-
handling nodes, service back-end and network
domains for Online and service front-end, client
front-ends, service back-end and network
domains for Content. Distinct categorization
occurs due to differing architectures for these
services. Front-end nodes serve as the
intermediary between the user and back-end
nodes. These servers obtain requests from users,
forward them to back-end nodes and in the

Online service, deliver processed data from
back-end nodes to the user. Back-end nodes
serve as data storage units and in the case of the
Content service, return data requested by front-
end nodes to the user [15]. Client nodes are
front-ends that are geographically located at the
customer site. See figure 2.

The next area of concentration is the cause for
the failure: hardware, software, operator,
overload, disk-full and environment. Hardware
and software errors occur due to faulty or broken
hardware and buggy software respectively.
Operator errors are caused by human
intervention that introduce an error into the
existing system. Temporal overloads occur when
loads exceed limits that components can
comfortably handle without degradation. Disk-
fulls(spatial overloads) are attributed to
insufficient space on a disk partition.

In our research we have attempted to gather
additional data that extends the scope of our
initial investigation and consequent classification
of failures. The cause field was further classified
to elaborate the particular component that caused
the failure. For example, hardware is classified
into memory and CPU. Similarly, operator error
is classified into configuration and procedural
categories.

In the failure analysis of US Public Switched
Telephone Network (PSTN), Enriquez suggests
that it is beneficial to classify human errors into
the following categories: vendors, contractors,
technicians and outsiders. In our research,
instead of classification based on personnel roles,
we elaborate human error based on the nature of

Figure 2: Internet Service Architecture. Client nodes are generalized as front end nodes as only the
Content service makes a distinction between the two.

 4

action performed by the operator to cause the
failure. Our classification includes two types of
operator errors: configuration error and
procedural error. For example, a configuration
error occurs when the system is configured
wrong or in general when the configuration file
contains erroneous data. Similarly, procedural
errors occur when the operator performs a
careless act such as replacing the wrong disk in a
Raid5 system. Furthermore, these errors can be
introduced during various stages of a task: initial
stage, during an upgrade, or when fixing a
discovered error. Upon unloading a computer
package, the nascent start-up of a system can be
erroneous because of the operator's mis-
configuration. Similarly, while upgrading
software, the operator may be oblivious of
relevant changes that are dependent on this
upgrade. This oversight results in a configuration
or procedural error during upgrade.

We extend the research presented in [15] and [3],
incorporating additional data obtained from
Online and Content services, probing further in
their analysis. Root cause and immediate trigger
do not always represent the complete scenario of
failures. Often, several events lead to failure. In
some cases, each event can be considered as a
link in a chain in which a missing link can avoid
failure. This chain starts with the earliest
occurring event, the root cause, and terminates
with the last event, the immediate trigger that
caused the failure. The presence of interim links
in the chain necessitates the consideration of
cascaded failures. Alternately, it is possible to
have multiple independent events that do not
form a linked chain. However, they cumulatively
contribute to a single failure. We show that such
failures are more common in Content than
Online. We distinguish between these two types
of multiple-event failures as vertically cascaded
(VC) and horizontally related(HR) respectively.

4. Analysis

Data was analyzed in multiple passes. The initial
classification presented in [15] seemed sufficient
at first but as we increased the quantity of data
collected; it was more appropriate to extend the
initial classification. [15] distinguishes between a
component failure and a service failure. A
component failure does not impact a customer;
however, it carries the potential for a future
impact. In contrast, a service failure has an
immediate impact on the customer. In our study,
customer impacts are further classified into two

categories. PartOfCustomersAffected (PCA)
depicts the part of an entire customer base to
which a service failure was visible.
PartOfServiceAffected (PSA) denotes the effect
of service failure observable in operations such
as read, write or both for Content IS and
similarly, mail, chat or news operations for
Online IS.

As discovered by Oppenheimer, there are several
causes of failure of which human error is a
leading contributor. Our data complies with [15]
in this aspect. As visible in figure 3, Operator
errors are also the leading cause for high TTR.
These errors affected both reading from the site
and writing operations to the site in the content-
hosting service. In the Online service, it had
various repercussions such as degrading
performance or inability to use services such as
chat and e-mail.

A. Content

Our observation reveals that multiple-event
failures are a significant part of operator-induced
failures in the Content category of IS. HR failure
comprises almost 8% of incidents involving
component failures and 25% of incidents
involving service failures. Of the HR failures, all
affected read operations; most of them (about
88%) affected write operations as well. These
statistics were retrieved by counting each service
failure once, regardless of the number of
component failures causing this service failure.
For example, to avoid multiple counts of the
same failure, a service failure that had three HR
component failures was counted only once
despite multiple causes. The chronologically
earliest component failure was counted as the
cause for the corresponding service failure. All
HR service failures had their chronologically
first component failure in the client node.
Subsequent component failures were also located
in client nodes and were mostly software errors.

Service front-ends are responsible for more
problems than service back-ends and client
nodes. However, 64% of client component
failures become service failures while only 46%
of network, 15% of front-end, and 12% of back-
end component failures become service failures.
Client component failures occur at an
enormously high rate because the relevant nodes
are at the client site and are administered by both
the Content service as well as the client service.

