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1. Introduction 
 
In the post-PC era, research on reliable Internet 
Services (IS) is gaining increased attention. The 
proliferation of networks and information 
technology places an enormous demand on IS. In 
particular, the 24 hours a day, 7 days a week 
delivery of service to customers requires 
dependable availability. Failures are a fact and 
recovery/repair is the only solution [16]. 
 
Un-availability can be quantitatively defined as 
the ratio of MTTR (mean time to repair) to the 
sum of MTTR (mean time to repair) and MTTF 
(mean time to failure). Decreasing MTTR is as 
valuable as increasing MTTF. By learning why 
systems fail, failure distribution across parts of 
an IS, we attempt to envision a plausible model 
for future Information Technology (IT). In this 
endeavor, we focus on discovering and 
characterizing failure causes, and suggesting 
methods to improve recovery from failures, 
consequently increasing availability. As an 
example, pervasive use of redundancy improves 
disaster tolerance. Improving recovery from 
failures automatically improves availability.  
 
The size, complexity and use of IS often 
necessitate a globally distributed 
communications infrastructure. Most IS contain 
a significantly large number of nodes that are 
usually geographically distributed, often 
clustered in collocation sites. With such 
architectures, dependability is an enormous 
challenge. Services may fail in multifaceted 
ways due to numerous diverse components and 
interactions between them. An improved 
understanding of failures and their classification 
is essential to improve availability. One approach 
to distinguish failures is to partition them into 
component failures and service failures. While 
both are due to faulty components, only service 
failures are visible to the customers. 
 
Previous research in the area of Fault Tolerant 
Systems (FTS) has attacked this problem from a 
different perspective. These approaches focus 
primarily on hardware redundancy to enhance 
reliability, e.g., using triple modular redundancy 

and voter logic. They focus on graceful 
degradation and redundancy to mask failures 
thereby improving fault tolerance [4, 18]. The 
Berkeley/Stanford Recovery-Oriented-
Computing Project (ROC) emphasizes recovery 
from failures rather than failure-avoidance [19]. 
The major motivation for this approach is the 
observation that most robust systems continue to 
occasionally encounter failures due to human 
operator errors, transient or permanent hardware 
failure, and software anomalies due to 
"Heisenbugs" or software aging. Software 
failures are inevitable and a detailed 
understanding of the causes of downtime is 
important [12]. ROC's approach collaborates 
with industry to obtain real data on failure 
causes, analyze patterns, develop benchmarks 
that test old systems and generate new ideas to 
measure improvement, providing support for 
humans to operate services  [16].  

 
Initially, our primary motivation and goals are to 
study the operational characteristics and failure 
data of several large-scale IS. Our focus has been 
to verify and increase the statistical validity of 
results presented in [15, 3]. We study how 
maturity affects the number of failures. We 
provide case studies and data, and in some cases, 
broaden the range of metrics. This effort will 
facilitate better approximation of failure models 
in order to improve the accuracy of 
benchmarking. These studies also analyze 
several failure mitigation techniques that 
improve availability.  
 
Oppenheimer presents data from three Internet 
services whose architectures are classified as 
Online, Readmostly and Content [15]. We 
analyze the Online and Content services in finer 
detail. The on-line service/Internet portal is 
termed Online. The global content hosting 
service is termed Content. The high traffic read-
mostly IS is termed Readmostly. All three 
systems distribute their servers geographically in 
collocation facilities. The primary differences 
between these services are their load, read/write 
ratio and the use of standard web browsing or 
special purpose software offered to the customer. 
See figure 1. The Online service receives 
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approximately 100 million hits per day with a 
medium relative read/write ratio. It has two 
collocation sites with about 500 machines 
running Solaris on SPARC and x86 
architectures. The Content service receives 
approximately 7 million hits per day and also has 
a medium relative read/write ratio [15]. This 
service has 15 collocation sites with 
approximately 500 machines running open-
source x86 OS.  
 
Oppenheimer suggests taxonomies for 
classification of failures such as root cause, 
immediate trigger and type [15]. We define root 
cause as the chronologically first event in a 
sequence of events that leads to a service failure. 
The immediate trigger is the final event 
preceding the service failure. The focus of failure 
fixes has been to reduce problem recurrence. 
Furthermore, an attempt is made to identify 
components that are frequently involved in a 
singleton or cascading service failures. Service 
failures due to multiple component failures are 
analyzed to identify and understand recurring 
patterns that cause such failures. This 
information can be used to build systems that are 
immune to such patterns and consequently avoid 
fault propagation and service failures.   
 
