
The Real Effect of
I/O Optimizations and Disk Improvements

Windsor W. Hsu†‡

Alan Jay Smith†

†Computer Science Division
EECS Department

University of California
Berkeley, CA 94720

{windsorh,smith}@cs.berkeley.edu

‡Storage Systems Department
Almaden Research Center

IBM Research Division
San Jose, CA 95120

windsor@almaden.ibm.com

Report No. UCB/CSD-03-1263

July 2003

Computer Science Division (EECS)
University of California
Berkeley, California 94720

The Real Effect of
I/O Optimizations and Disk Improvements

Windsor W. Hsu†‡ Alan Jay Smith†

†Computer Science Division ‡Storage Systems Department
EECS Department Almaden Research Center

University of California IBM Research Division
Berkeley, CA 94720 San Jose, CA 95120

{windsorh,smith}@cs.berkeley.edu windsor@almaden.ibm.com

Abstract

Many optimization techniques have been invented to
mask the slow mechanical nature of storage devices,
most importantly disks. Data on the effectiveness of
these techniques for real workloads, however, are either
lacking or are not comparable. Disk technology has also
improved steadily in multiple ways but it is difficult to
relate the various physical improvements to the actual
performance experienced by real workloads. In this pa-
per, we use an assortment of real server and personal
computer workloads to systematically analyze the var-
ious optimization techniques and technology improve-
ments to determine their true performance impact. The
techniques we study include read caching, sequential
prefetching, opportunistic prefetching, write buffering,
request scheduling, striping and short-stroking. We also
break down the steady improvement in disk technology
into four major basic effects – faster seeks, higher RPM,
linear density improvement and increase in track den-
sity – and analyze each separately to determine its ac-
tual benefit. In addition, we examine the historical rates
of improvement and use the trends to project the effect
of disk technology scaling. As part of this study, we de-
velop a methodology for replaying real workloads that
more accurately models the timing of I/O arrivals and
that allows the I/O rate to be more realistically scaled
than previous practice.

Our results show that sequential prefetching and
write buffering are the two most effective techniques
for improving performance, reducing the average read
and write response time by about 50% and 90% respec-
tively. For our workloads, improvement in the mechani-

Funding for this research has been provided by the State
of California under the MICRO program, and by AT&T Lab-
oratories, Cisco Corporation, Fujitsu Microelectronics, IBM,
Intel Corporation, Maxtor Corporation, Microsoft Corpora-
tion, Sun Microsystems, Toshiba Corporation and Veritas
Software Corporation.

cal components of the disk reduces the average response
time by 8% per year. Most of this improvement results
from increases in the rotational speed rather than reduc-
tion in the seek time. In addition, we discover that in-
creases in the recording density of the disk can achieve
an equally sizeable improvement in real performance,
with most of the gain coming from linear density im-
provement, which increases the transfer rate, rather than
track density scaling. For a given workload, disk tech-
nology evolution at the historical rates can be expected
to increase performance by about 8% per year if the disk
occupancy rate is kept constant. We also observe that the
disk is spending most of its time positioning the head
rather than transferring data. We believe that to effec-
tively utilize the available disk bandwidth, blocks should
be reorganized in such a way that accesses become more
sequential.

1 Introduction

Because of the slow mechanical nature of many stor-
age devices, the importance of optimizing I/O opera-
tions has been well recognized. As a result, a plethora of
optimization techniques including caching, write buffer-
ing, prefetching, request scheduling and parallel I/O
have been invented. The relative effectiveness of these
techniques, however, is not clear because they have been
studied in isolation by different researchers using dif-
ferent methodologies. Furthermore, many of the tech-
niques have not been evaluated with real workloads thus
their actual effect is not known. Some of the ideas have
just been proposed or implemented with little or no per-
formance results published (e.g., opportunistic prefetch-
ing). As the performance gap between the processor
and disk-based storage continues to widen [14, 29], in-
creasingly aggressive optimization of the storage sys-
tem is needed, and this requires a good understanding
of the real potential of the various techniques and how
they work together. In this paper, we systematically in-

1

vestigate how the different I/O optimization techniques
affect actual performance by using trace-driven simu-
lations with a large set of traces gathered from a wide
range of real-world settings, including both server and
personal computer (PC) environments. To make our
findings more broadly applicable, we focus on general
rules of thumb about what can be expected from each of
these techniques rather than precise quantification of im-
provement for a particular workload and a specific im-
plementation.

Tremendous efforts have also gone into improving
the underlying technology of disks. The improvement
in disk technology is usually quantified by using physi-
cal metrics such as the tracks or bits per inch, the aver-
age seek time and the rotational speed. Relating such
physical metrics to the performance delivered to real
workloads is, however, difficult. Thus it is not appar-
ent how an improvement in one metric compares with
an improvement in another in terms of their real-world
impact. Furthermore, some of the metrics are not fo-
cused on performance but have a significant effect on it.
Increasing the recording density, for example, could im-
prove performance because if the bits are packed more
closely together, they can be accessed with a smaller
physical movement. In this paper, we break down the
steady improvement in disk technology into four ma-
jor basic effects – seek time reduction due to actua-
tor improvement, spin rate increase, linear density im-
provement and increase in track density – and analyze
each separately to determine their effect on real work-
loads. In addition, we examine their historical rates of
improvement and use the trends to project the actual per-
formance improvement that can be expected from disk
technology scaling.

In a companion paper [17], we analyze in detail the
characteristics of the various workloads we use, specif-
ically, (1) the I/O intensity of the workloads and the
overall significance of I/O in the workloads, (2) how
the I/O load varies over time and how it will behave
when aggregated, and (3) the interaction of reads and
writes and how it affects performance. Although the
current paper is self-contained, readers are encouraged
to also read the companion paper to better understand
the workloads on which this analysis is based. The in-
sights gained from the current study motivated the idea
of Automatic Locality-Improving Storage (ALIS) [19],
which is a storage system that continually monitors the
way it is accessed and then automatically reorganizes
selected disk blocks so that accesses become effectively
more sequential. In fact, the results we derive here serve
as the baseline for the analysis of ALIS in [19]. There-
fore, this paper has an emphasis on the optimizations
that directly affect ALIS, in particular, the prefetching.

The rest of this paper is organized as follows. Sec-
tion 2 contains a brief overview of previous work in
evaluating I/O optimization techniques. Section 3 dis-
cusses our methodology and describes the traces that we
use. In Section 4, we analyze the effect of the various
optimization techniques. In Section 5, we consider the
real impact of disk technology improvement over time.
Section 6 concludes and summarizes this paper. Be-
cause of the huge amount of data that is involved in this
study, we can only present a characteristic cross-section
in the main text. More detailed graphs and data are pre-
sented in the Appendix.

2 Related Work

Various I/O optimization techniques have been indi-
vidually evaluated by different researchers using dissim-
ilar methodologies including discrete event simulation
and analytical modeling. In some cases, the simulations
are based on traces of real workloads and in others, ran-
domly generated synthetic workloads are used. For in-
stance, disk caching is extensively analyzed in [38, 44],
prefetching in [13, 36], write buffering in [1, 42], re-
quest scheduling in [23, 35, 43] and striping in [4, 5]. At
the logical level, caching, prefetching and write buffer-
ing are well covered in [18, 27]. Several researchers
have also explored ways to improve the various tech-
niques in special situations where the reference pattern
is known ahead of time (e.g., [30]). Because of the im-
portance of improving I/O performance, there has been
a lot of research on I/O optimization techniques. We
mention only some of the more recent work. The reader
is referred to [37] for a comprehensive survey of early
work on I/O optimization.

3 Methodology

The methodology used in this paper is trace-driven
simulation [39, 41]. In trace-driven simulation, relevant
information about a system is collected while the system
is handling the workload of interest. This is referred to
as tracing the system and is usually achieved by using
hardware probes or by instrumenting the software. In
the second phase, the resulting trace of the system is
played back to drive a model of the system under study.
Trace-driven simulation is thus a form of event-driven
simulation where the events are taken from a real sys-
tem operating under conditions similar to the ones being
simulated. A common difficulty in using trace-driven
simulations to study I/O systems is to realistically model
timing effects, specifically to account for events that oc-
cur faster or slower in the simulated system than in the
original system. This difficulty arises because informa-
tion about how the arrival of subsequent I/Os depend

2

upon the completion of previous requests cannot be eas-
ily extracted from a system and recorded in the traces.
As described below, we create and use a new method
for replaying I/O traces that more accurately models the
timing of I/O arrivals and that allows the I/O rate to be
more realistically scaled (e.g., when processor power is
increased) than previous practice.

3.1 Modeling Timing Effects

In general, simulation models used for evaluating
storage system performance can be broadly classified
into open and closed models, depending on how request
arrivals are choreographed. The closed model tradition-
ally maintains a constant population of outstanding re-
quests. Whenever a request is completed, a new re-
quest is issued in its place, sometimes after a simulated
“think” time. These models essentially assume that all
the I/Os are time-critical [10] so that a new I/O is issued
only after a previous request is completed. By maintain-
ing a constant population of outstanding requests, these
models effectively smooth out any burstiness in the I/O
traffic. Such an approach is clearly not representative of
real workloads, which have been shown in several stud-
ies (e.g., [17]) to have bursty I/O traffic patterns.

In the open model, requests arrive at predetermined
times (e.g., traced time in [33] and traced inter-arrival
time scaled by a constant factor in [43]), independent
of the performance of the storage system. Such models
assume that the workload consists exclusively of time-
noncritical requests [10] so that whether a preceding re-
quest is completed has no bearing on when the system
is able to issue subsequent I/Os. Again, this is clearly
not true in real systems where an overloaded storage
system, by being slow, automatically exerts back pres-
sure on the processes generating the I/Os. For example,
66-91% of the I/Os are flagged as synchronous in PC
workloads [17] and 52-74% in UNIX workloads [34].
In other words, the system generally has to wait for I/Os
to be completed before it can continue with subsequent
processing. Such data highlights the importance of ac-
counting for the feedback effect between request com-
pletion and subsequent request issuance. From a practi-
cal perspective, having a feedback mechanism also en-
sures that the number of outstanding requests will not
grow without bound whenever the storage system is un-
able to handle the incoming workload.

Modeling the feedback effect and thereby limiting
the number of outstanding requests is especially help-
ful in this study because we have a diverse set of work-
loads collected over the span of several years, and a
wide range of experiments in which the performance
of the storage system is significantly varied. Some of
our experiments evaluate techniques that are opportunis-

Request Issued

Request Completed
R1 R2 R3 R4 R5

R1R0 R3
Time

X1

X2

X3

X4

X5

Figure 1: Intervals between Issuance of I/O Requests
and Most Recent Request Completion.

tic, i.e., they take advantage of idle time. Therefore, we
have to account for the burstiness seen in real I/O traf-
fic. With these requirements in mind, we came up with
a methodology that is designed to incorporate feedback
between request completion and subsequent I/O arrivals,
and model burstiness.

Results in [17] show that there is effectively lit-
tle multiprocessing in PC workloads and that most of
the I/Os are synchronous. Such predominantly single-
process workloads can be modeled by assuming that af-
ter completing an I/O, the system has to do some pro-
cessing and the user, some “thinking”, before the next
set of I/Os can be issued. For instance, in the timeline
in Figure 1, after request R0 is completed, there are de-
lays during which the system is processing and the user
is thinking before requests R1, R2 and R3 are issued.
Because R1, R2 and R3 are issued after R0 has been
completed, we consider them to be dependent on R0.
Similarly, R4 and R5 are deemed to be dependent on
R1. Presumably, if R0 is completed earlier, R1, R2 and
R3 will be dragged forward and issued earlier. If this
in turn causes R1 to be finished earlier, R4 and R5 will
be similarly moved forward in time. The “think” time
between the completion of a request and the issuance
of its dependent requests can be adjusted to speed up
or slow down the workload. In short, we consider a re-
quest to be dependent on the last completed request, and
we issue a request only after its parent request has com-
pleted. For multiprocessing workloads, this dependence
relationship should be maintained on a per process ba-
sis but unfortunately process information is typically not
available in I/O traces. Therefore, in order to account for
multiprocessing workloads, we merge multiple traces to
form a workload with several independent streams of
I/O, each obeying the dependence relationship described
above.

In essence, we have built an out-of-order multiple is-
sue machine that tries to preserve the dependency struc-
ture between I/O requests. We maintain an issue win-
dow of 64 requests. A request within this window is
issued when the request on which it is dependent com-
pletes and the think time has elapsed. Inferring the de-
pendencies based on the last completed request is the
best we can do given the block level traces we have.
If the workloads were completely described using log-

3

ical and higher-level system events (e.g., system calls
and interrupts), we might be able to more accurately
model feedback effects using a system-level model (e.g.,
[10]). In the limit, we can run the workloads on a sys-
tem simulator where we have control over the timing of
events [32] or on a virtual machine [2] or on a real sys-
tem with a timing-accurate storage emulator [12]. How-
ever, getting real users to release traces of reference ad-
dress is difficult enough. Asking them for logical data
about their computer operations is next to impossible.
Moreover, “capturing” a workload so that it can be real-
istically replayed may be relatively easy for batch jobs
but it is very difficult for interactive workloads. We es-
sentially end up with the same problem of having to de-
cide what happens when the system reacts faster. For
instance, will the user click the mouse earlier?

3.2 Workloads and Traces

The traces analyzed in this study were collected from
both server and PC systems running real user workloads
on three different platforms – Windows NT, IBM AIX
and HP-UX. All of them were collected downstream of
the database buffer pool and the file system cache. Thus
these are real I/O traces, not logical ones. The PC traces
were collected by using VTrace [24], a software trac-
ing tool for Intel x86 PCs running Windows NT/2000.
In this study, we are primarily interested in the disk
activities, which are collected by VTrace through the
use of device filters. We have verified the disk activ-
ity collected by VTrace with the raw traffic observed by
a bus (SCSI) analyzer. Both the IBM AIX and HP-UX
traces were collected using kernel-level trace facilities
built into the respective operating systems. Most of the
traces were gathered over periods of several months but
to keep the simulation time manageable, we use only the
first 45 days of the traces of which the first 20 days are
used to warm up the simulator.

The PC traces were collected from the primary sys-
tems of a wide-variety of users, including engineers,
graduate students, a secretary and several people in se-
nior managerial positions. By having a wide variety of
users in our sample, we believe that our traces are illus-
trative of the PC workloads in many offices, especially
those involved in research and development. Note, how-
ever, that the traces should not be taken as typical or rep-
resentative of any other system or environment. Despite
this disclaimer, the fact that many of their characteris-
tics correspond to those obtained previously (see [17]),
albeit in somewhat different environments, suggest that
our findings are to a large extent generalizable. Ta-
ble 1(a) summarizes the characteristics of these traces.
We denote the PC traces as P1, P2, ..., P14 and the arith-
metic mean of their results as P-Avg. As detailed in [17],

the PC traces contain only I/Os that occur when the user
is actively interacting with the system. Specifically, we
consider the system to be idle from ten minutes after the
last user keyboard or mouse activity until the next such
user action, and we assume that there is no I/O activity
during the idle periods. We believe that this is a reason-
able approximation in the PC environment, although it
is possible that we are ignoring some level of activity
due to periodic system tasks such as daemons. This lat-
ter type of activity should have a negligible effect on the
I/O load, and are not likely to be noticed by the user.

The servers traced include two file servers, a time-
sharing system and a database server. The character-
istics of these traces are summarized in Table 1(b).
Throughout this paper, we use the term S-Avg. to de-
note the arithmetic mean of the results for these server
workloads. The first file server trace (FS1) was taken
off a file server for nine clients at the University of Cal-
ifornia, Berkeley. This system was primarily used for
compilation and editing. It is referred to as Snake in
[34]. The trace denoted TS1 was gathered on a time-
sharing system at an industrial research laboratory. It
was mainly used for news, mail, text editing, simulation
and compilation. It is referred to as Cello in [34]. The
database server trace (DS1) was collected at one of the
largest health insurers nationwide. The system traced
was running an Enterprise Resource Planning (ERP) ap-
plication on top of a commercial database system. This
trace is only seven days long and the first three days are
used to warm up the simulator. More details about the
traces and how they were collected can be found in [17].

In addition to these base workloads, we scale up the
traces to obtain workloads that are more intense. Re-
sults reported in [17] show that for the PC workloads,
the processor utilization during the intervals between the
issuance of an I/O and the last I/O completion is related
to the length of the interval by a function of the form
f(x) = 1/(ax + b) where a = 0.0857 and b = 0.0105.
To model a processor that is n times faster than was in
the traced system, we would scale only the system pro-
cessing time by n, leaving the user portion of the think
time unchanged. Specifically, we would replace an in-
terval of length x by one of length x[1−f(x)+f(x)/n].
In this paper, we run each workload preserving the orig-
inal think time. For the PC workloads, we also evaluate
what happens in the limit when systems are infinitely
fast, i.e., we replace an interval of length x by one of
x[1 − f(x)]. We denote these sped-up PC workloads
as P1s, P2s, ..., P14s and the arithmetic mean of their
results as Ps-Avg.

We also merge ten of the longest PC traces to ob-
tain a workload with ten independent streams of I/O,
each of which obeys the dependence relationship dis-
cussed above. We refer to this merged trace as Pm.

4

System Configuration Trace Characteristics
Design-

ation User Type
System Memory

(MB) File Systems Storage
Usedi (GB)

Disks Duration Footprintii

(GB)
Traffic
(GB)

Requests
(106)

R/W
Ratio

P1 Engineer 333MHz P6 64 1GB FATi 5GB NTFSi 6 1 45 days (7/26/99 - 9/8/99) 0.945 17.1 1.88 2.51

P2 Engineer 200MHz P6 64 1.2, 2.4, 1.2GB FAT 4.8 2 39 days (7/26/99 - 9/2/99) 0.509 9.45 1.15 1.37

P3 Engineer 450MHz P6 128 4, 2GB NTFS 6 1 45 days (7/26/99 - 9/8/99) 0.708 5.01 0.679 0.429

P4 Engineer 450MHz P6 128 3, 3GB NTFS 6 1 29 days (7/27/99 - 8/24/99) 4.72 26.6 2.56 0.606

P5 Engineer 450MHz P6 128 3.9, 2.1GB NTFS 6 1 45 days (7/26/99 - 9/8/99) 2.66 31.5 4.04 0.338

P6 Manager 166MHz P6 128 3, 2GB NTFS 5 2 45 days (7/23/99 - 9/5/99) 0.513 2.43 0.324 0.147

P7 Engineer 266MHz P6 192 4GB NTFS 4 1 45 days (7/26/99 - 9/8/99) 1.84 20.1 2.27 0.288

P8 Secretary 300MHz P5 64 1, 3GB NTFS 4 1 45 days (7/27/99 - 9/9/99) 0.519 9.52 1.15 1.23

P9 Engineer 166MHz P5 80 1.5, 1.5GB NTFS 3 2 32 days (7/23/99 - 8/23/99) 0.848 9.93 1.42 0.925

P10 CTO 266MHz P6 96 4.2GB NTFS 4.2 1 45 days (1/20/00 – 3/4/00) 2.58 16.3 1.75 0.937

P11 Director 350MHz P6 64 2, 2GB NTFS 4 1 45 days (8/25/99 – 10/8/99) 0.73 11.4 1.58 0.831

P12 Director 400MHz P6 128 2, 4GB NTFS 6 1 45 days (9/10/99 – 10/24/99) 1.36 6.2 0.514 0.758

P13 Grad. Student 200MHz P6 128 1, 1, 2GB NTFS 4 2 45 days (10/22/99 – 12/5/99) 0.442 6.62 1.13 0.566

P14 Grad. Student 450MHz P6 128 2, 2, 2, 2GB NTFS 8 3 45 days (8/30/99 – 10/13/99) 3.92 22.3 2.9 0.481

P-Avg. - 318MHz 109 - 5.07 1.43 41.2 days 1.59 13.9 1.67 0.816

 (a) Personal Systems.

System Configuration Trace Characteristics
Design-

ation
Primary
Function System Memory

(MB) File Systems Storage
Usedi (GB)

Disks Duration Footprintii

(GB)
Traffic
(GB)

Requests
(106)

R/W
Ratio

FS1 File Server
(NFSiii)

HP 9000/720
(50MHz) 32 3 BSDiii FFSiii (3 GB) 3 3 45 days (4/25/92 - 6/8/92) 1.39 63 9.78 0.718

TS1 Time-Sharing
System

HP 9000/877
(64MHz) 96 12 BSD FFS (10.4GB) 10.4 8 45 days (4/18/92 - 6/1/92) 4.75 123 20 0.794

DS1
Database

Server
(ERPiii)

IBM RS/6000
R30 SMPiii

(4X 75MHz)
768

8 AIX JFS (9GB), 3 paging
(1.4GB), 30 raw database

partitions (42GB)
52.4 13 7 days (8/13/96 – 8/19/96) 6.52 37.7 6.64 0.607

S-Avg. - - 299 - 18.5 8 32.3 days 4.22 74.6 12.1 0.706

i Sum of all the file systems and allocated volumes.
ii Amount of data referenced at least once
iii AFS – Andrew Filesystem, AIX – Advanced Interactive Executive (IBM’s flavor of UNIX), BSD – Berkeley System Development Unix, ERP – Enterprise Resource Planning, FFS – Fast
Filesystem, JFS – Journal Filesystem, NFS – Network Filesystem, NTFS – NT Filesystem, SMP – Symmetric Multiprocessor

(b) Servers.

Table 1: Trace Description.

The volume of I/O traffic in this merged PC workload
is similar to that of a server supporting multiple PCs. Its
locality characteristics are, however, different because
there is no sharing of data among the different users so
that if two users are both using the same application,
they end up using different copies of the application.
Pm might be construed as the workload of a system on
which multiple independent PC workloads are consol-
idated. For the server workloads, we merge the FS1
and TS1 traces to obtain Sm. Note that neither method
for scaling up the workloads is perfect but we believe
that they are more realistic than simply scaling the inter-
arrival time, as is commonly done. In this paper, we of-
ten use the term PC workloads to refer collectively to the
base PC workloads, the sped-up PC workloads and the
merged PC workload. The term server workloads like-
wise refers to the base server workloads and the merged
server workload.

3.3 Simulation Model

The major components of our simulation model are
presented in Figure 2. In practice, optimizations such as
caching, prefetching, write buffering, request schedul-
ing and striping may be performed at multiple levels in
the storage system. For instance, there may be several
storage controllers, storage adaptors and disk drives, and
they may all perform some of the optimizations to some
extent. The number of combinations of who does what
and to what extent is large, and the interaction between
the optimizations performed at the various levels is com-
plicated and obscure. In order to gain fundamental in-
sights into the effectiveness of each of the optimizations,
we collapse the different levels and model each of the
optimizations at most once.