 5

There is considerable scope for disconcerted
inconsistency in node handling by both services.
Network failures can primarily be attributed to
the geographical distribution of the service as
well as the management of links between the
customer and service sites. Front-end problems
result in fewer minutes of unavailability. In
contrast, back-end failures are significant, albeit
infrequent. Unfortunately, operator error is the
most difficult to mask. The TTR tables in figure

5 reveal that the back-end average TTR is
longest. Client TTR is also high because of
issues that remain hard to detect; usually, these
issues are related to component failures that
occur at a remote site. Often, these components
are maintained by administrators who are not
comfortably familiar with the equipment; they
work for the client company, not the content
service. Network service failures achieve the
third highest average TTR. Operator errors take
the longest time to repair because they are often
subtle and hard to discover. For example, a typo
in the configuration file is often easily
overlooked and thus takes longer to detect.
Among these operator errors, procedural errors
have the highest TTR as they can range from a
knocked off cable to an erroneously replaced
RAID disk. Following operator-induced service
failures, software errors are predominant. This
dominance can be attributed to the fact that
programmers write imperfect code. Also, several
disk errors appear due to conditions arising from
exhaustive use of space in a file-system. Other
errors are due to hardware and occasionally due
to network break-ins and viruses; however,
security issues were not accounted in these
calculations.

Hw
8%

Sw
19%

Op
31%

Ol
3%

Unknown
39%

Figure 4: Service failure cause by
component (Content). This data was
obtained from the analysis of two months of
failure data Content hosting service.

C om ponent Fa ilure vs . S ervice Fa ilure (C onten t)

15 18 19

1 3
0

30

2 0 1 0 0

10

1
7 8

1 0 0

9

0 0 1 0 0
4

0

10

20

30

40

50

60

70

hw sw op o l d f ev un hw sw op o l ev un

o

f
in

ci
d

en
ts

com ponent fa ilures serv ice fa ilu res

node net

C om ponent Fa ilure vs . S ervice Fa ilure (C onten t)

15 18 19

1 3
0

30

2 0 1 0 0

10

1
7 8

1 0 0

9

0 0 1 0 0
4

0

10

20

30

40

50

60

70

hw sw op o l d f ev un hw sw op o l ev un

o

f
in

ci
d

en
ts

com ponent fa ilures serv ice fa ilu res

C om ponent Fa ilure vs . S ervice Fa ilure (C onten t)

15 18 19

1 3
0

30

2 0 1 0 0

10

1
7 8

1 0 0

9

0 0 1 0 0
4

0

10

20

30

40

50

60

70

hw sw op o l d f ev un hw sw op o l ev un

o

f
in

ci
d

en
ts

com ponent fa ilures serv ice fa ilu rescom ponent fa ilures serv ice fa ilu res

node netnode net

Figure 3: Ratio of component to service failures (Content) Note: These graphs are based on
three months of failure data from the Online Service. Node data includes Fe and Be.

 6

There is a distinction in data between the results
 presented in [15] and ours. The number of
component failures in two months (analyzed
here) is equivalent to the number of component
failures in one month analyzed in [15]. This
disparity can primarily be attributed to the time
period of analysis and the changes in service
maturity. Since the time of the original analysis,
the IS matured from a startup to a relatively

stable service. The results provided in [15]
suggest that a larger proportion of operator
component failures in nodes turn into service
failures compared to that of software component
failures in nodes. While [15] classifies front-end
and back-end machines as nodes, we include
client nodes in this category. We analyzed two
months of data and computed an average to
compare equivalent time periods (one month) of
data with [15]. See figures 6 and 7. Our data

Figure 5: Time to Repair in hours for each service failure analyzed in Content and Online
Times highlighted in red denote large TTR values. Failures with unusually high TTR due to lower
priority of a collocation site (usually a test site) was not included in this table. These numbers could not
be retrieved for 16 service failures due to lack of sufficient information in problem reports.

