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Abstract

We develop a new system for defining and enforcing access control statically. In our system, key-pairs
guard access to resources, and the association between key-pairs and resources can be changed at any
program point (i.e., the binding is late). Our static system uses an ordering on lexically scoped abstract
names to allow local access control policies to be enforced in other parts of a program. In particular,
this means that individual program components can locally refine access control policies and the policies
will be respected by the entire program. The result is a system that can enforce, at compile time, a wide
variety of useful, fine-grain access control patterns.

1 Introduction

In situations where a program P interacts with one or more untrusted program components U , a well-specified
access control policy protects P ’s resources from unwanted operations performed by U .

Systems such as Java and the Common Language Runtime (CLR) provide a mechanism for defining and
enforcing fine-grain access control. In these systems, a programmer defines permissions denoting resources
that pieces of code are allowed to access. For example, a Java class that conducts network transactions needs
permission to access network sockets. A key part of stack-based access control is ensuring that if component
C does not have permission to access resource v, then C cannot gain access to v by calling a function that
has permission to access v. To enforce stack-based access control policies, the run-time system records the
set of permissions S1, S2, . . . of each codes f1, f2, . . . on the execution stack. When a resource v is accessed,
the run-time system permits the access only if v ∈ ⋂

i Si. That is, v can be used only if all functions on the
stack have permission to access v. Stack-based access control systems usually also include a mechanism for
gaining privileges, so that only a suffix of the stack is examined for access right.

In addition to a set of pre-defined permissions, Java and the CLR allow programmers to define new
permissions. For example, in an airline ticketing program, a flight scheduling component may define new
permissions used to protect internal resources such as flight time information from being modified by a
ticketing agent component.

This paper presents a new stack-based access control system that is enforced statically, in contrast to the
run-time enforcement in Java and the CLR. We begin with an example application of our system, slightly
simplified for the purposes of introduction. Before giving the example, we give a very compressed overview
of our approach.

In our system, permissions are expressed as key-pairs consisting of a grant key and a limit key. Each
key-pair is associated with a set of resources, but the two keys are used for different operations on those
resources. We have already mentioned that in stack-based access control each piece of code may limit access
to a set of resources; this is the function of limit keys. The power to limit access is not sufficient, however.
Something must also grant access to resources, at least initially, or no resources could ever be used; this is the
function of grant keys. Splitting the management of access rights for a set of resources into grant and limit
keys is fundamental to our design and, we believe, gives our system practical advantages (see Section 2).

∗This research was supported in part by Subcontract no. PY-1099 to Stanford, Dept. of the Air Force prime contract no.
F33615-00-C-1693.
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A second novel feature of our system is subkeys. Subkeys are analogous to subclasses in an object-oriented
language. If a limit (grant) key k1 is a subkey of a limit (grant) key k2 then k1 guards access to a subset of
the resources k2 protects (see Section 2.5).

Finally, in our approach the programmer writes code to expresses access control policies using the fol-
lowing expressions for manipulating keys and resources:

• newkey generates a new pair of keys; newkey< p generates new subkeys of the key-pair p. Initially,
keys are not associated with any resources.

• associate e1 with e2 associates the key-pair e1 with the resource e2.

• limit e1 in e2 limits e2’s access rights to the resources associated with the limit key e1.

• grant e1 in e2 grants e2 access rights to the resources associated with the grant key e1.

• The function gKey(p) (resp. lKey(p)) returns the grant (resp. limit) key of the key pair p.

Consider two components C and D that need to share access to a number of files. This is expressed in our
system by creating a key-pair, associating it with the files, and then granting access to those files to both C
and D:

shared files = newkey;
. . . associate file a with shared files;
. . . associate file b with shared files;
[Component C]:

. . .
grant gKey(shared files) in

. . . /∗ accesses the shared files ∗/

. . .
[Component D]:

. . .
grant gKey(shared files) in

. . . /∗ accesses the shared files ∗/
Now assume that we wish to add to C a function f that is visible to other, less trusted, components,

which may or may not have access to shared files. We want only certain files in shared files to be
accessible through f. Our system is designed to support such refinements of access control policies with only
local modifications to component C; in particular, neither component D nor any other component needs to be
modified to implement these changes. We create a subkey-pair some files of shared files and associate
it with a subset of files, say just file a and file b. Using limit, we ensure that callers of the function
f can access at most the files associated with some files; which files they can actually access depends on
their access rights at the point where they call f.

[Component C]:
grant gKey(shared files) in

. . .
some files = newkey<shared files;
. . . associate file a with some files;
. . . associate file b with some files;
. . .
f = λx.limit lKey(some files) in

. . . /∗ accesses the selected files ∗/
Component D can call f because it has access to shared files. But components without access to the
selected files cannot.

In our view, our system provides two key features: late binding of keys and resources (i.e., a resource can
be associated with a key after both the key and the resource exist) and the ability to create subkeys at any
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point. As a result, these features allow late, local refinement of access control policies, as well as non-local
enforcement of policies. In the example above, we have added a refinement of the original policy to function
f in component C. This policy is local to C, meaning that the entire refinement is done in the component C,
but it is enforced non-locally; i.e., a call to f in D respects the refined access control policy.

Our aim is to statically check such fine-grain access control policies. There are two benefits to static
access control. One benefit is that it can find access violations early at compile time. The other benefit is
efficiency; the run-time system need not to check for access violations.

Static checking requires our system to statically track three things: (a) the association between resources
and keys; (b) the subkey hierarchy; and (c) which resources are used by expressions. For (a), we use abstract
names, which are lexically scoped, to identify keys and to qualify resource types with their associated keys.
It is important to note that only the static names of keys are lexically scoped; keys themselves are not
lexically scoped and in fact can be passed as arguments, stored in data structures, etc. For (b), the static
system tracks the subnaming hierarchy, which is the static analog of the subkey hierarchy. Finally, for (c)
we develop a type and effect system that, for each expression e, assigns an effect set describing the set of
resources accessed in the evaluation of e.

1.1 Contributions and Overview

This paper makes several contributions:

• Our access control system is static, i.e., the system checks for access violations at compile time. This
is similar to some other recent research (e.g., [12]) but in stark contrast to common implementations
of Java and CLR where violations are checked at run-time.

• Despite being static, the system is able to define and enforce many non-trivial access control patterns
through its ability to reason about locally refined access control policies.

• The heart of our formal system is a novel, type-based must alias analysis, which may be of independent
interest.

• We have a proof of soundness for the core subset of the system. Our system is sound in the presence
of updatable references, higher-order functions, and concurrency.

Our system is type-based, relying only on standard techniques. One reason for choosing a type-based
approach is compositional verification. Type systems explicitly express assumptions about the environment
of each program fragment. Therefore program components may be checked separately under compatible
environments, and then composed to form a well-typed program.

The rest of the paper proceeds as follows. Section 2 introduces our system informally. We introduce
the important features of the system step-by-step, making improvements as we proceed. Materials up to
and including Section 2.2 are sufficient to perform late, local refinement of access control policies. A small
example is given in Section 2.4. To enforce local access policies non-locally, we introduce subkeys and
subnaming in Section 2.5. Section 3 presents the static system formally and sketches a proof of soundness
(the complete proof appears in Appendix A). Section 4 shows a few extensions to the system. Section 5
discusses our system’s relation to must alias analysis. Section 6 discusses related work. Section 7 concludes.

2 Informal Presentation

This section informally develops the key ideas in our access control system. In the interests of clarity, we
present some of the material introduced in Section 1 again, but in a more leisurely fashion and with more
examples. The formal details of our system are presented in Section 3.

In a typical implementation of a dynamic stack-based access control system (such as Java’s), permissions
are objects containing strings, and the run-time system checks permissions by inspecting the strings before
each access of associated resources. For example, permission to access flight information on flight 356 may be
represented as a string "Flight Info : 356". Instead, we design access control into the static semantics
of the language so that the type system can precisely track access control policies.
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We introduce key-pairs, each consisting of a limit key and a grant key. Each key-pair is used to group
resources. Limit keys are used to limit access to resources and grant keys are used to grant access to resources.

We consider every program value (e.g. a function, a pointer, etc) to be a resource possibly associated
with some key-pair. Key-pairs are named in the static system using an infinite set Names. That is, each
ρ ∈ Names identifies a key-pair. While technically ρ is a static name for a run-time key-pair, for brevity we
say “the key-pair ρ” instead of “the key-pair identified by ρ” when there can be no confusion.