For example, we model only a single level of cache
instead of a disk drive cache, an adaptor cache, a con-
troller cache, etc. This approach does not expose the in-
terference that occurs when the different levels in the

5

File System/Database Cache

I/O Trace

Issue Engine

Cache

Volume Manager

…

 Resource-Poor Resource-Rich

Read
Caching

8MB per disk, Least-Recently-Used
(LRU) replacement.

1% of storage used, Least-
Recently-Used (LRU) replacement.

Prefetching

32KB read-ahead.

Preemptible read-ahead up to
maximum prefetch of 128KB, read
any free blocks.

Conditional sequential prefetch,
16KB segments for PC workloads,
8KB segments for server
workloads, prefetch trigger of 1,
prefetch factor of 2.

Preemptible read-ahead up to
maximum prefetch of 128KB, read
any free blocks, 8MB per disk
opportunistic prefetch buffer.

Write
Buffering

4MB per disk, lowMark = 0.2,
highMark = 0.8, Least-Recently-
Written (LRW) replacement, 30s
age limit.

0.1% of storage used, lowMark =
0.2, highMark = 0.8, Least-
Recently-Written (LRW)
replacement, 1 hour age limit.

Request
Scheduling

Shortest Access Time First with
age factor = 0.01 (ASATF(0.01)),
queue depth of 8.

Shortest Access Time First with
age factor = 0.01 (ASATF(0.01)),
queue depth of 8.

Parallel I/O Stripe unit of 2MB. Stripe unit of 2MB.

Figure 2: Block Diagram of Simulation Model Showing the Base Configurations and Default Parameters Used to Eval-
uate the Various I/O Optimization Techniques and Disk Improvements. The parameters pertaining to each technique
will be described in detail in Section 4.

storage stack are all trying to do some of the same op-
timizations. But cutting down on the interference is the
only way we can look at the real effect of each of the
optimizations. The interference is interesting but is be-
yond the scope of the current paper. Furthermore, a
well-designed system will have a level at which a par-
ticular technique dominates. For instance, for caching,
the adaptor cache should be bigger than the disk drive
cache so that its effect dominates. For other techniques
such as request scheduling, there is a level where it can
best be implemented. Throughout the paper, we discuss
such issues and how we handle them in our simulator.

Even though we simulate only a single instance of
each of the optimization techniques, there are many
parameters for each technique and their combination
makes for a huge design space. In order to systemati-
cally examine the effect of each technique, we pick two
reasonable base configurations and perturb them in one
dimension at a time. The default parameters used in
these base configurations are summarized in Figure 2.
As we study each technique individually, the relevant
parameters will be analyzed and described in detail.
As its name suggests, the resource-rich configuration is
meant to represent an environment in which resources in
the storage system are plentiful, as may be the case when
there is a large outboard controller. The resource-poor
environment is supposed to mimic a situation where the
storage system consists of only disks and low-end disk
adaptors.

Our simulator is written in C++ using the CSIM sim-
ulation library [26]. It is based upon a detailed model
of the mechanical components of the IBM Ultrastar
73LZX [21] family of disks that is used in disk develop-
ment and that has been validated against test measure-

0

2

4

6

8

10

12

1 10 100 1000 10000 100000
Seek Distance (# Tracks)

Se
ek

 T
im

e
(m

s)

read
write

0.251(x+6.48)0.359, x <= 5000
4.31+0.000338x, x > 5000

f(x) =

Figure 3: Seek Profile for the IBM Ultrastar 73LZX
Family of Disks.

ments obtained on several batches of the disk. The level
of detail in this model is similar to that in the publicly
available DiskSim package [11]. However, instead of
using the same seek profile for reads and writes and ac-
counting for the difference by a constant write settling
delay, we use separate read and write seek curves to
more accurately model the disk. As shown in Figure 3,
the seek curves for this disk can be approximated by a
power function for seeks of less than 5000 tracks and a
linear function for longer seeks.

The IBM Ultrastar 73LZX family of 10K RPM
disks was introduced in early 2001 and consists of four
members with storage capacities of 9.1 GB, 18.3 GB,
36.7 GB and 73.4 GB. The performance characteristics
of each is almost identical, with the difference in ca-
pacity coming from the number of platters. The higher-

6

capacity disk should have a longer seek time because
of the increased inertia of the disk arm but the effect is
small. The average seek time is specified to be 4.9 ms
and the data rate varies from 29 MB/s at the inner edge
to 57 MB/s at the outer edge. The track density for this
series of disks is 27,000 tracks per inch while the linear
density is as high as 480,000 bits per inch. The tracks
range in size from 160 KB to 340 KB. More details
about the specifications of this family of disks can be
found in [21]. In order to understand the effect of disk
technology evolution, in the later part of this paper, we
scale these disk characteristics according to technology
trends which we derive by analyzing the specifications
of disks introduced in the last ten years.

For workloads with multiple disk volumes, we con-
catenate the volumes to create a single address space.
In the base configurations, each workload is fitted to the
smallest disk from the IBM Ultrastar 73LZX family that
is bigger than the total volume size. We leave a head-
room of 20% because the results presented here are part
of a larger study that examines replicating up to 20% of
the disk blocks and laying them out in a specially set
aside area of the disk [19]. When we study parallel I/O,
we will look at the effect of striping the data across mul-
tiple disks. Note that we have a separate read cache and
write buffer to allow us to adjust the size of each inde-
pendently. Results in [17] show that there is not a lot of
interaction between the reads and the writes.

3.4 Performance Metrics

I/O performance can generally be measured at differ-
ent levels in the storage hierarchy. In order to quantify
the effect of a wide variety of storage optimization tech-
niques, we measure performance from when requests
are issued to the storage system, before they are po-
tentially broken up by the volume manager for requests
that span multiple disks. The two important metrics in
I/O performance are response time and throughput. Re-
sponse time includes both the time needed to service
the request and the time spent waiting or queueing for
service. Throughput is the maximum number of I/Os
that can be handled per second by the system. Quan-
tifying the throughput is generally difficult with trace-
driven simulation because the workload, as recorded in
the trace, is constant. We can try to scale or speed up
the workload to determine the maximum workload the
system can sustain but this is difficult to achieve in a
realistic manner.

In this paper, we estimate the throughput by consid-
ering the amount of critical resource each I/O consumes.
Specifically, we look at the average amount of time the
disk arm is busy per request, deeming the disk arm to
be busy both when it is being moved into position to

service a request and when it has to be kept in position
to transfer data. We refer to this metric as the service
time. Throughput can be approximated by taking the re-
ciprocal of the average service time. One thing to bear
in mind is that there are opportunistic techniques, espe-
cially for reads (e.g., preemptible read-ahead), that can
be used to improve performance. The service time does
not include the otherwise idle time that the opportunistic
techniques exploit. This means that the reciprocal of the
service time will tend to be an optimistic estimate of the
maximum throughput, especially in the case of a lightly
loaded disk where opportunistic techniques are likely to
have a bigger effect.

To gain insight into the workings of the different
optimization techniques, we also examine the effective
miss ratio of the read cache and the write buffer. The
miss ratio is generally defined as the fraction of I/O re-
quests that are not satisfied by the cache or buffer, or in
other words, the fraction of requests that requires physi-
cal I/O. In order to make our results more useful for sub-
sequent mathematical analyses and modeling by others,
we fitted our data to various functional forms through
non-linear regression, which we solved by using the
Levenberg-Marquardt method [31].

4 Effect of I/O Optimizations

4.1 Read Caching

Caching is a general technique for improving perfor-
mance by temporarily holding in a faster memory data
items that are (believed to be) likely to be used. The
faster memory is called the cache. In the context of this
paper, the data items are disk blocks requested from the
storage system, and the faster memory refers to dynamic
random access memory (DRAM). The fraction of re-
quests satisfied by the cache is commonly called the hit
ratio. The fraction of requests that have to be handled
by the underlying storage system is referred to as the
miss ratio. The data items can be entered into the cache
when they are demand fetched or when it is anticipated
that they will likely be referenced soon. Caching usually
refers only to the former. The latter is generally called
prefetching and will be studied in detail in the next sec-
tion. Note that to focus on the effect of caching, we
disable prefetching. This is an exception to our general
approach of perturbing, at any one time, only the param-
eters for one technique from their default values listed in
Figure 2.

Figure 4 shows the effectiveness of read caching at
reducing physical reads. Unless otherwise noted, the
cache block size is 4 KB. We use the Least-Recently-
Used (LRU) replacement policy since variations of it
are commonly used throughout computer systems. No-

7

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20 24 28 32
Cache�Size�(MB)

Re
ad

�M
iss

�R
at

io

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

(a) Resource-Poor.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8
Cache�Size�(%�Storage�Used)

Re
ad

�M
iss

�R
at

io

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

f(x)=2.10(x+2.14)-1.07

r2=1.00

(b) Resource-Rich.

Figure 4: Effectiveness of Read Caching at Reducing Physical Reads.

tice from Figure 4(a) that the cache is not very useful
for sizes up to 32 MB. This is expected because we are
looking at the physical reference stream, which has been
filtered by the caching going on upstream in the host sys-
tem. Today, it is common even for PC systems to have
more than 100 MB of main memory, much of which can
be used for file caching. Yet most disks have only 2-
4 MB of cache with some offering an 8 MB option. Our
results suggest that at such sizes, the disk drive cache
is not very effective. It serves primarily as a buffer for
prefetching.

Note that if the cache is large enough to hold all the
blocks that will be referenced again, the performance
will obviously be very good. However, we will need
a huge cache because from Figures 4(b) the miss ratio
continues to improve at cache sizes that are beyond 4%
of the storage used (allocated). In practice, there is a
limit to the size of the cache due to addressing and pack-
aging limitations, and cost. Today, most enterprise class
storage controllers, when fully loaded, have cache sizes
that are in the range of 0.05% to 0.2% of the storage
space [8, 16, 22]. In this study, we set the cache size
aggressively to 1% of the storage used in the resource-
rich environment and 8 MB per disk in the resource-poor
environment. The cost per GB for DRAM is currently
about 50 times higher than for disk storage. This means
that a cache that is 1% of the storage space, and that
does nothing but helps to mask the poor performance
of the disks, will cost as much as half the disk storage.
This level of cost, though high, is likely to be acceptable
since it is about half that incurred by sites that mirror in-
stead of parity-protect their disks. Note also that as disks
become a lot bigger and PCs have at least one disk, the
amount of cache needed in the PC environment to hold
1% of the data stored (or data in use) may be much less

than the amount of cache needed to store 1% of the disk
capacity.

In order to establish a rule of thumb relating the read
miss ratio to the size of the cache, we took the average of
the five plots in Figure 4(b) and fitted various functional
forms to it. As shown in the figure, a good fit is obtained
with a power function of the form f(x) = a(x − b)c

where a, b and c are constants. This relationship based
on the physical I/O stream turns out to be functionally
similar to what has been found at the logical level for
large database systems [18]. However, at the logical
level, the c value is about half of the -1 in our case. This
means that the physical read miss ratio for our work-
loads improves faster with increase in the cache size
than is the case at the logical level for large database
systems. Such results suggest that caching can be effec-
tive at the physical level provided that the cache is large
enough.

In Table 2, we summarize the effectiveness of
read caching at improving performance. Through-
out this paper, we define improvement as (valueold −
valuenew)/valueold if a smaller value is better and
(valuenew − valueold)/valueold otherwise. Note that
some amount of cache memory is needed as a speed
matching buffer between the disk media and the disk
interface with the host. In other words, we need to
configure our simulator with some small but non-zero
amount of cache memory. Therefore, the improvement
reported in Table 2 is relative to the performance with
a small 512 KB cache. As discussed earlier, in the
resource-poor environment, caching is relatively inef-
fective, achieving only about 6% improvement in av-
erage read response time and about 4% in average read
service time. In the resource-rich environment, the im-
provement ranges from about 20% in the base PC work-
loads to more than 50% for the merged workloads.

8

 Resource-Poor Resource-Rich

 Average Read
Response Time

Average Read
Service Time Read Miss Ratio Average Read

Response Time
Average Read
Service Time Read Miss Ratio

 ms %i ms %i %i ms %i ms %i %i

P-Avg. 6.27 2.46 4.31 2.11 0.934 2.12 5.00 22.9 3.42 22.3 0.746 22.0

S-Avg. 5.34 9.01 3.88 8.34 0.864 8.93 3.54 38.8 2.72 35.7 0.623 34.2

Ps-Avg. 6.96 2.33 4.34 2.09 0.934 2.13 5.73 20.6 3.49 21.5 0.746 22.0

Pm 6.04 2.26 4.18 1.83 0.935 1.81 3.15 49.0 2.27 46.6 0.521 45.2

Sm 5.69 6.36 4.10 6.34 0.891 7.27 2.69 55.7 1.99 54.5 0.463 51.8

i Improvement over 512KB cache (buffer) ([original value – new value]/[original value]).
Resource-Poor: 8MB per disk, Least-Recently-Used (LRU) replacement.
Resource-Rich: 1% of storage used, cently-Used (LRU) replacement.

Table 2: Performance with Read Caching. Table shows percentage improvement over a system with practically no
(512 KB) cache.

Note that these numbers are for a cache block size
of 4 KB. For historical reasons, the sector or smallest
addressable unit in most disks and storage controllers
today is 512 B. Managing the cache at such a small
granularity of 512 B is very inefficient because of the
large data structures needed to manage them and be-
cause most I/O transfers are much larger than 512 B. To
reduce the management overhead, a larger cache block
can be used together with valid bits to indicate whether
each sector within the block is present in the cache.
This is similar to the sector cache approach in processor
cache. In Figure A-1, we evaluate the impact of using
a large cache block on the effectiveness of the cache.
Observe that a cache block size of 4 KB is reasonable
for our workloads. We will use this block size for the
rest of the paper. Note that the cache block size is the
unit of cache management. It is independent of the fetch
or transfer size, which we will analyze in the following
section.

4.2 Prefetching

Prefetching is the technique of predicting blocks that
are likely to be used in the future and fetching them be-
fore they are actually needed. The overall effectiveness
of prefetching at improving performance hinges on (1)
the accuracy of the prediction, (2) the amount of extra
resources (memory use, disk and data path busy time,
etc.) that are consumed by the prefetch, and (3) the
timeliness of the prefetch, i.e., whether the prefetch is
completed before the blocks are actually needed.

The prediction is usually based on past access pat-
terns [18, 36] although in certain situations, system-
generated plans [15, 40], user-disclosed hints [30] and
guidance from speculative execution [3] may be avail-
able to help with the prediction. In general, the predic-
tion is not perfect so that prefetching consumes more
resources than demand fetching. Specifically, it con-

gests the I/O system and may pollute memory with un-
used pages. Memory pollution is the loading of pages
which are not referenced and the displacement of pages
that will be referenced. For many storage devices, par-
ticularly disk drives, however, a large sequential ac-
cess is much more efficient than multiple small ran-
dom accesses. For such devices, prefetching of sequen-
tial pages has the potential to increase I/O efficiency
by transforming several small block I/Os into one large
block I/O, which can be more efficiently handled by
the I/O device. Moreover, most workloads exhibit se-
quentiality in their I/O access patterns so that sequen-
tial prefetch, especially if performed on a cache miss,
scores well on all three criteria (prediction accuracy,
cost, timeliness) listed above. Therefore, practically
all storage systems today implement some form of se-
quential prefetch on cache miss. We will focus on such
prefetch in this paper. By default, we assume that data
is prefetched into the cache and managed as if it were
demand fetched. The prefetched data could instead be
placed in a separate buffer or be handled in the cache
differently than demand fetched data (e.g., be evicted
earlier). The interested reader is referred to [18] for an
evaluation of such alternatives.

Recently, several researchers have proposed schemes
for automatically matching up access patterns with pre-
viously observed contexts, and then prefetching accord-
ing to the previously recorded reference patterns (e.g.,
[13]). Such prefetching schemes should score well in
the accuracy criteria but because they incur additional
random I/Os, which are slow and inefficient, to perform
the prefetch, they may not do as well in the cost and
timeliness criteria. We look at an alternative to context-
based prefetch in [19].

9

0

0.2

0.4

0.6

0.8

0 32 64 96 128
Fetch�Unit�(KB)

Re
ad

�M
iss

�R
at

io

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich
0

1

2

3

4

5

6

0 32 64 96 128
Fetch�Unit�(KB)

Av
er

ag
e�

Re
ad

�R
es

po
ns

e�
Ti

m
e�

(m
s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(a) Large Fetch Unit.

0

0.2

0.4

0.6

0.8

0 32 64 96 128
Read-Ahead�Amount�(KB)

Re
ad

�M
iss

�R
at

io

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich
0

1

2

3

4

5

6

0 32 64 96 128
Read-Ahead�Amount�(KB)

Av
er

ag
e�

Re
ad

�R
es

po
ns

e�
Ti

m
e�

(m
s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(b) Read-Ahead.

Figure 5: Effect of Large Fetch Unit and Read-Ahead on Read Miss Ratio and Response Time (Resource-Rich).

4.2.1 Large Fetch Unit

Sequential prefetch can be achieved relatively easily
by using a large fetch unit or transfer size. For example,
if the fetch unit is 64 sectors or blocks, a read request
for blocks 60-68 will cause blocks 0-127 to be fetched.
Thus a large fetch unit, effectively a large block size,
will generally prefetch blocks both preceding and fol-
lowing the target blocks. Because the preceding blocks
are fetched before the target blocks to avoid an extra
disk revolution, there is a response time penalty for hav-
ing a large fetch unit. Furthermore, the entire transfer
must be complete before an I/O interrupt is received, al-
though in an alternate design the fetch could be broken
into one that terminated at the target blocks and a second
one that obtained the remaining blocks.

In Figures 5(a) and A-2(a), we plot the effect of hav-
ing a large fetch unit on the read miss ratio and the av-
erage read response time. Observe that a large fetch
unit significantly reduces the read miss ratio, with most
of the effect occurring at fetch units that are smaller
than about 64 KB. As the fetch unit is increased beyond
64 KB, the average read response time starts to rise be-
cause the penalty of having to wait for the entire fetch
unit begins to outweigh the benefit of the relatively small
marginal improvement in read miss ratio. Previously, a
one-track fetch unit was recommended [38] but since
then physical track sizes have grown from the 10 KB
range to about 512 KB today. The ability of workloads
to effectively use larger fetch units have not, however,
kept pace. For all our workloads, a relatively small fetch
unit of 64 KB or 1

8
of a track works well.

4.2.2 Read-Ahead

In read-ahead, after the system has fetched the
blocks needed to satisfy a read request, it continues to
read the blocks following, i.e., it reads ahead of the cur-
rent request, hence its name. We consider the read re-
quest to be completed once all the requested blocks have
been fetched. This typically means that two start I/Os
are issued – one for the requested blocks and another
to read ahead and prefetch data. In Figures 5(b) and
A-2(b), we explore the performance effect of reading
ahead by various amounts. Observe from the figure that
read-ahead of 32 KB performs well for all our work-
loads. Beyond 32 KB, the read response time begins
to rise slightly for some of the workloads because the
read-ahead is holding up subsequent demand requests,
and the marginal improvement in read miss ratio at such
large read-ahead amounts is not enough to overcome the
effect of this delay. Later in this section, we will look at
preempting the read-ahead whenever a demand request
arrives.

In Table 3, we summarize the effectiveness of the
different prefetching schemes at improving performance
over a non-prefetching system. Observe that a large
fetch unit tends to reduce the read miss ratio more than
read-ahead does. It also has a slight advantage in read
service time for the PC workloads. This is because the
PC workloads tend to exhibit spatial locality and not just
sequentiality. In other words, blocks that are near, not
just those following, blocks that have been recently ref-
erenced are likely to be accessed in the near future. Thus
a large fetch unit, by causing the blocks around the re-
quested data to be prefetched, can achieve a higher hit
ratio. However, because large fetch unit fetches the sur-
rounding blocks before returning from servicing a re-

10

Avg. Read Response Time Avg. Read Service Time Read Miss Ratio

LFUi RAi CSPi LFUi RAi CSPi LFUi RAi CSPi

 ms %ii ms %ii ms %ii ms %ii ms %ii ms %ii %ii %ii %ii

P-Avg. 4.29 32.1 4.25 32.4 4.14 34.3 2.74 36.2 2.99 30.4 2.93 31.9 0.484 48.2 0.587 37.2 0.518 44.6

S-Avg. 3.29 39.3 3.03 44.5 2.75 49.6 2.27 41.3 2.26 41.9 2.08 46.5 0.393 54.4 0.427 50.6 0.383 55.6

Ps-Avg. 4.92 29.8 4.64 33.4 4.65 33.4 2.78 35.8 2.84 34.4 2.81 35.0 0.484 48.2 0.587 37.2 0.518 44.6

Pm 4.10 32.1 3.98 34.1 3.89 35.6 2.74 34.4 2.94 29.5 2.91 30.3 0.495 47.1 0.596 36.2 0.533 43.0

Re
so

ur
ce

-P
oo

r

Sm 4.23 25.7 3.79 33.4 3.61 36.6 3.13 23.6 3.07 25.3 2.93 28.6 0.505 43.3 0.551 38.1 0.523 41.3

P-Avg. 3.33 33.8 3.43 31.5 3.33 33.5 2.12 37.8 2.40 29.5 2.35 30.7 0.375 49.4 0.473 36.4 0.415 44.0

S-Avg. 1.96 39.0 1.75 47.7 1.52 53.7 1.41 37.9 1.34 43.7 1.18 49.6 0.253 53.5 0.265 52.9 0.223 59.3

Ps-Avg. 3.96 31.2 3.81 33.4 3.82 33.3 2.16 37.5 2.28 34.1 2.26 34.4 0.375 49.4 0.472 36.5 0.414 44.1

Pm 1.91 39.3 2.01 36.3 1.94 38.3 1.33 41.2 1.56 31.3 1.54 32.3 0.247 52.6 0.321 38.5 0.280 46.3

Re
so

ur
ce

-R
ic

h

Sm 2.27 15.7 1.87 30.7 1.72 36.1 1.72 13.7 1.53 23.2 1.41 29.1 0.285 38.6 0.284 38.6 0.260 44.0

i LFU: Large fetch unit (64KB), RA: Read-Ahead (32KB), CSP: Conditional sequential prefetch (16KB segments for PC workloads, 8KB segments for server workloads,
prefetch trigger of 1, prefetch factor of 2).
ii Improvement over no prefetch ([original value – new value]/[original value]).