2. Related Research 
 
The explosion and popularity of IS in the past 
decade has placed an unprecedented demand on 
the reliability of these round-the-clock services 
[16]. Although failures have been studied 
extensively in the past within the context of 
fault-tolerant computing, large scale IS 
operations focus on issues such as increased rate 
of software upgrades. Companies such as 
Amazon Inc., Google Inc. and Yahoo! Inc. serve 

both as a repository for data in ubiquitous 
computing systems as well as a platform for 
building new global-scale applications and 
services. Potentially, they can provide 
fascinating solutions to hard problems. It is now 
expected that these services offer 100% 
availability to customers of e-commerce, 
enterprise applications, on-line services and 
ISPs. Unfortunately, service outages are frequent 
and outage costs are high, for example, consider 
the infamous NASDAQ stock-market outage 
resulting in several million-dollar loss in 
revenues [2]. In general, in IS, outage costs are 
enormous. Apart from the social effects that 
include negative press repercussion and loss of 
customers who "click over" to competition, the 
loss in revenues range from half a million to five 
million dollars per hour [16].  
Contemporaneously, rapid deployment of new 
software, applications and user-interfaces 
necessitate the change of operational software 
while continually providing service. Other 
important facets of IS include maintainability to 
reduce the burden on system administrators and 
evolutionary growth to allow easy system 
expansion over time without sacrificing 
availability or maintainability. 
 
Researchers on large-scale IS have concentrated 
on appropriate architectures for such sites [1, 
12]. Several studies are pertinent to causes of 
failures in various types of computer systems, 
albeit non-IS specific [5]. Kuhn examined data 
on failures in Public Switched Telephone 
Systems [9]. He concluded that human error had 
a significant customer impact on these failures. 
Enriquez extended this study, considering 
blocked-calls metric collected from outage 
reports [3]. She concluded that human error was 

Figure 1: Distinguishing character istics of Internet Services der ived from [15]. 
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responsible for over fifty percent of outages, 
customer minutes and blocked calls.  
 
Failures in networks of workstations have been 
studied in [25]. A large number of outages are 
due to planned maintenance, software 
installation and configuration. System software 
and planned maintenance caused the largest 
amount of total downtime. Several researchers 
have examined failures in enterprise server 
environments [10, 11, 23]. Relevant research in 
the area of system monitoring, diagnosis and 
configuration include [6, 7, 24]. 
 
In the on-going effort to work with industry to 
obtain real data on failure causes and patterns; 
[15] surveys three sites and [3] provides a survey 
of FCC switch failure data. The results presented 
in this paper are an extension of these efforts. 
Parts of the results corroborate their findings and 
the remainder provides additional insights into 
the analysis, considering data gathered over an 
extended period. 
 
3. Data collection 
 
Once a failure occurs, the first observation is 
related to the location of the failure. These 
locations can be the service front-end, mail-
handling nodes, service back-end and network 
domains for Online and service front-end, client 
front-ends, service back-end and network 
domains for Content. Distinct categorization 
occurs due to differing architectures for these 
services.  Front-end nodes serve as the 
intermediary between the user and back-end 
nodes. These servers obtain requests from users, 
forward them to back-end nodes and in the 

Online service, deliver processed data from 
back-end nodes to the user. Back-end nodes 
serve as data storage units and in the case of the 
Content service, return data requested by front-
end nodes to the user [15]. Client nodes are 
front-ends that are geographically located at the 
customer site. See figure 2. 
 
The next area of concentration is the cause for 
the failure: hardware, software, operator, 
overload, disk-full and environment. Hardware 
and software errors occur due to faulty or broken 
hardware and buggy software respectively. 
Operator errors are caused by human 
intervention that introduce an error into the 
existing system. Temporal overloads occur when 
loads exceed limits that components can 
comfortably handle without degradation. Disk-
fulls(spatial overloads) are attributed to 
insufficient space on a disk partition.  
 
In our research we have attempted to gather 
additional data that extends the scope of our 
initial investigation and consequent classification 
of failures. The cause field was further classified 
to elaborate the particular component that caused 
the failure. For example, hardware is classified 
into memory and CPU. Similarly, operator error 
is classified into configuration and procedural 
categories. 
 
In the failure analysis of US Public Switched 
Telephone Network (PSTN), Enriquez suggests 
that it is beneficial to classify human errors into 
the following categories: vendors, contractors, 
technicians and outsiders. In our research, 
instead of classification based on personnel roles, 
we elaborate human error based on the nature of 

Figure 2: Internet Service Architecture. Client nodes are generalized as front end nodes as only the 
Content service makes a distinction between the two. 



 4 

action performed by the operator to cause the 
failure. Our classification includes two types of 
operator errors: configuration error and 
procedural error. For example, a configuration 
error occurs when the system is configured 
wrong or in general when the configuration file 
contains erroneous data. Similarly, procedural 
errors occur when the operator performs a 
careless act such as replacing the wrong disk in a 
Raid5 system. Furthermore, these errors can be 
introduced during various stages of a task: initial 
stage, during an upgrade, or when fixing a 
discovered error. Upon unloading a computer 
package, the nascent start-up of a system can be 
erroneous because of the operator's mis-
configuration. Similarly, while upgrading 
software, the operator may be oblivious of 
relevant changes that are dependent on this 
upgrade. This oversight results in a configuration 
or procedural error during upgrade.  
 
