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Abstract

An Empirical Approach to Grouping and Segmentation

by

David Royal Martin

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Jitendra Malik, Co-Chair
Professor David Patterson, Co-Chair

This thesis presents a novel dataset of 12,000 segmentations of 1,000 natural images by 30

human subjects. The subjects marked the locations of objects in the images, providing ground truth

data for learning grouping cues and benchmarking grouping algorithms. We feel that the data-driven

approach is critical for two reasons: (1) the data reflects “ecological statistics” that the human visual

system has evolved to exploit, and (2) innovations in computational vision should be evaluated

quantitatively.

We develop a battery of segmentation comparison measures that we use both to validate the

consistency of the human data and to provide approaches for evaluating grouping algorithms. In

conjunction with the segmentation dataset, the various measures provide “micro-benchmarks” for

boundary detection algorithms and pixel affinity functions, as well a benchmark for complete seg-

mentation algorithms. Using these performance measures, we can systematically improve grouping

algorithms with the human ground truth as our goal.

Starting at the lowest level, we present local boundary models based on brightness, color, and

texture cues, where the cues are individually optimized with respect to the dataset and then combined

in a statistically optimal manner with classifiers. The resulting detector is shown to significantly

outperform prior state-of-the-art algorithms. Next, we learn from data how to combine the boundary

model with patch-based features in a pixel affinity model to settle long-standing debates in computer

vision with empirical results: (1) brightness boundaries are more informative than patches, and vice

versa for color; (2) texture boundaries and patches are the two most powerful cues; (3) proximity is

not a useful cue for grouping, it is simply a result of the process; and (4) both boundary-based and

region-based approaches provide significant independent information for grouping.
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Chapter 1

Introduction

The generic goal of computer vision is to extract semantic information from digital images. The

difficulty, of course, lies in the word semantic and the human-centric nature of this information. For

lack of any other reasonable approach, we study and model the six billion working vision systems

presently in circulation. Lacking the tools for direct observation, we rely on the indirect observations

of psychophysicists, the introspection of the Gestaltists, and, all too often, our own intuition.

The legacy of the Gestalt school is a variety of ceteris paribus1 rules for perceptual grouping.

For example, if all other factors remain constant, common motion is a grouping cue. The psychology

community has diligently tested these and other rules for perceptual organization with good effect.

Better understanding of human vision does lead to improved machine vision systems. However,

the controlled experiments required for scientific deduction limit the complexity of stimuli that one

can use with the typical psychophysical approach. Even if the Gestalt rules for grouping could be

rigorously prioritized, and their applicability to various stimuli extensively catalogued, it is not clear

that an effective recipe for grouping would emerge.

This conjecture arises from two concerns. First, there is the staggering complexity gap between

optical images of the natural world and the stimuli used in the majority of psychophysical experi-

ments. This gap will presumably close over time, though more slowly than at the exponential rate of

progress to which computer scientists have grown accustomed. There is an opportunity to harness

the growing power of computers to explore the space of perceptual organization rules. For example,

if a machine were able to show that to operate in the natural world it must give priority to convex-

ity over symmetry for figure-ground separation, then does this not settle the question for computer

vision? The second concern is whether the statistics of natural images are relevant to human per-

ception. If these ecological statistics are absent from psychophysical stimuli, as they often are, then

1Literally, “other things being equal”.
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CHAPTER 1. INTRODUCTION

experimental results may be compromised.

Vision is an intractable inverse problem, where the proximal stimulus of photons on the retina

cannot be mathematically inverted to reveal the structure of the distal stimulus that caused the pho-

tons to enter the eye. Even so, the human visual system is shockingly robust. The problem appears

so difficult that we must assume that the human visual system takes advantage of any useful infor-

mation available to it. Helmholtz conjectured that sensory input is interpreted as the most likely

configuration of objects in the environment. In addition to high-level knowledge about the world,

any relevant statistical regularities in the stimulus will clearly affect the likelihood. It has proven dif-

ficult to incorporate high-level information into machine vision systems. We have, however, grown

adept at incorporating probabilistic information.

This leads to the topic of this dissertation. How can we exploit the statistics of natural images to

improve the quality of perceptual organization by machines? For example, a brightness discontinuity

in an image can be caused by the boundary between objects. However, brightness discontinuities

have many other causes — surface markings, shadows, and texture — all of which are frequent in

the natural world. The statistical value of brightness discontinuities for finding object boundaries

in natural scenes can be judged only by measuring the fraction of brightness edges that suit that

purpose.

The human visual system is an equal party to the environment in the ecological statistics we

seek. We must, therefore, study the world as it is seen by human beings. To this end, we have

compiled a large dataset of natural images which have been segmented by human subjects. Each

of 1000 images has been segmented by approximately 10 different subjects. Given an image, each

subject was instructed to divide it into pieces that represent objects or pieces of objects. As a first

step in perceptual organization, we aim to recover object boundaries. It is presently inconceivable

that a machine vision system could replicate the human segmentations, because the subjects used

any number of high-level cues to perform their grouping. Our immediate objective is to determine

how closely we can approximate human-level performance on this task by exploiting statistical

regularities in the dataset without incorporating high-level object-specific knowledge.

More low-level information is available than one might suspect. In computer vision’s sister do-

main of computational linguistics, one can achieve 90% accurate part-of-speech tagging simply by

using the most likely tag for each word. The best probabilistic parsers currently approach 90% ac-

curacy on the problem of labeling grammatical structure without using the semantics of the words. 2

These successes, as well as the more colloquial success of Internet search engines, have lent weight

to a new 90-10 rule: statistical approaches can provide 90% solutions to seemingly complex seman-

tic problems. It is time that we had statistics of these sorts for computer vision tasks.

2Performance numbers are taken from [41].
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This dissertation is distinguished by its two most central themes. First, we use a large dataset of

complex, natural images. We have made no effort to simplify the image set, since we believe that

the unbiased statistics of the images must be preserved. Second, we take a scientific approach to

building a machine vision system. Since human-level vision is our goal, it seems most sensible to

study humans. We spent one year collecting data from human subjects so that we could subsequently

analyze patterns in the data, build models, and measure the accuracy of the models in relation to the

performance of the human subjects. Although this thesis focuses on relatively low-level issues such

as boundary detection and pixel affinity, it is meant as a first step in the pursuit of an approach to

perceptual organization that takes full advantage of ecological statistics from the start.

The organization of this dissertation is as follows. Chapter 2 presents the segmentation dataset

and the details of its construction. Chapter 3 presents several methods for measuring the consistency

of a segmentation with respect to the ground truth dataset. Chapter 4 presents a local boundary

model that was learned from the human data. Chapter 5 builds on the boundary model by learning a

pixel affinity function from the dataset. I conclude in Chapter 6.

3
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Chapter 2

A Dataset of Human Segmented

Natural Images

If we wish to create computer systems that decompose images in a manner similar to human beings,

then we should study the manner in which humans decompose images. In order to do this, we must

decide what it means to “decompose” an image. Images of the natural world are generally composed

of physically disjoint objects whose juxtaposition in a scene leads to an image consisting of spatially

coherent groups of pixels. Each group of pixels originates from a single object, and may or may not

be visually coherent also. Let us call the pixel groups segments, and the process of dividing an image

into segments segmentation.

This high-level definition of segmentation is quite different from the definition typically used

in the computer vision literature. The term segmentation is most often used to refer to the low-

level process of grouping pixels into visually coherent groups. The argument for such a process is

generally one of efficiency. Pixels are an inconvenient image representation due to their large num-

ber. Segments defined by uniform photometric properties are essentially super-pixels that reduce the

number of primitive objects an algorithm must consider. In addition, one can define new features on

a pixel group, such as shape and texture, for which pixels are simply too small.

However, the low-level definition of segmentation is imprecise because it depends on the current

state-of-the-art in defining uniformity. Uniformity based on photometric properties is limiting and

arbitrary. The only stable definition of segmentation is also the statement of the ultimate goal:

finding regions of semantic coherence. To ensure the longevity and more general applicability of a

segmentation dataset, we therefore adopt the high-level notion of segmentation based on objects as

seen by generic humans rather than on features as seen by vision scientists.

As a practical issue in constructing a dataset, we need a data representation. However, we wish

5



CHAPTER 2. A DATASET OF HUMAN SEGMENTED NATURAL IMAGES

(a) (b)

Figure 2.1: Open Contours. The open-contour objection to region-based segmentation. (a) An
oblique view of a torus produces open contours that result from self-occlusion. These open contours
reveal information about the geometry of the object that one cannot obtain from the contours of
closed regions. (b) An example of this phenomenon in our dataset of natural images. The non-
convex elephants produce similar open contours where the ear both occludes and attaches to the
head, and where the leg occludes and attaches to the body. These contours provide valuable clues
about the geometry of the elephant, but the contours are not needed to separate the two elephants
from each other or from the background. The open-contour phenomenon is restricted to occur within
an object; our focus is on the boundaries between different objects.

6



(a) (b)

Figure 2.2: Hallucinated Boundaries. (a) An image with deep shadows that obscure the boundary of
the shoulder and hair. (b) The boundaries that were “hallucinated” by four of our subjects. Note that
the hallucinated boundaries agree more than one might expect, suggesting that the subjects possess
strong prior knowledge about the shape of people.

to remain as agnostic as possible on the widely debated issue of boundary-based versus region-based

structures. Note that a decomposition of an image into regions necessarily provides the boundaries

one would need to achieve the same segmentation. Thus, we can always treat a segmentation as a

boundary map. That every segmentation is a boundary map suggests that a boundary-based repre-

sentation is more general, and indeed this is the case. In a region-based representation, we cannot

represent structures in the scene that are not closed. Such structures may arise from at least two

sources: objects with internal boundaries arising from a folded topology, such as a donut or elephant

(see Figure 2.1), and objects that appear to blend into each other because of shading (see Figure 2.2).

Fortunately, neither situation concerns us since both result from a low-level perspective. Folded

objects may have internal open boundaries that are useful features for recognition, but it is the

entire object we wish to partition from the image and recognize, not the view-dependent topological

features. As for severe shading gradients that cause the boundary of an object to disappear, it is still

the case that the object has a boundary in the scene. That the boundary is not visible does not mean

that it should not be represented. With this dataset, we aim for “gold-standard” image segmentations

that may contain high-level information. Our goal is, after all, to integrate high-level information

into vision algorithms!

Thus, we settle on a region-based representation because the region-based representation is

equivalent to a boundary-based representation when the segments correspond to whole objects in

7



CHAPTER 2. A DATASET OF HUMAN SEGMENTED NATURAL IMAGES

the real world. To be precise, we define our region-based representation as follows: a segmentation

is a partition of the pixels of an image into disjoint sets. The sets need not be contiguous in the

image plane.

One significant image structure that cannot be represented with the abstraction that each pixel

belongs to a single object is translucence. The obvious examples of translucent objects are ones

involving materials such as glass or plastic. However, our dataset has few of these synthetic translu-

cent objects. Water is the predominant translucent material in the natural world. However, water

is often rendered largely opaque by surface ripples. In the few images we have of still water, the

water is more often transparent or perfectly reflective than translucent. We attempted to balance

these issues against the desire to keep the data representation as simple as possible.

Additional concerns arise from shadows and reflections. It is not clear how we should treat these

effects in a segmentation, both because they are not objects proper and because they introduce a

translucent layer. We expected our subjects to ignore shadows and reflections, and so we did not

wish to unduly complicate the segmentation representation by adding layers. In addition, we did

not wish to draw the subjects’ attention to the concerns of computer vision researchers by explicit

instructions about such complexities, and therefore bias the experiment.

We settled on the simple one-segment-per-pixel data representation and laid out a set of high-

level goals for the dataset:

1. Natural Images. We are interested in natural images because of their ecological statistics

[2,5,26,27,31,33,61,62,71]. A large enough dataset should permit us to extract the statistics

of natural images that the human visual system likely exploits. To this end, I selected 1000

representative images from the Corel image library, excluding synthetic and abstract images,

but not excluding man-made structures (see Section 2.1.3 for the image selection details). The

Corel image dataset is commonly used in computer vision because it is readily available and

contains a wide range of subject matter.

2. Integrity. Many segmentation datasets used in computer vision are small, contain simple

images, and were created by computer vision researchers. These deficits are understandable

considering that more rigorous methods using a large set of natural images and na ïve subjects

are time consuming. We strove to break this tradition, however, by using 1000 Corel images

that contain a wide selection of subject matter. In the interest of ensuring that the data is

biased as little as possible by our immediate research agenda, we collected data from subjects

not trained in computer vision. In addition, we collected multiple segmentations of each

image from different subjects and validated the data by ensuring that the data is consistent

across subjects.
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3. Longevity. By collecting high-level image segmentations, we hope to ensure that the data re-

mains useful for many years. Matching these “gold-standard” segmentations computationally

represents a challenging goal that will not be achieved in the near future.

4. Wide Applicability. Because of the effort involved in creating a large dataset of this type, it

should be useful for many tasks. In this thesis, I use the dataset to learn and evaluate both

local boundary models and pixel affinity models. Presumably, others will find additional uses

for the data. It was important to keep the data representation simple in order to facilitate its

use in unexpected applications.

5. Public Availability. As a service to the community, we have made the dataset and the tools

used to collect it from human subjects available for research and educational use. This is

in contrast with the only other large segmentation dataset we know of (the Sowerby dataset

[31, 25]) which has not been made public. The dataset and tools can be downloaded from the

Internet [11].

This outline of this chapter is as follows. Section 2.1 describes in detail the procedure we fol-

lowed in constructing the dataset. Section 2.2 demonstrates the integrity of the data by showing

that different human subjects are consistent with one another. Section 2.3 discusses the lessons we

learned in running the experiment. Section 2.4 presents future work. I conclude in Section 2.5.

2.1 Dataset Construction

2.1.1 Experimental Setup

Subjects were solicited through the U.C. Berkeley work-study program, which draws undergraduate

students from all disciplines. They were paid at a rate set by the work-study program, which was ap-

proximately $12 per hour. Figure 2.3 shows some summary information about our 30 subjects. The

gender split was nearly equal, and few subjects were computer science students. To our knowledge,

none had any training in computer vision.

After an interview to assess commitment and to ensure that the subject had normal vision with

any necessary correction, I spent one to two hours with each subject individually to help them learn

to use the segmentation tool. Most subjects had little trouble mastering the procedure in one session,

but a few required additional one-on-one sessions. Nearly all subjects were able to produce accurate

segmentations on their first attempt. Any subsequent training was geared toward increasing the

speed at which subjects could segment images while retaining a high degree of accuracy in the

boundary localization.
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Start End Min/ Total
ID Sex Age Art Segs Date Date Seg Hours

1 1102 M 19 N 82 Feb 28 Apr 13 9.2 12.6
2 1103 M 19 N 509 Feb 28 Aug 13 9.9 84.4
3 1104 F 20 Y 54 Mar 06 Apr 30 19.7 17.7
4 1105 M 22 N 978 Mar 05 Oct 05 7.6 123.4
5 1106 F 19 N 84 Apr 10 May 08 15.4 21.6
6 1107 F 19 N 920 Feb 27 May 12 4.8 73.8
7 1108 M 22 N 1000 Mar 07 Oct 05 4.0 66.7
8 1109 F 20 Y 1020 Mar 09 Jun 06 4.4 74.5
9 1110 M 21 N 46 Mar 09 May 19 12.5 9.6

10 1111 F 23 N 13 Mar 13 Apr 12 8.5 1.8
11 1112 F 20 N 344 Mar 13 Oct 05 8.7 50.0
12 1113 F 20 Y 308 Mar 14 Aug 14 8.7 44.6
13 1114 M 20 N 313 Mar 20 Sep 06 8.1 42.4
14 1115 M 20 Y 953 Apr 02 Aug 28 6.7 106.7
15 1116 M 20 N 358 Jul 15 Sep 29 7.5 44.9
16 1117 M 19 Y 207 Jul 05 Aug 22 8.9 30.8
17 1118 F 23 Y 14 Jun 12 Jul 25 19.3 4.5
18 1119 F 22 N 290 Jul 09 Sep 26 8.7 42.0
19 1121 M 20 N 432 Jun 13 Aug 31 6.2 44.6
20 1122 M 20 N 249 Jun 13 Aug 21 6.2 25.8
21 1123 F 19 N 1020 Jul 10 Oct 05 6.9 116.8
22 1124 M 21 Y 771 Jul 18 Oct 05 12.5 160.6
23 1125 M 22 N 2 Jul 18 Jul 18 21.1 0.7
24 1126 M 20 N 166 Jul 18 Sep 26 11.0 30.4
25 1127 F 19 Y 248 Jul 18 Oct 02 10.0 41.3
26 1128 F 21 N 50 Jul 19 Aug 08 9.1 7.6
27 1129 M 20 N 104 Jul 19 Aug 26 22.2 38.5
28 1130 M 21 Y 678 Jul 19 Sep 20 5.6 63.4
29 1131 M 20 N 1 Jul 19 Jul 19 13.4 0.2
30 1132 F 20 N 381 Jul 24 Sep 20 12.0 76.2

Totals 11,595 28 Feb 05 Oct 7.5 1458

Figure 2.3: Table of Human Subjects. The gender split is 17-13 male-female. All subjects had
normal 20/20 vision with any necessary correction. Nine subjects stated on the questionnaire that
they had artistic training. The last two columns show the average minutes spent on a segmentation,
and the total number of hours the subject worked. Data collection lasted about 7 months in the year
2001, resulting in 11,595 segmentations of 1020 Corel images.
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We provided subjects with the following instructions, which were intentionally brief and non-

technical:

You will be presented a photographic image. Divide the image into some number of

segments, where the segments represent “things” or “parts of things” in the scene. The

number of segments is up to you, as it depends on the image. Something between 2 and

30 is likely to be appropriate. It is important that all of the segments have approximately

equal importance.

These directions were posted in the lab in clear view of the machines that the subjects used. The

last clause was a reluctant addition to the directions after observing that some subjects occasionally

focused on a single object (often a human face) to the exclusion of other objects. If a subject was

confused by the directions, they were additionally told to pay equal attention to all the objects in the

scene and not to fixate on a single object. Whenever one subject was confused about the task, all

subjects were sent the additional instructions over email.

We did not use any unusual equipment in the experiment. The subjects work stations were

standard PCs running Microsoft Windows and Sun’s Java implementation. The monitors were 21”

Sony Trinitrons, and the pointing device a standard mouse.

Subjects set their own hours but were limited by work-study to no more than 19 hours per week.

I required a minimum of 5 hours per week. Data collection ran for approximately 7 months. Very

few subjects worked for the entire duration, either because of attrition at academic term boundaries

or because they segmented all 1000 images. To be sure we met our goal of 10,000 segmentations, I

recruited new subjects continuously throughout the duration of the experiment.

The experimental protocol was approved by the U.C. Berkeley Committee for the Protection

of Human Subjects. The data produced by the subjects was anonymized in accordance with the

Committee’s regulations.

2.1.2 The Segmentation Tool

In order to collect segmentations efficiently, we required a simple tool that would allow a user to

divide the pixels of an image into disjoint groups, or segments. We considered the following options:

Adobe Photoshop Photoshop has several selection tools, including the magic lasso, that would

allow a user to mark boundaries. However, an explicit decomposition of an image into many

segments is not a paradigm supported by Photoshop. The subjects could use the selection

tools either to mark boundaries with a unique color, or to cut them into separate images.
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Pen and Paper We considered printing the images on paper, and then having subjects draw the

boundaries with a pen either on the paper itself or on an overlayed transparency. We could

then scan the boundary drawings.

Special Hardware Wacom manufactures pen-based tablets, as well as pen-sensitive flat-panel LCDs

that lay flat on a desk. One could present an image on such a device, and use the pen to mark

boundaries.

Custom Solution We considered creating a custom Java application tailored specifically to the task

at hand.

The non-custom solutions all share the problem of how to automatically convert boundary maps

to segmentations. The task would be confounded by having to deal with open contours, as there is

no way to enforce the closure of contours in Photoshop or on paper. In addition, any algorithmic

solution to this problem would introduce some sort of bias into the data.

A few weeks spent building a custom Java application seemed well worth the time investment. If

the user were able to construct segmentations directly, then no further processing would be required.

Two issues remained. First, there was the question of whether to use standard or special-purpose

pointing devices. The Wacom LCD tablet seems ideal for the task, but at the time, the units were

expensive, so they would become a bottleneck in the data collection process. Qualitative tests in-

dicated that non-LCD tablets did not provide any convenience over using a mouse. The pen-based

pointing paradigm seems natural for the task, but hand tremors were a problem. When holding a

pen, any hand tremor is translated directly into pointer motion. In contrast, one can push a mouse

around the surface of a desk with far more accuracy and steadiness. Image contours are often long

and smooth, and it seemed that only a trained artist could draw such contours with any accuracy

using a pen.

The second issue was whether or not to use algorithmic assistance in marking boundaries, as

in Photoshop’s magic lasso tool. There are many variational snake-type methods [45] that would

be appropriate for the task of localizing boundaries. We were apprehensive, however, about using

this type of aid, for fear of introducing bias into the dataset. For example, variational boundary

localization methods have roughness penalty terms that prohibit sharp turns in the boundary. Far

worse is the problem of texture. Snakes climb some field gradient in the image plane. The gradient

is often defined in terms of image brightness, and so has problems with texture. A texture-savvy

snake would require us to define a field that reflects both brightness as well as texture gradients.

The combination of brightness and texture cues is an open research issue and indeed is one of our

primary research objectives!
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Thus, we decided to build a custom segmentation tool. This tool would enable the user to directly

divide an image into segments, obviating the need for any further data processing. The segmentation

task would be manual, without any algorithmic aids. One should be able to make the task efficient

given complete control over the application.

In the following sections, I will present the segmentation tool and the editing paradigm it sup-

ports. We arrived at our solution after several versions. A few weeks of use by our research group

ironed out some of the major problems. A trial run of the entire dataset construction procedure on a

graduate computer vision class provided much valuable feedback on the interface.