Table 3: Performance Improvement with Prefetching. Table shows percentage improvement over a system that does
not prefetch.

quest, it performs worse than read-ahead in terms of re-
sponse time, especially for the server workloads.

4.2.3 Conditional Sequential Prefetch

To reduce resource wastage due to unnecessary
prefetch, sequential prefetch can be initiated only when
the access pattern is likely to be sequential. Gener-
ally, the amount of resources committed to prefetching
should increase with the likelihood that the prediction
is correct. For instance, previous studies [18, 36] have
shown the benefit of determining the prefetch amount
by conditioning on the length of the run or sequential
pattern observed thus far. We refer to such schemes as
conditional sequential prefetch. In order to condition on
the run length, we need to be able to discover the se-
quential runs in the reference stream. This is generally
difficult because of the complex interleaving of refer-
ences from different processes. In this paper, we use a
general sequential detection scheme patterned after that
proposed in [18].

The sequential detector keeps track of references at
the granularity of multiple sectors or blocks, a unit we
refer to as the segment. A segment is considered to
be referenced if any page within that segment is refer-
enced. By detecting sequentiality in segment references,
we can very effectively capture pseudo-sequential ref-
erence patterns. The sequential detector maintains an
LRU organized list of segments. Each entry in the seg-
ment directory has a sequential run counter that tracks
the length of the run ending at that segment. On a read,
if the corresponding segment is not already in the seg-
ment directory, we insert it. The run counter value of the
new segment entry is set to one if the preceding segment
is not in the directory, and to one plus the counter value

of the preceding segment otherwise. In the latter case,
we remove the entry corresponding to the preceding seg-
ment. Note that the segment directory tracks sequential
patterns in the actual reference stream. It is therefore up-
dated only when read requests are encountered and not
when blocks are prefetched. On a read miss, if the run
counter for the segment exceeds a threshold known as
the prefetch trigger, we initiate sequential prefetch. In
this paper, the prefetch amount is set to 2*(run counter
value)*segment size, subject to a maximum of 256 KB.
The size of the segment directory governs the number
of potential sequential or pseudo-sequential streams that
can be tracked by the sequential detector. We use a gen-
erous 64 entries for all our simulations.

In Figures 6, A-4 and A-5, we explore the perfor-
mance sensitivity to the segment size and the prefetch
trigger. As we would expect, lower settings for the
prefetch trigger perform better because the cost of fetch-
ing additional blocks once the disk head is properly po-
sitioned is minuscule compared to the cost of a ran-
dom I/O that might have to be performed later if the
blocks are not prefetched. For all the workloads, the
best performance is obtained with a prefetch trigger of
one, meaning that prefetch is triggered on every cache
miss. A segment size of 16 KB works well for the PC
workloads. For the server workloads, the optimal seg-
ment size is 8 KB.

In a similar fashion, we could additionally prefetch
preceding blocks when a backward sequential pattern is
detected. To prevent having to wait a disk revolution for
the preceding blocks to appear under the disk head, we
fetch the preceding blocks before the requested blocks.
As shown in Figures A-6 and A-7, except for a slight
performance improvement in some of the PC workloads,

11

0

0.2

0.4

0.6

0.8

0 8 16 24 32
Segment�Size�(KB)

Re
ad

�M
iss

�R
at

io

1
2
4
No�Pf

P-Avg.

Resource-Rich

Prefetch�Trigger

0

0.2

0.4

0.6

0.8

0 8 16 24 32

S-Avg.

0

0.2

0.4

0.6

0.8

0 8 16 24 32

Ps-Avg.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 8 16 24 32

Pm

0

0.1

0.2

0.3

0.4

0 8 16 24 32

Sm

Figure 6: Read Miss Ratio with Conditional Sequential Prefetch (Resource-Rich).

backward conditional sequential prefetch turns out not
to be very useful.

In Table 3, we compare the performance of con-
ditional sequential prefetch to that of large fetch unit
and read-ahead. The three schemes achieve roughly the
same average read response time for the PC workloads,
reducing it by over 30%. For the server workloads, con-
ditional sequential prefetch is clearly superior, improv-
ing the average read response time by between 36% and
54%. As for read service time, the PC workloads are
improved by between 30 and 40% with large fetch unit
having an edge. For the server workloads, conditional
sequential prefetch again reigns supreme with improve-
ment of between 29% and 50%. In the resource-poor
environment, about 40-60% of the reads remain after
caching and prefetching. In the resource-rich environ-
ment, about 25-45% remain.

4.2.4 Opportunistic Prefetch

Another way to reduce the potential negative im-
pact of prefetch is to perform the prefetch using only
resources that would otherwise be idle or wasted. We
refer to such an approach as opportunistic prefetch. In
general, opportunistic prefetch can best be performed
close to the physical device where detailed information
is available about the critical physical resources. Be-
cause a disk access costs much more than a semicon-
ductor memory access, the cost of accessing prefetched
data should be largely independent of the layer in the
storage stack the data is prefetched into. However, data
prefetched into the disk drive cache will tend to be
evicted sooner, sometimes even before they are used, be-
cause the disk drive cache is typically smaller than the
adaptor/controller cache. To model this effect, we enter
opportunistically prefetched data into an 8 MB (LRU)

prefetch buffer instead of the large cache in the resource-
rich environment. The prefetch buffer turns out to sig-
nificantly reduce pollution of the large cache.

The simplest form of opportunistic prefetch is to
read-ahead up to a maximum amount or until a demand
request arrives at which point the read-ahead is termi-
nated. This is known as preemptible read-ahead. Pre-
emptible read-ahead may not be practical high up in the
storage stack. For example, read-ahead by the disk is
usually preemptible. But at the adaptor/controller level,
once the request is issued to the disk, it is difficult to
cancel. By terminating the read-ahead as soon as an-
other demand request arrives, preemptible read-ahead
avoids holding up subsequent requests. Thus its per-
formance does not degrade as the maximum read-ahead
amount is increased (Figures 7 and A-8). However,
preemptible read-ahead tends not to perform as well as
non-preemptible read-ahead, especially for the sped-up
workloads, because it may get preempted before it can
perform any effective prefetch. Such results suggest a
hybrid approach of performing preemptible read-ahead
in addition to the non-opportunistic prefetching schemes
discussed above. In such an approach, we would always
perform some amount of prefetch (non-opportunistic),
and if idle resources are available, we would prefetch
more (opportunistic). We find that with the hybrid ap-
proach, an opportunistic prefetch limit of 128 KB works
well in almost all the cases (Figures A-10 - A-15). This
is the value that we will assume for the rest of the paper.
An opportunistic prefetch limit of 128 KB means that
blocks will only be opportunistically prefetched until a
total of 128 KB of data has been prefetched.

Tables 4 and A-1 summarize the performance impact
of performing preemptible read-ahead in addition to the
various non-opportunistic prefetching schemes. In the
resource-poor environment, preemptible read-ahead im-

12

Avg. Read Response Time Avg. Read Service Time Read Miss Ratio

LFUi RAi CSPi LFUi RAi CSPi LFUi RAi CSPi

 ms %ii ms %ii ms %ii ms %ii ms %ii ms %ii %ii %ii %ii

P-Avg. 2.97 11.9 3.13 10.2 3.15 6.84 1.81 14.9 2.10 13.1 2.15 9.25 0.336 10.8 0.411 13.7 0.381 8.95

S-Avg. 1.71 15.2 1.45 18.8 1.32 13.5 1.20 17.7 1.04 22.8 0.98 16.4 0.212 19.1 0.204 23.7 0.186 16.1

Ps-Avg. 3.76 5.40 3.65 4.99 3.69 4.49 1.99 7.79 2.13 7.24 2.13 6.43 0.371 1.15 0.437 8.07 0.391 6.28

Pm 1.67 12.3 1.96 2.46 1.98 -2.15 1.14 14.6 1.45 6.99 1.50 2.25 0.223 9.90 0.296 7.75 0.275 1.60 Pr
ee

m
pt

ib
le

Re

ad
-A

he
ad

Sm 2.05 9.8 1.44 22.8 1.38 19.6 1.56 9.47 1.14 25.4 1.10 22.1 0.257 9.79 0.212 25.3 0.205 21.2

P-Avg. 2.76 18.3 2.57 26.7 2.66 22.2 1.68 20.8 1.71 29.6 1.79 25.0 0.310 17.8 0.332 30.5 0.313 25.6

S-Avg. 1.65 18.7 1.32 27.4 1.20 22.6 1.16 20.8 0.947 31.3 0.886 25.7 0.204 22.6 0.182 32.8 0.167 26.0

Ps-Avg. 3.47 13.1 3.03 22.1 3.15 19.3 1.81 16.3 1.69 26.7 1.75 23.8 0.336 10.7 0.348 27.0 0.319 24.0

Pm 1.57 17.8 1.59 20.9 1.65 15.0 1.07 19.9 1.17 25.3 1.24 19.4 0.207 16.0 0.238 25.8 0.226 19.4

+
Re

ad
 A

ny
 F

re
e

Bl
oc

ks
iii

Sm 1.99 12.4 1.44 22.8 1.38 19.9 1.52 11.8 1.15 24.7 1.10 22.2 0.249 12.6 0.212 25.3 0.204 21.3

P-Avg. 2.71 19.9 2.66 24.3 2.80 18.0 1.50 29.7 1.52 37.4 1.65 30.7 0.287 24.1 0.318 33.6 0.308 26.8

S-Avg. 1.63 20.1 1.29 29.5 1.21 22.1 1.04 29.7 0.800 42.6 0.769 36.0 0.198 24.7 0.171 37.5 0.162 28.5

Ps-Avg. 3.38 15.5 3.20 17.8 3.37 13.5 1.46 32.9 1.49 35.4 1.64 28.5 0.303 19.9 0.335 30.0 0.317 24.5

Pm 1.54 19.3 1.65 17.8 1.76 9.31 0.927 30.5 1.01 35.1 1.13 26.4 0.190 22.9 0.229 28.7 0.223 20.1

+
Ju

st
-in

-T
im

e
Se

ek
iv

Sm 1.97 13.0 1.42 24.1 1.33 22.4 1.38 20.0 1.01 34.4 0.94 33.3 0.242 14.9 0.204 28.1 0.194 25.1

i LFU: Large fetch unit (64KB), RA: Read-Ahead (32KB), CSP: Conditional sequential prefetch (16KB segments for PC workloads, 8KB segments for server workloads,
prefetch trigger of 1, prefetch factor of 2).
ii Improvement over non-opportunistic prefetch ([original value – new value]/[original value]).
iii Preemptible Read-Ahead + Read Any Free Blocks.
iv Preemptible Read-Ahead + Read Any Free Blocks + Just-in-Time Seek.

Table 4: Additional Effect of Opportunistic Prefetch (Resource-Rich). Table shows percentage improvement over a
system that performs only non-opportunistic prefetch.

0

0.2

0.4

0.6

0.8

0 32 64 96 128
Read-Ahead�Amount�(KB)

Re
ad

�M
iss

�R
at

io

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Rich

0

1

2

3

4

5

6

0 32 64 96 128
Read-Ahead�Amount�(KB)

Av
er

ag
e�

Re
ad

�R
es

po
ns

e�
Ti

m
e�

(m
s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Rich

Figure 7: Effect of Preemptible Read-Ahead on Read
Miss Ratio and Response Time (Resource-Rich).

proves average read response time by about 5% for large
fetch unit and read-ahead. The improvement is less for
conditional sequential prefetch because conditional se-
quential prefetch already uses resources carefully by de-
termining the amount to prefetch based on how likely
the prefetch will be useful. In the resource-rich environ-
ment, preemptible read-ahead has a bigger effect, espe-
cially for the server workloads which are improved by
about 15-20%.

Another opportunistic prefetching technique is to
start reading once the disk head is positioned over the

correct track. Such a scheme is known as read any free
blocks or zero latency read. Basically, it uses the rota-
tional delay to perform some prefetching for free. Such
a scheme may prefetch some blocks that precede the
requested data and/or some blocks that come after, de-
pending on when the head is properly positioned. For
example, if the head is positioned to read just after the
requested data has rotated under, read any free blocks
will fetch the succeeding blocks until the end of the track
and then continue reading the blocks at the beginning
of the track. As shown in Tables 4 and A-1, read any
free blocks is quite effective at improving performance.
In the resource-poor environment, read any free block
with preemptible read-ahead is able to reduce the aver-
age read response time with read-ahead by about 20%
for the PC workloads and over 10% for the server work-
loads. In the resource-rich environment, the additional
improvement is over 20% for all the workloads. Again,
conditional sequential prefetch is improved less because
it performs large prefetches only when they are war-
ranted. As for large fetch unit, it is improved the least by
read any free blocks because it already prefetches some
of the preceding blocks.

The dual of read any free blocks is just-in-time seek
or delayed preemption [9]. The idea here is that when a
request arrives while the disk is performing preemptible
read-ahead, the disk should continue with the read-
ahead and move the head to service the incoming re-
quest only in time for the head to be positioned over the

13

Resource-Poor Resource-Rich

Avg. Read Resp. Time Avg. Read Service Time Read Miss Ratio Avg. Read Resp. Time Avg. Read Service Time Read Miss Ratio

LFUi RAi CSPi LFUi RAi CSPi LFUi RAi CSPi LFUi RAi CSPi LFUi RAi CSPi LFUi RAi CSPi

P-Avg. 39.5 47.3 46.1 44.9 48.3 46.3 53.7 53.9 56.8 45.7 49.7 48.2 50.6 50.4 48.1 58.3 55.8 58.4

S-Avg. 44.3 51.7 54.2 46.8 51.1 52.9 59.4 59.8 61.7 48.7 61.8 64.6 47.9 61.0 63.2 61.7 68.0 70.2

Ps-Avg. 35.3 45.3 43.5 42.6 49.5 48.0 50.8 51.8 55.9 40.0 48.0 46.1 47.5 51.7 50.0 54.8 53.6 57.5

Pm 38.8 48.0 46.8 42.1 46.7 44.5 51.7 52.1 54.8 50.1 49.6 47.6 52.9 48.6 45.5 60.2 54.4 56.7

Sm 30.6 40.8 42.1 28.7 34.8 36.2 47.5 47.5 48.4 26.2 46.5 48.8 23.9 42.2 44.8 46.3 54.2 55.9

i LFU: Large fetch unit (64KB), RA: Read-Ahead (32KB), CSP: Conditional sequential prefetch (16KB segments for PC workloads, 8KB segments for server workloads,
prefetch trigger of 1, prefetch factor of 2).

Table 5: Overall Effect of Performing Preemptible Read-Ahead and Read Any Free Blocks in Addition to Non-
Opportunistic Prefetch. Table shows percentage improvement over a system that does not prefetch.

correct track before the requested data rotates under. Ba-
sically, this allows the disk to prefetch more of the suc-
ceeding blocks. As shown in Tables A-1 and 4, for large
fetch unit, the additional use of just-in-time seek im-
proves performance slightly over performing only read
any free blocks and preemptible read-ahead. For read-
ahead and conditional sequential prefetch, just-in-time
seek offers a marginal performance improvement on top
of read any free blocks and preemptible read-ahead for
the server workloads, but loses out for the PC work-
loads.

During the rotational delay, the disk can also be
used to perform I/Os that are tagged as lower-priority.
This technique is called freeblock scheduling [25] and
is meant to allow tasks such as disk scrubbing and data
mining to be performed in the background without any
impact on the foreground work. For instance, if the next
block to be read is halfway round the track, the disk head
could be positioned to service background requests “for
free” as long as it could be moved back in time to read
the block as it rotates under the head. But given that
read any free blocks and just-in-time seek are effective
at improving performance, such background I/Os may
not be totally free for our workloads.

In general, in both the resource-poor and resource-
rich environments, the best performance is obtained for
the PC workloads when preemptible read-ahead and
read any free blocks are performed in addition to sim-
ple read-ahead. Specifically, this means starting to read
once the disk head is positioned over the correct track,
and reading 32 KB and, if there are no incoming re-
quests, up to 128 KB beyond the requested data. The av-
erage read response time in this case is improved by al-
most 50% over a system that does not prefetch (Table 5).
For the server workloads, performance improvement of
between 42% and 54% in the resource-poor environ-
ment and up to 65% in the resource-rich environment are
achieved when conditional sequential prefetch is sup-
plemented by preemptible read-ahead and read any free
blocks.

4.2.5 Sensitivity to Cache Size

In Figure 8, we analyze the performance sensitivity
to cache size when data is prefetched into the cache us-
ing the default parameters (Figure 2). The default pa-
rameters mean that in the resource-poor environment,
we read-ahead by at least 32 KB on every cache miss
and up to 128 KB if there are no incoming request.
We also perform read any free blocks. In the resource-
rich environment, we perform conditional sequential
prefetch, together with preemptible read-ahead and read
any free blocks.

Observe that with prefetching, more than 50% of the
reads can be satisfied by a 4 MB cache. Increasing the
cache size beyond 4 MB to 32 MB achieves only di-
minishing returns. Such results suggest that disk drive
caches in the MB range are sufficient. On the other
hand, for very large caches, the miss ratio continues to
improve as the cache size is increased beyond 4% of the
storage used. As we have discussed earlier, most enter-
prise class storage controllers today, when fully loaded,
have a front-end (cache size) to back-end (storage space)
ratio of between 0.05% and 0.2% [8, 16, 22]. Our results
suggest that increasing the cache size for these systems
is likely to continue to be useful. Note, however, that the
desirable amount of cache may not scale linearly with
the size of the system.

4.3 Write Buffering

Write buffering refers to the technique of holding
written data temporarily in fast, typically semiconduc-
tor, memory before destaging the data to permanent stor-
age. A write operation can be reported as completed
once its data has been accepted into the buffer. Be-
cause writes tend to come in bursts [17], the write buffer
helps to better regulate the flow of data to permanent
storage. To prevent any loss of data if the system fails
before the buffered data is written to permanent stor-
age, the write buffer is typically implemented with some

14

0

0.2

0.4

0.6

0.8

0 4 8 12 16 20 24 28 32
Cache Size (MB)

Re
ad

 M
iss

 R
at

io
 (w

ith
 P

re
fe

tc
h)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(a) Resource-Poor.

0

0.2

0.4

0.6

0 1 2 3 4 5 6 7 8
Cache Size (% Storage Used)

Re
ad

 M
iss

 R
at

io
 (w

ith
 P

re
fe

tc
h)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

f(x)=1.01(x+1.98)-1.33

r2=0.998

(b) Resource-Rich.

Figure 8: Sensitivity to Cache Size when Data is Prefetched into the Cache.

form of non-volatile storage (NVS). In some environ-
ments, (e.g., UNIX file system, PC disks), a less ex-
pensive approach of periodically flushing (usually every
30s) the buffer contents to disk is considered sufficient.
By delaying when the written data is destaged to perma-
nent storage, write buffering allows multiple writes to
the same location to be combined into a single physical
write, thereby reducing the number of physical writes
that have to be performed by the system. It may also in-
crease the efficiency of writes by allowing multiple con-
secutive writes to be merged into a single big-block I/O.
In addition, more sophisticated techniques can be used
to schedule the writes to take advantage of the charac-
teristics and the state of the storage devices.

In short, the write buffer achieves three main effects.
First, it hides the latency of writes by deferring them
to some later time. Second, it reduces the number of
physical writes, and third, it enables the remaining phys-
ical writes to be performed efficiently. In this paper,
we evaluate write buffering using a general framework
that is flexible enough for us to examine the three ef-
fects of write buffering separately. In this framework,
a background destage process is initiated whenever the
fraction of dirty blocks in the write buffer exceeds a
high limit threshold, highMark, and is suspended once
the fraction of dirty blocks in the buffer drops below a
low limit threshold, lowMark. By appropriately setting
highMark, we can ensure that buffer space is avail-
able to absorb the incoming writes. To avoid impact-
ing the read response time, destage requests are not ser-
viced unless there are no pending read requests or the
write buffer is full. In the latter case, destage requests
are serviced at the same priority as the reads. Analy-
sis in [17] shows that the I/O workload is bursty, which
implies that the storage system has idle periods during
which the destage requests can be handled.

To reduce the number of physical writes, we use the
Least-Recently-Written (LRW) policy to decide which
blocks to destage [18]. The LRW policy is similar to the
LRU policy for read caching and is so named because
it selects for destage the block that was least recently
written. In order to examine the effect of limiting the age
of dirty data in the buffer, we also destage a block when
its age exceeds the maximum allowed. Destage policies
have been studied in some detail recently but the focus
has been on selecting blocks to destage based on how
efficiently buffer space can be reclaimed. For instance,
in [1], the track with the most dirty blocks is selected
for destage. In [42], the blocks that can be written most
quickly are selected. But a destage policy that strives to
quickly reclaim buffer space may not be effective if the
blocks that are destaged will be dirtied again in the near
future. Moreover, with the layered approach of building
systems, estimates of the cost of destage operations may
not be available to the destage process. For example, the
adaptor or controller housing the write buffer typically
has no accurate knowledge of the state and geometry of
the underlying disks.

The approach we take is to first focus on reducing
the number of physical writes by destaging blocks that
are less likely to be rewritten and to then perform the re-
maining writes efficiently. To achieve the latter, when-
ever a destage request is issued, we include in the same
request contiguous blocks that are also dirty. The re-
sulting disk write may span tracks but it is a large se-
quential write which can be efficiently handled by the
disk. Also, we allow as many outstanding destage re-
quests (contiguous blocks) as the maximum queue depth
seen by the host, and once the destage process is initi-
ated, it stops only when the fraction of dirty blocks in
the buffer drops below a low limit threshold, lowMark.
By setting lowMark to be significantly lower than

15

0

2

4

6

8

10

0 2 4 6 8 10 12 14 16
Write�Buffer�Size�(MB)

Av
er

ag
e�

W
rit

e�
Re

sp
on

se
�T

im
e�

(m
s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(a) Resource-Poor.

0

1

2

3

4

0 0.05 0.1 0.15 0.2 0.25
Write�Buffer�Size�(%�Storage�Used)

Av
er

ag
e�

W
rit

e�
Re

sp
on

se
�T

im
e�

(m
s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(b) Resource-Rich.

Figure 9: Improvement in Average Write Response Time from Absorbing Write Bursts.

highMark, we achieve a hysteresis effect which pre-
vents the destage process from being constantly trig-
gered whenever new blocks become dirty. Therefore,
instead of a continual trickle of destage requests, we pe-
riodically get a burst of destage requests which can be
effectively scheduled.