N/A

8.4

5.3

Online

��

15.3

.8

.6

.3

27.8
6.3

1.3

.5

Content

N/A

N/A

Content

.2

72.9

28

2.9

1.4

Content

N/A

9.6

2.7

2

.8

.6

.5

Content Online Online Online Content Online

N/A

109

.1

6.4

47.8

31.8

� �

N/A N/A 2.5

1.2

� ��

50.9
48

6.9

21.4

20.7

2

.5

25.8

1.5

� �	�

�
 � � �

N/A

8.4

5.3

Online

��

15.3

.8

.6

.3

27.8
6.3

1.3

.5

Content

N/A

N/A

Content

.2

72.9

28

2.9

1.4

Content

N/A

9.6

2.7

2

.8

.6

.5

Content Online Online Online Content Online

N/A

109

.1

6.4

47.8

31.8

� �

N/A N/A 2.5

1.2

� ��

50.9
48

6.9

21.4

20.7

2

.5

25.8

1.5

� �	�

�
 � � �

N/A

8.4

5.3

Online

��

15.3

.8

.6

.3

27.8
6.3

1.3

.5

Content

N/A

N/A

Content

.2

72.9

28

2.9

1.4

Content

N/A

9.6

2.7

2

.8

.6

.5

Content Online Online Online Content Online

N/A

109

.1

6.4

47.8

31.8

� �

N/A N/A 2.5

1.2

� ��

50.9
48

6.9

21.4

20.7

2

.5

25.8

1.5

� �	�

�
 � � �

N/A

8.4

5.3

Online

��

15.3

.8

.6

.3

27.8
6.3

1.3

.5

Content

N/A

N/A

Content

.2

72.9

28

2.9

1.4

Content

N/A

9.6

2.7

2

.8

.6

.5

Content Online Online Online Content Online

N/A

109

.1

6.4

47.8

31.8

� �

N/A N/A 2.5

1.2

� ��

50.9
48

6.9

21.4

20.7

2

.5

25.8

1.5

� �	�

�
 � � �

7
9 9

15

1 1 1 1

5

0

4 4
5

0 0
1 1

2

0
2
4
6
8

10
12
14
16

no
de

 h
w

no
de

 sw

no
de

 o
p

no
de

 u
n

no
de

 d
f

no
de

 o
l

ne
t h

w
ne

t o
p

ne
t u

n

o

f
in

ci
d

en
ts

Component Failure Service Failure

Figure 6: Component vs Service failure
(Content) This graph depicts the number of
incidents per month based on two months of data
compiled from failure reports.

4

41

18

27

0
5

9
3

0
5

10
15
20
25
30
35
40
45

node hw node sw node op net un

o

f
in

ci
d

en
ts

Component Failure Service Failure

Figure 7: Component vs Service failure
(Oppenheimer ’s Result) for Content This data
was retrieved from one month of failure data. Node
= Fe+Be+Client

 7

reveals that the proportion of operator
component failures in nodes resulting in service
failures is almost equivalent to that of software
component failures. Moreover, the proliferation
of software component failures in our data is less
than 50% of similar data in [15]. This
discrepancy is potentially due to the fact that
software component failures are more effectively
masked as a result of service maturity since the
time period of data presented by [15].
Conforming to the data from [15], very few
hardware component failures that occur in nodes
become service failures. Comparatively less
network errors appear in our observation than in
[15]. Furthermore, the number of node related
operator failures has been reduced by almost
50% (this percentage includes both component
as well as service failures). Perhaps operators
introduce less errors as they become more
familiar with relevant components and
procedures.

B. Online

We analyzed three months of data from the
Online service immediately succeeding the
months analyzed in [15]. The data obtained was
similar in nature with few differences in the
number of service failures caused by each

component. These differences can be attributed
to the fact that there are few service failures
compared to component failures; even a
difference of 2 service failures caused by a
component can skew percentages.

In Online, service front-ends are responsible for
most of the problems. They comprise 84% of all
component failures and 77% of all service
failures. Contrary to the Content service,
network components are the next common cause
for both component and service failures. They
constitute 12% of all component failures and
18% of service failures. This data closely
correlates the Online data in [15]. 9.6% of front-
end component failures and 16% of network
component failures result in service failures.
While back-ends contribute only 3% of
component failures, none of these become
service failures. Front-end component failures
occur at an enormously high rate as there exist
numerous individual components in this category
that can simply wear out. However, these failures
are easily masked due to redundancy in the
components and only a small proportion become
service failures. Network failures, as in the
Content service, are due to the geographical
distribution of service.

Com ponent Failure vs. Service Failure (Online)

58

38

22

7

40

0

19

10
3 4 2 1

5
2

6 4 3
0 0 2 3

0 0 1 0 0
0

10

20

30

40

50

60

70

hw sw op ol df ev un hw sw op ol ev un

o

f
in

ci
d

en
ts

component failures service failures

node net

Com ponent Failure vs. Service Failure (Online)

58

38

22

7

40

0

19

10
3 4 2 1

5
2

6 4 3
0 0 2 3

0 0 1 0 0
0

10

20

30

40

50

60

70

hw sw op ol df ev un hw sw op ol ev un

o

f
in

ci
d

en
ts

component failures service failures

Com ponent Failure vs. Service Failure (Online)

58

38

22

7

40

0

19

10
3 4 2 1

5
2

6 4 3
0 0 2 3

0 0 1 0 0
0

10

20

30

40

50

60

70

hw sw op ol df ev un hw sw op ol ev un

o

f
in

ci
d

en
ts

component failures service failurescomponent failures service failures

node netnode net

Figure 8: Ratio of component to service failures (Online) These graphs are based on three months
of failure data from the Online Service. Node includes Fe and Be.

 8

Nine of the 22 service failures in Online had
multiple causes and tended to be vertically
cascading. Hardware component failures in the
front-end nodes as well as the network were the
most common chronologically first cause for
service failures. Back-end nodes were the most
common chronologically second cause for
service failures. Of the 22 service failures, 50%
were visible to only part of the customer domain
while the remaining 50% were visible to all
customers of this service. The distinction lies in
the proportion of customers affected (decided by
which machine their accounts reside). A
particular service was inaccessible to one or few
groups of users in the scenario where part of the
customers were affected. However, a particular
service such as mail or chat was unavailable or
noticeably slow to all users regardless of which
user group they belonged in the case where all
customers were affected. The partial-customer-
affecting-service failures occurred in front end
nodes and were predominantly due to software
component failures. Service failures affecting all
customers were primarily due to hardware
component failures and often cascaded into
unknown back-end component failures,
compositely resulting in service failures.