Each type τ in our system consists of a name and a raw type. A resource of the raw type σ associated
with the key-pair ρ is given the type ρ σ; we say that ρ qualifies σ in this type. For example, each pointer
type is of the form ρ ref (τ).

The limit (resp. grant) key part of the key-pair ρ has the raw type lkey (ρ) (resp. gkey (ρ)). Keys are
themselves program values. Therefore keys may also be under access control, and thus are associated with
a key-pair. A limit (resp. grant) key ρ associated with the key-pair ρ1 is given a type ρ1 lkey (ρ) (resp.
ρ1 gkey (ρ)).

Finally, we use ⊥ σ to denote the type of a program value not associated with any key-pair. Such program
values are not subject to access control, hence they may be accessed by any code.

2.1 Limit and Grant

To limit access rights, we introduce the syntax form

limit e1, e2, . . . , en−1 in en

where e1, e2, . . . , en−1 are the limit keys and en is the code whose access rights are limited to the resources
associated with the keys e1, e2, . . . , en−1.

Let lkey be the limit key of key-pair ρ. Assume that the function h and the pointer t are associated
with lkey, and consider this definition:

g = λx. limit lkey in x(h, ! t)

Since g dereferences t, g can be called only by code with access to t. For example, the following code should
be rejected if the limit key akey is not associated with t. (λ〈x1, . . . , xn〉.e is a function of n arguments.)

limit akey in g (λ〈x, y〉.y)

Moreover, because the access rights of the body of g are limited to resources associated with lkey, the
function passed to g may only access resources associated with lkey. So if lkey is associated only with h
and t, then g is forbidden from accessing any resource but h or t. For example, if u is a pointer not equal
to t (and is not qualified with ⊥)

g (λ〈x, y〉.! u)
is forbidden.

Now that we have seen how to limit access rights, we turn to granting access rights. We introduce the
syntax form

grant e1 in e2

where e1 is a grant key and e2 is the code granted access to the resources associated with key e1. Note
that grant takes only a single expression as an argument, in contrast to limit, because multiple sequential
grants can be used to grant a set of permissions, where multiple sequential limits will limit access to the
intersection of access rights in the limit expressions.

Let gkey be the grant key part of the key-pair ρ. The code below grants itself access to the resources h
and t in order to call g.

grant gkey in g (λ〈x, y〉.x (y))
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A grant is stronger than a limit because it enables unconditional access to the resources regardless
of what access rights are available to the code’s context. In Java, the analog of limit is the permissions
attached to traversed methods and the analog of grant is the initial set of permissions granted for an
execution thread and additional accesses granted by the special form doPrivileged.

We use a type and effect system [7, 9] to statically check access control policies. For each expression, we
assign an effect set conservatively approximating the expression’s access rights. Effect sets are finite sets of
key-pair names. The type checking rules derive judgments of the form Γ ` e : τ ; L (read “the expression e
has the type τ in the type environment Γ and requires access rights L”). For example, the type checking
rule for pointer dereferences is:

Γ ` e : ρ ref (τ); L
Γ ` ! e : τ ; L ∪ {ρ}

This rule says that the dereference of a pointer is well-typed if the access to the pointer is enabled.
The type checking rule for limit is more elaborate:

For 1 ≤ i ≤ n− 1, Γ ` ei : ρ′i lkey (ρi); Li

Γ ` en : τn; Ln Γ ` Ln ⊆ {ρ1, ρ2, . . . , ρn−1}
Γ ` limit e1, e2, . . . , en−1 in en : τn; Ln ∪

⋃
1≤i≤n−1(Li ∪ {ρ′i})

The second line says that the body of the expression, en, only accesses the resources associated with the
key-pairs ρ1, ρ2, . . . , ρn−1. In the conclusion, note the presence of Ln requires that the context have the right
to access the key-pairs in Ln; this prevents en from gaining more access rights than its context. On the first
line, since each key ei is itself a resource, it is associated with a key-pair ρ′i (if it is not associated with any
key-pair then ρ′i = ⊥). Moreover, evaluating each ei may also involve resource accesses, approximated by
Li. Therefore, the context must have access rights to the resources associated with key-pairs identified by⋃

1≤i≤n−1(Li ∪ {ρ′i}), which is included in the overall effect.
The type checking rule for grant is simpler:

Γ ` e1 : ρ1 gkey (ρ2); L1

Γ ` e2 : τ ; L2 ∪ {ρ2}
Γ ` grant e1 in e2 : τ ; L1 ∪ L2 ∪ {ρ1}

The key e1 is required to have a type of the form ρ1 gkey (ρ2), and e2 is granted the access to the resources
associated with the key-pair ρ2 as indicated by the presence of {ρ2} in e2’s effect. However, unlike with
limit, the context need not have access to ρ2.

Grant keys are dangerous because they enable unconditional access rights regardless of the context. Hence
programmers should prevent arbitrary code from using grant keys and gaining unwanted access rights. By
splitting keys into key-pairs instead of using a single key for both limiting and granting, we have sought to
make it easy to isolate and control the ability to grant access to resources. In particular, this design allows
programmers to code in a style where each grant key is forgotten immediately after it is used to grant the
access right to the code that generated the key.

Nevertheless, grant keys can be useful outside of this trivial style as long as they are used with discretion.
As an example, consider system calls in the UNIX operating system. Application programs are usually
prohibited from accessing system resources such as printers except through system calls. We can emulate
the behavior of such a protocol using grant keys. Let all printers be associated with the grant key k printers.
Then the system function print can be written

λ〈x, y〉.grant k printers in {
. . . /∗ code for outputting x to the printer y ∗/ }

so that a program that does not have access to the printers may print by calling this function. 1

1The Java security model has a similar feature: doPrivileged enables a code to access more resources than are available to
the code’s context.
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2.2 Associating Resources with Key-Pairs

We next introduce the syntax forms newkey to generate new key-pairs and associate e 1 with e2 to associate
resources with key-pairs. The syntax form newkey < e, which generates new subkey-pairs, is introduced
together with subnaming in Section 2.5.

We first describe newkey. We use existential types to guarantee that different key-pairs (particularly
those generated by the same syntactic occurrence of newkey) are identified by different names.

Γ ` newkey : ⊥ (∃ρ.⊥ 〈⊥ lkey (ρ),⊥ gkey (ρ)〉); ∅
Raw tuple types are written 〈τ1, . . . , τn〉. For extracting grant (resp. limit) keys from a pair, we define lKey
(resp. gKey) as the projection function λx.(x.1) (resp. λx.(x.2)).

Note that the type of a newly generated key-pair is qualified with ⊥, i.e., by default the new key-pair is
not associated with any key-pair and hence is available to any code. Other program values are also qualified
with ⊥ when they are created, also making them available to any code. For example, the type checking rule
for allocating a new store location (i.e. a new pointer) is

Γ ` e : τ ; L
Γ ` ref e : ⊥ ref (τ); L

In our system, each association between a key and a resource occurs after both the key and the resource
are created, i.e., associations happen late. We use the syntax form

associate e1 with e2

to associate the resource e1 with the key-pair with limit key e2.2 The type checking rule for associate is
shown below.

Γ ` e1 : ρ1 σ; L1 Γ ` e2 : ρ2 lkey (ρ3); L2

Γ ` associate e1 with e2 : ρ3 σ; L1 ∪ L2 ∪ {ρ1, ρ2}
The associate construct is similar to type casting. That is, given a resource of the type ρ1 σ, associating

it with the key-pair ρ3 has the effect of casting the type to ρ3 σ.
In the rule for associate, because the limit key e2 may itself be associated with some key-pair (identified

by ρ2), we assert that the context must hold the access right to ρ2. We assert that the context must also
have access to the resource e1, and this is indicated by the inclusion of ρ1 in the effect set of the conclusion.
To see why this condition is necessary, consider the code below which might not be permitted to access the
pointer ptr but nevertheless is able dereference it by generating a new key-pair, enabling, and associating
ptr with it. (The form open x = e unpacks the existential package e.)

open akeypair = newkey;
grant gKey(akeypair) in {
ptr casted = associate ptr with lKey(akeypair);
! ptr casted; /∗ ptr accessed ∗/

}
This code would type check if ρ1 were missing from the effect set.

2.3 Preventing Resource Forging

Pointers, i.e. store locations, are naturally unforgeable in a strongly typed language that does not admit
explicit pointer manipulations such as casting an integer to a memory address. In our system, keys are also
unforgeable. But many other resources are forgeable. For example, any program can duplicate any pure
function consisting only of variables and λ’s by simply having another instance of the function.