We extend the research presented in [15] and [3], 
incorporating additional data obtained from 
Online and Content services, probing further in 
their analysis. Root cause and immediate trigger 
do not always represent the complete scenario of 
failures. Often, several events lead to failure. In 
some cases, each event can be considered as a 
link in a chain in which a missing link can avoid 
failure. This chain starts with the earliest 
occurring event, the root cause, and terminates 
with the last event, the immediate trigger that 
caused the failure. The presence of interim links 
in the chain necessitates the consideration of 
cascaded failures. Alternately, it is possible to 
have multiple independent events that do not 
form a linked chain. However, they cumulatively 
contribute to a single failure. We show that such 
failures are more common in Content than 
Online. We distinguish between these two types 
of multiple-event failures as vertically cascaded 
(VC) and horizontally related(HR) respectively. 
 
4. Analysis 
 
Data was analyzed in multiple passes. The initial 
classification presented in [15] seemed sufficient 
at first but as we increased the quantity of data 
collected; it was more appropriate to extend the 
initial classification. [15] distinguishes between a 
component failure and a service failure. A 
component failure does not impact a customer; 
however, it carries the potential for a future 
impact. In contrast, a service failure has an 
immediate impact on the customer. In our study, 
customer impacts are further classified into two 

categories. PartOfCustomersAffected (PCA) 
depicts the part of an entire customer base to 
which a service failure was visible. 
PartOfServiceAffected (PSA) denotes the effect 
of service failure observable in operations such 
as read, write or both for Content IS and 
similarly, mail, chat or news operations for 
Online IS.  
 
As discovered by Oppenheimer, there are several 
causes of failure of which human error is a 
leading contributor. Our data complies with [15] 
in this aspect. As visible in figure 3, Operator 
errors are also the leading cause for high TTR. 
These errors affected both reading from the site 
and writing operations to the site in the content-
hosting service. In the Online service, it had 
various repercussions such as degrading 
performance or inability to use services such as 
chat and e-mail.   
 
A. Content 
 
Our observation reveals that multiple-event 
failures are a significant part of operator-induced 
failures in the Content category of IS. HR failure 
comprises almost 8% of incidents involving 
component failures and 25% of incidents 
involving service failures. Of the HR failures, all 
affected read operations; most of them (about 
88%) affected write operations as well. These 
statistics were retrieved by counting each service 
failure once, regardless of the number of 
component failures causing this service failure. 
For example, to avoid multiple counts of the 
same failure, a service failure that had three HR 
component failures was counted only once 
despite multiple causes. The chronologically 
earliest component failure was counted as the 
cause for the corresponding service failure. All 
HR service failures had their chronologically 
first component failure in the client node. 
Subsequent component failures were also located 
in client nodes and were mostly software errors. 
 
Service front-ends are responsible for more 
problems than service back-ends and client 
nodes. However, 64% of client component 
failures become service failures while only 46% 
of network, 15% of front-end, and 12% of back-
end component failures become service failures. 
Client component failures occur at an 
enormously high rate because the relevant nodes 
are at the client site and are administered by both 
the Content service as well as the client service.  
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There is considerable scope for disconcerted 
inconsistency in node handling by both services.  
Network failures can primarily be attributed to 
the geographical distribution of the service as 
well as the management of links between the 
customer and service sites. Front-end problems 
result in fewer minutes of unavailability. In 
contrast, back-end failures are significant, albeit 
infrequent. Unfortunately, operator error is the 
most difficult to mask. The TTR tables in figure 

5 reveal that the back-end average TTR is 
longest. Client TTR is also high because of 
issues that remain hard to detect; usually, these 
issues are related to component failures that 
occur at a remote site. Often, these components 
are maintained by administrators who are not 
comfortably familiar with the equipment; they 
work for the client company, not the content 
service. Network service failures achieve the 
third highest average TTR. Operator errors take 
the longest time to repair because they are often 
subtle and hard to discover. For example, a typo 
in the configuration file is often easily 
overlooked and thus takes longer to detect. 
Among these operator errors, procedural errors 
have the highest TTR as they can range from a 
knocked off cable to an erroneously replaced 
RAID disk. Following operator-induced service 
failures, software errors are predominant. This 
dominance can be attributed to the fact that 
programmers write imperfect code. Also, several 
disk errors appear due to conditions arising from 
exhaustive use of space in a file-system. Other 
errors are due to hardware and occasionally due 
to network break-ins and viruses; however, 
security issues were not accounted in these 
calculations. 
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Figure 4: Service failure cause by 
component (Content). This data was 
obtained from the analysis of two months of 
failure data  Content hosting service. 
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Figure 3: Ratio of component to service failures (Content) Note: These graphs are based on 
three months of failure data from the Online Service. Node data includes Fe and Be. 
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There is a distinction in data between the results 
 presented in [15] and ours. The number of 
component failures in two months (analyzed 
here) is equivalent to the number of component 
failures in one month analyzed in [15]. This 
disparity can primarily be attributed to the time 
period of analysis and the changes in service 
maturity. Since the time of the original analysis, 
the IS matured from a startup to a relatively 