Our Online data also reveals that front-ends have
the highest average TTR. Service failures due to
network problems have the next highest average
TTR and back-ends appear to have the least
TTR. This fact contradicts data in [15] as well as
the Content data as both of these suggest that
back-ends have the highest average TTR (see

figure 5). This discrepancy can be attributed to
unusually low number of failures in back-end
nodes during the analyzed time period. Among
various components used to classify data,
overloads resulted in the longest TTR. Perhaps
this conclusion is due to the fact that only two
service failures were used in this calculation,
thus extremely lowering their statistical validity.
However, concurring with [15] and the Content
data, operator errors have a very high average
TTR. The justification for this trend is that these
types of errors are harder to detect and/or mask,
thus prolonging the process of fixing the error.
However, differing from our Content data,
operator error, though it had a high TTR, was not
the most common cause for service failure.
Operator-induced service failures were only the
third most common cause of service failure.

Component Failure to Service Failure for Online

22

58

38

4
10

3 54 2
6

0 3 0 0
0

10

20

30

40

50

60

70

node
op

node
hw

node
sw

net
op

net
hw

net
sw

net
un

o

f
in

ci
d

en
ts

Component Failure

Service Failure

Figure 10: Results from study of Online Service. This data
was compiled from 3 months of failure data. Node = Fe+Be

Figure 9: Service failure cause by component
(Online). This data was retrieved from 3
months of failure data from the Online Service.

Component Failure to Service Failure for Online
(Oppenheimer)

10

32

10

4 4 3 4
6

1
4

0
3

0 1
0

5

10

15

20

25

30

35

node
op

node
hw

node
sw

net
op

net
hw

net
sw

net
un

o

f
in

ci
d

en
ts

Component Failure

Service Failure

Figure 11: Results from Oppenheimer ’s study. This data
was compiled from four months of failure data.
Node = Fe+Be

 9

Failures due to software bugs were the most
common type of service failures. This
disagreement between the two internet services
can be attributed to the fact that the online
service offers more applications to customers
and thus contains significantly additional
software to maintain. Since software is often
dispatched with several bugs, it is not surprising
that this cause is most common for service
failures in the Online service. The second most
common cause for service failures was hardware.
However, the totals for all three of these
categories were off by only one service failure (6
software, 5 hardware, 4 operator). Perhaps with
additional data, the rifts between these numbers
can widen and expose additional insight into the
common cause for failure.

Compared to [15], several more hardware,
software and operator-induced component
failures occur in nodes. Our data reveals more
than twice as many operator and software
component failures and a little less than twice as
many hardware component failures. However,
the number of service failures in Online service
in each of these components remains similar to
data analyzed in [15]. Consequently, an overall
smaller percentage of component failures
become service failures in our data. The
increased number of component failures can be
due to an increase in the number of individual
components used by the service. However, it
appears as though these new component failures
are masked fairly effectively to avoid additional
service failures.

C. Techniques for Failure M itigation

 IS failures can have multiple causes: root cause,
immediate trigger and numerous intermediate
component failures. Perhaps a useful outage

metric is the product of outage duration and the
number of customers affected by the outage. We
have identified failure root causes and their mean
time to repair. However, this metric only
provides the time taken for the problem to be
fixed from the time it occurred. Often, a service
failure is user-visible only for a small interval
and may continue to be a component failure for a
longer period of time. Early detection of failure
and redundancy reduce performance degradation
and can effectively minimize the time to repair.

The normal fault propagation path is:
Component failure � Service failure �
degradation in user perceived Quality of Service
(QoS).

The following techniques help mitigate failures
and sometimes prove beneficial in masking
them:

� Testing (pre-deployment as well as online)
� Redundancy (replicate data, computational

functionality, networking functionality)
� Automatic sanity checks of configuration

files
� Fault and load injection (pre-deployed fault

injection and load testing supporting the
notion of 'prevention better than cure' as
well as online testing to imitate excessive
loads after deployment)

� Increased isolation between software
components to prevent failure propagation

� Periodic prophylactic restarts to avoid latent
errors (e.g., memory leaks, available swap
space)

Of the failures that were analyzed, about 90%
show potential for mitigation by ROC
techniques. In Content, Configuration check
appears to be the most useful ROC technique,

Figure 12: Number of service failures that would have been mitigated by applying ROC
techniques. A total of 52 service failures were analyzed. Red represents redundancy; flt/ld stands for
fault/load injection; config signifies configuration checking; isol stands for isolation of components; Pre
test represents pre-deployment testing; Exp/mon TTD suggests better exposure/monitoring tools to
decrease time to discovery while Exp/mon TTR suggests better exposure/monitoring tools to decrease
time to repair.

