


ABSTRACT  
User studies involving users with disabilities often incur greater 
financial and complexity costs than those involving general 
populations.   Developers of end-user systems rarely, if ever, test 
their applications with disabled users in the early stages of design, 
typically preferring instead to interview a few typical, non-
disabled users, or simply conduct an informal expert review.  This 
is problematic since the biggest design decisions are often made 
early in the design process.  Without feedback or input from 
disabled users about a system, design decisions may not reflect 
their needs.  In particular, users with vision or motor impairments 
may bring special requirements to the user interface design 
process.  This paper examines the feasibility of simulating the 
interaction experiences of users with motor impairments to help 
developers identify disability-related usability problems similar to 
those received during user testing.  We present EASE (Evaluating 
Accessibility through Simulation of user Experience), a discount 
evaluation tool that simulates the interaction experiences of users 
with motor impairments.  We show that the use of simulation in 
the context of users of word prediction software, with motor 
impairments, is an effective approach to obtaining results similar 
to those found through actual user studies with motor impaired 
users.  Further, we discuss some of the advantages simulation of 
this sort affords, the design and implementation of EASE, and 
some on-going research into other possibilities for simulation. 

Categories and Subject Descriptors 
H.1.2 [Models and Principles]:  User Modeling and Accessibility– 
evaluation/methodology, prototyping, user-centered design. 

General Terms 
Design, Human Factors.   
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1. INTRODUCTION 
Accessibility of electronic information and interfaces for all users 
is of undeniable import.  However, accessibility is often not 
extended to users with disabilities, despite the existence of legal 
and social pressures to do so.  For instance, using most web pages 
is not possible, or exceedingly difficult for blind users [3].  Even 
simple tasks such as filling out a web form can cost a user with a 
motor impairment significantly more time and effort than an able-
bodied user.  Consider the case where a designer asks a user to 
input mailing, shipping and billing addresses, but doesn’t offer the 
option to use the same data for all three.  This poses a minor 
inconvenience for an able-bodied user, but could take a user with 
a sever motor impairment who has a particularly slow typing 
speed many times longer than necessary, simply due to poor 
design.  

Although blind access issues have received more attention in the 
past, we chose focus on accessibility for users with motor 
impairments in order to motivate our idea of simulating user 
interaction experience for early stage design evaluation.  Creating 
accessible interfaces for users with motor impairments is 
particularly difficult due to the various effects motor impairments 
have on interaction techniques, and the broad variation in how 

much a motor impairment affects input bandwidth.  Additionally, 
blind interaction experience can be simulated with off-the-shelf 
tools (turn off the monitor, and use a screen reader), while no 
simulation tools exist for motor impairments. We present EASE 
(Evaluating Accessibility through Simulation of user Experience), 
a tool that simulates user interaction experiences for motor 
impairments. We also present a study showing that simulation, 
using EASE, is an effective solution for gaining feedback on user 
experiences.   

There exists a wide range of conditions that affect motor control 
such that assistive devices or rate enhancement schemes are 
considered beneficial for users with those impairments.  These 
disabilities include “paralysis, weakness, contractures, 
amputations, tremors, spasticity, and other limitations related to 
coordinated movement” [14].  The impairments described cause 
gross motor impairments, which result in “limitations in strength, 
coordination, and joint range of motion”, fine motor impairments, 
which affect “precise movements of the wrist and fingers”, and 
mobility impairments, which “may affect a person’s ability to 
walk”[14].  Fine and gross motor impairments particularly affect a 
user’s ability to interact with their computers.   

