
The Automatic Improvement of Locality in Storage Systems

Windsor W. Hsu†‡

Alan Jay Smith‡

Honesty C. Young†

†Storage Systems Department
Almaden Research Center

IBM Research Division
San Jose, CA 95120

{windsor,young}@almaden.ibm.com

‡Computer Science Division
EECS Department

University of California
Berkeley, CA 94720

{windsorh,smith}@cs.berkeley.edu

Report No. UCB/CSD-03-1264

July 2003

Computer Science Division (EECS)
University of California
Berkeley, California 94720





The Automatic Improvement of Locality
in Storage Systems

Windsor W. Hsu†‡ Alan Jay Smith‡ Honesty C. Young†

†Storage Systems Department ‡Computer Science Division
Almaden Research Center EECS Department

IBM Research Division University of California
San Jose, CA 95120 Berkeley, CA 94720

{windsor,young}@almaden.ibm.com {windsorh,smith}@cs.berkeley.edu

Abstract

Disk I/O is increasingly the performance bottleneck in
computer systems despite rapidly increasing disk data
transfer rates. In this paper, we propose Automatic
Locality-Improving Storage (ALIS), an introspective
storage system that automatically reorganizes selected
disk blocks based on the dynamic reference stream to
increase effective storage performance. ALIS is based
on the observations that sequential data fetch is far more
efficient than random access, that improving seek dis-
tances produces only marginal performance improve-
ments, and that the increasingly powerful processors and
large memories in storage systems have ample capacity
to reorganize the data layout and redirect the accesses
so as to take advantage of rapid sequential data trans-
fer. Using trace-driven simulation with a large set of real
workloads, we demonstrate that ALIS considerably out-
performs prior techniques, improving the average read
performance by up to 50% for server workloads and by
about 15% for personal computer workloads. We also
show that the performance improvement persists as disk
technology evolves. Since disk performance in practice
is increasing by only about 8% per year [18], the benefit
of ALIS may correspond to as much as several years of
technological progress.

1 Introduction

Processor performance has been increasing by more
than 50% per year [16] while disk access time, being
limited by mechanical delays, has improved by only
about 8% per year [14, 18]. As the performance gap

Funding for this research has been provided by the State
of California under the MICRO program, and by AT&T Lab-
oratories, Cisco Corporation, Fujitsu Microelectronics, IBM,
Intel Corporation, Maxtor Corporation, Microsoft Corpora-
tion, Sun Microsystems, Toshiba Corporation and Veritas
Software Corporation.

0

20

40

60

80

1991 1995 1999 2003
Year Disk was Introduced

Ti
m

e 
to

 R
ea

d 
En

tir
e 

Di
sk

 (H
ou

rs
)

Random I/O (4KB Blocks)
Sequential I/O

Figure 1: Time Needed to Read an Entire Disk as a
Function of the Year the Disk was Introduced.

between the processor and the disk continues to widen,
disk-based storage systems are increasingly the bottle-
neck in computer systems, even in personal computers
(PCs) where I/O delays have been found to highly frus-
trate users [25]. To make matters worse, disk recording
density has recently been rising by more than 50% per
year [18], far exceeding the rate of decrease in access
density (I/Os per second per gigabyte of data), which
has been estimated to be only about 10% per year in
mainframe environments [35]. The result is that al-
though the disk arm is only slightly faster in each new
generation of the disk, each arm is responsible for serv-
ing a lot more data. For example, Figure 1 shows that
the time to read an entire disk using random I/O has in-
creased from just over an hour for a 1992 disk to almost
80 hours for a disk introduced in 2002.

Although the disk access time has been relatively sta-
ble, disk transfer rates have risen by as much as 40%
per year due to the increase in rotational speed and lin-
ear density [14, 18]. Given the technology and industry
trends, such improvement in the transfer rate is likely

1



to continue, as is the almost annual doubling in storage
capacity. Therefore, a promising approach to increasing
effective disk performance is to replicate and reorganize
selected disk blocks so that the physical layout mirrors
the logically sequential access. As more computing re-
sources become available or can be added relatively eas-
ily to the storage system [19], sophisticated techniques
that accomplish this transparently, without human in-
tervention, are increasingly possible. In this paper, we
propose an autonomic [23] storage system that adapts
itself to a given workload by automatically reorganiz-
ing selected disk blocks to improve the spatial locality
of reference. We refer to such a system as Automatic
Locality-Improving Storage (ALIS).

The ALIS approach is in contrast to simply clus-
tering related data items close together to reduce the
seek distance (e.g., [1, 3, 43]); such clustering is not
very effective at improving performance since it does
not lessen the rotational latency, which constitutes about
40% of the read response time [18]. Moreover, because
of inertia and head settling time, there is only a rela-
tively small time difference between a short seek and a
long seek, especially with newer disks. Therefore, for
ALIS, reducing the seek distance is only a secondary
effect. Instead, ALIS focuses on reducing the number
of physical I/Os by transforming the request stream to
exhibit more sequentiality, an effect that is not likely to
diminish over time with disk technology trends.

ALIS currently optimizes disk block layout based on
the observation that only a portion of the stored data
is in active use [17] and that workloads tend to have
long repeated sequences of reads. ALIS exploits the for-
mer by clustering frequently accessed blocks together
while largely preserving the original block sequence,
unlike previous techniques (e.g., [1, 3, 43]) which fail
to recognize that spatial locality exists and end up ren-
dering sequential prefetch ineffective. For the latter,
ALIS analyzes the reference stream to discover the re-
peated sequences from among the intermingled requests
and then lays the sequences out physically sequentially
so that they can be effectively prefetched. By oper-
ating at the level of the storage system, rather than
in the operating system, ALIS transparently improves
the performance of all I/Os, including system generated
I/O (e.g., memory-mapped I/O, paging I/O, file system
metadata I/O) which may constitute well over 60% of
the I/O activity in a system [43]. Trace-driven simula-
tions using a large collection of real server and PC work-
loads show that ALIS considerably outperforms previ-
ous techniques to improve read performance by up to
50% and write performance by as much as 22%.

The rest of this paper is organized as follows. Sec-
tion 2 contains an overview of related work. In Sec-
tion 3, we present the architecture of ALIS. This is fol-

lowed in Section 4 by a discussion of the methodology
used to evaluate the effectiveness of ALIS. Details of
some of the algorithms are presented in Section 5 and
are followed in Section 6 by the results of our perfor-
mance analysis. We present our conclusions in Section 7
and discuss some possible extensions of this work in
Section 8. To keep the chapter focused, we highlight
only portions of our results in the main text. More de-
tailed graphs and data are presented in the Appendix.

2 Background and Related Work

Various heuristics have been used to lay out data
on disk so that items (e.g., files) that are expected to
be used together are located close to one another (e.g.,
[10, 34, 36, 40]. The shortcoming of these a priori tech-
niques is that they are based on static information such
as the name space relationships of files, which may not
reflect the actual reference behavior. Furthermore, files
become fragmented over time. The blocks belonging
to individual files can be gathered and laid out contigu-
ously in a process known as defragmentation [8, 33].
But defragmentation does not handle inter-file access
patterns and its effectiveness is limited by the file size
which tends to be small [2, 42]. Moreover, defragmen-
tation assumes that blocks belonging to the same file
tend to be accessed together which may not be true for
large files [42] or database tables, and during application
launch when many seeks remain even after defragmen-
tation [25].

The posteriori approach utilizes information about
the dynamic reference behavior to arrange items. An ex-
ample is to identify data items – blocks [1, 3, 43], cylin-
ders [53], or files [48, 49, 54] – that are referenced fre-
quently and to relocate them to be close together. Rear-
ranging small pieces of data was found to be particularly
advantageous [1] but in doing so, contiguous data that
used to be accessed together could be split up. There
were some early efforts to identify dependent data and
to place them together [4, 43], but for the most part, the
previous work assumed that references are independent,
which has been shown to be invalid for real workloads
(e.g., [20, 21, 45, 47]). Furthermore, the previous work
did not consider the aggressive sequential prefetch com-
mon today, and was focused primarily on reducing only
the seek time.

The idea of co-locating items that tend to be ac-
cessed together has been investigated in several different
domains – virtual memory (e.g., [9]), processor cache
(e.g., [15]), object database (e.g., [50]) etc. The basic ap-
proach is to pack items that are likely to be used contem-
poraneously into a superunit, i.e., a larger unit of data
that is transferred and cached in its entirety. Such clus-
tering is designed mainly to reduce internal fragmenta-

2



tion of the superunit. Thus the superunits are not ordered
nor are the items within each superunit. The same ap-
proach has been tried to pack disk blocks into segments
in the log-structured file system (LFS) [32]. However,
storage systems in general have no convenient superunit.
Therefore such clustering merely moves related items
close together to reduce the seek distance. A superunit
could be introduced but concern about the response time
of requests in the queue behind will limit its size so that
ordering these superunits will still be necessary for ef-
fective sequential prefetch.

Some researchers have also considered laying out
blocks in the sequence that they are likely to be used.
However, the idea has been limited to recognizing very
specific patterns such as sequential, stepped sequential
and reverse sequential in block address [5], and to the
special case of application starts [25] where the refer-
ence patterns likely to be repeated are identified with
the help of external knowledge.

There has also been some recent work on identify-
ing blocks or files that tend to be used together or in
a particular sequence so that the next time a context is
recognized, the files and blocks can be prefetched ac-
cordingly (e.g., [12, 13, 28, 29, 39]). The effectiveness
of this approach is constrained by the amount of locality
that is present in the reference stream, by the fact that it
may not improve fetch efficiency since disk head move-
ment is not reduced but only brought forward in time,
and by the burstiness in the I/O traffic which makes it
difficult to prefetch the data before it is needed.

3 Architecture of ALIS

ALIS consists of four major components. These are
depicted in the block diagram in Figure 2. First, a work-
load monitor collects a trace of the disk addresses refer-
enced as requests are serviced. This is a low overhead
operation and involves logging four to eight bytes worth
of data per request. Since the ratio of I/O traffic to stor-
age capacity tends to be small [17], collecting a refer-
ence trace is not expected to impose a significant over-
head. For instance, [17] reports that logging eight bytes
of data per request for the Enterprise Resource Planning
(ERP) workload at one of the nation’s largest health in-
surers will create only 12 MB of data on the busiest day.

Periodically, typically when the storage system is
relatively idle, a workload analyzer examines the refer-
ence data collected to determine which blocks should be
reorganized and how they should be laid out. Because
workloads tend to be bursty, there should generally be
enough lulls in the storage system for the workload anal-
ysis to be performed daily [17]. The analysis can also be
offloaded to a separate machine if necessary. The work-
load analyzer uses two strategies, each targeted at ex-

 

 
Cache & Seq. Prefetch 

Traffic Redirector 

Workload Analyzer 

File System/Database 
Cache Workload Monitor 

Disk-Based 
Storage 

Reorganized 
Area 

Reorganizer 

… 

Figure 2: Block Diagram of ALIS.

ploiting a different workload behavior. The first strategy
attempts to localize hot, i.e., frequently accessed, data
in a process that we refer to as heat clustering. Unlike
previously proposed techniques, ALIS localizes hot data
while preserving and sometimes even enhancing spatial
locality. The second strategy that ALIS uses is based on
the observation that there are often long read sequences
or runs that are repeated. Thus it tries to discover these
runs to lay them out sequentially so that they can be ef-
fectively prefetched. We call this approach run cluster-
ing. The various clustering strategies will be discussed
in detail in Section 5.

Based on the results of the workload analysis, a reor-
ganizer module makes copies of the selected blocks and
lays them out in the determined order in a preallocated
region of the storage space known as the reorganized
area (RA). This reorganization process can proceed in
the background while the storage system is servicing in-
coming requests. The use of a specially set aside reorga-
nization area as in [1] is motivated by the fact that only
a relatively small portion of the data stored is in active
use [17] so that reorganizing a small subset of the data is
likely to achieve most of the potential benefit. Further-
more, with disk capacities growing very rapidly [14],
more storage is available for disk system optimization.
For the workloads that we examined, a reorganized area
15% the size of the storage used is sufficient to realize
nearly all the benefit.

In general, when data is relocated, some form of di-
rectory is needed to forward requests to the new loca-
tion. Because ALIS moves only a subset of the data, the
directory can be simply a lookaside table mapping only
the data in the reorganized area. Assuming 8 bytes are
needed to map 8 KB of data and the reorganized area
is 15% of the storage space, the directory size works
out to be equivalent to only about 0.01% of the stor-
age space (15%*8/8192 ≈ 0.01%). The storage required
for the directory can be further reduced by using well-

3



known techniques such as increasing the granularity of
the mapping or restricting the possible locations that
a block can be mapped to. The directory can also be
paged. Such actions may, however, affect performance.

Note that there may be multiple copies of a block in
the reorganized area because a given block may occur in
the heat-clustered region and also in multiple runs. The
decision of which copy to fetch, either original or one
of the duplicates in the reorganized area is determined
by the traffic redirector which sits on the I/O path. For
every read request, the traffic redirector looks up the di-
rectory to determine if there are any up-to-date copies
of the requested data in the reorganized area. If there is
more than one up-to-date copy of a block in the system,
the traffic redirector can select the copy to fetch based
on the estimated proximity of the disk head to each of
the copies and the expected prefetch benefit. A simple
strategy that works well in practice is to give priority to
fetching from the runs. If no run matches, we proceed
to the heat-clustered data, and if that fails, the original
copy of the data is fetched. We will discuss the policy
of deciding which copy to select in greater detail in Sec-
tion 5.

For reliability, the directory is stored and duplicated
in known, fixed locations on disk. The on-disk directory
is updated only during the process of block reorgani-
zation. When writes to data that have been replicated
and laid out in the reorganized area occur, one or more
copies of the data have to be updated. Any remaining
copies are invalidated. We will discuss which copy or
copies to update later in Section 6.3. It suffices here to
say that such update and invalidate information is main-
tained in addition to the directory. At the beginning of
the block reorganization process, any updated blocks in
the reorganized region are copied back to the home or
original area. Since there is always a copy of the data in
the home area, it is possible to make the reorganization
process resilient to power failures by using an intentions
list [52]. With care, block reorganization can be per-
formed while access to data continues.

The on-disk directory is read on power-up and kept
static during normal operation. The update or invalidate
information is, however, dynamic. Losing the memory
copy of the directory is thus not catastrophic, but hav-
ing non-volatile storage (NVS) would make things sim-
pler for maintaining the update/invalidate information.
Without NVS, a straightforward approach is to period-
ically write the update/invalidate information to disk.
When the system is first powered up, it checks to see if
it was shut down cleanly the previous time. If not, some
of the update/invalidate information may have been lost.
The update/invalidate information in essence tracks the
blocks in the reorganized area that have been updated
or invalidated since the last reorganization. Therefore,

if the policy of deciding which blocks to update and
which to invalidate is based on regions in the reorga-
nized area, copying all the blocks in the update region
back to the home area and copying all the blocks from
the home area to the invalidate region effectively resets
the update/invalidate information.

