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Abstract

The problem of inferring haplotypes from genotypes of single nucleotide polymorphisms
(SNPs) is essential for the understanding of genetic variation within and among populations,
with important applications to the genetic analysis of disease propensities and other complex
traits. In this paper we present a novel statistical model for haplotype inference. Our model is
a Bayesian model based on a prior known as the Dirichlet process, a nonparametric prior which
provides control over the size of the unknown pool of population haplotypes. The model also
incorporates a likelihood that allows statistical errors in the haplotype/genotype relationship,
trading off these errors against the size of the pool of haplotypes. We describe an algorithm
based on Markov chain Monte Carlo for posterior inference. The overall result is a flexible
Bayesian model that is reminiscent of parsimony methods in its preference for small haplotype
pools. We apply this new approach to the analysis of both simulated and real genotype data,
and compare to extant methods.

1 Introduction

The availability of a nearly complete human genome sequence makes it possible to begin to explore
individual differences between DN A sequences on a genome-wide scale, and to search for associations
of such genotypic variation with disease and other phenotypes [19]. Single nucleotide polymorphisms
(SNPs) comprise the largest class of individual differences in DNA and have become a focus of
research interest—millions of SNPs have thus far been detected out of an estimated total of ten
million common SNPs [20, 23].



The list of alleles in contiguous sites in a local region of a single chromosome is called a haplotype.
For diploid organisms, two haplotypes go together to make up a genotype, which is the list of
unordered pairs of alleles in the region. That is, a genotype is obtained from a pair of haplotypes
by omitting the specification of the association of each allele with one of the two chromosomes—its
phase. Common typing methods yield the genotypes of a set of individuals, and typically do not
provide phase information; the latter information can be obtained at a considerably higher cost [18].
It is therefore desirable to develop methods for inferring haplotypes from genotypes and possibly
other data sources (e.g., pedigrees).

From the point of view of population genetics, the basic model underlying the haplotype infer-
ence problem is a finite mixture model. That is, letting H denote the set of all possible haplotypes
associated with a given region (a set of cardinality 2* in the case of binary polymorphisms, where
k is the number of heterozygous sites), the probability of a genotype is given by:

plg) = > plhi,ha)l(hy & hy = g), (1)
hi,ho€H

where 1(h; @ ha = g) is the indicator function of the event that haplotypes h; and hy are consistent
with g. Under the assumption of Hardy-Weinberg equilibrium (HWE), an assumption that is
standard in the literature and will also be made here, the mixing proportion p(hi, he) is assumed
to factor as p(hi)p(hs).

Given this basic statistical structure, the simplest methodology for haplotype inference is max-
imum likelihood via the EM algorithm, treating the haplotype identities as latent variables and es-
timating the parameters p(h) [7]. This methodology has rather severe computational requirements,
in that a probability distribution must be maintained on the (large) set of possible haplotypes,
but even more fundamentally it fails to capture the notion that small sets of haplotypes should
be preferred. This notion derives from an underlying assumption that for relatively short regions
there is limited diversity in a population due to population bottlenecks and relatively low rates of
recombination and mutation.

One approach to dealing with this issue is to formulate a notion of “parsimony,” and to de-
velop algorithms that directly attempt to maximize parsimony. Several important papers have
taken this approach [3, 12, 6, 22] and have yielded new insights and practical algorithms. Another
approach is to elaborate the probabilistic model, in particular by incorporating priors on the pa-
rameters. Different priors have been discussed by different authors, ranging from simple Dirichlet
priors [17] to priors based on the coalescent process [21] to priors that capture aspects of recombi-
nation [11]. These models provide implicit notions of parsimony, via the implicit “Ockham factor”
of the Bayesian formalism [2].

Both parsimony-based and statistical approaches are useful in the case of phylogenetic infer-
ence [8], and we feel that it is likely that both will continue to play a role in haplotype inference
as well. The approach that we take in the current paper is statistical, but we attempt to provide
more explicit control over the number of inferred haplotypes than has been provided by the statis-
tical methods proposed thus far, and the resulting inference algorithm has commonalities with the
parsimony-based schemes.