Various software, standards and physical devices are available in 
order to improve accessibility for users with motor impairments as 
discussed above.  Although they tend to focus more on visual 
impairments, the W3C guidelines [21] and automatic verification 
tools for the web, like Bobby [2] address motor impairments as 
well.  Unfortunately, standards are typically characterized by 
complex or vague guidelines that can lead to multiple, conflicting 
interpretations.  Further, it is not proven that automated tools for 
accessibility, nor standards alone, are adequate for insuring 
accessibility for disabled users [7].  Physical devices, like 
keyboard guards, mouth sticks and specialized switches, and 
applications like screen readers, word predictors and scanning or 
single-switch interfaces are just a few devices a person with a 
motor impairment might employ.  However, they represent “after-
the-fact” approaches and do not ensure accessibility of a product 
or application. This fact is easily verified by comparing how a 
non-impaired user is able to interact with a computer to how some 
individuals with disabilities are forced to interact through a 
smaller set of techniques.  Using the example above, if an able 
bodied user is filling out a web form, they would usually type, 
whereas a user with a sever motor impairment might be limited to 
a scanning interface using only a single switch to enter each 
character.  While there will always be differences in interaction 
techniques between disabled users and non-disabled users, the 
goal of accessibility can not be discarded on this basis alone. 

Thus, we argue that even with the current set of accessibility 
guidelines, software and physical devices for users with motor 
impairments, user feedback about accessibility is still necessary to 
support accessible design.  While usability testing and user studies 
are necessarily the backbone of user-centered design and 
development, user testing with special populations is often more 
difficult than studies with larger populations [3], [4]. Also, 
because of its high overhead, user testing is rarely used in the 
early stages of design, when interviewing a few typical, non-
disabled users, or simply conducting an informal expert review is 
a more effective use of resources [20].  Thus, we present the idea 
of simulating user interaction experiences for designers. 



We present a tool for simulating the interaction experiences of 
users with motor impairments for designers to evaluate and 
improve the accessibility of their products early in the design 
cycle.  Simulating user interaction experiences (referred to as 
“simulation” from now on) provides numerous benefits to 
designers and to communities seeking accessible products.  A 
flexible and robust tool affords early and frequent evaluation of 
applications, taking into account user experience, i.e., it allows 
developers to use their products in ways that disabled users might.  
For instance, a designer who attempts to interact with her 
application using a single-switch input and scanning interface, 
will better understand the effort a user with a motor impairment 
must exert to use the application.  We believe that using a 
simulation tool to identify accessibility issues early in the design 
process can improve the quality and payoff of user studies later in 
the design process, and the overall accessibility of the final 
design. 

In order to deem simulation a viable technique, a developer using 
it must be able to find results similar to those he might find with 
disabled users.  To test the feasibility of simulation as an 
evaluation tool, we compare the results between three studies of 
word prediction (WP) software.  We show that the use of 
simulation in the context of users of WP software is an effective 
approach to obtaining results similar to those found through 
actual user studies with motor-impaired users.  

We chose to examine WP software with simulation because of the 
plethora of information regarding user text entry rates, keystroke 
savings, and error rates, as well as the utility it can offer users 
with motor impairments.  This field is particularly appropriate to 
consider since early testing, had it included actual users with 
motor impairments, would have uncovered the small or negative 
benefit most motor-impaired users experience with WP software.  
Research that does not involve users tends to focus on keystroke 
savings (based on the prediction scheme or presentation used), or 
upper bounds on prediction rates and prediction accuracy given a 
WP configuration [1], [5], [13].   

The next section presents an overview of related work, 
particularly pertaining to the question of how and on what basis 
motor impairments should be simulated. This is followed by a 
description of EASE, our simulation tool, in Section 3. Section 4 
presents two studies demonstrating that simulation offers accurate 
results.  Section 5 concludes the paper, and discusses our plans 
for the future involving a consideration of other domains where 
simulating user experience could improve designing for 
accessibility.   