4.3.1 Absorbing Write Bursts

To investigate the amount of buffer space needed to
absorb the write bursts, we set both the highMark and
lowMark to zero. This ensures that dirty blocks are
destaged at the earliest opportunity to make room for
buffering the incoming writes. In Figure 9, we plot the
average write response time as a function of the buffer
size. In order to generalize our results across the differ-
ent workloads, we also normalize the buffer size to the
amount of storage used.

When the write buffer is not large enough to ab-
sorb the write bursts, some of the writes will stall until
buffer space is reclaimed by destaging some of the dirty
blocks. When the buffer is large enough, all the write
requests can be completed without stalling. Notice that
for all the workloads, a write buffer of between 4 MB
and 8 MB or between 0.05 and 0.1% of the storage used
is sufficient to effectively absorb the write bursts. In
fact, for the PC workloads, a small write buffer of about
1 MB or 0.01% of the storage used is able to hide most
of the write latency. As in the case of the read cache, we
investigated the effect of different buffer block sizes or
units of buffer management and again found that 4 KB
is reasonable for our workloads (Figure A-16).

4.3.2 Eliminating Repeated Writes

As mentioned earlier, when data is updated again be-
fore it is destaged, the second update effectively cancels
out the previous update, thereby reducing the number of
physical writes to the storage system. In this section,
we focus on how much buffer space is needed to effec-
tively allow repeated writes to the same location to be
cancelled. We set the highMark and lowMark to one
so as to maximize the probability that a write will “hit”
in the write buffer.

In Figure 10, we plot the write miss ratio as a func-
tion of the buffer size. We define the write miss ratio
as the fraction of write requests that causes one or more
buffer blocks to become dirty. Thus the write miss ratio
is essentially the fraction of write requests that are not
cancelled. As in the case of the read cache, we took the
arithmetic mean of the plots for the five different classes
of workloads and fitted various functional forms to it.
As shown in Figure 10(b), a power function of the form
f(x) = a(x − b)c is again a good fit. However, the
magnitude of the exponent c at about 0.2 is significantly
lower than it is for reads, meaning that for large buffer
sizes, the write miss ratio decreases much more slowly
with buffer size increase than is the case for reads. Such
a behavior of the physical I/O stream turns out to paral-
lel what has been observed at the logical level for large
database systems where the size of the read and write
exponents are about 0.5 and 0.25 respectively [18].

Observe from Figure 10(b) that for all the workloads,
60-75% of the writes are eliminated at buffer sizes that
are less than 0.1% of the storage used. In Figure A-
17, we plot the corresponding improvement in the av-
erage write service time. In the resource-poor environ-
ment, we limit the age of dirty blocks in the buffer to
be less than 30s. There is, therefore, less write can-

16

0

0.2

0.4

0.6

0.8

0 2 4 6 8 10 12 14 16
Write�Buffer�Size�(MB)

W
rit

e�
M

iss
�R

at
io

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(a) Resource-Poor.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2 0.25
Write�Buffer�Size�(%�Storage�Used)

W
rit

e�
M

iss
�R

at
io

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

f(x)=0.215x-0.184

r2=1.00

(b) Resource-Rich.

Figure 10: Effectiveness of Write Buffering at Reducing Physical Writes.

cellation (about 40-50%) and most of it occurs at very
small buffer sizes of about 2 MB. In general, when there
is concern about losing buffered data, limits have to be
placed on the maximum age of the buffered data. In Fig-
ure A-18, we analyze the effect of such constraints and
find that a maximum age of 1-hour is able to achieve
most of the write elimination.

4.3.3 Combined Effect

We have studied the effects of absorbing write bursts
and eliminating repeated writes independent of each
other. In practice, the two effects compete for buffer
space. They also work together because eliminating
writes makes it possible to absorb write bursts in less
buffer space. Striking a balance between the two is
therefore key to effective write buffering. In this section,
we investigate how to achieve this balance by appro-
priately setting the highMark and lowMark threshold
values.

In Figures 11 and A-19, we plot the write miss ra-
tio as a function of highMark. As we would expect,
if destage is initiated whenever a small fraction of the
buffer is dirty, there will be less opportunities for write
cancellation. The write miss ratio is therefore high for
small values of highMark. For our various workloads,
we find that the miss ratio curves tend to flatten beyond
a highMark value of about 0.6. On the other hand, if
the highMark value is set high meaning that destage is
initiated only when most of the buffer is dirty, response
time will suffer because some of the writes will arrive
to find the buffer full and will stall until buffer space be-
comes available. In Figures 12 and A-20, we plot the av-
erage write response time as a function of highMark.
Observe that the average write response time rises as
highMark increases beyond about 0.8-0.9. In general,

we find that a highMark value of about 0.6-0.9 and
a lowMark value of less than 0.4 strike a reasonable
compromise between absorbing write bursts and elimi-
nating repeated writes. In the rest of this paper, we use
as default a highMark value of 0.8 and a lowMark
value of 0.2.

In Figures 13 and A-21, we plot the write service
time as a function of the threshold settings. Notice that
the service time curves are steeper than the correspond-
ing miss ratio curves in Figures 11 and A-19. This is
because the highMark and lowMark settings also af-
fect how efficiently the destage operations can be car-
ried out. In particular, when lowMark is set close to
highMark, the destage requests will be issued in a con-
tinuous trickle but when lowMark is set significantly
lower than highMark, the destage operations will be
issued in batches so that they can be scheduled to be
efficiently performed (Section 4.4).

A concern with background destage operations is
that they may negatively impact the read response time.
For instance, when the write buffer becomes full, back-
ground destage requests become foreground operations
which may interfere with the incoming read requests.
Moreover, the first read request after an idle period may
encounter a destage in progress. In this study, we as-
sume that destage operations are not preemptible. This
is generally true at the adaptor/controller level because
a write request cannot be easily cancelled once it has
been issued to the disk. From Figures A-23 and A-22,
we find that the read response time is not significantly
affected by write buffering provided that there is some
hysteresis, that is lowMark is significantly lower than
highMark. When there is no hysteresis, destage op-
erations take longer and tend to occur after every write
request, thereby increasing the chances that a read will
be blocked. In addition, the constant trickle of destage

17

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100
highMark�(%�Buffer)

W
rit

e�
M

iss
�R

at
io 5

10
20
40
60
80
90
95

lowMark�
(%�Buffer)

Resource-RichP-Avg.

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

S-Avg.
0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

Ps-Avg.

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

Pm
0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

Sm

Figure 11: Effect of lowMark and highMark on Write Miss Ratio (Resource-Rich).

0

0.1

0.2

0.3

0.4

0 20 40 60 80 100
highMark�(%�Buffer)

Av
er

ag
e�

W
rit

e�
Re

sp
on

se
�T

im
e�

(m
s)

5
10
20
40
60
80
90
95

lowMark�
(%�Buffer)

Resource-RichP-Avg.

0

1

2

3

0 20 40 60 80 100

S-Avg.
0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Ps-Avg.

0

0.05

0.1

0.15

0.2

0 20 40 60 80 100

P
m 0

1

2

3

4

5

0 20 40 60 80 100

Sm

Figure 12: Effect of lowMark and highMark on Average Write Response Time (Resource-Rich).

0

0.4

0.8

1.2

1.6

2

0 20 40 60 80 100
highMark�(%�Buffer)

Av
er

ag
e�

W
rit

e�
Se

rv
ice

�T
im

e�
(m

s) 5 10

20 40

60 80

90 95

lowMark�
(%�Buffer)

P-Avg. Resource-Rich

0

0.4

0.8

1.2

1.6

0 20 40 60 80 100

S-Avg.
0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

Ps-Avg.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

Pm
0

0.4

0.8

1.2

1.6

2

0 20 40 60 80 100

Sm

Figure 13: Effect of lowMark and highMark on Average Write Service Time (Resource-Rich).

18

 Resource-Poor Resource-Rich

 Average Write
Response Time

Average Write
Service Time Write Miss Ratio Average Write

Response Time
Average Write
Service Time Write Miss Ratio

 ms %i ms %i %i ms %i ms %i %i

P-Avg. 0.227 96.9 1.41 70.9 0.606 0.227 0.218 97.0 0.700 85.6 0.424 0.218

S-Avg. 2.13 92.7 1.32 70.7 0.525 2.13 0.831 97.0 0.535 87.8 0.293 0.831

Ps-Avg. 0.646 91.6 1.05 78.2 0.520 0.646 0.695 90.9 0.681 85.9 0.412 0.695

Pm 0.190 97.7 1.30 74.2 0.598 0.190 0.123 98.5 0.474 90.5 0.332 0.123

Sm 3.48 90.1 1.57 65.2 0.572 3.48 1.16 96.7 0.855 81.0 0.380 1.16

i Improvement over write-through or no write buffer ([original value – new value]/[original value]).
Resource-Poor: 4MB, lowMark = 0.2, highMark = 0.8, Least-Recently-Written (LRW) replacement, 30s age limit.
Resource-Rich: 0.1% of storage used, lowMark = 0.2, highMark = 0.8, LRW replacement, 1 hour age limit.

Table 6: Performance with Write Buffering. Table shows percentage improvement over a write-through system.

operations may lead to disk head thrashing because the
locality of reference for destage operations, which are
essentially delayed writes, is not likely to coincide with
that of current read requests.

In Table 6, we summarize the performance benefit
of write buffering. In the resource-poor environment,
about 40-50% of the writes are eliminated by write
buffering. The average write service time is reduced
by between 60-80% over the write-through case while
the average write response time is reduced by more than
90%. The improvement in the resource-rich environ-
ment is even more significant, with about 60-70% of the
writes being eliminated, and as much as a 90% reduction
in the average write service time. Note that this large
reduction in write service time with a relatively small
write buffer, albeit non-volatile to avoid any data loss,
puts into doubt the premise of log-structured file sys-
tems [28], which are based on the idea that with large
disk caches, I/O systems will have almost no reads, and
will be bottlenecked on writes.

4.4 Request Scheduling

The time required to satisfy a request depends on the
state of the disk, specifically whether the requested data
is present in the cache and where the disk head is rel-
ative to the requested data. In request scheduling [7],
the order in which requests are handled is optimized
to improve performance. The effectiveness of request
scheduling generally increases with the number of re-
quests that are available to be scheduled. In most sys-
tems, the maximum number of requests that are out-
standing to the storage system can be set. The actual
queue depth depends on the workload.

Request scheduling can in principle be performed at
different levels in the storage stack (e.g., operating sys-
tem, device driver, disk adaptor, disk drive), provided
that the necessary information is available to estimate
the service time of different requests. High in the stor-

age stack, it is difficult to make good estimates because
little information is available there. For example, mod-
ern disk protocols (e.g., SCSI, IDE) present a flat ad-
dress space so that any level above the disk drive has
little knowledge of the physical geometry of the disk,
unless it knows the disk model number and has a table
of the track and sector configuration. In addition, it is
hard to predict the angular position of the disk or which
requests will hit in the disk drive cache. As we have seen
in the previous sections, there are a lot of hits in the disk
drive cache, and such hits can substantially affect the
effectiveness of request scheduling [43].

In this paper, we first consider scheduling the re-
quests that miss in the cache since the critical resource
is the disk arm. We term this arm scheduling. Our
arm scheduling experiments assume a maximum queue
depth of eight and are based on the scheduling algorithm
that has been variously referred to as Shortest Time
First [35], Shortest Access Time First [23] and Shortest
Positioning Time First [43]. This is a greedy algorithm
that always selects the pending request with the small-
est estimated access time (seek + rotational latency). By
selecting the request with the shortest access time, the
algorithm tries to reduce the amount of time the disk
arm spends positioning itself, thereby increasing the ef-
fective utilization of the critical resource. The algorithm
can be adapted to select the request with the shortest ser-
vice time so as to minimize waiting time. In order to re-
duce the chances of request starvation, the requests can
be aged by subtracting from each access time or posi-
tioning delay (Tpos) a weighted value corresponding to
the amount of time the request has been waiting for ser-
vice (Twait). The resulting effective positioning delay
(Teff) is used in selecting the next request:

Teff = Tpos − (W ∗ Twait) (1)

We refer to this variation of the algorithm as Aged
Shortest Access Time First (ASATF) [23].

19

0

0.5

1

1.5

2

2.5

0.001 0.01 0.1 1 10
Age Factor, W

Av
er

ag
e

Re
sp

on
se

 T
im

e
(m

s)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

2

4

6

8

10

12

14

0.001 0.01 0.1 1 10
Age Factor, W

Co
ef

fic
ie

nt
 o

f V
ar

ia
tio

n
fo

r R
es

po
ns

e
Ti

m
e

Resource-Rich

Figure 14: Effect of Age Factor, W , on Response Time
(Resource-Rich).

With a sufficiently large aging factor W , ASATF de-
generates to First Come First Served (FCFS). A W value
of 0.0061 is recommended in [23, 43] but the range of
“good” values for W is found to be wide. In Figures
14 and A-24, we plot the average response time includ-
ing both reads and writes, and its coefficient of variation
as a function of W . The corresponding plots consider-
ing the reads and writes separately can be found in Fig-
ure A-25 while the plots of the average service time as
a function of W are in Figure A-26. For all our work-
loads, the average response time is almost constant for
W < 0.03. Observe that as W increases, the coeffi-
cient of variation for response time decreases gradually
to a minimum and then increases rather sharply beyond
that. The improvement in the coefficient of variation is
gradual as we increase the aging factor from zero be-
cause our model, unlike those used in [23, 43], takes
into consideration feedback between request completion
and subsequent request arrivals so that requests are less
likely to be starved. Since the variability in response
time increases rather sharply for W values beyond the
optimal, we err on the side of caution and select a value
of 0.01 as the baseline for our other simulations.

By comparing the response time at large values of W
with that at small values of W , we can quantify the net
effect of arm scheduling. We summarize the results in
Table 7. In general, arm scheduling tends to have a big-
ger impact in the server environments. Improvement of
up to 39% in average response time is seen for the server
workloads. For the PC workloads, the improvement is
about 15% on average. Looking at the reads and writes
separately, we find that in most cases, the improvement

1[43] recommends 6 but if Tpos and Twait are in the same
units, as one would reasonably expect, the correct value should
be 0.006.

in write response time is about two to three times that
for reads. This is because writes tend to come in big
bursts so that if the destage operations are not scheduled
efficiently, the write buffer is likely to become full and
cause the incoming writes to stall.

Note that arm scheduling actually has two separate
effects – one is to reduce the time needed to service a
request, the other is to reduce the waiting time by let-
ting the shortest job proceed first. Observe from Ta-
ble 7 that the service time improvement is more con-
sistent across the PC and server workloads than the im-
provement in response time. This suggests that a lot of
the response time improvement for the server workloads
is due to less waiting. Across all our workloads, read
service time is barely improved by request scheduling
while write service time is improved by between 20-
30% in the resource-poor environment and 35-40% in
the resource-rich environment. The poor improvement
for read requests is expected because the number of read
requests that are outstanding and can be scheduled tends
to be low [17]. The sizeable improvement of up to 40%
in write service time reflects our write buffering strat-
egy, which is specifically designed to maintain a size-
able number of outstanding destage requests so that they
can be effectively scheduled.

So far in this section, we have assumed a maximum
queue depth of eight and focused on the effectiveness
of arm scheduling. In practice, when there are multiple
outstanding requests, the storage system cache in effect
performs an additional level of scheduling by allowing
subsequent cache hits to proceed. We refer to this ef-
fect as cache scheduling. In Table 8, we summarize
the effect of allowing multiple requests to be outstand-
ing to the storage system. The data considering reads
separately from the writes are plotted in Figure A-27.
The improvement in response time reported in Table 8
includes the effect of both cache and arm scheduling.
That it exceeds by only a small amount the improvement
due to arm scheduling alone (Table 7) suggests that the
cache scheduling effect tends to be secondary.

Note that as the maximum queue depth is increased,
the average service time is improved but because some
requests are deferred, the average response time may
rise. For our workloads, a maximum queue depth of
eight works well. With this maximum queue depth,
the average response time for the server workloads
is improved by between 30% and 40% in both the
resource-poor and resource-rich environments while the
PC workloads are improved by about 20%. In terms
of average service time, both the PC and server work-
loads are improved by about 20%. Breaking down the
requests into reads and writes, we again find that most
of the improvement is due to the writes (Table A-2).

20

 Average Response Time Average Service Time

 All Requests Reads Writes All Requests Reads Writes

 ms %i ms %i ms %i ms %i ms %i ms %i

P-Avg. 1.51 14.2 3.34 12.8 0.227 24.6 1.74 10.8 2.22 4.03 1.41 16.5

S-Avg. 2.39 26.0 2.67 18.7 2.13 33.0 1.57 19.0 1.91 3.13 1.32 30.6

Ps-Avg. 1.96 19.0 3.83 14.4 0.646 31.1 1.52 16.4 2.18 6.08 1.05 27.1

Pm 1.24 14.4 3.14 12.6 0.190 28.1 1.63 15.4 2.23 4.24 1.30 23.8

Re
so

ur
ce

-P
oo

r

Sm 3.43 34.8 3.37 15.1 3.48 44.7 2.06 18.8 2.67 2.71 1.57 33.6

P-Avg. 1.19 13.5 2.66 11.6 0.218 25.4 1.14 18.1 1.79 3.40 0.700 34.7

S-Avg. 1.00 22.3 1.20 13.3 0.831 22.6 0.689 21.6 0.886 2.68 0.535 40.9

Ps-Avg. 1.67 18.9 3.15 12.4 0.695 32.0 1.11 19.1 1.75 5.05 0.681 35.1

Pm 0.67 7.71 1.65 8.06 0.123 5.07 0.746 19.8 1.24 2.99 0.474 35.8

Re
so

ur
ce

-R
ic

h

Sm 1.253 39.4 1.38 13.2 1.16 52.8 0.963 25.4 1.10 2.32 0.855 39.8

i Improvement over FCFS ([original value – new value]/[original value]).
Age factor: 0.01, queue depth: 8.

Table 7: Performance with Aged Shortest Access Time First (ASATF) Scheduling. Table shows percentage improve-
ment over FCFS scheduling.

Average Response Time Average Service Time

Max. Q Depth = 2 4 8 16 Max. Q Depth = 2 4 8 16

ms %i ms %i ms %i ms %i ms %i ms %i ms %i ms %i

P-Avg. 1.68 8.59 1.56 14.8 1.51 17.8 1.52 17.2 1.99 1.44 1.79 11.1 1.74 13.7 1.70 15.8

S-Avg. 3.71 6.46 2.77 24.1 2.39 30.4 2.17 34.8 1.97 1.58 1.69 15.5 1.57 20.9 1.49 25.0

Ps-Avg. 2.29 5.83 2.08 14.4 1.96 19.3 1.99 18.6 1.79 2.89 1.59 13.9 1.52 18.0 1.46 21.0

Pm 1.43 15.0 1.31 22.7 1.24 26.6 1.25 25.8 1.97 1.61 1.71 14.3 1.63 18.6 1.57 21.6

Re
so

ur
ce

-P
oo

r

Sm 5.32 4.41 4.02 27.7 3.43 38.3 3.12 44.0 2.52 1.76 2.19 14.5 2.06 19.8 1.95 23.8

P-Avg. 1.35 8.94 1.25 15.3 1.19 19.0 1.23 17.2 1.38 1.71 1.21 13.7 1.14 18.8 1.08 22.9

S-Avg. 1.70 9.42 1.23 24.9 1.00 30.4 0.889 34.6 0.895 1.72 0.747 16.3 0.689 21.2 0.635 27.4

Ps-Avg. 1.98 4.99 1.80 13.9 1.67 19.8 1.72 18.3 1.35 2.96 1.18 14.9 1.11 19.9 1.06 23.7

Pm 0.753 16.2 0.703 21.8 0.667 25.8 0.689 23.3 0.923 1.36 0.800 14.5 0.746 20.2 0.703 24.9

Re
so

ur
ce

-R
ic

h

Sm 2.02 6.33 1.48 31.3 1.25 41.8 1.14 47.0 1.27 1.04 1.06 17.8 0.963 25.1 0.889 30.9

i Improvement over queue depth of one ([original value – new value]/[original value]).
Shortest Access Time First with Age Factor of 0.01.

Table 8: Average Response and Service Times as Maximum Queue Depth is Increased from One.

4.5 Parallel I/O

A widely used technique to improve I/O perfor-
mance is to distribute data among several disks so that
multiple requests can be serviced by the different disks
concurrently. In addition, a single request than spans
multiple disks can be sped up if it is serviced by the
disks in parallel. The latter tends to make more sense
for workloads dominated by very large transfers, specif-
ically scientific workloads. For most other workloads
where requests are small and plentiful, the ability to han-
dle many of them concurrently is usually more impor-
tant.

In general, data can be distributed among the disks in
various ways. The two most common approaches are to
organize the disks into a volume set or a stripe set. In a
volume set, data is laid out on a disk until it is full before

the next disk is used. In a stripe set, data is divided into
units called stripe units and the stripe units are laid out
across the disks in a round robin fashion. In RAID (Re-
dundant Array of Inexpensive Disks) [6] terminology,
the stripe set is known as RAID-0. Note that the vol-
ume set is essentially a stripe set with a stripe unit that
is equal to the size of the disk. A shortcoming of strip-
ing data across the disks is that each disk contains some
blocks of many files so that a single disk failure could
wipe out many files. There are well-known techniques
such as mirroring and parity protection to overcome this
weakness but they are beyond the scope of this study.
The interested reader is referred to [5] for more details.

The choice of stripe unit has a major bearing on
the performance of the storage system. A small stripe
unit could result in single requests spanning multiple

21

0

0.5

1

1.5

2

2.5

3

3.5

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Stripe Unit (KB)

Av
er

ag
e

Re
ad

 R
es

po
ns

e
Ti

m
e

(m
s)

P-Avg. S-Avg.
Ps-Avg. Pm
SmResource-Rich

4 Disks

0

0.2

0.4

0.6

0.8

1

1.2

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Stripe Unit (KB)

Av
er

ag
e

W
rit

e
Re

sp
on

se
 T

im
e

(m
s)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich 4 Disks

Figure 15: Average Read and Write Response Time as a Function of Stripe Unit (Resource-Rich).

disks, thereby increasing the number of physical I/Os
and causing many disks to be busy. More importantly, it
results in many small random requests, which the disks
are not very efficient at handling. Furthermore, a small
stripe unit makes sequential prefetch by the disk less ef-
fective because data that appears contiguous on a disk
are likely to be logically interspersed by data that are
on other disks. On the other hand, a small stripe unit
evens out the load across the multiple disks and reduces
the chances that a subset of the disks will be dispropor-
tionately busy, a condition often referred to as access
skew. For parity-protected arrays of disks (e.g., RAID-
5), a large stripe unit would make it more difficult to
do a full-stripe write so that write performance might
be degraded. However, full-stripe writes are not very
common in most workloads. Results of a previous study
on RAID-5 striping [4] indicate that for workloads that
are meant to model time sharing and transaction pro-
cessing workloads, read throughput increases with stripe
unit until the megabyte range while write throughput is
within 20% of the maximum at a stripe unit of 1 MB.

