

ABSTRACT
User studies involving users with disabilities often incur greater
financial and complexity costs than those involving general
populations. Developers of end-user systems rarely, if ever, test
their applications with disabled users in the early stages of design,
typically preferring instead to interview a few typical, non-
disabled users, or simply conduct an informal expert review. This
is problematic since the biggest design decisions are often made
early in the design process. Without feedback or input from
disabled users about a system, design decisions may not reflect
their needs. In particular, users with vision or motor impairments
may bring special requirements to the user interface design
process. This paper examines the feasibility of simulating the
interaction experiences of users with motor impairments to help
developers identify disability-related usability problems similar to
those received during user testing. We present EASE (Evaluating
Accessibility through Simulation of user Experience), a discount
evaluation tool that simulates the interaction experiences of users
with motor impairments. We show that the use of simulation in
the context of users of word prediction software, with motor
impairments, is an effective approach to obtaining results similar
to those found through actual user studies with motor impaired
users. Further, we discuss some of the advantages simulation of
this sort affords, the design and implementation of EASE, and
some on-going research into other possibilities for simulation.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User Modeling and Accessibility–
evaluation/methodology, prototyping, user-centered design.

General Terms
Design, Human Factors.

Keywords
Simulation, User Modelling, Assistive Technologies, Disability

1. INTRODUCTION
Accessibility of electronic information and interfaces for all users
is of undeniable import. However, accessibility is often not
extended to users with disabilities, despite the existence of legal
and social pressures to do so. For instance, using most web pages
is not possible, or exceedingly difficult for blind users [3]. Even
simple tasks such as filling out a web form can cost a user with a
motor impairment significantly more time and effort than an able-
bodied user. Consider the case where a designer asks a user to
input mailing, shipping and billing addresses, but doesn’t offer the
option to use the same data for all three. This poses a minor
inconvenience for an able-bodied user, but could take a user with
a sever motor impairment who has a particularly slow typing
speed many times longer than necessary, simply due to poor
design.

Although blind access issues have received more attention in the
past, we chose focus on accessibility for users with motor
impairments in order to motivate our idea of simulating user
interaction experience for early stage design evaluation. Creating
accessible interfaces for users with motor impairments is
particularly difficult due to the various effects motor impairments
have on interaction techniques, and the broad variation in how

much a motor impairment affects input bandwidth. Additionally,
blind interaction experience can be simulated with off-the-shelf
tools (turn off the monitor, and use a screen reader), while no
simulation tools exist for motor impairments. We present EASE
(Evaluating Accessibility through Simulation of user Experience),
a tool that simulates user interaction experiences for motor
impairments. We also present a study showing that simulation,
using EASE, is an effective solution for gaining feedback on user
experiences.

There exists a wide range of conditions that affect motor control
such that assistive devices or rate enhancement schemes are
considered beneficial for users with those impairments. These
disabilities include “paralysis, weakness, contractures,
amputations, tremors, spasticity, and other limitations related to
coordinated movement” [14]. The impairments described cause
gross motor impairments, which result in “limitations in strength,
coordination, and joint range of motion”, fine motor impairments,
which affect “precise movements of the wrist and fingers”, and
mobility impairments, which “may affect a person’s ability to
walk”[14]. Fine and gross motor impairments particularly affect a
user’s ability to interact with their computers.

Various software, standards and physical devices are available in
order to improve accessibility for users with motor impairments as
discussed above. Although they tend to focus more on visual
impairments, the W3C guidelines [21] and automatic verification
tools for the web, like Bobby [2] address motor impairments as
well. Unfortunately, standards are typically characterized by
complex or vague guidelines that can lead to multiple, conflicting
interpretations. Further, it is not proven that automated tools for
accessibility, nor standards alone, are adequate for insuring
accessibility for disabled users [7]. Physical devices, like
keyboard guards, mouth sticks and specialized switches, and
applications like screen readers, word predictors and scanning or
single-switch interfaces are just a few devices a person with a
motor impairment might employ. However, they represent “after-
the-fact” approaches and do not ensure accessibility of a product
or application. This fact is easily verified by comparing how a
non-impaired user is able to interact with a computer to how some
individuals with disabilities are forced to interact through a
smaller set of techniques. Using the example above, if an able
bodied user is filling out a web form, they would usually type,
whereas a user with a sever motor impairment might be limited to
a scanning interface using only a single switch to enter each
character. While there will always be differences in interaction
techniques between disabled users and non-disabled users, the
goal of accessibility can not be discarded on this basis alone.