ALIS can be implemented at different levels in
the storage hierarchy, including the disk itself, espe-
cially if predictions about embedding intelligence in
disks [11, 26, 41] come true. We are particularly in-
terested in the storage adaptor and the outboard con-
troller, which can be attached to a storage area network
(SAN) or an internet protocol network (NAS), because
they provide a convenient platform to host significant
resources for ALIS, and the added cost can be justified,
especially for high performance controllers that are tar-
geted at the server market and which are relatively price-
insensitive [19]. For the personal systems, a viable al-
ternative is to implement ALIS in the disk device driver.

More generally, ALIS can be thought of as a layer
that can be interposed somewhere in the storage stack.
ALIS does not require a lot of knowledge about the un-
derlying storage system, although its effectiveness could
be increased if detailed knowledge of disk geometry and
angular position are available. So far, we have simply
assumed that the storage system downstream is able to
service requests that exhibit sequentiality much more ef-
ficiently than random requests. This is a characteristic
true of all disk-based storage systems and it turns out
to be extremely powerful, especially in view of the disk
technology trends.

Note that some storage systems such as RAID (Re-
dundant Array of Inexpensive Disks) [6] adaptors and
outboard controllers implement a virtualization layer or
a virtual to physical block mapping so that they can
aggregate multiple storage pools to present a flat stor-
age space to the host. ALIS assumes that the flat stor-
age space presented by these storage systems performs
largely like a disk so that virtually sequential blocks can
be accessed much more efficiently than random blocks.
This assumption tends to be valid because, for practical
reasons such as to reduce overhead, any virtual to phys-
ical block mapping is typically done at the granularity
of large extents so that virtually sequential blocks are
likely to be also physically sequential. Moreover, file
systems and applications have the same expectation of
the storage space so it behooves the storage system to
ensure that the expectation is met.

4 Performance Evaluation Methodology

In this paper, we use trace-driven simulation [46, 51]
to evaluate the effectiveness of ALIS. In trace-driven
simulation, relevant information about a system is col-

4



Request�Issued

Request�Completed
R1 R2 R3 R4 R5

R1R0 R3
Time

X1

X2

X3

X4

X5

Figure 3: Intervals between Issuance of I/O Requests
and Most Recent Request Completion.

lected while the system is handling the workload of in-
terest. This is referred to as tracing the system and is
usually achieved by using hardware probes or by instru-
menting the software. In the second phase, the result-
ing trace of the system is played back to drive a model
of the system under study. Trace-driven simulation is
thus a form of event-driven simulation where the events
are taken from a real system operating under conditions
similar to the ones being simulated.

4.1 Modeling Timing Effects

A common difficulty in using trace-driven simula-
tion to study I/O systems is to realistically model tim-
ing effects, specifically to account for events that oc-
cur faster or slower in the simulated system than in the
original system. This difficulty arises because informa-
tion about how the arrival of subsequent I/Os depend
upon the completion of previous requests cannot be eas-
ily extracted from a system and recorded in the traces.
See [18] for a brief survey of how timing effects are typ-
ically handled in trace-driven simulations and how the
various methods fail to realistically model real work-
loads. In this paper, we use an improved methodology
that is designed to account for both the feedback effect
between request completion and subsequent I/O arrivals,
and the burstiness in the I/O traffic. This methodology is
developed in [18] and is outlined below. We could have
simply played back the trace maintaining the original
timing as in [43] but that would result in optimistic per-
formance results for ALIS because it would mean more
free time for prefetching and fewer opportunities for re-
quest scheduling than in reality.

Results presented in [17] show that there is effec-
tively little multiprogramming in PC workloads and that
most of the I/Os are synchronous. Such predominantly
single-process workloads can be modeled by assuming
that after completing an I/O, the system has to do some
processing and the user, some “thinking”, before the
next set of I/Os can be issued. For instance, in the time-
line in Figure 3, after request R0 is completed, there are
delays during which the system is processing and the
user is thinking before requests R1, R2 and R3 are is-
sued. Because R1, R2 and R3 are issued after R0 has
been completed, we consider them to be dependent on

R0. Similarly, R4 and R5 are deemed to be dependent on
R1. Presumably, if R0 is completed earlier, R1, R2 and
R3 will be dragged forward and issued earlier. If this in
turn causes R1 to be finished earlier, R4 and R5 will be
similarly moved forward in time. The “think” time be-
tween the completion of a request and the issuance of its
dependent requests can be adjusted to speed up or slow
down the workload.

In short, we consider a request to be dependent on
the last completed request, and we issue a request only
after its parent request has completed. The results in this
paper are based on an issue window of 64 requests. A
request within this window is issued when the request
on which it is dependent completes, and the think time
has elapsed. Inferring the dependencies based on the last
completed request is the best we can do given the block
level traces we have. The interested reader is referred
to [18] for alternatives in special cases where the work-
loads can be described and replayed at a more logical
level. For multiprocessing workloads, the dependence
relationship should be maintained on a per process ba-
sis but unfortunately process information is typically not
available in I/O traces. To try to account for such work-
loads, multiple traces can be merged to form a workload
with several independent streams of I/O, each obeying
the dependence relationship described above.

4.2 Workloads and Traces

The traces analyzed in this study were collected from
both server and PC systems running real user workloads
on three different platforms – Windows NT, IBM AIX
and HP-UX. All of them were collected downstream of
the database buffer pool and the file system cache, i.e.,
these are physical address traces, and all hits to the I/O
caches in the host system have been removed. The PC
traces were collected with VTrace [30], a software trac-
ing tool for Intel x86 PCs running Windows NT/2000.
In this study, we are primarily interested in the disk
activities, which are collected by VTrace through the
use of device filters. We have verified the disk activ-
ity collected by VTrace with the raw traffic observed by
a bus (SCSI) analyzer. Both the IBM AIX and HP-UX
traces were collected using kernel-level trace facilities
built into the respective operating systems. Most of the
traces were gathered over periods of several months but
to keep the simulation time manageable, we use only the
first 45 days of the traces of which the first 20 days are
used to warm up the simulator.

The PC traces were collected on the primary com-
puter systems of a wide-variety of users, including engi-
neers, graduate students, a secretary and several people
in senior managerial positions. By having a wide vari-
ety of users in our sample, we believe that our traces

5



System Configuration Trace Characteristics 
Design-

ation User Type 
System Memory 

(MB) File Systems       Storage 
Usedi (GB) 

# 
Disks Duration Footprintii 

(GB) 
Traffic 
(GB) 

Requests 
(106) 

R/W 
Ratio 

P1 Engineer 333MHz P6 64 1GB FATi 5GB NTFSi 6 1 45 days (7/26/99 - 9/8/99) 0.945 17.1 1.88 2.51 

P2 Engineer 200MHz P6 64 1.2, 2.4, 1.2GB FAT 4.8 2 39 days (7/26/99 - 9/2/99) 0.509 9.45 1.15 1.37 

P3 Engineer 450MHz P6 128 4, 2GB NTFS 6 1 45 days (7/26/99 - 9/8/99) 0.708 5.01 0.679 0.429 

P4 Engineer 450MHz P6 128 3, 3GB NTFS 6 1 29 days (7/27/99 - 8/24/99) 4.72 26.6 2.56 0.606 

P5 Engineer 450MHz P6 128 3.9, 2.1GB NTFS 6 1 45 days (7/26/99 - 9/8/99) 2.66 31.5 4.04 0.338 

P6 Manager 166MHz P6 128 3, 2GB NTFS 5 2 45 days (7/23/99 - 9/5/99) 0.513 2.43 0.324 0.147 

P7 Engineer 266MHz P6 192 4GB NTFS 4 1 45 days (7/26/99 - 9/8/99) 1.84 20.1 2.27 0.288 

P8 Secretary 300MHz P5 64 1, 3GB NTFS 4 1 45 days (7/27/99 - 9/9/99) 0.519 9.52 1.15 1.23 

P9 Engineer 166MHz P5 80 1.5, 1.5GB NTFS 3 2 32 days (7/23/99 - 8/23/99) 0.848 9.93 1.42 0.925 

P10 CTO 266MHz P6 96 4.2GB NTFS 4.2 1 45 days (1/20/00 – 3/4/00) 2.58 16.3 1.75 0.937 

P11 Director 350MHz P6 64 2, 2GB NTFS 4 1 45 days (8/25/99 – 10/8/99) 0.73 11.4 1.58 0.831 

P12 Director 400MHz P6 128 2, 4GB NTFS 6 1 45 days (9/10/99 – 10/24/99) 1.36 6.2 0.514 0.758 

P13 Grad. Student 200MHz P6 128 1, 1, 2GB NTFS 4 2 45 days (10/22/99 – 12/5/99) 0.442 6.62 1.13 0.566 

P14 Grad. Student 450MHz P6 128 2, 2, 2, 2GB NTFS 8 3 45 days (8/30/99 – 10/13/99) 3.92 22.3 2.9 0.481 

P-Avg. - 318MHz 109 - 5.07 1.43 41.2 days 1.59 13.9 1.67 0.816 

 

(a) Personal Systems.

 
System Configuration Trace Characteristics 

Design-
ation 

Primary 
Function System Memory 

(MB) File Systems Storage 
Usedi (GB) 

# 
Disks Duration Footprintii 

(GB) 
Traffic 
(GB) 

Requests 
(106) 

R/W 
Ratio 

FS1 File Server 
(NFSiii) 

HP 9000/720 
(50MHz) 32 3 BSDiii FFSiii (3 GB) 3 3 45 days (4/25/92 - 6/8/92) 1.39 63 9.78 0.718 

TS1 Time-Sharing 
System 

HP 9000/877 
(64MHz) 96 12 BSD FFS (10.4GB) 10.4 8 45 days (4/18/92 - 6/1/92) 4.75 123 20 0.794 

DS1 
Database 

Server 
(ERPiii) 

IBM RS/6000 
R30 SMPiii   

(4X 75MHz) 
768 

8 AIX JFS (9GB), 3 paging 
(1.4GB), 30 raw database 

partitions (42GB) 
52.4 13 7 days (8/13/96 – 8/19/96) 6.52 37.7 6.64 0.607 

S-Avg. - - 299 - 18.5 8 32.3 days 4.22 74.6 12.1 0.706 

 
                                                 
i Sum of all the file systems and allocated volumes. 
ii Amount of data referenced at least once 
iii AFS – Andrew Filesystem, AIX – Advanced Interactive Executive (IBM’s flavor of UNIX), BSD – Berkeley System Development Unix, ERP – Enterprise Resource Planning, FFS – Fast 
Filesystem, JFS – Journal Filesystem, NFS – Network Filesystem, NTFS – NT Filesystem, SMP – Symmetric Multiprocessor 

(b) Servers.

Table 1: Trace Description.

are illustrative of the PC workloads in many offices,
especially those involved in research and development.
Note, however, that the traces should not be taken as
typical or representative of any other system or environ-
ment. Despite this disclaimer, the fact that many of their
characteristics correspond to those obtained previously
(see [17]), albeit in somewhat different environments,
suggest that our findings are to a large extent generaliz-
able. Table 1(a) summarizes the characteristics of these
traces. We denote the PC traces as P1, P2, ..., P14 and
the arithmetic mean of their results as P-Avg. As de-
tailed in [17], the PC traces contain only I/Os that occur
when the user is actively interacting with the system.
Specifically, we consider the system to be idle from ten
minutes after the last user keyboard or mouse activity
until the next such user action, and we assume that there

is no I/O activity during the idle periods. We believe
that this is a reasonable approximation in the PC en-
vironment, although it is possible that we are ignoring
some level of activity due to periodic system tasks such
as daemons. This latter type of activity should have a
negligible effect on the I/O load, and is not likely to be
noticed by the user.

The servers traced include a file server, a time-
sharing system and a database server. The character-
istics of these traces are summarized in Table 1(b).
Throughout this paper, we use the term S-Avg. to de-
note the arithmetic mean of the results for the server
workloads. The file server trace (FS1) was taken off a
file server for nine clients at the University of California,
Berkeley. This system was primarily used for compila-
tion and editing. It is referred to as Snake in [44]. The

6



 

File System/Database Cache 

I/O Trace 

ALIS Redirector 

Issue Engine 

Cache 

Volume Manager 

… 

 Resource-Poor Resource-Rich 

Read 
Caching 

8MB per disk, Least-Recently-Used 
(LRU) replacement. 

1% of storage used, Least-
Recently-Used (LRU) replacement. 

Prefetching 

32KB read-ahead. 
 

Preemptible read-ahead up to 
maximum prefetch of 128KB, read 
any free blocks. 

Conditional sequential prefetch, 
16KB segments for PC workloads, 
8KB segments for server 
workloads, prefetch trigger of 1, 
prefetch factor of 2. 
 

Preemptible read-ahead up to 
maximum prefetch of 128KB, read 
any free blocks, 8MB per disk 
opportunistic prefetch buffer. 

Write 
Buffering 

4MB per disk, lowMark = 0.2, 
highMark = 0.8, Least-Recently-
Written (LRW) replacement, 30s 
age limit. 

0.1% of storage used, lowMark = 
0.2, highMark = 0.8, Least-
Recently-Written (LRW) 
replacement, 1 hour age limit. 

Request 
Scheduling 

Shortest Access Time First with 
age factor = 0.01 (ASATF(0.01)), 
queue depth of 8. 

Shortest Access Time First with 
age factor = 0.01 (ASATF(0.01)), 
queue depth of 8. 

Striping Stripe unit of 2MB. Stripe unit of 2MB. 

 

Figure 4: Block Diagram of Simulation Model Showing the Optimized Parameters for the Underlying Storage System.

trace denoted TS1 was gathered on a time-sharing sys-
tem at an industrial research laboratory. It was mainly
used for news, mail, text editing, simulation and com-
pilation. It is referred to as Cello in [44]. The database
server trace (DS1) was collected at one of the largest
health insurers nationwide. The system traced was run-
ning an Enterprise Resource Planning (ERP) application
on top of a commercial database system. This trace is
only seven days long and the first three days are used
to warm up the simulator. More details about the traces
and how they were collected can be found in [17].

In addition to these base workloads, we scale up the
traces to obtain workloads that are more intense. Results
reported in [17] show that for the PC workloads, the pro-
cessor utilization (in %) during the intervals between the
issuance of an I/O and the last I/O completion is related
to the length of the interval by a function of the form
f(x) = 1/(ax + b) where a = 0.0857 and b = 0.0105.
To model a processor that is n times faster than was in
the traced system, we would scale only the system pro-
cessing time by n, leaving the user portion of the think
time unchanged. Specifically, we would replace an in-
terval of length x by one of length x[1−f(x)+f(x)/n].
In this paper, we run each workload preserving the orig-
inal think time. For the PC workloads, we also evaluate
what happens in the limit when systems are infinitely
fast, i.e., we replace an interval of length x by one of
x[1 − f(x)]. We denote these sped-up PC workloads
as P1s, P2s, ..., P14s and the arithmetic mean of their
results as Ps-Avg.