2. BACKGROUND 
Usability and accessibility of interfaces is clearly paramount for 
disabled users.  One clear solution to understanding how to make 
an application accessible to users with disabilities is usability 
testing.  Through user studies, Koester was able to examine users 
of WP technologies, and found that most users will not experience 
an increase in their text entry rate, even with specialized 
customizations, unless their current text entry rate is less than 8 
words per minute (WPM) [11].  Readers should note that prior to 
studies like this with feedback and data from disabled users, 
keystroke savings were (and still are) touted as the gold standard 
for WP technologies.  Some of these applications report keystroke 
savings of 37-47% [10].  Note that keystroke savings do not imply 

increased text creation, or an increase in time savings for the user. 
Reports of increased keystroke savings do not imply that users 
will experience any benefit beyond typing fewer characters.  Even 
the developers of the WP system used for our studies claim 
keystroke savings of up to 46% for unfamiliar words, and 77% for 
familiar words [1]. One of the main differences between these 
findings and the findings from user studies is that keystroke 
savings measurements do not take into account the additional 
cognitive load required for users of systems that, like word 
prediction, reduce motor requirements [12].   Even when 
keystroke savings are possible, these savings are often outweighed 
by the additional costs of scanning a word prediction list, 
choosing the correct word from the list, or not finding the word in 
the list and then typing another character before reading the list 
again. 

This small example shows that user testing is a necessary 
component of the design process.  Unfortunately, user testing with 
special populations often requires greater effort, time and 
monetary commitments on the part of designers, developers and 
their companies than user testing with non-disabled populations 
[3], [4]. Further, while user testing is ideal for user-centered 
design, it is not the standard.  Vredenburg et al. found that most 
developers tend to prefer expert and informal evaluation for early 
design phase evaluation [20].  Actual user studies, if they happen 
at all, only happen towards the end of the design phase.  Similarly, 
Gould and Lewis found that even if designers felt they understood 
good design practices, they still more often relied on their 
intuitions for design, than the principles they thought they 
understood [6]. 

This presents a problem.  User testing can improve design, but is 
often too expensive, time consuming, or difficult to perform as 
often as is needed throughout the design process.  One alternative 
is to employ user modeling.  Keates et al. examined the feasibility 
of user modeling for motor-impaired users.  They concluded that 
since most motor impairments are too broadly defined and have 
too many associated effects on motor abilities, no extensible 
“implicit or explicit models of user behavior” are available to 
create an effective user model [8].  Thus, a complete user model 
for simulation is not necessarily the best approach.  Trewin 
developed an interaction model for motor impaired users [19].  
She used her data to develop a number of generalizations about 
the types of errors motor impaired users experience during text 
entry, on which we base the design of our simulation tool.  This 
work points clearly to the possibility of simulating generalized 
input patterns for the purpose of accessibility testing in early stage 
design phases.   

Koester and Levine also showed that modeling works on a smaller 
scale [9].  They examined the feasibility of simulating user text 
entry times with a Keystroke Level Model (KLM).  With this 
model, they found that “user performance with word prediction 
systems can be successfully modeled using a relatively simple 
model that considers only keypress and list search actions” [10].  
Further, they developed a user performance model to determine 
whether the cost of a WP tool outweighs its benefit [9].  These 
findings show that GOMS/KLM is an appropriate approach for 
discovering possible usability issues without incorporating user 
testing in early design stages.  However, a new GOMS/KLM 
model must be built for each interface, and the expertise required 
to build a GOMS/KLM model is often greater than the effort a 
developer is willing to put into user testing.  The difficulties 



associated with GOMS as an evaluation technique thus leave it 
outside of the abilities of many developers.  From the perspective 
of using simulation as a discount evaluation tool, Koester and 
Levine’s findings are quite encouraging.  Koester and Levine 
were able to accurately simulate and predict user input times in a 
narrowed context; therefore, it follows that offering a more 
flexible tool for simulation than strict modeling is a potentially 
effective approach to understanding the usability of a product or 
application.  We will revisit Koester and Levine’s discussions, 
study and findings from [10] in Section 4.3 to compare with our 
user study results. 

Given these results, it is apparent that full-fledged user modeling, 
like user testing, is not an appropriate solution for a discount 
evaluation tool.  Simulation presents itself as a middle ground 
between these two successful, but often neglected, solutions.     