Thus, we argue that even with the current set of accessibility
guidelines, software and physical devices for users with motor
impairments, user feedback about accessibility is still necessary to
support accessible design. While usability testing and user studies
are necessarily the backbone of user-centered design and
development, user testing with special populations is often more
difficult than studies with larger populations [3], [4]. Also,
because of its high overhead, user testing is rarely used in the
early stages of design, when interviewing a few typical, non-
disabled users, or simply conducting an informal expert review is
a more effective use of resources [20]. Thus, we present the idea
of simulating user interaction experiences for designers.

We present a tool for simulating the interaction experiences of
users with motor impairments for designers to evaluate and
improve the accessibility of their products early in the design
cycle. Simulating user interaction experiences (referred to as
“simulation” from now on) provides numerous benefits to
designers and to communities seeking accessible products. A
flexible and robust tool affords early and frequent evaluation of
applications, taking into account user experience, i.e., it allows
developers to use their products in ways that disabled users might.
For instance, a designer who attempts to interact with her
application using a single-switch input and scanning interface,
will better understand the effort a user with a motor impairment
must exert to use the application. We believe that using a
simulation tool to identify accessibility issues early in the design
process can improve the quality and payoff of user studies later in
the design process, and the overall accessibility of the final
design.

In order to deem simulation a viable technique, a developer using
it must be able to find results similar to those he might find with
disabled users. To test the feasibility of simulation as an
evaluation tool, we compare the results between three studies of
word prediction (WP) software. We show that the use of
simulation in the context of users of WP software is an effective
approach to obtaining results similar to those found through
actual user studies with motor-impaired users.

We chose to examine WP software with simulation because of the
plethora of information regarding user text entry rates, keystroke
savings, and error rates, as well as the utility it can offer users
with motor impairments. This field is particularly appropriate to
consider since early testing, had it included actual users with
motor impairments, would have uncovered the small or negative
benefit most motor-impaired users experience with WP software.
Research that does not involve users tends to focus on keystroke
savings (based on the prediction scheme or presentation used), or
upper bounds on prediction rates and prediction accuracy given a
WP configuration [1], [5], [13].

The next section presents an overview of related work,
particularly pertaining to the question of how and on what basis
motor impairments should be simulated. This is followed by a
description of EASE, our simulation tool, in Section 3. Section 4
presents two studies demonstrating that simulation offers accurate
results. Section 5 concludes the paper, and discusses our plans
for the future involving a consideration of other domains where
simulating user experience could improve designing for
accessibility.

2. BACKGROUND
Usability and accessibility of interfaces is clearly paramount for
disabled users. One clear solution to understanding how to make
an application accessible to users with disabilities is usability
testing. Through user studies, Koester was able to examine users
of WP technologies, and found that most users will not experience
an increase in their text entry rate, even with specialized
customizations, unless their current text entry rate is less than 8
words per minute (WPM) [11]. Readers should note that prior to
studies like this with feedback and data from disabled users,
keystroke savings were (and still are) touted as the gold standard
for WP technologies. Some of these applications report keystroke
savings of 37-47% [10]. Note that keystroke savings do not imply

increased text creation, or an increase in time savings for the user.
Reports of increased keystroke savings do not imply that users
will experience any benefit beyond typing fewer characters. Even
the developers of the WP system used for our studies claim
keystroke savings of up to 46% for unfamiliar words, and 77% for
familiar words [1]. One of the main differences between these
findings and the findings from user studies is that keystroke
savings measurements do not take into account the additional
cognitive load required for users of systems that, like word
prediction, reduce motor requirements [12]. Even when
keystroke savings are possible, these savings are often outweighed
by the additional costs of scanning a word prediction list,
choosing the correct word from the list, or not finding the word in
the list and then typing another character before reading the list
again.