2We can also allow associating via grant keys and key-pairs themselves, as used in the example in Section 1. However, the
ability to associate via limit keys is important, as it eliminates the need to expose grant keys (either alone or in key-pairs) for
this purpose.
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Our system does not automatically prevent such resource forging. This sounds unsafe because if a
resource is forgeable then any code may re-create it and use the resource. Consider the file access control
policy from Section 1. If file resource are strings containing the actual file name in the file system, then in
any language with normal string operations it is trivial to create from scratch any file name with no access
controls whatsoever.

Fortunately, such situations usually can be remedied easily. In the file access control example, we can
define file resources to have an abstract data type ([10]) File defined in a program component File Manager.
The representation of a File could be a string type, but this would not be visible outside of the File Manager
component. In this design, File Manager would handle all file operations directly via system calls, and all
other components would be required to go through File Manager. This can be made possible by using the
access control mechanism to ensure that only File Manager has access to file-related system calls. When
requesting some file for the first time, a component must ask File Manager for the appropriate File resource
referring to the requested file. We also give File Manager a type signature such that, for example, calling
the File writing function would have the effect of accessing the given File resource. Then File Manager
component can ensure that File resources are unforgeable so as to allow access control on files by associating
File resources with key-pairs.

In our system, we assume that a programmer takes necessary steps to make resources unforgeable if he
wishes to have them under access control. For a naturally unforgeable resource like a pointer or a key, this
can be as simple as associating the resource with some key-pair shortly after creating it and before making
it available to other parts of the program. For other resources, use of abstract data types may be necessary,
as seen in the File example.

2.4 Simple Example

The system described thus far is capable of expressing some fine-grain access control policies. Consider the
following code which, for each node of the linked list g, applies the function p to the item field of the node.

t := g;
while (t 6= nil) {
p(t.item);
t := (! t).next;

}
Let ρ 6= ⊥. Let g have the record type NodeType defined below. (We take the liberty of using a C-like
structure declaration for simplicity.)

NodeType = ρ {
ρ ItemType item;
ρ ref (NodeType) next;

};

(The first occurrence of ρ is not a binding name; it just qualifies the record type.)
We would like to use the system to limit p to accessing only the passed t.item. In particular, we want

to prevent p from modifying the list structure of g, because the code is traversing it. We may do this by
associating each t.item with a fresh key before calling p.

t := g;
while (t 6= nil) {
open akey = newkey;
grant gKey(akey) in {
theitem = associate t.item with lKey(akey);
limit lKey(akey) in { p(theitem); };
t := (! t).next;

}
}
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Note that the function p could be complicated, potentially calling other functions. Nevertheless, the
type system is able to ensure that each function application only accesses the specified t.item, because the
lexically scoped name (which appears when the new key-pair is opened) distinguishes each instance of akey
and its late binding with the resource.

This example shows the system’s ability to declare late, local access control policies. That is, a program-
mer may store a collection of resources uniformly with the same type, and when there is a need for finer
access control (e.g. at the level of individual resources in the collection) the key-associations are refined.

2.5 Subkeys and Subnaming

We now introduce subkeys, and their corresponding static representation using subnaming. These additions
require a few changes to features explained earlier. To motivate the introduction of subkeys, we illustrate
the problem that we would encounter if the system did not support them.

Consider the file access control example from Section 1. Recall that the key-pair shared files is asso-
ciated with the files shared between the program components C and D. Let ρshared identify shared files.
Below, the code for C is re-written; in particular, it uses newkey instead of newkey<shared files to generate
the key-pair some files.

[Component C]:
open some files = newkey;
. . .associate file a with lKey(some files);
. . .associate file b with lKey(some files);
. . .
f = λx.limit lKey(some files) in

. . . /∗ accesses the selected files ∗/
In the code above, f gets the type

⊥ (τ1
{ρsome}−→ τ2)

where ρsome identifies the key-pair some files. Here, the set above the arrow is the latent effect of the
function, as usual in a type and effect system. Because ρsome is lexically scoped in C’s context and therefore
invisible in D’s context, the type system fails to type check D’s call to f.

The problem stems from the inability of the type system to understand local associations outside of
the local context when the lexically scoped names are completely anonymous. This prevents non-local
enforcement of locally refined policies.

Our system solves this problem by allowing the programmer to declare subset relations between resources
via subkeys. The syntax form newkey<e generates a new immediate subkey-pair of an existing key-pair. As
with associate, we let e be just the limit key part of the key-pair; again, this avoids the need to propagate
the grant key just to associate resources with the key-pair. The type checking rule for newkey<e is

Γ ` e : ρ1 lkey (ρ2); L
Γ ` newkey<e : ⊥ (∃ρ3 < ρ2.⊥ 〈⊥ lkey (ρ3),⊥ gkey (ρ3)〉); L ∪ {ρ1}

Here, in the bounded existential raw type ∃ρ3 < ρ2. . . ., the key-pair name ρ3 is the bound name and ρ2

is the upper-bound free in the raw type. The intuition behind this rule is that the new key-pair should be
identified by some fresh name ρ3 such that ρ3 < ρ2. The subnaming relation < statically keeps track of the
subkey hierarchy.

Recall that any resources associated with a key-pair are also associated with its superkey-pairs. Thus
resources associated with a key-pair are a subset of its superkey-pair’s resources. Then, because the resources
associated with the key-pair ρsome are a subset of those associated with the key-pair ρshared, we can use
shared files as the superkey-pair when generating some files. Here is the code from Section 1 again
(using limit keys to generate and associate).
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[Component C]:
open some files = newkey<lKey(shared files);
. . .associate file a with lKey(some files);
. . .associate file b with lKey(some files);
. . .
f = λx.limit lKey(some files) in

. . . /∗ accesses the selected files ∗/
Subnaming induces subeffecting and subtyping. In the example, the type system can reason that {ρsome} <

{ρshared}. We add the usual type checking rules so that a subeffect (resp. subtype) may be used where its
supereffect (resp. supertype) is expected. Here we have

⊥ (τ1
{ρsome}−→ τ2) < ⊥ (τ1

{ρshared}−→ τ2)

and hence f can be called by a context having access to ρshared. Now D’s call to f type checks.
Without subkeys and subnaming, the type system cannot track a key/resource association outside of

the context of the code in which the association is made.3 The key observation that leads to subkeys and
subnaming is that locally associated resources (i.e., a subkey) can be viewed as a local refinement of some
larger collection of resources that is recognized (e.g., is associated with a superkey) outside the local context.
In this way, subkeys and subnaming allow the programmer to define late, local associations that can be used
non-locally.

To better understand the uses of subnaming, we present a larger example. Consider an airline ticketing
program that contains two components: FlightCtrl having control of ticketing and seating information for
all flights and TicketAgt representing a ticket agent. There is only one FlightCtrl but there could be more
than instance of TicketAgt.

Suppose each component runs its own execution thread and that only read access to the seating and
ticketing information is available to the TicketAgt thread, but TicketAgt may request FlightCtrl make
modifications to the ticketing and seating arrangement. Let information for each flight be represented by
the bounded existential record type

FlightInfo = ∃ρ1<ρall flights {
⊥ lkey (ρ1) key;
ρ1 TicketingInfo tickets;
ρ1 SeatingInfo seats;
ρ2 int flight number;
ρ2 ref (FlightInfo) next;

};
The FlightCtrl thread is granted access to ρall flights, so it may access the FlightInfo record of every
flight.

Recognizing TicketAgt’s request, perhaps after some authentication, FlightCtrl responds by retrieving
the flight information for the flight being requested:

[FlightCtrl Component]:
. . .
if (AuthTicketAgt(agent1, flight num) {
open finfo = getFlightInfo(flight num);
. . .

The TicketAgt thread does not have write access to the tickets or seatings fields of finfo, so it cannot
make the changes by itself. But it may create a function that does the job when called by FlightCtrl:

3To be precise, this statement is true up to absence of grant keys. In fact, without subnaming, the grant keys must be used
to grant unconditional access to the non-local context when using associations non-locally. Therefore not having subnaming
precludes many useful stack-based access control patterns.
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[TicketAgt]:
. . .
f agent = λx.

. . . /∗ Makes changes to
finfo.tickets and finfo.seats ∗/

FlightCtrl runs f agent in its thread. But FlightCtrl, not fully trusting f agent, uses the access control
mechanism to check that f agent is actually limited to modifying the seating and ticketing information of
the specified flight:

[FlightCtrl Component]:
. . .
limit finfo.key in f agent()

The type system guarantees that f agent does not gain unwanted accesses (such as write access to flight
information for other flights).