3. EASE 
In this section we discuss the design and architecture of EASE, 
and some of the benefits afforded by simulation of user interaction 
experience. EASE stands for “Evaluating Accessibility through 
Simulation of user Experience.” 

3.1 EASE Architecture 
EASE includes functionality for modeling two common effects of 
motor impairments on keyboard input: reduced input bandwidth 
and increased error (or adding errors to a user’s typical input 
stream).   

3.2 Data Used to Define Simulations 
The reduced input bandwidth mode in EASE takes a purely user-
configurable approach due to the wide range of input rates 
associated with different motor impairments.  Further, data on the 
average input rates for users with motor impairments varies so 
greatly, that a user-configurable approach is the best way to insure 
robustness and usability of EASE.   

The increased error mode in EASE is derived from Trewin’s 
study of the most common types of keyboard and mouse errors for 
individuals with varying motor impairments [18].  In Trewin’s 
work, participants with motor impairments where chosen such 
that the effects of their impairments covered a broad range of 
mouse and keyboard input difficulties.  The most common errors 
she found include Additional Key and Bounce errors.  Additional 
Key errors occur when a user hits a key adjacent to the key they 
intended to press.  Bounce errors occur when a user presses a key 
for longer than the timeout allowed between the key_down and 
key_up events.   

The percentage of error to include depends greatly on the user 
being modeled.  Trewin found error rates ranging from less than 
1% to 9% for users with differing motor impairments.  Research 
on input errors for disabled users is not widely available, nor is it 
widely generalizable due to the atypical nature of disability [8], 
[18].   Trewin cites the tendency of HCI research to focus on 
“cognitive errors and their causes, ignoring physical errors of the 
kind produced by erratic motor control” as one predominant 
reason why data of this type is unavailable.  However, the 
generalizations Trewin found provided an excellent basis for the 
design of Additional Key and Bounce errors in EASE.   

3.2.1 Reduced Input Bandwidth 
Reduced input bandwidth is achieved by forcing a user to wait a 
constant number of seconds between each keystroke.  EASE  
currently supports changing input bandwidth on the fly between 
four preset input rates.  Users of EASE simply type the access 
code for the rate desired to turn the rate throttle on and off.  The 
preset input rates are 5, 8, 12 and 15 words per minute (WPM), 
but are further configurable via the EASE source code. 

3.2.2 Bounce Errors 
Bounce errors are quite straightforward.  When a user enters a key 
and the doubling error mode is on, that key is repeated in the 
output 10% of the time.  The percentage of the time doubling 
errors occur is available in the code and is configurable depending 
on the user experience being simulated and the effect of the motor 
impairment expected.  

3.2.3 Additional Key Errors 
For additional key errors, we use an error map, or a confusion list 
[15], to determine the key to output. The error map is an 
adjacency list with the error keys and error probabilities for each 
entry in the array.  This map consists of an array of key scan 
codes, where each key points to an array of scan code and 
probability pairs.  Each array is the set of keys adjacent to the 
indexing key, paired with the set of probabilities for each key (see 
Figure 1.)  Given the key pressed and a random integer between 0 
and 99, the key to output is chosen by indexing into the letter 
array and then summing all of the probabilities until the sum is 
greater than the random number.  The letter being pointed at that 
moment is the letter that replaces the index letter. For example, if 
a user presses the ‘a’ key, then an ‘a’ is drawn to the screen 64% 
of the time, ‘s’ and ‘q’ are drawn to the screen 6% of the time, and 
so on.  Similarly, if a user presses the ‘a’ key, and the error index 
is 74, then a ‘q’ is drawn to the screen instead of an ‘a’.  The 
current implementation only includes the keys directly adjacent a 
given key in its error list.  