Editing Paradigm

When presented with a new image, the subject begins with a single segment containing all the pixels.

The segmentation then evolves by a sequence of splitting, merging, and editing steps, described

below. All editing operations are governed by a single editing paradigm – that of moving pixels

from one segment to another. Figure 2.4 shows the operation. The figure shows the tool’s editing

window containing two segments, one in each pane. Any pixels selected in one pane will move to

the other. All editing operations are performed in this manner.

Creating a new segment. New segments are created by splitting some existing segment into two

pieces. See Figure 2.4(a,d). The subject first moves a single segment into the editing window.

The left pane contains the segment to be split, and the right pane is empty. By moving pixels

from the non-empty pane into the empty pane, the subject creates a new segment.

Deleting a segment. A segment can be deleted by merging it into some other segment. See Fig-

ure 2.4(e). First, the subject moves the two segments into the editing window. By moving

all of the pixels of the right segment into the left pane, the subject has effectively deleted the

right segment. Alternately, the left segment could be deleted by moving all of its pixels into

the right pane.

Editing a boundary. The location of a boundary can be easily modified by moving pixels from one

side to the other. See Figure 2.4(b,c).

The most common operation is that of creating new segments. The other operations are provided

“for free” by the interface, since the pixel exchange editing paradigm supports them. We intended

the paradigm to be flexible so as not to force subjects to segment an image in any particular manner.

For example, both top-down and bottom-up segmentation styles are naturally supported. A subject

favoring top-down division can recursively split segments from larger to smaller pieces. A subject

favoring a bottom-up approach could repeatedly carve the leaf segments from the original image
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(a)

(b)

(c)

(d)

(e)

Figure 2.4: Segmentation Tool Editing Paradigm. The editing window of the segmentation tool (shown
here 10 times) supports a single flexible mechanism: moving pixels from one side to the other. Pixels selected
in one panel (by encircling them with a closed contour) simply move to the other panel. (a) We begin with all
pixels in a single segment. The user moves pixels to the empty right panel to create a new segment. (b) The
user moves the extraneous background pixels back, but makes a mistake on the neck contour. (c) The neck
contour is cleaned up. (d) The user has selected the background segment and carved out a beak segment. There
are now 3 segments total. (e) The user merges the beak and left bird segments, leaving 2 segments total. This
is not a realistic editing session, but is meant to be illustrative. The image is drawn as a faded backdrop in each
panel to orient the user. Note that the selection contour can contain freehand sections (by dragging the mouse)
and straight-line sections (by clicking). The contour is closed with a right-click, at which time the pixels are
moved. Straight-line sections are particularly useful when segmenting man-made structures. Low-curvature
contours are also more efficiently traced in linear pieces rather than freehand.
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Figure 2.5: Segmentation Tool Windows. The main window (left) shows the current state of the
segmentation. There are 8 segments, outlined in green. The two segments outlined in red are
selected, and so are shown in the editing window (right).

segment. In addition, the tool does not constrain the user to define a new segment in one step.

Figure 2.4(a-c) shows how a new segment can be carved out of an existing segment in multiple

steps. Again, there is no new operation involved; the editing paradigm provides it for free.

Note that there is no constraint that segments be contiguous. Subjects are free to create dis-

continuous segments, which is often natural when one object is split up into several segments by

occlusions.

Windows

The tool consists of two windows: the main window and the editing window (see Figure 2.5). The

main window shows the current state of the segmentation as neon green contours overlayed on the

image. Both the display of the image and the contours can be toggled.

The user selects segments by clicking on them in the main window. Any selected segment has a

red contour to distinguish it from the unselected segments with green contours. From 0 to 2 segments

may be selected at any moment. Selected segments appear in the editing window. A plain click in

the main window will place the newly selected segment in the editing window with the other panel

empty. The segment can then be split, if that is the user’s intention. If not, another segment can be

placed alongside the first in the editing window by selecting a second segment in the main window
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with a shift-click. The two segments may then be merged or otherwise edited, as described above.

The editing window is not modal. Any changes made to the segments in the editing window are

immediately reflected in the main window. Modal interfaces tended to confuse users.

Undo Support

Though the editing interface is rich enough to easily compensate for any conceivable editing mistake,

our testors universally requested undo support. The power and simplicity of a good undo model

cannot be overstated. We therefore implemented two levels of undo support: fine and coarse. All

undoable operations can be redone.

The fine level undo operates within the editing window during the process of selecting pixels. As

described in Figure 2.4, pixels are selected by encircling them with a contour drawn with the mouse.

The contour is a polygon defined by a sequence of points laid down by the user. By dragging the

mouse, the user lays down points at a rapid rate to provide the illusion of a smooth contour. Single

mouse clicks lay down single points, so that piecewise linear contours are easy to construct. The

fine level of undo permits the user to remove the most recent point of the contour. The contour can

be undone back to the first point of the contour.

Completing a contour in the editing window, which causes pixels to move from one pane to the

other, defines the undoable unit for the coarse level of undo. At this point, the fine level undo/redo

operations are no longer available. Undo will undo the entire pixel-move operation. The segmen-

tation is evolved by a sequence of such operations, and these can be undone and redone without

limit.

Pan and Zoom

Both windows support flexible pan and zoom. Since the contours drawn by the user to select pixels

in the editing window conceptually fall between pixels, we do not smooth the zoomed image in

order to keep the task clear. With a 2x to 3x zoom, virtually any contour can be drawn at pixel

accuracy with modest practice. Note that the two panes in the editing window are linked to the same

scrollbars, so that they pan in unison.

Discussion

After a few hours of practice, subjects were able to segment an image to single-pixel accuracy in 5 to

30 minutes, depending on the complexity of the image and the subject’s ability. Our fastest subjects

were consistently 2-4 times faster than our slowest subjects. Had we been more resource limited in

the project, we could have retained only the more efficient subjects because it was generally obvious
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after 5 hours of work how fast the subject would be. In all, considering the tedium of the task, we

were greatly pleased at the efficiency they achieved.

One of the greatest motivations for us to build a custom tool in Java was that it can be run

from virtually any computer over the Internet. Some subjects were approved to work at home,

which allowed us to support 30 subjects with a lab of only four PCs. We had hoped to recruit more

subjects over the Internet, perhaps providing motivation with a reward or prize. However, the task

of segmenting an image is a bit too time-consuming and the learning curve too long for this option.

Our time was better spent training a smaller number of dedicated, paid subjects.

The issue of discontinuous segments was a problem for many of the subjects. Few seemed to

understand the utility of the concept, and discontinuous segments were not used consistently by

any subject. These consistency problems are probably a deficit of the tool itself, as it is difficult to

distinguish a discontinuous segment of two pieces from two separate segments in the main window.

(In the editing window it is very clear, since each panel always contains zero or one segments.)

When using the segmentation data we recommend breaking up all discontinuous segments into their

connected components, which is what we do for all our experiments.

2.1.3 Image Selection and Presentation

I selected 1020 images from 30,000 images in the Corel image dataset. The images were chosen

to be a representative sampling of the wide variety of images in the Corel dataset, with synthetic

and abstract images removed. We deemed synthetic images, such as images of marble texture,

and abstract photographs, such as images of the reflections of neon signs in wet sidewalks, to be

inappropriate for our segmentation task, since those images do not contain distinct objects. The

majority of the images are of animals in natural scenes, but there are also many images of people,

man-made structures, and urban scenes. Figure 2.6 shows a representative sample of the image set.

The segmentation tool was set up as a client in conjunction with an image server. Subjects would

log into the system using their unique subject ID. Each time the subject would request a new image

to segment, the tool would contact the server to request a task. The server would choose a random

image while imposing certain constraints on the choice:

1. The subject should not see any image more than once.

2. Each image should be segmented by multiple subjects, but as few images as possible should

be segmented by exactly the same group of subjects.

3. No image should be segmented more than N times.

4. Images that have been segmented by other subjects were given priority, so that we obtain a

stream of “completed” images as time progresses.
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Figure 2.6: Example Images. 36 randomly selected images from the dataset. The images are of
complex, natural scenes with a wide variety of subject matter.
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(a) (b) (c)

Figure 2.7: Image Presentation. Examples of the three ways images were presented to subjects.
(a) Color, (b) Grayscale, (c) Inverted and negated grayscale (“invneg”). The dataset contains 5555
color segmentations of all 1020 images, 5554 grayscale segmentations of the 1020 images, and 486
inverted-negated segmentations of 102 images. We may determine what role color had in the sub-
jects’ task by comparing the color and grayscale segmentations. The inverted-negated transforma-
tion is intended to disrupt high-level cues involving shadows, reflections, perspective, and familiar
configuration, without changing the low-level statistics of the images.
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The images were placed in a canonical random order. For each image request, the server would

choose randomly from the next W images that satisfied the constraints, where the window size W

was set to 100. The client-server architecture was ideal because we could vary the constraints over

time to match the throughput achieved by our subjects. Completed segmentations were also sent to

the server, facilitating automatic backup of the data.

In addition to picking the image for a subject, the server would choose a presentation mode.

Figure 2.7 shows the three ways in which images were presented to the subjects for segmentation:

full color, grayscale, and inverted-negated grayscale. The subjects could not change or choose the

presentation mode of the image. The server would choose it randomly, ensuring that each image was

segmented the appropriate number of times in each presentation mode. The server was configured

to have each image segmented not more than five times in color and grayscale, and to have each

tenth image segmented not more than four times inverted-negated.

2.1.4 Data Structures

The advantage of the custom tool was that it produced an explicit partition of the pixels of an image

into disjoint sets. The segmentations were stored in this manner, as a map of pixels to segment

numbers. In addition to the segmentation data, each segmentation file contains the subject’s ID, a

timestamp marking the creation time of the segmentation, and the presentation mode.

2.1.5 The Dataset

In all, after 8 months of data collection from 30 subjects, we have 11,595 segmentations of 1,020

images. There are 5,555 color, 5,554 grayscale, and 486 inverted-negated segmentations. Every

image is segmented a minimum of 5 times in color and 5 times in grayscale. Every tenth image is

segmented �4 times inverted-negated. Figures 2.8 and 2.9 show example segmentations.

2.2 Dataset Integrity

As Figures 2.8 and 2.9 shows, the segmentations produced by different humans for a given image are

not identical. But, are they consistent? The integrity, and indeed the utility, of the dataset depends

on a positive answer to this question.

2.2.1 Human Variability

Ignoring for the moment differences that arise from boundary localization errors, two subjects may

segment an image differently for any of several reasons:
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Figure 2.8: Example Human Segmentations I. Segmentations randomly selected from the dataset.
Each row contains three segmentations of the image in the first column by three different subjects.
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Figure 2.9: Example Human Segmentations II. Segmentations randomly selected from the dataset.
Each row contains three segmentations of the image in the first column by three different subjects.
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Different percepts. If two subjects perceive the same scene in two different ways, then they may

see different objects and produce different segmentations.

Attention. Subjects may attend to different parts of the scene to different degrees, and may therefore

over-segment (in a relative sense) the objects of focus, and under-segment the objects to which

they did not attend.

Refinement. Two subjects may segment an image identically in all regards, except that one subject

may divide objects into smaller pieces than the other subject did. In other words, subjects may

segment at different granularities.

The last two effects produce variation between segmentations, but not inconsistencies. We would

like to show that the variation in the segmentation dataset is predominantly caused by these two

effects, and that the effect of different percepts is non-existent, or at least minimal.

Our working hypothesis is that all subjects share the same percept, and each subject’s segmenta-

tion is a sample from that percept. Under the assumptions discussed previously — namely, ignoring

translucence and shadows — we can model any perception of a scene as a tree. Consider Fig-

ure 2.10. The root of the tree represents the entire scene or image, and each pixel is represented by a

leaf node. The internal nodes and their connections provide a complete hierarchical decomposition

of the image into object groups, objects, and object parts. This hierarchy is akin to Palmer’s whole-

part structure [50] as a model for the perceptual organization of a scene. We will call this tree the

percept tree.

The segmentation that a subject produces is a flat decomposition of the image into pieces. This

segmentation must represent a cut through the subject’s percept tree. Figure 2.11 shows an image

from the dataset, and three subjects’ segmentations of the image. The segmentations are far from

identical, but do not seem contradictory. The reason is that each segmentation (and hopefully the

reader’s percept also!) is consistent with a single percept tree, and all the differences can be ex-

plained by selective refinement. Note that two segmentations may be refinements of each other in

different regions of the image. We term this mutual refinement.

Our hypothesis is that there exists a single percept tree that can explain all subjects’ segmenta-

tions of an image. Why do we not suppose that all subjects share the same percept tree? Although

the flat decomposition of an image into objects and object parts seems relatively unambiguous, the

grouping of objects at the top levels of the tree is quite subjective. Objects may be grouped by any

number of valid criteria, such as physical appearance, function, scene interaction, or depth ordering.

Fortunately, permutations of the tree that occur above the level of the cut represented by a subject’s

segmentation cannot change the segmentation. Since we instructed the subjects to segment below

the object level, different subjects’ interpretations of how to group objects should not be observable
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Basket Water Rail Trees Sky
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Figure 2.10: Percept Tree. The percept tree depicts the hierarchical decomposition of a scene that
is presumably present in its percept. The root of the tree represents the entire scene, or image.
Each image pixel is a leaf in the tree, although the figure shows only the top three levels. The tree
represents the hierarchical grouping of pixels into object parts, object parts into objects, and objects
into groups.
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Figure 2.11: Examples of Refinement. Refinement characterizes most of the variation in the dataset.
(a) An image from the dataset along with one possible percept tree. (b)-(d) Three subjects’ seg-
mentations of the image with the subset of the percept tree that the segmentation represents. Al-
though these three segmentations are superficially different, they do not seem inconsistent with each
other. This is because they are all readily explained by the same percept tree. All of the objects
are segmented consistently; it is simply the degree to which each subject further segments, or re-
fines, each object that changes. Note that mutual refinement is common, when two segmentations
are refinements of each other in different regions of the image. Figure 2.12 shows an example of
segmentations that do not share a percept tree.
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Figure 2.12: Example of Inconsistent Segmentations. This figure shows two additional segmenta-
tions of the image used in Figure 2.11. In this case, the two segmentations are not consistent with
one another because there is no single hierarchical decomposition of the scene that can explain both.
The inconsistency is manifested as overlapping, rather than nested, segments. The right subject’s
shadow segment spans two rock segments in the left subject’s segmentation.

in the dataset.

2.2.2 Human Segmentation Consistency

It is often stated that segmentation is an ill-posed problem. We will show that this is not the case by

showing that segmentations of the same image by different subjects are consistent with each other.

If two segmentations are consistent, then they are each cuts through some percept tree. In this case,

if we pick a pixel in the image and consider the segment in each segmentation that contains that

pixel, then the two segments must have a subset relationship. If one segment does not contain the

other, then the there can be no common percept tree, and the segmentations are inconsistent. We

can formulate a segmentation error measure based on these ideas that tolerates refinement but not

overlapping regions.

First we define a quantity E(S1; S2; p) called the local refinement error, which measures the

degree to which two segmentations S1 and S2 agree at pixel p. Let R(S; p) be the set of pixels in

segmentation S which are in the same segment as pixel p. Where j � j denotes cardinality and �n� set

difference,

E(S1; S2; pi) =
jR(S1; pi)nR(S2; pi)j

jR(S1; pi)j
(2.1)
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Note that this quantity is not symmetric: it is defined in two directions at each pixel. E(S 1; S2; pi)

is 0 when S1 is a perfect refinement of S2, and 1 when S1 is disjoint from S2.1 We will consider

two ways to combine the pixelwise errors into an overall segmentation error measure, depending on

what type of refinement we would like to permit.

Local Consistency Error permits refinement in different directions in different parts of the image:

LCE(S1; S2) =
1

n

X
i

min
�
E(S1; S2; pi); E(S2; S1; pi)

	
(2.2)

Figure 2.13 depicts the computation of LCE for a pair of segmentations. The error measure penalizes

both boundary localization error and refinement error in a soft manner.

Global Consistency Error (GCE) forces all local refinements to be in the same direction, i.e.

from one segmentation to the other:

GCE(S1; S2) =
1

n
min

(X
i

E(S1; S2; pi);
X
i

E(S2; S1; pi)

)
(2.3)

Note that GCE is stricter than LCE, so GCE>LCE. Since mutual refinement is common in the

dataset, and since mutual refinement does not produce the perception of inconsistency, we favor the

LCE measure over the GCE measure. It is worth noting that no qualitative result changes when we

use GCE instead of LCE.

In addition to being tolerant to refinement, a segmentation error measure should also have the

following properties: (1) Independence from the coarseness of pixelation, (2) Robustness to noise

along region boundaries, and (3) Tolerance to different segment counts between the two segmen-

tations. Both measures clearly satisfy (1). They also satisfy (2), since the error measures pool the

local refinement error over the interior of regions. Property (3), however, is a potential problem.

Degenerate segmentations that have either 1 region for the entire image or 1 region per pixel will

have a zero LCE when compared to any other segmentation. Although these extreme cases will be

a concern when we later attempt to use these error measures to compare machine segmentation to

the human segmentations, they are not a problem for validating the dataset. At this point, we care

only that the human segmentations are consistent with each other. Excessive refinement does not

represent an inconsistency and is uncommon in the dataset anyway.

The top panel of Figure 2.14 shows the distribution of LCE over the dataset for both same-image

and different-image pairs, comparing pairs of color segmentations. If the measure is meaningful and

the data consistent, then we expect the same-image and different-image distributions to be separable.

We see that the distributions for same-image pairs is as desired: it is unimodal and peaked at zero

1But they must share at least 1 pixel.
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S1 S2

E(S1; S2) E(S2; S1) LCE(S1; S2)

Figure 2.13: LCE Computation Example. Given two segmentations S 1 and S2, we first compute
the local refinement error images E(S1; S2) and E(S2; S1), which measure the degree to which one
segmentation is a refinement of the other segmentation at each pixel. The pixelwise min of these two
images yields the LCE image, and the average pixel value of the LCE image gives the LCE measure
for these images, in this case 0.082. Pixel values are zero (white) in areas of perfect refinement, and
1 (black) in areas of inconsistent overlap.
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Figure 2.14: Distribution of LCE. The distribution of local consistency error (see Equation 2.2) for
pairs of human segmentations. The solid lines show the distributions for segmentations of the same
image; the dashed lines show the distributions for segmentations of different images. The fraction
of overlap is shown below the legend as Bayes Risk (BR). The labeled vertical dotted lines mark the
median values for each distribution. The first graph shows color segmentations compared to color
segmentations; the second graph shows grayscale segmentations compared to color segmentations;
the third graph shows inverted-negated segmentations compared to color segmentations. The hu-
man segmentations show a great deal of consistency, with the same-image distributions peaked at
zero error. The grayscale and color segmentations are nearly identical, while the inverted-negated
segmentations show significantly higher error.
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LCE Same Image Different Images
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Figure 2.15: Example Pairs at Various LCE. Some examples of segmentation pairs at five values
of LCE. In the same-image column, we see more agreement at lower LCE values. The different-
image pairs do not seem to show the same trend, because of the problem LCE has with degenerate
segmentations. The rightmost segmentation in the first row will compare favorably with nearly
any other segmentation because all the segments are very small; any other segmentation is a good
refinement of it. The same problem is present for the different-image pairs at LCE=0.05. The
different-image pairs at LCE=0.1 show a fortuitous alignment of the figure in the center of the
image.
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with a light tail, with a median value of 0.042. The different-image pairs have larger error on average

(0.3), so that the two populations are separable with a Bayes Risk of 4.7%. It is a bit disappointing,

however, that there is a significant density of different-image pairs below the Bayes threshold. What

do these pairs look like? Figure 2.15 shows both same-image and different-image pairs at a range

of LCE values. The figure confirms that lower LCE corresponds to greater consistency, and that the

different-image pairs with low LCE correspond to somewhat degenerate segmentations.

In addition to comparing pairs of color segmentations, Figure 2.14 shows the result of compar-

ing grayscale to color segmentations (middle panel) and inverted-negated to color segmentations

(lower panel). The progression from color to grayscale to invneg represents a monotonic decrease

in information: first, we remove color, and then we remove some high-level cues relating to per-

spective and familiar configuration. We would like to know what effect these presentation modes

had on the segmentation task. Though there is a miniscule increase in error 0.042 to 0.043 from

color to grayscale, the error increases significantly to 0.051 for the inverted-negated segmentations.

This supports our intuition that removing color should not affect the subject’s task of segmenting the

image. In contrast, the inverted-negated transformation was successful at removing some high-level

information. Further study is needed to determine the nature of the lost information.

2.3 Discussion

We learned a few lessons in this endeavor that may be useful to those who might build similar

datasets in the future.

2.3.1 Dataset Parameters

The first set of issues relates to the basic parameters of the dataset. Did we use enough images?

Did we have enough segmentations per image? What was the utility of the grayscale, color, and

inverted-negative modes of image presentation?

There is no doubt that in the future, a dataset of 1000 images will seem small. However, at

this time, we have found 1000 images to be sufficient. This judgment is based more on the practical

limits of current computing power than on the information content of the dataset. Most segmentation

or boundary detection algorithms take minutes or hours of CPU time per image. Evaluation of these

algorithms requires many executions per image. Even with the U.C. Berkeley Millennium cluster at

our disposal – a PC cluster containing 250 CPUs with a total of 150GB of memory and an aggregate

125 GHz – we are pressed to use all of the images in our benchmarking work. This issue will

disappear over time as computers continue their exponential speedup, and so the more interesting

question relates to the content of the data. Do the 1000 Corel images capture enough of the variation

31



CHAPTER 2. A DATASET OF HUMAN SEGMENTED NATURAL IMAGES

in the world?

The general answer to this question is surely not, but it depends on the task. We have been using

the dataset primarily to explore issues in low-level vision having to do with boundaries and texture.