Our approach is based on a nonparametric prior known as the Dirichlet process [9, 1]. In
the setting of finite mixture models, the Dirichlet process—mnot to be confused with the Dirichlet
distribution—is able to capture uncertainty about the number of mixture components [e.g., 5]. The
basic setup can be explained in terms of an urn model, and a process that proceeds through data
sequentially. Consider an urn which at the outset contains a ball of a single color. At each step we
either draw a ball from the urn, and replace it with two balls of the same color, or we are given



a ball of a new color which we place in the urn, with a parameter defining the probabilities of
these two possibilities. The association of data points to colors defines a “clustering” of the data.
To make the link with Bayesian mixture models, we associate with each color a draw from the
distribution defining the parameters of the mixture components.

This process defines a prior distribution for a mixture model with a random number of compo-
nents. Multiplying this prior by a likelihood yields a posterior distribution. Markov chain Monte
Carlo algorithms have been developed to sample from the posterior distributions associated with
Dirichlet process priors [5, 16].

The usefulness of this framework for the haplotype problem should be clear—using a Dirich-
let process prior we in essence maintain a pool of haplotype candidates that grows as observed
genotypes are processed. The growth is controlled via a parameter in the prior distribution that
corresponds to the choice of a new color in the urn model, and via the likelihood, which assesses
the match of the new genotype to the available haplotypes.

To expand on this latter point, an advantage of the probabilistic formalism is its ability to
elaborate the observation model for the genotypes to include the possibility of errors. In particular,
the indicator function 1(hy@®hg = g) in Eq. (1) is suspect—there are many reasons why an individual
genotype may not match with a current pool of haplotypes, such as the possibility of mutation or
recombination in the meiosis for that individual, and errors in the genotyping or data recording
process. Such sources of small differences should not lead to the inference procedure spawning new
haplotypes.

In the current paper we present a statistical model for haplotype inference based on a Dirichlet
process prior and a likelihood that includes error models for genotypes. We describe a Markov chain
Monte Carlo procedure, in particular a procedure that makes use of both Gibbs and Metropolis-
Hasting updates, for posterior inference. We present results of applying our method to the analysis
of both simulated and real genotype data, comparing to the state-of-the-art PHASE algorithm [21].
On the simulated data our predictions are comparable to those obtained by PHASE. On a real
dataset of [4] our results are again comparable to those of PHASE, and we outperform two other
algorithms: HAP [13, 6] and HAPLOTYPER [17]. On data from [10], which is a difficult test
case due to the small number of individuals in the sample, we outperform PHASE by a significant
margin.

2 The Statistical Model

The input to a phasing algorithm can be represented as a genotype matriz G with columns cor-
responding to SNPs in their order along the chromosome and rows corresponding to genotyped
individuals. G; represents the information on the two alleles of the 4-th individual in SNP j.
We denote the two alleles of a SNP by 0 and 1, and Gj; can take on one of four values: 0 or 1,
indicating a homozygous site; 2, indicating a heterozygous site; and ’?’, indicating missing data.
(Although we focus on binary data here, it is worth noting that our methods generalize immediately
to non-binary data, and accommodate missing data).

We will describe our model in terms of a pool of ancestral haplotypes, or templates, from which
each population haplotype originates [cf. 11]. The haplotype itself may undergo point mutation
with respect to its template. The size of the pool and its composition are both unknown, and
are treated as random variables under a Dirichlet process prior. We begin by providing a brief
description of the Dirichlet process and subsequently show how this process can be incorporated
into a model for haplotype inference.



2.1 The Dirichlet Process

Rather than present the Dirichlet process in full generality, we focus on the specific setting of a
mixture model, and make use of the urn model to present the essential features of the process. For
a fuller presentation, see, [e.g., 14]. We assume that data X arise from a mixture distribution with
mixture components p(z|¢p). We assume the existence of a base measure G(¢), which is one of the
two parameters of the Dirichlet process. (The other is the parameter 7, which we present below).
The parameter G(¢) is not the prior for ¢, but is used to generate a prior for ¢, in the manner that
we now discuss.