The subnaming relation ρ1 < ρall flights implied in the type of FlightInfo is important. Existential
quantification allows the program to operate on one FlightInfo at a time. Without subnaming, the bound
name ρ1 would become completely anonymous when the existential package is opened. Then, because this
would mean that ρ1 is a name unknown to FlightCtrl, FlightCtrl would be forbidden from accessing
finfo, and hence would be unable to run f agent. Subnaming allows anybody with access to ρall flights
to perform access control at the level of individual FlightInfo instances.

We can take this example a step further. Suppose that TicketAgt also has its own set of resources asso-
ciated with the key-pair ρagt. Assume that f agent accesses some of these resources and that FlightCtrl
has access rights to ρagt.

Let ThirdPartyLib be a third party library component that TicketAgt uses to, say, help itself calculate
ticket costs and print out information on the terminal screen. To let ThirdPartyLib use some of its resources
in a controlled manner, TicketAgt imposes access control on its own resources:

[TicketAgt]:
. . .
open lib key = newkey;
. . .associate agt resources.a with lKey(lib key);
. . .associate agt resources.b with lKey(lib key);

Let ρlib identify the key-pairs lib key. Now suppose that f agent runs functions from ThirdPartyLib.
The programmer wishes to limit the resources the functions can use, so the definition of f agent would look
like

[TicketAgt]:
. . .
f agent = λx. {

. . .
limit lKey(lib key) in {

. . . /∗ calls ThirdPartyLib’s functions ∗/ }
. . .

}
Coming back to FlightCtrl, it seems reasonable to assume that the FlightCtrl thread is still capable

of running f agent because it has accesses to TicketAgt’s resources as well as the flight information.

[FlightCtrl]:
. . .
/∗ agt key is the key-pair identified by ρ agt ∗/
limit finfo.key, lKey(agt key) in f agent()

10



ρ ∈ Names ∪ {⊥,>} x ∈ Vars m ∈ Integers L ⊆finite Names ∪ {⊥,>}

raw types σ ::= int | 〈τ1, τ2, . . . , τn〉 | ref (τ) | τ1 L−→ τ2 | ∀ρ1<ρ2.τ | ∃ρ1<ρ2.τ | lkey (ρ) | gkey (ρ)
types τ ::= ρ σ
values v ::= m | Top | x | 〈v1, v2, . . . , vn〉 | λx:τ.e | Λρ1<ρ2.v | pack v as ∃ρ2<ρ3.τ
expressions e ::= v | 〈e1, e2, . . . , en〉 | e.i | e1 e2 | ref e | e1 := e2 | ! e | spawn e |

e [ρ] | pack e as ∃ρ2<ρ3.τ | open x = e1 as τ in e2 |
limit e1, e2, . . . , en−1 in en | grant e1 in e2 | newkey<e | associate e1 with e2

Figure 1: Source language

But because we did not create lib key as subkeys, the type system does not see the associations made in the
TicketAgt component. Indeed, the type system must give f agent the type ⊥ (τ1

L−→ τ2) where ρlib ∈ L,
but ρlib is not visible to FlightCtrl’s context.

Fortunately, subkeys provide an easy one-line fix.

[TicketAgt]:
. . .
open lib key = newkey<lKey(agt key); /∗ fixed ∗/
. . .associate agt resources.a with lKey(lib key);
. . .associate agt resources.b with lKey(lib key);

Now the type system may give f agent the type ⊥ (τ1
L′−→ τ2) where L′ contains ρagt instead of ρlib.

Then the system is able to type check the call to f agent in the FlightCtrl thread.

3 Formal System

We next formally present the core subset of our access control system and prove its soundness.
Figure 1 shows the source language, which consists of call-by-value first-class functions with primitives for

imperative store operations and concurrency. The language is rather spare, missing a few bells and whistles
seen in earlier sections for brevity (e.g., while and record types). These features can easily be added. We
briefly explain the syntax.

As before, each type τ consists of a name and a raw type. The raw types are integers int, tuples
〈τ1, τ2, . . . , τn〉, pointers ref (τ), functions τ1

L−→ τ2, bounded universal types ∀ρ1<ρ2.τ , bounded existential
types ∃ρ1<ρ2.τ , limit keys lkey (ρ), and grant keys gkey (ρ). In bounded quantified types, the name on the
left of < is the bound name and the name on the right is the upper-bound free in the raw type.

A program value v is either an integer m, the constant limit key Top, a variable x, a tuple 〈v1, v2, . . . , vn〉,
a function λx : τ.e, a bounded polymorphic abstraction Λρ1 < ρ2.v, or a bounded existential package
pack v as ∃ρ2<ρ3.τ .

A program expression e is either a value or one of the following syntax forms. The expression 〈e 1, e2, . . . , en〉
creates a tuple. The expression e.i projects the ith value of the tuple e. The expression e1 e2 applies the
function e1 to e2. The expression ref e allocates a new store location and initializes it to e. The expression
e1:=e2 assigns e2 to the store location e1. The expression !e dereferences the pointer (i.e. the store location)
e. The expression spawn e spawns a new thread for the evaluation of e. The expression e [ρ] instantiates
the bounded universal abstraction e. The expression pack e as ∃ρ2 < ρ3.τ creates a bounded existential
package of e. The expression open x = e1 as τ in e2 unpacks the bounded existential package e1 to evaluate
e2. Section 2 introduced the syntax forms limit e1, e2, . . . , en−1 in en, grant e1 in e2, newkey< e, and
associate e1 with e2.

Expressions and types are equivalent up to consistent renaming of bound names and variables.
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Γ ` m : ⊥ int; ∅ (Int)
Γ ` Top : ⊥ lkey (>); ∅ (Top)

x:τ ∈ Γ
Γ ` x : τ ; ∅ (Var)

For 1 ≤ i ≤ n, Γ ` ei : τi; Li

Γ ` 〈e1, e2, . . . , en〉 : ⊥ 〈τ1, τ2, . . . , τn〉;
⋃

1≤i≤n Li

(Tuple)
Γ ` e : ρ 〈τ1, τ2, . . . , τn〉; L

Γ ` e.i : τi; L ∪ {ρ} (Proj)

Γ, x:τ1 ` e : τ2; L Γ, x:τ1 ` �
Γ ` λx:τ1.e : ⊥ (τ1

L−→ τ2); ∅
(Fun)

Γ ` e1 : ρ (τ1
L1−→ τ2); L2 Γ ` e2 : τ1; L3

Γ ` e1 e2 : τ2; L1 ∪ L2 ∪ L3 ∪ {ρ}
(App)

Γ ` e : τ ; L
Γ ` ref e : ⊥ ref (τ); L

(Ref)
Γ ` e1 : ρ ref (τ); L1 Γ ` e2 : τ ; L2

Γ ` e1 := e2 : τ ; L1 ∪ L2 ∪ {ρ}
(Assign)

Γ ` e : ρ ref (τ); L
Γ ` ! e : τ ; L ∪ {ρ} (Deref)

Γ ` e : τ ; ∅
Γ ` spawn e : ⊥ int; ∅ (Spawn)

Γ, ρ1<ρ2 ` v : τ ; ∅ Γ, ρ1<ρ2 ` �
Γ ` Λρ1<ρ2.v : ⊥ (∀ρ1<ρ2.τ); ∅ (Gen)

Γ ` e : ρ1 (∀ρ2<ρ3.τ); L Γ ` ρ4 < ρ3

Γ ` e [ρ4] : τ [ρ4/ρ2]; L ∪ {ρ1}
(Inst)

Γ ` e : τ [ρ3/ρ1]; L Γ ` ρ3 < ρ2

Γ ` pack e as ∃ρ1<ρ2.τ : ⊥ (∃ρ1<ρ2.τ); L
(Pack)

Γ ` e1 : ρ1 (∃ρ2<ρ3.τ1); L1 Γ, ρ2<ρ3, x:τ1 ` e2 : τ2; L2

Γ ` τ2 Γ ` L2 Γ, ρ2<ρ3, x:τ1 ` �
Γ ` open x = e1 as τ1 in e2 : τ2; L1 ∪ L2 ∪ {ρ1}

(Ope

For 1 ≤ i ≤ n− 1, Γ ` ei : ρ′i lkey (ρi); Li

Γ ` en : τn; Ln Γ ` Ln < {ρ1, ρ2, . . . , ρn−1}
Γ ` limit e1, e2, . . . , en−1 in en : τn; Ln ∪