5

���

����

5

����
���	�

10

� �����
���	�

2

� ��	

� ���
���

14

� 	�

5

� ���

72 1558

� ��	

� ���
��

� ��
�����

� ����� �
� �����
����

5

���

����

5

����
���	�

10

� �����
���	�

2

� ��	

� ���
���

14

� 	�

5

� ���

72 1558

� ��	

� ���
��

� ��
�����

� ����� �
� �����
����

5

���

����

5

����
���	�

10

� �����
���	�

2

� ��	

� ���
���

14

� 	�

5

� ���

72 1558

� ��	

� ���
��

� ��
�����

� ����� �
� �����
����

5

���

����

5

����
���	�

10

� �����
���	�

2

� ��	

� ���
���

14

� 	�

5

� ���

72 1558

� ��	

� ���
��

� ��
�����

� ����� �
� �����
����

 10

followed by Online fault/load injection. This
result may be attributed to the fact that most
operator errors appear in configurations. Online
testing as well as better exposure/monitoring to
reduce failure discovery time appear to be the
most useful technique in the Online service
followed by Online fault/load injection and
Configuration checking. These results are not
surprising as the service itself is an online
service and continuous online testing can reveal
problems and provide opportunities for faster
repair. The combined total for both these
services reveal that Configuration checking is the
single most useful method for mitigating
failures. Closely following this mitigation
technique are online testing and online fault/load
injection. Perhaps these techniques alone would
reduce the number of failures by at least one
half. These services already isolated components
effectively so this technique would not help
further mitigation. Also, it is evident that once
the failing component was correctly discovered,
it was efficiently repaired. Thus, simply
improving exposure of failures would reduce the
total time a failure is user-visible.

D. Case Studies

There were several interesting service failures
encountered during the data collection process.
Some multiple cause failures are exemplified
below.

In a service failure in Online, the ACL in a front-
end mail-handling machine was mis-configured
and consequently incoming mail from two
particular e-mail web servers was blocked. Once
the problem was discovered and fixed, all
queued mail came pouring in. In turn, this delay
caused front-end machines to be overloaded as
they were unable to handle the amount of
legitimate incoming mail. As the first component
failure directly caused the second, this failure is
an example of a vertically cascaded failure. It
took considerable time for the mail system to
stabilize. This problem can be mitigated by
automatic configuration checks so that all mail-
handling machines can check against a standard
set of configurations issuing warnings if any
discrepancies existed.

‘Contact lost’ alarms were noticed on various
machines on the production DB network at the
Online service. The router between the db
network and the remainder of the service was
problematic. This problem caused a high load

average on a main back-end db machine. Thus,
they rolled over to another back-end db machine,
which also had a high load average in due
course. Eventually, the entire db network was
unavailable so the service failed and the SOC
decided to switch over to a new router. They
manually switched cables from one router to
another. This problem was vertically cascading
as one component failure lead to another and the
failures propagated through a chain resulting
eventually in a service failure. Perhaps better
exposure of the various components and
monitoring them can improve the situation. If the
router was monitored more closely, it will take
less time to detect and correct this problem.
Also, load testing will revealed that the back-end
machines cannot handle this overload and the
administrators can consider options to alleviate
the load.

In the Content service, an application failed a
client box. Under normal circumstances, a
failover would occur and the other box in the
pair would take over. However, this box also had
problems and thus the failover occurred much
later. The first component failure did not cause
the delay in failover. However, an independent
component failure in the second box coupled
with the first component failure due to the
application in the first box resulted in a service
failure affecting both reading and writing
abilities from the client site to the Content
service. Thus, this problem is horizontally
related. Perhaps more redundancy in client boxes
can alleviate this situation so that both boxes can
failover to a third and fourth box.

At a client site in the Content service, one
machine in a pair of client machines was
dysfunctional. The other machine had five
different configuration errors that were mis-
configurations performed by the Content service
at the time of machine dispatch. Consequently
the customer was unable to ‘mount’ . As both
boxes in the pair were unavailable
simultaneously the services were unavailable.
This problem is also horizontally related as the
two component failures occurred independent of
each other. Eventually, these configurations were
fixed and the machines were operational.
Checking configurations would have definitely
mitigated this failure. Also, increased
redundancy in client boxes can help this scenario
as the fail-over can be targeted to a third box
which was functional at that time.

 11

5. Conclusion

From this investigation, it is safe to conclude that
operator-induced errors are most impacting.
Human intervention causes a significant number
of service failures and is also the hardest failure
to mask. The time to discover and repair operator
errors is much greater than that for software and
hardware failures. The most valuable failure
mitigation techniques are configuration
checking, online testing and online fault/load
injection. These techniques carry the potential to
efficiently reveal plausible service failures and in
many cases, prevent their occurrence in Internet
Services.

6. Future Research Directions

Many enhancements can be made to this study.
Oppenheimer has suggested several ideas in his
thesis [15]. I have elaborated on those ideas as
well as mentioned some of my own. Firstly, we
can develop a classification method that
effectively incorporates Vertically Cascading
and Horizontally Related service failures.
Perhaps this information will reveal trends in the
data due to multiple-event failures. Similar
trends can be revealed if we develop failure
models based on the time of day when the failure
occurred. There exists significant scope to
explore failure mitigation techniques and relate
this study with newer classifications based on
multiple-event failures. Eventually, this
information and statistics can be applied towards
developing accurate models for benchmarking.
The remaining categories are in automated
compiling systems that help produce dependable
systems as well as research on the architecture of
Internet Systems. I have categorized and
elaborated these research directions in the
following sub-sections.