This small example shows that user testing is a necessary
component of the design process. Unfortunately, user testing with
special populations often requires greater effort, time and
monetary commitments on the part of designers, developers and
their companies than user testing with non-disabled populations
[3], [4]. Further, while user testing is ideal for user-centered
design, it is not the standard. Vredenburg et al. found that most
developers tend to prefer expert and informal evaluation for early
design phase evaluation [20]. Actual user studies, if they happen
at all, only happen towards the end of the design phase. Similarly,
Gould and Lewis found that even if designers felt they understood
good design practices, they still more often relied on their
intuitions for design, than the principles they thought they
understood [6].

This presents a problem. User testing can improve design, but is
often too expensive, time consuming, or difficult to perform as
often as is needed throughout the design process. One alternative
is to employ user modeling. Keates et al. examined the feasibility
of user modeling for motor-impaired users. They concluded that
since most motor impairments are too broadly defined and have
too many associated effects on motor abilities, no extensible
“implicit or explicit models of user behavior” are available to
create an effective user model [8]. Thus, a complete user model
for simulation is not necessarily the best approach. Trewin
developed an interaction model for motor impaired users [19].
She used her data to develop a number of generalizations about
the types of errors motor impaired users experience during text
entry, on which we base the design of our simulation tool. This
work points clearly to the possibility of simulating generalized
input patterns for the purpose of accessibility testing in early stage
design phases.

Koester and Levine also showed that modeling works on a smaller
scale [9]. They examined the feasibility of simulating user text
entry times with a Keystroke Level Model (KLM). With this
model, they found that “user performance with word prediction
systems can be successfully modeled using a relatively simple
model that considers only keypress and list search actions” [10].
Further, they developed a user performance model to determine
whether the cost of a WP tool outweighs its benefit [9]. These
findings show that GOMS/KLM is an appropriate approach for
discovering possible usability issues without incorporating user
testing in early design stages. However, a new GOMS/KLM
model must be built for each interface, and the expertise required
to build a GOMS/KLM model is often greater than the effort a
developer is willing to put into user testing. The difficulties

associated with GOMS as an evaluation technique thus leave it
outside of the abilities of many developers. From the perspective
of using simulation as a discount evaluation tool, Koester and
Levine’s findings are quite encouraging. Koester and Levine
were able to accurately simulate and predict user input times in a
narrowed context; therefore, it follows that offering a more
flexible tool for simulation than strict modeling is a potentially
effective approach to understanding the usability of a product or
application. We will revisit Koester and Levine’s discussions,
study and findings from [10] in Section 4.3 to compare with our
user study results.

Given these results, it is apparent that full-fledged user modeling,
like user testing, is not an appropriate solution for a discount
evaluation tool. Simulation presents itself as a middle ground
between these two successful, but often neglected, solutions.

3. EASE
In this section we discuss the design and architecture of EASE,
and some of the benefits afforded by simulation of user interaction
experience. EASE stands for “Evaluating Accessibility through
Simulation of user Experience.”

3.1 EASE Architecture
EASE includes functionality for modeling two common effects of
motor impairments on keyboard input: reduced input bandwidth
and increased error (or adding errors to a user’s typical input
stream).

3.2 Data Used to Define Simulations
The reduced input bandwidth mode in EASE takes a purely user-
configurable approach due to the wide range of input rates
associated with different motor impairments. Further, data on the
average input rates for users with motor impairments varies so
greatly, that a user-configurable approach is the best way to insure
robustness and usability of EASE.

The increased error mode in EASE is derived from Trewin’s
study of the most common types of keyboard and mouse errors for
individuals with varying motor impairments [18]. In Trewin’s
work, participants with motor impairments where chosen such
that the effects of their impairments covered a broad range of
mouse and keyboard input difficulties. The most common errors
she found include Additional Key and Bounce errors. Additional
Key errors occur when a user hits a key adjacent to the key they
intended to press. Bounce errors occur when a user presses a key
for longer than the timeout allowed between the key_down and
key_up events.

The percentage of error to include depends greatly on the user
being modeled. Trewin found error rates ranging from less than
1% to 9% for users with differing motor impairments. Research
on input errors for disabled users is not widely available, nor is it
widely generalizable due to the atypical nature of disability [8],
[18]. Trewin cites the tendency of HCI research to focus on
“cognitive errors and their causes, ignoring physical errors of the
kind produced by erratic motor control” as one predominant
reason why data of this type is unavailable. However, the
generalizations Trewin found provided an excellent basis for the
design of Additional Key and Bounce errors in EASE.