stable service. The results provided in [15] 
suggest that a larger proportion of operator 
component failures in nodes turn into service 
failures compared to that of software component 
failures in nodes. While [15] classifies front-end 
and back-end machines as nodes, we include 
client nodes in this category. We analyzed two 
months of data and computed an average to 
compare equivalent time periods (one month) of 
data with [15]. See figures 6 and 7. Our data 

Figure 5: Time to Repair  in hours for  each service failure analyzed in Content and Online  
Times highlighted in red denote large TTR values. Failures with unusually high TTR due to lower 
priority of a collocation site (usually a test site) was not included in this table. These numbers could not 
be retrieved for 16 service failures due to lack of sufficient information in problem reports. 
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Figure 6: Component vs Service failure 
(Content) This graph depicts the number of 
incidents per month based on two months of data 
compiled from failure reports.  
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reveals that the proportion of operator 
component failures in nodes resulting in service 
failures is almost equivalent to that of software 
component failures. Moreover, the proliferation 
of software component failures in our data is less 
than 50% of similar data in [15]. This 
discrepancy is potentially due to the fact that 
software component failures are more effectively 
masked as a result of service maturity since the 
time period of data presented by [15]. 
Conforming to the data from [15], very few 
hardware component failures that occur in nodes 
become service failures. Comparatively less 
network errors appear in our observation than in 
[15]. Furthermore, the number of node related 
operator failures has been reduced by almost 
50% (this percentage includes both component 
as well as service failures). Perhaps operators 
introduce less errors as they become more 
familiar with relevant components and 
procedures. 
 
B. Online 
 
We analyzed three months of data from the 
Online service immediately succeeding the 
months analyzed in [15]. The data obtained was 
similar in nature with few differences in the 
number of service failures caused by each 

component. These differences can be attributed 
to the fact that there are few service failures 
compared to component failures; even a 
difference of 2 service failures caused by a 
component can skew percentages. 
 
In Online, service front-ends are responsible for 
most of the problems. They comprise 84% of all 
component failures and 77% of all service 
failures. Contrary to the Content service, 
network components are the next common cause 
for both component and service failures. They 
constitute 12% of all component failures and 
18% of service failures. This data closely 
correlates the Online data in [15]. 9.6% of front-
end component failures and 16% of network 
component failures result in service failures. 
While back-ends contribute only 3% of 
component failures, none of these become 
service failures. Front-end component failures 
occur at an enormously high rate as there exist 
numerous individual components in this category 
that can simply wear out. However, these failures 
are easily masked due to redundancy in the 
components and only a small proportion become 
service failures. Network failures, as in the 
Content service, are due to the geographical 
distribution of service.  
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Figure 8: Ratio of component to service failures (Online) These graphs are based on three months 
of failure data from the Online Service. Node includes Fe and Be. 
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Nine of the 22 service failures in Online had 
multiple causes and tended to be vertically 
cascading. Hardware component failures in the 
front-end nodes as well as the network were the 
most common chronologically first cause for 
service failures. Back-end nodes were the most 
common chronologically second cause for 
service failures. Of the 22 service failures, 50% 
were visible to only part of the customer domain 
while the remaining 50% were visible to all 
customers of this service. The distinction lies in 
the proportion of customers affected (decided by 
which machine their accounts reside). A 
particular service was inaccessible to one or few 
groups of users in the scenario where part of the 
customers were affected. However, a particular 
service such as mail or chat was unavailable or 
noticeably slow to all users regardless of which 
user group they belonged in the case where all 
customers were affected. The partial-customer-
affecting-service failures occurred in front end 
nodes and were predominantly due to software 
component failures. Service failures affecting all 
customers were primarily due to hardware 
component failures and often cascaded into 
unknown back-end component failures, 
compositely resulting in service failures.  