⋃
1≤i≤n−1(Li ∪ {ρ′i})

(Limit)

Γ ` e1 : ρ1 gkey (ρ2); L1

Γ ` e2 : τ ; L2 ∪ {ρ2}
Γ ` grant e1 in e2 : τ ; L1 ∪ L2 ∪ {ρ1}

(Gra

Γ ` e : ρ1 lkey (ρ2); L
Γ ` newkey<e : ⊥ (∃ρ3 < ρ2.⊥ 〈⊥ lkey (ρ2),⊥ gkey (ρ2)〉); L ∪ {ρ1}

(NewKey)

Γ ` e1 : ρ1 σ; L1 Γ ` e2 : ρ2 lkey (ρ3); L2

Γ ` associate e1 with e2 : ρ3 σ; L1 ∪ L2 ∪ {ρ1, ρ2}
(Associate)

Γ ` e : τ1; L1 Γ ` τ1 < τ2 Γ ` L1 < L2

Γ ` e : τ2; L2

(Subsumption)

Figure 2: Type checking rules: expressions
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Γ ` ρ

Γ ` ρ < ρ
(Sub Refl ρ)

Γ ` ρ1 < ρ2 Γ ` ρ2 < ρ3

Γ ` ρ1 < ρ3

(Sub Trans ρ)
ρ1<ρ2 ∈ Γ
Γ ` ρ1 < ρ2

(Sub ρ)
Γ ` ρ

Γ ` ⊥ < ρ
(Sub

Γ ` ρ1 < ρ2 Γ ` σ1 < σ2

Γ ` ρ1 σ1 < ρ2 σ2

(Sub τ)
Γ ` σ

Γ ` σ < σ
(Sub Refl σ)

Γ ` σ1 < σ2 Γ ` σ2 < σ3

Γ ` σ1 < σ3

(Sub Trans σ)

For 1 ≤ i ≤ n, Γ ` τi < τi
′

Γ ` 〈τ1, τ2, . . . , τn〉 < 〈τ1
′, τ2

′, . . . , τn
′〉 (Sub Tuple)

Γ ` τ3 < τ1 Γ ` τ2 < τ4 Γ ` L1 < L2

Γ ` τ1
L1−→ τ2 < τ3

L2−→ τ4

(Sub Fun)

Γ ` ρ3 < ρ2 Γ, ρ1<ρ3 ` τ1 < τ2 Γ, ρ1<ρ3 ` �
Γ ` (∀ρ1<ρ2.τ1) < (∀ρ1<ρ3.τ2)

(Sub Univ)
Γ ` ρ2 < ρ3 Γ, ρ1<ρ2 ` τ1 < τ2 Γ, ρ1<ρ2 ` �

Γ ` (∃ρ1<ρ2.τ1) < (∃ρ1<ρ3.τ2)
(

Γ ` L

Γ ` ∅ < L
(Sub Effect ∅) Γ ` ρ1 < ρ2 Γ ` L1 < L2

Γ ` L1 ∪ {ρ1} < L2 ∪ {ρ2}
(Sub Effect {ρ})

Figure 3: Type checking rules: subnaming, subtyping, subeffecting

Γ ` ⊥ (Name ⊥)
Γ ` > (Name >)

ρ1<ρ2 ∈ Γ
Γ ` ρ1

(Name ρ)

Γ ` ρ Γ ` σ

Γ ` ρ σ
(Type)

Γ ` int
(RType Int)

For 1 ≤ i ≤ n, Γ ` τi

Γ ` 〈τ1, τ2, . . . , τn〉
(RType Tuple)

Γ ` τ

Γ ` ref (τ)
(RType Ref)

Γ ` τ1 Γ ` τ2 Γ ` L

Γ ` τ1
L−→ τ2

(RType Fun)

Γ, ρ1<ρ2 ` τ Γ, ρ1<ρ2 ` �
Γ ` ∀ρ1<ρ2.τ

(RType Univ)
Γ, ρ1<ρ2 ` τ Γ, ρ1<ρ2 ` �

Γ ` ∃ρ1<ρ2.τ
(RType Exists)

Γ ` ρ

Γ ` lkey (ρ)
(RType LKey)

Γ ` ρ

Γ ` gkey (ρ)
(RType GKey)

For each ρ ∈ L, Γ ` ρ

Γ ` L
(Effect)

∅ ` � (Env ∅) Γ ` τ Γ ` � x /∈ dom(Γ)
Γ, x:τ ` � (Env x)

Γ ` ρ2 Γ ` � ρ1 /∈ dom(Γ) ∪ {⊥,>}
Γ, ρ1<ρ2 ` �

(Env ρ)

Figure 4: Type checking rules: well-formed names, types, effects, environments
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3.1 Static Semantics

Type environments are sequences of variable-to-type bindings and names annotated with a supername.

Γ ::= ∅ | Γ, x:τ | Γ, ρ1<ρ2

Figure 2 shows type checking rules for expressions. The meaning of Γ ` e : τ ; L is that the effect set L
conservatively approximates e’s access rights. A program is a closed expression. A program e is well-typed
iff ∅ ` e : τ ; ∅ for some τ , i.e., iff e can be type checked with no enabled access rights. Let us now discuss
some of the important points in the type checking rules.

As explained in Section 2.5, (NewKey) assigns a bounded existential type to a newly created key-pair.
The constant Top serves as the initial key. (Top) assigns Top the limit-key type ⊥ lkey (>). The fact that
Top is not a grant key is important, as otherwise any code would be able to access any resource by granting
itself Top. The syntax form newkey is equivalent to newkey<Top.

Subnaming induces subtyping and subeffecting (see Figure 3), which are then used in two places: (Sub-
sumption) and (Limit). (Subsumption) allows a subtype (resp. subeffect) to be used wherever its supertype
(resp. supereffect) is expected. (Subsumption) formally captures the intention that whatever is associated
with key-pairs are also associated with its super-key-pairs.

(Limit) replaces the rule introduced in Section 2 by using the subeffecting relation < instead of the subset
relation. This is needed to allow contexts with access rights limited to some key-pair to execute a code with
access rights limited to its superkey-pair when the code accesses only what are allowed by the context. For
example, consider the following function g which takes a resource and accesses it. We wish to limit g’s access
rights to the key-pair g key identified by ρg.

g = Λρ<ρg.λx:ρ σ.limit lKey(g key) in . . .

The type system can give the g the raw type

∀ρ<ρg.(ρ σ
{ρ}−→ τ)

for some σ and τ so that a caller whose access rights are locally refined with respect to ρg is able call g with
its resource.

Figure 3 also shows that, as usual, subtyping is invariant under pointer types. Subtyping is also invariant
for raw key types, i.e., lkey (ρ1) < lkey (ρ2) then ρ1 = ρ2, and analogously for grant key types. It is easy
to see that covariant keys would be unsound because limiting (resp. granting) ρ1 should not somehow limit
(resp. grant) ρ2 when ρ1 < ρ2 and ρ1 6= ρ2. To see that contravariance also fails, observe that associating
ρ1 should not somehow associate ρ2 when ρ2 < ρ1 and ρ1 6= ρ2.4

Section 2 discusses (Grant) and (Associate). Recall that values are created with no associated key-pair.
Thus the rules for introductory forms (Int), (Tuple), (Fun), (Ref), (Gen), (Pack) and (NewKey) all qualify
their values with ⊥. The corresponding eliminatory forms (Proj), (App), (Assign), (Deref), (Inst), (Open),
(Limit), (Grant), (NewKey) and (Associate) that use the values require an effect set consistent with the
required access rights. Note that Γ ` ⊥ < ρ for any Γ ` ρ.

As usual in a type and effect system, the latent effect of a function is recorded in its type at (Fun) and
used at (App).

(Spawn) implies that a newly spawned thread starts without any access rights. We could alternatively
have the spawned thread inherit the access rights of the spawner. In this case, we would add the rule

Γ ` e : τ ; L
Γ ` spawn e : ⊥ int; L

(Spawn alt)

The only non-syntax directed rule is (Subsumption). Effect sets are finite and subtyping is structural, so
type checking is decidable.

4We could relax invariance by assigning a pair of a covariant name and a contravariant name for each key type. Here we
stick with invariance for simplicity.