3.2.1 Reduced Input Bandwidth
Reduced input bandwidth is achieved by forcing a user to wait a
constant number of seconds between each keystroke. EASE
currently supports changing input bandwidth on the fly between
four preset input rates. Users of EASE simply type the access
code for the rate desired to turn the rate throttle on and off. The
preset input rates are 5, 8, 12 and 15 words per minute (WPM),
but are further configurable via the EASE source code.

3.2.2 Bounce Errors
Bounce errors are quite straightforward. When a user enters a key
and the doubling error mode is on, that key is repeated in the
output 10% of the time. The percentage of the time doubling
errors occur is available in the code and is configurable depending
on the user experience being simulated and the effect of the motor
impairment expected.

3.2.3 Additional Key Errors
For additional key errors, we use an error map, or a confusion list
[15], to determine the key to output. The error map is an
adjacency list with the error keys and error probabilities for each
entry in the array. This map consists of an array of key scan
codes, where each key points to an array of scan code and
probability pairs. Each array is the set of keys adjacent to the
indexing key, paired with the set of probabilities for each key (see
Figure 1.) Given the key pressed and a random integer between 0
and 99, the key to output is chosen by indexing into the letter
array and then summing all of the probabilities until the sum is
greater than the random number. The letter being pointed at that
moment is the letter that replaces the index letter. For example, if
a user presses the ‘a’ key, then an ‘a’ is drawn to the screen 64%
of the time, ‘s’ and ‘q’ are drawn to the screen 6% of the time, and
so on. Similarly, if a user presses the ‘a’ key, and the error index
is 74, then a ‘q’ is drawn to the screen instead of an ‘a’. The
current implementation only includes the keys directly adjacent a
given key in its error list.

3.3 Implementation of EASE
EASE is implemented as a device driver based on Ctrl2Cap, a
kernel-mode WDM1 device driver developed by System Internals
[17]. Ctrl2Cap “layers in the keyboard class device’s stack above
the keyboard class device” in order to catch and filter keyboard
read requests [17]. For each request, it posts an I/O completion
callback, at which point it processes the scan code being returned.
Each of the error modes is easily turned on or off by using the
associated “start” and “stop” codes. For instance, the start code
string for decreased input bandwidth is “ZZZ”, and the stop code
is “QQQ”. When an error mode is turned on, then the read
request is changed accordingly. The codes to control the on/off
states of each mode are quite easy to change in the driver,
however, future work will allow users to customize the start and
stop codes.

3.4 Benefits of EASE
The flexibility EASE affords changing and configuring different
parameters to simulate a user interaction experience is necessary
for such a tool to work effectively. Currently, all of the error

1 The “Windows Driver Model (WDM) is a strategy for making

driver development simpler” [16].

states are configurable (on/off), and can be used in conjunction
with one another; further, the reduced input bandwidth mode is
configurable with a variety of different input rates. With this
flexibility, designers can test their systems with a variety of input
conditions, including reduced input bandwidth and different types
of increased error. This functionality also allows designers to
understand a greater range of user experiences and create specific
simulations and more robust designs.

There are further benefits developers can gain from using a
simulation tool like EASE. EASE allows designers to experience
what their users might experience every day while trying to
interact with their computers. An understanding of the
inaccessibility struggles users face gives designers an experiential
knowledge from which to design in the future. Furthermore,
designers do not design in a vacuum. As one designer begins to
understand the accessibility problems one group of users might
face, they can share these discoveries with other designers and
developers for incorporation into their designs.

Another benefit of using a tool like EASE for early interface
evaluation involves user studies. Since EASE is not intended as a
replacement for user studies, it is assumed that after early and
iterative design testing, at some point, designers will ask disabled
users what they think of the system. By this time, developers will
have already found and fixed a number of usability and
accessibility problems in their systems. It follows that their user
studies can then focus on problems that would not have been
discussed if the original problems had not been fixed. This
benefits both designers and users. Designers will not leave user
studies feeling that their systems are completely inaccessible due
to initial, large usability problems that were not addressed early
on. Users are able to focus more on usability once basic
accessibility issues are out of the way. If accessibility is
paramount to the developers and designers, then less time and
effort is spent redesigning the system to meet accessibility
standards. Further, using a tool like EASE offsets the chances of
a disastrous user study, that can lead to abandonment of design or,
worse yet, the goal of accessibility, due to poor initial feedback.