The 1000 481x321 pixel images provide 150M pixels total. If we are concerned with the statistics

of local image patches, the dataset appears to be large enough. However, the more high-level the

task, the smaller the dataset will seem. Our future experience with this data will provide guidelines

for how much data one needs for higher-level studies.

As for the number of segmentations per image, again the answer depends on the task. The

work in subsequent chapters requires only that the dataset contain statistical trends that distinguish

boundary pixels from non-boundary pixels. Even one segmentation per image would provide this

information. If one requires a canonical segmentation for an image that does not miss any objects,

then our dataset will be sufficient only for the images that are not too complex. When using the

data, it is important to remember that the subjects’ segmentations provide a sampling from the full

segmentation tree, and so the segmentations should be interpreted in a probabilistic framework. It

would certainly be interesting to attempt to construct a more strictly structured dataset that contained

less inter-subject variation.

What about the different presentation modes? It appears that color played very little role in the

task performed by the subjects. In retrospect, this is not terribly surprising. The subjects viewed

each image for many minutes, during which time they were able to construct a complete mental

model of the scene. There is no evidence that color is required for this type of task. Color would

likely affect more short-term tasks related to the first object of focus, or more complex tasks such as

judging the ripeness of fruit, but color should not greatly affect the basic perception of the structure

and spatial arrangement of objects.

The inverted-negated segmentations are potentially more interesting. The intention of this trans-

formation was to leave low-level image statistics unchanged, and to disrupt various mid-level and

high-level cues related to the processing of shadows, the perception of depth, and the special treat-

ment of familiar objects and configurations. Some images are difficult to decipher when inverted and

negated, but most are not. One is generally able to mentally undo spatial inversion. Many objects,

such as leaves and rocks, have no preferential orientation to start with, so inverting the image has

little effect on them. Negating pixel values, on the other hand, is far more disruptive, since human

perception is not based simply on local luminance differences. For example, shadows are dark and

often not consciously perceived, while shadows in an inverted image are white and become difficult

to ignore. It is possible, then, that shadows are more often marked in the inverted-negative segmen-

tations. Qualitatively, this claim appears to be true, but we do not have any quantitative measures

to prove it. In general, the effects of the inverted-negative transformation are difficult to analyze
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because our ability to quantify mid-level and high-level vision concepts is so limited. However, we

have found the inverted-negated segmentations to be both quantitatively different (at the low-level)

and qualitatively different than the color and grayscale segmentations.

2.3.2 Task Description

We made every attempt to use naïve subjects untrained in computer vision to get unbiased data. In

addition, the subjects’ instructions were intentionally high-level to keep the task rooted in lay terms.

Despite these precautions, subjects still asked questions we did not want to answer.

Shadows and reflections were a popular issue. Should they be segmented? Are shadows objects?

Some subjects were content to ignore shadows completely. Others would seem to fixate on the

shadows and treat them as first-class objects. Perhaps artistic training played a role? One wonders

how often shadows are perceived by truly na ïve subjects. Reflections are less common in our dataset,

but the same issues arose. When pressed, we suggested that shadows and reflections be segmented

if they seemed “visually important”.

Translucence was a more frequent phenomenon than expected, arising in the form of sparse

vegetation. Objects partially occluded by sparse vegetation are often easily perceived. The amodal

completion performed by the human visual system seems particularly strong in this situation, where

occlusions are many, but the gaps short. The perception is one of translucent vegetation, though

strictly speaking the vegetation is not translucent. When the fine structure of vegetation falls below

the image resolution, pixels cannot be divided between the vegetation and the occluded object. A

layered model would be appropriate in this situation.

Human bodies were another interesting issue. Most of our subjects would systematically under-

segment (from our perspective!) human figures. We would often get a single segment for each

human in the image, even when the person’s different pieces of clothing were the most distinct

regions in the image. There is no inconsistency here, but other objects were not treated with such

reverence. It is not surprising that human figures would receive special treatment by our perceptual

systems, and the nature of this special treatment warrants further study. One possible explanation is

that human figures can be segmented using two rather different hierarchies: one based on body parts

and one based on clothing. The whole figure is the common ancestor of two conflicting perceptual

hierarchies, and our subjects were uncomfortable either choosing one over the other or mixing the

two. We explicitly instructed subjects that if they were to divide a human or animal into pieces, their

segmentation should be based on visual appearance and not body parts.

Faces seemed to receive more scrutiny by our subjects than any other object class. Some subjects

would routinely mark the eyes and mouth (and sometimes eyeballs and teeth) of any face in the

image — human or animal — even when those regions were very small. I reminded subjects with
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this tendency of the instructions to ensure that all segments should be of “approximately equal

importance”.

The final area in which subjects seemed to disagree was in the segmentation of background

regions. The Corel images are not random images. They are “interesting” photographs, often with

central figural objects at the camera’s focal depth. Backgrounds are consequently often a bit out of

focus. Some subjects would segment only the figural objects, while some would also segment the

background. We encouraged subjects to attend to all areas of the image.

2.3.3 Subject Training

One of the motivations for writing the segmentation tool in Java was that it could be run from any

computer connected to the Internet, and some subjects were permitted to work from home once

they had demonstrated sufficient aptitude. We had plans to recruit subjects on the Internet, enticing

people to segment images for us with prizes, eye candy, or simply the knowledge that they were

advancing human understanding. This latter motivation actually worked for the NASA Clickworkers

project [54], where subjects annotated craters on the surface of Mars.

Unfortunately, our segmentation task proved too complex (and boring) to rely on charity. The

training proved more involved than we expected, and so we valued our trained subjects highly.

However, the staggering scale of the Internet offers a source of human subjects provided the task

is fast and requires little training. More focused projects than ours might be able to leverage this

resource.

2.4 Future Work

The inverted-negated protocol is simple to use in an experiment, but we have not found satisfactory

use for the data yet. One reason, perhaps, is that our data representation is too simple, so that we

cannot identify the high-level patterns in the data that the inversion-negation is designed to disrupt.

For this reason, and because each is independently worthy of study, future datasets should address

some of the following issues:

� Layers. Translucent objects, sparse vegetation, and shadows break our strict one segment per

pixel model. Permitting a pixel to belong to multiple segments, perhaps in a layered model,

would avoid some of the problems we had with these issues.

� Shadows. Shadows are important enough to be segmented and tagged separately from the rest

of the scene.
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� Shape and Figure-Ground. One could study the depth-ordering of objects by labeling the

figure and ground sides of each segmentation boundary. In addition, it is difficult to study the

shape of objects without knowing to which object a contour belongs. We are currently adding

figure-ground annotations to the segmentation dataset.

� Hierarchies. Segmentation is inherently hierarchical, so it would make sense to have subjects

construct the hierarchy that they perceive. This additional information could be added to the

current dataset through annotation, though there is not always a single hierarchy for an object.

2.5 Conclusion

We have presented a new dataset of segmentations of natural images by na ïve human subjects con-

taining �12,000 segmentations of �1,000 images. The images are taken from the Corel dataset. As

a result, the images are of complex, natural scenes with no bias towards simplicity. The “difficult”

phenomena of shadows, multiple scales, and texture are ubiquitous in the dataset, as they are in the

natural world. The procedures we used to construct the dataset are fully disclosed in this document.

In addition to the data itself, our segmentation tool is available for download from the Internet.

Although the segmentations of an image by different subjects are often superficially different,

they appear qualitatively consistent. It is inconceivable that we would get identical segmentations

from different subjects, due to the complexity of the task. However, assuming that the subjects

share the same percept, segmentations of a single image should form an equivalence class. Our

model of inter-subject variation is based on the notion of a common percept, so that the variation

is characterized by refinement along with small boundary localization errors. The segmentation

error measure LCE permits variation that can be explained by refinement, and penalizes all other

sorts of variation. The data supports this as a model for human variation, verifying both that the

dataset is consistent and that the error measure is a useful means of comparing two segmentations

for equivalence.

Since there are multiple segmentations per image, the dataset does not provide a single ground

truth segmentation for an image. Instead, it is the collection of human segmentations that constitutes

the ground truth. Two of our motivations for constructing the dataset were to (1) show that the seg-

mentation task is well defined, and (2) to provide a quantitative means of evaluating segmentation

algorithms. In this chapter, we have shown that the task is indeed well defined by measuring the con-

sistency of the human subjects. Since the subjects are consistent, we can use the dataset as the basis

for a benchmark. The next chapter will treat the issue of finding good measures for benchmarking

in detail.

With the introduction of a large segmentation dataset, we have laid the foundation for the quan-
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titative evaluation of segmentation and boundary-detection algorithms. The dataset is also a rich

source for the statistics of the boundaries and regions perceived by humans; it is likely to contain

much information useful for developing computer vision algorithms, as well as understanding hu-

man vision. We look forward to its use by the scientific community.
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Chapter 3

Segmentation Consistency Measures

In the previous chapter, we used a region-based segmentation consistency measure to determine

that different segmentations of the same image by different subjects are consistent. The measure

of consistency was based on the observations that segmentations are sampled from a perceptual

hierarchy and that differences based on refinement are consistent with a single percept. This leniency

was required because we did not have any control over the granularity of the segmentations provided

by the human subjects.

One of the primary goals of constructing the dataset was to provide a means of benchmarking

various grouping algorithms. These algorithms invariably have a parameter that controls the scale of

grouping, since scale-selection remains a difficult and unsolved problem. To more robustly evaluate

an algorithm, we therefore choose to evaluate it over all choices of its scale parameter. At each

parameter setting, we will measure the degree to which the algorithm output predicts the human

data.

In this task, our primary concern is one of discriminating more effective algorithms from less

effective ones. We have found that instead of focusing on refinement as we did in Chapter 2, we get

more robust measures of performance by testing an algorithm’s output against the human data for

equality. Though for any single image, one human subject may over-segment one area compared to

another, this effect is greatly reduced if we use all subjects’ segmentations of an image as the ground

truth.

This chapter presents the evaluation techniques that we use in subsequent chapters to evaluate

algorithms. Both boundary-based and region-based techniques are presented. The techniques will be

illustrated in this chapter by comparing human segmentations to each another, in the same manner

as in the previous chapter. This will simplify the presentation, while at the same time providing

further evidence for the consistency of the segmentation dataset.
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3.1 Statistical Methods

Before delving into the details of the various segmentation consistency measures, it will be useful

to review two statistical evaluation techniques that will arise repeatedly in the remainder of this

dissertation. Both techniques provide the means of comparing a classifier’s output with the human

ground truth dataset in order to quantify the classifier’s performance.

3.1.1 Mutual Information

Assume that we can formulate a particular vision problem as a binary classification task, so that the

ground truth human data provides the ideal classifier output S 2 f0; 1g. An algorithm will produce

Ŝ, an estimate of S computed from the image data. In order to evaluate the accuracy of the estimate,

we can compute the mutual information I between the classifier output Ŝ and the ground truth data

S. Given the joint distribution p(x; y) =P (S=x; Ŝ= y), the mutual information is defined as the

Kullback-Liebler divergence between the joint and the product of the marginals:

I(S; Ŝ) =

Z
x;y

p(x; y) log
p(x; y)

p(x)p(y)
(3.1)

The mutual information is non-negative. Higher values connote greater agreement with the ground

truth, and therefore a better classifier.

Note that S is binary valued. If Ŝ is provided by a human segmentation that has been removed

from the ground truth dataset — as is done in this chapter — then Ŝ will also be binary valued. If,

however, Ŝ is provided by an algorithm, then it may be real-valued. In a probabilistic framework,

for example, Ŝ 2 [0; 1]. In this case — which we will see in later chapters — we compute the joint

distribution by binning the classifier’s soft output.

3.1.2 Precision-Recall Curves

Though an information theoretic approach such as mutual information can produce a useful method

for ranking algorithms relative to one another, it does not produce an intuitive performance measure.

Thus, we turn to a richer evaluation tool: precision-recall curves. A standard evaluation technique

in the information retrieval community [58], we have found the precision-recall framework to be

both effective and intuitive. Furthermore, it is more appropriate for our purposes than the related

receiver operating characteristic (ROC) curve or the Bayes risk, which is a summary statistic of

the ROC curve. The problem with the ROC approach is that it considers the total error made by a

classifier, from both classes weighted equally. When the classes are not balanced, the dominant class

is easier to detect, and performance reported by ROC curves can be grossly exaggerated. In contrast,
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precision and recall focus on the rarer class, and therefore do not reward the correct detection of the

easy common case.

A precision-recall curve is a parameterized curve that captures the trade-off between accuracy

and noise as a detector’s threshold varies. Precision is the fraction of detections that are true positives

rather than false positives, while recall is the fraction of true positives that are detected rather than

missed. In probabilistic terms, precision is the probability that the detector’s signal is valid, and

recall is the probability that the ground truth data was detected.

These two measures are particularly meaningful for a classifier that is a detector of a sparse signal

X , so that the two classes are X and ~X. For such a detector, we are interested in how many true X

were missed (recall), and how many declared X were true (precision). A downstream application

may be characterized in terms of how much true signal is required to succeed and how much noise

can be tolerated. Recall gives the former, and precision the latter. A particular application can

define a relative cost � between these quantities, which focuses attention at a specific point on the

precision-recall curve. The F-measure [58], defined as:

F =
1

�P�1 + (1� �)R�1
(3.2)

captures this trade-off as the weighted harmonic mean of P andR. The F-measure is valued between

0 and 1, where larger values are more desirable. The location of the maximum F-measure along a

precision-recall curve provides the optimal detector threshold for the application given �, which we

set to 0.5 in our experiments. The curve’s maximum F-measure can be used to characterize the curve

with a single number. When two precision-recall curves do not intersect, the F-measure is a useful

summary statistic.

In this chapter we will compare human segmentations to each other, so the “detector” will be

binary valued. In this case, varying the detector threshold has no effect on precision and recall,

so the precision-recall curve degenerates into a single point. In later chapters when we consider

algorithmic detectors, we will see full precision-recall curves.

3.2 Boundary-Based Segmentation Consistency

By discarding segment membership information, a segmentation can be regarded as simply a bound-

ary map. Are the subjects consistent when the segmentations are compared as boundary maps? We

developed a boundary-based error measure with an eye towards later needing a way of comparing

machine-generated boundary maps to the human segmentations.
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3.2.1 Correspondence as Minimum-Cost Assignment

Given two segmentations, we will correspond little pieces of boundary, or edgels. An edgel is an

oriented edge fragment which has an image-plane position (x; y; �), and a length equal to 1 pixel

unless otherwise noted. The error will be the proportion of edgels that cannot be corresponded. The

naïve approach of simply corresponding collocated edgels will not work. As we wish to remain

tolerant of localization error along boundaries, the matching must be soft with respect to position.

Consequently, we resort to bipartite matching, where the cost of matching two edgels is proportional

to their similarity in terms of spatial location and orientation.

The segmentations represent a partition of the pixels into disjoint sets. Any two adjacent pixels

that are not in the same segment generate an edgel that is the boundary between the two pixels. The

edgel itself has orientation � = 0 or � = �=2, but that is not the orientation we will use. Instead,

we estimate the true boundary orientation as shown in Figure 3.1. Since we know the segment

membership of each pixel, we can follow the segmentation boundary s steps in each direction out

from the edgel of interest, continuing as long as the segments on each side of the boundary remain the

same. Note that the search will stop at junctions because segment membership changes there. I used

s = 4 to get the local edgel neighborhood of the edgel whose orientation we wish to estimate. The

cloud of points given by the edgel centroids looks like the local boundary itself. The first eigenvector

of the covariance matrix of these points yields the direction of maximal variance, and therefore the

orientation of the boundary. Though we have no baseline with which to evaluate the orientation

estimates, qualitative inspection verifies that the boundary orientations are estimated accurately at

all but the highest curvature points, even at junctions.

We now need to measure the similarity between two segmentations represented as bags of ori-

ented edgels. Consider the complete bipartite graph where the nodes represent edgels, and the edge

weights are given by the similarity between the two edgels. The minimum-cost perfect matching of

this graph provides a correspondence between the edgels of each segmentation.

There are a few practical details to work out. First, we must define the edge weights. Without

orientation information, the most natural edge weights would the the Euclidean distance between

the two edgels. In order to match intersections and corners accurately, we augment the edge weights

with an orientation term:

w =
p
�x2 +�y2 + �

�
j��j
�=2

�
(3.3)

The value of the scaling parameter � is specified below. Orientation differences j��j are limited to

the range [0; �=2]. A low edge weight requires both spatial proximity as well as similar orientation.

The second practical detail is that the two edgel sets are not likely to have the same cardinality,
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(a)

(d)(c)

(b)

Figure 3.1: Estimating Human Segmentation Boundary Orientation. The segmentation boundaries
run between pixels. We divide the boundary into edgels, where an edgel is the border shared by two
adjacent pixels. In order to estimate the orientation of an edgel, we find the nearby edgels on the
same boundary. The SVD of the centers of these nearby edgels yields an estimate of the edgel’s
orientation. (a) The original image. (d) The subject’s segmentation. Panels (b) and (c) show the
zoomed views of the areas marked in (a). In (b) and (d), segmentation boundaries are drawn in gray,
and the edgels are drawn in black at their estimated orientation.
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producing an asymmetric assignment problem. The standard trick for asymmetric assignment prob-

lems is to make them symmetric by padding the smaller side with outlier nodes. Edges to outlier

nodes carry large weight, so that they are used in the assignment only when necessary. Nodes that

match with outlier nodes are considered unmatched.

The assignment problem constructed thus far seems good until one tries to implement it. The

problem has 2n nodes and n
2 edges, where n is the number of edgels in a segmentation. For our

dataset, n commonly ranges from 1,000 to 10,000. Occasionally, we will wish to solve problems

with n = 100,000. The best algorithms [29, 7] operate in the regime between O(n 2) and O(n3),

which is far too slow. By making the problem sparse and using the appropriate sparse algorithms,

we can achieve tremendous speedup.

The vast majority of edges in the dense bipartite graph represent high-weight long-range connec-

tions between edgels and are superfluous for our task. We simply wish to find the edgels that corre-

spond out to some small distance/orientation tolerance, and the edgels that don’t. We can therefore

replace the high weight edges with outlier connections without affecting the resulting thresholded

assignment. In order to do this, we need to add outlier nodes on both sides of the graph, not just

the smaller side. At this point, we have a bipartite graph that is extremely sparse between the “real”

nodes, but still dense to and between the outlier nodes.

The overall sparsity has not changed much yet, but fortunately, the density of connections to and

between outlier nodes is overkill. The outlier nodes are all identical, and so outlier connections in

the final assignment can be freely permuted. This means that we can get away with sparse outlier

connections in the bipartite graph before matching. In fact, we can use a surprisingly small number

of connections per outlier node. The high connectivity properties of expander graphs permit this

optimization.

We use Andrew Goldberg’s CSA package [19] to solve the assignment problem in time that

appears to be linear in the size of the graph, and therefore linear in the number of edgels. Goldberg’s

min-cost max-flow codes use his push-relabel algorithm [21, 10], which are the fastest available for

the problem. In addition, the codes can easily handle our large problems.

One additional issue complicates the graph construction. CSA assumes the existence of a perfect

matching. We adopted Goldberg’s suggestion [20] of overlaying a high-cost perfect matching to

ensure termination. We can then verify that the matching found by CSA does not include any of

these high-cost safety-net edges.

In summary, we compare two segmentations S1 and S2 by computing a minimum cost assign-

ment of their oriented edgels. Figure 3.2 illustrates the bipartite graph we construct for the as-

signment problem. An edgel in one segmentation is connected in the graph to edgels in the other
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Figure 3.2: Bipartite Graph for Comparing Segmentations. We can compare two segmentations by
matching edge elements. The figure shows the construction of the bipartite graph for this matching
problem. The top panel contains an illustration of the 5 types of edges in the graph. The bottom panel
contains the adjacency matrix for the graph. The two segmentationsS 1 and S2 contribute n1 = 3664

and n2 = 4124 nodes to the graph after pruning isolated edgels. After adding outlier nodes to both
sides, we have a square n � n assignment problem, where n = n1 + n2 = 7788. The adjacency
matrix for the bipartite graph has a block structure. Each block contains the corresponding edges
from the top panel. The top-left block (A) contains the sparse local connections between edgels –
the only “real” edges in the graph. Blocks B and C contain random outlier connections, and block
D contains random outlier-to-outlier connections. The E edges lie on the diagonals of the B and C
blocks, providing the safety-net high-cost perfect matching. The entire matrix has 64,470 non-zeros,
for 0.1% density.
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segmentation only if the Euclidean distance is less than some threshold dmax.1 The edge weight

is given by Equation 3.3 with � = d
�1
max. If S1 has n1 edgels/nodes on the left side, and S2 has

n2 edgels/nodes on the right side, then we add n2 outlier nodes to the left and n1 outlier nodes to

the right. The high-cost perfect match overlay is added as parallel connections between nodes and

outliers with a weight of 20,000*dmax. Each “real node” has d additional edges to randomly selected

outlier nodes with weight 200*dmax. Finally, random outlier-to-outlier edges are added so that each

outlier is connected to at least d outliers. We found d = 6 to be sufficient.

3.2.2 Comparing Segmentations

We will first apply the boundary-based error measure to pairs of human segmentations. Given two

segmentations Si and Sj , the error is given by the fraction of edgels that match to outlier nodes.

Note that we get two numbers, since we have outliers on both sides of the match. Consider one of

the segmentations Sj to be the ground truth, and the other segmentation S i to be the signal. The

fraction of matched Si edgels gives us precision, since precision is the fraction of signal that agrees

with ground truth; the fraction of matched S j edgels gives us recall, since recall is the fraction of

the ground truth contained in the signal:

Si = Signal (3.4)

Sj = Ground Truth (3.5)

Rij = Pji = Fraction of Sj that matches Si (3.6)

Pij = Rji = Fraction of Si that matches Sj (3.7)

These labels for the outliers make more sense when the “signal” is the output of a machine vision

system, as it will be in subsequent chapters. Both precision and recall are valued between 0 and 1,

with larger values signifying greater consistency between S i and Sj . Figure 3.3 shows the result of

matching two segmentations from the dataset.