In Figures 15 and A-28, we plot the average read
and write response time for our various workloads as a
function of the stripe unit, assuming that data is striped
across four disks. The corresponding plots for the ser-
vice time are in Figure A-29. Observe that the response
time does not rise dramatically until the stripe unit is
well beyond 100 MB. This suggests that for our work-
loads, access skew, or imbalance in the amount of work
borne by the different disks, is not a major issue unless
the stripe unit is larger than 100 MB. As we increase the
number of disks, it becomes more difficult to keep all
the disks equally busy so that the upward surge in re-
sponse time at large stripe units is more apparent (Fig-
ure A-30). From Figures 15 and A-28, a stripe unit of
less than about 2 MB works well for the writes. For the
reads, performance is generally good with a stripe unit

in the megabyte range with the best performance being
achieved by a stripe unit of 2 MB. In the rest of this
paper, we will assume a stripe unit of 2 MB.

Figures 16 and A-31 show the performance achieved
as we increase the number of disks that are striped
across. For all our workloads, striping data across four
disks is sufficient to reap most of the performance ben-
efit. In Table 9, we summarize the improvement in per-
formance when data is striped across four disks. Over-
all, average read response time is improved by about
45% in the resource-poor environment and by about
40% in the resource-rich environment. Write response
time is reduced a lot more for the server workloads than
the PC workloads – as high as 94% in the resource-poor
environment and 74% in the resource-rich environment.
This is because, as noted earlier, writes tend to come in
large bursts in the server workloads and with more disks,
these writes can be handled with much less waiting time.

Note that the performance improvement reported in
Table 9 is not due solely to less waiting for the disk arm.
As more disks are used, there are more caches, prefetch
buffers and disk arm idle time with which to perform op-
portunistic prefetch. The combined effect of these addi-
tional resources is reflected in the decrease in miss ratio.
In the resource-poor environment, the read miss ratio
improves by about 20% when data is striped across four
disks. The corresponding improvement in the resource-
rich environment is about 15%. Recall that we define
the miss ratio as the fraction of requests that requires
physical I/O. Therefore, when there are multiple disks
each with a cache, the miss ratio is the arithmetic mean
of the miss ratio of each disk, weighted by the number
of requests to that disk.

Notice further that the read service time improves by
about 10% more than the read miss ratio as we increase
the number of disks from one to four. This improvement
in service time beyond the reduction in miss ratio is due

22

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8
Number of Disks

Av
er

ag
e

Re
ad

 R
es

po
ns

e
Ti

m
e

(m
s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich
0

0.5

1

1.5

2

1 2 3 4 5 6 7 8
Number of Disks

Av
er

ag
e

Re
ad

 S
er

vic
e

Ti
m

e
(m

s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(a) Read.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8
Number of Disks

Av
er

ag
e

W
rit

e
Re

sp
on

se
 T

im
e

(m
s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8
Number of Disks

Av
er

ag
e

W
rit

e
Se

rv
ice

 T
im

e
(m

s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Rich

(b) Write.

Figure 16: Performance as a Function of the Number of Disks (Resource-Rich).

Read Write

Avg. Resp. Time Avg. Serv. Time Miss Ratio Avg. Resp. Time Avg. Serv. Time Miss Ratio

 ms %i ms %i %i ms %i ms %i %i

P-Avg. 1.72 48.0 1.56 30.1 0.333 22.8 0.105 43.7 1.34 4.75 0.596 1.62

S-Avg. 1.37 49.6 1.30 34.6 0.275 22.8 0.149 70.4 1.04 18.2 0.480 7.72

Ps-Avg. 1.91 50.1 1.56 28.6 0.350 22.5 0.149 74.6 0.915 13.4 0.503 3.50

Pm 1.77 43.7 1.66 25.5 0.364 18.7 0.102 46.4 1.26 3.14 0.577 3.52

Re
so

ur
ce

-P
oo

r

Sm 1.93 42.7 1.91 28.5 0.385 17.7 0.223 93.6 1.13 28.1 0.495 13.4

P-Avg. 1.47 43.7 1.37 24.0 0.261 16.9 0.137 27.0 0.628 10.4 0.425 -0.434

S-Avg. 0.734 35.1 0.669 23.3 0.145 12.6 0.214 54.0 0.435 20.1 0.296 -0.936

Ps-Avg. 1.68 46.2 1.37 22.1 0.268 16.5 0.268 57.9 0.608 10.8 0.420 -2.15

Pm 1.02 38.5 0.981 20.7 0.195 13.7 0.100 19.4 0.411 13.3 0.333 -0.582

Re
so

ur
ce

-R
ic

h

Sm 0.869 36.8 0.812 26.2 0.171 16.2 0.321 72.3 0.685 19.9 0.383 -0.979

i Improvement over single disk ([original value – new value]/[original value]).
Stripe unit: 2MB.

Table 9: Performance with Striping across Four Disks. Table shows percentage improvement over a single disk.

to less disk arm movement. When data is striped across
the disks, the locality of reference is affected. For exam-
ple, each of the active regions (e.g., active files) could be
mapped contiguously to a different disk in which case
each of the disk arms would not have to travel far. Con-
versely, an active region could be distributed among the
multiple disks, requiring all the arms to move to that re-
gion. More importantly, when data is distributed across
more disks of the same capacity which is what we are
doing, the total capacity of the system grows and each
disk arm has a narrower range of movement. An alter-
native would be to compare performance using smaller-
capacity disks as the number of disks increases so as to
keep the total storage capacity constant, but the storage
required for many of our workloads is already smaller
than the capacity offered by a 1-surface disk.

More generally, when only a portion of the disk ca-
pacity is used, the disk performs better because the seek

distance is reduced. This effect is called short-stroking.
To directly quantify the short-stroking effect, we go
back to our base configurations of using a single disk
and increase the capacity of that disk by adding disk
platters (recording surfaces). In Table A-3, we summa-
rize the performance improvement achieved when these
larger disks are used. Observe that the service time
improvement saturates when disks that are four times
larger than required are used. Largely in agreement with
the results above, we find that short-stroking a disk that
is four times larger then necessary improves the aver-
age read service time by 10-15% for our workloads.
For writes, the improvement ranges from 15% to 20%.
The improvement is rather low because short-stroking
reduces only the seek time, which, as we shall see, con-
stitutes only about 25% of the read response time. More-
over, because of inertia and head settling time, there is

23

1

10

100

1988 1992 1996 2000 2004
Year

Av
er

ag
e

Se
ek

 T
im

e
(m

s)

f(x)=0.919(x-1989.9)*12.4
r2 = 0.898

1000

10000

100000

1988 1992 1996 2000 2004
Year

RP
M

f(x)=1.09(x-1989.9)*4076
r2 = 0.782

1

10

100

1988 1992 1996 2000 2004
Year

Av
er

ag
e

Ac
ce

ss
 T

im
e

(m
s)

f(x)=0.916(x-1989.9)*19.8
r2 = 0.922

Figure 17: Historical Rates of Change in Average Seek Time, Rotational Speed and Access Time (IBM Server Disks).

but a relatively small time difference between a short
seek and a long seek, especially with newer disks.

5 Effect of Technology Improvement

At its core, disk storage is composed of a set of ro-
tating platters on the surfaces of which data is recorded.
There is typically a read-write head for each surface
and all the heads are attached to the disk arm so that
they move in tandem. A simple high-level description
such as this already suggests that there are multiple di-
mensions to the performance of the disk. For instance,
the rate at which the platters rotate, how fast the arm
moves, and how closely packed the data is, all affect, in
some way, how quickly data can be accessed. More-
over, the effective performance of a disk depends on
which blocks are accessed and in what order. There-
fore, it is not clear what effect technology improvement
or scaling in any one dimension has on real-world per-
formance. In this section, we try to relate scaling in the
underlying technology to the actual performance of real
workloads. The goal is to quantify the real impact of
improvement in each dimension so as to establish some
rules of thumb that can be used by disk designers and
system builders who select and qualify the disks. Note
that there are sometimes discontinuities in the technol-
ogy. For instance, the transition from 5 1

4
-inch disk to

3 1

2
-inch disk. Our analysis focuses on the overall trend

rather than such discrete effects.
The result of technology improvement in the dif-

ferent dimensions are generally difficult to isolate and
systematically quantify because the performance met-
rics that we are familiar with (e.g., seek time, rotational
latency) are often metrics that compound the effect of
improvement in multiple dimensions. For instance, the
often quoted ten percent yearly improvement in the ac-
cess time of disks results from a combination of increase
in rotational speed which reduces the rotational latency,
decrease in seek time due to improvement in the disk

arm actuator, and smaller diameter disks or narrower
data band which reduces the seek distance. In practice,
for a given workload, the actual seek time is also af-
fected by improvement in areal density because the head
has to move a smaller physical distance to get to the
data. Changes in areal density also lead to changes in
storage capacity which could potentially affect the num-
ber of disks and the mapping of data to disks. In this
section, we break down the continuous improvement in
disk technology into four major basic effects, namely
seek time reduction due to actuator improvement, spin
rate increase, linear density improvement and increase
in track density.

Note that the disk heads for the different surfaces are
attached to the disk arm and move in tandem. In the
past, this means that tracks within a cylinder are ver-
tically aligned and no additional seek was required to
read the next track in the cylinder. However, in mod-
ern disks, only one of the heads is positioned to read or
write at any one time because the disk arm flexes at the
high frequency at which it is operated. Therefore, when
the head reaches the end of a track, there is a delay be-
fore the next head is positioned to start transferring the
data. To prevent having to wait an entire revolution af-
ter a track switch, the tracks in a cylinder are laid out
at an offset known as the track-switch skew. There is
also a delay for moving the head to an adjacent cylinder
so tracks are laid out at an offset known as the cylinder-
switch skew across cylinder boundaries. As we scale the
performance of the disk, we adjust the skews to make
sure that the disk does not “miss revolutions” for trans-
fers that span multiple tracks.

5.1 Mechanical Improvement

We begin by examining the improvement in the me-
chanical or moving parts of the disk. Figure 17 presents
the historical rates of change in the average seek time
and rotational speed for the IBM family of server disks.
The average seek time is generally taken to be the av-

24

-10

0

10

20

30

40

-10 10 30 50

Seek Time Improvement (%)

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Re

sp
on

se
 T

im
e

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

f(x)=0.357x
r2=0.999

(a) Function of Improvement
in Seek Time.

-10

0

10

20

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Re

sp
on

se
 T

im
e

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

f(x)=2.86x
r2=0.995

(b) Function of Years of Seek
Time Improvement at
Historical Rate (8% Per
Year).

Figure 18: Effect of Improvement in Seek Time on Av-
erage Response Time (Resource-Rich).

erage time needed to seek between two random blocks
on the disk. The average access time is defined as the
sum of the average seek time and the time needed for
half a rotation of the disk. Observe that on average, seek
time decreases by about 8% per year while rotational
speed increases by about 9% per year. Putting the two
together, average random access performance improves
by just over 8% per year.

5.1.1 Seek Time

As shown in Figure 3, the seek time is a non-linear
function of the seek distance. We know that historically,
the average seek time improves by about 8% per year
but how does this affect the seek time for different seek
distances? We find that a good way to model the im-
provement in seek time is to simply scale the seek profile
vertically by a constant factor. For instance, in Figure A-
32, we show how the seek profile changes across two
generations of a disk family. Beginning with the seek
profile of the earlier disk, we first scale it horizontally to
account for the increase in the track density. Subsequent
scaling in the vertical direction results in a curve that fits
the seek profile of the later disk almost perfectly.

In Figure 18, we plot the effect of seek time improve-
ment on the average response time for our various work-
loads. The corresponding plots for the average service
time are similar and are presented in Figure A-33. Note
that the physical I/Os in the resource-rich environment
are not exactly those in the resource-poor environment
because there are different amounts of caching and write
buffering in the two environments. But it turns out that

-10

0

10

20

30

40

-10 10 30 50

Increase in RPM (%)

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Re

sp
on

se
 T

im
e

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

f(x)=34.7(1-e-0.0176x)
r2=1.00

(a) Function of Increase in
RPM.

-10

0

10

20

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Re

sp
on

se
 T

im
e

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

f(x)=4.87x
r2=0.999

(b) Function of Years of RPM
Increase at Historical Rate
(9% Per Year).

Figure 19: Effect of RPM Scaling on Average Response
Time (Resource-Rich).

the performance effect of disk technology improvement
is almost identical in both environments. We therefore
present only the figures for the resource-rich environ-
ment in the main text. The largely similar plots for the
resource-poor environment can be found in the appendix
(Figure A-34).

Besides plotting the improvement in average re-
sponse time as a function of the improvement in seek
time (Figure 18(a)), we also show how the improvement
in average read response time varies over time, assum-
ing the historical 8% yearly improvement in seek time
(Figure 18(b)). To generalize our results, we fitted a
curve to the arithmetic mean of the five classes of work-
loads. As shown in the figures, a linear function of the
form f(x) = ax where a is a constant turns out to be a
good fit. Specifically, we find that a 10% improvement
in seek time translates roughly into a 4% gain in the ac-
tual average response time, and that a year of seek time
improvement at the historical rate of 8% per year results
in just under 3% improvement in the average response
time.

5.1.2 Rotational Speed

Figures 19 and A-35 show how increasing the ro-
tational speed of the disk affects the average response
time for our various workloads. Again, the correspond-
ing plots for the service time are similar and are in Fig-
ure A-36. Notice that the S-Avg. plot in Figure A-35
shows a little performance loss as the rotational speed is
increased. This is due to the fact that DS1, one of the
components of S-Avg., is sensitive to how the blocks
are laid out in tracks because some of its accesses, espe-

25

10

100

1000

1990 1994 1998 2002
Year

Li
ne

ar
�D

en
sit

y�
(K

b/
in

)

f(x)=1.21(x-1991.5)*54.2
r2�=�0.934

1000

10000

100000

1990 1994 1998 2002
Year

Tr
ac

k�
De

ns
ity

�(t
pi

,tr
ac

ks
/in

) f(x)=1.24(x-1991.5)*2181
r2�=�0.908

10

100

1000

10000

1990 1994 1998 2002
Year

Ar
ea

l�D
en

sit
y�

(M
b/

in
2)

f(x)=1.49(x-1991.5)*121
r2�=�0.927

Figure 20: Historical Rates of Increase in Linear, Track and Areal Density (IBM Server Disks).

cially the writes, occur in specific patterns. As we scale
the rotational speed and adjust the track and cylinder-
switch skews, there are cases where consecutively ac-
cessed blocks are poorly positioned rotationally, even
with request scheduling. Such situations highlight the
need for automatic block reorganization such as that
proposed in [19].

Observe from the figures that the improvement in av-
erage response time as a function of the increase in ro-
tational speed can be accurately described by a function
of the form f(x) = a(1 − e−bx) where a and b are
constants. Such a function suggests that as we increase
the rotational speed keeping other factors constant, the
marginal improvement diminishes so that the maximum
improvement is a. Taking into account the historical rate
of increase in rotational speed (9% per year), we find
that a year’s worth of scaling in rotational speed corre-
sponds to about a 5% improvement in average response
time.

5.2 Increase in Areal Density

In Figure 20, we present the rate of increase in the
recording or areal density of disks over the last ten years.
Observe that the linear density has been increasing by
approximately 21% per year while the track density has
been going up by around 24% per year. Areal density
has increased especially sharply in the last few years so
that with a least squares estimate (no weighting), the
compound growth rate is as high as 62%. If we mini-
mize the sum of squares of the relative (instead of ab-
solute) distances of the data points from the fitted line
so that the large areal densities do not dominate (“1/y2

weighting”), the compound growth rate is about 49%.
Combining the growth rate in rotational speed and in
linear density, we obtain the rate of increase in the disk
data rate. As shown in Figure A-37, this turns out to
be 40% per year, which is dramatically higher than the
8% annual improvement in average access time. The
result is a huge gap between random and sequential per-

-10

0

10

20

30

-10 10 30 50

Linear Density Increase (%)

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Re

sp
on

se
 T

im
e

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

f(x)=24.6(1-e-0.0169x)
r2=0.997

(a) Function of Increase in
Linear Density.

-10

0

10

20

30

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Re

sp
on

se
 T

im
e

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

f(x)=6.87x
r2=0.991

(b) Function of Years of Lin-
ear Density Increase at
Historical Rate (21% Per
Year).

Figure 21: Effect of Increased Linear Density on Aver-
age Response Time (Resource-Rich).

formance, and is one of the primary motivations for re-
organizing disk blocks to improve the spatial locality of
reference [19].

5.2.1 Linear Density

Increasing the areal density reduces the cost and
therefore the price/performance of disk-based storage.
Areal density improvement also directly affects perfor-
mance because as bits are packed more closely together,
they can be accessed with a smaller physical movement.
Figures 21 and A-39 show how increases in the linear
density reduce the average response time for our vari-
ous workloads. We find that the improvement in aver-
age response time as a function of the increase in lin-
ear density can again be accurately modeled by a func-
tion of the form f(x) = a(1 − e−bx) where a and b
are constants. The effect is similar to that of increasing

26

-10

0

10

20

-10 10 30 50

Track Density Increase (%)

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Re

sp
on

se
 T

im
e

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

f(x)=13.8(1-e-0.0121x)
r2=0.998

(a) Function of Increase in
Track Density.

-10

0

10

20

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Re

sp
on

se
 T

im
e

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

f(x)=3.40x
r2=0.996

(b) Function of Years of
Track Density Increase at
Historical Rate (24% Per
Year).

Figure 22: Effect of Increased Track Density on Average
Response Time (Resource-Rich).

the rotational speed but is quantitatively less per unit of
improvement because increasing the linear density does
not reduce the rotational latency. We find that every year
of improvement in linear density at the historical rate of
21% per year results in a 6-7% reduction in average re-
sponse time.

5.2.2 Track Density

Packing the tracks closer together means that the arm
has to move over a shorter physical distance to get to the
same track. This effect is similar to that of improving
the seek time but the quantitative effect on the average
response time per unit of improvement tends to be much
smaller because of the shape of the seek profile. In par-
ticular, the marginal cost of moving the arm is relatively
small once it is moved. In Figures 22 and A-40, we
present the effect of increasing the track density on the
average response time. Observe that a year’s worth of
track density scaling (24%) buys only about 3-4% im-
provement in average response time.

Again, DS1 is not well-behaved because it is sensi-
tive to how blocks are laid out in tracks, and this sen-
sitivity causes the jagged nature of the plot for S-Avg.
On the surface, this result is surprising because chang-
ing the track density should not affect how blocks are
laid out in tracks. A deeper analysis reveals that the
block layout does get affected because changes in the
track density lead to changes in the zoning of the disk.
In general, to take advantage of the fact that tracks are
longer the further they are from the center of the disk,
the disk is divided into concentric zones or bands within

which each track has the same number of sectors. As
track density changes, we assume that the physical di-
mensions of each zone or band remains constant but the
number of tracks within each zone increases.

5.3 Overall Improvement over Time

In Figures 23(c), A-42(c), A-43(c) and A-44(c), we
put together the effect of mechanical improvement and
areal density scaling to obtain the overall performance
effect of disk technology evolution. As shown in the
figures, the actual improvement in average response and
service times as a function of the years of disk improve-
ment at the historical rates can best be described by an
exponential function of the form f(x) = a(1 − e−bx)
where a and b are constants. However, to project out-
ward for the next couple of years, a linear function is a
reasonably good fit. Observe that for our various work-
loads, the average response time and service time are
projected to improve by about 15% per year. The dif-
ferent classes of workloads have almost identical plots,
which increases confidence in our result. The rate of
actual performance improvement (15%) turns out to be
significantly higher than the widely quoted “less than
10%” yearly improvement in disk performance because
it takes into account the improvement in areal density
and assumes that the workload and the number of disks
used remain constant so that the disk occupancy rate is
diminishing. In any case, we note that CPUs are dou-
bling in speed every year or two, so the demands on the
I/O system are increasing faster than the capability of
the I/O system.

To estimate the yearly improvement in the more
realistic situation where the increased capacity of the
newer disks are utilized so that the disk occupancy rate
is kept constant, we examine the effect of improving
only the mechanical portions of the disk (seek and ro-
tational speed). This is presented in Figures 23(a), A-
42(a), A-43(a) and A-44(a) which show that the aver-
age response and service times improve by about 8% per
year. We also explore the scenario where only the areal
density is increased (Figures 23(b), A-42(b), A-43(b)
and A-44(b)) and discover that the average response
and service times are improved by about 9% per year.
This improvement comes about because as areal density
is increased, the data is packed more closely together
and can be accessed with a smaller physical movement.
Note that the overall yearly performance improvement,
at 15%, is slightly lower than the sum of the effects of
the mechanical improvement and the increase in areal
density. This is because the two effects are not orthogo-
nal. For instance, as the recording density is increased,
each access will likely entail less mechanical movement

27

-20

0

20

40

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Re

sp
on

se
 T

im
e

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

f(x)=77.6(1-e-0.108x)
r2=1.00

f(x)=7.73x
r2=0.998

(a) Mechanical Improvement.

-20

0

20

40

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Re

sp
on

se
 T

im
e

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

f(x)=40.2(1-e-0.287x)
r2=0.997

f(x)=9.31x
r2=0.984

(b) Areal Density Increase.

-20

0

20

40

60

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Re

sp
on

se
 T

im
e

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

f(x)=56.0(1-e-0.357x)
r2=0.998

f(x)=15.3x
r2=0.978

(c) Disk Technology Improvement.

Figure 23: Effect on Average Response Time (Resource-Rich).

0

20

40

60

80

-3 -2 -1 0 1 2 3
Time (Years Relative to Present)

Av
g.

 A
ct

ua
l S

ee
k/

Ro
ta

tio
na

l T
im

e
(%

 S
pe

cif
ie

d)

P-Avg. S-Avg. Ps-Avg.
Pm Sm

Resource-Rich

Seek Time

Rotational Latency

Figure 24: Actual Average Seek and Rotational
Time as Percentage of Manufacturer Specified Values
(Resource-Rich).

so that the benefit of having faster mechanical compo-
nents is diminished.