14



3.2 Sketch of Type Soundness

We sketch a proof of soundness. A complete version of the proof appears in Appendix A.
The first step is to define a dynamic semantics rich enough to classify an access violation as a run-time

error. This is only to prove soundness of the system; a real implementation should follow a straightforward
dynamic semantics that ignores access control checks.

We introduce the set KeyPairs such that each element of KeyPairs denotes a key-pair. Each program
value is now annotated with a key-pair, with the intended meaning that the value is associated with the
key-pair. So a program value, say the function λx:τ.e, associated with the key-pair k ∈ KeyPairs is

k λx:τ.e

We type check the annotated values by keeping track of names identifying k ∈ KeyPairs in the type envi-
ronment.

Γ ::= . . . | k :ρ

We use the special key-pairs bot and top to denote non-association and the Top key-pair, respectively.
The dynamic semantics needs to track enabled accesses for each context. Like in an eager stack-inspection

semantics, we maintain exactly the enabled accesses in the syntax form access A in e where A ⊆finite
KeyPairs∪ {bot, top} denote the enabled accesses for the expression e. This approach makes the soundness
proof easy. The following rule is used to type check access A in e.

Γ ` e : τ ; L Γ ` L < {ρ | Γ ` k : ρ for some k ∈ A}
Γ ` access A in e : τ ; ∅

access A in e is a run-time syntax form not available to the source program. Each access A in e appears
as the result of the evaluation of limit or grant.

Evaluation is defined as a sequence of call-by-value small-step reductions of the form

(S, K, 〈e1, e2, . . . , en〉) −→ (S′, K ′, 〈e′1, e′2, . . . , e′n′〉)

where e1, e2, . . . , en, e′1, e
′
2, . . . , e

′
n′ are the execution threads, S, S ′ are stores mapping store locations to

program values, and K, K ′ are key-managers representing immediate sub-key-pair relation between key-
pairs. So k1 is a (immediate or non-immediate) sub-key-pair of k2 iff k1 7→ k2 ∈ K∗

⊥ where K∗
⊥ is the

reflexive, transitive closure of K lifted with bottom. In this section, we restrict the reduction rules to the
case for one execution thread to save space.

To make evaluation fail at access violations, the dynamic semantics checks the enabled accesses whenever
a program value is used. For example, when calling a function associated with the key-pair k, the dynamic
semantics checks whether k is enabled in the current set of access rights A.

k ∈ CloseK(A)
(S, K, E[access A in R[(k λx:τ.e) v]])

−→ (S, K, E[access A in R[e[v/x]]])

CloseK is a function such that k ∈ CloseK(A) iff k is a sub-key-pair of some key-pair in A in the key-pair
relation K. If the condition k ∈ CloseK(A) is false, then this reduction cannot be taken, which implies that
the evaluation for this thread gets stuck, indicating a run-time error.

The evaluation contexts E and R are used to find the redex and the set representing the enabled accesses
for the redex. Intuitively, E[access A in R[e]] means that e is in an evaluation context and A is the set of
its enabled accesses.

We use the special constant value err to signal a run-time error. Whenever an execution thread gets
stuck, i.e., when it reduces to a irreducible non-value, it immediately reduces to err. Note that err has no
type.

As mentioned before, limit and grant introduce occurrences of access A in e. The new access rights
B after limit is reduced is the intersection of the previous access rights A with those specified in limit.
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(Here lkey (k) denotes the limit key value (unannotated) of the key-pair k.)

{k′1, k′2, . . . , k′n} ⊆ CloseK(A)
B = CloseK(A) ∩ CloseK({k1, . . . , kn})

(S, K, E[access A in R[
limit k′1 lkey (k1), . . . , k′n lkey (kn) in e]]) −→
(S, K, E[access A in R[access B in e]])

In contrast, the new access rights B after grant is reduced is the union of the previous access rights A with
those specified in grant. (Here gkey (k) denotes the grant key value (unannotated) of the key-pair k.)

k1 ∈ CloseK(A)
B = A ∪ {k2}

(S, K, E[access A in R[grant k1 gkey (k2) in e]])
−→ (S, K, E[access A in R[access B in e]])

The reduction for associate is relatively simple. Here r is an unannotated program value. The reduction
changes r’s annotation from k1 to k3.

{k1, k2} ⊆ CloseK(A)
(S, K, E[access A in R[

associate k1 r with k2 lkey (k3)]])
−→ (S, K, E[access A in R[k3 r]])

The reduction for newkey creates a new key-pair k3 as the immediate sub-key-pair of k2.

k1 ∈ CloseK(A) k3 /∈ dom(K) ∪ {bot, top}
(S, K, E[access A in R[newkey<k1 lkey (k2)]]) −→

(S, K ∪ {k3 7→ k2}, E[access A in R[v]])

where v is the existential package containing the new key-pair value (not shown).
Appendix A.1 shows the complete dynamic semantics.
Recall that we have intentionally enriched the dynamic semantics with explicit key-pairs just so that

we could identify access violations. A real implementation of the run-time system does not need key-pairs
because our type system checks for access violations at compile time.

The next step is to define a well-typed program state.

Definition 1 Γ ` (S, K, 〈e1, e2, . . . , en〉) (read “the program state (S, K, 〈e1, e2, . . . , en〉) is well-typed under
Γ”) iff

(1) Γ ` �.
(2) For each 1 ≤ i ≤ n, Γ ` ei : τi; ∅ for some τi.

(3) ` ∈ dom(S) iff ` ∈ dom(Γ).

(4) k ∈ dom(K) iff k ∈ dom(Γ).

(5) x /∈ dom(Γ).

(6) If Γ ` ` : τ and S(`) = v then Γ ` v : τ ; ∅.
(7) Suppose Γ ` k1 : ρ1 and Γ ` k2 : ρ2. Then Γ ` ρ1 < ρ2 iff k1 7→ k2 ∈ K∗

⊥.

The first condition says that Γ must be well-formed. The second condition says that each execution thread
is well-typed under Γ with effect set ∅. The third and the fourth conditions say that Γ and S, K must have
matching store locations and key-pairs. The fifth condition says that Γ must not contain variables. The
sixth condition expresses the usual well-typed store condition. The last condition says that the key-manager
K contains exactly the sub-key-pair relationship implied by the type environment Γ.

Recall that err is non-typable. The soundness proof then reduces to showing the following theorem.
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Theorem 1 (Subject Reduction) If Γ ` (S, K,~e) and (S, K,~e) −→ (S ′, K ′, ~e′), then there is Γ′ such that
Γ′ ` (S′, K ′, ~e).

The theorem is proved by induction on the type derivation and case analysis on reduction kinds. The
immediate corollary is that a well-typed program does not cause access violations.

4 Extensions

We next discuss a few possible extensions to the system.

4.1 Run-Time Checks

Our system is powerful enough to statically enforce many fine-grain access control policies. But the pro-
grammer may still encounter situations where the static checking feels overly restrictive. We may extend
our system with run-time checks.

Γ ` e1 : ρ1 lkey (ρ2); L1

Γ ` e2 : τ ; L2 ∪ {ρ2} Γ ` e3 : τ ; L2

Γ ` have-access e1 ? e2 e3 : τ ; L1 ∪ L2

The syntax form have-access e1 ? e2 e3 checks whether the current context has e1 enabled, and if so
evaluates e2 or else evaluates e3.

The disadvantage of this extension is that the run-time system now must track key values and enabled
access rights. Without this extension, our system is completely static, and therefore a program with access
control has no run-time overhead over an equivalent program without access control. Nevertheless, even
with this extension, the run-time system only needs to check enabled access rights at have-key’s. Hence the
overhead should be minimal.

4.2 Effect Kinds

In our airline ticketing example, we assumed that the TicketAgt thread has read access but not write access
to the flight information. Strictly speaking, the system we described cannot distinguish different kinds of
effects on the same resource.

It is easy to extend the system with effect kind constants for the primitives in the language (e.g., distin-
guishing the effect of dereferencing from the effect of assigning or associating) and programmer-defined effect
kind variables (e.g., the effect kinds readSeating, editSeating for SeatingInfo). Effect kinds qualify effects,
i.e., each effect is now of the form η ρ where η is an effect kind. Then the programmer may, for example,
limit e’s access to only reading a selected SeatingInfo by

limit readSeating(theseating key) in e

and the type system checks that e’s effect set is a subeffect of {readSeating ρ}, where ρ identifies theseating key.

4.3 Type Variables, Effect Variables, and More

We restricted the formal system to just bounded quantified types over names to make the presentation
concise. But because the system relies only on standard type-system techniques, it is straightforward to
extend the system with type variables and effect variables so as to admit bounded quantification over them.