Our Online data also reveals that front-ends have 
the highest average TTR. Service failures due to 
network problems have the next highest average 
TTR and back-ends appear to have the least 
TTR. This fact contradicts data in [15] as well as 
the Content data as both of these suggest that 
back-ends have the highest average TTR (see  

 
figure 5). This discrepancy can be attributed to 
unusually low number of failures in back-end 
nodes during the analyzed time period.  Among 
various components used to classify data, 
overloads resulted in the longest TTR. Perhaps 
this conclusion is due to the fact that only two 
service failures were used in this calculation, 
thus extremely lowering their statistical validity. 
However, concurring with [15] and the Content 
data, operator errors have a very high average 
TTR. The justification for this trend is that these 
types of errors are harder to detect and/or mask, 
thus prolonging the process of fixing the error. 
However, differing from our Content data, 
operator error, though it had a high TTR, was not 
the most common cause for service failure. 
Operator-induced service failures were only the 
third most common cause of service failure. 
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was compiled from 3 months of failure data. Node = Fe+Be 

Figure 9: Service failure cause by component 
(Online). This data was retrieved from 3 
months of failure data from the Online Service. 
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Failures due to software bugs were the most 
common type of service failures. This 
disagreement between the two internet services 
can be attributed to the fact that the online 
service offers more applications to customers 
and thus contains significantly additional 
software to maintain. Since software is often 
dispatched with several bugs, it is not surprising 
that this cause is most common for service 
failures in the Online service. The second most 
common cause for service failures was hardware. 
However, the totals for all three of these 
categories were off by only one service failure (6 
software, 5 hardware, 4 operator). Perhaps with 
additional data, the rifts between these numbers 
can widen and expose additional insight into the 
common cause for failure.  
  
Compared to [15], several more hardware, 
software and operator-induced component 
failures occur in nodes. Our data reveals more 
than twice as many operator and software 
component failures and a little less than twice as 
many hardware component failures. However, 
the number of service failures in Online service 
in each of these components remains similar to 
data analyzed in [15]. Consequently, an overall 
smaller percentage of component failures 
become service failures in our data. The 
increased number of component failures can be 
due to an increase in the number of individual 
components used by the service. However, it 
appears as though these new component failures 
are masked fairly effectively to avoid additional 
service failures.   
 
C. Techniques for  Failure M itigation 
 
 IS failures can have multiple causes: root cause, 
immediate trigger and numerous intermediate 
component failures. Perhaps a useful outage 

metric is the product of outage duration and the 
number of customers affected by the outage. We 
have identified failure root causes and their mean 
time to repair. However, this metric only 
provides the time taken for the problem to be 
fixed from the time it occurred. Often, a service 
failure is user-visible only for a small interval 
and may continue to be a component failure for a 
longer period of time. Early detection of failure 
and redundancy reduce performance degradation 
and can effectively minimize the time to repair.  
 
The normal fault propagation path is: 
Component failure � Service failure � 
degradation in user perceived Quality of Service 
(QoS).  
 
The following techniques help mitigate failures 
and sometimes prove beneficial in masking 
them: 
 
� Testing (pre-deployment as well as online) 
� Redundancy (replicate data, computational 

functionality, networking functionality) 
� Automatic sanity checks of configuration 

files 
� Fault and load injection (pre-deployed fault 

injection and load testing supporting the 
notion of 'prevention better than cure' as 
well as online testing to imitate excessive 
loads after deployment) 

� Increased isolation between software 
components to prevent failure propagation 

� Periodic prophylactic restarts to avoid latent 
errors (e.g., memory leaks, available swap 
space) 

 
Of the failures that were analyzed, about 90% 
show potential for mitigation by ROC 
techniques. In Content, Configuration check 
appears to be the most useful ROC technique, 

Figure 12: Number  of service failures that would have been mitigated by applying ROC 
techniques.  A total of 52 service failures were analyzed. Red represents redundancy; flt/ld stands for 
fault/load injection; config signifies configuration checking; isol stands for isolation of components; Pre 
test represents pre-deployment testing; Exp/mon TTD suggests better exposure/monitoring tools to 
decrease time to discovery while Exp/mon TTR suggests better exposure/monitoring tools to decrease 
time to repair. 
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followed by Online fault/load injection. This 
result may be attributed to the fact that most 
operator errors appear in configurations. Online 
testing as well as better exposure/monitoring to 
reduce failure discovery time appear to be the 
most useful technique in the Online service 
followed by Online fault/load injection and 
Configuration checking. These results are not 
surprising as the service itself is an online 
service and continuous online testing can reveal 
problems and provide opportunities for faster 
repair. The combined total for both these 
services reveal that Configuration checking is the 
single most useful method for mitigating 
failures. Closely following this mitigation 
technique are online testing and online fault/load 
injection. Perhaps these techniques alone would 
reduce the number of failures by at least one 
half. These services already isolated components 
effectively so this technique would not help 
further mitigation. Also, it is evident that once 
the failing component was correctly discovered, 
it was efficiently repaired. Thus, simply 
improving exposure of failures would reduce the 
total time a failure is user-visible.  
 
D. Case Studies 
 
There were several interesting service failures 
encountered during the data collection process. 
Some multiple cause failures are exemplified 
below. 
 