Another rule of thumb that is useful to system de-
signers is one that relates the actual access time to
the advertised or specified performance parameters of
a disk. There is often a wide disparity between the
actual and specified performance numbers because the
specified figures are obtained under assumptions that the
workload exhibits no locality. Specifically, the average
seek time is defined as the time taken to seek between
two random blocks on the disk and the rotational latency
is generally taken to be the time for half a revolution of
the disk. In practice, there is locality in the reference
stream so we would expect the actual access time to be
significantly lower. In Figures 24 and A-45, we look at
the actual seek time and rotational latency of our various
workloads as a percentage of the average values speci-

fied by the disk manufacturer. As shown in the figure,
the actual seek time is about 35% of the advertised aver-
age seek time and the time taken for the correct block to
rotate under the head is about 60% of that specified. The
seek percentage decreases slightly over time because of
the improvement in areal density but the effect is not
very significant. The non-monotonic nature of the rota-
tional latency curve for S-Avg. is again due to the fact
that DS1 is sensitive to how blocks are laid out in tracks.
As the rotational speed and track density increase over
time, a poor block layout sometimes results.

To gain further insight into where a request is spend-
ing most of its time, we break down the average read
response time and write service time into their compo-
nents in Figures 25 and A-46. In the figure, the com-
ponent identified as “processing” refers to the disk com-
mand processing time, which varies with the type of re-
quest (read or write) and with whether the previous re-
quest is a cache hit. For all our workloads, the command
processing time is not significant and averages less than
5% of the read response time for all our workloads. We
define waiting time, also known as queueing time, as the
difference between response time and the sum of service
time and processing time.

Notice that even with a 10,000 RPM disk, rotational
latency constitutes a major portion (30-40%) of both the
read response time and the write service time. The seek
time is also very significant, accounting for about 25%
of the read response time and 45% of the write service
time. Note that request scheduling affects how the disk
head positioning time is proportioned between seek and
rotational time, especially for writes which we issue in
batches. In any case, for both reads and writes, most of
the time is spent positioning the disk head. The trans-
fer time, on the other hand, accounts for less than 5% of
the read response time and only about 10% of the write

28

Read Write
% Avg. Resp.

Time
Avg. Service

Time
Miss
Ratio

Avg. Resp.
Time

Avg. Service
Time

Miss
Ratio

Read Caching 8MB per disk, LRU replacement. 4.49 4.14 4.45 0 0 0

Prefetching 32KB read-ahead, preemptible read-ahead up
to 128KB, read any free blocks. 46.6 46.1 53.0 0 0 0

Write Buffering 4MB per disk, Least-Recently-Written (LRW)
replacement, 30s age limit. 0 0 0 93.8 71.8 43.5

Request
Scheduling Shortest Access Time First , queue depth of 8. 16.2 2.8 0 49.9 30.5 0 Re

so
ur

ce
-P

oo
r

Parallel I/O Stripe unit of 2MB. 46.8 29.5 20.9 65.7 13.5 5.96

Read Caching 1% of storage used, LRU replacement. 37.4 36.1 35.1 0 0 0

Prefetching Conditional sequential prefetch, preemptible
read-ahead up to 128KB, read any free blocks. 51.1 50.3 59.7 0 0 0

Write Buffering 0.1% of storage used, Least-Recently-Written
(LRW) replacement, 1 hour age limit. 0 0 0 96.0 86.2 63.1

Request
Scheduling Shortest Access Time First, queue depth of 8. 17.0 1.8 0 46.2 38.4 0 Re

so
ur

ce
-R

ic
h

Parallel I/O Stripe unit of 2MB. 40.0 23.3 15.2 46.1 14.9 -1.02

Table 10: Performance Effect of Various I/O Optimization Techniques. Table shows percentage improvement (|[time
without technique - time with technique]|/[time without technique]). Table entries are shaded to reflect the relative
magnitude of improvement with darker shades representing larger improvements.

0%

20%

40%

60%

80%

100%

P-
Avg.

S-
Avg.

Ps-
Avg.

Pm Sm

Workload

A
ve

ra
ge

�R
ea

d�
R

es
po

ns
e�

T
im

e

Waiting
Seek
Rotational
Transfer
Processing

Resource-Rich

0%

20%

40%

60%

80%

100%

P-
Avg.

S-
Avg.

Ps-
Avg.

Pm Sm

Workload

A
ve

ra
ge

�W
rit

e�
S

er
vi

ce
�T

im
e

Seek

Rotational

Transfer

Resource-Rich

Figure 25: Breakdown of Average Read Response and
Write Service Time (Resource-Rich).

service time. As the data rate continues to rise dramat-
ically, the transfer time will diminish further. Note that
the transfer time is the only time during which data is be-
ing read or written. In other words, the disk bandwidth
will become less and less effectively utilized. Thus we
should consider reorganizing disk blocks to better take
advantage of the available disk bandwidth [19]. Observe
further that the waiting time is very significant for reads
and is in fact the largest component for some workloads.
This, however, does not mean that the read response
time will ultimately be limited by the waiting time be-
cause improving the performance of the disk will reduce
the waiting time proportionately.

6 Conclusions, Summary and Synthesis

In this paper, we systematically study various I/O op-
timization techniques to establish their actual effective-
ness at improving I/O performance. Our results, which
are based on analyzing the physical I/Os of a variety of
real server and PC workloads, are summarized in Ta-
ble 10. The table shows for each technique, the average
improvement over five classes of workloads – PC work-
loads, server workloads, sped-up PC workloads, merged
PC workloads and merged server workloads.

We find that the most effective approach to improv-
ing I/O performance is to reduce the number of physical
I/Os that have to be performed. When designing a stor-
age system, we would therefore first focus on caching,
prefetching, and write buffering. Because caching is al-
ready performed upstream in the host, small caches in
the megabyte range are not useful at the storage level.
The small amount of memory in the disk drive should
be designed more as a prefetch buffer than a cache that
captures block reuse. Increasing its size beyond the
megabyte range is thus not very useful. If cost is not
a big constraint, a large cache on the order of 1% of
the storage capacity can be effective at the storage level.
Further increasing the size of this cache is almost al-
ways a good idea as the miss ratio continues to decrease
at cache sizes that are beyond 4% of the storage used.

Our results clearly indicate that sequential prefetch
is extremely effective. We highly recommend perform-
ing simple read-ahead and, in more sophisticated imple-
mentations, setting the prefetch amount by condition-
ing on the length of the sequential run already observed.
In a resource-poor environment such as one where the

29

Resource-Poor Resource-Rich
% Annual Rate of

Improvement Avg. Resp. Time Avg. Service Time Avg. Resp. Time Avg. Service Time

Linear Density 21 6.21 5.39 7.08 6.73

Track Density 24 3.48 3.28 3.42 3.29

Areal Density 49 8.58 7.97 9.31 9.07

Disk Arm (Seek Time) 8 3.24 3.39 3.08 3.18

Rotational Speed 9 5.08 5.11 5.41 5.30

Mechanical Components - 8.24 8.49 8.33 8.45

Overall - 15.4 14.9 15.3 15.9

Table 11: Performance Effect of Disk Technology Evolution at the Historical Rates. Table shows percentage yearly
improvement(|[original value - new value]|/[new value]). Table entries are shaded to reflect the relative size of im-
provement with darker shades representing larger improvements.

storage system consists of only disks and low-end disk
adaptors, sequential prefetch together with caching is
able to filter out 40-60% of the read requests. In a
resource-rich environment where there is a large out-
board controller, only about 40% of the read requests
require a physical I/O when caching and sequential
prefetching are performed. The additional use of oppor-
tunistic prefetch makes a significant difference, further
reducing the miss ratio to about 35-45% in the resource-
poor environment and to 20-30% in the resource-rich
environment. We therefore advocate that opportunistic
prefetch be enabled on the disks.

The write buffer should be designed in the same
spirit of reducing physical operations by allowing re-
peated writes to the same blocks to be eliminated. Us-
ing a Least-Recently-Written (LRW) replacement pol-
icy, we find that 40% of the writes are eliminated by a
small write buffer of less than 1 MB. For larger write
buffers, we find that the write miss ratio follows a fifth
root rule, meaning that the miss ratio goes down as the
inverse fifth root of the ratio of buffer size to storage
used. For all our workloads, most of the benefit of write
elimination can be achieved without requiring dirty data
to remain in the buffer beyond an hour. The write buffer
should also be sized to absorb incoming write bursts.
We recommend a write buffer size that is on the order of
0.1% of the storage capacity. Our results show that such
a buffer can improve write response time by over 90%.

After investing in techniques that reduce the num-
ber of physical operations, it is worthwhile to consider
optimizations that increase the efficiency in performing
the remaining I/Os. For instance, when the writes are
buffered, the remaining physical writes should be issued
in batches so that they can be effectively scheduled and
efficiently performed. In general, we should try to queue
multiple requests at the disk (e.g., by setting the disk
adaptor queue depth to more than one) so that the disk
can optimize the order in which the requests are car-
ried out. We observe that having a queue depth beyond
one improves average response time by 30-40% for the

server workloads and by about 20% for the PC work-
loads. If data is striped across multiple disks to allow
parallel I/O, we would do it with a large stripe unit in the
megabyte range. By striping at such a granularity across
four disks, average read response time can be reduced
by 40-45% over the one-disk case. We would gener-
ally not recommend short-stroking the disk since using
a disk that is four times larger than necessary results in
only about a 10-20% improvement in performance.

In addition to evaluating the various I/O optimiza-
tion techniques, we also analyze how the continuous
improvement in disk technology affects the actual I/O
performance seen by real workloads. The results are
summarized in Table 11, which shows the yearly perfor-
mance improvement that can be expected if disk tech-
nology were to continue evolving at the historical rates.
In the last ten years, the average seek time of the disk has
decreased by about 8% per year while the disk rotational
speed has gone up by around 9% per year. At these rates
of improvement, seek time reduction achieves about a
3% per year improvement in the actual response time
seen by a workload while increases in rotational speed
account for around 5% per year. Together, the mechan-
ical improvements bring about an 8% improvement in
performance per year.

Increases in the recording density are often neglected
when projecting effective disk performance. But our
results clearly demonstrate that areal density improve-
ment has as much of an impact on the effective I/O
performance as the mechanical improvements. Histor-
ically, linear density increases at a rate of 21% per year
while track density grows at 24% per year. Such growth
rates translate into respective yearly improvement of 6-
7% and 3-4% in the actual average response time, and
a combined 9% per year improvement in performance.
Overall, we expect the I/O performance for a given
workload with a constant number of disks to increase by
about 15% per year due to the evolution of disk technol-
ogy. In the more realistic situation where we take advan-
tage of the larger storage capacity of the newer disks so

30

that the disk occupancy rate is kept constant, the yearly
improvement in performance should be approximately
8%.

Because of locality of reference and request schedul-
ing, we find that for our workloads, the average ac-
tual seek time is about 35% of the advertised average
seek time for the disk, and the average actual rotational
latency is about 60% of the value specified. Further
analysis shows these figures to be relatively stable as
disk technology evolves. We also observe that the disk
spends most of its time positioning the head and very
little time actually transferring data. With technology
trends being the way they are, it will become increas-
ingly difficult to effectively utilize the available disk
bandwidth. Therefore, we have to consider reorganizing
disk blocks in such a way that accesses become more
sequential [19].

Acknowledgments

The authors would like to thank Ruth Azevedo, Ja-
cob Lorch, Bruce McNutt and John Wilkes for pro-
viding the traces used in this study. Thanks are also
owed to William Guthrie who shared with us his ex-
pertise in modeling disk drives, and to Ed Grochowski
who provided the historical performance data for IBM
disk drives. In addition, the authors are grateful to Jai
Menon, John Palmer and Honesty Young for helpful
comments on versions of this paper.

References

[1] P. Biswas, K. K. Ramakrishnan, and D. Towsley, “Trace
driven analysis of write caching policies for disks,”
Proceedings of ACM Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), (Santa
Clara, CA), pp. 13–23, May 1993.

[2] M. D. Canon, D. H. Fritz, J. H. Howard, T. D. Howell,
M. F. Mitoma, and J. Rodriguez-Rossel, “A virtual
machine emulator for performance evaluation,”
Communications of the ACM, 23, 2, pp. 71–80, 1980.

[3] F. Chang and G. A. Gibson, “Automatic I/O hint
generation through speculative execution,” Proceedings
of USENIX Symposium on Operating Systems Design
and Implementation (OSDI), (New Orleans, LA),
pp. 1–14, Feb. 1999.

[4] P. M. Chen and E. K. Lee, “Striping in a RAID level 5
disk array,” Proceedings of ACM International
Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), (Ottawa, Canada),
pp. 136–145, May 15–19 1995.

[5] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and
D. A. Patterson, “RAID: high-performance, reliable
secondary storage,” ACM Computing Surveys, 26, 2,
pp. 145–185, June 1994.

[6] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock,
G. Rajamani, and D. Lowell, “The rio file cache:
Surviving operating system crashes,” Proceedings of
ACM Conference on Architectural Support for

Programming Languages and Operating Systems
(ASPLOS), (Cambridge, MA), pp. 74–83, Oct. 1996.

[7] P. J. Denning, “Effects of scheduling on file memory
operations,” Proceedings of AFIPS Spring Joint
Computer Conference, (Atlantic City, NJ), pp. 9–21,
Apr. 1967.

[8] EMC Corporation, “Symmetrix™ 8830-36/-73/-181,”
2001.

[9] M. A. Gaertner and J. L. Wach, “Rotationally optimized
seek initiation.” U.S. Patent 6339811. Filed Dec. 28,
1999. Issued Jan. 15, 2002.

[10] G. R. Ganger, System-Oriented Evaluation of I/O
Subsystem Performance, PhD thesis, University of
Michigan, 1995. Available as Technical Report
CSE-TR-243-95, EECS Department, University of
Michigan, Ann Arbor, June 1995.

[11] G. R. Ganger, B. L. Worthington, and Y. N. Patt, The
DiskSim Simulation Environment Version 2.0 Reference
Manual, 1999.

[12] J. L. Griffin, J. Schindler, S. W. Schlosser, J. S. Bucy,
and G. R. Ganger, “Timing-accurate storage emulation,”
Proceedings of USENIX Conference on File and
Storage Technologies (FAST), (Monterey, CA),
pp. 75–88, Jan. 2002.

[13] J. Griffioen and R. Appleton, “Reducing file system
latency using a predictive approach,” Proceedings of the
Summer 1994 USENIX Conference, pp. 197–207, June
1994.

[14] E. Grochowski, “IBM magnetic hard disk drive
technology,” 2002.
http://www.hgst.com/hdd/technolo/grochows/
grocho01.htm.

[15] L. Haas, W. Chang, G. Lohman, M. McPherson,
P. Wilms, G. Lapis, B. Lindsay, H. Pirahesh, M. Carey,
and E. Shekita, “Starburst mid-flight: As the dust
clears,” IEEE Transactions on Knowledge and Data
Engineering, 2, 1, pp. 143–160, Mar. 1990.

[16] Hitachi Data Systems, “Lightning 9900™ :
Specifications,” 2002.

[17] W. W. Hsu and A. J. Smith, “Characteristics of I/O
traffic in personal computer and server workloads,” IBM
Systems Journal, 42, 2, pp. 347–372, 2003.

[18] W. W. Hsu, A. J. Smith, and H. C. Young, “I/O
reference behavior of production database workloads
and the TPC benchmarks - an analysis at the logical
level,” ACM Transactions on Database Systems, 26, 1,
pp. 96–143, Mar. 2001.

[19] W. W. Hsu, A. J. Smith, and H. C. Young, “The
automatic improvement of locality in storage systems.”
Technical Report, CSD-03-1264, Computer Science
Division, University of California, Berkeley, July 2003.
Also available as Chapter 4 of [20].

[20] W. W. Hsu, Dynamic Locality Improvement Techniques
for Increasing Effective Storage Performance, PhD
thesis, University of California, Berkeley, 2002.
Available as Technical Report CSD-03-1223, Computer
Science Division, University of California, Berkeley,
Jan. 2003.

[21] IBM Corp., Ultrastar 73LZX Product Summary Version
1.1, 2001.

[22] IBM Corporation, “IBM TotalStorage™ Enterprise
Storage Server Models F10 and F20,” 2000.

[23] D. Jacobson and J. Wilkes, “Disk scheduling algorithms
based on rational position,” Techical Report
HPL–CSP–91–7, Hewlett-Packard Laboratories, Palo
Alto, CA, USA, Feb. 1991.

31

[24] J. R. Lorch and A. J. Smith, “The VTrace tool: Building
a system tracer for Windows NT and Windows 2000,”
MSDN Magazine, 15, 10, pp. 86–102, Oct. 2000.

[25] C. Lumb, J. Schindler, G. R. Ganger, E. Riedel, and
D. F. Nagle, “Towards higher disk head utilization:
Extracting “free” bandwidth from busy disk drives,”
Proceedings of USENIX Symposium on Operating
Systems Design and Implementation (OSDI), (San
Diego, CA), pp. 87–102, Oct. 2000.

[26] Mesquite Software Inc., CSIM18 simulation engine
(C++ version), 1994.

[27] M. N. Nelson, B. B. Welch, and J. K. Ousterhout,
“Caching in the SPRITE network file system,” ACM
Transactions on Computer Systems, 6, 1, Feb. 1988.

[28] J. Ousterhout and F. Douglis, “Beating the I/O
bottleneck: A case for log-structured file systems,”
Operating Systems Review, 23, 1, pp. 11–28, Jan. 1989.

[29] D. A. Patterson and K. K. Keeton, “Hardware
technology trends and database opportunities.” Keynote
speech at SIGMOD’98, June 1998. Slides available at
http://www.cs.berkeley.edu/ pattrsn/talks/sigmod98-
keynote-color.ppt.

[30] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky,
and J. Zelenka, “Informed prefetching and caching,”
Proceedings of ACM Symposium on Operating Systems
Principles (SOSP), (Copper Mountain, CO), pp. 79–95,
Dec. 1995.

[31] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling, Numerical Recipes in C: The Art of Scientific
Computing, Cambridge University Press, 1990.

[32] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta,
“Complete computer system simulation: The SimOS
approach,” IEEE parallel and distributed technology:
systems and applications, 3, 4, pp. 34–43, Winter 1995.

[33] C. Ruemmler and J. Wilkes, “Disk shuffling,” Techical
Report HPL–91–156, Hewlett-Packard Laboratories,
Palo Alto, CA, USA, Oct. 1991.

[34] C. Ruemmler and J. Wilkes, “UNIX disk access
patterns,” Proceedings of USENIX Winter Conference,
(San Diego, CA), pp. 405–420, Jan. 1993.

[35] M. Seltzer, P. Chen, and J. Ousterhout, “Disk
scheduling revisited,” Proceedings of Winter USENIX
Conference, (Washington, DC), pp. 313–324, Jan. 1990.

[36] A. J. Smith, “Sequentiality and prefetching in database
systems,” ACM Transactions on Database Systems, 3, 3,
pp. 223–247, Sept. 1978.

[37] A. J. Smith, “Input/output optimization and disk
architectures: A survey,” Performance Evaluation, 1, 2,
pp. 104–117, 1981.

[38] A. J. Smith, “Disk cache — miss ratio analysis and
design considerations,” ACM Transactions on Computer
Systems, 3, 3, pp. 161–203, Aug. 1985.

[39] A. J. Smith, “Trace driven simulation in research on
computer architecture and operating systems,”
Proceedings of Conference on New Directions in
Simulation for Manufacturing and Communications,
(Tokyo, Japan), pp. 43–49, Aug. 1994.

[40] J. Z. Teng and R. A. Gumaer, “Managing IBM Database
2 buffers to maximize performance,” IBM Systems
Journal, 23, 2, pp. 211–218, 1984.

[41] R. A. Uhlig and T. N. Mudge, “Trace-driven memory
simulation: A survey,” ACM Computing Surveys, 29, 2,
pp. 128–170, June 1997.

[42] A. Varma and Q. Jacobson, “Destage algorithms for
disk arrays with nonvolatile caches,” IEEE Transactions
on Computers, 47, 2, pp. 228–235, 1998.

[43] B. L. Worthington, G. R. Ganger, and Y. N. Patt,
“Scheduling algorithms for modern disk drives,”
Proceedings of ACM Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS),
(Nashville, TN), pp. 241–251, May 1994.

[44] B. T. Zivkov and A. J. Smith, “Disk cache design and
performance as evaluated in large timesharing and
database systems,” Proceedings of Computer
Measurement Group (CMG) Conference, (Orlando, FL),
pp. 639–658, Dec. 1997.

32

Appendix

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8
Cache�Size�(%�Storage�Used)

Re
ad

�M
iss

�R
at

io

0.5
1
2
4
8
16
32

Cache�Block�Size�(KB)

P-Avg.Resource-Rich

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

S-Avg.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

Ps-Avg.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

Pm

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

Sm

Figure A-1: Sensitivity to Cache Block Size.

0

0.2

0.4

0.6

0.8

1

0 32 64 96 128
Fetch�Unit�(KB)

Re
ad

�M
iss

�R
at

io

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor
0

2

4

6

8

0 32 64 96 128
Fetch�Unit�(KB)

Av
er

ag
e�

Re
ad

�R
es

po
ns

e�
Ti

m
e�

(m
s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

(a) Large Fetch Unit.

0

0.2

0.4

0.6

0.8

1

0 32 64 96 128
Read-Ahead�Amount�(KB)

Re
ad

�M
iss

�R
at

io

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor
0

2

4

6

8

0 32 64 96 128
Read-Ahead�Amount�(KB)

Av
er

ag
e�

Re
ad

�R
es

po
ns

e�
Ti

m
e�

(m
s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

(b) Read-Ahead.

Figure A-2: Effect of Large Fetch Unit and Read-Ahead on Read Miss Ratio and Response Time (Resource-Poor).

33

0

1

2

3

4

5

0 32 64 96 128
Read-Ahead�Amount�(KB)

Av
er

ag
e�

Re
ad

�S
er

vic
e�

Ti
m

e�
(m

s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

0

1

2

3

4

0 32 64 96 128
Read-Ahead�Amount�(KB)

Av
er

ag
e�

Re
ad

�S
er

vic
e�

Ti
m

e�
(m

s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

Figure A-3: Effect of Read-Ahead on Average Read Service Time.

0

0.2

0.4

0.6

0.8

1

0 8 16 24 32
Segment�Size�(KB)

Re
ad

�M
iss

�R
at

io

1
2
4
No�Pf

P-Avg.

Resource-Poor

Prefetch�Trigger

0

0.2

0.4

0.6

0.8

1

0 8 16 24 32

S-Avg.

0

0.2

0.4

0.6

0.8

1

0 8 16 24 32

Ps-Avg.