A. Failure data-collection and analysis

A large and thorough study of IS failures
embellished by anthropological fieldwork is a
stepping stone in corroborating the statistical
validity of our results. The first step is to broaden
the range of quantitative metrics and account for
degradation in Quality of Service (QoS). This
study must include an investigation of the effect
these failures have on customers and also
perform cost accounting of lost revenue. The role
of failure propagation in causing service failures,
horizontal/vertical cascade, as discovered in my
research will help correlate failures to their

impact on QoS. In this endeavor, it is beneficial
to examine data from a broader spectrum of
services covering various Internet Service
architectures. Furthermore, certain key issues
remain uninvestigated. Specifically, my research
did not address issues such as TTD (time to
detection), which is an important contributor to
"availability". This research can potentially
result in additional taxonomies for classification.

B. Failure M itigation Techniques

After accruing sufficient data to analyze failures,
the next step is to investigate how to mitigate
service failures. Although [15] has developed a
useful model for failure escalation, from fault to
failure to detection to repair, cascaded errors are
especially interesting and deserve further
attention. Monitoring can play a significant role
in predicting component failure, thus engaging
procedures that avert component failure. Perhaps
architectural support can improve software
reliability [14]. It is attractive when compared to
the expensive approach of having software
monitor its own execution and recover from
them. Hardware support has been used in the
past for performance monitoring whereas now
we are interested in improving the reliability of
ISAs. More generally, a computing utility system
architecture with "compute capsules" on a
globally distributed collection of anonymous
computing resources can help facilitate non-
homogeneous monitoring in the IS environment
[22].

The virtues and consequent effect of periodic
prophylactic rebooting and monitoring on
cascaded failures must also be considered. It is
expected that people who develop, operate and
rely upon Internet services will particularly
benefit from this study, as will a larger audience
interested in system failure in a broader sense.
Mitigation techniques such as pre-dispatch
testing, online testing, configuration checking
and prophylactic restarts must be considered.
The next step is to quantify their individual
contributions. The primary medium is error
injection and measuring the consequent impact
of failures and service availability. Metrics such
as throughput, fraction of available service
functionality, response time, and financial cost of
unavailability must be used in quantification.

 12

C. Synthesize Benchmarks from Failure data

Next, it is fruitful to design an accurate model
for benchmarking. Internet Service benchmarks
are more difficult to design than those for
traditional services. Mostly, they comprise a
mixture of high-level tasks rather than simple
protocol-level workloads. One significant
research direction would be to design a
stochastic fault-model, based on data already
gathered, to drive service-level dependability and
recoverability. Benchmarking recoverability is
based on QoS, whose decrease is an inverse
measure of recoverability. Benchmarking
dependability incorporates the mean time to
failure of each failing component. Perhaps a
beneficial metric comprises weighting QoS
responses to recovery events by the frequencies
of component failures and their impact based on
their mean time to recovery.

D. Research on Internet Services
Architecture (ISA)

Another important direction is in the area of
Internet Services Architecture. As a side effect of
this research, one can answer questions related to
the design and analysis of the architecture of IS.
Some examples are the following questions.
What is the effective architecture for current
Internet services? Currently our discussion is
quite limited to a vague notion of stateless front
ends, and stateful back ends. What exactly is
"business logic" and how is it embodied in the
service? How is state synchronized across
multiple collocation facilities? Why is so much
custom software required? Is there a means to
abstract internal hosting center topology? It will
improve our understanding of how various IS
services differ from one another. What are
particular challenges faced by one service
relative to another?

The above research directions cumulatively
provide dependable performance in Internet
Services by effectively decreasing the number of
customer-impacting failures. Tools designed as
parts of this endeavor will not only provide
feedback to prevent component degeneration but
also yield results to improve the service model
and most importantly, availability. In addition I
expect this research endeavor to improve the
design and architecture of Internet Systems.
Most importantly, these efforts will contribute to
the advancement of Dependable Internet
Systems.

7. Acknowledgements

I wish to thank several people for their
constructive criticisms and tireless efforts to edit
this paper. I would like to thank Professor David
Patterson for his continual guidance and
feedback throughout this investigation. I would
also like to thank David Oppenheimer for
helping at every stage of the data analysis and
providing valuable feedback on my work as well
as this paper. Last but not least, I would like to
thank everyone who proof-read this paper.

8. References

[1] Brewer E. Lessons from giant-scale services.
IEEE Internet Computing, July 2001.

[2] Cable News Network Television.
http://money.cnn.com/1999/10/06/markets/nasda
q/index.htm

[3] Enriquez P, Brown A. and Patterson D.A.
Lessons from the PSTN for dependable
computing submission to Workshop on Self
Healing, Adaptive and self-MAN-aged systems,
2002.