3.3 Implementation of EASE 
EASE is implemented as a device driver based on Ctrl2Cap, a 
kernel-mode WDM1 device driver developed by System Internals 
[17]. Ctrl2Cap “layers in the keyboard class device’s stack above 
the keyboard class device” in order to catch and filter keyboard 
read requests [17].  For each request, it posts an I/O completion 
callback, at which point it processes the scan code being returned.  
Each of the error modes is easily turned on or off by using the 
associated “start” and “stop” codes.  For instance, the start code 
string for decreased input bandwidth is “ZZZ”, and the stop code 
is “QQQ”.  When an error mode is turned on, then the read 
request is changed accordingly.  The codes to control the on/off 
states of each mode are quite easy to change in the driver, 
however, future work will allow users to customize the start and 
stop codes.   

3.4 Benefits of EASE 
The flexibility EASE affords changing and configuring different 
parameters to simulate a user interaction experience is necessary 
for such a tool to work effectively.  Currently, all of the error 
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driver development simpler” [16]. 



states are configurable (on/off), and can be used in conjunction 
with one another; further, the reduced input bandwidth mode is 
configurable with a variety of different input rates.  With this 
flexibility, designers can test their systems with a variety of input 
conditions, including reduced input bandwidth and different types 
of increased error.  This functionality also allows designers to 
understand a greater range of user experiences and create specific 
simulations and more robust designs. 

There are further benefits developers can gain from using a 
simulation tool like EASE.  EASE allows designers to experience 
what their users might experience every day while trying to 
interact with their computers.  An understanding of the 
inaccessibility struggles users face gives designers an experiential 
knowledge from which to design in the future.   Furthermore, 
designers do not design in a vacuum.  As one designer begins to 
understand the accessibility problems one group of users might 
face, they can share these discoveries with other designers and 
developers for incorporation into their designs. 

Another benefit of using a tool like EASE for early interface 
evaluation involves user studies.  Since EASE is not intended as a 
replacement for user studies, it is assumed that after early and 
iterative design testing, at some point, designers will ask disabled 
users what they think of the system.  By this time, developers will 
have already found and fixed a number of usability and 
accessibility problems in their systems.  It follows that their user 
studies can then focus on problems that would not have been 
discussed if the original problems had not been fixed.  This 
benefits both designers and users.  Designers will not leave user 
studies feeling that their systems are completely inaccessible due 
to initial, large usability problems that were not addressed early 
on.  Users are able to focus more on usability once basic 
accessibility issues are out of the way.  If accessibility is 
paramount to the developers and designers, then less time and 
effort is spent redesigning the system to meet accessibility 
standards.  Further, using a tool like EASE offsets the chances of 
a disastrous user study, that can lead to abandonment of design or, 
worse yet, the goal of accessibility, due to poor initial feedback. 

4. COMPARISON OF SIMULATION AND 
DIRECT USER FEEDBACK 
We will discuss two approaches to simulation, and compare the 
results of user testing with these simulation methods to results 

 

Figure 1: Error map used to determine the key to output after 
an input key is pressed.  For the ‘A’ key, there is a 64% chance 
that ‘A’ will be output, a 6% chance the CAPS lock will be 
activated, a 6% chance that the ‘Q’ key is output, and so on.  
Assume the ‘A’ key is pressed and the random number 72 is 
generated.  Then the key output is ‘Q’ 

found in user studies with motor-impaired users.  Our goal is to 
test the effectiveness of simulation in general, and EASE in 
particular for measuring the effect of a motor impairment on the 
use of a word prediction tool. As mentioned before, we chose to 
focus on WP because success is so hard to predict without 
involving users. We compared reduced bandwidth simulated with 
EASE, a physical means of reducing bandwidth, and results 
disabled users of WP (from a study conducted by Koester and 
Levine [10].)  Our goal was to better understand the impact of 
reduced input bandwidth on the usability of a commercial WP 
program.  Our hypothesis was that physical simulation, and our 
simulation tool, would give results similar to Koester and 
Levine’s study with disabled users.  

We conducted two studies to measure the user experience and 
interaction rates of able-bodied users when using WP and either 
physical or software-based simulation of reduced input 
bandwidth, described in Section 4.1 and 4.2, respectively.  We 
took into account qualitative and quantitative measurements of 
user experience and input speeds. Based on our results, we 
conclude in Section 4.3 that simulation is a viable approach, and 
that EASE is an effective tool for simulation. 