We also merge ten of the longest PC traces to obtain
a workload with ten independent streams of I/O, each of
which obeys the dependence relationship discussed ear-

lier. We refer to this merged trace as Pm. The volume of
I/O traffic in this merged PC workload is similar to that
of a server supporting multiple PCs. Its locality char-
acteristics are, however, different because there is no
sharing of data among the different users so that if two
users are both using the same application, they end up
using different copies of the application. Pm might be
construed as the workload of a system on which multi-
ple independent PC workloads are consolidated. For the
server workloads, we merge the FS1 and TS1 traces to
obtain Sm. In this paper, we often use the term PC work-
loads to refer collectively to the base PC workloads, the
sped-up PC workloads and the merged PC workload.
The term server workloads likewise refers to the base
server workloads and the merged server workload. Note
that neither speeding up the system processing time nor
merging multiple traces are perfect methods for scaling
up the workloads but we believe that they are more real-
istic than simply scaling the I/O inter-arrival time, as is
commonly done.

4.3 Simulation Model

The major components of our simulation model are
presented in Figure 4. Our simulator is written in C++
using the CSIM simulation library [37]. It is based upon
a detailed model of the mechanical components of the
IBM Ultrastar 73LZX [24] family of disks that is used
in disk development and that has been validated against
test measurements obtained on several batches of the
disk. More details about our simulator are available
in [18]. The IBM Ultrastar 73LZX [24] family of 10K
RPM disks consists of four members with storage ca-

7



pacities of 9.1 GB, 18.3 GB, 36.7 GB and 73.4 GB. The
average seek time is specified to be 4.9 ms and the data
rate varies from 29.2 to 57.0 MB/s. When we evaluate
the effectiveness of ALIS as disk technology improves,
we scale the characteristics of the disk according to tech-
nology trends which we derive by analyzing the specifi-
cations of disks introduced over the last ten years [18].

A wide range of techniques such as caching,
prefetching, write buffering, request scheduling and
striping have been invented for optimizing I/O perfor-
mance. Each of these optimizations can be configured
with different policies and parameters, resulting in a
huge design space for the storage system. In our ear-
lier work [18], we systematically explore the entire de-
sign space to establish the effectiveness of the various
techniques for real workloads, and to determine the best
practices for each technique. Here, we leverage our pre-
vious results and use the optimal settings we derived to
set up the baseline storage system for evaluating the ef-
fectiveness of ALIS. As in [18], we consider two reason-
able configurations the parameters of which are summa-
rized in Figure 4.

As its name suggests, the resource-rich configura-
tion represents an environment in which resources in the
storage system are plentiful, as may be the case when
there is a large outboard controller. In the resource-rich
environment, the storage system has a very large cache
that is sized at 1% of the storage used. It performs se-
quential prefetch into the cache by conditioning on the
length of the sequential pattern already observed. In
addition, the disks perform opportunistic prefetch (pre-
emptible read-ahead and read any free blocks). The
resource-poor environment mimics a situation where the
storage system consists of only disks and low-end disk
adaptors. Each disk has an 8 MB cache and performs
sequential read-ahead and opportunistic prefetch. The
parameter settings for these techniques are in Figure 4
and are the optimal values found in [18]. The interested
reader is referred to [18] for more details about these
configurations.

For workloads with multiple disk volumes, we con-
catenate the volumes to create a single address space.
Each workload is fitted to the smallest disk from the
IBM Ultrastar 73LZX [24] family that is bigger than
the total volume size, leaving a headroom of 20% for
the reorganized area. When we scale the capacity of
the disk and require more than one disk to hold the data,
we stripe the data using the previously determined stripe
size of 2 MB [18]. We do not simulate RAID error cor-
rection since it is for the most part orthogonal to ALIS.

Later in Section 6.4, we will show that infrequent
(daily to weekly) block reorganization is sufficient to
realize most of the benefit of ALIS. Given our prior re-
sult that there is a lot of time during which the storage

system is relatively idle [17], we make the simplifying
assumption in this study that the block reorganization
can be performed instantaneously. In [22], we validate
this assumption by showing that the process of physi-
cally copying blocks into the reorganized region takes
up only a small fraction of the idle time available be-
tween reorganizations.

4.4 Performance Metrics

I/O performance can be measured at different levels
in the storage hierarchy. In order to fully quantify the
effect of ALIS, we measure performance from when re-
quests are issued to the storage system, before they are
potentially broken up by the ALIS redirector or the vol-
ume manager for requests that span multiple disks. The
two important metrics in I/O performance are response
time and throughput. Response time includes both the
time needed to service the request and the time spent
waiting or queueing for service. Throughput is the max-
imum number of I/Os that can be handled per second
by the system. Quantifying the throughput is generally
difficult with trace-driven simulation because the work-
load, as recorded in the trace, is constant. We can try to
scale or speed up the workload to determine the maxi-
mum workload the system can sustain but this is difficult
to achieve in a realistic manner.

In this study, we estimate the throughput by consid-
ering the amount of critical resource each I/O consumes.
Specifically, we look at the average amount of time the
disk arm is busy per request, deeming the disk arm to
be busy both when it is being moved into position to
service a request and when it has to be kept in position
to transfer data. We refer to this metric as the service
time. Throughput can be approximated by taking the re-
ciprocal of the average service time. One thing to bear
in mind is that there are opportunistic techniques, espe-
cially for reads (e.g., preemptible read-ahead), that can
be used to improve performance. The service time does
not include the otherwise idle time that the opportunis-
tic techniques exploit. Thus the service time of a lightly
loaded disk will tend to be optimistic of its maximum
throughput.

Recall that the main benefit of ALIS is to transform
the request stream so as to increase the effectiveness
of sequential prefetch performed by the storage system
downstream. To gain insight into this effect, we also
examine the read miss ratio of the cache (and prefetch
buffer) in the storage system. The read miss ratio is de-
fined as the fraction of read requests that are not satisfied
by the cache (or prefetch buffer), or in other words, the
fraction of requests that requires physical I/O. It should
take on a lower value when sequential prefetch is more
effective.

8



Resource-Poor Resource-Rich 

 Average Read 
Response Time 

(ms) 

Average Read 
Service Time 

(ms) 

Read Miss 
Ratio 

Average Write 
Service Time 

(ms) 

Average Read 
Response Time 

(ms) 

Average Read 
Service Time 

(ms) 

Read Miss 
Ratio 

Average Write 
Service Time 

(ms) 

P-Avg. 3.34 2.22 0.431 1.41 2.66 1.79 0.313 0.700 

S-Avg. 2.67 1.91 0.349 1.32 1.20 0.886 0.167 0.535 

Ps-Avg. 3.83 2.18 0.450 1.05 3.15 1.75 0.319 0.681 

Pm 3.14 2.23 0.447 1.30 1.65 1.24 0.226 0.474 

Sm 3.37 2.67 0.468 1.57 1.38 1.10 0.204 0.855 

 
 

Table 2: Baseline Performance Figures.

Note that we tend to care more about read response
time and less about write response time because write
latency can often be effectively hidden by write buffer-
ing [18]. Write buffering can also dramatically improve
write throughput by eliminating repeated writes [18],
and because workloads tend to be bursty [17], the phys-
ical writes can generally be deferred until the system
is relatively idle. Moreover, despite predictions to the
contrary (e.g., [38]), both measurements of real sys-
tems (e.g., [2]) and simulation studies (e.g., [7, 18, 21])
show that large caches, while effective, have not elim-
inated read traffic. For instance, having a very large
cache sized at 1% of the storage used only reduces the
read-to-write ratio from about 0.82 to 0.57 for our PC
workloads, and from about 0.62 to 0.43 for our server
workloads. Therefore in this paper, we focus primar-
ily on the read response time, read service time, read
miss ratio, and to a lesser extent, on the write ser-
vice time. In particular, we look at how these metrics
are improved with ALIS where improvement is defined
as (valueold − valuenew)/valueold if a smaller value
is better and (valuenew − valueold)/valueold other-
wise. We use the performance figures obtained previ-
ously in [18] as the baseline numbers. These are sum-
marized in Table 2.

5 Clustering Strategies

In this section, we present in detail various tech-
niques for deciding which blocks to reorganize and how
to lay these blocks out relative to one another. We refer
to these techniques collectively as clustering strategies.
We will use empirical performance data to motivate the
various strategies and to substantiate our design and pa-
rameter choices. General performance analysis of the
system will appear in the next section.

5.1 Heat Clustering

In our earlier work, we observed that only a rela-
tively small fraction of the data stored on disk is in ac-

tive use [17]. The rest of the data are simply there, pre-
sumably because disk storage is the first stable or non-
volatile level in the memory hierarchy, and the only sta-
ble level that offers online convenience. Given the ex-
ponential increase in disk capacity, the tendency is to be
less careful about how disk space is used so that data
will be increasingly stored on disk just in case they will
be needed. Figure 5 depicts the typical situation in a
storage system. Each square in the figure represents a
block of data and the darkness of the square reflects the
frequency of access to that block of data. The squares
are arranged in the sequence of the corresponding block
addresses, from left to right and top to bottom. There
are some hot or frequently accessed blocks and these
are distributed throughout the storage system. Access-
ing such active data requires the disk arm to seek across
a lot of inactive or cold data, which is clearly not the
most efficient arrangement.

This observation suggests that we should try to deter-
mine the active blocks and cluster them together so that
they can be accessed more efficiently with less physi-
cal movement. As discussed in Section 2, over the last
two decades, there have been several attempts to im-
prove spatial locality in storage systems by clustering
together hot data [1, 3, 43, 48, 49, 53, 54]. We refer
to these schemes collectively as heat clustering. The
basic approach is to count the number of requests di-
rected to each unit of reorganization over a period of
time, and to use the counts to identify the frequently
accessed data and to rearrange them using a variety of
block layouts. For the most part however, the previously
proposed block layouts fail to effectively account for the
fact that real workloads have predictable (and often se-
quential) access patterns, and that there is a dramatic
and increasing difference between random and sequen-
tial disk performance.

5.1.1 Organ Pipe and Heat Placement

For instance, previous work relied almost exclu-
sively on the organ pipe block layout [27] in which the
most frequently accessed data is placed at the center

9



Hot

Cold

Figure 5: Typical Unoptimized Block Layout.

of the reorganized area, the next most frequently ac-
cessed data is placed on either side of the center, and
the process continues until the least-accessed data has
been placed at the edges of the reorganized region. If
we visualize the block access frequencies in the result-
ing arrangement, we get an image of organ pipes, hence
the name.

Considering the disk as a 1-dimensional space, the
organ pipe heuristic minimizes disk head movement un-
der the conditions that data is demand fetched, and that
the references are derived from an independent random
process with time invariant distribution and are handled
on a first-come-first served basis [27]. However, disks
are really 2-dimensional in nature, and the cost of mov-
ing the head is not an increasing function of the distance
moved. A small backward movement, for example, re-
quires almost an entire disk revolution. Furthermore,
storage systems today perform aggressive prefetch and
request scheduling, and in practice data references are
not independent nor are they drawn from a fixed dis-
tribution. See for instance [20, 21, 45, 47] where real
workloads are shown to clearly generate dependent ref-
erences. In other words, the organ pipe arrangement is
not optimal in practice.

In Figures 6(a) and A-1(a), we present the perfor-
mance effect of heat clustering with the organ pipe lay-
out on our various workloads. These figures assume
that reorganization is performed daily and that the re-
organized area is 10% the size of the total volume and
is located at a byte offset 30% into the volume with
the volume laid out inwards from the outer edge of the
disk (sensitivity to these parameters is evaluated in Sec-
tion 6). Observe that the organ pipe heuristic performs
very poorly. As can be seen by the degradation in read
miss ratio in Figures A-2(a) and A-3(a), the organ pipe
block layout ends up splitting related data, thereby ren-
dering sequential prefetch ineffective and causing some
requests to require multiple I/Os. This is especially the
case when the unit of reorganization is small, as was
recommended previously (e.g., [1]) in order to cluster
hot data as closely as possible. With larger reorganiza-
tion units, the performance degradation is reduced be-
cause spatial locality is preserved within the reorganiza-
tion unit. In the limit, the organ pipe layout converges

to the original block layout and achieves performance
parity with the unreorganized case.

To prevent the disk arm from having to seek back and
forth across the center of the organ pipe arrangement, an
alternative is to arrange the hot reorganization units in
decreasing order of their heat or frequency counts. In
such an arrangement which we call the heat layout, the
most frequently accessed reorganization unit is placed
first, followed in order by the next most frequently ac-
cessed unit, and so on. As shown in Figure A-6, the heat
layout, while better than the organ pipe layout, still de-
grades performance substantially for all but the largest
reorganization units.

5.1.2 Link Closure Placement

An early study did identify the problem that when
sequentially accessed data is split on either side of the
organ pipe arrangement, the disk arm has to seek back
and forth across the disk resulting in decreased perfor-
mance [43]. A technique of maintaining forward and
backward pointers from each reorganization unit to the
reorganization unit most likely to precede and succeed
it was proposed. This scheme is similar to the heat lay-
out except that when a reorganization unit is placed, the
link closure formed by following the forward and back-
ward pointers is placed at the same time. As shown in
Figures 6(b) and A-1(b), this scheme, though better than
the pure organ pipe heuristic, still suffers from the same
problems because it is not accurate enough at identify-
ing data that tend to be accessed in sequence.

5.1.3 Packed Extents and Sequential Layout

Since only a portion of the stored data is in active
use, clustering the hot data should yield a substantial
improvement in performance. The key to realizing this
potential improvement is to recognize that there is some
existing spatial locality in the reference stream, espe-
cially since the original block layout is the result of
many optimizations (see Section 2). When clustering
the hot data, we should therefore attempt to preserve the
original block sequence, particularly when there is ag-
gressive read-ahead.

10



-150

-100

-50

0
1 10 100 1000 10000

Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(a) Organ Pipe.

-50

-40

-30

-20

-10

0

10

1 10 100 1000 10000
Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(b) Link Closure.

-10

0

10

20

30

40

1.E+01 1.E+03 1.E+05 1.E+07
Extent Size (KB)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(c) Packed Extents.

-10

0

10

20

30

40

1 10 100 1000 10000
Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(d) Sequential.

Figure 6: Effectiveness of Various Heat Clustering Block Layouts at Improving Average Read Response Time
(Resource-Rich).

With this insight, we develop a block layout strategy
called packed extents. As before, we keep a count of
the number of requests directed to each unit of reorga-
nization over a period of time. During reorganization,
we first identify the n ”reorganization units” with the
highest frequency count, where n is the number of re-
organization units that can fit in the reorganized area.
These are the target units, i.e., the units that should be
reorganized. Next, the storage space is divided into ex-
tents each the size of many reorganization units. These
extents are sorted based on the highest access frequency
of any reorganization unit within each extent. If there
is a tie, the next highest access frequency is compared.
Finally, the target reorganization units are arranged in
the reorganized region in ascending order of their extent
rank in the sorted extent list, and their offset within the
extent. The packed extents layout essentially packs hot
data together while preserving the sequence of the data
within each extent, hence its name.

The main effect of the packed extents layout is to
reduce seek distance without decreasing prefetch effec-
tiveness. By moving data that are seldom read out of
the way, it actually also improves the effectiveness of
sequential prefetch, as can be seen by the reduction in
the read miss ratio in Figures A-2(c) and A-3(c). In Fig-
ures 6(c) and A-1(c), we present the corresponding im-
provement in read response time. These figures assume
a 4 KB reorganization unit. Observe that the packed
extents layout performs very well for large extents, im-
proving average read response time in the resource-rich
environment by up to 12% and 31% for the PC and
server workloads respectively. That the performance in-
creases with extent sizes up to the gigabyte range im-

plies that for laying out the hot reorganization units, pre-
serving existing spatial locality is more important than
concentrating the heat.