4. COMPARISON OF SIMULATION AND
DIRECT USER FEEDBACK
We will discuss two approaches to simulation, and compare the
results of user testing with these simulation methods to results

Figure 1: Error map used to determine the key to output after
an input key is pressed. For the ‘A’ key, there is a 64% chance
that ‘A’ will be output, a 6% chance the CAPS lock will be
activated, a 6% chance that the ‘Q’ key is output, and so on.
Assume the ‘A’ key is pressed and the random number 72 is
generated. Then the key output is ‘Q’

found in user studies with motor-impaired users. Our goal is to
test the effectiveness of simulation in general, and EASE in
particular for measuring the effect of a motor impairment on the
use of a word prediction tool. As mentioned before, we chose to
focus on WP because success is so hard to predict without
involving users. We compared reduced bandwidth simulated with
EASE, a physical means of reducing bandwidth, and results
disabled users of WP (from a study conducted by Koester and
Levine [10].) Our goal was to better understand the impact of
reduced input bandwidth on the usability of a commercial WP
program. Our hypothesis was that physical simulation, and our
simulation tool, would give results similar to Koester and
Levine’s study with disabled users.

We conducted two studies to measure the user experience and
interaction rates of able-bodied users when using WP and either
physical or software-based simulation of reduced input
bandwidth, described in Section 4.1 and 4.2, respectively. We
took into account qualitative and quantitative measurements of
user experience and input speeds. Based on our results, we
conclude in Section 4.3 that simulation is a viable approach, and
that EASE is an effective tool for simulation.

4.1 Study of Physical Simulation
The first study we conducted looked at the experiences of non-
impaired users with WP software where their input rates were
reduced by using an unwieldy pointer when typing. This study
gave us initial feedback on the feasibility of simulation.

Figure 2: Input speeds achieved in each condition. Note
that in each case, the line never exceeds the maximum
possible speed for that condition. For instance, the 5
WPM condition for each user never exceeds the 5.00
WPM line on the Y axis.

4.1.1 Method
Participants were 6 graduate students with no known cognitive or
motor impairments, each of whom demonstrated typing
proficiency and was comfortable using a computer for word
processing tasks. Users’ input was gathered by asking them to
respond to a simple essay question for each of three input
conditions. In the reduced bandwidth condition users were asked
to type using a large pointer. This pointer was a pointing stick for
use with a regular keyboard and was created by the authors after
initial tests showed that asking users to type with only one finger
did not reduce their input bandwidth enough to offer them any
benefit from the WP software. This condition measured a baseline
input rate for users with narrowed input bandwidth. In the second
typing condition, word prediction, users were asked to use WP
software along with the pointer. The final typing condition was
natural typing, or typing in the way most natural to the user, as an
overall baseline of input rate and ability.

The study was conducted using Microsoft Word for word
processing, and Aurora, a WP tool from Aurora Systems, Inc. [1].
Users were given a tutorial on how to use the WP software and
were encouraged to practice with it until they felt comfortable.
Users were not assigned a WP selection method, i.e., users were
not told to “always read the WP list before typing another letter or
choosing a word”, or “only read the WP list for words long than
three letters.” We used a randomized, within subjects design to
account for learning effects.

4.1.2 Results
Results from this experiment show that introduction of the WP
software actually reduced the input rate for most users, even in the
reduced bandwidth condition. On average, users’ input was 9.8
WPM (std. Dev. is 1.22 WPM) using during the reduced
bandwidth condition, and fell to 7.2 WPM (std. dev. is 2.08
WPM) during the word prediction condition. Qualitatively
participants in the reduced bandwidth condition were observed,
and reported, typing an entire word with just the pointer, even

when the appropriate word was available on the WP screen. One
participant reported typing entire words only for shorter words
(and words not in the WP list), and all but one of the participants

were observed doing this as well. When asked how often he or
she typed an entire word without using the WP list, the average
participant response was 3.5, or slightly more than “sometimes”
on a scale from 0 (never) to 5 (often). This result is particularly
interesting since it indicates that the average input speed of these
users is possibly still too great for them to consider WP software
beneficial to their input rate. Quantitative results were less clear.
On average, a t-test showed that users were faster with the pointer
alone than with word prediction (p=.04). Visual inspection shows
that not one participant exceeded their maximum input rate when
using WP, although almost half of participants came close to
achieving their maximum input rate.