[4] Chandra S. and Chen P.M. How Fail-Stop are
Faulty Programs? Proc. of the 1998 Symp .on
Fault-Tolerant Computing (FTCS), June 1998.

[5] Gray J. Why do computers stop and what can
be done about it? Symposium on reliability in
distributed software and database systems, 3-12,
1986.

[6] Hewlett Packard. HP OpenView
http://www.openview.hp.com/

[7] IBM Tivoli software. http://www.tivoli.com/

[8] Spector, A. IBM. Autonomic Computing,
ROC Retreat, Tahoe City, CA, June 10-12, 2002.

[9] Kuhn D.R. Sources of failure in the public
switched telephone network. IEEE Computer
30(4), 1997.

[10] Lancaster L. and Rowe A. Measuring real-
world data availability. Proceedings of LISA
2001, 2001.

[11] Lee I. and Iyer R. Software dependability in
the Tandem GUARDIAN system. IEEE

 13

Transactions on Software Engineering, 21(5),
1995.

[12] Microsoft TechNet. Building scalable
services.http://www.microsoft.com/technet/treevi
ew/default.asp?url=/TechNet/itsolutions/ecomme
rce/deploy/proj-plan/bss1.asp, 2001.

[13] Hamilton, J. Microsoft. Active Server
Availability. Feedback, ROC Retreat, Tahoe
City, CA, June 10-12, 2002.

[14] Oplinger, J. & Lam, M.S. Enhancing
Software Reliability using Speculative Threads,
In Proceedings of the Conference on
Architectural Support for Programming
Languages and Operating Systems, October
2002.

[15] Oppenheimer D. Why do Internet Services
fail, and what can be done about it? MS thesis,
Computer Science Division University of
California Berkeley, May 2002.

[16] Patterson D.A. Recovery-Oriented
Computing. ROC Retreat, Winter 2002 Lake
Tahoe, Nevada, January 2002.

[17] Patterson, D. A. A simple way to estimate
the cost of downtime. Submission to 16th
Systems Administration Conference (LISA'02),
2002.

[18] Patterson, D.A., Gibson, G. A. and Katz,
R.H. A case for redundant arrays of inexpensive
disks (RAID). Technical Report UCB/CSD
87/391 University of California, Berkeley. also
appeared in ACM SIGMOD Conf. Proc.,
Chicago, June 1-3, 1988, 109-116

[19] Patterson, D. A., A. Brown, P. Broadwell,
G. Candea, M. Chen, J. Cutler, P. Enriquez,
A.Fox, E. Kiciman, M. Merzbacher, D.
Oppenheimer, N. Sastry, W.Tetzlaff, J.
Traupman, N. Treuhaft. Recovery-Oriented
Computing (ROC): Motivation, Definition,

Techniques, and Case Studies. UC Berkeley
Computer Science Technical Report UCB//CSD-
02-1175, March 15, 2002.

[20] Brown, A. and Patterson, D.A. Rewind,
Repair, Replay: Three R's to Dependability. To
appear in 10th ACM SIGOPS European
Workshop, Saint-Emilion, France, September
2002.

[21] Oppenheimer, D., A. Brown, J. Beck, D.
Hettena, J. Kuroda, N. Treuhaft, D.A. Patterson,
and K. Yelick. ROC-1: Hardware Support for
Recovery-Oriented Computing. IEEE
Transactions on Computers, vol. 51, no. 2,
February 2002.

[22] Schmidt, B.K. Supporting Ubiquitous
Computing with Stateless Consoles and
Computation Caches Ph.D. Thesis, Computer
Science Department, Stanford University,
August 2000.

[23] Sullivan M. S. and Chillarege R. A
comparison of software defects in database
management systems and operating systems. In
Proceedings of the 22nd International
Symposium on Fault-Tolerant Computing,
1992.

[24] Sun Microsystems. Solaris JumpStart.
http://wwws.sun.com/software/solaris/archive/8/
ds/ds-webstart/

[25] Thakur A. and Iyer R. Analyze-NOW-an
environment for collection and analysis of
failures in a network of workstations. IEEE
Transactions on Reliability, R46 (4), 1996.

[26] Xu J., Kalbarczyk Z. and Iyer R. Networked
Windows NT System Field Failure Data
Analysis.
http://www.crhc.uiuc.edu/~junxu/resume/Papers/
PRDC99_camera_ready.pdf

 14

Appendix A – Content Data Tables
Note: CF = component failure, SF = service failure

A. Character istics of Failure Data
 Faults Failures Time per iod

Content 106 36 2 months

B. Component/Service Failure cause by location
 Fe Be Net Client Cust-

net
Cust-
unk

Unk Total

Content(CF) 41(38.7%) 17(16%) 13(12.3%) 28(26.4%) 2(1.9%) 1(.9%) 4(3.8%) 106
Content(SF) 6(16.7%) 2(5.6%) 6(16.7%) 18(50%) 2(5.6%) 0 2(5.6%) 36

C. Chronologically First CF/SF cause by component and type of cause (Fe) ---All failures impacted

both read and wr ite
 Hw

Disk
Sw
App

Sw
Apph

Hw
Swx

Op
Con

Op
Proc

Un Tot

Content
(CF)