This observation suggests that simply arranging the
target reorganization units in increasing order of their
original block address should work well. Such a sequen-
tial layout is the special case of packed extents with a
single extent. While straightforward, the sequential lay-
out tends to be sensitive to the original block layout, es-
pecially to user/administrator actions such as the order
in which workloads are migrated or loaded onto the stor-
age system. But for our workloads, the sequential lay-
out works well. Observe from Figures 6(d) and A-1(d)
that with a reorganization unit of 4 KB, the average read
response time is improved by up to 29% in the resource-
poor environment and 31% in the resource-rich environ-
ment. We will therefore use the sequential layout for
heat clustering in the rest of this paper. It turns out that
the sequential layout was considered in [1] where it was
reported to perform worse than the organ pipe layout.
The reason was that the earlier work did not take into
account the aggressive caching and prefetching common
today, and was focused primarily on reducing the seek
time.

To increase stability in the effectiveness of heat clus-
tering, the reference counts can be aged such that

Countnew = αCountcurrent + (1 − α)Countold (1)

where Countnew is the reference count used to drive
the reorganization, Countcurrent is the reference count
collected since the last reorganization and Countold is
the previous value of Countnew. The parameter α con-
trols the relative weight placed on the current reference

11



0

10

20

30

40

0 0.2 0.4 0.6 0.8 1
Age Factor, �  

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

Figure 7: Sensitivity of Heat Clustering to Age Factor,
α (Resource-Rich).

counts and those obtained in the past. For example, with
an α value of 1, only the most recent reference counts
are considered. In Figures 7 and A-7, we study how
sensitive performance with the sequential layout is to
the value of the parameter α. The PC workloads tend to
perform slightly better for smaller values of α, meaning
when more history is taken into account. The opposite
is true, however, of the server workloads on average but
both effects are small. As in [43], all the results in this
paper assume a value of 0.8 for α unless otherwise indi-
cated.

5.2 Run Clustering

Our analysis of the various workloads also reveals
that the reference stream contains long read sequences
that are often repeated. The presence of such repeated
read sequences or runs should not be surprising since
computers are frequently asked to perform the same
tasks over and over again. For instance, PC users tend
to use a core set of applications, and each time the same
application is launched, the same set of files [55] and
blocks [25] are read. The existence of runs suggest a
clustering strategy that seeks to identify these runs so as
to lay them out sequentially (in the order they are refer-
enced) in the reorganized area. We refer to this strategy
as run clustering.

5.2.1 Representing Access Patterns

The reference stream contains a wealth of informa-
tion. The first step in run clustering is to extract relevant
details from the reference stream and to represent the
extracted information compactly and in a manner that
facilitates analysis. This is accomplished by building an
access graph where each node or vertex represents a unit

of reorganization and the weight of an edge from vertex
i to vertex j represents the desirability for reorganiza-
tion unit j to be located close to and after reorganization
unit i. For example, a straightforward method for build-
ing the access graph is to set the weight of edge i→j
equal to the number of times reorganization unit j is ref-
erenced immediately after unit i. But this method repre-
sents only pair-wise patterns. Moreover, at the storage
level, any repeated pattern is likely to be interspersed by
other requests because the reference stream is the aggre-
gation of many independent streams of I/O, especially
in multi-tasking and multi-user systems. Furthermore,
the I/Os may not arrive at the storage system in the or-
der they were issued because of request scheduling or
prefetch. Therefore, the access graph should represent
not only sequences that are exactly repeated but also
those that are largely or pseudo repeated.

Such an access graph can be constructed by setting
the weight of edge i→j equal to the number of times re-
organization unit j is referenced shortly after accessing
unit i, or more specifically the number of times unit j is
referenced within some number of references, τ , of ac-
cessing unit i [31]. We refer to τ as the context size. As
an example, Figure 8(a) illustrates the graph that repre-
sents a sequence of two requests where the first request
is for reorganization unit R and the second is for unit U .
In Figure 8(b), we show the graph when an additional
request for unit N is received. The figures assume a
context size of two. Therefore, edges are added from
both unit R and unit U to unit N . Figure 8(c) further
illustrates the graph after an additional four requests for
data are received in the sequence R, X , U , N . The re-
sulting graph has three edges of weight two among the
other edges of weight one. These edges of higher weight
highlight the largely repeated sequence R, U , N . This
example shows that by choosing an appropriate value
for the context size or τ , we can effectively avoid hav-
ing intermingled references obscure the runs. We will
investigate good values for τ for our workloads later.

An undesirable consequence of having the edge
weight represent the number of times a reorganization
unit is referenced within τ references of accessing an-
other unit is that we lose information about the exact
sequence in which the references occur. For instance,
Figure 9(a) depicts the graph for the reference string R,
U , N , R, U , N . Observe that reorganization unit R
is equally connected to unit U and unit N . The edge
weights indicate that units U and N should be laid out
after unit R but they do not tell the order in which these
two units should be arranged. We could potentially fig-
ure out the order based on the edge of weight two from
unit U to unit N . But to make it easier to find repeated
sequences, the actual sequence of reference can be more
accurately represented by employing a graduated edge

12



R U

1

(a) Reference String: R, U .

R U N

1 1

1

(b) Reference String: R, U , N .

R U N

2 2

1

1

1

X

1

1
1

1

(c) Reference String: R, U , N , R, X , U , N .

Figure 8: Access Graph with a Context Size of Two.

weight scheme where the weight of edge i→j is a de-
creasing function of the number of references between
when those two data units are referenced. For instance,
suppose Xi denotes the reorganization unit referenced
by the i-th read. For each Xn, we add an edge of weight
τ − j + 1 from Xn−j to Xn, where j ≤ τ . In the exam-
ple of Figure 8(b), we would add an edge of weight one
from unit R to unit N and an edge of weight two from
unit U to unit N . Figure 9(b) shows that with such a
graduated edge weight scheme, we can readily tell that
unit R should be immediately followed by unit U when
the reference string is R, U , N , R, U , N .

More generally, we can use the edge weight to carry
two pieces of information – the number of times a re-
organization unit is accessed within τ references of an-
other, and the distance or number of intermediate refer-
ences between when these two units are accessed. Sup-
pose f is a parameter that determines the fraction of
edge weight devoted to representing the distance infor-
mation. Then for each Xn, we add an edge of weight
1 − f + f ∗ τ−j+1

τ
from Xn−j to Xn, where j ≤ τ .

We experimented with varying the weighting of these
two pieces of information and found that f = 1 tends to

R U N

2 2

2

1 1

1

(a) Uniform Edge Weight.

R U N

4 4

2

1 1

2

(b) Graduated Edge Weight.

Figure 9: The Effect of Graduated Edge Weight (Refer-
ence String = R,U,N,R,U,N, Context Size = 2).

work better although the difference is small (Figure A-
9). The effect of varying f is small because our run
discovery algorithm (to be discussed later) is able to de-
termine the correct reference sequence most of the time,
even without the graduated edge weights.

In Figures 10(a) and A-8(a), we analyze the effect of
different context sizes on our various workloads. The
context size should generally be large enough to allow
pseudo repeated reference patterns to be effectively dis-
tinguished. For our workloads, performance clearly in-
creases with the context size and tends to stabilize be-
yond about eight. Unless otherwise indicated, all the
results in this paper assume a context size of nine. Note
that the reorganization units can be of a fixed size but
the results presented in Figure A-10 suggest that this is
not very effective. In ALIS, each reorganization unit
represents the data referenced in a request. By using
such variable-sized reorganization units, we are able to
achieve much better performance since the likelihood
for a request to be split into multiple I/Os is reduced.
Prefetch effectiveness is also enhanced because any dis-
covered sequence is likely to contain only the data that
is actually referenced. In addition, if a data block oc-
curs in different request units, the same block could ap-
pear in multiple runs so that there are multiple copies of
the block in the reorganized area, and this could help to
distinguish different access sequences that include the
same block.

13



-30

-20

-10

0

10

20

30

40

50

60

0 4 8 12 16
Context Size (# Requests)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

Resource-Rich

(a) Context Size, τ .

-10

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1
Max. Graph Size (% Storage Used)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

Resource-Rich

(b) Graph Size.

-20

-10

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1
Age Factor, 

�
 

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

(c) Age Factor, β.

-20

-10

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1
Edge Weight Threshold

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

(d) Edge Threshold.

Figure 10: Sensitivity of Run Clustering to Various Parameters (Resource-Rich).

Various pruning algorithms can be used to limit the
size of the graph. We model the graph size by the num-
ber of vertices and edges in the graph. Each vertex re-
quires the following fields - vertex ID (6 bytes), a pair of
adjacency list pointers (2x4 bytes), pointer to next ver-
tex (4 bytes), status byte (1 byte). Note that the graph
is directed so we need a pair of adjacency lists for each
vertex to be able to quickly determine both the incom-
ing and the outgoing edges. Accordingly, there are two
adjacency list entries (an outgoing and an incoming) for
each edge. Each of these entries consists of the follow-
ing fields – pointer to vertex (4 bytes), weight (2 bytes),
pointer to next edge (4 bytes). Therefore each vertex in
the graph requires 19 bytes of memory while each edge
occupies 20 bytes. Whenever the graph size exceeds a
predetermined maximum, we remove the vertices and
edges with weight below some threshold which we set
at the respective 10th percentile. In other words, we re-
move vertices weighing less than 90% of all the vertices
and edges with weight in aren’t you saying the same
thing here in 2 different ways? the bottom 10% of all the
edges. The weight of a vertex is defined as the weight
of its heaviest edge. This simple bottom pruning pol-
icy adds no additional memory overhead and preserves
the relative connectedness of the vertices so that the al-
gorithm for discovering the runs is not confused when
it tries to determine how to sequence the reorganization
units.

Figures 10(b) and A-8(b) show the performance im-
provement that can be achieved as a function of the size
of the graph. Observe from the figures that a graph
smaller than 0.5% of the storage used is sufficient to
realize most of the benefit of run clustering. This is
the default graph size we use for the simulations re-

ported in this paper. Memory of this size should be
available when the storage system is relatively idle be-
cause caches larger than this are needed to effectively
hold the working set [18]. A multiple-pass run clus-
tering algorithm can be used to further reduce memory
requirements. Note that high-end storage systems today
host many terabytes of storage but the storage is used for
different workloads and is partitioned into logical sub-
systems or volumes. These volumes can be individually
reorganized so that the peak memory requirement for
run clustering is greatly reduced from 0.5% of the total
storage in use.

An idea for speeding up the graph build process
and reducing the graph size is to pre-filter the reference
stream to remove requests that do not occur frequently.
The basic idea is to keep reference counts for each reor-
ganization unit as in the case of heat clustering. In build-
ing the access graph, we ignore all the requests whose
reference count falls below some threshold. Our exper-
iments show that pre-filtering tends to reduce the per-
formance gain (Figure A-11) because it is, for the most
part, not as accurate as the graph pruning process in re-
moving uninteresting information. But in cases where
we are constrained by the graph build time, it could be a
worthwhile option to pursue.

As in heat clustering, we age the edge weights to
provide some continuity and avoid any dramatic fluctu-
ations in performance. Specifically, we set

Weightnew =

βWeightcurrent + (1 − β)Weightold (2)

where Weightnew is the edge weight used in the reor-
ganization, Weightcurrent is the edge weight collected

14



since the last reorganization and Weightold is the pre-
vious value of Weightnew. The parameter β controls
the relative weight placed on the current edge weight
and those obtained in the past. In Figures 10(c) and
A-8(c), we study how sensitive run clustering is to the
value of the parameter β. Observe that as in heat cluster-
ing, the workloads are relatively stable over a wide range
of β values with the PC workloads performing better
for smaller values of β, meaning when more history is
taken into account, and the server workloads preferring
larger values of β. Such results reflect that fact that the
PC workloads are less intense and have reference pat-
terns that are repeated less frequently so that it is useful
to look further back into history to find these patterns.
This is especially the case for the merged PC workloads
where the reference pattern of a given user can quickly
become aged out before it is encountered again.

Throughout the design of ALIS, we try to desensi-
tize its performance to the various parameters so that it
is not catastrophic for somebody to “configure the sys-
tem wrongly”. To reflect the likely situation that ALIS
will be used with a default setting, we base our perfor-
mance evaluation on parameter settings that are good
for an entire class of workloads rather than on the best
values for each individual workload. Therefore, the re-
sults in this paper assume a default β value of 0.1 for
all the PC workloads and 0.8 for all the server work-
loads. A useful piece of future work would be to de-
vise ways to set the various parameters dynamically to
adapt to each individual workload. Figures 10(c) and A-
8(c) suggest that the approach of using hill-climbing to
gradually adjust the value of β until a local optimum is
reached should be very effective because the local opti-
mum is also the global optimum. This characteristic is
generally true for the parameters in ALIS.

5.2.2 Mining Access Patterns

The second step in run clustering is to analyze the ac-
cess graph to discover desirable sequences of reorgani-
zation units, which should correspond to the runs in the
reference stream. This process is similar to the graph-
theoretic clustering problem with an important twist that
we are interested in the sequence of the vertices. Let G
be an access graph built as outlined above and R, the
target sequence or run. We use |R| to denote the num-
ber of elements in R and R[i], the ith element in R. By
convention we refer to R[1] as the front of R and R[|R|]
as the back of R. The following outlines the algorithm
that ALIS uses to find R.

1. Find the heaviest edge linking two unmarked ver-
tices.

2. Initialize R to the heaviest edge found and mark
the two vertices.

3. Repeat

4. Find an unmarked vertex u such that
headweight =

∑Min(τ,|R|)
i=1 Weight(u,R[i])

is maximized.

5. Find an unmarked vertex v such that
tailweight =
∑Min(τ,|R|)

i=1 Weight(R[|R| − i + 1], v) is
maximized.

6. if headweight > tailweight

7. Mark u and add it to the front of R.

8. else

9. Mark v and add it to the back of R.

10. Goto Step 3.

In steps 1 and 2, we initialize the target run by the
heaviest edge in the graph. Then in steps 3 to 10, we
inductively grow the target run by adding a vertex at a
time. In each iteration of the loop, we select the ver-
tex that is most strongly connected to either the head or
tail of the run, the head or tail of the run being, respec-
tively, the first and last τ members of the run and τ is
the context size used to build the access graph. Specifi-
cally, in step 4, we find a vertex u such that the weight
of all its edges incident on the vertices in the head is
the highest. Vertex u represents the reorganization unit
that we believe is most likely to immediately precede
the target sequence in the reference stream. Therefore,
if we decide to include it in the target sequence, we will
add it as the first entry (Step 7). Similarly, in step 5, we
find a vertex v that we believe is most likely to imme-
diate follow the target run in the reference stream. The
decision of which vertex u or v to include in the target
run is made greedily. We simply select the unit that is
most likely to immediate precede or follow the target se-
quence, i.e., the vertex that is most strongly connected
to the respective ends of the target sequence (Step 6).
By selecting the next vertex to include in the target run
based on its connectedness to the first or last τ members
of the run, the algorithm is following the way the access
graph is built using a context of τ references to recover
the original reference sequence. The use of a context
of τ references also allows the algorithm to distinguish
between repeated patterns that share some common re-
organization units.