In a service failure in Online, the ACL in a front-
end mail-handling machine was mis-configured 
and consequently incoming mail from two 
particular e-mail web servers was blocked. Once 
the problem was discovered and fixed, all 
queued mail came pouring in. In turn, this delay 
caused front-end machines to be overloaded as 
they were unable to handle the amount of 
legitimate incoming mail. As the first component 
failure directly caused the second, this failure is 
an example of a vertically cascaded failure. It 
took considerable time for the mail system to 
stabilize. This problem can be mitigated by 
automatic configuration checks so that all mail-
handling machines can check against a standard 
set of configurations issuing warnings if any 
discrepancies existed.  
 
‘Contact lost’  alarms were noticed on various 
machines on the production DB network at the 
Online service. The router between the db 
network and the remainder of the service was 
problematic. This problem caused a high load 

average on a main back-end db machine. Thus, 
they rolled over to another back-end db machine, 
which also had a high load average in due 
course. Eventually, the entire db network was 
unavailable so the service failed and the SOC 
decided to switch over to a new router. They 
manually switched cables from one router to 
another. This problem was vertically cascading 
as one component failure lead to another and the 
failures propagated through a chain resulting 
eventually in a service failure. Perhaps better 
exposure of the various components and 
monitoring them can improve the situation. If the 
router was monitored more closely, it will take 
less time to detect and correct this problem. 
Also, load testing will revealed that the back-end 
machines cannot handle this overload and the 
administrators can consider options to alleviate 
the load.  
 
In the Content service, an application failed a 
client box. Under normal circumstances, a 
failover would occur and the other box in the 
pair would take over. However, this box also had 
problems and thus the failover occurred much 
later. The first component failure did not cause 
the delay in failover. However, an independent 
component failure in the second box coupled 
with the first component failure due to the 
application in the first box resulted in a service 
failure affecting both reading and writing 
abilities from the client site to the Content 
service. Thus, this problem is horizontally 
related. Perhaps more redundancy in client boxes 
can alleviate this situation so that both boxes can 
failover to a third and fourth box. 
 
At a client site in the Content service, one 
machine in a pair of client machines was 
dysfunctional. The other machine had five 
different configuration errors that were mis-
configurations performed by the Content service 
at the time of machine dispatch. Consequently 
the customer was unable to ‘mount’ . As both 
boxes in the pair were unavailable 
simultaneously the services were unavailable. 
This problem is also horizontally related as the 
two component failures occurred independent of 
each other. Eventually, these configurations were 
fixed and the machines were operational. 
Checking configurations would have definitely 
mitigated this failure. Also, increased 
redundancy in client boxes can help this scenario 
as the fail-over can be targeted to a third box 
which was functional at that time.  
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5. Conclusion 
 
From this investigation, it is safe to conclude that 
operator-induced errors are most impacting. 
Human intervention causes a significant number 
of service failures and is also the hardest failure 
to mask. The time to discover and repair operator 
errors is much greater than that for software and 
hardware failures. The most valuable failure 
mitigation techniques are configuration 
checking, online testing and online fault/load 
injection. These techniques carry the potential to 
efficiently reveal plausible service failures and in 
many cases, prevent their occurrence in Internet 
Services. 
 
6. Future Research Directions 
 
Many enhancements can be made to this study. 
Oppenheimer has suggested several ideas in his 
thesis [15]. I have elaborated on those ideas as 
well as mentioned some of my own. Firstly, we 
can develop a classification method that 
effectively incorporates Vertically Cascading 
and Horizontally Related service failures. 
Perhaps this information will reveal trends in the 
data due to multiple-event failures. Similar 
trends can be revealed if we develop failure 
models based on the time of day when the failure 
occurred. There exists significant scope to 
explore failure mitigation techniques and relate 
this study with newer classifications based on 
multiple-event failures. Eventually, this 
information and statistics can be applied towards 
developing accurate models for benchmarking. 
The remaining categories are in automated 
compiling systems that help produce dependable 
systems as well as research on the architecture of 
Internet Systems. I have categorized and 
elaborated these research directions in the 
following sub-sections. 
 
A. Failure data-collection and analysis 
 
A large and thorough study of IS failures 
embellished by anthropological fieldwork is a 
stepping stone in corroborating the statistical 
validity of our results. The first step is to broaden 
the range of quantitative metrics and account for 
degradation in Quality of Service (QoS). This 
study must include an investigation of the effect 
these failures have on customers and also 
perform cost accounting of lost revenue. The role 
of failure propagation in causing service failures, 
horizontal/vertical cascade, as discovered in my 
research will help correlate failures to their 

impact on QoS. In this endeavor, it is beneficial 
to examine data from a broader spectrum of 
services covering various Internet Service 
architectures.  Furthermore, certain key issues 
remain uninvestigated. Specifically, my research 
did not address issues such as TTD (time to 
detection), which is an important contributor to 
"availability". This research can potentially 
result in additional taxonomies for classification. 
 