4.1 Study of Physical Simulation 
The first study we conducted looked at the experiences of non-
impaired users with WP software where their input rates were 
reduced by using an unwieldy pointer when typing.  This study 
gave us initial feedback on the feasibility of simulation. 



 

Figure 2: Input speeds achieved in each condition. Note 
that in each case, the line never exceeds the maximum 
possible speed for that condition.  For instance, the 5 
WPM condition for each user never exceeds the 5.00 
WPM line on the Y axis. 

4.1.1 Method 
Participants were 6 graduate students with no known cognitive or 
motor impairments, each of whom demonstrated typing 
proficiency and was comfortable using a computer for word 
processing tasks.  Users’ input was gathered by asking them to 
respond to a simple essay question for each of three input 
conditions.  In the reduced bandwidth condition users were asked 
to type using a large pointer.  This pointer was a pointing stick for 
use with a regular keyboard and was created by the authors after 
initial tests showed that asking users to type with only one finger 
did not reduce their input bandwidth enough to offer them any 
benefit from the WP software. This condition measured a baseline 
input rate for users with narrowed input bandwidth.  In the second 
typing condition, word prediction, users were asked to use WP 
software along with the pointer.  The final typing condition was 
natural typing, or typing in the way most natural to the user, as an 
overall baseline of input rate and ability.   

The study was conducted using Microsoft Word for word 
processing, and Aurora, a WP tool from Aurora Systems, Inc. [1].  
Users were given a tutorial on how to use the WP software and 
were encouraged to practice with it until they felt comfortable.  
Users were not assigned a WP selection method, i.e., users were 
not told to “always read the WP list before typing another letter or 
choosing a word”, or “only read the WP list for words long than 
three letters.”  We used a randomized, within subjects design to 
account for learning effects.   

4.1.2 Results  
Results from this experiment show that introduction of the WP 
software actually reduced the input rate for most users, even in the 
reduced bandwidth condition.  On average, users’ input was 9.8 
WPM (std. Dev. is 1.22 WPM) using during the reduced 
bandwidth condition, and fell to 7.2 WPM (std. dev. is 2.08 
WPM) during the word prediction condition.  Qualitatively 
participants in the reduced bandwidth condition were observed, 
and reported, typing an entire word with just the pointer, even 

when the appropriate word was available on the WP screen.  One 
participant reported typing entire words only for shorter words 
(and words not in the WP list), and all but one of the participants 

were observed doing this as well.  When asked how often he or 
she typed an entire word without using the WP list, the average 
participant response was 3.5, or slightly more than “sometimes” 
on a scale from 0 (never) to 5 (often).  This result is particularly 
interesting since it indicates that the average input speed of these 
users is possibly still too great for them to consider WP software 
beneficial to their input rate.  Quantitative results were less clear.  
On average, a t-test showed that users were faster with the pointer 
alone than with word prediction (p=.04).  Visual inspection shows 
that not one participant exceeded their maximum input rate when 
using WP, although almost half of participants came close to 
achieving their maximum input rate.   

4.2 Study of Software-Based Simulation 
The second study employed EASE, described in Section 3.  In this 
study, we used only the input rate reduction portions of the tool to 
put an upper limit on the maximum rate a user could type.    Our 
goal in this study was to show that EASE was effective for 
simulation, and in fact a more effective tool than the physical 
methods employed in the first study. 