In Figure 11, we step through the operation of the
algorithm on a graph for the reference string A, R, U ,
N , B, A, R, U , N , B. For simplicity, we assume that
we use uniform edge weights and the context size is

15



R U N

2 2

2

1

A B

2 2

2 2

1

1

(a) Discovered Run = φ.

Head/TailR U N

4

1

A B

4 2

2

1

1

(b) Discovered Run = R, U .

Head TailR U N

1

A B

4

1

1

4

(c) Discovered Run = R, U , N .

Head TailR U NA B

4

2

(d) Discovered Run = R, U , N , B.

Head TailR U NA B

(e) Discovered Run = A, R, U , N , B.

Figure 11: The Use of Context in Discovering the Next Vertex in a Run (Reference String = A, R, U , N , B, A, R, U ,
N , B, Context Size = 2).

two. Without loss in generality, suppose we pick the
edge R→U in step 1. Since the target sequence has
only two entries at this point, the head and tail of the
sequence are identical and contain the units R and U
(Figure 11(b)). By considering the edges of both unit R
and unit U , the algorithm easily figures out that A is the
unit most likely to immediate precede the sequence R,
U while N is the unit most likely to immediately follow
it. Note that looking at unit U alone, we would not be
able tell whether N or B is the unit most likely to im-
mediately follow the target sequence. To grow the target
run, we can either add unit A to the front or unit N to
the rear. Based on Step 6, we add unit N to the rear of
the target sequence. Figure 11(c) shows the next itera-
tion in the run discovery process where it becomes clear
that head refers to the first τ members of the target run
while tail refers to the last τ members.

The process of growing the target run continues un-
til headweight and tailweight fall below some edge
weight threshold. The edge weight threshold ensures
that a sequence (e.g., u→head) becomes part of the
run only if it occurs frequently. The threshold is there-
fore conveniently expressed relative to the value that

headweight or tailweight would assume if the se-
quence were to occur only once in every reorganiza-
tion interval. In Figures 10(d) and A-8(d), we investi-
gate the effect of varying the edge weight threshold on
the effectiveness of run clustering. Observe that being
more selective in picking the vertices tends to reduce
performance except at very small threshold values for
the PC workloads. As we have noted earlier, the PC
workloads tend to have less repetition and a lot more
churn in their reference patterns so that it is necessary
to filter out some of the noise and look further into the
past to find repeated patterns. The server workloads are
much easier to handle and respond well to run cluster-
ing even without filtering. The jagged nature of the plot
for the average of the server workloads (S-Avg.) results
from DS1, which being only seven days long is too short
for the edge weights to be smoothed out. In this paper,
we assume a default value of 0.1 for the edge weight
threshold for all the workloads.

A variation of the run discovery algorithm is to ter-
minate the target sequence whenever headweight and
tailweight are much lower than (e.g., less than half)
their respective values in the previous iteration of the

16



loop (steps 3-10). The idea is to prevent the algorithm
from latching onto a run and pursuing it too far, or in
other words, from going too deep down what could be a
local minimum. Another variation of the algorithm is to
add u to the target run only if the heaviest outgoing edge
of u is to one of the vertices in head and to add v to the
run only if the heaviest incoming edge of v is from one
of the vertices in tail. We experimented with both varia-
tions and found that they do not offer consistently better
performance. As we shall see later, the workloads do
change over time so that excessive optimization based
on the past may not be productive.

The whole algorithm is executed repeatedly to find
runs of decreasing desirability. In Figure A-12, we study
whether it makes sense to impose a minimum run length.
Runs that are shorter than the minimum are discarded.
Recall that the context size is chosen to allow pseudo
repeated patterns to be effectively distinguished, so the
context size is intuitively the resolution limit of our run
discovery algorithm. A useful run should therefore be
at least as long as the context size. This turns out to
agree with our experimental results. Note that the run
discovery process is very efficient, requiring only O(e ·
log(e) + v) operations, where e is the number of edges
and v, the number of vertices. The e · log(e) term results
from sorting the edges once to facilitate step 1. Then
each vertex is examined at most once.

Note that after a reorganization unit is added to a run,
the run clustering algorithm marks it to prevent it from
being included again in any run. An interesting vari-
ation of the algorithm is to allow multiple copies of a
reorganization unit to exist either in the same run or in
different runs. This is motivated by the fact that some
data blocks, for instance those corresponding to shared
libraries, may appear in more than one access pattern.
The basic idea in this case is to not mark a vertex after it
has been added to a run. Instead, we remove the edges
that are used to include that particular vertex in the run.
We experimented with this variation of the algorithm but
found that it is not significantly better.

After the runs have been discovered and laid out
in the reorganized area, the traffic redirector decides
whether a given request should be serviced from the
runs. This decision can be made by conditioning on the
context or the recent reference history. Suppose that a
request matches the kth reorganization unit in run R.
We define the context match with R as the percentage of
the previous τ requests that are in R[k − τ ]... R[k − 1].
A request is redirected to R only if the context match
with R exceeds some value. For our workloads, we find
that it is generally better to always try to read from a
run (Figure A-13). In the variation of the run discov-
ery algorithm that allows a reorganization unit to appear

in multiple runs, we use the context match to rank the
matching runs.

5.3 Heat and Run Clustering Combined

In our analysis of run clustering, we observed that
the improvement in read miss ratio significantly exceeds
the improvement in read response and service time, es-
pecially for the PC workloads (e.g., Figures 14 and A-
17). It turns out that this is because many of the refer-
ences cannot be clearly associated with any repeated se-
quence. For instance, Figures 12(b) and A-14(b) show
that for the PC workloads, only about 20–30% of the
disk read requests can be satisfied from the reorganized
area with run clustering. Thus in practice, the disk head
has to move back and forth between the runs in the re-
organized area and the remaining hot spots in the home
area. In other words, although the number of disk reads
is reduced by run clustering, the time taken to service
the remaining reads is lengthened. In the next section,
we will study placing the reorganized region at different
offsets into the volume. Ideally, we would like to locate
the reorganized area near the remaining hot spots but
these are typically distributed across the disk so that no
single good location exists. Besides, figuring out where
these hot spots are a priori is difficult. We believe a
more promising approach is to try to satisfy more of the
requests from the reorganized area. One way of accom-
plishing this is to simply perform heat clustering in ad-
dition to run clustering.

Since the runs are specific sequences of reference
that are likely to be repeated, we assign higher prior-
ity to them. Specifically, on a read, we first attempt to
satisfy the request by finding a matching run. If no such
run exists, we try to read from the heat-clustered region
before falling back to the home area. The reorganized
area is shared between heat and run clustering, with the
runs being allocated first. In this paper, all the results
for heat and run clustering combined assume a default
reorganized area that is 15% of the storage size and that
is located at a byte offset 30% into the volume. We will
investigate the performance sensitivity to these param-
eters in the next section. We also evaluated the idea of
limiting the size of the reorganized area that is devoted
to the runs but found that it did not make a significant
difference (Figure A-15). Sharing the reorganized area
dynamically between heat and run clustering works well
in practice because a workload with many runs is not
likely to gain much from the additional heat clustering
while one with few runs will probably benefit a lot.

In Figures 12(c) and A-14(c), we plot the percent of
disk reads that can be satisfied from the reorganized area
when run clustering is augmented with heat clustering.
Note that the number of disk reads is not constant across

17



0

20

40

60

80

100

0 5 10 15 20
Size of RA (% Storage Used)

Pe
rc

en
t o

f D
isk

 R
ea

ds
 S

at
isi

fe
d 

 in
 R

A

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

(a) Heat Clustering.

0

10

20

30

40

50

60

0 5 10 15 20
Size of RA (% Storage Used)

Pe
rc

en
t o

f D
isk

 R
ea

ds
 S

at
isi

fe
d 

 in
 R

A

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Rich

(b) Run Clustering.

0

20

40

60

80

100

0 5 10 15 20
Size of RA (% Storage Used)

Pe
rc

en
t o

f D
isk

 R
ea

ds
 S

at
isi

fe
d 

 in
 R

A

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(c) Heat and Run Cluster-
ing Combined.

Figure 12: Percent of Disk Reads Satisfied in Reorganized Area (Resource-Rich).

the different clustering algorithms. In particular, when
run clustering is performed in addition to heat cluster-
ing, many of the disk reads that could be satisfied from
the reorganized area are eliminated by the increased ef-
fectiveness of sequential prefetch. Therefore, the “hit”
ratio of the reorganized area with heat and run cluster-
ing combined is somewhat less than with heat clustering
alone. But it is still the case that the majority of disk
reads can be satisfied from the reorganized area.

Such a result suggests that in the combined case, we
can be more selective about what we consider to be part
of a run because even if we are overly selective and
miss some blocks, these blocks are likely to be found
nearby in the adjacent heat-clustered region. We there-
fore reevaluate the edge weight threshold used in the
run discovery algorithm. Figures 13 and A-16 summa-
rize the results. Notice that compared to the case of run
clustering alone (Figures 10(d) and A-8(d)), the plots
are much more stable and the performance is less sensi-
tive to the edge weight threshold, which is a nice prop-
erty. As expected, the performance is better with larger
threshold values when heat clustering is performed in
addition to run clustering. Thus, we increase the default
edge weight threshold for the PC workloads to 0.4 when
heat and run clustering are combined.

6 Performance Analysis

6.1 Clustering Algorithms

In Figures 14 and A-17, we summarize the perfor-
mance improvement achieved by the various clustering
schemes. In general, the PC workloads are improved

-10

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1
Edge Weight Threshold

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

Figure 13: Sensitivity of Heat and Run Clustering Com-
bined to Edge Threshold (Resource-Rich).

less by ALIS than the server workloads. This could
result from file system differences or the fact that the
PC workloads, being more recent than the server work-
loads, have comparatively more caching upstream in the
file system where a lot of the predictable (repeated) ref-
erences are satisfied. Also, access patterns in the PC
workloads tend to be more varied and to repeat much
less frequently than in the server workloads because the
repetitions likely result from the same user repeating the
same task rather than many different users performing
similar tasks. Moreover, PCs mostly run a fixed set of
applications which are installed sequentially and which
use large sequential data sets (e.g., a Microsoft Word
file is very large even for a short document). The in-

18



-10

0

10

20

30

40

50

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-
Av

g.

S-
Av

g.

Ps
-A

vg
.

Pm Sm

Workloads

Heat
Run
Combined

Resource-Rich
-20

-10

0

10

20

30

40

50

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 S

er
vic

e 
Ti

m
e 

(%
)

P-
Av

g.

S-
Av

g.

Ps
-A

vg
.

Pm Sm

Workloads

Heat
Run
Combined

Resource-Rich

0

10

20

30

40

50

60

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-
Av

g.

S-
Av

g.

Ps
-A

vg
.

Pm Sm

Workloads

Heat
Run
Combined

Resource-Rich

Figure 14: Performance Improvement with the Various Clustering Schemes (Resource-Rich).

creased availability of storage space in the more recent
(PC) workloads further suggests reduced fragmentation
which means less potential for ALIS to improve the
block layout. Note, however, that most of the storage
space in one of the server workloads, DS1, is updated in
place and should have little fragmentation. Yet ALIS is
able to improve the performance for this workload by a
lot more than for the PC workloads.

Observe further that combining heat and run clus-
tering enables us to achieve the greater benefit of the
two schemes. In fact, the performance of the combined
scheme is clearly superior to either technique alone in
practically all the cases. Specifically, the read response
time for the PC workloads is improved on average by
about 17% in the resource-poor environment and 14% in
the resource-rich environment. The sped-up PC work-
loads are improved by about the same amount while the
merged PC workload is improved by just under 10%.
In general, the merged PC workload is difficult to opti-
mize for because the repeated patterns, already few and
far in between, are spread further apart than in the case
of the base PC workloads. For the base server work-
loads on average, the improvement in read response time
ranges from about 30% in the resource-rich environment
to 37% in the resource-poor environment. The merged
server workload is improved by as much as 50%. Inter-
estingly, one of the PC users, P10, the chief technical of-
ficer, was running the disk defragmenter, Diskeeper [8].
Yet in both the resource-poor and resource-rich environ-
ments, run and heat clustering combined improves the
read performance for this user by 15%, which is about
the average for all the PC workloads.

6.2 Reorganized Area

Earlier in the paper, we said that reorganizing a small
fraction of the stored data is enough for ALIS to achieve

most of the potential performance improvement. In Fig-
ures 15 and A-18, we quantify what we mean by a small
fraction. Observe that for all our workloads, a reorga-
nized area less than 10% the size of the storage used
is sufficient to realize practically all the benefit of heat
clustering. For run clustering, the reorganized region
required to get most of the advantage is even smaller.
Combining heat and run clustering, we find that by re-
organizing only about 10% of the storage space, we are
able achieve most of the potential performance improve-
ment for all the workloads except the server workloads
which require on average about 15%. A storage over-
head of 15% compares very favorably with other ac-
cepted techniques for increasing I/O performance such
as mirroring in which the disk space is doubled. Given
the technology trends, we believe that, in most cases,
this 15% storage overhead is well worth the resulting
increase in performance.

Note that performance does not increase monoton-
ically with the size of the reorganized region, espe-
cially for small reorganized areas. In general, blocks
are copied into the reorganized region and rearranged
based on the prediction that the new arrangement will
outperform the original layout. For some blocks, the
prediction turns out to be wrong so that as more blocks
are reorganized, the performance sometimes declines.

Besides the size of the reorganized region, another
interesting question is where to locate it. If there is a
constant number of sectors per cylinder and accesses are
uniformly distributed, we would want to place the reor-
ganized area at the center of the disk. However, modern
disks are zoned so that the linear density, and hence the
data rate, at the outer edge is a lot higher than at the
inner edge. To leverage this higher sequential perfor-
mance, the reorganized region should be placed closer
to the outer edge. The complicating factor is that in
practice, accesses are not uniformly distributed so that

19



-20

-10

0

10

20

30

40

0 5 10 15 20
Size of RA (% Storage Used)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

(a) Heat Clustering.

-10

0

10

20

30

40

50

60

0 5 10 15
Size of RA (% Storage Used)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

Resource-Rich

(b) Run Clustering.

-20

-10

0

10

20

30

40

50

60

0 4 8 12 16 20
Size of RA (% Storage Used)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

(c) Heat and Run Cluster-
ing Combined.

Figure 15: Sensitivity to Size of Reorganized Area (Resource-Rich).

the optimal placement of the reorganized area depends
on the workload characteristics. Specifically, it is ad-
vantageous to locate the reorganized area near to any
remaining hot regions in the home area but determining
these hot spots ahead of time is difficult. Besides, they
are typically distributed across the disk so that no single
good location exists.