Consider the following process for generating samples {z1,x3,...,2,} from a mixture model
consisting of an unspecified number of mixture components, or equivalence classes:

e The first sample z; is sampled from a distribution p(z|¢$;), where the parameter ¢, is sampled
from the base measure G(¢).

e The ith sample, z;, is sampled from the distribution p(z|¢.,), where:

— The equivalence class of sample i, ¢;, is drawn from the following distribution:

Ne,

p(ci = ¢j for some j <ilci,...,cio1) = ﬁ (2)
. . T
p(Ci # Cj for all 7 < Z|Cl, [N ,Ci_l) = m, (3)

where n.; is the occupancy number of class c¢;—the number of previous samples that
belong to class c;.

— The parameter ¢, associated with the mixture component ¢; is obtained as follows:

be; = ¢¢; it =c; for some j <1 (i.e., ¢; is a previously populated equivalence class)

be; ~ G(¢) ifc; #cjforall j <i(ie., ¢ is a new equivalence class).

Egs. (2) and (3) define a conditional prior for the equivalence class indicator ¢; of each sample
during a sequential sampling process. They imply a self-reinforcing property for the choice of
equivalence class of each new sample—previously populated classes are more likely to be chosen.

It is important to emphasize that the process that we have discussed will be used as a prior
distribution. We now embed this prior in a full model that includes a likelihood for the observed
data. In Section 3 we develop Markov chain Monte Carlo (MCMC) inference procedures for this
model.

2.2 The Model

We present a probabilistic model for the generation of haplotypes in a population and for the
generation of genotypes from these haplotypes. We assume that each individual’s genotype is
formed by drawing two random templates from an ancestral pool, and that these templates are
subject to random perturbation. The model is displayed as a graphical model (also known as a
Bayesian network) in Figure 1.

Let J be an ordered list of loci of interest. For each individual i, we denote his/her paternal
haplotype by H;, := [Hi,,...,Hyj;,] and maternal haplotype by H;, := [Hi;,...,Hy;]. We
denote a set of ancestral templates as A = {AD, A® .}, where A® = [A]Y ... AP] is a
particular member of this set. The set A is a random variable whose cardinality and composition



Figure 1: The graphical model representation of the haplotype model with a Dirichlet process prior. Circles represent
the state variables, ovals represent the parameter variables, and diamonds represent fixed parameters. The dashed
boxes denote sets of variables corresponding to the same ancestral template, haplotype, and genotype, respectively.
The solid boxes corresponds to i.i.d. replicates of a set of variables, each associated with a particular individual (I
copies), or ancestral template (an unbounded number of copies), respectively. Arrows between variables or boxes
denote dependencies between variables or sets of variables.

are not fixed, but rather vary with realizations of the Dirichlet process and vary with the observed
data.

In our framework, the probability distribution of the haplotype variable H;,, where the sub-
subscript t € {0,1} indexes paternal or maternal origin, is modeled by a mixture model with an
unspecified number of mixture components, each corresponding to an equivalence class associated
with a particular ancestor. For each individual 7, we define the equivalence class variables Cj,
and Cj, for the paternal and maternal haplotypes, respectively, to specify the ancestral origin of
the corresponding haplotype. The Cj;, are the random variables corresponding to the equivalence
classes of the Dirichlet process. The base measure G of the Dirichlet process is a joint measure
on ancestral haplotypes A and mutation parameters 6, where the latter captures the probability
that an allele at a locus is identical to the ancestor at this locus. We let G(A,0) = p(A)p(6), and
we assume that p(A) is a uniform distribution over all possible haplotypes. We let p(f) be a beta
distribution Beta(ay, 1), and we choose a small value for 8 /(ayp + B1), corresponding to a prior
expectation of a low mutation rate.

Given Cj, and a set of ancestors, we define the conditional probability of the corresponding
haplotype instance h := [hy,...,hs] to be:

p(H;, = h|C;, =k, A =a,0) = p(H; = h|A(k) =aq,0)
= Hp(hj|aj79)7 (4)
J

where p(hj|aj,0) is the probability of having allele h; at locus j given its ancestor. Eq. (4) assumes
that each locus is mutated independently with the same error rate. For haplotypes, Hj;;, takes
values from a set B of alleles. We use the following single-locus mutation model:

1— 0 \1lhi#a)
0) j 75 (5)

p(hjlaj,9)=91(h’:“j)(|3| :

where 1(+) is the indicator function.