Figure 3.4 shows the distributions of precision and recall for both same-image and different-

image segmentation pairs. Unlike the region-based error measure LCE, neither precision nor recall

is tolerant to refinement, so two segmentations that are perfect mutual refinements of each other

may have precision and recall scores of zero! Precision and recall measure the similarity between

two segmentations as edge maps, so the values will be high only when the two segmentations have

coincident boundary contours.

1We set dmax = 1% of the image diagonal.
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S1 S1 Matched S1 Outliers

S2 S2 Matched S2 Outliers

Figure 3.3: Edgel Matching Example. The left column shows the two segmentations S 1 and S2

that we match by corresponding edgels. S1 has 2631 edgels, and S2 has 3355 edgels. The middle
column shows the 2165 edgels that matched. The right column shows the unmatched, or outlier,
edgels – 466 in S1 and 1190 in S2. The F-measure is 0.10.
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Figure 3.4: Distributions of Pairwise Recall and Precision for Edgels. The left column shows
recall, and the right column shows precision. In each panel, the solid line denotes same-image pairs,
and the dashed line different-image pairs. The median of each distribution is marked with a vertical
dotted line. The first row shows color-color pairs, the second row color-grayscale pairs, and the third
row color-invneg pairs. In each panel, we expect separable distributions because of the consistency
of the human data. Note the similarity between color and grayscale segmentations, and the marked
difference in recall for the inverted-negated segmentations. Lower recall indicates that the color
segmentations contain boundaries that the inverted-negated segmentation do not have. Figure 3.6
shows the same distributions for the leave-one-out regime.
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Figure 3.5: Distributions of F-Measure for Edgels. The F-measure combines the precision and
recall shown in Figures 3.4 and 3.6. This measure does an exceptional job of distinguishing the
same-image and different-image distributions for color and grayscale segmentations with a Bayes
Risk of 0.5%. The discriminative ability of this measure can be attributed to the fact that segmenta-
tions of different images are unlikely to have coincident boundary contours, while segmentations of
the same image seem to share at least 30% of their boundaries. Both the pairwise and leave-one-out
methods are equally robust.
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Figure 3.6: Distributions of Leave-One-Out Recall and Precision for Edgels. The layout is the same
as for Figure 3.4. For the different-image distributions, each segmentation is compared to a set of
randomly selected segmentations each from a different image. The size of the set is the same as what
would be used for the same-image comparison. Note the marked increase in precision compared to
Figure 3.4, since a union of human segmentations is more likely to contain all the boundaries marked
by the left-out human. Recall decreases slightly for similar reasons. Again we see the same trend,
that the inverted-negated segmentations show lower recall than the nearly indistinguishable color
and grayscale segmentations.
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The left column of Figure 3.5 shows the distributions of the F-measure for same-image and

different image segmentation pairs. The F-measure does a surprisingly good job of distinguishing

the two classes, despite its intolerance to refinement. It apparently takes only a small fraction of

aligned boundaries to identify same-image pairs.

The three rows in Figures 3.4 and 3.5 compare the color, grayscale, and inverted-negated seg-

mentations. In all cases, the color and grayscale segmentations are nearly identical. The inverted-

negated segmentations, however, exhibit markedly lower recall, implying that the color and grayscale

segmentations contain boundaries that the inverted-negated segmentation do not contain.

In addition to pairwise comparisons, we develop a leave-one-out methodology where one human

is compared to the collection of other humans. Given k segmentations fS 1 � � �Skg, we want a

measure that compares Si to the set of segmentations Sj , i 6= j. Here we consider Si the signal,

and the other k � 1 segmentation the ground truth. First, we compute the matching between each

segmentation pair (Si; Sj), i 6= j. These k � 1 matchings yield k � 1 precision and recall scores,

Pij and Rij . The aggregate recall Ri is simply the mean of the individual recall values.

The leave-one-out precision is more complex. Precision should be the fraction of signal that

matches with the ground truth. We declare that an edgel in S i matches the ground truth if it matches

an edgel in any of the Sj . The fraction of such edges yields the precision P i for segmentation Si.

The following summarizes the leave-one-out precision and recall computations:

Si = Signal (3.8)

Sj = Ground Truth;8i 6= j (3.9)

Ri =
1

k � 1

X
i6=j

Rij (3.10)

Pi = Fraction of Si that matches any of Sj ; i 6= j (3.11)

The leave-one-out precision and recall distributions are shown in Figure 3.6. Note that both

same-image and different-image distributions have shifted up the precision axis, since the with the

one-to-many comparisons, it is more likely that an edgel in S i matches some edgel in one of the

Sj . Likewise, the recall marginals have shifted down, since it is more difficult for S i to explain all

of the Sj than it is to explain only one. The right column of Figure 3.5 shows the corresponding

F-measure distributions. The distributions have shifted, and the Bayes threshold has moved, but the

separability of the distributions remains about the same as in the left column where the comparisons

are between pairs.
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3.2.3 Discussion

This segmentation consistency measure, based on corresponding edge elements, is appropriate for

evaluating machine-generated boundary maps. If an algorithm produces oriented edgels, then the

approach outlined above can be used unchanged. However, many boundary detectors simply classify

pixels as on-boundary or off-boundary. In this case, we can correspond boundary pixels instead of

oriented edge elements, and omit the orientation penalty from the edge weights in the bipartite graph.

If this approach is applied to the human-human comparisons, the distributions of precision, recall,

and F-measure remain virtually unchanged. Some accuracy is lost around junctions, but the overall

effect is small due to the relative scarcity of junctions compared to boundaries.

3.3 Region-Based Segmentation Consistency

In addition to evaluating algorithms that output boundary maps, we would also like a methodology

for evaluating algorithms that output segmentations. A segmentation algorithm implicitly outputs a

boundary map, and this boundary map can be evaluated using the method of the previous section,

but a segmentation contains more information than a boundary map. In particular, the boundaries of

a segmentation form closed contours, and so the pixels are divided into disjoint sets. In this section,

we will develop three region-based methods for measuring segmentation consistency.

Why do we need multiple region-based consistency measures? The reason is that we do not

know a priori which measures will be good for which tasks. Until we have extensive experience

evaluating segmentation algorithms, it is not possible to determine which measure, if any, is superior.

For example, we developed the LCE measure in Chapter 2 as a way of characterizing the consistency

of different subjects’ segmentations, but we also hoped to use it as a benchmarking measure. We

discovered, however, that it is not well suited to the benchmarking task because a measure that

permits refinement is too lenient for that purpose.

Consequently, we develop three region-based measures specifically for the task of benchmark-

ing: a variant of LCE in Section 3.3.1, a measure based on mutual information in Section 3.3.2,

and third measure based on precision-recall in Section 3.3.3. Both the mutual information and

precision-recall approaches are based on proven statistical techniques in computer vision. Until one

of the three region-based measures is proven to be reliable, segmentation evaluation work at this

time should be done using multiple measures to validate results.

3.3.1 Region Overlap

The region-based consistency measure LCE, introduced in Section 2.2.2, is tolerant to refinement in

either direction at each image pixel. If we simply replace the pixelwise minimum with a maximum,
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Figure 3.7: Distributions of BCE and BCE?. Since BCE does not tolerate refinement, the same-
image comparisons yield higher error than with LCE, resulting in a marginal increase in overlap
between same-image and different-image distributions. By using multiple segmentations as ground
truth, BCE? lowers the separation and recovers the peak at zero error. Again, the grayscale and color
segmentations are quite similar, but the inverted-negative segmentations are significantly different
than the color segmentations.
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we get a measure that does not tolerate refinement at all. The problem of degenerate segmenta-

tions “cheating” a benchmark disappear, and we get a measure that penalizes dissimilarity between

segmentations proportional to the degree of region overlap. Applied to pairs of segmentations, the

Bidirectional Consistency Error (BCE) is defined as:

BCE(S1; S2) =
1

n

X
i

max
�
E(S1; S2; pi); E(S2; S1; pi)

	
(3.12)

In addition to considering the consistency of pairs of segmentations, we can ask if one subject’s

segmentation of an image is consistent with the collection of all other subjects’ segmentations of

that image. The BCE measure is easily extended to the “leave-one-out” regime by computing the

minimum error at each pixel over each ground truth segmentation S k:

BCE?(Sj) =
1

n

X
i

min
k 6=j

�
maxfE(Sj ; Sk; pi); E(Sk; Sj ; pi)g

	
(3.13)

Figure 3.7 shows the distributions of BCE and BCE?. The layout of the figure is the same as

in Figure 3.5 on page 47, with color-color comparisons in the top row, gray-color in the middle

row, and invneg-color comparisons in the bottom row. From the left column (BCE), we see that

though the same-image and different-images are still separated, the same-image distribution is not

peaked at zero. The right column of the figure shows the distributions for BCE ?. By measuring

consistency with a set of human segmentations, BCE? better captures the consistency of same-image

segmentations than BCE: the same-image and different-image distributions overlap less, and the

same-image distributions are peaked at zero error. Once more, the grayscale and color segmentations

remain nearly identical, while the inverted-negated segmentations exhibit measurable difference.

3.3.2 Mutual Information

Let us formulate the segmentation problem as a classification task, where we aim to classify pairs

of pixels as belonging to either the same segment or different segments. Given the output of such a

classifier — known as a pixel affinity function — one can perform segmentation by pairwise cluster-

ing. This is a common framework for image segmentation [67,76,65,68,13,52,17,72]. To evaluate

such an approach, we can evaluate the affinity function itself before clustering takes place, indepen-

dent of what particular clustering method may be used. Any improvement to the affinity function

will certainly ease the clustering task.

We need to compare a machine-generated affinity function Ŝij to the ground truth affinity Sij ,

where Sij = 1 when pixels i and j belong to the same segment, and zero otherwise. If we compare

the machine affinity Ŝ to only one human segmentation at a time, then the ground truth affinity S is

given directly by the segmentation. We can compare Ŝ to a set of human segmentations by declaring
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Figure 3.8: Mutual Information Distributions for Pairwise Affinity. In all cases, the ground truth
is given by color segmentations. The left column shows the comparison for segmentation pairs, and
the right column for leave-one-out comparisons. Either color (top row), grayscale (middle row), or
inverted-negated (bottom row) are compared to the ground truth, and both same-image (solid lines)
and different-image (dashed lines) distributions are shown in each panel. Median values are marked
with a vertical dotted line. As expected, the different-image distributions are steeply peaked at zero,
with better separation in the right column. The grayscale and color segmentations appear to have
identical mutual information, while the inverted-negated segmentations share less information with
the color segmentations.

53



CHAPTER 3. SEGMENTATION CONSISTENCY MEASURES

S = mink S
k, so that a pixel pair is declared same-segment only if every subject k declared it to be

same-segment.

We will explore both approaches by comparing human segmentations to each other. In the first

case, we will compare pairs of segmentations where the ground truth is always a color segmentation,

and the “signal” is either a color, grayscale, or inverted-negated segmentation. In the second case,

the ground truth will be given by the set of color segmentations of an image, while the signal is still

a single segmentation.

One approach we can take to evaluating an affinity function Ŝ is to compute the mutual infor-

mation between it and the ground truth indicator S, as discussed in Section 3.1.1. Figure 3.8 shows

the distributions for the mutual information between human segmentations. The left column shows

the pairwise comparisons; the right column shows the leave-one-out comparison. Top to bottom, the

rows show the result when the color, grayscale, and inverted-negated segmentations are used as the

“signal”, while always using the color segmentations as ground truth. As expected, the different-

image distributions are steeply peaked at zero — more so for the leave-one-out regime, improving

the separation in the right column. The grayscale and color segmentations appear to have identical

mutual information, while the inverted-negated segmentations share less information with the color

segmentations.

3.3.3 Precision-Recall for Regions

To complement the mutual information approach to comparing affinity functions, we also develop an

approach based on precision and recall. The ground truth human segmentations define a set of same-

segment pixel pairs that we wish to identify with a classifier. Given another human segmentation

or machine-generated affinity function as “signal”, we can determine how well it predicts the same-

segment ground truth pairs.

In the case of comparing human segmentations, the signal is binary-valued. Precision is therefore

P (Ŝij = 1jSij = 1), or the probability that a same-segment pair in the left-out human is a same-

segment pair in the ground truth. Recall is the probability that a same-segment pair in the ground

truth was in the left-out human, or P (Sij=1jŜij=1).

Figure 3.9 shows the precision and recall distributions for the pairwise approach, and Figure 3.10

shows the distributions for the leave-one-out approach. The trends between the two are in contrast to

those we observed in the boundary matching precision and recall. In this case, the union of human

segmentations produces a stricter set of same-segment pairs, since all subjects must mark a pair in

the same segment for Ŝ = 1. Consequently, the leave-one-out distributions show increased recall

and decreased precision. In both cases, the same-image distributions shift more than the different-

image distributions, suggesting that the leave-one-out version of this measure is preferable. The
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Figure 3.9: Distributions of Pairwise Recall and Precision for Pixel Affinity. Recall (left column)
and precision (right column) distributions for same-image and different-image comparisons of hu-
man segmentations, for color (top row), grayscale (middle row), and inverted-negated (bottom row)
segmentations compared to color segmentations.
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Figure 3.10: Distributions of F-Measure for Pixel Affinity. These F-Measure distributions combine
the precision and recall from Figures 3.9 and 3.11. The leave-one-out distributions (right column)
are better separated than the pairwise distributions (left column). In addition, the trend of increasing
error from color (top row) to grayscale (middle row) to inverted-negated (bottom row) is again clear
in the right column.
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Figure 3.11: Distributions of Leave-One-Out Recall and Precision for Pixel Affinity. The layout
is the same as for Figure 3.9, but this figure shows the human segmentation comparisons using
the leave-one-out approach instead of the pairwise approach. Both precision and recall increase,
though the same-image distributions are shifted to a greater degree, increasing discrimination. The
three rows show little change in recall, but a steady decrease in precision. This trend indicates that
as the subjects were denied information — fist color, then high-level information — they marked
fewer segmentation boundaries, thereby adding more same-segment pairs to the “signal”. This is
the first time we have seen this trend for the grayscale versus color segmentations in addition to the
inverted-negated versus color segmentations.

57



CHAPTER 3. SEGMENTATION CONSISTENCY MEASURES

distributions of F-measure shown in Figure 3.10 also support this conclusion. Note once more the

similarity of grayscale and color segmentations, and the measurable difference between inverted-

negated and color segmentations.

3.4 Conclusion

In this chapter, we have introduced four new segmentation comparison techniques. The first is a

boundary-based approach that directly corresponds boundary elements between one segmentation

and a set of ground truth segmentations. The correspondences yield precision and recall measure-

ments that can be combined with the F-measure. The intuitive nature of the correspondence proce-

dure lends confidence to the approach. The other three are region-based approaches, two of which

are based on the established statistical methods of mutual information and precision-recall.

If we wish to benchmark segmentation algorithms, then we have many choices. The boundary-

based approach can be used to compare the region boundaries to the human data. Alternately, we can

use any of the three region-based approaches. As in the popular pixel affinity and pairwise clustering

formulation of image segmentation, a segmentation represents a binary-valued affinity function.

This affinity function can then be evaluated using either mutual information or the precision-recall

framework. Alternately, the BCE measure can be used as a measure of region overlap.

The multiple measures are important for two reasons. First, we must ensure that quantitative

evaluations of segmentation algorithms are stable with respect to several measures. At this point, we

do not have enough experience evaluating these algorithms to know which measure is preferable.

Until that time, quantitative work should use as many different measures as possible.

In addition, the different measures allow us to evaluate different phases of segmentation algo-

rithms, providing a range of “micro-benchmarks.” For example, an image segmentation algorithm

might take the following approach: (1) Find boundary elements from low-level cues, (2) Perform

contour completion on the edge elements, (3) Define a pixel affinity function between pixels, and

(4) Produce a segmentation by some pairwise grouping algorithm. We would like to evaluate each

stage independently of the others using the segmentation dataset. The boundary-based precision-

recall measures can evaluate stages (1) and (2). The mutual information and precision-recall affinity

measures can evaluate stage (3), and all four measures can be used for evaluating stage (4).

The remaining chapters begin the project of rigorously optimizing and evaluating each stage of

image segmentation. In Chapter 4 we will learn a boundary detector from the dataset, and then

use the boundary-based measure to evaluate different algorithms. In Chapter 5 we will use the

boundary detector along with other features to learn an affinity function, and evaluate alternatives

using the mutual information and precision-recall measures. The evaluation of contour completion
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and pairwise clustering algorithms we must leave for future work.
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Chapter 4

Learning a Local Boundary Model

The goal of this chapter is to develop an algorithm to accurately detect and localize boundaries in

natural scenes using local image measurements. We formulate features that respond to characteristic

changes in brightness, color, and texture associated with natural boundaries. In order to combine the

information from these features in an optimal way, we train a classifier using human labeled images

as ground truth. The output of this classifier provides the posterior probability of a boundary at each

image location and orientation. We present precision-recall curves showing that the resulting detec-

tor significantly outperforms existing approaches. Our two main results are (1) that cue combination

can be performed adequately with a simple linear model, and (2) that a proper treatment of texture

is required to detect boundaries in natural images.

4.1 Introduction

Consider the images and human-marked boundaries shown in Figure 4.1. How might we find these

boundaries automatically? A complete solution is presently out of reach, since it would require us to

model the high-level knowledge applied by the human subjects to find objects and their boundaries.

However, general-purpose image segmentation based on low-level information and bottom-up pro-

cessing can achieve surprisingly good results. We are interesting in pushing the bottom-up approach

not because we believe it to be sufficient, but rather because any higher-level algorithm will benefit

from gains at the low-level. Whether based on grouping pixels into regions [70,37] or grouping edge

fragments into contours [74, 57], a local boundary model is integral to any perceptual organization

algorithm.

The image patches in the first column of Figure 4.2 show what information is available to a local

boundary model. Though the patches lack global context, it is clear which contain boundaries and
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Figure 4.1: Example Images and Human-Marked Segment Boundaries. Each image shows multiple
(4 to 8) human segmentations. The boundaries are darker where more humans marked an edge.
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Figure 4.2: Local Image Features. In each row, the first panel shows an image patch. The following
panels show feature profiles along the patch’s horizontal diameter. The features are raw image
intensity, raw oriented energy (OE), localized oriented energy ( ÔE), raw brightness gradient (BG),
raw color gradient (CG), raw texture gradient (TG), and localized texture gradient ( T̂G). The
vertical line in each profile marks the patch center. The scale of each feature has been chosen to
maximize performance on the set of training images – 2% of the image diagonal (5.7 pixels) for OE,
CG, and TG, and 1% of the image diagonal (3 pixels) for BG. The challenge is to combine these
features in order to detect and localize boundaries.

63



CHAPTER 4. LEARNING A LOCAL BOUNDARY MODEL

which do not. The goal of this chapter is to use features extracted from the image patch to estimate

the posterior probability of a boundary passing through the center point.

The traditional approach to this problem is to look for discontinuities in image brightness. For

example, the widely employed Canny detector [6] models boundaries as brightness step edges. The

second column of Figure 4.2 show that this is an inadequate model for boundaries in natural images

where texture is a ubiquitous phenomenon. The Canny detector fires wildly inside textured regions

where high-contrast edges are present, but no region boundary exists. In addition, it is unable to

detect the boundary between textured regions when there is only a subtle change in average image

brightness. Feature detectors based on the spatially averaged second moment matrix provide a partial

solution to the problem of texture. The eigenspectrum of the matrix can distinguish simple edges

from the multiple incident edges that can occur inside texture. Though this approach will suppress

false positives in a limited class of textures, it will also suppress corners and texture edges.

These significant problems with simple boundary models have lead researchers to develop more

complex boundary detectors that address the problems presented by texture, e.g. [60, 73]. Although

these work well on the pure texture boundaries provided by synthetic Brodatz mosaics, they have

problems in the vicinity of simple brightness edges. Texture descriptors over local windows that

straddle a boundary have different statistics from windows contained in either of the neighboring

regions, and different statistics from the window centered on the boundary. These differences in-

evitably result in either doubly-detected boundaries or thin halo-like regions along contours, for

example see [60, 8, 24]. Just as a brightness edge model does not detect texture boundaries, a pure

texture model does not detect brightness edges effectively.

Clearly, boundaries in natural images can be marked by changes in any of several cues including

brightness, color, and texture. Evidence from psychophysics [59] suggests that humans combine

multiple cues to improve their detection and localization of boundaries. There has been limited

work in computational vision on addressing the difficult problem of cue combination. For example,

Malik et al. [37] associate a measure of texturedness with each point in an image in order to suppress

contour processing in textured regions and vice versa. However, their solution is full of ad-hoc

design decisions and manual parameter settings.