Existentially quantified type variables naturally encode abstract data types [10]. We may also want a
native support for parameterized recursive data types. A practical implementation may be to add recursively-
defined named data types seen in languages like ML.
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5 Relation to Must Alias Analysis

We briefly discuss the relation between our access control system and must alias analysis. In order to express
locally refined access control policies, our access control checks constraints of the form “resources used by
the expression e must-alias one of the resources in the set A,” where A may be defined locally. The first
step toward this goal is generation of lexically scoped names and late binding of names with program values.
Lexically scoped names allow the creation of new names distinguishable from other names, and late binding
allows existing program values to be must-aliased with these names. Together, they support creation of fine
must-aliasing relations. Note that relations are not lexically scoped; they may be transported outside of a
lexical scope by existential or universal name quantification.

However, there is a problem when these names are left disjoint. The problem occurs when the names
collide (with other names or with their lexical boundaries), for example, when the type system needs to equate
two types differing in names. The problem becomes more severe in a setting like stack-based access control
because names propagate and collide not only through types of expressions but also through their effects.
This is the problem subnaming solves. With subnaming, names are no longer disjoint. So the type system is
able to make compromises by using supernames when possible. This has the effect of “downgrading” a fine
must-aliasing relation to a coarser one.

6 Related Work

Stack-based access control is used in Java [8] and the CLR [4]. Pottier et al [12] present a type system that
can statically check a subset of Java’s access control policies. Their system is faithful to the Java security
model and hence conservatively approximates Java’s dynamic access control. It is not our goal to match
Java’s access control system, but we believe it is possible to encode Java’s mechanism in a way so that access
policies enforceable by Pottier et al’s system can also be enforced by ours. We also believe that our system
is more expressive, because of its ability to locally refine access control policies.

The implementation of run-time systems for stack-based dynamic access control is a research subject in
itself. In addition to direct inspection of the execution stack at run-time, which is done by Java and the
CLR, several other techniques have been proposed. One approach is security-passing style where enabled
access rights are explicitly passed as function arguments [15]. Also, an implementation technique based on
code instrumentation has been proposed [13]. We believe that, should the need for run-time checks arise in
our system (e.g., as discussed in Section 4.1), we can add such checks using any of these techniques. Besides
efficient implementation, studying dynamic semantics has lead to a deeper understanding of the stack-based
access control mechanism [15, 6]. It is interesting to note that Pottier et al [12] first develop their static system
on the security-passing-style converted language, then translate back to obtain a corresponding system for
the source language.

There are a variety of ways to perform access control besides the stack-based approach. Abadi et al
[1] present a system based on examining execution history. Their system is a generalization of the stack-
based mechanism where the access rights at a point in time are determined not only by the access rights
encoded in the stack but also by those of functions that have already returned. Using our syntax, their
system roughly can be explained as splitting limit into start limit and end limit and analogously for
grant. Statically checking history-based policies in a convincing manner would require reasoning about the
sequential behavior of programs, and it is unclear whether we would be able to adapt our system to statically
checking history-based access control policies.

Researchers have also proposed systems for statically enforcing generic security policies. These systems
include Hoare style proof-systems [11, 3] and a higher-order type system [14]. One of their goals is a portable
framework that is less tied to the source language. It is difficult to compare our system with these as the
problem domains are so different.

Our system is an application of type and effect systems [7, 9]. Type and effect systems are widely used
for checking non-standard program properties; the work of Pottier et al also uses a type and effect system
[12].

Finally, there is a connection to work on aliasing control, particularly previous work on the programming
construct restrict, originally studied in [5] and extended in [2]. Briefly, restrict is a mechanism for

18



specifying and checking local non-aliasing of store locations. To this end, abstract location names are used
to approximate store locations so that location names distinguish local aliases of store locations from other
aliases. Beyond what has been previously published on this subject, we noticed that, instead of using
incomparable location names, we could use subnaming so that each local alias of a set of store locations S
is a subtype of the type of all aliases of S. This captures the notion that each local alias is a refinement of
the set of all aliases. Our use of subnaming for refinement of access control policies exploits the same idea.

7 Conclusions

We have presented a new system for defining and enforcing fine-grain access control. The system is simple,
relying only on standard techniques from the types literature, yet powerful enough to express many non-
trivial access control policies statically. The system draws its power from two key features: late and locally
defined access control policies and non-local enforcement of the policies. We make the former possible
through late binding between resources and key-pairs identified by lexically scoped names. To make the
latter possible, we use subnaming.

At the core, our use of subnaming is a kind of local must alias analysis. This technique itself appears to
be applicable to a variety of problems in addition to access control.

References

[1] M. Abadi and C. Fournet. Access Control based on Exection History. In Proceedings of the tenth Annual
Network and Distributed System Security Symposium, pages 107–121, Feb. 2003.

[2] A. Aiken, J. S. Foster, J. Kodumal, and T. Terauchi. Checking and Inferring Local Non-Aliasing. In
Proceedings of the 2003 ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, San Diego, California, June 2003.

[3] C. Colby, K. Crary, R. Harper, P. Lee, and F. Pfenning. Automated techniques for provably safe mobile
code. Theoretical Computer Science, 290:1175–1199, 2003. Special issue on Dependable Computing.

[4] ECMA. Standard ECMA-335: Common Language Infrastructure, 2002. http://www.ecma-
international.org/publications/ standards/ecma-335.htm.

[5] J. S. Foster and A. Aiken. Checking Programmer-Specified Non-Aliasing. Technical Report UCB//CSD-
01-1160, University of California, Berkeley, Oct. 2001.

[6] C. Fournet and A. G. Gordon. Stack Inspection: Theory and Variants. In Proceedings of the 29th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 307–
318, Portland, Oregon, Jan. 2002.

[7] D. K. Gifford, P. Jouvelot, J. M. Lucassen, and M. A. Sheldon. FX-87 Reference Manual. Technical
Report MIT/LCS/TR-407, MIT Laboratory for Computer Science, Sept. 1987.

[8] L. Gong. Java Security Architecture (JDK 1.2), 1998. http://java.sun.com/products/jdk/1.2/docs/
guide/security/spec/security-spec.doc.html.

[9] J. M. Lucassen and D. K. Gifford. Polymorphic Effect Systems. In Proceedings of the 15th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 47–57, San Diego,
California, Jan. 1988.

[10] J. C. Mitchell. Abstract Types Have Existential Type. ACM Transactions on Programming Languages
and Systems, 10(3):470–502, July 1988.

[11] G. Necula and P. Lee. Safe, Untrusted Agents using Proof-Carrying Code. In I. G. Vigna, editor,
Special Issue on Mobile Agent Security, volume 1419 of Lecture Notes in Computer Science, pages
61–91. Springer-Verlag, 1998.

19



x ∈ Vars ` ∈ Locations k ∈ KeyPairs∪ {bot, top} A ⊆finite KeyPairs∪ {bot, top}
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E-contexts E ::= [ ] | 〈. . . , vi, E, . . .〉 | E.i | E e | v E | refE | E := e | v := E | E [•] | pack E as • | open x = E as • in
limit . . . , vi, E, . . . in e | grant E in e | newkey<E | associate E with e | associate v with E | E
access A in E

Figure 6: Evaluation contexts
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[13] Úlfar Erlingsson and F. B. Schneider. IRM Enforcement of Java Stack Inspection. In Proceedings of the
2000 IEEE Symposium on Security and Privacy, pages 246–255, Oakland, California, May 2000.

[14] D. Walker and K. Watkins. A Type System for Expressive Security Policies. In Proceedings of the 27th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 254–267,
Boston, Massachusetts, Jan. 2000.

[15] D. S. Wallach, A. W. Appel, and E. W. Felten. SAFKASI: A Security Mechnism for Language-based
Systems. ACM Transactions on Software Engineering and Methodology, 9(4):341–378, Oct. 2000.

A Type Soundness

We sometimes use the symbol − to indicate “don’t care.”

A.1 Dynamic Semantics

The first step in the dynamic semantics is to translate the source program into the language shown in
Figure 5. The translation involves type-erasure, replacing each name or type annotation with a •. We erase
names and types so that we do not need to worry about proper alpha-renaming of names during reductions.
Also each program value in the source program is translated into a program value in of the target program
by annotating them with bot, i.e., for each v in the source, bot v. Finally, the translation replaces each Top
with bot lkey (top).