The joint conditional distribution of haplotype instances h = {h;, : ¢t € {0,1},7 € {1,2,...,I}}

and parameter instances @ = {61,...,0x}, given the ancestor indicator ¢ of haplotype instances
and the set of ancestors a = {a",...,a"}, can be written explicitly as:
1/ 1 =0\ _
pibOle,a) = [Lop ot (=) el (6)
k

where my = >3, 57 1(hji = a;-k))l(cit = k) is the number of alleles that were not mutated

with respect to the ancestral allele, and mj = >, >, 37, 1(hj;, # ag-k))l(cit = k) is the number
of mutated alleles. The count my = {my,m}.} is a sufficient statistic for the parameter 6; and
the count m = {my, m} } is a sufficient statistic for the parameter 8. The marginal conditional
distribution of haplotype instances can be obtained by integrating out € in Eq. (6):

_ Dlap +mp)lBr+mi) ¢ L \™
p(ble,a) = ];[R(ah,ﬁh)r(ahwﬁmﬁmk)(|B|_1) , (7)

where I'(-) is the gamma function, and R(ay, Br) = F(ah+ﬂh)) is the normalization constant asso-

I'(ap)T

ciated with Beta(ay, ). (For simplicity, we use the afbf))lre(\éihation Ry, for R(ay, fBy) in the sequel).
We now introduce a noisy observation model for the genotypes. We let G; = [G1,...,G ;]

denote the joint genotype of individual ¢ at loci [1,...,J], where each G;; denotes the genotype

at locus 7. We assume that the observed genotype at a locus is determined by the paternal and

maternal alleles of this locus as follows:

]l(hj,i;ﬁgj,i)[

2
p(gj,i|hj,i07 hj,il ) ’Y) = Wl(hj’i:gj’i)[ul(l - ’Y) H’Q(l - 7)]1(hj’i¢gj’i)7 (8)

where hj; = hjio @ hji, denotes the unordered pair of two actual SNP allele instances at locus
1
7; “#” denotes set difference by exactly one element (i.e., the observed genotype is heterozygous,
2

while the true one is homozygous); “#£” denotes set difference of both elements (i.e., the observed
and true genotypes are different and both are homozygous); and p; and py are appropriately
defined normalizing constants. We place a beta prior Beta(ag,34) on 7. Assuming independent
and identical error models for each locus, the joint conditional probability of the entire genotype
observation g = {g; : ¢ € {1,2,...,I}} and parameter v, given all haplotype instances is:

p(g.vh) = []»(givIhi, hiy)

)

1 Bytu!+u" —1
= MU — 4] nipy (9)
where the sufficient statistics u = {u,u',u"} are computed as u = 37, 1(hj; = g;;), v =

1 2
>ij Uhji # g54), and v = 37, 1(hj; # gj), respectively. Note that u + v +u" = IJ. To
reflect an assumption that the observational error rate is low we set 8,/(cg + ) to a small con-
stant (0.001). Again, the marginal conditional distribution of g is computed by integrating out

Y-

3 Markov chain Monte Carlo for Haplotype Inference

In this section, we describe a Gibbs sampling algorithm for exploring the posterior distribution
under our model, including the latent ancestral pool. We also present a Metropolis-Hastings variant
of this algorithm that appears to mix better in practice.



3.1 A Gibbs sampling algorithm

The Gibbs sampler draws samples of each random variable from a predictive distribution of the
variable to be sampled given (previously sampled) values of all the remaining variables of the model.
The variables needed in our algorithm are: ¢;,, the index of the ancestral template of a haplotype
instance t of individual i; a;-k), the allele pattern at the j-th locus of the k-th ancestral template;
hj,, the t allele of the SNP at the j-th locus of individual 7; and g;;, the genotype at locus j of
individual 7 (the only observed variables in the model). All other variables in the model—6 and
~v—are integrated out. The Gibbs sampler thus assesses the values of c¢;,, a;-k) and hj;,.
Conceptually, the Gibbs sampler alternates between two coupled stages. First, given the current
values of the hidden haplotypes, we sample the ¢;, and subsequently a;-k), which are associated with
the Dirichlet process prior. Second, given the current state of the ancestral pool and the ancestral
template assignment for each individual, we sample the h;;, variables in the basic haplotype model.
In the first stage, the predictive distribution of ¢;, is:

p(cit =k |c[—it}7 h, a) X p(cit =k |c[—it})p(hit |a(k)7 c, h[—it},)