In this chapter, we provide a more principled approach to cue combination by framing the task

as a supervised learning problem. The dataset presented in Chapter 2 provides the ground truth label

for each pixel as being on- or off-boundary. The task is then to model the probability of a pixel

being on-boundary conditioned on some set of local image features. This quantitative approach to

learning and evaluating boundary detectors is similar to the work of Konishi et al. [31] using the

Sowerby dataset of English countryside scenes. Our work is distinguished by an explicit treatment

of texture, enabling superior performance on a more diverse collection of natural images.
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Figure 4.3: Two Decades of Boundary Detection Research. The performance of our boundary de-
tector compared to classical boundary detection methods and to the human subjects’ performance.
Precision-recall curves, described in Section 3.1.2, are shown for five boundary detectors: (1) Gaus-
sian derivative (GD), (2) Gaussian derivative with hysteresis thresholding (GD+H), the Canny de-
tector, (3) A detector based on the second moment matrix (2MM), (4) our grayscale detector that
combines brightness and texture (BG+TG), and (5) our color detector that combines brightness,
color, and texture (BG+CG+TG). Each detector’s precision-recall curve shows the tradeoff between
accuracy and noise as the detector’s threshold varies. Shown in the caption is each curve’s maximal
F-measure, valued from zero to one, along with the coordinates of the location of the maximum.
Thus, the notation “F=0.67@(0.71,0.64)” means that the maximal F-measure of 67% occurs at 71%
recall and 64% precision. Defined in Section 3.1.2, the F-measure is a summary statistic for a
precision-recall curve. The points on the plot marked with “+” show the precision and recall of each
ground truth human segmentation when compared to the other humans. The median F measure for
the human subjects is 0.80. The solid curve shows the F=0.80 precision-recall curve, representing
the frontier of human performance for this task.
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By modeling texture and combining various local cues in a statistically optimal manner, we

demonstrate a marked improvement over the state-of-the-art in boundary detection. Figure 4.3 shows

the performance of our detector compared to the Canny detector, a detector based on the second

moment matrix used by Konishi et al. [31], and the human subjects. The remainder of the chapter

will show how this improvement was achieved. In Section 4.2 we describe the local brightness,

color, and texture features used as input to our algorithm. Section 4.3 presents our training and

testing methodology and the dataset of 12,000 human segmentations that provide the ground truth

data. We apply this methodology in Section 4.4 to optimize each local cue independently, and in

Section 4.5 to perform cue combination. Section 4.6 presents a quantitative comparison of our

method to existing boundary detection methods. We conclude in Section 4.7.

4.2 Image Features

Our approach to boundary detection is to look at each pixel for local discontinuities in several feature

channels, over a range of orientations and scales. We will consider two brightness features (oriented

energy and brightness gradient), one color feature (color gradient), and one texture feature (texture

gradient). Each feature has free parameters that we will learn from the training data.

4.2.1 Oriented Energy

In natural images, brightness edges are more than simple steps. Phenomena such as specularities,

mutual illumination, and shading result in composite intensity profiles consisting of steps, peaks, and

roofs. The oriented energy (OE) approach [46] can be used to detect and localize these composite

edges [53]. OE is defined as:

OE�;� = (I � fe�;�)2 + (I � fo�;�)2 (4.1)

where f e
�;�

and f
o
�;�

are a quadrature pair of even- and odd-symmetric filters at orientation � and

scale �. Our even-symmetric filter is a Gaussian second-derivative, and the corresponding odd-

symmetric filter is its Hilbert transform. OE�;� has maximum response for contours at orientation

�. The filters are elongated by a ratio of 3:1 along the putative boundary direction.

4.2.2 Gradient-Based Features

We include the oriented energy feature in our analysis because it is the standard means of detecting

brightness edges in images. For more complex features, we introduce a gradient-based paradigm

that we use for detecting local changes in color and texture, as well as brightness.
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The approach is simple. A gradient function G(x; y; �; r) is defined at a location (x; y) in the

image, at an orientation �, and at a scale r. Draw a circle of radius r, centered at (x; y), and divide it

along the diameter at orientation �. The gradient function compares the contents of the two resulting

disc halves. A large difference between the disc halves indicates a discontinuity in the image along

the disc’s diameter.

How shall we describe and compare the two half-disc regions for each cue? Common to success-

ful color and texture features in the literature is the approach of estimating the empirical distribution

of pixel-based features over some region. Distributions of color in perceptual color spaces have been

used successfully as region descriptors in the QBIC [48] and Blobworld [8] image retrieval systems.

In addition, the compass operator of Ruzon and Tomasi [63, 64] uses color histogram comparisons

to find corners and edges in color images. For texture analysis, there is an emerging consensus that

an image should first be convolved with a bank of filters tuned to various orientations and spatial

frequencies [14, 38]. The empirical distribution of filter responses has been shown to be powerful

both for both texture synthesis [23] and texture discrimination [55].

For brightness and color gradients, we bin kernel density estimates of the distributions of pixel

luminance and chrominance in each disc half. For the texture gradient, we compute histograms of

vector quantized filter outputs in each disc half. In all three cases, the half-disc regions are described

by histograms, which we compare with the �2 histogram difference operator [56]:

�
2(g; h) =

1

2

X (gi � hi)
2

gi + hi
(4.2)

Each gradient computation shares the step of computing a histogram difference at multiple ori-

entations and scales at each pixel. The naïve implementation would involve much redundant com-

putation. Appendix A presents efficient algorithms for computing the gradient features.

4.2.3 Brightness and Color Gradient Details

There are two common approaches to characterizing the difference between the color distributions

for two sets of pixels. The first is based on density estimation using histograms. Both QBIC and

Blobworld use fully three dimensional color histograms as region features, and compare histograms

using a similarity measure such as L1 norm, �2 difference, or the quadratic form distance function.

Blobworld smoothes the histograms to prevent the aliasing of similar colors, while QBIC models

the perceptual distance between bins explicitly.1 For an image region with thousands of pixels, the

1The quadratic form distance function used in QBIC is d(g; h) = (g� h)TA(g� h), where g and h are the histograms
to compare, and A is a matrix giving the similarity Aij between two bins i and j. Niblack et al. indicate that this measure
is superior for their task. We will not consider this histogram similarity function because it is computationally expensive,
difficult to define A, and similar in spirit to the Earth Mover’s distance.
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full joint color distribution can be reasonably estimated with some smoothing, though the problem

of defining a perceptually meaningful histogram difference operator is significant.

The second common approach avoids quantization artifacts by using the Mallows [40] or Earth

Mover’s distance (EMD) [36] to compare color distributions. This is potentially preferable for a

local edge operator where one does not have a large number of samples from which to estimate

distributions. In addition, the EMD explicitly accounts for the distance between points in the color

space. If the space is a perceptual space where Euclidean distances correspond to perceptual dis-

tances, then one would imagine the EMD to be the ideal measure. Perceptual color spaces, however,

have notorious problems with regard to perceptual uniformity: though small distances in a space

such as CIELAB map well to perceptual distance, large distances are not meaningful in the sense

that colors beyond some separation are perceptually equivalently different. Ruzon and Tomasi use an

attenuated EMD to model this perceptual roll-off, but the EMD remains computationally expensive.

For one-dimensional data, the it can be computed relatively efficiently by simply sorting the points.

In higher dimensions, however, one must solve an assignment problem that increases complexity

considerably.

We would like an approach that models the the color distribution accurately with respect to

human perception, while remaining computationally simple. Our approach is based on binning ker-

nel density estimates of the color distribution in CIELAB using a Gaussian kernel, and comparing

histograms with the �2 difference. The �2 histogram difference does not make use of the percep-

tual distance between bin centers. Therefore, without smoothing, perceptually similar colors can

produce disproportionately large �2 differences. Because the distance between points in CIELAB

space is perceptually meaningful in a local neighborhood, binning a kernel density estimate whose

kernel bandwidth � matches the scale of this neighborhood means that perceptually similar colors

will have similar histogram contributions. Beyond this scale, where color differences are perceptu-

ally incomparable, �2 will regard them as equally different. The combination of a kernel density

estimate in CIELAB with the �
2 histogram difference is a good match to the structure of human

color perception.

For the brightness gradient we will compute histograms of L* values, which is a simple one-

dimensional density estimation problem. The color gradient presents additional challenges because

the pixel values are in the 2D space of a* and b*. We can apply the same methodology that we use

for L*, using 2D kernels and 2D histograms to produce the joint color gradient CG ab. However,

in order to keep the computational cost reasonable, one must reduce both the number of kernel

samples and the number of bins. This reduction compromises the quality of the density estimate,

so instead we compute the marginal color gradients for a* and b* and take the full color gradient to

be the sum of the corresponding marginal gradients: CGa+b = CGa + CGb. This simplification is
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motivated not only by the much higher cost of computing CG ab: The a* and b* axes correspond to

the perceptually orthogonal red-green and yellow-blue color opponents found in the human visual

system (see Palmer [50]). Section 4.4 presents the comparison of CG ab to CGa+b.

4.2.4 Texture Gradient Details

Analogous to the brightness and color gradient operators, we formulate a directional operator that

measures the degree to which texture of scale r varies at an image location (x; y) in direction �.

Our texture gradient (TG) operator computes the texture dissimilarity in the two halves of a disk of

radius r, centered on (x; y), and divided in two along a diameter at orientation �. Oriented texture

processing along these lines has been pursued by Rubner and Tomasi [60].

Figure 4.4a shows the filter bank that we use for texture processing. It contains six pairs of

elongated, oriented filters, as well as a center-surround filter. The oriented filters are in even/odd

quadrature pairs, and are the same filters we used to compute oriented energy. The even-symmetric

filter is a Gaussian second derivative, and the odd-symmetric filter is its Hilbert transform. The

center-surround filter is a difference of Gaussians. To each pixel we associate the vector of filter

responses centered at the pixel. Note that unlike [37], we do not contrast-normalize the filter re-

sponses via Weber’s Law for texture processing. Our experiments indicate that normalization does

not improve performance, as it appears to amplify noise more than signal.

Each disc half contains a set of filter response vectors which we can imagine as two clouds of

points in a feature space with dimensionality equal to the number of filters. One can use the empirical

distributions of these point clouds as the texture descriptors, and then compare the descriptors to get

the value of the texture gradient.

Many questions arise regarding the details of this approach. Should the filter bank contain mul-

tiple scales, and what should the scales be? How should we compare the distributions of filter

responses? Should we use the Earth Mover’s distance, or should we estimate the distributions? If

the latter, should we estimate marginal or joint distributions, and with fixed or adaptive bins? How

should we compare distributions: using some Lp-norm or the �2 distance? Puzicha et al. [55] evalu-

ate a wide range of texture descriptors in this framework and examine many of these questions. We

choose the approach developed by Malik et al., which is based on the idea of textons.

The texton approach is one that estimates the joint distribution of filter responses using adaptive

bins. The filter response vectors are clustered using k-means. The clusters define Voronoi bins,

and the cluster means – the textons – define texture primitives. The space covered by a texton’s bin

is called a texton channel. These texture primitives are simply linear combinations of the filters.

Figure 4.4b shows example textons for k = 64 computed over the 200 images in the training set.

After the textons have been defined, each pixel is assigned to the nearest texton. The texture dis-
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(a) Filter Bank (b) Universal Textons

(c) Image (d) Texton Map

Figure 4.4: Textons. (a) The 13-element filter bank used for computing textons. (b) Example
universal textons computed from the 200 training images, sorted by L1 norm for display purposes.
(c) An image and (d) its associated texton map. Texton quality is best with a single scale filter
bank containing small filters. Each pixel produces a 13-element response to the filter bank, and
these responses are clustered with k-means. In this example, using 200 images with k=64 yields 64
universal textons. The textons identify basic structures such as steps, bars, and corners at various
levels of intensity. If each pixel in the image shown in (c) is assigned to the nearest texton, and each
texton is assigned a color, we obtain the texton map shown in (d). The elongated filters have 3:1
aspect, and the longer � was set to 0.7% of the image diagonal (about 2 pixels).
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similarities can then be computed by comparing the histograms of textons in the two disc halves.

Figure 4.4 shows an image and the associated texton map, after each pixel is mapped to its texton

channel. Some issues remain, namely which images to use to compute the textons, the choice of k,

the procedure for computing the histograms, and the histogram comparison measure.

For computing textons, we can use a large image set such as our training set to compute universal

textons that we will use for all test images. Alternately, we can compute image-specific textons by

computing the textons separately for each test image. As for the choice of k, we will see that it

depends on this choice between universal and image-specific textons as well as the scale r of the

texture gradient. Section 4.4 presents experiments exploring both of these issues.

For computing the texton histograms, we use hard binning without smoothing. One can do

soft binning by considering a pixel’s distance to each texton. However, this type of soft binning is

computationally expensive, and in our experiments, it has not proved worthwhile. The hard binning

is not a problem because adjacent pixels have correlated filter responses due to the spatial extent of

the filters. Consequently, the data is already somewhat smoothed, and pixels in a disc are likely to

cover fewer bins ensuring more samples per bin.

Finally, the �2 distance is not the only viable measure of histogram distance for this task. Both

Puzicha et al. [56] and Levina [35] evaluate various methods for comparing texture distributions,

including L1 norm, �2 distance, and the Mallows or Earth Mover’s distance. The optimal distance

measure, however, depends on the task (matching or discrimination) and on the images used (Bro-

datz patches or natural images). Our experiments show that for local boundary detection in natural

images, the �
2 distance is marginally superior to the L1 norm, and significantly better than the

Mallows distance.

4.2.5 Localization

The underlying function of boundary existence that we are trying to learn is tightly peaked around

the location of image boundaries marked by humans. In contrast, Figure 4.2 on page 63 shows that

the features we have discussed so far don’t have this structure. As they pool information over some

support, they produce smooth, spatially extended outputs. Since each pixel is classified indepen-

dently, our spatially extended features are problematic for a classifier, as both on-boundary pixels

and nearby off-boundary pixels will have large gradient values.

The texture gradient is particularly prone to this effect due to its large support. In addition, the

TG produces multiple detections in the vicinity of brightness edges. The bands of textons present

along such edges often produces a larger TG response on each side of the edge than directly on the

edge. This double-peak problem is ubiquitous in texture edge detection and segmentation work [60,

8, 24], where it produces double detections of edges and sliver regions along region boundaries.
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However, we are aware of no work that addresses this serious problem. Non-maxima suppression

is typically used to narrow extended responses, but the multiple detection problem requires a more

general solution. We will exploit the symmetric nature of the texture gradient response both to

localize the edge accurately and to eliminate the double detections.

In order to make the spatial structure of boundaries available to the classifier, we transform the

raw feature signals to emphasize local maxima. However, we must do this in a manner that smoothes

out multiple detections. Given a feature f(x) defined over spatial coordinate x orthogonal to the

edge orientation, consider the derived feature f̂(x) = f(x)=d(x), where d(x) = �jf 0(x)j=f 00(x) is

the first-order approximation of the distance to the nearest maximum of f(x). We use the smoothed

and stabilized version:

f̂(x) = ~f(x) �
�

�f 00(x)
jf 0(x)j+ �

�
(4.3)

with � chosen to optimize the performance of the feature. By incorporating the 1=d(x) localization

term, f̂(x) will have narrower peaks than the raw f(x). The ~f(x) is an estimate of the underlying

smooth “pure-texture” signal corrected for the double peaks. To robustly estimate the directional

derivatives and the smoothed signal, we fit a cylindrical parabola over a circular window of radius

r centered at each pixel. The least squares parabolic fit ax2 + bx + c provides directly the signal

derivatives as f 00(x) = 2a and f
0(x) = b, as well as ~f(x) = c. Thus, the localization function

becomes f̂ = �(2c+a+)=(jbj+ �), where c and a require half-wave rectification.2

The last two columns of Figure 4.2 on page 63 show the result of applying this transformation to

the texture gradient, which clearly has the effect of reducing noise, tightly localizing the boundaries,

and coalescing double detections. We found that the localization procedure does not improve the

brightness and color gradient features, and so our final feature set consists of f ÔE;BG;CG; ^TGg,

each at 8 orientations and 3 half-octave scales.

4.3 Evaluation Methodology

Our system will ultimately combine the cues of the previous section into a single functionP b(x; y; �)

which gives the posterior probability of a boundary at each pixel (x; y) and orientation �. In order

to optimize this system and compare it to other systems, we need a methodology for judging the

quality of a boundary detector. We formulate the boundary-detection task as a classification problem

of discriminating non-boundary from boundary pixels, and apply the precision-recall framework of

Chapter 3 using human-marked boundaries as ground truth. The segmentation dataset contains 5-10

2Windowed parabolic fitting is known as 2nd-order Savitsky-Golay filtering, or LOESS smoothing. We also considered
Gaussian derivative filters fGr; G

0

r; G
00

r g to estimate ffr; f 0

r; f
00

r g with similar results.
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segmentations for each of 1000 images. We use 200 images and associated segmentations as the

training data, and a different 100 images and associated segmentations as the test dataset.

Precision-recall curves were first used for evaluating edge detectors by Abdou and Pratt [1].

A similar approach was taken by Bowyer et al. [3] for boundary detector evaluation with ROC

curves. Other methods of evaluating boundary detectors in a quantitative framework exist, such as

the Chernoff information used by Konishi et al. [31]. Though the information theoretic approach

approach can lead to a useful method for ranking algorithms relative to one another, the resulting

measure is not intuitive.

The precision-recall framework does produce effective and intuitive measures of performance.

Furthermore, it is more appropriate than the related ROC curve or Bayes risk framework for this

task since our two classes — boundary and non-boundary — are unbalanced. Both ROC curves and

Bayes risk use the overall classification error, which includes the errors made by the detector for

both classes. Since there are many more non-boundaries than boundaries, and since non-boundaries

are more easily detected than boundaries, the ROC approach exaggerates performance. In contrast,

the precision-recall framework focuses on the rarer class, and does not reward the correct detection

of non-boundaries.

Remember that precision is the probability that the detector’s signal is valid, and recall is the

probability that the ground truth data was detected. These two measures are particularly meaningful

in the context of boundary detection when we consider applications that make use of boundary maps,

such as stereo or object recognition. It is reasonable to characterize these algorithms in terms of how

much true signal is required to succeed (recall), and how much noise can be tolerated (precision).

Precision and recall are appealing measures, but to compute them we must determine which true

positives are correctly detected, and which detections are false. Each point on the precision-recall

curve is computed from the detector’s output at a particular threshold. In addition, we have binary

boundary maps as ground truth from the human subjects. For the moment, let us consider how

to compute the precision and recall of a single thresholded machine boundary map given a single

human boundary map. One could simply correspond coincident boundary pixels and declare all

unmatched pixels to be either false positives or misses. This approach would not tolerate any local-

ization error, however, and would consequently be a poor indicator of performance. From Figure 4.1

on page 62, it is clear that the assignment of machine boundary pixels to ground truth boundaries

must tolerate localization errors, since the ground truth data contains boundary localization errors.

The approach of Martin et al. [42] is to add a modicum of slop to the na ïve correspondence

procedure in order to permit small localization errors at the cost of permitting multiple detections.

However, an explicit correspondence of machine and human boundary pixels is the only way to

robustly count the hits, misses, and false positives that we need to compute precision and recall.
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In particular, it is important to compute the correspondence explicitly in order to penalize multiple

detections, single detection being one of the three goals of boundary detection formalized in Canny’s

work [6] along with good detection and good localization.

Chapter 3 details the correspondence computation, which provides us the means of comput-

ing the precision and recall for a single human segmentation. The segmentation dataset, however,

provides multiple human segmentations for each image, so that the ground truth is defined by a

collection of 5 to 10 human segmentations. Simply unioning the humans’ boundary maps is not ef-

fective because of the localization errors present in the dataset itself. The proper way to combine the

human boundary maps would likely require additional correspondences, or perhaps the estimation

of a generative model specifying the humans’ detection and localization error processes along with

the hidden true signal.

Fortunately, we are able to finesse these issues in the following manner. First, we correspond

the machine boundary map with each human map in turn. Only those machine boundary pixels that

match no human boundary are counted as false positives, so that the fraction of machine boundary

pixels that are false positives gives the precision. The hit rate is simply averaged over the different

humans, so that to achieve perfect recall the machine boundary map must explain all of the human

data up to some tolerance dmax. Our intention is that this approach to estimating precision and recall

matches as closely as possible the approach one would take if one were to compute them visually.

All three desirable properties of a boundary detector – detection, localization, single detection – are

encouraged by the method, and the results are splendid.

In summary, we have a method for describing the quality of a boundary detector that produces

soft boundary maps of the form Pb(x; y) or Pb(x; y; �). For the latter, we take the maximum over �

to reduce the case to the former. Given the soft boundary image P b(x; y), we produce a precision-

recall curve. Each point on the curve is computed independently by first thresholding P b to produce

a binary boundary map, and then matching this machine boundary map against each of the human

boundary maps in the ground truth segmentation dataset. The precision-recall curve is a rich de-

scriptor of performance. When a single performance value is required or is sufficient, precision and

recall can be combined with the F-measure. The F-measure curve is usually unimodal, so the curve’s

maximal F-measure may be reported as a summary of the detector’s performance. We now turn to

applying this evaluation method to optimizing our boundary detector and comparing our approach

to the standard methods.
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4.4 Cue Optimization

Before combining the brightness, color, and texture cues into a single detector, we first optimize

each cue individually. By applying coordinate ascent with high precision and recall as the objective,

we can optimize each cue with respect to the ground truth dataset so that no change in any single

parameter improves performance. I do not present the complete set of experiments, but only those

that afford interesting observations.

Each of the four cues – oriented energy (OE), brightness gradient (BG), color gradient (CG), and

texture gradient (TG) – has a scale parameter. In the case of OE, the scale � is the bandwidth of the

quadrature filter pair. For the others, the scale r is the radius of the disc. We determined the optimal

one octave range for each cue. In units of percentage of the image diagonal, the ranges are 1.4%

to 2.8% for OE, CG, and TG, and 0.75% to 1.5% for BG. These scales are optimal, independent of

whether or not we use the localization procedure of Section 4.2.5. The middle scale always performs

best, except in the case of raw OE where the largest scale is superior.

Figures 4.5 and 4.6 shows the precision-recall (PR) curves for each cue at the optimal scales both

with and without localization applied. In addition, each plot shows the PR curve for the combination

of the three scales. Each curve requires a Pb(x; y) function that is obtained from fitting a logistic

model to the training dataset. We evaluate the Pb function on the test set to produce the Pb(x; y)

images from which the curve is generated.

The � for each cue’s localization function was optimized separately to 0.01 for TG and 0.1 for

all other cues. The figures show that localization is not required for BG and CG, but helpful for both

OE and TG. The localization function has two potential benefits. It narrows peaks in the signal, and

it merges multiple detections. From Figure 4.2 on page 63, we see that the scale of OE is rather

large so that localization is effective at narrowing the wide response. TG suffers from both multiple

detections and a wide response, both of which are ameliorated by the localization procedure. Neither

BG nor CG require either alteration offered by the localization procedure, partially because they have

other parameters that we used to optimize their responses.