In Figures 16 and A-19, we see these various effects
at work in our workloads. We assume the typical situa-
tion where volumes are laid out inwards from the outer
edge of the disk. As discussed earlier, we use, for each
workload, the closest fitting member of the IBM Ultra-
star 73LZX family of disks. This results in an average
storage used to disk capacity ratio of about 65%. Re-
call that heat and run clustering combined has the nice
property that most of the disk reads are either eliminated
due to the more effective sequential prefetch, or can be
satisfied from the reorganized area. Any remaining disk
reads will tend to exhibit less locality and be spread out
across the disk. In other words, the remaining disk reads
will tend to be uniformly distributed. Therefore, in this
case, we can predict that placing the reorganized area
somewhere in the middle of the space used should min-
imize any disk head movement between the reorganized
region and the home area. Empirically, we find that
for all our workloads, locating the reorganized area at
a byte offset 30-40% into the space used works well.
Given that there are more sectors per track at the outer
edge, this corresponds to roughly a 24-33% radial dis-
tance offset from the outer edge.

When data is replicated and reorganized, there may
be multiple copies of a given block, and at reorgani-
zation times, the locations and numbers of copies may

change. If blocks are cached by their physical addresses,
the effectiveness of the cache could be affected. We
studied the issue of whether changing the address of pre-
viously cached blocks to the address of one of the newly
reorganized copies (if any) had a performance impact;
we found that any such effect was minor [22]. The re-
sults presented in this paper assume that such remapping
of cached blocks is performed after every reorganiza-
tion.

6.3 Write Policy

In general, writes or update operations complicate a
system and throttle its performance. For a system such
as ALIS that replicates data, we have to ensure that all
the copies of a block are either updated or invalidated
whenever the block is written to. In our analysis of the
workloads [17], we discover that blocks that are updated
tend to be updated again rather than read. This suggests
that we should update only one of the copies and in-
validate the others. But the question remains of which
copy to update. A second issue related to how writes are
handled is whether the read access patterns differ from
the write access patterns, and if it is possible to lay the
blocks out to optimize for both. We know that the set
of blocks that are both actively read and written tend to
be small [17] so it is likely that read performance can be
optimized without significantly degrading write perfor-
mance. But should we try to optimize for both reads and
writes by considering writes in addition to reads when
tabulating the reference count and when building the ac-
cess graph?

20



0

10

20

30

40

0 20 40 60 80 100
Byte Offset of RA (% Storage Used)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

(a) Heat Clustering.

-20

-10

0

10

20

30

40

50

60

0 20 40 60 80 100
Byte Offset of RA (% Storage Used)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

Resource-Rich

(b) Run Clustering.

0

10

20

30

40

50

60

0 20 40 60 80 100
Byte Offset of RA (% Storage Used)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

Resource-Rich

(c) Heat and Run Cluster-
ing Combined.

Figure 16: Sensitivity to Placement of Reorganized Area (Resource-Rich).

In Figures 17(a) and A-20(a), we show the per-
formance effect of the different policies for handling
writes. Observe that for heat clustering, updating the
copy in the reorganized area offers the best read and
write performance. Incorporating writes in the refer-
ence count speeds up the writes and in the case of
the PC workloads, also improves the read performance.
The results in this paper therefore assume that writes
are counted in heat clustering. Figures 17(b) and A-
20(b) present the corresponding results for run cluster-
ing. Note that including write requests in the access
graph improves the write performance for some of the
workloads but decreases read performance across the
board. Therefore, the default policy in this paper is to
consider only reads for run clustering. As for which
copy to update, the simulation results suggest updat-
ing the runs for the server workloads and invalidating
the other copies. For the PC workloads, updating the
runs increases read performance slightly but markedly
degrades write performance. Therefore, the default pol-
icy for the PC workloads is to update the home copy
and invalidate the others. That the read performance for
PC workloads increases only slightly when runs are up-
dated is not surprising since the runs in this environ-
ment are often repeated reads of application binaries,
and these are written only when the applications were
first installed.

Next, we investigate write policies for the combi-
nation of heat and run clustering in Figures 17(c) and
A-20(c). We introduce a policy called RunHeat that
performs a write by first attempting to update the af-
fected blocks in the run-clustered region of the reorga-
nized area. If a block does not exist in the run-clustered

region, the policy tries to update that block in the heat-
clustered region. If the block does not exist anywhere in
the reorganized area, the original copy in the home area
is updated. As shown in the figures, RunHeat is the best
write policy for all the workloads as far as read perfor-
mance is concerned. Furthermore, it does not degrade
write performance for any of the workloads, and in fact
achieves a sizeable improvement of about 5-10% in the
average write service time for most of the workloads and
up to 22% for the base server workloads in the resource-
poor environment. This is the default write policy we
use for heat and run clustering combined.

6.4 Workload Stability

The process of reorganizing disk blocks entails a lot
of data movement and may potentially affect the service
rate of any incoming I/Os. In addition, resources are
needed to perform the workload analysis and the opti-
mization that produces the reorganization plan. There-
fore it is important to understand how frequently the re-
organization needs to be performed and the tradeoffs in-
volved. Figures 18 and A-21 present the sensitivity of
the various clustering strategies to the reorganization in-
terval.

We would expect daily reorganization to perform
well because of the diurnal cycle. Our results confirm
this. They also show that less frequent reorganization
tends to only affect the improvement gradually so that
reorganizing daily to weekly is generally adequate. This
is consistent with findings in [43]. The only exception
is for the average of the server workloads where the ef-
fectiveness of ALIS plummets if we reorganize less fre-

21



-20

-10

0

10

20

30

40

Home Heat All Home Heat All
Copy to Update

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg. Ps-Avg.
Pm Sm

Resource-Rich

Count Reads 
and Writes

Count Reads 
Only

-30

-20

-10

0

10

20

30

Home Heat All Home Heat All
Copy to Update

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

P-Avg. S-Avg. Ps-Avg.
Pm Sm

Resource-Rich

Count Reads 
Only

Count Reads 
and Writes

(a) Heat Clustering.

-20

-10

0

10

20

30

40

50

60

Home Run All Home Run All
Copy to Update

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg. Ps-Avg.
Pm Sm

Resource-Rich

Count Reads 
and Writes

Count Reads 
Only

-30

-20

-10

0

10

20

30

Home Run All Home Run All
Copy to Update

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

P-Avg. S-Avg. Ps-Avg.
Pm Sm

Resource-Rich

Count Reads 
Only

Count Reads 
and Writes

(b) Run Clustering.

-20

-10

0

10

20

30

40

50

60

Hom
e

Hea
t

Run

Run
Hea

t All

Copy to Update

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

) P-Avg. S-Avg. Ps-Avg.
Pm Sm

Resource-Rich
-20

-10

0

10

20

Hom
e

Hea
t

Run

Run
Hea

t All

Copy to Update

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
) P-Avg. S-Avg. Ps-Avg.

Pm Sm

Resource-Rich

(c) Heat and Run Clustering Combined.

Figure 17: Sensitivity to Write Policies (Resource-Rich).

quently than once every three days. Recall that one of
the components of this average is DS1, which is only
seven days long. Because we use the first three days of
this trace for warm up purposes, if we reorganize less
frequently than once every three days, the effect of the
reorganization will not be fully reflected. Note that for
run clustering and combined heat and run clustering, re-
organizing more than once a day performs poorly. This
is because the workloads do vary over the course of a
day so that if we reorganize too frequently, we are al-
ways “chasing the tail” and trying to catch up. Unless
otherwise stated, all the results in this paper are for daily
reorganization.

More generally, the various clustering strategies are
all based on the reference history. They try to predict
future reference patterns by assuming that these patterns
are likely to be those that have occurred in the past. The

effectiveness of these algorithms is therefore limited by
the extent to which workloads vary over time. The above
results suggest that there are portions of the workloads
that are very stable and are repeated daily since there
is but a small effect in varying the reorganization fre-
quency from daily to weekly. To gain further insight into
the stability of the workloads, we consider the ideal case
where we can look ahead and see the future references
of a workload. In Figures 19 and A-22, we show how
much better these algorithms perform when they have
knowledge of future reference patterns as compared to
when they have to predict the future reference patterns
from the reference history.

In the figures, the “realizable” performance is that
obtained when the reorganization is performed based on
the past reference stream or the reference stream seen so
far. This is what we have assumed all along. The “looka-

22



0

10

20

30

40

0 1 2 3 4 5 6 7
Reorganization Interval (Days)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

(a) Heat Clustering.

-10

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7
Reorganization Interval (Days)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

(b) Run Clustering.

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7
Reorganization Interval (Days)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

(c) Heat and Run Cluster-
ing Combined.

Figure 18: Sensitivity to Reorganization Interval (Resource-Rich).

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7
Reorganization Interval (Days)

Ra
tio

 o
f R

ea
d 

Re
sp

on
se

 T
im

e 
(L

oo
ka

he
ad

/R
ea

liz
ab

le
)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

(a) Heat Clustering.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7
Reorganization Interval (Days)

Ra
tio

 o
f R

ea
d 

Re
sp

on
se

 T
im

e 
(L

oo
ka

he
ad

/R
ea

liz
ab

le
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(b) Run Clustering.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7
Reorganization Interval (Days)

Ra
tio

 o
f R

ea
d 

Re
sp

on
se

 T
im

e 
(L

oo
ka

he
ad

/R
ea

liz
ab

le
)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

(c) Heat and Run Cluster-
ing Combined.

Figure 19: Performance with Knowledge of Future Reference Patterns (Resource-Rich).

head” performance is that achieved when the various
clustering algorithms are operated on the future refer-
ence stream, specifically the reference stream in the next
reorganization interval. (Note that this is not the looka-
head optimal algorithm.) Observe that for heat cluster-
ing, the difference is small, meaning that the workload
characteristic heat clustering exploits is relatively sta-
ble. On the other hand, for run clustering and com-
bined heat and run clustering, the reference history is
not that good a predictor of the future. With a reorgani-
zation frequency of once a day, having forward knowl-
edge outperforms history-based prediction by about 40-

50%. In other words, significant portions of the work-
loads are time-varying or cannot be predicted from past
references. This suggests that excessive mining of the
reference history for repeated sequences or runs may not
be productive.

6.5 Effect of Improvement in the Underlying Disk
Technology

Disk technology is constantly evolving. Mechani-
cally, the disk arm is becoming faster over time and the
disk is spinning at a higher rate. The recording density

23



0

10

20

30

40

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

Resource-Rich
0

5

10

15

20

25

30

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(a) Heat Clustering.

-10

0

10

20

30

40

50

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

Resource-Rich
-5

0

5

10

15

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

Resource-Rich

(b) Run Clustering.

0

10

20

30

40

50

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

Resource-Rich
0

5

10

15

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(c) Heat and Run Clustering Com-
bined.

Figure 20: Effectiveness of the Various Clustering Techniques as Disks are Mechanically Improved over Time
(Resource-Rich).

is also increasing with each new generation of the disk
so that there are more sectors per track and more tracks
per inch. The net effect of these trends is that less physi-
cal movement is needed to access the same data, and the
same physical movement takes a shorter amount of time.
We have demonstrated that ALIS is able to achieve dra-
matic improvement in performance for a variety of real
workloads. An interesting issue is whether the effect of
ALIS, which tries to reduce both the number of physical
movements and the distance moved, will be increased
or diminished as a result of these technology trends. It
has been pointed out previously that as disks become
faster, the benefit of reducing the seek distance will be
lessened [43]. In ALIS, we emphasize clustering strate-
gies that not only reduce the seek distance but, more im-
portantly, also eliminate some of the I/Os by increasing
the effectiveness of sequential prefetch. This latter ef-
fect should be relatively stable and could in fact increase
over time as more resources are devoted to prefetching
to leverage the rapidly growing disk transfer rate. In
this section, we will empirically verify that the benefit
of ALIS persists as disk technology evolves.

6.5.1 Mechanical Improvement

We begin by examining the effect of improvement in
the mechanical or moving parts of the disk, specifically,
the reduction in seek time and the increase in rotational
speed; we do not consider density changes in this sub-
section. The average seek time is generally taken to be
the average time needed to seek between two random
blocks on the disk. Based on the performance charac-
teristics of server disks introduced by IBM over the last

ten years, we found that on average, seek time decreases
by about 8% per year while rotational speed increases
by about 9% per year [18]. Together, the improvement
in the seek time and the rotational speed translate into
an 8% yearly improvement in the average response and
service times for our various workloads [18].

In Figures 20 and A-23, we investigate how the effect
of ALIS changes as the disk is improved mechanically
at the historical rates. Observe from the figures that the
benefit of ALIS is practically constant over the two-year
period. In fact, the plots show a slight upward trend,
especially for the server workloads in the resource-poor
environment. This slight increase in the effectiveness of
ALIS stems from the fact that as the disk becomes faster,
it will have more free resources (time) to perform op-
portunistic prefetch and with ALIS, such opportunistic
prefetch is more likely to be useful. There is an abrupt
rise in some of the S-Avg. plots at the end of the two-
year period because DS1, one of the components of S-
Avg., is sensitive to how the blocks are laid out in tracks
since some of its accesses, especially the writes, occur
in specific patterns. As the disk is sped up, the layout
of blocks in the tracks have to be adjusted to ensure that
transfers spanning multiple tracks do not “miss revolu-
tions”. In some cases, consecutively accessed blocks
become poorly positioned rotationally [18] so that the
benefit of automatically reorganizing the blocks is espe-
cially pronounced. Such situations highlight the value
of ALIS in ensuring good performance and reducing the
likelihood of unpleasant surprises due to poor block lay-
out.

24



0

10

20

30

40

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

Resource-Rich
0

5

10

15

20

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(a) Heat Clustering.

-10

0

10

20

30

40

50

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)
Resource-Rich

-5

0

5

10

15

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

Resource-Rich

(b) Run Clustering.

0

10

20

30

40

50

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

Resource-Rich
0

5

10

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(c) Heat and Run Clustering Com-
bined.

Figure 21: Effectiveness of the Various Clustering Techniques as Disk Recording Density is Increased over Time
(Resource-Rich).

6.5.2 Increase in Recording Density

Increasing the recording or areal density reduces the
cost of disk-based storage. Areal density improvement
also directly affects performance because as bits are
packed more closely together, they can be accessed with
a smaller physical movement. Recently, linear density
has increased by about 21% per year while track den-
sity has risen by approximately 24% per year [18]. For
our workloads, the average response and service times
are improved by about 9% per year as a result of the
increase in areal density [18].

In Figures 21 and A-24, we analyze how areal den-
sity improvement affects the effectiveness of ALIS. Ob-
serve that there is a downward trend in most of the plots,
especially those that relate to heat clustering. This is ex-
pected because heat clustering derives part of its bene-
fit from seek distance reduction which is less effective
as disks become denser and the difference between a
long and short seek is reduced. The improvement in
write performance, also being dependent on a reduction
in seek distance, shows a similar downward trend. On
the other hand, the performance benefit of run cluster-
ing is relatively insensitive to the increase in areal den-
sity since the main effect of run clustering is to reduce
the number of I/Os by increasing the effectiveness of
sequential prefetch. The same is true of heat and run
clustering combined. Such a result is quite remarkable
because at the historical rate of increase in areal density,
two years of improvement translates into more than a
doubling of disk capacity. This means that in going for-
ward two years in time in Figures 21 and A-24, we are
seriously short-stroking the disk by using less than half

the available disk space. Yet ALIS is still able to achieve
a dramatic improvement in performance.