0

0.2

0.4

0.6

0.8

1

0 8 16 24 32

Pm
0

0.2

0.4

0.6

0.8

1

0 8 16 24 32

Sm

Figure A-4: Read Miss Ratio with Conditional Sequential Prefetch (Resource-Poor).

34

0

1

2

3

4

5

6

0 8 16 24 32
Segment�Size�(KB)

Av
er

ag
e�

Re
ad

�R
es

po
ns

e�
Ti

m
e�

(m
s)

1
2
4
No�Pf

P-Avg.

Resource-Rich

Prefetch�Trigger

0

1

2

3

4

0 8 16 24 32

S-Avg.

0

1

2

3

4

5

6

0 8 16 24 32

Ps-Avg.

0

1

2

3

4

0 8 16 24 32

Pm

0

1

2

3

0 8 16 24 32

Sm

(a) Resource-Rich

0

1

2

3

4

5

6

7

0 8 16 24 32
Segment�Size�(KB)

Av
er

ag
e�

Re
ad

�R
es

po
ns

e�
Ti

m
e�

(m
s)

1
2
4
No�Pf

P-Avg.

Resource-Poor

Prefetch�Trigger

0

1

2

3

4

5

6

0 8 16 24 32

S-Avg.
0

2

4

6

8

0 8 16 24 32

Ps-Avg.

0

1

2

3

4

5

6

7

0 8 16 24 32

Pm

0

1

2

3

4

5

6

0 8 16 24 32

Sm

(b) Resource-Poor

Figure A-5: Average Read Response Time with Conditional Sequential Prefetch (Resource-Poor).

35

0

1

2

3

4

5

0 8 16 24 32
Segment�Size�(KB)

Av
er

ag
e�

Re
ad

�R
es

po
ns

e�
Ti

m
e�

(m
s)

1
2
4
No�Pf

P-Avg.

Resource-Poor

Prefetch�Trigger

2

3

4

0 8 16 24 32

S-Avg.

0

1

2

3

4

5

6

0 8 16 24 32

Ps-Avg.

0

1

2

3

4

5

0 8 16 24 32

Pm

0

1

2

3

4

5

0 8 16 24 32

Sm

0

0.1

0.2

0.3

0.4

0.5

0.6

0 8 16 24 32
Segment�Size�(KB)

Re
ad

�M
iss

�R
at

io

1
2
4
No�Pf

P-Avg.

Resource-Poor

Prefetch�Trigger

0

0.1

0.2

0.3

0.4

0.5

0 8 16 24 32

S-Avg.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 8 16 24 32

Ps-Avg.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 8 16 24 32

Pm

0

0.1

0.2

0.3

0.4

0.5

0.6

0 8 16 24 32

Sm

Figure A-6: Additional Effect of Backward Conditional Sequential Prefetch (Resource-Poor).

36

0

1

2

3

4

0 8 16 24 32
Segment�Size�(KB)

Av
er

ag
e�

Re
ad

�R
es

po
ns

e�
Ti

m
e�

(m
s)

1
2
4
No�Pf

P-Avg.

Resource-Rich

Prefetch�Trigger

0

1

2

0 8 16 24 32

S-Avg.

0

1

2

3

4

5

0 8 16 24 32

Ps-Avg.

0

1

2

3

0 8 16 24 32

Pm

0

1

2

3

0 8 16 24 32

Sm

0

0.1

0.2

0.3

0.4

0.5

0 8 16 24 32
Segment�Size�(KB)

Re
ad

�M
iss

�R
at

io

1
2
4
No�Pf

P-Avg.

Resource-Rich

Prefetch�Trigger

0

0.1

0.2

0.3

0 8 16 24 32

S-Avg.

0

0.1

0.2

0.3

0.4

0.5

0 8 16 24 32

Ps-Avg.

0

0.1

0.2

0.3

0.4

0 8 16 24 32

Pm

0

0.1

0.2

0.3

0.4

0 8 16 24 32

Sm

Figure A-7: Additional Effect of Backward Conditional Sequential Prefetch (Resource-Rich).

0

0.2

0.4

0.6

0.8

1

0 32 64 96 128
Read-Ahead�Amount�(KB)

Re
ad

�M
iss

�R
at

io

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

0

2

4

6

8

0 32 64 96 128
Read-Ahead�Amount�(KB)

Av
er

ag
e�

Re
ad

�R
es

po
ns

e�
Ti

m
e�

(m
s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

Figure A-8: Effect of Preemptible Read-Ahead on Read
Miss Ratio and Response Time (Resource-Poor).

0

1

2

3

4

5

0 32 64 96 128
Read-Ahead�Amount�(KB)

Av
er

ag
e�

Re
ad

�S
er

vic
e�

Ti
m

e�
(m

s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor
0

1

2

3

4

0 32 64 96 128
Read-Ahead�Amount�(KB)

Av
er

ag
e�

Re
ad

�S
er

vic
e�

Ti
m

e�
(m

s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Rich

Figure A-9: Effect of Preemptible Read-Ahead on Aver-
age Read Service Time.

37

0

1

2

3

4

5

0 128 256 384 512
Opportunistic Prefetch Limit (KB)

Av
er

ag
e

Re
ad

 R
es

po
ns

e
Ti

m
e

(m
s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

0

1

2

3

4

0 128 256 384 512
Opportunistic Prefetch Limit (KB)

Av
er

ag
e

Re
ad

 S
er

vic
e

Ti
m

e
(m

s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

0

0.1

0.2

0.3

0.4

0.5

0.6

0 128 256 384 512
Opportunistic Prefetch Limit (KB)

Re
ad

 M
iss

 R
at

io

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

Figure A-10: Performance of Large Fetch Unit with Preemptible Read-Ahead (Resource-Poor).

0

1

2

3

4

5

0 128 256 384 512
Opportunistic Prefetch Limit (KB)

Av
er

ag
e

Re
ad

 R
es

po
ns

e
Ti

m
e

(m
s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Rich

0

1

2

3

0 128 256 384 512
Opportunistic Prefetch Limit (KB)

Av
er

ag
e

Re
ad

 S
er

vic
e

Ti
m

e
(m

s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Rich

0

0.1

0.2

0.3

0.4

0.5

0 128 256 384 512
Opportunistic Prefetch Limit (KB)

Re
ad

 M
iss

 R
at

io

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Rich

Figure A-11: Performance of Large Fetch Unit with Preemptible Read-Ahead (Resource-Rich).

0

1

2

3

4

5

6

0 128 256 384 512
Opportunistic Prefetch Limit (KB)

Av
er

ag
e

Re
ad

 R
es

po
ns

e
Ti

m
e

(m
s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

0

1

2

3

4

0 128 256 384 512
Opportunistic Prefetch Limit (KB)

Av
er

ag
e

Re
ad

 S
er

vic
e

Ti
m

e
(m

s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

0

0.1

0.2

0.3

0.4

0.5

0.6

0 128 256 384 512
Opportunistic Prefetch Limit (KB)

Re
ad

 M
iss

 R
at

io

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

Figure A-12: Performance of Read-Ahead with Preemptible Read-Ahead (Resource-Poor).

38

0

1

2

3

4

5

0 128 256 384 512
Opportunistic Prefetch Limit (KB)

Av
er

ag
e

Re
ad

 R
es

po
ns

e
Ti

m
e

(m
s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Rich

0

1

2

3

0 128 256 384 512
Opportunistic Prefetch Limit (KB)

Av
er

ag
e

Re
ad

 S
er

vic
e

Ti
m

e
(m

s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Rich

0

0.1

0.2

0.3

0.4

0.5

0 128 256 384 512
Opportunistic Prefetch Limit (KB)

Re
ad

 M
iss

 R
at

io

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Rich

Figure A-13: Performance of Read-Ahead with Preemptible Read-Ahead (Resource-Rich).

0

1

2

3

4

5

6

0 128 256 384 512
Opportunistic Prefetch Limit (KB)

Av
er

ag
e

Re
ad

 R
es

po
ns

e
Ti

m
e

(m
s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

0

1

2

3

0 128 256 384 512
Opportunistic Prefetch Limit (KB)

Av
er

ag
e

Re
ad

 S
er

vic
e

Ti
m

e
(m

s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor
0

0.1

0.2

0.3

0.4

0.5

0.6

0 128 256 384 512
Opportunistic Prefetch Limit (KB)

Re
ad

 M
iss

 R
at

io

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

Figure A-14: Performance of Conditional Sequential Prefetch with Preemptible Read-Ahead (Resource-Poor).

0

1

2

3

4

5

0 128 256 384 512
Opportunistic Prefetch Limit (KB)

Av
er

ag
e

Re
ad

 R
es

po
ns

e
Ti

m
e

(m
s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich
0

1

2

3

0 128 256 384 512
Opportunistic Prefetch Limit (KB)

Av
er

ag
e

Re
ad

 S
er

vic
e

Ti
m

e
(m

s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich
0

0.1

0.2

0.3

0.4

0.5

0 128 256 384 512
Opportunistic Prefetch Limit (KB)

Re
ad

 M
iss

 R
at

io

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Rich

Figure A-15: Performance of Conditional Sequential Prefetch with Preemptible Read-Ahead (Resource-Rich).

39

Avg. Read Response Time Avg. Read Service Time Read Miss Ratio

LFUi RAi CSPi LFUi RAi CSPi LFUi RAi CSPi

 ms %ii ms %ii ms %ii ms %ii ms %ii ms %ii %ii %ii %ii

P-Avg. 3.98 7.62 4.06 4.89 4.10 1.38 2.47 10.02 2.74 8.36 2.81 4.26 0.455 6.17 0.535 8.98 0.496 4.32

S-Avg. 3.09 7.13 2.86 6.62 2.69 2.91 2.09 9.79 2.07 10.0 1.98 5.50 0.357 11.2 0.383 12.1 0.362 6.56

Ps-Avg. 4.74 3.95 4.66 -0.203 4.70 -1.07 2.61 6.01 2.77 2.66 2.77 1.55 0.486 -0.288 0.567 3.39 0.509 1.67

Pm 3.84 6.36 3.85 3.27 3.87 0.384 2.52 8.12 2.74 6.80 2.81 3.33 0.472 4.64 0.553 7.34 0.516 3.27 Pr
ee

m
pt

ib
le

Re

ad
-A

he
ad

Sm 4.01 5.19 3.64 4.14 3.54 1.91 2.97 5.17 2.88 5.92 2.82 3.86 0.478 5.33 0.511 7.32 0.500 4.40

P-Avg. 3.83 11.3 3.34 22.3 3.42 18.2 2.37 13.8 2.22 25.9 2.31 21.4 0.433 10.8 0.431 26.8 0.404 22.2

S-Avg. 3.03 9.1 2.67 13.6 2.52 9.38 2.05 11.3 1.91 17.4 1.84 13.0 0.350 13.1 0.349 20.1 0.332 14.7

Ps-Avg. 4.55 8.03 3.83 18.0 3.96 15.4 2.48 10.7 2.18 23.2 2.25 20.2 0.460 5.2 0.450 23.4 0.412 20.5

Pm 3.69 9.9 3.14 21.1 3.21 17.5 2.42 11.7 2.23 24.4 2.32 20.4 0.451 8.8 0.447 25.0 0.422 20.8

+
Re

ad
 A

ny
 F

re
e

Bl
oc

ks
iii

Sm 3.95 6.64 3.37 11.2 3.30 8.68 2.92 6.6 2.67 12.7 2.62 10.7 0.468 7.34 0.468 15.1 0.460 12.1

P-Avg. 3.77 12.7 3.45 19.8 3.62 13.5 2.08 24.4 1.96 34.4 2.13 27.4 0.404 17.0 0.413 29.9 0.399 23.3

S-Avg. 2.99 10.2 2.64 14.8 2.52 9.12 1.84 21.2 1.66 29.1 1.61 24.5 0.340 15.4 0.336 23.9 0.327 16.5

Ps-Avg. 4.45 9.9 4.06 13.4 4.27 8.76 1.95 29.8 1.91 32.8 2.10 25.4 0.418 13.8 0.433 26.4 0.410 21.0

Pm 3.61 12.0 3.26 18.1 3.43 11.9 2.06 24.9 1.93 34.5 2.12 27.3 0.422 14.7 0.434 27.3 0.420 21.3

+
Ju

st
-in

-T
im

e
Se

ek
iv

Sm 3.92 7.45 3.34 11.9 3.28 9.10 2.64 15.6 2.37 22.6 2.32 20.7 0.456 9.8 0.459 16.8 0.455 13.1

i LFU: Large fetch unit (64KB), RA: Read-Ahead (32KB), CSP: Conditional sequential prefetch (16KB segments for PC workloads, 8KB segments for server workloads,
prefetch trigger of 1, prefetch factor of 2).
ii Improvement over non-opportunistic prefetch ([original value – new value]/[original value]).
iii Preemptible Read-Ahead + Read Any Free Blocks.
iv Preemptible Read-Ahead + Read Any Free Blocks + Just-in-Time Seek.

Table A-1: Additional Effect of Opportunistic Prefetch (Resource-Poor). Table shows percentage improvement over a
system that performs only non-opportunistic prefetch.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2 0.25
Buffer�Size�(%�Storage�Used)

Av
er

ag
e�

W
rit

e�
Re

sp
on

se
�T

im
e�

(m
s) 0.5

1
2
4
8
16
32

Buffer�Block�Size�(KB)

Resource-Rich

P-Avg.

0

2

4

6

8

0 0.05 0.1 0.15 0.2 0.25

S-Avg.

0

0.5

1

1.5

2

0 0.05 0.1 0.15 0.2 0.25

Ps-Avg.

0

0.05

0.1

0.15

0.2

0 0.05 0.1 0.15 0.2 0.25

Pm

0

2

4

6

8

0 0.05 0.1 0.15 0.2 0.25

Sm

Figure A-16: Sensitivity to Buffer Block Size.

40

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16
Write�Buffer�Size�(MB)

Av
er

ag
e�

W
rit

e�
Se

rv
ice

�T
im

e�
(m

s)
P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(a) Resource-Poor.

0

0.4

0.8

1.2

1.6

0 0.05 0.1 0.15 0.2 0.25
Write�Buffer�Size�(%�Storage�Used)

Av
er

ag
e�

W
rit

e�
Se

rv
ice

�T
im

e�
(m

s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(b) Resource-Rich.

Figure A-17: Improvement in Average Write Service Time from Eliminating Repeated Writes.

0

0.2

0.4

0.6

0.8

0 0.05 0.1 0.15 0.2 0.25
Buffer�Size�(%�Storage�Used)

W
rit

e�
M

iss
�R

at
io

15s
30s
1min
10min
1hr
1day

Max.�Age

Resource-RichP-Avg.

0

0.2

0.4

0.6

0.8

0 0.05 0.1 0.15 0.2 0.25

S-Avg.
0

0.2

0.4

0.6

0.8

0 0.05 0.1 0.15 0.2 0.25

Ps-Avg.

0

0.2

0.4

0.6

0.8

0 0.05 0.1 0.15 0.2 0.25

Pm
0

0.2

0.4

0.6

0.8

0 0.05 0.1 0.15 0.2 0.25

Sm

Figure A-18: Sensitivity to Maximum Dirty Age.

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100
highMark�(%�Buffer)

W
rit

e�
M

iss
�R

at
io 5

10
20
40
60
80
90
95

lowMark�
(%�Buffer)

Resource-PoorP-Avg.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

S-Avg.
0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

Ps-Avg.

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100

Pm
0

0.2

0.4

0.6

0.8

0 20 40 60 80 100

Sm

Figure A-19: Effect of lowMark and highMark on Write Miss Ratio (Resource-Poor).

41

0

0.1

0.2

0.3

0.4

0 20 40 60 80 100
highMark�(%�Buffer)

Av
er

ag
e�

W
rit

e�
Re

sp
on

se
�T

im
e�

(m
s)

5
10
20
40
60
80
90
95

lowMark�
(%�Buffer)

Resource-PoorP-Avg.

0

1

2

3

4

5

6

0 20 40 60 80 100

S-Avg.
0

0.2

0.4

0.6

0.8

0 20 40 60 80 100

Ps-Avg.

0

0.1

0.2

0.3

0.4

0 20 40 60 80 100

Pm
0

2

4

6

8

10

0 20 40 60 80 100

Sm

Figure A-20: Effect of lowMark and highMark on Average Write Response Time (Resource-Poor).

0

0.4

0.8

1.2

1.6

2

0 20 40 60 80 100
highMark�(%�Buffer)

Av
er

ag
e�

W
rit

e�
Se

rv
ice

�T
im

e�
(m

s)

5
10
20
40
60
80
90
95

lowMark�
(%�Buffer)

P-Avg. Resource-Poor

0

0.4

0.8

1.2

1.6

2

0 20 40 60 80 100

S-Avg.
0

0.4

0.8

1.2

1.6

0 20 40 60 80 100

Ps-Avg.

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

Pm
0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

Sm

Figure A-21: Effect of lowMark and highMark on Average Write Service Time (Resource-Poor).

0

1

2

3

4

0 20 40 60 80 100
highMark�(%�Buffer)

Av
er

ag
e�

Re
ad

�R
es

po
ns

e�
Ti

m
e�

(m
s)

5
10
20
40
60
80
90
95

lowMark�
(%�Buffer)

Resource-PoorP-Avg.

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

S-Avg.
0

1

2

3

4

5

0 20 40 60 80 100

Ps-Avg.

0

1

2

3

4

0 20 40 60 80 100

Pm
0

1

2

3

4

0 20 40 60 80 100

Sm

Figure A-22: Effect of lowMark and highMark on Average Read Response Time (Resource-Poor).

42

0

1

2

3

0 20 40 60 80 100
highMark�(%�Buffer)

Av
er

ag
e�

Re
ad

�R
es

po
ns

e�
Ti

m
e�

(m
s)

5
10
20
40
60
80
90
95

lowMark�
(%�Buffer)

Resource-RichP-Avg.

0

0.5

1

1.5

2

0 20 40 60 80 100

S-Avg.
0

1

2

3

4

0 20 40 60 80 100

Ps-Avg.

0

0.5

1

1.5

2

0 20 40 60 80 100

Pm
0

0.5

1

1.5

2

0 20 40 60 80 100

Sm

Figure A-23: Effect of lowMark and highMark on Average Read Response Time (Resource-Rich).

0

1

2

3

4

5

6

0.001 0.01 0.1 1 10
Age Factor, W

Av
er

ag
e

Re
sp

on
se

 T
im

e
(m

s)

P-Avg.

S-Avg.

Ps-Avg.

Pm

Sm

Resource-Poor
2

4

6

8

10

0.001 0.01 0.1 1 10
Age Factor, W

Co
ef

fic
ie

nt
 o

f V
ar

ia
tio

n
fo

r R
es

po
ns

e
Ti

m
e

Resource-Poor

Figure A-24: Effect of Age Factor, W , on Response Time (Resource-Poor).

43

0

1

2

3

4

5

0.001 0.01 0.1 1 10
Age Factor, W

Av
er

ag
e

Re
ad

 R
es

po
ns

e
Ti

m
e

(m
s)

P-Avg.

S-Avg.

Ps-Avg.

Pm

Sm

Resource-Poor

1

1.5

2

2.5

3

3.5

4

0.001 0.01 0.1 1 10
Age Factor, W

Co
ef

fic
ie

nt
 o

f V
ar

ia
tio

n
fo

r R
ea

d
Re

sp
on

se
 T

im
e

Resource-Poor

0

1

2

3

4

0.001 0.01 0.1 1 10
Age Factor, W

Av
er

ag
e

Re
ad

 R
es

po
ns

e
Ti

m
e

(m
s)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

2

3

4

5

0.001 0.01 0.1 1 10
Age Factor, W

Co
ef

fic
ie

nt
 o

f V
ar

ia
tio

n
fo

r R
ea

d
Re

sp
on

se
 T

im
e

Resource-Rich

(a) Reads.

0

2

4

6

8

0.001 0.01 0.1 1 10
Age Factor, W

Av
er

ag
e

W
rit

e
Re

sp
on

se
 T

im
e

(m
s)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

5

6

7

8

9

10

11

0.001 0.01 0.1 1 10
Age Factor, W

Co
ef

fic
ie

nt
 o

f V
ar

ia
tio

n
fo

r W
rit

e
Re

sp
on

se
 T

im
e

Resource-Poor

0

1

2

3

0.001 0.01 0.1 1 10
Age Factor, W

Av
er

ag
e

W
rit

e
Re

sp
on

se
 T

im
e

(m
s)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

2

4

6

8

10

12

14

16

0.001 0.01 0.1 1 10
Age Factor, W

Co
ef

fic
ie

nt
 o

f V
ar

ia
tio

n
fo

r W
rit

e
Re

sp
on

se
 T

im
e

Resource-Rich

(b) Writes.

Figure A-25: Effect of Age Factor, W , on Response Time.

44

0

0.5

1

1.5

2

2.5

3

0.001 0.01 0.1 1 10
Age Factor, W

Av
er

ag
e

Se
rv

ice
 T

im
e

(m
s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

1.5

2

2.5

3

0.001 0.01 0.1 1 10
Age Factor, W

Av
er

ag
e

Re
ad

 S
er

vic
e

Ti
m

e
(m

s)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

0

0.5

1

1.5

2

2.5

0.001 0.01 0.1 1 10
Age Factor, W

Av
er

ag
e

W
rit

e
Se

rv
ice

 T
im

e
(m

s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(a) Resource-Poor.

0

0.4

0.8

1.2

1.6

0.001 0.01 0.1 1 10
Age Factor, W

Av
er

ag
e

Se
rv

ice
 T

im
e

(m
s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

0.5

1

1.5

2

0.001 0.01 0.1 1 10
Age Factor, W

Av
er

ag
e

Re
ad

 S
er

vic
e

Ti
m

e
(m

s)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

0

0.4

0.8

1.2

1.6

0.001 0.01 0.1 1 10
Age Factor, W

Av
er

ag
e

W
rit

e
Se

rv
ice

 T
im

e
(m

s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(b) Resource-Rich.

Figure A-26: Effect of Age Factor, W , on Service Time.

45

0

1

2

3

4

5

0 8 16 24 32
Maximum Queue Depth

Av
er

ag
e

Re
ad

 R
es

po
ns

e
Ti

m
e

(m
s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

0

0.5

1

1.5

2

2.5

3

0 8 16 24 32
Maximum Queue Depth

Av
er

ag
e

Re
ad

 S
er

vic
e

Ti
m

e
(m

s)

P-Avg.

S-Avg.

Ps-Avg.