Figure 4.7 shows our optimization of the kernel size used in the density estimation computations

for BG and CG. For these features, we compare the distributions of pixel values in two half discs,

whether those values are brightness (L*) or color (a*b*). First, consider the color gradient CG a+b

computed over the marginal distributions of a* and b*. With a disc radius ranging from 4 to 8 pixels,

kernels are critical in obtaining low-variance estimates of the distributions. In the figure, we vary

the Gaussian kernel’s sigma from 1.25% to 40% of the diameter of the domain. In addition, the

number of bins was varied inversely in order to keep the number of samples per bin constant, and at

a minimum of two per bin. The kernel was clipped at 2� and sampled at 23 points. The dominant

PR curve on each plot indicates that the optimal parameter for BG is � = 0:2 (with 12 bins) and
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(a) Raw OE (b) Raw BG
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(c) Localized OE (d) Localized BG
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Figure 4.5: Boundary Localization for OE and BG. Performance of raw features (top row) and
localized features (bottom row). Curves toward the top (lower noise) and right (more recovered
signal) are better. Each curve is parameterized by P b and is scored by its maximal F-measure, the
value and location of which are shown in the legend. Each panel in this figure shows four curves:
one curve for each of three half-octave spaced scales of the feature, along with one curve for the
combination of the three scales. The starting scales for OE and BG are 1.4% and 0.75% of the image
diagonal, respectively. With the exception of Figure 4.12, we use logistic regression to model P b.
In this figure, we see that the localization procedure is marginally helpful for OE, and unnecessary
for BG. Multiple scales help neither OE nor BG. Note that each feature’s � and scale parameters
were optimized against the training set using the precision-recall methodology. Figure 4.6 shows
the same graphs for CG and TG.
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(a) Raw CG (b) Raw TG
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(c) Localized CG (d) Localized TG
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Figure 4.6: Boundary Localization for CG and TG. Performance of raw features (top row) and
localized features (bottom row). The layout is identical to Figure 4.5, which shows the curves for
OE and BG. The starting scales for CG and TG are both 1.4% of the image diagonal. In this figure,
we see that the localization procedure is unnecessary for CG, but extremely helpful for TG. The
performance gain for TG is due to the elimination of double-detections along with good localization,
as is evident from Figure 4.2 on page 63. In addition, TG is the only feature for which there is benefit
from combining scales. Note that each feature’s � and scale parameters were optimized against the
training set.
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(a) Brightness Gradient (b) Color Gradient
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Figure 4.7: Bandwidth for BG and CG Kernel Density Estimates. Both BG and CG operate by
comparing the distributions of 1976 CIE L*a*b* pixel values in each half of a disc. We estimate the
1D distributions of L*, a*, and b* with histograms of kernel density estimates. Each curve is labeled
with � and bin count. The accessible ranges of L*, a*, and b* are scaled to [0; 1]. The kernel was
clipped at 2� and sampled at 23 points. The bin count was adjusted so that there would be no fewer
than 2 samples per bin. The best values are � = 0:2 for BG (12 bins), and � = 0:1 for CG (25 bins).
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(a) CG1 (b) CG*

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

P
re

ci
si

on

Recall

A+B F=0.60 @(0.67,0.54)
AB F=0.60 @(0.66,0.55)

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

P
re

ci
si

on
Recall

A+B F=0.60 @(0.64,0.56)
AB F=0.60 @(0.64,0.56)

Figure 4.8: Marginal vs. Joint Estimates of CG. (a) shows the middle scale of the color gradient,
and (b) shows the three scales combined. Our inclination in estimating pixel color distributions was
to estimate the 2D joint distribution of a* and b*. However, the 2D kernel density estimation proved
to be computationally expensive. Since the a* and b* axes in the 1976 CIE L*a*b* color space were
designed to mimic the blue-yellow green-red color opponency found the human visual cortex, one
might expect the joint color distribution to contain little perceptual information not present in the
marginal distributions of a* and b*. The curves labeled “AB” show the color gradient computed
using the joint histogram (CGab); the curves labeled “A+B” show the color gradient computed com-
puted as (CGa+CGb). The number of bins in each dimension is 25 for both experiments, so that the
CGab computation requires 25x more bins and 25x the compute time. The cue quality is virtually
identical, and so we adopt the marginal CG approach.

� = 0:1 for CG (with 25 bins).

The experiments in Figure 4.7 used the separated version of the color gradient CG a+b rather than

the joint version CGab. Figure 4.8 shows the comparison between these two methods of computing

the color gradient. Whether using a single scale of CG or multiple scales, the difference between

CGa+b and CGab is minimal. The joint approach is far more expensive computationally due to the

additional dimension in the kernels and histograms. The number of bins in each dimension was

kept constant at 25 for the comparison, so the computational costs differed by 25x, requiring tens of

minutes for CGab. If computational expense is kept constant, then the marginal method is superior

because of the higher resolution afforded in the density estimate. In all cases, the marginal approach

to computing the color gradient is preferable.

The texture gradient cue also has some additional parameters beyond r and � to tune, related

to the texture representation and comparison. The purpose of TG is to quantify the difference in
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the distribution of filter responses in the two disc halves. Many questions arise and are discussed

in Section 4.2.4. For filters, we use the same even and odd-symmetric filters that use for oriented

energy – a second derivative Gaussian and its Hilbert transform – at six orientations along with a

center-surround DOG. We experimented with multi-scale filter banks, but found agreement with

Levina [35] that a single-scale filter bank at the smallest scale was preferable. Figure 4.4(a) on

page 70 shows the filter bank we used for texture estimation. As for distribution estimation issues,

we follow the texton approach of Malik et al. [37] which estimates the joint distribution with adaptive

bins by clustering the filter responses with k-means, and compares histograms using the � 2 measure.

We verified that none of L1, L2, or L1 norm performs better. In addition, we determined that the

Mallows distance computed on the marginal raw filter outputs performed poorly. The Mallows dis-

tance on the joint distribution is computationally infeasible, requiring the solution to an assignment

problem.

After settling on the approach of comparing texton histograms with the �
2 distance measure,

two issues remain. First, we must choose between image-specific and universal textons. For image-

specific textons, we recompute the adaptive texton bins for each test image separately. For universal

textons, we compute a standard set of textons from the 200 training images. The computational cost

of each approach is approximately equal, since the per-image k-means problems are small, and one

can use fewer textons in the image-specific case. Figure 4.4(b) shows universal textons for k = 64.

The second remaining issue is that we must choose the number of textons, or the k parameter for

k-means.

Figure 4.9 shows experiments optimizing the number of textons, and Figure 4.10 shows exper-

iments comparing image-specific to universal textons. From these figures, we see that the choice

between image specific and universal textons is not important for the quality of the classifier. We

use image-specific textons for convenience, though universal textons are perhaps more appealing in

that they can be used to characterize textures in an image-independent manner. Image-independent

descriptions of texture would be useful for image retrieval and object recognition applications. Fig-

ure 4.9 also reveals two scaling rules for the optimal number of textons. First, the optimal number of

textons for universal textons is roughly double that required for image specific textons. Second, the

optimal number of textons scales linearly with the area of the disc. The former scaling is expected,

to avoid over-fitting in the image-specific case. The latter scaling rule keeps the number of samples

per texton bin constant, which reduces over-fitting for the smaller TG scales.
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(a) Image Specific TG0 (b) Universal TG0
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(c) Image Specific TG2 (d) Universal TG2
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Figure 4.9: Optimizing the Number of Textons. We can compute textons on a per-image basis, or
universally on a canonical image set. (a) and (c) show the performance of the small and large scales
of TG for 8 to 128 image specific textons; (b) and (d) show the performance of the same TG scales
for 16 to 256 universal textons. The optimal number of universal textons is double the number
for image specific textons. In addition, smaller scales of TG require fewer textons. The scaling is
roughly linear in the area of the TG disc, keeping the number of samples per bin constant. Results
are insensitive to within a factor of two of the optimal number.
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Figure 4.10: Image Specific vs. Universal Textons. This graph shows the performance of image
specific vs. universal textons for the middle TG scale along with the combined TG scales. The
choice between image-specific and universal textons is not critical. In our experiments, we use
image-specific textons with k=f12,24,48g. For an application such as object recognition, one would
likely prefer the measure of texture provided by universal textons, which can be compared across
images.
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(a) OE vs. BG (b) Multi-Scale TG
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(c) Grayscale Model (d) Color Model
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Figure 4.11: Cue Combination. After optimizing the parameters of each cue independently, we seek
to combine the cues effectively. (a) shows that whether or not we include CG, we are always better
off using BG as our brightness cue instead of OE. Note that though the curve is not shown, using
OE and BG together is not beneficial. (b) Although we saw in Figure 4.6 that we benefit from using
multiple scales of TG, the benefit is significantly reduced when BG is included. This is because
BG contains some ability to discriminate fine scale textures. (c) Our non-color model of choice is
simply the combination of a single scale of BG with a single scale of TG. (d) Our color model of
choice also includes only a single scale of each of the BG, CG, and TG features.
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(a) One Scale Per Cue (b) Three Scales Per Cue
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Figure 4.12: Choice of Classifier. Until this point, all results have been shown using the logistic
regression model. This model is appealing because it is compact, robust, stable, interpretable, and
quick to both train and evaluate. However, its linear decision boundary precludes any potentially
interesting cross-cue gating effects. In this figure, we show the result of applying various more
powerful models on (a) one scale of each of BG, CG, and TG, and (b) all three scales of each feature
(9 total features). In neither case does the choice of classifier make much difference. In both cases,
the logistic regression performs well. The addition of multiple scales does not improve performance.
The logistic is still the model of choice.
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4.5. CUE COMBINATION

4.5 Cue Combination

There is some previous work on learning boundary models. Will et al. [73] learned texture edge mod-

els for synthetic Brodatz mosaics. Meila and Shi [44] presented a framework for learning segmen-

tations from labeled examples. Most compelling is the work of Konishi et al. [31], where boundary

models were trained from human-labeled ground truth. After optimizing the performance of each

cue, we face the problem of combining the cues into a single detector. We approach the task of cue

combination as a supervised learning problem, where we will learn the combination rules from the

ground truth data.

Figure 4.11 presents the first set of cue combination experiments. The first task is to determine

whether any of the cues is redundant given the others. Until this point, we have presented four cues,

two of which – OE and BG – both detect discontinuities in brightness. Panel (a) of the figure shows

that BG is a superior cue to OE, whether used in conjunction with the texture gradient alone or with

the texture and color gradients together. In addition, since we do not gain anything by using OE and

BG in conjunction (not shown), we can safely drop OE from the list of cues.

We have the option of computing each cue at multiple scales. Figures 4.5 and 4.6 showed that

only the texture gradient contains significant independent information at the different scales. The

benefit of using multiple TG scales may not remain when TG is combined with other cues, however.

Panel (b) of Figure 4.11 shows the effect of using multiple TG scales in conjunction with BG and

CG. In both the BG and BG+CG cases, multiple TG scales improve performance only marginally.

The remaining two panels of Figure 4.11 show the effect of adding multiple BG and CG scales

to the model. In neither case do multiple scales improve overall performance. In some cases (see

Figure 4.11(d)), performance can degrade as additional scales may introduce more noise than signal.

In order to keep the final system as simple as possible, we will retain only the middle scale

of each feature. It is surprising that multi-scale cues are not a benefit, however. An explanation is

suggested by Figures 4.6(d) on page 77 and 4.11(b) on page 83, where we see that the multiple scales

of TG have independent information, but the benefit of multiple TG scales vanishes when BG is used.

The brightness gradient operates at small scales, and is capable of low-order texture discrimination.

At the smallest scales, there is not enough information for high-order texture analysis anyway, so

BG is a good small-scale texture feature. The texture gradient identifies the more complex, larger

scale textures.

Until this point, all results were generated with a logistic model:

p(x) =
1

1 + e��
Tx

(4.4)

We will show that the logistic model is a good choice by comparing a wide array of classifiers,
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CHAPTER 4. LEARNING A LOCAL BOUNDARY MODEL

each trained on the human segmentation dataset. With more powerful models, we hoped to discover

some interesting cross-cue and cross-scale gating effects. For example, one might discount the

simpler edge detection of BG when TG is low because the brightness edges are likely to correspond

to edges interior to textured areas. In addition, the optimal mixing function for the various cues

could well be non-linear, with each cue treated as an expert for a certain class of boundaries. These

are the classifiers that we used:

� Density Estimation We do density estimation with adaptive bins provided by vector quan-

tization using k-means. Each k-means centroid provides the density estimate of its Voronoi

cell as the fraction of on-boundary samples in the cell. We use k=128 bins and average the

estimates from 10 runs to reduce variance.

� Classification Trees The domain is partitioned hierarchically with top-down axis-parallel

splits. When a cell is split, it is split in half along a single dimension. Cells are split greedily

so as to maximize the information gained at each step. The effect of this heuristic is to split

nodes so that the two classes become separated as much as possible. A 5% bound on the error

of the density estimate is enforced by splitting cells only when both classes have at least 400

points present.

� Logistic Regression This is the simplest of our classifiers, and the one perhaps most easily

implemented by neurons in the visual cortex. Initialization is random, and convergence is fast

and reliable by maximizing the likelihood with about 5 Newton-Raphson iterations. We also

consider two variants: quadratic combinations of features, and boosting using the confidence-

rated generalization of AdaBoost by Schapire and Singer [66]. No more than 10 rounds of

boosting are required for this problem.

� Hierarchical Mixtures of Experts The HME model of Jordan and Jacobs [30] is a mixture

model where both the experts at the leaves and the internal nodes that compose the gating

network are logistic functions. We consider small binary trees up to a depth of 3 (8 experts).

The model is initialized in a greedy, top-down manner and fit with EM. 200 iterations were

required for the log likelihood to converge. Appendix B presents the multinomial logistic

model that we used in our HME implementation.

� Support Vector Machines We use the SVM package l [9] to do soft-margin classification

using Gaussian kernels. The optimal parameters were �=0.2 and �=0.2. In this parameteriza-

tion of SVMs, � provides the expected fraction of support vectors, which is also an estimate

of the degree of class overlap in the data. The high degree of class overlap in our problem also

explains the need for a relatively large kernel.
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The ground truth boundary data is based on the dataset of [43] which provides about 5 human

segmentations for each of 1000 natural images from the Corel image database. We used 200 images

for training and algorithm development. The 100 test images were used only to generate the final

results for this chapter. Chapter 2 established that the segmentations of a single image by the differ-

ent subjects are highly consistent, so we consider all human-marked boundaries valid. We declare

an image location (x; y; �) to be on-boundary if it is within �x �
p
8 pixels and �� � 30 degrees

of any human-marked boundary. The remainder are labeled off-boundary.

This classification task is characterized by relatively low dimension, a large amount of data

(100M samples for our 240x160-pixel images), poor class separability, and a 10:1 class ratio. The

maximum feasible amount of data, uniformly sampled, is given to each classifier. This varies from

50M samples for the density estimation and logistic to 20K samples for the SVM and HME. Note

that a high degree of class overlap in any low-level feature space is inevitable because the human

subjects make use of both global constraints and high-level information to resolve locally ambiguous

boundaries.

Figure 4.12(a) shows the performance of the seven classifiers using only the middle scale of

BG, CG, and TG. The PR curves all cross approximately at the maximal F measure point, and so

all the classifiers are equivalent as measured by the F measure. The classification tree and SVM

are able to achieve marginally higher performance in the high recall and low precision regime,

but they perform worse in the low recall and high precision area. Overall, the performance of all

the classifiers is approximately equal, but other issues affect model choice such as representational

compactness, stability, bias, variance, cost of training, and cost of evaluation.

The non-parametric models achieve the highest performance, as they are able to make use of the

large amount of training data to provide unbiased estimates of the posterior, at the cost of opacity and

a large model representation. The plain logistic is stable and quick to train, and produces a compact

and intuitive model. In addition, the figure shows that the logistic’s bias does not hurt performance.

When given sufficient training data and time, all the variants on the logistic – the quadratic logistic,

boosted logistic, and HME – provided minor performance gains. However, the many EM iterations

needed to fit the HME required us to subsample the training data heavily to keep training time within

reasonable limits.

The support vector machine was a disappointment. Training time is super-linear in the number

of samples, so the training data had to be heavily subsampled. The large class overlap produced

models with 25% of the training samples as support vectors, so that the resulting model was opaque,

large, and exceedingly slow to evaluate. In addition, we found the SVM to be brittle with respect

to its parameters � and �. Even at the optimal settings, the training would occasionally produce

nonsense models. Minute variations from the optimal settings would produce infeasible problems.
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We conclude that the SVM is poorly suited to a problem that does not have separable training data.

Panel (b) of Figure 4.12 shows the performance of each classifier, except the classification tree,

when all three scales are included for each of the three features. The results are much as before,

with virtually no difference between the different models. Balancing considerations of performance,

model complexity, and computational cost, we favor the logistic model and its variants.

4.6 Results

Having settled on a grayscale boundary model using a single scale each of BG and TG, and a

color model that adds a single scale of CG, we seek to compare these models to classical models

and the state-of-the-art. The model that we present as a baseline is MATLAB’s implementation of

the Canny [6] edge detector. We consider the detector both with and without hysteresis. To our

knowledge, there is no work proving the benefit of hysteresis thresholding for natural images. We

will call the Canny detector without hysteresis “GD”, as it is simply a Gaussian derivative filter with

non-maxima suppression. With hysteresis, the operator is called “GD+H”.

The GD and GD+H detectors each have a single parameter to tune – the � of the Gaussian

derivative filters. Figure 4.13(a) and (b) show the PR curves for various choices of �. For both

cases, � = 1 pixel is a good choice. Note that the detector threshold is not a parameter that we need

to fit, since it is the parameter of the PR curves.

For the state of the art detector, we use a detector derived from the spatially-averaged second

moment matrix (2MM). It has long been known that the eigenspectrum of the second moment matrix

provides interesting features. For example, both eigenvalues being large may indicate a corner or

junction. This observation is the basis of the Plessey or Harris-Stephens [22] corner detector and

the Förstner corner detector [15]. One large and one small eigenvalue may indicate a simple edge.

The Nitzberg edge detector [49] used by Konishi et al. [31] is based on the difference between the

eigenvalues. What is common to these approaches is that they are all based on simple features

derived from the eigenvalues of the 2MM.

We apply the same training/test methodology to our 2MM detector as we do to our own detectors,

but we use the full eigenspectrum as a feature vector. From the 200 training images, we obtain on-

and off-boundary labels for pixels and train a logistic model using both eigenvalues of the 2MM as

features. Figure 4.14 shows the model trained in this manner. Panel (a) shows the distribution of the

training data in feature space. Panel (b) shows the empirical posterior, and panel (c) shows the fitted

posterior from the logistic model. In addition, in order to perform non-maxima suppression on the

2MM output, we calculated the orientation of the operator’s response from the leading eigenvector.

The 2MM detector also has scale parameters. The inner scale is the scale at which image deriva-
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(a) Gaussian Derivative (b) GD + Hysteresis
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Figure 4.13: Choosing � for the Classical Edge Operators. The Gaussian derivative (GD) operator
(a) without hysteresis and (b) with hysteresis, and (c) the second moment matrix (2MM) operator,
fitted as in Figure 4.14. In (a) and (b), � ranges from 0.5 to 5.66 at half-octave scales. In (c), �
ranges from 0.5 to 3 at an increment of 0.5. From these experiments, we choose the optimal scales
of �=1 for GD regardless of hysteresis, and �=0.5 for 2MM.

89



CHAPTER 4. LEARNING A LOCAL BOUNDARY MODEL

(a) Log10(Sample Count) (b) Empirical Posterior (c) Fitted Posterior
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Figure 4.14: Optimizing the 2nd Moment Matrix Model (2MM). For this model, the two features
are the smaller and larger eigenvalues of the locally averaged second moment matrix. (a) shows
the histogram of samples from the 200 training images along with the 100 samples/bin contour. (b)
shows the empirical posterior probability of a boundary, and (c) shows the fitted posterior using
logistic regression. The linear decision boundary of the fitted logistic is drawn in both (b) and (c).
The coefficients of the fitted logistic are -0.27 for the larger eigenvalue and 0.58 for the smaller
eigenvalue, with an offset of -1.

tives are estimated. We set the inner scale to a minimum value, estimating the derivatives with the

typical 3x3 [-1,0,1] filters. Figure 4.13(c) shows the optimization over the outer scale parameter,

which is the scale at which the derivatives are spatially averaged. Only a modest amount of blur is

required (� = 0:5 pixels). Note that some blur is required, or the second eigenvalue vanishes. Less

smoothing is not possible due to pixel resolution.

In Figure 4.15, we give a summary comparison of the BG, CG, and TG detectors, along with

two combinations: BG+TG for grayscale images, and BG+CG+TG for color images. It is clear that

each feature contains a significant amount of independent information. Figure 4.3 on page 65 shows

the comparison between the two Gaussian derivative operators (GD and GD+H), the second mo-

ment matrix operator (2MM), our grayscale BG+TG operator, and our color BG+CG+TG operator. 3

First, note that hysteresis does impart a marginal improvement to the plain GD operator, though the

difference is pronounced only at very low recall rates. The 2MM operator does mark a significant

improvement over the Canny detector, except at low recall. The main benefit of the 2MM operator

is that it does not fire where both eigenvalues are large – note the opposite signs of the coefficients

in the model. As a result, it does not fire where energy at multiple orientations coincide at a pixel,

such as at corners or inside certain textures. Thus, 2MM reduces the number of false positives from

3The logistic coefficients for the BG+TG operator are 0.50 for BG and 0.52 for TG with an offset of -2.81. The coefficients
for the color model are 0.31 for BG, 0.53 for CG, and 0.44 for TG, with an offset of -3.08. The features are normalized to
have unit variance. Feature standard deviations are 0.13 for BG, 0.077 for CG, and 0.063 for TG.
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Gradient Operators
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Figure 4.15: Detector Comparison. The performance of the edge detectors proposed in this chapter,
both independently and in combination.
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high contrast texture.