6.5.3 Overall Effect of Disk Technology Trends

Putting together the effect of mechanical improve-
ment and areal density scaling, we obtain the overall
performance effect of disk technology evolution. For
our various workloads, the average response and ser-
vice time are projected to improve by about 15% per
year [18]. In Figures 22 and A-25, we plot the additional
performance improvement that ALIS can provide. Note
that the benefit of ALIS with heat and run clustering
combined is generally stable over time with only a very
slight downward inclination. In the worst case, going
forward two years in time reduces the improvement with
ALIS from 50% to 48% for the merged server workload
in the resource-rich environment. As discussed earlier,
this is quite impressive because at the end of the two-
year period, we are using less than half the available
disk space. In the more realistic situation where we try
to take advantage of the increased disk space, the benefit
of ALIS will be even more enduring. Note that we did
not re-optimize any of the parameters of the underlying
storage system for ALIS. We simply use the settings that
have been found to work well for the base system [18].
If we were to tune the underlying storage system to ex-
ploit the increasing gap between random and sequential
performance, and the improved locality that ALIS pro-
vides, the benefit of ALIS should be all the more stable
and substantial.

25



0

10

20

30

40

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

Resource-Rich
0

5

10

15

20

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(a) Heat Clustering.

-10

0

10

20

30

40

50

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

Resource-Rich
-5

0

5

10

15

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

Resource-Rich

(b) Run Clustering.

0

10

20

30

40

50

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

Resource-Rich
0

5

10

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

Resource-Rich

(c) Heat and Run Clustering Com-
bined.

Figure 22: Effectiveness of the Various Clustering Techniques as Disk Technology Evolves over Time (Resource-
Rich).

7 Conclusions

In this paper, we propose ALIS, an introspective stor-
age system that continually analyzes I/O reference pat-
terns to replicate and reorganize selected disk blocks so
as to improve the spatial locality of reference, and hence
leverage the dramatic improvement in disk transfer rate.
Our analysis of ALIS suggests that disk block layout
can be effectively optimized by an autonomic storage
system, without human intervention. Specifically, we
find that the idea of clustering together hot or frequently
accessed data has the potential to significantly improve
storage performance, if handled in such a way that ex-
isting spatial locality is not disrupted. In addition, we
show that by discovering repeated read sequences or
runs and laying them out sequentially, we can greatly
increase the effectiveness of sequential prefetch. By fur-
ther combining these two ideas, we are able to reap the
greater benefit of the two schemes and achieve perfor-
mance that is superior to either technique alone. In fact,
with the combined scheme, most of the disk reads are
either eliminated due to the more effective prefetch or
can be satisfied from the reorganized data, an outcome
which greatly simplifies the practical issue of deciding
where to locate the reorganized data.

Using trace-driven simulation with a large collection
of real server and PC workloads, we demonstrate that
ALIS is able to far outperform prior techniques in both
an environment where the storage system consists of
only disks and low-end disk adaptors, and one where
there is a large outboard controller. For the server work-
loads, read performance is improved by between 31%
and 50% while write performance is improved by as

much as 22%. The read performance for the PC work-
loads is improved by about 15% while the writes are
faster by up to 8%. Given that disk performance, as per-
ceived by real workloads, is increasing by about 8% per
year assuming that the disk occupancy rate is kept con-
stant [18], such improvements may be equivalent to as
much as several years of technological progress at the
historical rates. As part of our analysis, we also examine
how improvement in disk technology will impact the ef-
fectiveness of ALIS and confirm that the benefit of ALIS
is relatively insensitive to disk technology trends.

8 Future Work

ALIS currently behaves like an open-loop control
system that is driven solely by the workload and a sim-
ple performance model of the underlying storage sys-
tem, namely that it is able to service sequential I/O much
more efficiently than random I/O. Because the perfor-
mance of disks today is so much higher when data is
read sequentially rather than randomly, this simple per-
formance model is sufficiently accurate to produce a
dramatic performance improvement. But for increased
robustness, it would be worthwhile to explore the idea
of incorporating some feedback into the optimization
process to, for example, turn ALIS off when it is not
performing well or, at a finer granularity, influence how
blocks are laid out.

In the design of ALIS, we try to desensitize its per-
formance to the various parameters so that it is not
catastrophic for somebody to “configure the system
wrongly”. To reflect the likely situation that ALIS will

26



be used with a default setting, we base our performance
evaluation on parameter settings that are good for an en-
tire class of workloads rather than on the best values for
each individual workload. A useful piece of future work
would be to devise ways to set the various parameters
dynamically to adapt to each individual workload. The
general approach of using hill-climbing to gradually ad-
just each knob until a local optimum is reached should
be very effective for ALIS because the results of our var-
ious sensitivity studies suggest that for the parameters in
ALIS, the local optimum is likely to be also the global
optimum.

Acknowledgements

The authors would like to thank Ruth Azevedo, Ja-
cob Lorch, Bruce McNutt and John Wilkes for pro-
viding the traces used in this study. Thanks are also
owed to William Guthrie who shared with us his ex-
pertise in modeling disk drives, and to Ed Grochowski
who provided the historical performance data for IBM
disk drives. In addition, the authors are grateful to John
Palmer and Jai Menon for helpful comments on versions
of this paper.

References

[1] S. Akyürek and K. Salem, “Adaptive block
rearrangement,” ACM Transactions on Computer
Systems, 13, 2, pp. 89–121, May 1995.

[2] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W.
Shirriff, and J. K. Ousterhout, “Measurements of a
distributed file system,” Proceedings of ACM
Symposium on Operating Systems Principles (SOSP),
(Pacific Grove, CA), pp. 198–212, Oct. 1991.

[3] B. E. Bakke, F. L. Huss, D. F. Moertl, and B. M. Walk,
“Method and apparatus for adaptive localization of
frequently accessed, randomly addressed data.” U.S.
Patent 5765204. Filed June 5, 1996. Issued June 9,
1998.

[4] S. D. Carson and P. F. Reynolds Jr, “Adaptive disk
reorganization,” Techical Report UMIACS-TR-89-4,
Department of Computer Science, University of
Maryland, Jan. 1989.

[5] C. L. Chee, H. Lu, H. Tang, and C. V. Ramamoorthy,
“Adaptive prefetching and storage reorganization in a
log-structured storage system,”

[6] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and
D. A. Patterson, “RAID: high-performance, reliable
secondary storage,” ACM Computing Surveys, 26, 2,
pp. 145–185, June 1994.

[7] M. Dahlin, C. Mather, R. Wang, T. Anderson, and
D. Patterson, “A quantitative analysis of cache policies
for scalable network file systems,” Proceedings of ACM
Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), pp. 150–160, May 1994.

[8] Executive Software International Inc., “Diskeeper 6.0
second edition for Windows,” 2001.
http://www.execsoft.com/diskeeper/diskeeper.asp.

[9] D. Ferrari, “Improvement of program behavior,”
Computer, 9, 11, pp. 39–47, Nov. 1976.

[10] G. R. Ganger and M. F. Kaashoek, “Embedded inodes
and explicit grouping: Exploiting disk bandwidth for
small files,” Proceedings of USENIX Technical
Conference, (Anaheim, CA), pp. 1–17, Jan. 1997.

[11] J. Gray, “Put EVERYTHING in the storage device.”
Talk at NASD Workshop on Storage Embedded
Computing, June 1998.
http://www.nsic.org/nasd/1998-jun/gray.pdf.

[12] J. Griffioen and R. Appleton, “Reducing file system
latency using a predictive approach,” Proceedings of
Summer USENIX Conference, pp. 197–207, June 1994.

[13] K. S. Grimsrud, J. K. Archibald, and B. E. Nelson,
“Multiple prefetch adaptive disk caching,” IEEE
Transactions on Knowledge and Data Engineering, 5, 1,
pp. 88–103, Feb. 1993.

[14] E. Grochowski, “IBM magnetic hard disk drive
technology,” 2002. http://www.hgst.com/hdd/technolo/
grochows/grocho01.htm.

[15] R. R. Heisch, “Trace-directed program restructuring for
AIX executables,” IBM Journal of Research and
Development, 38, 5, pp. 595–603, Sept. 1994.

[16] J. L. Hennessy and D. A. Patterson, Computer
Architecture A Quantitative Approach, Morgan
Kaufmann, San Francisco, CA, second ed., 1996.

[17] W. W. Hsu and A. J. Smith, “Characteristics of I/O
traffic in personal computer and server workloads,” IBM
Systems Journal, 42, 2, pp. 347–372, 2003.

[18] W. W. Hsu and A. J. Smith, “The real effect of I/O
optimizations and disk improvements.” Technical
Report, CSD-03-1263, Computer Science Division,
University of California, Berkeley, July 2003. Also
available as Chapter 3 of [22].

[19] W. W. Hsu, A. J. Smith, and H. C. Young, “Projecting
the performance of decision support workloads on
systems with smart storage (SmartSTOR),” Proceedings
of IEEE Seventh International Conference on Parallel
and Distributed Systems (ICPADS), (Iwate, Japan),
pp. 417–425, July 2000.

[20] W. W. Hsu, A. J. Smith, and H. C. Young, “Analysis of
the characteristics of production database workloads
and comparison with the TPC benchmarks,” IBM
Systems Journal, 40, 3, pp. 781–802, 2001.

[21] W. W. Hsu, A. J. Smith, and H. C. Young, “I/O
reference behavior of production database workloads
and the TPC benchmarks - an analysis at the logical
level,” ACM Transactions on Database Systems, 26, 1,
pp. 96–143, Mar. 2001.

[22] W. W. Hsu, Dynamic Locality Improvement Techniques
for Increasing Effective Storage Performance, PhD
thesis, University of California, Berkeley, 2002.
Available as Technical Report CSD-03-1223, Computer
Science Division, University of California, Berkeley,
Jan. 2003.

[23] IBM Corp., Autonomic Computing: IBM’s Perspective
on the State of Information Technology, 2001.
http://www.research.ibm.com/autonomic/manifesto/
autonomic computing.pdf.

[24] IBM Corp., Ultrastar 73LZX Product Summary Version
1.1, 2001.

[25] Intel Corp., “Intel application launch accelerator,” Mar.
1998. http://www.intel.com/ial/ala.

[26] K. Keeton, D. Patterson, and J. Hellerstein, “A case for
intelligent disks (IDISKs),” ACM SIGMOD Record, 27,
3, pp. 42–52, 1998.

27



[27] D. E. Knuth, The Art of Computer Programming, vol. 3,
Addison-Wesley, Reading, MA, 1973.

[28] T. M. Kroeger and D. D. E. Long, “Predicting file
system actions from prior events,” Proceedings of
USENIX Annual Technical Conference, pp. 319–328,
Jan. 1996.

[29] H. Lei and D. Duchamp, “An analytical approach to file
prefetching,” Proceedings of the USENIX Annual
Technical Conference, (Anaheim, CA), pp. 275–288,
Jan. 1997.

[30] J. R. Lorch and A. J. Smith, “The VTrace tool: Building
a system tracer for Windows NT and Windows 2000,”
MSDN Magazine, 15, 10, pp. 86–102, Oct. 2000.

[31] T. Masuda, H. Shiota, K. Noguchi, and T. Ohki,
“Optimization of program organization by cluster
analysis,” Proceedings of IFIP Congress, pp. 261–265,
1974.

[32] J. N. Matthews, D. Roselli, A. M. Costello, R. Y. Wang,
and T. E. Anderson, “Improving the performance of
log-structured file systems with adaptive methods,”
Proceedings of ACM Symposium on Operating System
Principles (SOSP), (Saint-Malo, France), pp. 238–251,
Oct. 1997.

[33] S. McDonald, “Dynamically restructuring disk space
for improved file system performance,” Techical Report
88-14, Department of Computational Science,
University of Saskatchewan, Saskatoon, Saskatchewan,
Canada, July 1988.

[34] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S.
Fabry, “A fast file system for UNIX,” ACM Transactions
on Computer Systems, 2, 3, pp. 181–197, Aug. 1984.

[35] B. McNutt, “MVS DASD survey: Results and trends,”
Proceedings of Computer Measurement Group (CMG)
Conference, (Nashville, TN), pp. 658–667, Dec. 1995.

[36] L. W. McVoy and S. R. Kleiman, “Extent-like
performance from a UNIX file system,” Proceedings of
Winter USENIX Conference, (Dallas, TX), pp. 33–43,
Jan. 1991.

[37] Mesquite Software Inc., CSIM18 simulation engine
(C++ version), 1994.

[38] J. Ousterhout and F. Douglis, “Beating the I/O
bottleneck: A case for log-structured file systems,”
Operating Systems Review, 23, 1, pp. 11–28, Jan. 1989.

[39] M. Palmer and S. B. Zdonik, “Fido: A cache that learns
to fetch,” Techical Report CS-91-15, Department of
Computer Science, Brown University, Feb. 1991.

[40] J. K. Peacock, “The counterpoint fast file system,”
USENIX Conference Proceedings, (Dallas, TX),
pp. 243–249, Winter 1988.

[41] E. Riedel, G. A. Gibson, and C. Faloutsos, “Active
storage for large-scale data mining and multimedia,”
Proceedings of International Conference on Very Large
Data Bases (VLDB), (New York, NY), pp. 62–73, Aug.
1998.

[42] D. Roselli, J. R. Lorch, and T. E. Anderson, “A
comparison of file system workloads,” Proceedings of
USENIX Annual Technical Conference, (Berkeley, CA),
pp. 41–54, June 2000.

[43] C. Ruemmler and J. Wilkes, “Disk shuffling,” Techical
Report HPL-91-156, HP Laboratories, Oct. 1991.

[44] C. Ruemmler and J. Wilkes, “UNIX disk access
patterns,” Proceedings of USENIX Winter Conference,
(San Diego, CA), pp. 405–420, Jan. 1993.

[45] A. J. Smith, “Disk cache — miss ratio analysis and
design considerations,” ACM Transactions on Computer
Systems, 3, 3, pp. 161–203, Aug. 1985.

[46] A. J. Smith, “Trace driven simulation in research on
computer architecture and operating systems,”
Proceedings of Conference on New Directions in
Simulation for Manufacturing and Communications,
(Tokyo, Japan), pp. 43–49, Aug. 1994.

[47] A. J. Smith, “Sequentiality and prefetching in database
systems,” ACM Transactions on Database Systems, 3, 3,
pp. 223–247, Sept. 1978.

[48] C. Staelin and H. Garcia-Molina, “Smart filesystems,”
Proceedings of USENIX Winter Conference, pp. 45–52,
Jan. 1991.

[49] Symantec Corp., “Norton Utilities 2002,” 2001.
http://www.symantec.com/nu/nu 9x.

[50] M. M. Tsangaris and J. F. Naughton, “On the
performance of object clustering techniques,”
Proceedings of ACM SIGMOD International
Conference on Management of Data, pp. 144–153, June
1992.

[51] R. A. Uhlig and T. N. Mudge, “Trace-driven memory
simulation: A survey,” ACM Computing Surveys, 29, 2,
pp. 128–170, June 1997.

[52] J. S. M. Verhofstad, “Recovery techniques for database
systems,” ACM Computing Surveys, 10, 2, pp. 167–195,
June 1978.

[53] P. Vongsathorn and S. D. Carson, “A system for
adaptive disk rearrangement,” Software – Practice and
Experience, 20, 3, pp. 225–242, Mar. 1990.