B. Failure M itigation Techniques 
 
After accruing sufficient data to analyze failures, 
the next step is to investigate how to mitigate 
service failures. Although [15] has developed a 
useful model for failure escalation, from fault to 
failure to detection to repair, cascaded errors are 
especially interesting and deserve further 
attention. Monitoring can play a significant role 
in predicting component failure, thus engaging 
procedures that avert component failure. Perhaps 
architectural support can improve software 
reliability [14]. It is attractive when compared to 
the expensive approach of having software 
monitor its own execution and recover from 
them. Hardware support has been used in the 
past for performance monitoring whereas now 
we are interested in improving the reliability of 
ISAs. More generally, a computing utility system 
architecture with "compute capsules" on a 
globally distributed collection of anonymous 
computing resources can help facilitate non-
homogeneous monitoring in the IS environment 
[22]. 
 
The virtues and consequent effect of periodic 
prophylactic rebooting and monitoring on 
cascaded failures must also be considered. It is 
expected that people who develop, operate and 
rely upon Internet services will particularly 
benefit from this study, as will a larger audience 
interested in system failure in a broader sense. 
Mitigation techniques such as pre-dispatch 
testing, online testing, configuration checking 
and prophylactic restarts must be considered. 
The next step is to quantify their individual 
contributions. The primary medium is error 
injection and measuring the consequent impact 
of failures and service availability. Metrics such 
as throughput, fraction of available service 
functionality, response time, and financial cost of 
unavailability must be used in quantification. 
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C. Synthesize Benchmarks from Failure data 
 
Next, it is fruitful to design an accurate model 
for benchmarking. Internet Service benchmarks 
are more difficult to design than those for 
traditional services. Mostly, they comprise a 
mixture of high-level tasks rather than simple 
protocol-level workloads. One significant 
research direction would be to design a 
stochastic fault-model, based on data already 
gathered, to drive service-level dependability and 
recoverability. Benchmarking recoverability is 
based on QoS, whose decrease is an inverse 
measure of recoverability. Benchmarking 
dependability incorporates the mean time to 
failure of each failing component. Perhaps a 
beneficial metric comprises weighting QoS 
responses to recovery events by the frequencies 
of component failures and their impact based on 
their mean time to recovery.  
 
D.  Research on Internet Services 
Architecture (ISA) 
 
Another important direction is in the area of 
Internet Services Architecture. As a side effect of 
this research, one can answer questions related to 
the design and analysis of the architecture of IS. 
Some examples are the following questions. 
What is the effective architecture for current 
Internet services?  Currently our discussion is 
quite limited to a vague notion of stateless front 
ends, and stateful back ends.  What exactly is 
"business logic" and how is it embodied in the 
service?  How is state synchronized across 
multiple collocation facilities? Why is so much 
custom software required?  Is there a means to 
abstract internal hosting center topology? It will 
improve our understanding of how various IS 
services differ from one another. What are 
particular challenges faced by one service 
relative to another? 
 
The above research directions cumulatively 
provide dependable performance in Internet 
Services by effectively decreasing the number of 
customer-impacting failures. Tools designed as 
parts of this endeavor will not only provide 
feedback to prevent component degeneration but 
also yield results to improve the service model 
and most importantly, availability. In addition I 
expect this research endeavor to improve the 
design and architecture of Internet Systems. 
Most importantly, these efforts will contribute to 
the advancement of Dependable Internet 
Systems. 
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Appendix A – Content Data Tables 
Note: CF = component failure, SF = service failure 
 
A. Character istics of Failure Data 
 Faults Failures Time per iod 

Content 106 36 2 months 
 
B. Component/Service Failure cause by location 
 Fe Be Net Client Cust-

net 
Cust-
unk 

Unk Total 

Content(CF) 41(38.7%) 17(16%) 13(12.3%) 28(26.4%) 2(1.9%) 1(.9%) 4(3.8%) 106 
Content(SF) 6(16.7%) 2(5.6%) 6(16.7%) 18(50%) 2(5.6%) 0 2(5.6%) 36 
 
C. Chronologically First CF/SF cause by component and type of cause (Fe) ---All failures impacted 

both read and wr ite 
 Hw 

Disk 
Sw 
App 

Sw 
Apph 

Hw 
Swx 

Op 
Con 

Op 
Proc 

Un Tot 

Content
(CF) 

3 8 2 1 9 1 17 41 

Content
(SF) 

0 1 1 0 2 0 2 6 

 
D. Chronologically Second CF/SF cause by component and type of cause (Fe) ---All failures 

impacted both read and wr ite 
 Sw 

Apph 
Op 
Con 

Df Tot 

Content
(CF) 

1 1 1 3 

Content
(SF) 

0 1 0 1 

 
E. Chronologically First CF/SF cause by component and type of cause (Be) ---- (R) = affected read, 

(B) = affected both read and wr ite 
 Hw 

Disk 
Sw 
App 

Op 
Proc 

Df Un Tot 

Content
(CF) 

10 1 1 3 2 17 

Content
(SF) 