3 8 2 1 9 1 17 41

Content
(SF)

0 1 1 0 2 0 2 6

D. Chronologically Second CF/SF cause by component and type of cause (Fe) ---All failures

impacted both read and wr ite
 Sw

Apph
Op
Con

Df Tot

Content
(CF)

1 1 1 3

Content
(SF)

0 1 0 1

E. Chronologically First CF/SF cause by component and type of cause (Be) ---- (R) = affected read,

(B) = affected both read and wr ite
 Hw

Disk
Sw
App

Op
Proc

Df Un Tot

Content
(CF)

10 1 1 3 2 17

Content
(SF)

1 (R) 0 1(B) 0 0 2

F. Chronologically First CF/SF cause by component and type of cause (Net) ---- All failures

impacted both read and wr ite
 Hw

Cable
Hw
Swx

Op
Config

Unk Wan Unk
Lan

Un
Router

Unk Tot

Content
(CF)

1 1 1 1 1 2 6 13

Content
(SF)

0 1 1 0 0 2 2 6

G. Chronologically First CF/SF cause by component and type of cause (Client) ---- (R) = affected

read, (W) = affected wr ite, (B) = affected read and wr ite
 Hw

Disk
Sw
App

Op
ConUp

Op
ConIn

Op
ConUn

Op
Other

Ol Un Tot

Content 1 7 1 2 4 1 1 11 28

 15

(CF)
Content
(SF)

0 5(B) 1(B) 1(B) 2(B) 1(B) 1(B) 7(5B, R1,
W1)

18

H. Chronologically Second CF/SF cause by component and type of cause (Client) ---- (R) = affected

read, (W) = affected wr ite, (B) = affected read and wr ite
 Sw

App
Op
ConIn

Tot

Content
(CF)

6 1 7

Content
(SF)

6(5B,1R) 1(B) 7

I. Chronologically Third CF/SF cause by component and type of cause (Client) ---- 1 Service

Failure (1 Component Failure) – OpConfigInit affected read and write

J. Chronologically First CF/SF cause by component and type of cause (Cust-net) ---- (B) = affected

both read and wr ite
 Op

ConUp
Un Tot

Content
(CF)

1 1 2

Content
(SF)

1(B) 1(B) 2

K. Chronologically First CF/SF cause by component and type of cause (Cust-unk) ---- 1 fault, no

failures

L. Chronologically First CF/SF cause by component and type of cause (Unk) ---- (R) = affected

read, (W) = affected wr ite, (B) = affected read and wr ite
 Hw

Mem
Op
Con

Tot

Content
(CF)

3 1 4

Content
(SF)

1(R) 1(W) 2

M. Number of failures due to fault in root cause components listed below:
 Hw Sw Op Ol UnRouter Un Total
Content 3(8.3%) 7(19.4%) 11(30.6%) 1(2.8%) 2(5.6%) 12(33.3%) 36

 16

Appendix B – Online Data Tables
Note: CF = component failure, SF = service failure

A. Character istics of Failure Data
 Component Failures Service Failures Time per iod

Online 210 22 3 months

B. Component/Service Failure cause by location
 Fe Be Net Unk Total
Online(CF) 177(84.3%) 7(3.3%) 25(11.9%) 1(0.5%) 210
Online(SF) 17(77.3%) 0 4(18.2%) 1(4.5%) 22

C. Chronologically First CF/SF cause by component and type of cause (Fe)
 Hw

Sw
App

Op
Con

Op
Proc

Op Un Df Ol Un Tot

Online
(CF)

55 38 14 2 5 38 7 18 177

Online
(SF)

2 6 3 0 1 0 3 2 17

D. Chronologically Second Fault/Failure cause by component and type of cause (Fe)
 Sw

Apph
Hw Ol Df Tot

Online
(CF)

4 3 6 6 19

Online
(SF)

1 0 1 0 2

E. Chronologically Third Fault/Failure cause by component and type of cause (Fe)
2 faults—1 ol and 1 sw; no failures.

F. Chronologically First Fault/Failure cause by component and type of cause (Be)
 Hw

Op
Con

Df Un Tot

Online
(CF)

3 1 2 1 7

Online
(SF)

0 0 0 0 0

G. Chronologically Second Fault/Failure cause by component and type of cause (Be)
 Sw Un Tot
Online
(CF)

1 6 7

Online
(SF)

1 4 5

H. Chronologically First Fault/Failure cause by component and type of cause (Net)
 Hw

Sw Op

Con
Op
Proc

Ev Ol Un Tot

Online
(CF)

10 3 2 2 1 2 5 23

Online
(SF)

3 0 0 0 0 1 0 4

 17

I . Chronologically First Fault/Failure cause by component and type of cause (Net)
1 fault (net-un-alteon) no failures

J. Chronologically First Fault/Failure cause by component and type of cause (Unk)
1 fault/1 failure in Unk-un

K. Number of failures due to fault in root cause components listed below:
 Hw Sw Op Ol Df Ev Un Total
Online 5 6 4 4 0 0 3 22