4.2 Study of Software-Based Simulation
The second study employed EASE, described in Section 3. In this
study, we used only the input rate reduction portions of the tool to
put an upper limit on the maximum rate a user could type. Our
goal in this study was to show that EASE was effective for
simulation, and in fact a more effective tool than the physical
methods employed in the first study.

4.2.1 Method
With this study, similar to the previous study, we preformed a
within subjects study. Participants were 6 graduate students with
no known cognitive or motor impairments. Each could
demonstrate typing proficiency, and was comfortable using a
computer for word processing tasks. Each participant was asked
to respond to four simple essay questions, each with a different
maximum input rate, and employing WP software for each
response. The rates chosen were 5, 8, 12 and 15 WPM2, in order
to explore, through simulation, the threshold at which users
experience benefit from WP tools. The ordering of these input
speeds was randomized in order to account for learning effects.
These rates capped the maximum possible speed for any keyboard
input. For instance, if a user was responding to a question with a
maximum rate of 8 WPM, their rate may fall well below that of 8
WPM, but could never go beyond 8 WPM unless they received
benefit from the WP software. Again, the software used was
Aurora, and users were given a tutorial on how to use the WP
software and were encouraged to practice with it until they felt
comfortable. Users were not assigned a WP selection method.
We used a randomized, within subjects design to account for
learning effects.

4.2.2 Results
All users, despite a WPM limit, typed more slowly than that limit
allowed when using WP. Figure 2 illustrates this graphically,
showing the speed achieved by each user in each condition.

At higher input speeds we found an interesting result. The greater
the input speed, the greater the distance between a user’s actual
speed and the maximum possible speed. For instance, based on
the 12 WPM condition, we determined with probability 99% that
users, on average, will only achieve speeds of 9 WPM or less,
when their input rates are 12 WPM. Similarly, based on the 15
WPM condition, we determined with probability 99% that users,
on average, will only achieve speeds of 10 WPM or less, when

2 Words per minute are calculated from characters per minute,

assuming an average word length of 5 characters.

their input rates are 15 WPM. These calculations represent users
achieving only 75% and 66% of maximal speed, respectively. We
had similar findings for the 5 WPM and 8 WPM conditions. With
probability 99%, at 5 WPM, users will on average achieve only
4.8 WPM, or 96% of maximum speed, and at 8 WPM, users will,
on average, only achieve 6.8 WPM, or 85% of maximum speed.
See Figure 3.

Four of our six users reported that not using word prediction, or
ignoring the WP screen part of the time allowed them to input
more quickly. Users also reported and were observed using the
WP less effectively and only for longer words when typing at
higher speeds.

4.3 Discussion
The results from our two studies display many similarities, when
compared to Koester and Levine’s. First, each of our studies
concluded that participants with input rates greater than 8 WPM
found no benefit from word prediction, and in fact were slowed
down by it, even though its use was optional. Our findings are in
line with Koester’s anecdotal report, after working with users with
motor impairments, that only users with an input rate less than 8
WPM would receive benefit from WP [11]. In our study, the
results for users typing at 5 WPM were inconclusive, because
input rates with and without WP were very close, and in fact we
found in a small longitudinal study that users could achieve
speeds greater than 5 WPM with practice when using WP.

Our results also match those of Koester and Levine’s study [10],
where disabled participants with reduced input bandwidth caused
by motor-impairment were found to gain no benefit from using
word prediction. With respect to simulation, these findings are
similar to what others have found during tests with motor-
impaired users: “[T]he additional cognitive and perceptual

activities [required with this technology] reduce the benefit of
decreased motor requirements”[10]. Further research also agrees
with our findings for simulation: “For most combinations of
keystroke savings…WP is likely to… enhance rate for users who
type slower than 8 WPM” 3 [11].