1 (R) 0 1(B) 0 0 2 

 
F. Chronologically First CF/SF cause by component and type of cause (Net) ---- All failures 

impacted both read and wr ite 
 Hw 

Cable 
Hw 
Swx 

Op 
Config 

Unk Wan Unk  
Lan 

Un 
Router  

Unk Tot 

Content 
(CF) 

1 1 1 1 1 2 6 13 

Content 
(SF) 

0 1 1 0 0 2 2 6 

 
G. Chronologically First CF/SF cause by component and type of cause (Client) ---- (R) = affected 

read, (W) = affected wr ite, (B) = affected read and wr ite 
 Hw 

Disk 
Sw 
App 

Op 
ConUp 

Op 
ConIn 

Op 
ConUn 

Op 
Other  

Ol Un Tot 

Content 1 7 1 2 4 1 1 11 28 
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(CF) 
Content 
(SF) 

0 5(B) 1(B) 1(B) 2(B) 1(B) 1(B) 7(5B, R1, 
W1) 

18 

 
H. Chronologically Second CF/SF cause by component and type of cause (Client) ---- (R) = affected 

read, (W) = affected wr ite, (B) = affected read and wr ite 
 Sw 

App 
Op 
ConIn 

Tot 

Content 
(CF) 

6 1 7 

Content 
(SF) 

6(5B,1R) 1(B) 7 

 
I. Chronologically Third CF/SF cause by component and type of cause (Client) ---- 1 Service 

Failure (1 Component Failure) – OpConfigInit affected read and write 
 
J. Chronologically First CF/SF cause by component and type of cause (Cust-net) ---- (B) = affected 

both read and wr ite 
 Op 

ConUp 
Un Tot 

Content 
(CF) 

1 1 2 

Content 
(SF) 

1(B) 1(B) 2 

 
K. Chronologically First CF/SF cause by component and type of cause (Cust-unk) ---- 1 fault, no 

failures 
 
L. Chronologically First CF/SF cause by component and type of cause (Unk) ---- (R) = affected 

read, (W) = affected wr ite, (B) = affected read and wr ite 
 Hw 

Mem 
Op 
Con 

Tot 

Content
(CF) 

3 1 4 

Content
(SF) 

1(R) 1(W) 2 

 
M. Number  of failures due to fault in root cause components listed below: 
 Hw Sw Op Ol UnRouter  Un Total 
Content 3(8.3%) 7(19.4%) 11(30.6%) 1(2.8%) 2(5.6%) 12(33.3%) 36 
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Appendix B – Online Data Tables 
Note: CF = component failure, SF = service failure 
 
A. Character istics of Failure Data 
 Component Failures Service Failures Time per iod 

Online 210 22 3 months 
 
B. Component/Service Failure cause by location 
 Fe Be Net Unk Total 
Online(CF) 177(84.3%) 7(3.3%) 25(11.9%) 1(0.5%) 210 
Online(SF) 17(77.3%) 0 4(18.2%) 1(4.5%) 22 
 
C. Chronologically First CF/SF cause by component and type of cause (Fe)  
 Hw 

 
Sw 
App 

Op 
Con 

Op 
Proc 

Op Un Df Ol Un Tot 

Online 
(CF) 

55 38 14 2 5 38 7 18 177 

Online 
(SF) 

2 6 3 0 1 0 3 2 17 

 
D. Chronologically Second Fault/Failure cause by component and type of cause (Fe)  
 Sw 

Apph 
Hw Ol Df Tot 

Online 
(CF) 

4 3 6 6 19 

Online 
(SF) 

1 0 1 0 2 

 
E. Chronologically Third Fault/Failure cause by component and type of cause (Fe)  
2 faults—1 ol and 1 sw; no failures. 
 
F. Chronologically First Fault/Failure cause by component and type of cause (Be)  
 Hw 

 
Op 
Con 

Df Un Tot 

Online 
(CF) 

3 1 2 1 7 

Online 
(SF) 

0 0 0 0 0 

 
G. Chronologically Second Fault/Failure cause by component and type of cause (Be)  
 Sw Un Tot 
Online 
(CF) 

1 6 7 

Online 
(SF) 

1 4 5 

 
H. Chronologically First Fault/Failure cause by component and type of cause (Net)  
 Hw 

 
Sw Op 

Con 
Op 
Proc 

Ev Ol Un Tot 

Online 
(CF) 

10 3 2 2 1 2 5 23 

Online 
(SF) 

3 0 0 0 0 1 0 4 
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I . Chronologically First Fault/Failure cause by component and type of cause (Net)  
1 fault (net-un-alteon) no failures  
 
J. Chronologically First Fault/Failure cause by component and type of cause (Unk)  
1 fault/1 failure in Unk-un 
 
K. Number  of failures due to fault in root cause components listed below: 
 Hw Sw Op Ol Df Ev Un Total 
Online 5 6 4 4 0 0 3 22 
 