_ Z[:—ﬂ’:p(hitm(k)a m[fz't],k) if k= ¢y, for some i}, # iy (10)
n+1+7' Za’ p(hit|a’)p(a’ if & ;é Ci;, for all Z-Q, 7é it ’

where [—i;] denotes the set of indices excluding i;; n;_,,;, represents the number of ¢; for i}, # i,
t’

—it],
that are equal to k; n represents the total number of instances sampled so far; and my_;,) , denote the
m sufficient statistics associated with all haplotype instances originating from ancestor £, except h;, .
This expression is simply Bayes theorem with p(h;,[a™, ¢, h;_;,)) playing the role of the likelihood
and p(c;, = k |¢|_;,)) playing the role of the prior. The likelihood p(h;,|a™, m(_;, ;) is obtained by
integrating over the parameter 0, as in Eq. (7).

The conditional probability for a newly proposed equivalence class k that is not populated by
any previous samples requires a summation over all possible ancestors: p(h;,) = Y p(hi,|a’)p(a’).
Since the gamma function does not factorize over loci, computing this summation takes time that is
exponential in the number of loci. To skirt this problem we endow each locus with its own mutation
parameter ¢;, with all parameters admitting the same beta prior Beta(oy, ). This gives rise to
a closed-form formula for the summation and also for the normalization constant in Eq. (10). It is
also arguably a more accurate reflection of reality.

Now we need to sample the ancestor template a*), where k is the newly sampled ancestor index
for ¢;,. When k is not equal to any other existing index Cit,» & value for a*) needs to be chosen
from p(A|h;,), the posterior distribution of A based on the prior p(A) and the single dependent
haplotype h;,. On the other hand, if £ is an equivalence class populated by previous samples of
cit,, We draw a new value of a(¥) from p(A|h;,, s.t. ¢;, = k). If after a new sample of ¢;,, a template
is no longer associated with any haplotype instance, we remove this template from the pool. The
predictive distribution for this Gibbs step is therefore:

p(aj |hj,it s.t. ¢, = k) x
)y (_ap \Uhaa=al) g Ay #al) if k is not previously
P(hjila”) = (O‘h+5h) ’ (|B_1|(0¢h+/3h)) ’ instantiated
U(ap+m; ;)0 (Br+m) ;) £ ki ously i ,(11)
hii st ¢ = kla®)) = 2Tkl (Prbm, i is previously in-
plhs. 85 ci la57) D(an+Bn+ng) | B—1|"5k stantiated

where mj, (respectively, mS-y ;) is the number of allelic instances originated from ancestor & at locus

7



J that are identical to (respectively, different from) the ancestor, when the ancestor has the pattern
(k)
e

We now proceed to the second sampling stage, in which we sample the haplotypes h;,. We

sample each h;;,, for all j,4,t, sequentially according to the following predictive distribution:

k
p(Pji D= (j,i))s Pjsi € 2, 8) X p(gilhj,imhj,iza“[—(j,i)])P(hj,it|a§- L)
! " , " r +m., )T + m/.
F(Oég + U)F(ﬂg + (U’ +u )) [Ml]u [NZ]U « Rh (ah m]’k) (’Bh m]:k? 7
Doy + By +1J) I(ap + Bp + ng) - |B — 1™k

= R, (12)

where [—(j,4;)] denotes the set of indices excluding (j,4;) and mjx = m_¢ ;e + by = a;-k))
(and similarly for the other sufficient statistics). Note that during each sampling step, we do not
have to recompute the I'(-), because the sufficient statistics are either not going to change (e.g.,
when the newly sampled h;;, is the same as the old sample), or only going to change by one (e.g.,
when the newly sampled hj;, results in a change of the allele). In such cases the new gamma

function can be easily updated from the old one.

3.2 Metropolis-Hasting sampling algorithm

Note that for a long list of loci, a uniform p(A) of all possible ancestral template patterns will render
the probability of sampling a new ancestor infinitesimal, due to the small value of the smoothed
marginal likelihood of any haplotype pattern h;,, as computed from Eq. (10). This could result in
slow mixing.