The operators based on BG and TG significantly outperform both classical and state-of-the-art

edge detectors. The main reason for the improved performance is a robust treatment of texture.

Neither GM nor 2MM can detect texture boundaries. For the same reason that 2MM suppresses

false positives inside textured areas, it also suppresses edges between textured areas.

Figure 4.3 also shows the performance of the human subjects in the segmentation dataset. Each

plotted point shows the precision and recall of a single human segmentation when it is compared to

the other humans’ segmentations of the same image. The median human F-measure is 0.80. The

solid line in the upper right corner of the figure shows the iso-F-measure line for 0.80, representing

the F-measure frontier of human performance.

Each of the curves in Figure 4.3 uses a fixed distance tolerance dmax = 1% of the image diago-

nal (2.88 pixels). Figure 4.16 shows the precision-recall curves for each detector as this tolerance

changes. The digital pixel grid forces a discretization of this parameter, so the figure shows the

result for dmax = f
p
2; 2;

p
5;
p
10g. Since the curves do not intersect and are roughly parallel, the

F-measure captures the differences effectively. Figure 4.17 shows how the F-measure changes as a

function of dmax for each detector and for the human subjects. If a detector’s localization were good

to within 1 pixel, then the detector’s curve would be flat. In contrast, all of the machine curves reveal

localization error greater than that shown by the human subjects. Additional work on local boundary

detection will no doubt narrow the gap between machine and human performance, but large gains

will ultimately require higher-level algorithms.

We present qualitative results in Figures 4.18 and 4.19. The first figure shows various versions of

our detectors along with the humans’ boundaries. The second figure shows a comparison between

the GD+H, 2MM, and BG+TG detectors, also alongside the human’s boundaries. Each machine

detector image shows the soft boundary map after non-maxima suppression, and after taking the

maximum over �. In Figure 4.18, we see the complementary information contained in the three

channels, and the effective combination by the logistic model. For example, color is used when

present in (b,c,i) to improve the detector output. Figure 4.19 shows how the BG+TG detector has

eliminated false positives from texture while retaining good localization of boundaries. This effect

is particularly prominent in image (e).

Overshoot artifacts are visible in the TG-only images in Figure 4.18(a-b), though they are sup-

pressed somewhat after cue combination. These artifacts hint at the next issue we must face in a

local boundary model: integrating high-level information. In order to integrate texture and color,

we must use operators with a large support. Such large supports cause problems at high-curvature

boundaries where the boundary does not follow the disc’s diameter, and where the support crosses

multiple regions. One would ideally clip the operator support at object boundaries in order to clar-
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(a) GD + Hysteresis (b) 2nd Moment Matrix
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Figure 4.16: Detectors at Various Distance Tolerances. The panels show precision-recall curves for
several detector as the matching tolerance varies from

p
2 to

p
10 pixels. Since the curves do not

intersect, the F-measure is a good representation of performance regardless of threshold. Figure 4.17
shows F-measure curves for this data.
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Figure 4.17: F-Measure for Detectors at Various Distance Tolerances. This graph shows the rela-
tionship between F-measure and the distance tolerance for the four detectors, along with the median
human performance. The human curve is flatter than the machine curves, showing that the humans’
localization is good. The gap between human and machine performance can be reduced but not
closed by better local boundary models. Both mid-level cues and high-level object-specific knowl-
edge are likely required to approach the performance of the human subjects.

ify the signal. However, with feedback one must initially proceed from the low level, which is the

purpose of this chapter.

4.7 Conclusion

We have defined a novel set of brightness, color, and texture cues appropriate for constructing a

local boundary model. By using a large dataset of human-labeled boundaries in natural images, we

have formulated the task of cue combination for local boundary detection as a supervised learning

problem. This approach models the true posterior probability of a boundary at every image location

and orientation, which is particularly useful for higher-level algorithms. The choice of classifier

for modeling the posterior probability of a boundary based on local cues is not important; a simple

linear model is sufficiently powerful. Based on a quantitative evaluation on 100 natural images, our

detector outperforms existing methods, indicating that a proper treatment of texture is essential for

detecting boundaries in natural images.
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Figure 4.18: Boundary Images for Our Detectors. Rows 2 to 4 show real-valued probability-
of-boundary (Pb) images after non-maxima suppression for the three cues. The complementary
information in each of the three BG, CG, and TG channels is successfully integrated by the logistic
in row five. The boundaries in the human segmentations shown in the last row are darker where
more subjects marked a boundary.
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Figure 4.19: Boundary Images for Three Grayscale Detectors. These are the same images as in Fig-
ure 4.18. Rows 2 to 4 show Pb images for the Gaussian derivative with hysteresis (GD+H), the 2nd
moment matrix (2MM), and our brightness+texture detector (BG+TG). The human segmentations
are shown once more for comparison. The BG+TG detector benefits from a suppression of edges on
the interior of textured regions, and from operating at a large scale without sacrificing localization.
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Chapter 5

Learning a Pixel Affinity Model

In this chapter, we examine the problem of combining region and boundary cues for natural image

segmentation. We employ a large database of manually segmented images in order to learn an

optimal affinity function between pairs of pixels. These pairwise affinities can then be used to

cluster the pixels into visually coherent groups. Region cues are computed as the similarity in

brightness, color, and texture between image patches. Boundary cues are incorporated by looking

for the presence of an “intervening contour”, a large gradient along a straight line connecting two

pixels.

We first use the dataset of human segmentations to individually optimize parameters of the patch

and gradient features for brightness, color, and texture cues. We then quantitatively measure the

power of different feature combinations by computing the precision and recall of classifiers trained

using those features. The mutual information between the output of the classifiers and the same-

segment indicator function provides an alternative evaluation technique that yields identical conclu-

sions.

As expected, the best classifier makes use of brightness, color, and texture features in both patch

and gradient forms. Figure 5.1 shows the performance of our best affinity models compared to the

human ground truth. We find that for brightness, the gradient cue outperforms the patch similarity.

In contrast, using color patch similarity yields better results than using color gradients. Texture

is the most powerful of the three channels, with both patches and gradients carrying significant

independent information. Interestingly, the proximity of the two pixels does not add any information

beyond that provided by the similarity cues. We also find that the convexity assumptions made by

the intervening contour approach are supported by the ecological statistics of the dataset.
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Figure 5.1: Performance of Pixel Affinity Models. This figure shows the performance of our best
pixel affinity models compared to the affinity defined by the human data. The dots show the precision
and recall of each of 1366 human segmentations in the 250-image test set when compared to the
other humans’ segmentation of the same image. The large dot marks the median recall (99%) and
precision (63%) of the humans. The iso-F-measure curve at F=77% is extended from this point to
represent the frontier of human performance for this task. The three remaining curves represent our
patch-only model, contour-only model, and patch+contour model. Neither patches nor contours are
sufficient, as there is significant independent information in the patch and contour cues. The model
used to combine features is a logistic function with quadratic terms, which performs best among
classifiers tried on this dataset.
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5.1 Introduction

Boundaries and regions are closely intertwined. A closed boundary generates a region, and every

image region has a boundary. Psychophysical experiments suggest that humans use both boundary

and region cues to perform segmentation [75]. In order to build a vision system capable of parsing

natural images into coherent units corresponding to surfaces and objects, it is clearly desirable to

make global use of both boundary and region information.

Historically, researchers have focused separately on the sub-problems of boundary and region

grouping. Region based approaches are motivated by the Gestalt notion of grouping by similarity.

They typically involve integrating features such as color or texture over local patches of the image

[14, 23, 56] and then comparing different patches [48, 55]. However, smooth changes in texture

or brightness caused by shading and perspective within regions pose a problem for this approach

since two distant patches can be quite dissimilar despite belonging to the same image segment. To

overcome these difficulties, gradient-based approaches detect local edge fragments marked by sharp,

localized changes in some image feature [6,46,38,53,42]. The fragments can then be linked together

in order to identify extended contours [51, 74, 12].

Less work has dealt directly with the problem of finding an appropriate intermediate repre-

sentation in order to incorporate non-closed boundary fragments into segmentation. Mathematical

formulations outlined by [18, 47, 45] along with algorithms such as [39, 28] have attempted to unify

boundary and region information. More recently, [37, 69] have demonstrated the practical utility of

integrating both in order to segment images of natural scenes.

There are some widely held “folk-beliefs” regarding the various cues used for image segmenta-

tion:

1. Brightness gradients (caused by shading) and texture gradients (caused by perspective) neces-

sitate a boundary-based approach.

2. Edge detectors are confused by texture, so one must use patch-based similarity for texture

segmentation.

3. Color integrated over local patches is a robust and powerful cue.

4. Proximity is a good indicator for grouping.

These statements have not been tested empirically, however. By using a dataset of human segmenta-

tions as ground truth, we are able to provide quantitative results regarding the ecological statistics 1

of patch- and gradient-based cues and gauge their relative effectiveness.

1Our approach follows the lines of Egon Brunswik’s suggestion nearly 50 years ago that the Gestalt factors made sense
because they reflected the statistics of natural scenes [4].
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We treat the problem of integrating both gradient and patch information for segmentation within

the framework of pairwise clustering [67, 76, 65, 68, 13, 52, 17, 72]. In contrast to central clustering

techniques such as k-means or mixtures-of-Gaussians, which compare each pixel (or other image

element) to some small set of prototypes, pairwise techniques rely on the evaluation of an affinity

function between each pair of image pixels. Although pairwise techniques tend to be more com-

putationally expensive, they have the advantage of removing the constraint that pixels be explicitly

embedded in some normed vector space where Euclidean or Mahalanobis distances “make sense”.

Instead, pixels are implicitly described by their similarity to every other pixel in the image.

The pairwise framework allows patch and gradient information equal footing in the following

way. Associate a descriptor to each pixel that captures color, brightness and texture in a neighbor-

hood of the pixel. The patch-based similarity between two pixels is a function of the difference in

their descriptors. A gradient is computed as the change in these local descriptors between nearby

pixels. For each pair of pixels, record the magnitude of the gradient encountered along a straight

path connecting the two pixels in the image plane. Large gradients indicate the presence of an “in-

tervening contour” [34] and suggest that the pixels do not belong to the same segment. The pairwise

affinity between the i-th and j-th pixel is given by a function whose arguments are the similarity

between the i-th and j-th local descriptors and the gradients along the path from i and j.

Most applications of pairwise clustering to segmentation have made use of heuristically derived

affinity functions, such as Malik et al. [37]. Meilă and Shi [44] make a natural proposal to learn

optimal pairwise affinities from training data. In the results presented here, nearly all free parameters

— filter scales, histogram binning and quantization, descriptor windowing, combination of gradient

features, and so on — have been carefully optimized with respect to training data. Our goal in this

chapter is to explicitly model the posterior probability of two pixels belonging to the same image

segment conditioned on photometric properties of the image. Figure 5.2 shows examples of both

ground truth affinity functions and affinity models learned from data.

We provide two general schemes for evaluating the effectiveness of different combinations of

features. The first is to train a classifier that declares two pixels as lying in the same or different

segments given some set of features. Classifier performance is then evaluated by considering the

trade-off between precision and recall. The second approach is to compute the mutual information

between the classifier output and the same-segment indicator provided by the human segmentations.

These two schemes are in strong agreement, which lends force to our findings:

� Segmentations of the same image by different humans are quite consistent with each other.

“Fine” segmentations tend to be “coarse” segmentations with regions that have been refined

by breaking them into roughly convex parts.

� The ecological statistics of the dataset show that regions are mostly convex, validating the
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Figure 5.2: Pixel Affinity Images. The first row shows an image with one pixel selected. The
remaining rows show the similarity between that pixel and all other pixels in the image, where white
is most similar. Rows 2 to 4 show our patch-only, contour-only, and patch+contour affinity models.
Rows 5 and 6 show the pixel similarity given the ground truth data, where white corresponds to
more agreement between humans. Row 6 shows simply the same-segment indicator function, while
row 5 is computed using intervening contour on the human boundary maps.
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assumptions made by the intervening contour approach.

� Intervening contour and patch comparisons both provide significant, independent information

about whether two pixels belong in the same segment.

� The color cue is best captured using patches, while for brightness one should use gradients.

For texture, both gradients and patches are valuable.

� The proximity of two pixels does not provide any information not given by the patch-based or

gradient-based similarity. It is simply a result, not a cause, of grouping.

5.2 Methodology

We formulate the problem of learning the pixel affinity function as a classification problem of

discriminating same-segment pixel pairs from different-segment pairs. Let S ij be the true same-

segment indicator so that Sij=1 when pixels i and j are in the same segment, and S ij=0 when

pixels i and j are in different segments.

The dataset presented in Chapter 2 provides the ground truth segmentation data. We use the

color segmentations for 500 images, divided into test and training sets of 250 images each. Each

image has been segmented by at least 5 subjects, so the ground truth S ij is defined by a set of human

segmentations. We declare two pixels to lie in the same segment only if all subjects declare them to

lie in the same segment.

Given a classifier output Ŝij , we can evaluate the classifier’s performance in two ways. Our first

evaluation technique uses the precision-recall (PR) framework, as in Chapter 4. Precision measures

the probability that two pixels declared by the classifier to be in the same segment are in the same

segment, i.e. P (Sij=1jŜij=1). Recall measures the probability that a same segment pair is detected,

i.e. P (Ŝij=1jSij=1).

The second approach to evaluating a classifier measures the mutual information between the

classifier output Ŝ and the ground truth data S, as discussed in Section 3.1.1. Given the joint distri-

bution p(x; y) = P (S = x; Ŝ = y), the mutual information I is defined as the Kullback-Liebler di-

vergence between the joint and the product of the marginals, so I(S; Ŝ) =
R
x;y

p(x; y) log p(x;y)

p(x)p(y)
.

We compute the joint distribution by binning the soft classifier output.

Chapter 3 provides target performance numbers for our affinity models. In that chapter, we

evaluated the ground truth affinity functions generated by human segmentations. The median F-

measure for the human subjects was 0.76, and the median mutual information 0.25.
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5.3 Features

We will model the affinity between two pixels as a function of both patch-based and gradient-based

features. In each case, we can use brightness, color, or texture, producing a total of six features. We

also consider the distance between the pixels as a seventh feature.

5.3.1 Patch-Based Features

Given a pair of pixels, we wish to measure the brightness, color, and texture similarity between cir-

cular neighborhoods of some radius centered at each pixel. These features are similar to the gradient

features used in Chapter 4. The difference is that instead of computing the similarity between two

adjacent half discs, here we compute the similarity between two whole discs.

For the brightness and color patch features, all of the same issues that were presented in Sec-

tion 4.2.3 arise regarding histogram comparison techniques and kernel density estimation. We take

the same approach here of using the 1976 CIE L*a*b* color space separated into luminance and

chrominance channels. We model brightness and color distributions with histograms constructed by

binning kernel density estimates, and compare histograms with the � 2 histogram difference opera-

tor. For the brightness cue, we use the L* histogram for each pixel. For color, we compute separate

a* and b* histograms, and sum their respective �2 contributions.

For the patch-based texture feature, we compare the distributions of filter responses in the two

discs. As in Section 4.2.4, we compare texton distributions with �2, where the textons are computed

by clustering filter bank responses with k-means. The texture descriptor for a pixel is therefore a

k-bin histogram over the pixels in a disc of radius r centered on the pixel.

All of the patch-based features have parameters that require tuning, such as the radius of the

discs, the binning parameters for brightness and color, and the texton parameters for texture. Sec-

tion 5.4.2 covers the experiments that tune these parameters with respect to the training data.

5.3.2 Gradient-Based Features

Given a pair of pixels, consider the straight-line path connecting them in the image plane. If the

pixels lie in different segments, then we expect to find, somewhere along the line, a photometric

discontinuity or intervening contour [34]. If no such discontinuity is encountered, then the affinity

between the pixels should be large.

In order to compute the intervening contour cue, we require a boundary detector that works

robustly on natural images. For this we employ the gradient-based boundary detector of Chapter 4.

The output of the detector is a Pb image that provides the posterior probability of a boundary at

each pixel. We consider the three Pb images computed using brightness, color, and texture gradients
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Figure 5.3: Loss from Straight-Line Intervening Contour. The top curve shows the probability
— in the human segmentations — that there is no intervening contour between two same-segment
pixels, conditioned on image plane distance. An intervening contour of this sort can occur only from
concavities. Therefore, this curve shows the degree to which segments are convex as a function of
scale. The lower curve shows the distribution of the same-segment pairs used in the computation.

individually, as well as the Pb image that combines the three cues into a single boundary map. The

combined model uses a logistic function trained on the dataset, which is well motivated by evidence

in psychophysics that humans make use of multiple cues in localizing contours [59] perhaps using a

linear combination [32].

We compute the intervening contour cue for two pixels i and j from the Pb values that occur

along the straight line path �(t) connecting the two pixels. We consider the family of measures

L
p(�) = (

P
t

Pb(�(t))
p
)
1=p for p = f0; 1; 2; 4;1g, as well as the mean of Pb(�(t)). The next

section will cover the choice of the intervening contour function, as well as the best way to combine

the contour information from the brightness, color, and texture channels.

5.4 Findings

5.4.1 Validating Intervening Contour

Although the ecological statistics of natural images indicate that regions tend to be convex [16], the

presence of an intervening contour does not necessarily indicate that two pixels belong in different

segments. Concavities introduce intervening contours between same-segment pixel pairs. In this

section, we analyze the frequency with which this happens.

Given the union of boundary maps for all human segmentations of an image, we measure the

probability that same-segment pairs have no intervening boundary contour. Figure 5.3 shows this

104



5.4. FINDINGS

p(1hopjSL) p(1hopj:SL)
Sm

al
lS

ca
le

0.320.32

0

0.2

0.4

0.6

0.8

1
L

ar
ge

Sc
al

e

0.140.140.140.14

0

0.2

0.4

0.6

0.8

1

Figure 5.4: One-Hop Paths. Each panel shows two pixels, marked with squares, that all humans
declared to be in the same segment. The intensity at each point represents the empirical probability
that a one-hop path through that point does not intersect a boundary contour. The left column is
conditioned on there being an unobstructed straight-line (SL) path between the pixels, while the
right column shows the probabilities when the SL path is obstructed. The top row shows data
gathered from pixel pairs with small separation; the bottom row for pairs with large separation.

probability as a function of pixel separation, along with the frequency of same-segment pairs at each

distance. If the regions were convex, then the curve would be fixed at one. We see that straight-line

intervening contour is a good approximation to the same-segment indicator for small distances: 49%

of pairs are in the >75% range.

When straight-line intervening contour fails for a same-segment pair, there exists a more com-

plex path connecting the pixels. Consider the set of paths that consist of two straight-line segments,

which we call one-hop paths. The situations where one-hop paths succeed but straight-line paths fail

can give us some intuition about how much can be gained by examining paths more complex than

straight line paths.

Figure 5.4 shows the empirical spatial distribution of one-hop paths between same-segment pixel

pairs, using the union of human segmentations. The probability of a one-hop path existing is condi-

tioned on (left) there being a straight-line path with no intervening contour and (right) on there being

no straight-line path. If the human subjects’ regions were completely convex, then the right column

images would be zero. Instead, we see that when the straight-line intervening contour fails, there is a

small but significant probability that a more complex one-hop path will succeed, and the probability
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of such a path is larger for smaller scales. There is clearly some benefit from the more complex paths

due to concavities in the regions. However, the degree to which an algorithm could take advantage

of the more powerful one-hop version of intervening contour depends on the frequency with which

the one-hop paths find holes in the estimated boundary map. In any case, the figure makes clear that

the simple straight-line path is a good first-order approximation to the connectivity of same-segment

pairs.

Since the straight-line version of intervening contour will underestimate connectivity in con-

cave regions, it may have a tendency toward over-segmentation. Figure 5.5 shows the effect on

precision and recall for the human data when we add the constraint that same-segment pairs must

have no intervening boundary contour. As in Chapter 3, we are comparing a left-out human to the

union of the remaining humans. On average, the union segmentation will be more detailed than

the left-out human. The figure shows a increase in median precision from 66% to 75%, indicating

that intervening contour tends to break up non-convex segments in a manner similar to the human

subjects. This lends confidence to an approach to perceptual organization of first finding convex ob-

ject pieces through low-level processes, and then grouping the object pieces with into whole objects

using higher-level cues.

5.4.2 Performance of Patches

Each of the brightness, color, and texture patch features has several parameters that require tuning.

We optimized each patch feature independently via coordinate ascent to maximize performance on

the training data. Figure 5.6 shows the result of the coordinate ascent experiments, where no change

in any single parameter further improves performance.

For brightness and color, a radius of 5.76 pixels was optimal, though performance is similar for

larger and smaller discs. In contrast, the texture disc radius has greater impact on performance, and

the optimal radius is much larger at 16.1 pixels.

The brightness and color patches also have parameters related to the binned kernel density esti-

mates. The binning parameters for brightness are important for performance, while the color binning

parameters are less critical. A larger� indicates that small differences in the cue are less perceptually

significant—or at least less useful for this task.

Apart from the disc radius, the texture patch cue has additional parameters related to the texton

computation. The upper right table in Figure 5.6 shows the optimization over the number of textons,

with 512 being optimal. In general, we found that the number of textons should be approximately

half the number of pixels in the disc. In addition, we find agreement with [42,35] that the filter bank

should contain a single scale, and that the scale should be as small as possible.