An alternative to study #2 would have been to slow the user with
additional key and bounce errors, in addition to limiting
bandwidth. We chose not to do this so that we would not have to
measure the resulting bandwidth achievable by each user in
addition to measuring the bandwidth achieved when using WP.
We also chose not to enforce a selection rule for the WP software
(i.e., “always read the list before making a selection or typing” or
“only read the list for words longer than three letters”, etc.) This
gives results more similar to those one might find in real user
situations.

In terms of what is known about the cognitive load associated
with word prediction, we found signs that users in our simulation
conditions experienced the same cognitive load issues as are
typically observed for other users of word prediction software.
While not surprising, it was important to validate this. Also
typical of users of word prediction, users in our simulation
conditions were observed typing an entire word, despite its
availability on the WP list.

EASE provided several benefits over physical simulation. First, it
allowed us to control user input rates at a much finer granularity
(users in our first study varied from seven to 16 WPM using the
same simulation tool).

In summary, the similarities between our software-based
simulation and Koester and Levine’s work are encouraging.
Specifically, they support the feasibility of using simulation to
find usability and accessibility problems similar to those one
might find with disabled users. It follows that, given a tool like
EASE, which is relatively simple to configure and use, a
developer can gain information about user experience, as well as
generalizable knowledge concerning typical experiences for users
with motor disabilities. This knowledge is then applicable to
future interface design.

One unfortunate implication of these findings is that developers
might find themselves tempted to use simulation as a replacement
for user testing, or as an excuse to rely on their intuitions. This
approach is entirely contrary to the purpose of EASE. EASE is
designed to give developers a broader understanding of what it
means to rely on accessibility and to encourage the development
of accessible technologies. This tool is intended to improve
accessibility in early design stages and not as a replacement for
user input.

5. CONCLUSION AND FUTURE WORK
The comparisons between our studies and the work of Koester
and Levine, as well as others give strong evidence that simulation
of user interaction experience is a feasible method to obtain
results similar to those found with target users. Beyond these
findings, additional benefits afforded by a tool like EASE, as
discussed in section 4.2, show that simulation of user experience,
while feasible, also has the opportunity to greatly improve

3 Emphasis added here only.

Figure 3: Percentage of maximum speed, achievable on
average, compared to maximum speed, calculated using a
Student’s t test. The bars represent, from left to right, 5
WPM, 8 WPM, 12 WPM, and 15WPM maximum typing
speeds (also shown as the top of the purple section). With
99% probability, users will only type as fast as the bottom
portion of the bar when WP is available, despite the
possibility of a higher maximum speed. For example, in
the 8 WPM condition (2nd bar), users will achieve, on
average, only 6.8, or 85% (bottom section) of maximum
possible speed (top section.)

knowledge of accessibility problems, and accessibility of
applications.

Future work requires following four paths. The first path includes
evaluation of the methodology EASE implies. Our current work
examines the applicability of simulation as a tool for improving
web design for blind users. A similar approach is applicable for
EASE. We plan to investigate whether designers create better
(more accessible) applications when they use EASE to interact
with their systems in the same way a user with a motor
impairment might.

The second path addresses the ease of use of EASE. A user
interface (UI) is in the works to allow users to adjust different
aspects of the system on the fly. With this UI, developers will
control the percentage of keystrokes that they want output as
Wrong Key or Doubling Errors, the error distribution and keys in
the error map and the speed of the narrowed input bandwidth
desired.

The third path addresses improvements in user modeling, possibly
through temporal introduction of error, or basing error on
common English keystroke mistakes or language constructs. This
improvement would fill out the suite of simulations with mouse
input simulation. Planned interaction simulations for mouse input
include increased directional and amplitude errors for pointing
and unplanned or unrecognized “clicks” for selection.

Finally, our findings warrant future investigation into other
possible domains for simulation of user interaction experiences
like web usage for blind users, simulating mouse error, or other
input errors. We are also currently investigating the feasibility of
this sort of simulation for developers of web pages for blind users.
We hope to show that the empathic modeling approach taken with
EASE is also an appropriate approach for simulating the
interaction experiences of blind users, and that this simulation can
lead to more accessible web pages for the blind. See section 4.4
for further discussion on these projects.

A tool like EASE has the ability to improve accessibility on a
wide scale due to the ease of deployment (i.e., designers do not
have to leave their desks) and flexibility EASE affords. Providing
an easy to use and powerful tool for designers is just another step
in allowing them to create accessible and more usable
applications.