4.2.1 Method 
With this study, similar to the previous study, we preformed a 
within subjects study.  Participants were 6 graduate students with 
no known cognitive or motor impairments.  Each could 
demonstrate typing proficiency, and was comfortable using a 
computer for word processing tasks.  Each participant was asked 
to respond to four simple essay questions, each with a different 
maximum input rate, and employing WP software for each 
response.  The rates chosen were 5, 8, 12 and 15 WPM2, in order 
to explore, through simulation, the threshold at which users 
experience benefit from WP tools.  The ordering of these input 
speeds was randomized in order to account for learning effects.  
These rates capped the maximum possible speed for any keyboard 
input.  For instance, if a user was responding to a question with a 
maximum rate of 8 WPM, their rate may fall well below that of 8 
WPM, but could never go beyond 8 WPM unless they received 
benefit from the WP software.   Again, the software used was 
Aurora, and users were given a tutorial on how to use the WP 
software and were encouraged to practice with it until they felt 
comfortable.  Users were not assigned a WP selection method.  
We used a randomized, within subjects design to account for 
learning effects.   

4.2.2 Results 
All users, despite a WPM limit, typed more slowly than that limit 
allowed when using WP.  Figure 2 illustrates this graphically, 
showing the speed achieved by each user in each condition.   

At higher input speeds we found an interesting result.  The greater 
the input speed, the greater the distance between a user’s actual 
speed and the maximum possible speed.  For instance, based on 
the 12 WPM condition, we determined with probability 99% that 
users, on average, will only achieve speeds of 9 WPM or less, 
when their input rates are 12 WPM.  Similarly, based on the 15 
WPM condition, we determined with probability 99% that users, 
on average, will only achieve speeds of 10 WPM or less, when 
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assuming an average word length of 5 characters. 



their input rates are 15 WPM.  These calculations represent users 
achieving only 75% and 66% of maximal speed, respectively.  We 
had similar findings for the 5 WPM and 8 WPM conditions.  With 
probability 99%, at 5 WPM, users will on average achieve only 
4.8 WPM, or 96% of maximum speed, and at 8 WPM, users will, 
on average, only achieve 6.8 WPM, or 85% of maximum speed.  
See Figure 3. 

Four of our six users reported that not using word prediction, or 
ignoring the WP screen part of the time allowed them to input 
more quickly.  Users also reported and were observed using the 
WP less effectively and only for longer words when typing at 
higher speeds. 

4.3 Discussion 
The results from our two studies display many similarities, when 
compared to Koester and Levine’s.  First, each of our studies 
concluded that participants with input rates greater than 8 WPM 
found no benefit from word prediction, and in fact were slowed 
down by it, even though its use was optional.  Our findings are in 
line with Koester’s anecdotal report, after working with users with 
motor impairments, that only users with an input rate less than 8 
WPM would receive benefit from WP [11].  In our study, the 
results for users typing at 5 WPM were inconclusive, because 
input rates with and without WP were very close, and in fact we 
found in a small longitudinal study that users could achieve 
speeds greater than 5 WPM with practice when using WP.  

Our results also match those of Koester and Levine’s study [10], 
where disabled participants with reduced input bandwidth caused 
by motor-impairment were found to gain no benefit from using 
word prediction. With respect to simulation, these findings are 
similar to what others have found during tests with motor-
impaired users: “[T]he additional cognitive and perceptual 

activities [required with this technology] reduce the benefit of 
decreased motor requirements”[10].  Further research also agrees 
with our findings for simulation: “For most combinations of 
keystroke savings…WP is likely to… enhance rate for users who 
type slower than 8 WPM” 3 [11].   

An alternative to study #2 would have been to slow the user with 
additional key and bounce errors, in addition to limiting 
bandwidth.  We chose not to do this so that we would not have to 
measure the resulting bandwidth achievable by each user in 
addition to measuring the bandwidth achieved when using WP. 
We also chose not to enforce a selection rule for the WP software 
(i.e., “always read the list before making a selection or typing” or 
“only read the list for words longer than three letters”, etc.) This 
gives results more similar to those one might find in real user 
situations. 

In terms of what is known about the cognitive load associated 
with word prediction, we found signs that users in our simulation 
conditions experienced the same cognitive load issues as are 
typically observed for other users of word prediction software. 
While not surprising, it was important to validate this. Also 
typical of users of word prediction, users in our simulation 
conditions were observed typing an entire word, despite its 
availability on the WP list. 