An alternative sampling strategy is to use a partial Gibbs sampling strategy with the following
Metropolis-Hasting updates. For the proposal distribution for the equivalence class of h;, we use:

Pl—ig] ke

. _ -/ .t
if k= ¢, for some 7}, # 1

¥ _ ) — n—1+71
alei, = klei) { = i kF e, foralld, # 4 "

n—1+7

Then we sample a(%i) sequentially according to Eq. (11). For target distribution p(c;, = klc[_;,), h,a),
the proposal factor cancels when computing the acceptance probability &, leaving:

1 pU”Ja@ah

. 14
([0 14

§(cj, ¢iy) = min
In practice, we found that the above modification to the Gibbs sampling algorithm leads to

substantial improvement of efficiency for long haplotype lists, whereas for short lists, the Gibbs
sampler remains better due to the high (100%) acceptance rate.

4 Experimental Results

We validated our algorithm by applying it to simulated and real data and compared its perfor-
mance to that of the state-of-the-art PHASE algorithm [21] and other current algorithms. We
report on the results of both variants of our algorithm: The Gibbs sampler, denoted DP(Gibbs),
and the Metropolis-Hasting sampler, denoted DP(MH). Throughout the experiments, we set the
hyperparameter 7 in the Dirichlet process to be roughly 1% of the population size, i.e., for a data
set of 100 individuals, 7 = 1. We used a burn-in of 2000 iterations (or 4000 for datasets with more
than 50 individuals), and used the next 6000 iterations for estimation.



4.1 Simulated data

In our first set of experiments we applied our method to simulated data from [21, “short sequence
data”]. This data contains sets of 2n haplotypes, randomly paired to form n genotypes, under an
infinite-sites model with parameters 7 = 4 and R = 4 determining the mutation and recombination
rates, respectively (see [21] for additional details). We used the first 40 datasets for each combination
of individuals and sites, where the number of individuals ranged between 10 and 50, and the number
of sites ranged between 5 and 30.

To evaluate the performance of the algorithms we used the following error measures: errg, the
ratio of incorrectly phased SNP sites over all non-trivial heterozygous SNPs (excluding individuals
with a single heterozygous SNP); err;, the the ratio of incorrectly phased individuals over all non-
trivial heterogeneous individuals; and d, the switch distance, which is the number of phase flips
required to correct the predicted haplotypes over all non-trivial heterogeneous SNPs. The results
are summarized in Table 1. Overall, we perform slightly worse than PHASE on the first two
measures, and slightly better on the switch distance measure.

DP(MH) PHASE
#individuals errs | err; | ds errs | err; | ds
10 0.060 | 0.216 | 0.051 | 0.046 | 0.182 | 0.054
20 0.039 | 0.152 | 0.039 | 0.029 | 0.136 | 0.046
30 0.036 | 0.121 | 0.038 | 0.024 | 0.101 | 0.027
40 0.030 | 0.094 | 0.029 | 0.019 | 0.071 | 0.026
50 0.028 | 0.082 | 0.024 | 0.019 | 0.072 | 0.025

Table 1: Performance results on simulated data from [21].

4.2 Real data

We also applied our algorithm to two real datasets and compared its performance to that of
PHASE [21] and other algorithms.

The first dataset contains the genotypes of 129 individuals over 103 polymorphic sites [4]. In
addition it contains the genotypes of the parents of each individual, which allows the inference of a
large portion of the haplotypes as in [6]. The performance results are summarized in Table 2. From
Table 2, it is apparent that the Metropolis-Hasting sampling algorithm significantly outperforms the
Gibbs sampler, and is to be preferred given the relatively limited number of sampling steps (~ 6000).
The overall performance is comparable to that of PHASE and better than both HAP [13, 6] and
HAPLOTYPER [17].

It is important to emphasize that our methods also provide a posteriori estimates of the ancestral
pool of haplotype templates and their frequencies. We omit a listing of these haplotypes, but provide
an illustrative summary of the evolution of these estimates during sampling (Figure 2).