[54] A. E. Whipple II, “Optimizing a magnetic disk by
allocating files by the frequency a file is
acessed/updated or by designating a file to a fixed
location on a disk.” U.S. Patent 5333311. Filed Dec. 10,
1990. Issued July 26, 1994.

[55] M. Zhou and A. J. Smith, “Analysis of personal
computer workloads,” Proceedings of International
Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunications Systems
(MASCOTS), (College Park, MD), pp. 208–217, oct
1999.

28



Appendix

-150

-100

-50

0
1 10 100 1000 10000

Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(a) Organ Pipe.

-50

-40

-30

-20

-10

0

1 10 100 1000 10000
Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

(b) Link Closure.

-10

0

10

20

30

40

1.E+01 1.E+03 1.E+05 1.E+07
Extent Size (KB)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

(c) Packed Extents.

-10

0

10

20

30

40

1 10 100 1000 10000
Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(d) Sequential.

Figure A-1: Effectiveness of Various Heat Clustering Block Layouts at Improving Average Read Response Time
(Resource-Poor).

-200

-150

-100

-50

0
1 10 100 1000 10000

Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(a) Organ Pipe.

-50

-40

-30

-20

-10

0

10

1 10 100 1000 10000
Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(b) Link Closure.

-10

0

10

20

30

40

1.E+01 1.E+03 1.E+05 1.E+07
Extent Size (KB)

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(c) Packed Extents.

-10

0

10

20

30

40

1 10 100 1000 10000
Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(d) Sequential.

Figure A-2: Effectiveness of Various Heat Clustering Block Layouts at Reducing Read Miss Ratio (Resource-Rich).

29



-150

-100

-50

0
1 10 100 1000 10000

Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(a) Organ Pipe.

-50

-40

-30

-20

-10

0

1 10 100 1000 10000
Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

(b) Link Closure.

-10

0

10

20

30

40

1.E+01 1.E+03 1.E+05 1.E+07
Extent Size (KB)

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

(c) Packed Extents.

-10

0

10

20

30

40

1 10 100 1000 10000
Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(d) Sequential.

Figure A-3: Effectiveness of Various Heat Clustering Block Layouts at Reducing Read Miss Ratio (Resource-Poor).

-150

-100

-50

0
1 10 100 1000 10000

Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 S

er
vic

e 
Ti

m
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(a) Organ Pipe.

-50

-40

-30

-20

-10

0

10

1 10 100 1000 10000
Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 S

er
vic

e 
Ti

m
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(b) Link Closure.

-10

0

10

20

30

40

1.E+01 1.E+03 1.E+05 1.E+07
Extent Size (KB)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 S

er
vic

e 
Ti

m
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(c) Packed Extents.

-10

0

10

20

30

40

1 10 100 1000 10000
Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 S

er
vic

e 
Ti

m
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(d) Sequential.

Figure A-4: Improvement in Average Read Service Time for the Various Block Layouts in Heat Clustering (Resource-
Rich).

30



-150

-100

-50

0
1 10 100 1000 10000

Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 S

er
vic

e 
Ti

m
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(a) Organ Pipe.

-50

-40

-30

-20

-10

0

1 10 100 1000 10000
Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 S

er
vic

e 
Ti

m
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

(b) Link Closure.

-10

0

10

20

30

40

1.E+01 1.E+03 1.E+05 1.E+07
Extent Size (KB)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 S

er
vic

e 
Ti

m
e 

(%
)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

(c) Packed Extents.

-10

0

10

20

30

40

1 10 100 1000 10000
Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 S

er
vic

e 
Ti

m
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(d) Sequential.

Figure A-5: Improvement in Average Read Service Time for the Various Block Layouts in Heat Clustering (Resource-
Poor).

31



-150

-100

-50

0
1 10 100 1000 10000

Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

-200

-150

-100

-50

0
1 10 100 1000 10000

Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

-150

-100

-50

0
1 10 100 1000 10000

Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 S

er
vic

e 
Ti

m
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(a) Resource-Poor.

-150

-100

-50

0
1 10 100 1000 10000

Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

-150

-100

-50

0
1 10 100 1000 10000

Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

-150

-100

-50

0
1 10 100 1000 10000

Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 S

er
vic

e 
Ti

m
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

(b) Resource-Rich.

Figure A-6: Effectiveness of Heat Layout at Improving Read Performance.

0

10

20

30

40

0 0.2 0.4 0.6 0.8 1
Age Factor, �  

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

Figure A-7: Sensitivity of Heat Clustering to Age Factor, α (Resource-Poor).

32



-20

-10

0

10

20

30

40

50

0 4 8 12 16
Context Size (# Requests)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

(a) Context Size, τ .

-10

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1
Max. Graph Size (% Storage Used)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)
P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(b) Graph Size.

-10

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1
Age Factor, 

�
 

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg.

S-Avg.

Ps-Avg.

Pm

Sm

Resource-Poor

(c) Age Factor, β.

-10

0

10

20

30

40

0 0.2 0.4 0.6 0.8 1
Edge Weight Threshold

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

(d) Edge Threshold.

Figure A-8: Sensitivity of Run Clustering to Various Parameters (Resource-Poor).

-10

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1
Distance Fraction of Edge Weight

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

(a) Resource-Poor.

-10

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1
Distance Fraction of Edge Weight

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

(b) Resource-Rich.

Figure A-9: Sensitivity of Run Clustering to Weighting of Edges.

33



-50

-40

-30

-20

-10

0

10

20

30

0 16 32 48 64
Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

Resource-Poor

-20

-10

0

10

20

30

0 16 32 48 64
Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(a) Resource-Poor.

-60

-50

-40

-30

-20

-10

0

10

20

30

0 16 32 48 64
Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

Resource-Rich

-40

-30

-20

-10

0

10

20

30

40

0 16 32 48 64
Reorganization Unit (KB)

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

(b) Resource-Rich.

Figure A-10: Effectiveness of Run Clustering with Fixed-Sized Reorganization Units.

-10

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1
Pre-Filter Threshold

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1
Pre-Filter Threshold

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

(a) Resource-Poor.

-10

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1
Pre-Filter Threshold

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1
Pre-Filter Threshold

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

(b) Resource-Rich.

Figure A-11: Effect of Pre-Filtering on Run Clustering.

34



-10

0

10

20

30

40

50

0 20 40 60 80 100
Minimum Run Length (% Context)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

0

10

20

30

40

50

0 20 40 60 80 100
Minimum Run Length (% Context)

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

(a) Resource-Poor.

-20

-10

0

10

20

30

40

50

60

0 20 40 60 80 100
Minimum Run Length (% Context)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

0

10

20

30

40

50

60

0 20 40 60 80 100
Minimum Run Length (% Context)

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

(b) Resource-Rich.

Figure A-12: Effect of Imposing Minimum Run Length.

-10

0

10

20

30

40

50

0 20 40 60 80 100
Min. Context Match (% Context) 

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

0

10

20

30

40

50

0 20 40 60 80 100
Min. Context Match (% Context) 

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(a) Resource-Poor.

-20

-10

0

10

20

30

40

50

60

0 20 40 60 80 100
Min. Context Match (% Context) 

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Rich

-10

0

10

20

30

40

50

60

0 20 40 60 80 100
Min. Context Match (% Context) 

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg.

S-Avg.

Ps-Avg.

Pm

Sm

Resource-Rich

(b) Resource-Rich.

Figure A-13: Effect of Using a Run only when the Contexts Match.

35



0

20

40

60

80

100

0 5 10 15 20
Size of RA (% Storage Used)

Pe
rc

en
t o

f D
isk

 R
ea

ds
 S

at
isi

fe
d 

 in
 R

A

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

(a) Heat Clustering.

0

10

20

30

40

50

60

70

80

0 5 10 15 20
Size of RA (% Storage Used)

Pe
rc

en
t o

f D
isk

 R
ea

ds
 S

at
isi

fe
d 

 in
 R

A

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

(b) Run Clustering.

0

20

40

60

80

100

0 5 10 15 20
Size of RA (% Storage Used)

Pe
rc

en
t o

f D
isk

 R
ea

ds
 S

at
isi

fe
d 

 in
 R

A

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(c) Heat and Run Cluster-
ing Combined.

Figure A-14: Percent of Disk Reads Satisfied in Reorganized Area (Resource-Poor).

0

10

20

30

40

50

0 5 10 15
Max. Size of Runs (% Storage Used)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

0

10

20

30

40

50

0 5 10 15
Max. Size of Runs (% Storage Used)

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

(a) Resource-Poor.

0

10

20

30

40

50

60

0 5 10 15
Max. Size of Runs (% Storage Used)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

0

10

20

30

40

50

60

0 5 10 15
Max. Size of Runs (% Storage Used)

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Rich

(b) Resource-Rich.

Figure A-15: Effect of Limiting the Total Size of Runs in the Reorganized Area.

36



-10

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1
Edge Weight Threshold

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

Figure A-16: Sensitivity of Heat and Run Clustering Combined to Edge Threshold (Resource-Poor).

-10

0

10

20

30

40

50

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-
Av

g.

S-
Av

g.

Ps
-A

vg
.

Pm Sm

Workloads

Heat Run Combined

Resource-Poor
-10

0

10

20

30

40

50

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 S

er
vic

e 
Ti

m
e 

(%
)

P-
Av

g.

S-
Av

g.

Ps
-A

vg
.

Pm Sm

Workloads

Heat Run Combined

Resource-Poor
0

10

20

30

40

50

Im
pr

ov
em

en
t i

n 
Re

ad
 M

iss
 R

at
io

 (%
)

P-
Av

g.

S-
Av

g.

Ps
-A

vg
.

Pm Sm

Workloads

Heat Run Combined

Resource-Poor

Figure A-17: Performance Improvement with the Various Clustering Schemes (Resource-Poor).

37



-20

-10

0

10

20

30

0 5 10 15 20
Size of RA (% Storage Used)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
SmResource-Poor

(a) Heat Clustering.

-10

0

10

20

30

40

50

0 5 10 15
Size of RA (% Storage Used)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)
P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

(b) Run Clustering.

-10

0

10

20

30

40

50

0 4 8 12 16 20
Size of RA (% Storage Used)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

(c) Heat and Run Cluster-
ing Combined.

Figure A-18: Sensitivity to Size of Reorganized Area (Resource-Poor).

0

10

20

30

0 20 40 60 80 100
Byte Offset of RA (% Storage Used)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

(a) Heat Clustering.

-20

-10

0

10

20

30

40

50

0 20 40 60 80 100
Byte Offset of RA (% Storage Used)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

(b) Run Clustering.

-10

0

10

20

30

40

50

0 20 40 60 80 100
Byte Offset of RA (% Storage Used)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

(c) Heat and Run Cluster-
ing Combined.

Figure A-19: Sensitivity to Placement of Reorganized Area (Resource-Poor).

38



-20

-10

0

10

20

30

40

Home Heat All Home Heat All
Copy to Update

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg. Ps-Avg.
Pm Sm

Resource-Poor

Count Reads 
and Writes

Count Reads 
Only

-30

-20

-10

0

10

20

30

Home Heat All Home Heat All
Copy to Update

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

Count Reads 
and Writes

Count Reads 
Only

(a) Heat Clustering.

-20

-10

0

10

20

30

40

50

Home Run All Home Run All
Copy to Update

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg. Ps-Avg.
Pm Sm

Resource-Poor

Count Reads 
and Writes

Count Reads 
Only

-30

-20

-10

0

10

20

30

40

Home Run All Home Run All
Copy to Update

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

Count Reads 
and Writes

Count Reads 
Only

(b) Run Clustering.

-10

0

10

20

30

40

50

Hom
e

Hea
t

Run

Run
Hea

t All

Copy to Update

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

) P-Avg. S-Avg. Ps-Avg.
Pm Sm

Resource-Poor
-30

-20

-10

0

10

20

30

Hom
e

Hea
t

Run

Run
Hea

t All

Copy to Update

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

P-Avg.

S-Avg.

Ps-Avg.

Pm

Sm

Resource-Poor

(c) Heat and Run Clustering Combined.

Figure A-20: Sensitivity to Write Policies (Resource-Poor).

39



0

10

20

30

40

0 1 2 3 4 5 6 7
Reorganization Interval (Days)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

(a) Heat Clustering.

-10

0

10

20

30

40

50

0 1 2 3 4 5 6 7
Reorganization Interval (Days)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)
P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

(b) Run Clustering.

0

10

20

30

40

50

0 1 2 3 4 5 6 7
Reorganization Interval (Days)

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

(c) Heat and Run Cluster-
ing Combined.

Figure A-21: Sensitivity to Reorganization Interval (Resource-Poor).

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7
Reorganization Interval (Days)

Ra
tio

 o
f R

ea
d 

Re
sp

on
se

 T
im

e 
(L

oo
ka

he
ad

/R
ea

liz
ab

le
)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

(a) Heat Clustering.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7
Reorganization Interval (Days)

Ra
tio

 o
f R

ea
d 

Re
sp

on
se

 T
im

e 
(L

oo
ka

he
ad

/R
ea

liz
ab

le
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(b) Run Clustering.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7
Reorganization Interval (Days)

Ra
tio

 o
f R

ea
d 

Re
sp

on
se

 T
im

e 
(L

oo
ka

he
ad

/R
ea

liz
ab

le
)

P-Avg. S-Avg.
Ps-Avg. Pm
Sm

Resource-Poor

(c) Heat and Run Cluster-
ing Combined.

Figure A-22: Performance with Knowledge of Future Reference Patterns (Resource-Poor).

40



0

10

20

30

40

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor
0

5

10

15

20

25

30

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(a) Heat Clustering.

-10

0

10

20

30

40

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor
-10

-5

0

5

10

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(b) Run Clustering.

0

10

20

30

40

50

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor
0

5

10

15

20

25

30

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(c) Heat and Run Clustering Com-
bined.

Figure A-23: Effectiveness of the Various Clustering Techniques as Disks are Mechanically Improved over Time
(Resource-Poor).

0

10

20

30

40

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor
0

5

10

15

20

25

30

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(a) Heat Clustering.

-10

0

10

20

30

40

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor
-10

-5

0

5

10

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(b) Run Clustering.

0

10

20

30

40

50

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor
0

5

10

15

20

25

30

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(c) Heat and Run Clustering Com-
bined.

Figure A-24: Effectiveness of the Various Clustering Techniques as Disk Recording Density is Increased over Time
(Resource-Poor).

41



0

10

20

30

40

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor
0

5

10

15

20

25

30

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(a) Heat Clustering.

-10

0

10

20

30

40

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor
-10

-5

0

5

10

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(b) Run Clustering.

0

10

20

30

40

50

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
Re

ad
 R

es
po

ns
e 

Ti
m

e 
(%

)
P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor
0

5

10

15

20

25

30

0 1 2
Years into Future

Im
pr

ov
em

en
t i

n 
Av

er
ag

e 
W

rit
e 

Se
rv

ice
 T

im
e 

(%
)

P-Avg.
S-Avg.
Ps-Avg.
Pm
Sm

Resource-Poor

(c) Heat and Run Clustering Com-
bined.

Figure A-25: Effectiveness of the Various Clustering Techniques as Disk Technology Evolves over Time (Resource-
Poor).

42