EASE provided several benefits over physical simulation. First, it 
allowed us to control user input rates at a much finer granularity 
(users in our first study varied from seven to 16 WPM using the 
same simulation tool). 

In summary, the similarities between our software-based 
simulation and Koester and Levine’s work are encouraging.  
Specifically, they support the feasibility of using simulation to 
find usability and accessibility problems similar to those one 
might find with disabled users.  It follows that, given a tool like 
EASE, which is relatively simple to configure and use, a 
developer can gain information about user experience, as well as 
generalizable knowledge concerning typical experiences for users 
with motor disabilities.  This knowledge is then applicable to 
future interface design.   

One unfortunate implication of these findings is that developers 
might find themselves tempted to use simulation as a replacement 
for user testing, or as an excuse to rely on their intuitions.  This 
approach is entirely contrary to the purpose of EASE.  EASE is 
designed to give developers a broader understanding of what it 
means to rely on accessibility and to encourage the development 
of accessible technologies.  This tool is intended to improve 
accessibility in early design stages and not as a replacement for 
user input. 

5. CONCLUSION AND FUTURE WORK 
The comparisons between our studies and the work of Koester 
and Levine, as well as others give strong evidence that simulation 
of user interaction experience is a feasible method to obtain 
results similar to those found with target users.  Beyond these 
findings, additional benefits afforded by a tool like EASE, as 
discussed in section 4.2, show that simulation of user experience, 
while feasible, also has the opportunity to greatly improve 

                                                                 
3 Emphasis added here only. 

 

Figure 3: Percentage of maximum speed, achievable on 
average, compared to maximum speed, calculated using a 
Student’s t test.  The bars represent, from left to right, 5 
WPM, 8 WPM, 12 WPM, and 15WPM maximum typing 
speeds (also shown as the top of the purple section).  With 
99% probability, users will only type as fast as the bottom 
portion of the bar when WP is available, despite the 
possibility of a higher maximum speed. For example, in 
the 8 WPM condition (2nd bar), users will achieve, on 
average, only 6.8, or 85% (bottom section) of maximum 
possible speed (top section.) 



knowledge of accessibility problems, and accessibility of 
applications. 

Future work requires following four paths.  The first path includes 
evaluation of the methodology EASE implies.  Our current work 
examines the applicability of simulation as a tool for improving 
web design for blind users.  A similar approach is applicable for 
EASE.  We plan to investigate whether designers create better 
(more accessible) applications when they use EASE to interact 
with their systems in the same way a user with a motor 
impairment might. 

The second path addresses the ease of use of EASE.  A user 
interface (UI) is in the works to allow users to adjust different 
aspects of the system on the fly.  With this UI, developers will 
control the percentage of keystrokes that they want output as 
Wrong Key or Doubling Errors, the error distribution and keys in 
the error map and the speed of the narrowed input bandwidth 
desired. 

The third path addresses improvements in user modeling, possibly 
through temporal introduction of error, or basing error on 
common English keystroke mistakes or language constructs.  This 
improvement would fill out the suite of simulations with mouse 
input simulation.  Planned interaction simulations for mouse input 
include increased directional and amplitude errors for pointing 
and unplanned or unrecognized “clicks” for selection.   

Finally, our findings warrant future investigation into other 
possible domains for simulation of user interaction experiences 
like web usage for blind users, simulating mouse error, or other 
input errors.  We are also currently investigating the feasibility of 
this sort of simulation for developers of web pages for blind users.  
We hope to show that the empathic modeling approach taken with 
EASE is also an appropriate approach for simulating the 
interaction experiences of blind users, and that this simulation can 
lead to more accessible web pages for the blind.  See section 4.4 
for further discussion on these projects. 

A tool like EASE has the ability to improve accessibility on a 
wide scale due to the ease of deployment (i.e., designers do not 
have to leave their desks) and flexibility EASE affords.  Providing 
an easy to use and powerful tool for designers is just another step 
in allowing them to create accessible and more usable 
applications. 
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