The second dataset contains genotype data from four populations, 90 individuals each, across
several genomic regions [10]. We focused the Yoruban population (D), which contains 30 trios of
genotypes (allowing us to infer most of the true haplotypes) and analyzed the genotypes of 28
individuals over four medium-sized regions (see below). The results are summarized in Table 3.
All methods yield higher error rates on these data, compared to the analysis of the data of [4],
presumably due to the low sample size. In this setting, over all but one of the four regions, our
algorithm outperformed PHASE for all three types of error measures. A preliminary analysis
suggests that our performance gain may be due to the bias toward parsimony induced by the
Dirichlet process prior. We found that the number of template haplotypes in our algorithm is
typically small, whereas in PHASE, the haplotype pool can be very large (i.e., region 7b has 83
haplotypes, compared to 10 templates in our case and 28 individuals overall).



DP(Gibbs) DP(MH) PHASE HAP HAPLOTYPER
block id. | length|| errs | err; | ds errs | err; | ds errs | err; | ds errs errs
1 14 0.223 | 0.485 | 0.229 || O 0 0 0.003 | 0.030 | 0.003 || 0.007 0.039
2 5 0 0 0 0.007 | 0.026 | 0.007 || 0.007 | 0.026 | 0.007 (| 0.036 0.065
3 5 0 0 0 0 0 0 0 0 0 0 0.008
4 11 0.143 | 0.262 | 0.128 || O 0 0 0 0 0 0.015 -

5 9 0.020 | 0.066 | 0.020 || 0.011 | 0.033 | 0.011 0.011 | 0.033 | 0.011 0.027 0.151
6 27 0.071 | 0.191 | 0.074 || 0.005 | 0.043 | 0.005 || O 0 0 0.018 0.041
7 7 0.005 | 0.018 | 0.005 || 0.005 | 0.018 | 0.005 || 0.005 | 0.018 | 0.005 || 0.068 0.214
8 4 0 0 0 0 0 0 0 0 0 0 0.252
9 5 0.029 | 0.097 | 0.029 || 0.012 | 0.032 | 0.012 || 0.012 | 0.032 | 0.012 || 0.057 0.152
10 4 0.007 | 0.025 | 0.007 || 0.007 | 0.025 | 0.007 || 0.008 | 0.025 | 0.008 || 0.042 0.056
11 7 0.010 | 0.034 | 0.005 || 0.005 | 0.017 | 0.005 || 0.011 | 0.034 | 0.011 0.033 0.093
12 5 0.010 | 0.037 | 0.020 || O 0 0 0 0 0 0 0.077

Table 2: Performance results on the data of Daly et al. [4], using the block structure provided by [13]. The results of
HAP and HAPLOTYPER are adapted from [13]. Since the error rate in [13] uses the number of both heterozygous
and missing genotypes as the denominator, whereas we used only the non-trivial heterozygous ones, we rescaled the
error rates of the two latter methods to be comparable to ours.
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Figure 2: The top ten ancestral templates during Metropolis-Hasting sampling for block 1 of the data of Daly et
al. [4]. (The numbers in the panels are the posterior means of the frequency of each template). (a) Immediately after
burn-in (first 2000 samples). (b) 3000 samples after burn-in. (c) 6000 samples after burn-in.

DP(MH) PHASE
region length errs | err; [ ds errs | err; | ds
16a 13 0.185| 0.480 | 0.141 | 0.174 | 0.440 | 0.130
1b 16 0.100 | 0.250 | 0.160 | 0.200 | 0.450 | 0.180
25a 14 0.135| 0.353 | 0.115 | 0.212 | 0.588 | 0.212
7b 13 0.105 | 0.278 | 0.066 | 0.145 | 0.444 | 0.092

Table 3: Performance on the data of [10].
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5 Conclusion

We have proposed a Bayesian approach to the modeling of genotypes based on a Dirichlet process
prior. We have shown that the Dirichlet process provides a natural representation of uncertainty
regarding the size and composition of the pool of haplotypes underlying a population. Using Markov
chain Monte Carlo algorithms, we have shown that this model leads to effective inference procedures
for inference of the ancestral pool and for haplotype phasing based on a set of genotypes. The model
accommodates growing data collections and noisy and/or incomplete observations. The approach
also naturally imposes an implicit bias toward small ancestral pools during inference, reminiscent
of parsimony methods, doing so in a well-founded statistical framework that permits errors.