6. ACKNOWLEDGMENTS
Many thanks to our willing participants for their time and
feedback. Thanks also to the National Science Foundation for
funding this work. Thanks to all in the IO group for their time
and effort in proofing this paper.

7. REFERENCES
[1] Aurora Systems Inc. http://www.aurora-

systems.com/pf/compare.html

[2] Bobby Worldwide
http://bobby.watchfire.com/bobby/html/en/index.jsp

[3] Coyne, K. P. and Nielsen, J. “Beyond ALT Text: Making
the Web Easy to Use for Users with Disabilities.” Nielsen,
Norman Group, October, 2001.

[4] Coyne, K. P. and Nielsen, J. “How to Conduct Usability
Evaluations for Accessibility: Methodology Guidelines for
Testing Websites and Intranets With Users Who Use
Assistive Technology.” Nielsen Norman Group, October,
2001.

[5] Garay-Vitoria, N. and González-Abascal, J., “Intelligent
Word-Prediction to Enhance Text Input Rate (A Syntactic
Analysis-Based Word-Prediction Aid for People with Severe
Motor and Speech Disability).” In Intelligent User Interfaces
1997, pp.241-244, 1997.

[6] Gould, J.D. and Lewis, C.H. "Designing for Usability: Key
Principles, and What Designers Think". Communications of
the ACM, 28(3): 300-311, 1985

[7] Ivory, M.Y., Mankoff, J. and Le, A. “Using Automated Tools
to Improve Web Site Usage by Users with Diverse Abilities.”
In IT&Society, Special Issue on Web Navigation Skills,
1(3):195–236, 2003.

[8] Keates, S., Clarkson, J., and Robinson, P. “Investigating the
Applicability of User Models for Motion-Impaired Users.”
In Proceedings of ASSETS ‘00, pp. 129-136, 2000.

[9] Koester, H.H. and Levine, S.P., “A Model of Performance
Cost Versus Benefit for Augmentative Communication
Systems,” in Proc. 15th IEEE-EMBS Conf., pp.1303-1304,
1993.

[10] Koester, H.H. and Levine, S.P. “Model Simulations of User
Performance with Word Prediction.” In Augmentative and
Alternative Communication, 14(01): 25-35, 1998.

[11] Koester, H. H., “Word Prediction—When does it enhance
text entry rate?” Presented at RESNA 2002, http://www.aac-
rerc.com/downloads/Word_Prediction.pdf

[12] Levine, S. P., Horstmann, H. M., and Kirsch, N. L.
“Performance considerations for people with cognitive
impairment in accessing assistive technologies,” J. Head
Trauma Rehab, 7(3): 46-58, 1992.

[13] Lesher, G.W., and Rinkus, G.J. “Domain-Specific Word
Prediction for Augmentative Communication.” In
Proceedings of the RESNA 2002 Annual Conference. 2002.

[14] Mann, W. C. and Lane, J. P. “Assistive Technology for
Persons With Disabilities.” The American Occupational
Therapy Association, Inc. Bethesda, MD, 1995.

[15] Marx, M. and Schmandt, C. “Putting People First:
Specifying Proper Names in Speech Interfaces.” In
Proceedings of ACM UIST ’94, pp. 30-37, 1994.

[16] Microsoft Windows Driver Model
http://www.microsoft.com/hwdev/driver/wdm/default.asp

[17] System Internals
http://systeminternals.com/ntw2k/source/ctrl2cap.shtml

[18] Trewin, S. “A Study of Input Device Manipulation
Difficulties.” In Proceedings of ASSETS ’96, pp. 15-22,
1996.

[19] Trewin, S. and Pain, H. “Dynamic Modeling of Keyboard
Skills: Supporting Users with Motor Disabilities.” In
Proceedings of the Sixth International Conference on User
Modeling. pp. 135-146, 1997.

[20] Vredenburg, K., Mao, J., Smith, P. and Carey, T. “A Survey
of User-Centered Design Practice.” In Proceedings of the

CHI 2002 conference on Human factors in computing
systems, pp. 471-478, 2002.

[21] W3C Web Accessibility Initiative, http://www.w3.org/WAI/