Figure 5.7 shows the performance of classifiers trained on each patch feature individually, along
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Figure 5.5: Intervening Contour and Refinement. The potential over-segmentation caused by the
intervening contour approach agrees with the refinement of objects by human observers. The top left
graph shows the distribution of precision and recall for all color segmentations in the dataset, eval-
uated using the leave-one-out method. The right graph adds the constraint that the same-segment
pairs from the left-out human must not have an intervening boundary contour. The recall naturally
decreases from adding a constraint to the “signal”. From the marginal distributions shown in the
lower graph, we see that precision increases with the added constraint. Because the union segmen-
tation is, on average, a refinement of the left-out segmentation, intervening contour tends to break
non-convex regions in a manner similar to the human subjects.
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Patch Radius
Brightness Color Texture

Radius F MI F MI F MI
0.010 0.46 .069 0.49 .093 - -
0.014 0.46 .071 0.50 .096 - -
0.020 0.46 .074 0.50 .097 - -
0.028 0.46 .073 0.50 .097 0.50 .097
0.040 0.46 .071 0.49 .095 0.53 0.11
0.056 0.45 .067 0.48 .091 0.55 0.12
0.080 - - - - 0.53 0.11
0.112 - - - - 0.50 .089

Kernel Density Estimate
Brightness Color

Sigma Bins F MI F MI
0.025 100 0.40 .041 0.48 .085
0.05 50 0.41 .047 0.50 .094
0.1 25 0.44 .059 0.50 .097
0.2 12 0.46 .070 0.491 .094
0.4 6 0.46 .073 0.49 .087
0.8 3 0.45 .062 0.48 .083

Number of Textons
Num F MI
32 0.48 .081
64 0.50 .093

128 0.52 0.10
256 0.53 0.11
512 0.55 0.12
1024 0.52 0.10
2048 0.52 0.10

Texton Filter Bank
Scale F MI
0.007 0.55 0.12
0.010 0.55 0.11
0.014 0.53 0.11
0.020 0.51 .092
0.028 0.47 .072

0.007-0.014 0.55 0.12
0.010-0.020 0.53 0.11
0.014-0.028 0.51 .091

Figure 5.6: Optimization of Patch Features. The parameters of the patches were optimized on the
250-image training set so that no change in any single parameter improves performance. The optimal
patch sizes and filter scales are in units of the image diagonal, which is 288 pixels for our 240x160
images. The accessible ranges of the L*a*b* color axes were scaled to [0; 1], which is the scale for
the � parameter. The Gaussian kernel was sampled at 21 points from [�2�; 2�]. We must reduce
the number of bins as � increases to keep the number of samples per bin constant. In the lower right
table, the multi-scale texton filter bank contains three half-octave scales covering the range shown.
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Figure 5.7: Precision-Recall of Patch Features. The lower curve shows the performance of the
distance cue for reference. The next three curves show the performance of the brightness, color, and
texture cues respectively. The top curve shows the result of combining the three cues with a logistic
model. Texture is the most powerful cue, but much benefit is gained by using all three.
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Figure 5.8: Intervening Contour Cues. The comparison of different intervening contour functions
(left) shows that L1 is superior. The right graph explores the two ways we can combine different
intervening contour cues into a single contour cue. We can either compute the intervening con-
tour feature for brightness (ICb), color (ICc), and texture (ICt) separately and then combine with
a classifier (ICb+ICc+ICt), or we can use the Pb function that combines the three channels into a
single boundary map for the intervening contour feature (ICbct). We achieve better performance by
computing separate contour cues.

with a classifier that uses all three. It is clear that each patch feature contains independent informa-

tion, and that texture is the most powerful cue.

5.4.3 Performance of Gradients

The gradient cues are based on Pb images, which give the posterior probability of a boundary at each

image location. The Pb function can incorporate any or all of the brightness, color, and texture cues,

though consider for the moment the version that uses all three. Which intervening contour function

should we use? The left panel of Figure 5.8 shows the performance of various functions including

the mean, and the range of Lp(�) functions from sum to max. The L1 version is clearly the best

approach. Both the mean and the sum perform significantly worse. The results are the same no

matter which cues the Pb function uses. Note that the max does not include any encoding of distance.

The right panel of Figure 5.8 compares the two ways in which we can combine the contour cues.

We can either compute the intervening contour feature for brightness, color, and texture separately

and then combine with a classifier, or we can use the Pb function that combines the three channels

into a single boundary map for the intervening contour feature (ICbct). We achieve slightly better
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Figure 5.9: Distance as a Grouping Cue. In this figure, we investigate the utility of the distance
between two pixels as a cue for grouping. The Gestalt school identified proximity as a grouping
cue, however, in all cases the classifier performance is the same whether or not distance is used. The
right panel shows the same experiment with the test and training sets swapped. We performed all
our experiments with swapped sets. Results were always consistent, with the F-measure and mutual
information accurate to within two decimal places.

performance using the three individual contour cues than using the combined Pb .

5.4.4 Cue Combination

We now have seven prospective cues for our model of the pixel affinity, though we expect some to

be redundant. The cues are brightness, color, and texture patches, intervening contour from the same

three channels, and the distance between the two pixels in the image plane. We first evaluate the

power of the distance cue in Figure 5.9. Whether we use a patch-only model, a contour-only model,

or a patch+contour model, the result is always the same: distance does not add any information

beyond that already provided by similarity cues.

We expect that the superiority of patch versus contour cues to differ depending on the feature

channel. Smooth shading and foreshortening effects may favor brightness and texture gradients,

while it is “well known” that color patches are a stable cue. Figure 5.10 shows the patch-only,

contour-only, and patch+contour models for each of the brightness, color, and texture channels.

As expected, the brightness patch proves to be far weaker than the brightness contour cue, with

only marginal benefit from combining the two. Neither patches nor contours seem to dominate

the color or texture channels. However, both texture cues appear quite powerful with independent

information.
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Figure 5.10: Per-Cue Patch and Gradient Combinations. The three plots show classifiers that use
either brightness (top left), color (top right), or texture (bottom). Each plot shows the performance
of a classifier using the patch cue, the gradient cue, and both together. The brightness patch appears
an especially weak cue, which can be expected from the frequency of shading gradients in images.
Both texture patches and texture gradients are powerful cues, and their combination is everywhere
superior to using one alone.
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Figure 5.11: Feature Pruning. In the upper panel, we start with no features and add one feature at a
time to the model in order to maximize performance in a greedy manner. In the lower panel, we start
with all six features, and greedily remove the worst feature, one feature at a time. In both cases, the
model of choice uses the brightness gradient, color patches, and both texture cues. The brightness
patch and color gradient are weak cues, while the color patch and both texture cues are powerful.
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In order to determine the most fruitful combination of cues, we executed both top-down and

bottom-up feature pruning experiments. Figure 5.11 shows the result. In both cases, the model that

maximizes performance using the fewest cues is the 4-cue model containing the brightness contour

cue, the color patch cue, and both texture cues. All three feature channels — brightness, color, and

texture — are represented, with particular emphasis on texture. From the bottom-up pruning, it is

clear that the texture cues are the most powerful along with color patches. It is interesting to see that

at all stages in the pruning experiments, the model contains a balance between patch and contour

cues, as well as a balance between the three feature channels.

5.4.5 Choice of Classifier

As in Chapter 4, the choice of classifier is not important. Performance was always nearly identical

whether we used a non-parametric density estimation method, or parametric models based on lo-

gistic regression, including simple logistic regression, logistic regression with quadratic features, or

hierarchical mixtures of experts. To a first order approximation, a linear combination of features is

sufficient. We favor the logistic with quadratic terms since it yields a slight improvement over the

linear logistic function with little added computational cost.

5.5 Conclusion

We have shown how to combine patch and contour information into a model of pixel affinity for

the purpose of image segmentation. For both patches and contours, we formulate brightness, color,

and texture cues based on histogram differences. Contour cues are constructed in the intervening

contour framework, which is justified by the ecological statistics of human segmentations. The six

cues are carefully optimized with respect to a large dataset of manually segmented natural images,

and then combined with a classifier trained on the ground truth data.

We can now revisit the so-called “folk-beliefs” listed in the introduction:

� Brightness gradients (caused by shading) and texture gradients (caused by perspective) ne-

cessitate a boundary-based approach. This is not true, since the patch-based features are as

powerful as the boundary-based features.

� Edge detectors are confused by texture, so one must use patch-based similarity for texture

segmentation. This is patently false, as Chapter 4 demonstrates that we can incorporate texture

into a boundary detector. In fact, Figure 5.11 shows that in this chapter, the texture gradient is

our most powerful cue!
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� Color integrated over local patches is a robust and powerful cue. It does appear that color

patches are more effective than color edges when used in conjunction with other cues: the

most effective three-cue models in Figure 5.11 include the color patch feature. However,

Figure 5.10 indicates that when color is used alone, the color gradient is more effective than

color patches. This is likely due to the existence of color gradients across objects. Though

not as common as brightness gradients, which essentially cripple the brightness patch cue,

color gradients do exist in the natural world. In addition to albedo-induced gradients, color

gradients are caused by mutual illumination and shading.

� Proximity is a good indicator for grouping. Proximity is far less powerful than any of our

patch-based or gradient-based cues. In addition, the proximity cue does not improve the per-

formance of models that use other cues. It appears that proximity does not add any information

for grouping beyond that provided by local image-based features.

Figure 5.1 on page 98 shows the performance of our final pixel affinity models compared to the

human dataset. Both precision-recall and mutual information measures indicate that patches and

gradients contain significant independent information. The combined model outperforms the patch-

only and gradient-only models, but the result falls short of human performance. The gap may be

closed by incorporating mid- and high-level cues into the model of pixel affinity, such as closure,

convexity, symmetry, and familiar configuration.

115



CHAPTER 5. LEARNING A PIXEL AFFINITY MODEL

116



Chapter 6

Summary and Conclusion

I have presented the Berkeley Segmentation Dataset, a large and unique dataset of natural images

segmented by human subjects. Figure 6.1 shows a sample of the data. The images are of complex,

natural scenes, and there are multiple segmentations of each image. I have shown in Chapter 2

that the segmentations of an image by different subjects are consistent under a model of refinement.

Even without allowing refinement, however, the different segmentations are surprisingly similar.

This agreement is visible in Figure 6.1, where darker lines signify that a boundary was marked

by more subjects. We confidently reject the common assertion that segmentation is an ill-posed

problem.

The segmentation data is a valuable source of information for the ecological statistics of hu-

man vision. As we assume that the human visual system exploits statistical regularity in the visual

stimulus, we aim to do the same in our machine vision algorithms. To this end, I have outlined in

this thesis a process by which we can systematically learn models of perceptual organization from

data. The human data provides ground truth labels for various sub-problems. Statistical learning

machines provide the means of fitting computational models in a statistically optimal manner.

We have taken significant steps toward a completely data-driven segmentation algorithm by

learning a local boundary model in Chapter 4 and a pixel affinity model in Chapter 5. The re-

sults of the learned boundary model show that the data-driven approach is valuable. Figure 6.2

shows the performance of the circa 1980 Canny detector with and without hysteresis, the circa 1990

state-of-the-art Nitzberg/Förster/Harris edge detector based on the second moment matrix, and our

circa 2000 detector. All of the models were trained exhaustively on the same dataset.

First note that hysteresis improves the Canny detector only marginally. We are confident that the

majority of boundary detection work that populates the literature of the 1980s operates in this narrow

range of performance. The second moment matrix detector is a slight improvement, but our gradient-
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Figure 6.1: Example Images and Human-Marked Segment Boundaries. Each image shows multiple
(4 to 8) human segmentations. The boundaries are darker where more humans marked an edge.
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Figure 6.2: Two Decades of Boundary Detection Research. This figure shows the performance of our
boundary detectors compared to classical boundary detection methods and to the human subjects’
performance. Precision-recall curves, described in Section 3.1.2, are shown for five boundary de-
tectors: (1) Gaussian derivative (GD), (2) Gaussian derivative with hysteresis thresholding (GD+H),
the Canny detector, (3) A detector based on the second moment matrix (2MM), (4) our grayscale
detector that combines brightness and texture (BG+TG), and (5) our color detector that combines
brightness, color, and texture (BG+CG+TG). Each detector’s curve shows the tradeoff between ac-
curacy and noise as the detector’s threshold varies. Shown in the caption is each curve’s maximal
F-measure, valued from zero to one, along with the coordinates of the location of the maximum.
The points on the plot marked with “+” show the precision and recall of each ground truth human
segmentation when compared to the other humans. The median F-measure for the human subjects
is 0.80. The solid curve shows the F=0.80 precision-recall curve, representing the frontier of human
performance for this task.
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Figure 6.3: Performance of Pixel Affinity Models. This figure shows the performance of our best
pixel affinity models compared to the human subjects. The dots show the precision and recall of
each of 1366 human segmentations in the 250-image test set when compared to the other humans’
segmentations of the same image. The large dot marks the median recall (99%) and precision (63%)
of the humans. The iso-F-measure curve at F=77% is extended from this point to represent the
frontier of human performance for this task. The three remaining curves represent our patch-only
model, contour-only model, and patch+contour model. Neither patches nor contours are sufficient,
as there is significant independent information in the patch and contour cues. The model is a logistic
function with quadratic terms, which performs best among classifiers tried on this dataset.

based models show a marked increase in performance. The improvement in the gradient detector

comes from two factors: (1) an explicit model of texture edges, and (2) an effective combination

of brightness, color, and texture cues. It is interesting to note that it does not matter which model

one uses to combine the three cues. A simple logistic model performs as well as decision trees,

density estimation, boosted logistic regression, hierarchical mixtures of experts, and support vector

machines.

One contribution of this work is that we have significantly improved the quality of boundary

detection on natural images. However, it is perhaps the methodology that is most important. It is

only through rigorous empirical evaluation using precision-recall curves that we were able to guide

our gradient-based boundary model to higher performance. Without the boundary-detection micro-

benchmark provided by the dataset, we would not have achieved the gains that we did.
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Now that we have a boundary detector that works well on complex, natural images, we take the

next step towards segmentation. Working in Chapter 5 within the popular framework of pairwise

clustering for segmentation, we used the human data to learn a model of pixel affinity. This model

is based on both the gradient-based features of Chapter 4, and simple patch-based features. We

formulated seven features for the pixel affinity model: image plane distance, patch similarity for

brightness, color, and texture, and intervening contour features based on the brightness, color, and

texture gradients. Figure 6.3 shows the precision-recall curves for three of our affinity models com-

pared to the human data: patch-only, gradient-only, and patch+gradient. It is clear that both patches

and gradients provide independent information for the task. The gap to human performance must be

bridged by additional mid-level and high-level cues.

Our primary goal in Chapter 5 was to determine which features were useful for defining pixel

affinity. The model that maximizes performance by using the fewest features uses both texture cues,

the color patches, and the brightness gradient. In performing the experiments to optimize each cue

and explore cue combinations, we reach conclusions that contradict several commonly held beliefs

about segmentation:

1. Neither a patch-based nor gradient-based approach is superior for segmentation. Both con-

tain significant independent information, so our model of pixel affinity uses both patch and

gradient cues.

2. Edge detectors can deal with texture. If this was not clear from Chapter 4, then it should

be clear given that the most powerful cue in Chapter 5 was the texture gradient. Texture is

therefore not a reason to favor patch-based approaches.

3. Color patches are not a silver bullet for segmentation. If color is used alone, then the color

gradient performs better. If other cues are used, then the color patches are preferable, but the

texture cues are far more powerful. Color is not a strong signal in natural images both because

saturated colors are scarce, and because of the presence of color gradients.

4. Proximity is not a good indicator for grouping. All of our other cues soundly out-performed

proximity. Once one considers the content of the image, proximity does not provide additional

information.

In addition to these conclusions, we also find that the intervening contour approach is supported

by the dataset in the sense that segments are convex, especially at small scales. Furthermore, we

find that intervening contour tends to break up segments in a manner similar to the way our subjects

refine segmentations. This finding supports an approach to segmentation that first finds convex

object parts, and then groups the object parts into whole objects.

121



CHAPTER 6. SUMMARY AND CONCLUSION

That our results contradict several common beliefs in computer vision shows the true value of an

empirical approach to computer vision. Introspection and intuition are valuable tools, but they can

lead to erroneous conclusions if ideas are not tested scientifically.

The next logical step in this line of work is to derive full segmentation algorithms from the data,

and to enforce additional Gestalt grouping cues such as curvilinear continuity, closure, convexity,

symmetry, and familiar configuration. This is future work, but we have developed the necessary

quantitative methods in Chapter 3. For example, contour completion algorithms can be evaluated by

measuring how much the boundary map improves, using precision-recall curves computed by edgel

matching. Pairwise clustering algorithms can be evaluated by how much they improve the pixel

affinity function, using either mutual information or precision-recall. Given that we have micro-

benchmarks for both boundary detection and pixel affinity, we can quantitatively evaluate arbitrary

black-box improvements to these modules.

None of this work is possible without human data. We feel that computer vision must become

more data-driven. Though time-consuming, we must study human subjects and create datasets.

Fortunately, we found that a single dataset can suffice for evaluating many aspects of a task if the

dataset is large, high-level, and based on human perception. For image segmentation, we collected

high-level object-based segmentations, and were therefore able to create micro-benchmarks for the

different elements of segmentation algorithms. This provided the perfect environment for developing

robust low-level modules, since the high-level nature of the data introduces “noise” with the proper

ecological statistics.

We are confident that this empirical approach will continue to produce significant improvements

in general-purpose image segmentation, as well as further insights into perceptual organization. Of

particular interest are the problems of figure-ground assignment, hierarchy in perceptual organiza-

tion, and class-specific recognition, though all areas of computational vision would benefit from a

data-driven methodology. As computer vision researchers, we aim to understand human vision and

build systems that achieve human-level performance on vision tasks. It seems only sensible to mark

the target with data, search the data for patterns, and measure our progress with benchmarks.
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Appendix A

Computing Gradient Features

The most computationally expensive part of the gradient computations of Chapters 4 and 5 is the

computation of the half-disc feature histograms. At each pixel, we must compute two histograms

over semi-circular neighborhoods at several orientations and several scales. Properly structured, this

computation can be done efficiently.

The most significant speedup is achieved by optimizing the loop over orientations. Assuming

that we wish to compute the gradient at n evenly spaced orientations, we can divide the disc into

2n pie slices. If we compute the pixel histogram for each pie slice, then any half-disc histogram is

simply the sum of n adjacent pie slice histograms. In addition, we can compute the histograms for

orientation i + 1 incrementally from the histograms from orientation i by subtracting the last slice

and adding the next slice as we spin the disc. Note also that the initial step of computing the pie

slice histograms can be optimized by precomputing a slice membership mask.

For the texture gradient, these optimizations are sufficient. However, the soft binning required

by the brightness and color gradients present other opportunities for speedup. Each pixel contributes

multiple points to the histogram, one for each kernel sample. Precomputing kernel offsets and values

is effective, though this approach is slow if the number of kernel samples is large. If there are more

kernel samples than bins, then one should precompute the total histogram contribution from each

pixel.

Other loops admit additional optimization opportunities. In the same way that we split the disc

by orientation into pie slices, one could additionally split the disc into concentric rings corresponding

to the multiple scales. Since our half-octave scales produce an area increment for the disc of 2x per

scale, our computation is dominated by the largest scale. A smaller scale increment would justify

this optimization.

There is still much redundant computation as we sweep the disc across a scan-line. The pie slice
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histograms change slowly between adjacent pixels, especially when the number of orientations is

not large. It is possible to compute the slice histograms incrementally by computing slice update

masks. For large radii, this optimization achieves an order of magnitude speedup.
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Appendix B

Multinomial Logistic Regression

The hierarchical mixtures of experts (HME) model of Jordan and Jacobs [30] is a mixture model

where both the experts at the leaves and the internal nodes that comprise the gating network are

logistic functions. One can build an HME model with a binary logistic regression module, however

in that case one is restricted to a binary HME model with a binary tree gating network. We were

interested in more general models, and so we implemented a general multinomial HME. To do this,

we required an implementation of multinomial logistic regression. However, we could not find an

implementation, and the literature did not contain a rigorous derivation that we could find. This

appendix presents the derivation for the Newton-Raphson update rules for fitting a multinomial

logistic model.

Let the probability that data point x was generated by class j be:
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To fit this model we need the likelihood for N IID samples f(x1; y1); : : : ; (xn; yn)g with sample

weights fw1; : : : ; wng. yn is a soft class membership vector with unit L1 norm where y kn gives the

probability of membership of xn to class k. The wn are scalar weights in [0; 1].

The likelihood is:

L(�) =
Y
n

Y
k

pk(xn; �)
wny

k
n (B.3)

The log likelihood is:

`(�) =
X
n

X
k

wny
k
n log pk(xn; �) (B.4)

We would like to maximize the log likelihood using the Newton-Raphson method, for which we

will need the gradient and Hessian of ` with respect to each � j .

First, the gradient vector:
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Second, the Hessian matrix:
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The Newton-Raphson update step is:
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The update step in matrix notation is:
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where H and g are the Hessian and gradient for the pooled � j :
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We can write the gradient and Hessian sub-blocks in matrix notation:

gi = XW(yi � pi(X; �))
T (B.14)

Hij = �XWZijXT (B.15)

where yi = [yi1y
i
2 � � � yiN ], X = [x1x2 � � �xN ], W is a diagonal matrix containing the sample

weights wn, and Zij is a diagonal matrix with its n’th entry equal to:

Znij = pj(xn; �) [Æij � pi(xn; �)] (B.16)

B.1 Implementation Details

The HME requires a particularly robust logistic regression implementation. In an over-specified

HME, the unneeded experts tend to be marginalized by the gating network, producing degenerate

and numerically unstable problems to the experts. Simply implementing the Newton-Raphson iter-

ation is not sufficient. Two problems can arise.

The first problem is that of overshoot. The Newton-Raphson update step assumes that the func-

tion is locally close to parabolic. This is normally a reasonable assumption, however it is possible

to construct a situation where Newton-Raphson will not converge. The situation is easy to detect,

however. Since the likelihood should decrease at each iteration, an increase in the likelihood can
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only occur if the step overshot a local minimum. Step-size halving ensures rapid convergence.

The second problem is that the Hessian can become ill-conditioned, so that its inverse cannot be

computed. This condition can be detected when the condition number of the Hessian is large. The

Levenberg-Marquardt method deals with this situation by iteratively increasing the magnitude of the

diagonal entries until the Hessian is sufficiently conditioned.
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