Pm

Sm

Resource-Poor

0

1

2

3

4

0 8 16 24 32
Maximum Queue Depth

Av
er

ag
e

Re
ad

 R
es

po
ns

e
Ti

m
e

(m
s)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

0

0.5

1

1.5

2

0 8 16 24 32
Maximum Queue Depth

Av
er

ag
e

Re
ad

 S
er

vic
e

Ti
m

e
(m

s)

P-Avg.

S-Avg.

Ps-Avg.

Pm

Sm

Resource-Rich

(a) Reads.

0

1

2

3

4

5

6

0 8 16 24 32
Maximum Queue Depth

Av
er

ag
e

W
rit

e
Re

sp
on

se
 T

im
e

(m
s)

P-Avg.

S-Avg.

Ps-Avg.

Pm

Sm
Resource-Poor

0

0.5

1

1.5

2

2.5

3

0 8 16 24 32
Maximum Queue Depth

Av
er

ag
e

W
rit

e
Se

rv
ice

 T
im

e
(m

s)

P-Avg.

S-Avg.

Ps-Avg.

Pm

Sm

Resource-Poor

0

0.5

1

1.5

2

0 8 16 24 32
Maximum Queue Depth

Av
er

ag
e

W
rit

e
Re

sp
on

se
 T

im
e

(m
s)

P-Avg.

S-Avg.

Ps-Avg.

Pm

Sm

Resource-Rich
0

0.5

1

1.5

2

0 8 16 24 32
Maximum Queue Depth

Av
er

ag
e

W
rit

e
Se

rv
ice

 T
im

e
(m

s)

P-Avg.

S-Avg.

Ps-Avg.

Pm

Sm

Resource-Rich

(b) Writes.

0

1

2

3

4

5

6

0 8 16 24 32
Maximum Queue Depth

Av
er

ag
e

Re
sp

on
se

 T
im

e
(m

s)

P-Avg.

S-Avg.

Ps-Avg.

Pm

Sm

Resource-Poor

0

0.5

1

1.5

2

2.5

3

0 8 16 24 32
Maximum Queue Depth

Av
er

ag
e

Se
rv

ice
 T

im
e

(m
s)

P-Avg.

S-Avg.

Ps-Avg.

Pm

Sm

Resource-Poor

0

0.5

1

1.5

2

2.5

3

0 8 16 24 32
Maximum Queue Depth

Av
er

ag
e

Re
sp

on
se

 T
im

e
(m

s)

P-Avg.

S-Avg.

Ps-Avg.

Pm

Sm

Resource-Rich

0

0.5

1

1.5

2

0 8 16 24 32
Maximum Queue Depth

Av
er

ag
e

Se
rv

ice
 T

im
e

(m
s)

P-Avg.

S-Avg.

Ps-Avg.

Pm

Sm

Resource-Rich

(c) Reads and Writes.

Figure A-27: Average Response and Service Times as a Function of the Maximum Queue Depth.

46

Average Read Response Time Average Read Service Time

Max. Q Depth = 2 4 8 16 Max. Q Depth = 2 4 8 16

ms %i ms %i ms %i ms %i ms %i ms %i ms %i ms %i

P-Avg. 3.58 7.45 3.41 11.5 3.34 13.2 3.41 11.7 2.24 2.34 2.20 4.03 2.22 3.03 2.18 4.76

S-Avg. 3.21 6.89 2.82 16.8 2.67 20.1 2.58 22.7 1.91 1.58 1.88 2.79 1.91 0.549 1.86 3.52

Ps-Avg. 4.08 5.73 3.93 8.96 3.83 11.1 3.99 7.75 2.23 4.11 2.17 6.49 2.18 5.94 2.15 7.40

Pm 3.44 10.5 3.26 15.4 3.14 18.4 3.20 16.8 2.24 2.98 2.20 4.50 2.23 3.44 2.19 4.98

Re
so

ur
ce

-P
oo

r

Sm 3.82 7.30 3.51 14.7 3.37 18.2 3.32 19.3 2.68 0.889 2.65 1.96 2.67 0.982 2.63 2.64

P-Avg. 2.88 8.08 2.74 12.2 2.66 14.8 2.77 11.8 1.80 2.31 1.77 3.78 1.79 2.67 1.76 4.43

S-Avg. 1.39 10.0 1.25 16.9 1.20 18.3 1.16 21.5 0.879 1.37 0.865 2.68 0.886 -0.896 0.856 3.57

Ps-Avg. 3.36 5.66 3.25 8.61 3.15 11.7 3.35 6.40 1.78 3.65 1.74 5.75 1.75 5.12 1.72 6.48

Pm 1.83 11.3 1.73 15.7 1.65 19.8 1.72 16.6 1.24 2.32 1.23 3.55 1.24 2.58 1.22 3.93

Re
so

ur
ce

-R
ic

h

Sm 1.55 9.94 1.43 17.4 1.38 20.2 1.35 22.0 1.09 0.619 1.08 1.56 1.10 -0.310 1.07 2.31

i Improvement over queue depth of one ([original value – new value]/[original value]).
Shortest Access Time First with Age Factor of 0.01.

(a) Reads.

Average Write Response Time Average Write Service Time

Max. Q Depth = 2 4 8 16 Max. Q Depth = 2 4 8 16

ms %i ms %i ms %i ms %i ms %i ms %i ms %i ms %i

P-Avg. 0.375 19.2 0.277 38.2 0.227 47.7 0.202 52.3 1.80 0.672 1.51 16.8 1.41 22.3 1.37 24.6

S-Avg. 3.99 14.7 2.67 40.7 2.13 50.3 1.82 56.2 2.03 1.75 1.55 24.4 1.32 34.8 1.21 39.8

Ps-Avg. 1.04 8.38 0.782 30.2 0.646 41.8 0.576 48.0 1.48 1.74 1.18 21.5 1.05 30.1 0.982 34.7

Pm 0.323 34.7 0.228 53.9 0.190 61.7 0.174 64.9 1.82 0.651 1.44 21.1 1.30 29.2 1.22 33.2

Re
so

ur
ce

-P
oo

r

Sm 6.49 3.02 4.42 34.0 3.48 48.0 2.95 55.9 2.39 2.51 1.83 25.3 1.57 36.1 1.42 42.1

P-Avg. 0.348 16.4 0.261 34.5 0.218 43.5 0.197 48.1 1.09 1.11 0.831 24.6 0.700 36.3 0.622 43.3

S-Avg. 1.90 14.1 1.18 37.3 0.831 45.4 0.673 49.0 0.904 2.08 0.654 29.3 0.535 42.4 0.465 50.1

Ps-Avg. 1.08 4.04 0.832 24.7 0.695 36.4 0.617 43.2 1.05 2.34 0.804 25.0 0.681 36.3 0.608 42.9

Pm 0.161 37.6 0.133 48.5 0.123 52.1 0.121 53.2 0.746 0.460 0.565 24.7 0.474 36.8 0.416 44.5

Re
so

ur
ce

-R
ic

h

Sm 2.38 4.36 1.52 39.0 1.16 53.6 0.981 60.6 1.41 1.29 1.04 27.5 0.855 40.3 0.745 48.0

i Improvement over queue depth of one ([original value – new value]/[original value]).
Shortest Access Time First with Age Factor of 0.01.

(b) Writes.

Table A-2: Average Response and Service Times as Maximum Queue Depth is Increased from One.

47

 Average Read Service Time Average Write Service Time

 Disk Capacity (Relative to Base) Disk Capacity (Relative to Base)

 2 3 4 5 6 7 8 2 3 4 5 6 7 8

P-Avg. 7.29 10.6 12.4 13.8 14.7 15.5 16.0 9.38 13.8 16.8 18.4 19.3 20.6 21.8

S-Avg. 10.2 13.8 15.8 16.9 17.7 18.4 19.0 13.1 18.2 20.6 23.6 25.1 26.5 29.4

Ps-Avg. 7.41 10.8 12.8 14.2 15.3 15.9 16.6 10.3 15.0 18.2 20.0 21.0 22.6 24.0

Pm 7.44 10.1 11.9 12.8 13.8 14.6 15.3 11.5 16.4 19.3 20.4 22.5 23.6 24.9

Re
so

ur
ce

-P
oo

r

Sm 10.0 13.4 15.5 17.3 18.4 19.3 19.7 14.1 20.4 22.1 26.7 28.1 29.5 30.6

P-Avg. 7.09 10.3 12.0 13.3 14.3 15.1 15.5 10.2 14.9 18.1 20.0 21.6 22.9 23.9

S-Avg. 9.45 13.0 14.7 15.7 16.5 17.1 17.7 14.3 20.4 22.2 25.8 27.9 29.2 30.3

Ps-Avg. 7.36 10.6 12.5 14.0 14.9 15.7 16.3 10.5 15.2 18.3 20.3 22.0 23.4 24.3

Pm 7.30 9.87 11.4 12.4 13.2 14.0 14.6 11.7 16.3 19.7 21.7 23.4 24.8 25.8

Re
so

ur
ce

-R
ic

h

Sm 8.90 12.2 14.1 15.9 16.9 17.8 18.2 14.6 20.7 21.3 26.9 28.9 30.5 31.6

Table A-3: Improvement in Average Service Time when Larger Capacity Disks are Used.

0

0.5

1

1.5

2

2.5

3

3.5

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Stripe Unit (KB)

Av
er

ag
e

Re
ad

 R
es

po
ns

e
Ti

m
e

(m
s)

P-Avg. S-Avg.
Ps-Avg. Pm
SmResource-Poor

4 Disks

0

0.2

0.4

0.6

0.8

1

1.2

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Stripe Unit (KB)

Av
er

ag
e

W
rit

e
Re

sp
on

se
 T

im
e

(m
s)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

4 Disks

Figure A-28: Average Read and Write Response Time as a Function of Stripe Unit (Resource-Poor).

48

0

0.5

1

1.5

2

2.5

3

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Stripe Unit (KB)

Av
er

ag
e

Re
ad

 S
er

vic
e

Ti
m

e
(m

s)

P-Avg. S-Avg.
Ps-Avg. Pm
SmResource-Poor

4 Disks

0

0.5

1

1.5

2

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Stripe Unit (KB)

Av
er

ag
e

W
rit

e
Se

rv
ice

 T
im

e
(m

s)

P-Avg. S-Avg.
Ps-Avg. Pm
SmResource-Poor

4 Disks

(a) Resource-Poor.

0

0.5

1

1.5

2

2.5

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Stripe Unit (KB)

Av
er

ag
e

Re
ad

 S
er

vic
e

Ti
m

e
(m

s)

P-Avg. S-Avg.
Ps-Avg. Pm
SmResource-Rich

4 Disks

0

0.2

0.4

0.6

0.8

1

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Stripe Unit (KB)

Av
er

ag
e

W
rit

e
Se

rv
ice

 T
im

e
(m

s)

P-Avg. S-Avg.
Ps-Avg. Pm
SmResource-Rich

4 Disks

(b) Resource-Rich.

Figure A-29: Average Read and Write Service Time as a Function of Stripe Unit.

49

0

0.5

1

1.5

2

2.5

3

3.5

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Stripe Unit (KB)

Av
er

ag
e

Re
ad

 R
es

po
ns

e
Ti

m
e

(m
s)

P-Avg. S-Avg.
Ps-Avg. Pm
SmResource-Poor

8 Disks

0

0.2

0.4

0.6

0.8

1

1.2

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Stripe Unit (KB)

Av
er

ag
e

W
rit

e
Re

sp
on

se
 T

im
e

(m
s)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

8 Disks

(a) Resource-Poor.

0

0.5

1

1.5

2

2.5

3

3.5

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Stripe Unit (KB)

Av
er

ag
e

Re
ad

 R
es

po
ns

e
Ti

m
e

(m
s)

P-Avg. S-Avg.
Ps-Avg. Pm
SmResource-Rich

8 Disks

0

0.2

0.4

0.6

0.8

1

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Stripe Unit (KB)

Av
er

ag
e

W
rit

e
Re

sp
on

se
 T

im
e

(m
s)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich 8 Disks

(b) Resource-Rich.

Figure A-30: Average Read and Write Response Time as a Function of Stripe Unit (8 Disks).

50

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8
Number�of�Disks

Av
er

ag
e�

Re
ad

�R
es

po
ns

e�
Ti

m
e�

(m
s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor
0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8
Number�of�Disks

Av
er

ag
e�

Re
ad

�S
er

vic
e�

Ti
m

e�
(m

s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8
Number�of�Disks

Re
ad

�M
iss

�R
at

io

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

(a) Read.

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8
Number�of�Disks

Av
er

ag
e�

W
rit

e�
Re

sp
on

se
�T

im
e�

(m
s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8
Number�of�Disks

Av
er

ag
e�

W
rit

e�
Se

rv
ice

�T
im

e�
(m

s)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8
Number�of�Disks

W
rit

e�
M

iss
�R

at
io

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

(b) Write.

Figure A-31: Performance as a Function of the Number of Disks (Resource-Poor).

51

0

5

10

15

20

0 2000 4000 6000 8000 10000
Seek Distance (# Tracks)

Se
ek

 T
im

e
(m

s)
ST34501N (1996)

ST39102LW (1998)

Higher tpi

Improved
actuator

tpi:tracks per inch

Figure A-32: Change in Seek Profile over Time.

-10

0

10

20

30

40

-10 10 30 50

Seek Time Improvement (%)

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Se

rv
ice

 T
im

e
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

f(x)=0.416x
r2=1.00

-10

0

10

20

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Se

rv
ice

 T
im

e
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

f(x)=3.14x
r2=0.998

(a) Resource-Poor.

-10

0

10

20

30

40

-10 10 30 50

Seek Time Improvement (%)

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Se

rv
ice

 T
im

e
(%

)
P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

f(x)=0.397x
r2=1.00

-10

0

10

20

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Se

rv
ice

 T
im

e
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

f(x)=2.98x
r2=0.998

(b) Resource-Rich.

Figure A-33: Effect of Improvement in Seek Time on Average Service Time.

-10

0

10

20

30

40

-10 10 30 50

Seek Time Improvement (%)

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Re

sp
on

se
 T

im
e

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

f(x)=0.399x
r2=0.999

-10

0

10

20

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Re

sp
on

se
 T

im
e

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

f(x)=2.98x
r2=0.997

Figure A-34: Effect of Improvement in Seek Time on
Average Response Time (Resource-Poor).

-10

0

10

20

30

40

-10 10 30 50

Increase in RPM (%)

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Re

sp
on

se
 T

im
e

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

f(x)=34.3(1-e-0.0164x)
r2=0.999

-10

0

10

20

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Re

sp
on

se
 T

im
e

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

f(x)=4.35x
r2=0.994

Figure A-35: Effect of RPM Scaling on Average Re-
sponse Time (Resource-Poor).

52

-10

0

10

20

30

40

-10 10 30 50

Increase in RPM (%)

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Se

rv
ice

 T
im

e
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

f(x)=32.4(1-e-0.0177x)
r2=1.00

-10

0

10

20

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Se

rv
ice

 T
im

e
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

f(x)=4.61x
r2=0.997

(a) Resource-Poor.

-10

0

10

20

30

40

-10 10 30 50

Increase in RPM (%)

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Se

rv
ice

 T
im

e
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

f(x)=36.8(1-e-0.0162x)
r2=1.00

-10

0

10

20

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Se

rv
ice

 T
im

e
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

f(x)=4.81x
r2=0.998

(b) Resource-Rich.

Figure A-36: Effect of RPM Scaling on Average Service Time.

1

10

100

1990 1994 1998 2002
Year

M
ax

im
um

�D
at

a�
Ra

te
�(M

B/
s)

f(x)=1.40(x-1991.5)*2.90
r2�=�0.985

Figure A-37: Historical Rate of Increase in Maximum Data Rate (IBM Server Disks).

-10

0

10

20

30

-10 10 30 50

Linear Density Increase (%)

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Se

rv
ice

 T
im

e
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

f(x)=21.5(1-e-0.0141x)
r2=1.00

-10

0

10

20

30

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Se

rv
ice

 T
im

e
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

f(x)=5.27x
r2=0.998

(a) Resource-Poor.

-10

0

10

20

30

-10 10 30 50

Linear Density Increase (%)

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Se

rv
ice

 T
im

e
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

f(x)=26.4(1-e-0.0145x)
r2=0.998

-10

0

10

20

30

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Se

rv
ice

 T
im

e
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

f(x)=6.61x
r2=0.995

(b) Resource-Rich.

Figure A-38: Effect of Increased Linear Density on Average Service Time.

53

-10

0

10

20

30

-10 10 30 50

Linear Density Increase (%)

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Re

sp
on

se
 T

im
e

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

f(x)=20.9(1-e-0.0175x)
r2=0.999

-10

0

10

20

30

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Re

sp
on

se
 T

im
e

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

f(x)=6.00x
r2=0.993

Figure A-39: Effect of Increased Linear Density on Av-
erage Response Time (Resource-Poor).

-10

0

10

20

-10 10 30 50

Track Density Increase (%)

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Re

sp
on

se
 T

im
e

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

f(x)=13.1(1-e-0.0135x)
r2=1.00

-10

0

10

20

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Re

sp
on

se
 T

im
e

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

f(x)=3.49x
r2=0.998

Figure A-40: Effect of Increased Track Density on Av-
erage Response Time (Resource-Poor).

-10

0

10

20

-10 10 30 50

Track Density Increase (%)

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Se

rv
ice

 T
im

e
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

f(x)=12.7(1-e-0.0128x)
r2=0.999

-10

0

10

20

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Se

rv
ice

 T
im

e
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

f(x)=3.25x
r2=0.998

(a) Resource-Poor.

-10

0

10

20

-10 10 30 50

Track Density Increase (%)

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Se

rv
ice

 T
im

e
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

f(x)=14.6(1-e-0.0108x)
r2=1.00

-10

0

10

20

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Se

rv
ice

 T
im

e
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

f(x)=3.29x
r2=0.999

(b) Resource-Rich.

Figure A-41: Effect of Increased Track Density on Average Service Time.

-20

0

20

40

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Re

sp
on

se
 T

im
e

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

f(x)=44.3(1-e-0.196x)
r2=0.998

f(x)=7.48x
r2=0.992

(a) Mechanical Improvement.

-20

0

20

40

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Re

sp
on

se
 T

im
e

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

f(x)=34.1(1-e-0.320x)
r2=1.00

f(x)=8.58x
r2=0.985

(b) Areal Density Increase.

-20

0

20

40

60

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Re

sp
on

se
 T

im
e

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

f(x)=69.6(1-e-0.272x)
r2=1.00

f(x)=15.4x
r2=0.989

(c) Disk Technology Improvement.

Figure A-42: Effect on Average Response Time (Resource-Poor).

54

-20

0

20

40

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Se

rv
ice

 T
im

e
(%

)
P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

f(x)=86.6(1-e-0.0975x)
r2=1.00

f(x)=7.83x
r2=0.999

(a) Mechanical Improvement.

-20

0

20

40

-0.5 0.5 1.5 2.5

Years Relative to Present
Im

pr
ov

em
en

t i
n

Av
er

ag
e

Se
rv

ice
 T

im
e

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

f(x)=36.2(1-e-0.270x)
r2=0.999

f(x)=7.97x
r2=0.988

(b) Areal Density Increase.

-20

0

20

40

60

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Se

rv
ice

 T
im

e
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

f(x)=70.0(1-e-0.259x)
r2=1.00

f(x)=14.9x
r2=0.990

(c) Disk Technology Improvement.

Figure A-43: Effect on Average Service Time (Resource-Poor).

-20

0

20

40

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Se

rv
ice

 T
im

e
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

f(x)=75.6(1-e-0.114x)
r2=1.00

f(x)=7.90x
r2=0.998

(a) Mechanical Improvement.

-20

0

20

40

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Se

rv
ice

 T
im

e
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

f(x)=46.3(1-e-0.234x)
r2=0.998

f(x)=9.07x
r2=0.990

(b) Areal Density Increase.

-20

0

20

40

60

-0.5 0.5 1.5 2.5

Years Relative to Present

Im
pr

ov
em

en
t i

n
Av

er
ag

e
Se

rv
ice

 T
im

e
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

f(x)=74.1(1-e-0.261x)
r2=0.999

f(x)=15.9x
r2=0.989

(c) Disk Technology Improvement.

Figure A-44: Effect on Average Service Time (Resource-Rich).

0

20

40

60

80

-3 -2 -1 0 1 2 3
Time (Years Relative to Present)

Av
g.

 A
ct

ua
l S

ee
k/

Ro
ta

tio
na

l T
im

e
(%

 S
pe

cif
ie

d)

P-Avg. S-Avg. Ps-Avg.
Pm Sm

Resource-Poor

Seek Time

Rotational Latency

Figure A-45: Actual Average Seek and Ro-
tational Time as Percentage of Manufacturer
Specified Values (Resource-Poor).

0%

20%

40%

60%

80%

100%

P-
Avg.

S-
Avg.

Ps-
Avg.

Pm Sm

Workload

A
ve

ra
ge

�R
ea

d�
R

es
po

ns
e�

T
im

e

Waiting
Seek
Rotational
Transfer
Processing

Resource-Poor

0%

20%

40%

60%

80%

100%

P-
Avg.

S-
Avg.

Ps-
Avg.

Pm Sm

Workload

A
ve

ra
ge

�W
rit

e�
S

er
vi

ce
�T

im
e

Seek

Rotational

Transfer

Resource-Poor

Figure A-46: Breakdown of Average Read Response
and Write Service Time (Resource-Poor).

55

0

20

40

60

80

100

-3 -2 -1 0 1 2 3
Time (Years Relative to Present)

Av
g.

 A
ct

ua
l R

ea
d

Se
ek

/R
ot

at
io

na
l T

im
e

(%
 S

pe
cif

ie
d)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

Seek Time

Rotational Latency

0

20

40

60

80

100

-3 -2 -1 0 1 2 3
Time (Years Relative to Present)

Av
g.

 A
ct

ua
l R

ea
d

Se
ek

/R
ot

at
io

na
l T

im
e

(%
 S

pe
cif

ie
d)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

Seek Time

Rotational Latency

(a) Reads.

0

20

40

60

-3 -2 -1 0 1 2 3
Time (Years Relative to Present)

Av
g.

 A
ct

ua
l W

rit
e

Se
ek

/R
ot

at
io

na
l T

im
e

(%
 S

pe
cif

ie
d)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

Seek
Time

Rotational Latency

0

10

20

30

40

-3 -2 -1 0 1 2 3
Time (Years Relative to Present)

Av
g.

 A
ct

ua
l W

rit
e

Se
ek

/R
ot

at
io

na
l T

im
e

(%
 S

pe
cif

ie
d)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Rich

Seek
Time

Rotational Latency

(b) Writes.

Figure A-47: Actual Average Seek/Rotational Time as Percentage of Specified Values.

56