Our focus here has been on adapting the technology of the Dirichlet process in the setting of
the standard haplotype phasing problem. But an important underlying motivation for our work,
and a general motivation for pursuing probabilistic approaches to genomic inference problems, is
the potential value of our model as a building block for more expressive models. In particular, as
in [11] and [15], the graphical model formalism naturally accommodates various extensions, such
as segmentation of chromosomes into haplotype blocks and the inclusion of pedigree relationships.
The Dirichlet process parameterization also provides a natural upgrade path for the considering
of richer models; in particular, it is possible to incorporate more elaborate base measures G into
the Dirichlet process framework—the coalescence-based distribution of [21] would be an interesting
choice.

Acknowledgments

This research was supported in part by NSF I'TR Grant CCR-0121555.

References

[1] C. E. Antoniak. Mixtures of Dirichlet processes with applications to Bayesian nonparametric
problems. Annals of Statistics, 2:1152-1174, 1973.

[2] J.M. Bernardo and A.F.M. Smith. Bayesian Theory. Wiley, 1994.

=9

A. Clark et al. Haplotype structure and population genetic inferences from nucleotide-sequence
variation in human lipoprotein lipase. Am J. Human Genetics, 63:595-612, 1998.

[4] M.J. Daly et al. High-resolution haplotype structure in the human genome. Nature Genetics,
29(2):229-232, 2001.

[5] M.D. Escobar and M. West. Bayesian density estimation and inference using mixtures. J. Am.
Statist. Assoc., 90:577-588, 2002.

[6] E. Eskin, E. Halperin, and R.M. Karp. Efficient reconstruction of haplotype structure via
perfect phylogeny. Journal of Bioinformatics and Computational Biology, 1:1-20, 2003.

[7] L Excoffier and M Slatkin. Maximum-likelihood estimation of molecular haplotype frequencies
in a diploid population. Molecular Biology and Evolution, 12(5):921-7, 1995.

[8] J. Felsenstein. Inferring Phylogenies. Sinauer Associates, Inc., 2003.

<

T. S. Ferguson. A Bayesian analysis of some nonparametric problems. Annals of Statistics,
1:209-230, 1973.

11



[10]

[11]

[12]

[13]

[14]

[15]

[16]

23]

S. B. Gabriel et al. The structure of haplotype blocks in the human genome. Science, 296:2225—
2229, 2002.

D. Greenspan and D. Geiger. Model-based inference of haplotype block variation. In Pro-
ceedings of the Tth International Conference on Computational Molecular Biology (RECOMB
2003), 2003.

D. Gusfield. Haplotyping as perfect phylogeny: Conceptual framework and efficient solutions
(extended abstract). In Proceedings of the 6th International Conference on Computational
Molecular Biology (RECOMB 2002), pages 166-175, 2002.

E. Halperin and E. Eskin. Haplotype reconstruction from genotype data using imperfect
phylogeny. TR, CS Dept. Columbia University, 2002.

H. Ishwaran and L. F. James. Gibbs sampling methods for stick-breaking priors. J. Am.
Statist. Assoc., 90:161-173, 2001.

S. L. Lauritzen and N. A. Sheehan. Graphical models for genetic analysis. TR R-02-2020,
Aalborg University, 2002.

R. M. Neal. Markov chain sampling methods for Dirichlet process mixture models. J. Com-
putational and Graphical Statistics, 9(2):249-256, 2000.

T. Niu, S. Qin, X. Xu, and J. Liu. Bayesian haplotype inference for multiple linked single
nucleotide polymorphisms. Am. J. Hum.Genet., 70:157-169, 2002.

N. Patil et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of
human chromosome 21. Science, 294:1719-1723, 2001.

N. J. Risch. Searching for genetic determinants in the new millennium. Nature, 405(6788):847—
56, 2000.

R. Sachidanandam et al. A map of human genome sequence variation containing 1.42 million
single nucleotide polymorphisms. Nature, 291:1298-2302, 2001.

M. Stephens, N. Smith, and P. Donnelly. A new statistical method for haplotype reconstruction
from population data. American Journal of Human Genetics, 68:978-989, 2001.

Bafna V, Halldorsson BV, Schwartz R, Clark AG, and Istrail S. Haplotypes and informative
snp selection algorithms: Don’t block out information. In Proceedings of the 7th International
Conference on Computational Molecular Biology (RECOMB 2003), pages 19-27, 2002.

C. Venter et al. The sequence of the human genome. Science, 291:1304-51, 2001.

12