Let e be the translated target program. Then the evaluation proceeds from the initial state (∅, ∅, 〈e〉)
followed by a sequence of small-step reductions shown in Figure 7. Each state is of the form (S, K,~e) where S
is the store mapping store locations to values, K is the key-pair manager representing immediate sub-key-pair
relation between key-pairs, and ~e are the execution threads.

The evaluation contexts E and R are shown in Figure 6. The only difference between E and R is that R
lacks access A in R.
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(S, K, 〈. . . , E[〈v1, v2, . . . , vn〉], . . .〉) −→ (S, K, 〈. . . , E[bot 〈v1, v2, . . . , vn〉], . . .〉)
[Tuple]

k ∈ CloseK(A)
(S, K, 〈. . . , E[access A in R[(k 〈. . . , vi, . . .〉).i]], . . .〉) −→ (S, K, 〈. . . , E[access A in R[vi]], . . .〉)

[Proj]

k ∈ CloseK(A)
(S, K, 〈. . . , E[access A in R[(k λx:•.e) v]], . . .〉) −→ (S, K, 〈. . . , E[access A in R[e[v/x]]], . . .〉) [App]

` /∈ dom(S)
(S, K, 〈. . . , E[ref v], . . .〉) −→ (S ∪ {` 7→ v}, K, 〈. . . , E[bot loc (`)], . . .〉) [Ref]

k ∈ CloseK(A)
(S ∪ {` 7→ −}, K, 〈. . . , E[access A in R[(k loc (`)) := v]], . . .〉) −→ (S ∪ {` 7→ v}, K, 〈. . . , E[access A in R[v]], . . .〉)

k ∈ CloseK(A)
(S ∪ {` 7→ v}, K, 〈. . . , E[access A in R[! k loc (`)]], . . .〉) −→ (S ∪ {` 7→ v}, K, 〈. . . , E[access A in R[v]], . . .〉) [De

(S, K, 〈. . . , E[spawn e], . . .〉) −→ (S, K, 〈. . . , E[bot 0], . . . , access ∅ in e〉) [Spawn]

k ∈ CloseK(A)
(S, K, 〈. . . , E[access A in R[(k Λ • .v) [•]]], . . .〉) −→ (S, K, 〈. . . , E[access A in R[v]], . . .〉) [Inst]

(S, K, 〈. . . , E[pack v as •], . . .〉) −→ (S, K, 〈. . . , E[bot pack v as •], . . .〉) [Pack]

k ∈ CloseK(A)
(S, K, 〈. . . , E[access A in R[open x = (k pack v as •) as • in e]], . . .〉) −→ (S, K, 〈. . . , E[access A in R[e[v/x]]], . . .〉)

{k′1, k′2, . . . , k′n} ⊆ CloseK(A)
(S, K, 〈. . . , E[access A in R[limit k ′1 lkey (k1), k′2 lkey (k2), . . . , k′n lkey (kn) in e]], . . .〉) −→

(S, K, 〈. . . , E[access A in R[access CloseK(A) ∩ CloseK({k1, k2, . . . , kn}) in e]], . . .〉)
[Limit]

k1 ∈ CloseK(A)
(S, K, 〈. . . , E[access A in R[grant k1 gkey (k2) in e]], . . .〉) −→ (S, K, 〈. . . , E[access A in R[access A ∪ {k2} in e]], . . .〉

k1 ∈ CloseK(A) k3 /∈ dom(K) ∪ {bot, top}
(S, K, 〈. . . , E[access A in R[newkey<k1 lkey (k2)]], . . .〉) −→

(S, K ∪ {k3 7→ k2}, 〈. . . , E[access A in R[bot pack bot 〈bot lkey (k3), bot gkey (k3)〉 as •]], . . .〉)
[New

{k1, k2} ⊆ CloseK(A)
(S, K, 〈. . . , E[access A in R[associate k1 r with k2 lkey (k3)]], . . .〉) −→ (S, K, 〈. . . , E[access A in R[k3 r]], . . .〉) [A

(S, K, 〈. . . , E[access A in v], . . .〉) −→ (S, K, 〈. . . , E[v], . . .〉) [InAccess]

Figure 7: Small-step reduction rules
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Γ ` k : ρ

Γ ` k m : ρ int; ∅ (Int’ed)
Γ ` k : ρ Γ ` ` : τ

Γ ` k loc (`) : ρ ref (τ); ∅ (Loc)

Γ ` k1 : ρ1 Γ ` k2 : ρ2

Γ ` k1 lkey (k2) : ρ1 lkey (ρ2); ∅
(LKey)

Γ ` k1 : ρ1 Γ ` k2 : ρ2

Γ ` k1 gkey (k2) : ρ1 gkey (ρ2); ∅
(GKey)

Γ ` k : ρ
For 1 ≤ i ≤ n, Γ ` vi : τi; ∅

Γ ` k 〈v1, v2, . . . , vn〉 : ρ 〈τ1, τ2, . . . , τn〉; ∅
(Tuple’ed)

Γ ` k : ρ Γ, x:τ1 ` e : τ2; L Γ, x:τ1 ` �
Γ ` k λx:•.e : ρ (τ1

L−→ τ2); ∅
(Fun’ed)

Γ ` k : ρ3 Γ, ρ1<ρ2 ` v : τ ; ∅ Γ, ρ1<ρ2 ` �
Γ ` k Λ • .v : ρ3 (∀ρ1<ρ2.τ); ∅ (Gen’ed)

Γ ` e : ρ1 (∀ρ2<ρ3.τ); L Γ ` ρ4 < ρ3

Γ ` e [•] : τ [ρ4/ρ2]; L ∪ {ρ1}
(Inst •)

Γ ` k : ρ4 Γ ` v : τ [ρ3/ρ1]; ∅ Γ ` ρ3 < ρ2

Γ ` k pack v as • : ρ4 (∃ρ1<ρ2.τ); ∅ (Packed)

Γ ` e : τ [ρ3/ρ1]; L Γ ` ρ3 < ρ2

Γ ` pack e as • : ⊥ (∃ρ1<ρ2.τ); L
(Pack •)

Γ ` e1 : ρ1 (∃ρ2<ρ3.τ1); L1 Γ, ρ2<ρ3, x:τ1 ` e2 : τ2; L2

Γ ` τ2 Γ ` L2 Γ, ρ2<ρ3, x:τ1 ` �
Γ ` open x = e1 as • in e2 : τ2; L1 ∪ L2 ∪ {ρ1}

(Open •)

Γ ` e : τ ; L Γ ` L < {ρ | Γ ` k : ρ for some k ∈ A}
Γ ` access A in e : τ ; ∅ (InAccess)

k :ρ ∈ Γ
Γ ` k : ρ

(KeyPair k)
Γ ` top : > (KeyPair top)

Γ ` bot : ⊥ (KeyPair bot)
`:τ ∈ Γ
Γ ` ` : τ

(Location `)

Γ ` ρ Γ ` �
Γ, k :ρ ` � (Env k)

Γ ` τ Γ ` �
Γ, `:τ ` � (Env `)

Figure 8: Type checking rules: additional rules for the target language

CloseK is a function such that k ∈ CloseK(A) iff k is a sub-key-pair of some key-pair in A in the key-pair
relation K. More concretely, we define the reflexive, transitive closure of K lifted with bot as

K∗
⊥ =

⋃
n∈ω Rn(K ∪ {bot 7→ k | k ∈ dom(K) ∪ {top}})

∪{k 7→ k | k ∈ dom(K) ∪ {bot, top}}
where

R(K) = K ∪ {k1 7→ k2 | k1 7→ k3 ∈ K and
k3 7→ k2 ∈ K for some k3}

Then CloseK can be defined as

CloseK(A) = {k1 | k1 7→ k2 ∈ K∗
⊥ for some k2 ∈ A}

If the state (S, K, 〈. . . , e, . . .〉) cannot be reduced by the rules in Figure 7 but e is not a value, then e
immediately reduces to a special constant err, i.e.

(S, K, 〈. . . , e, . . .〉) −→ (S, K, 〈. . . , err, . . .〉)

A.2 Type Soundness

The static semantics for the target language is the type checking rules from Section 3.1 plus the additional
rules in Figure 8. Each type environment is now a sequence of variable-to-type bindings, names annotated
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with a supername, location-to-type bindings, and key-pair-to-name bindings.

Γ ::= ∅ | Γ, x:τ | Γ, ρ1<ρ2 | `:τ | k :ρ

Note that err has no type. The following theorem connects source programs to target programs.

Theorem 2 Let e1 be an expression in the source language and e2 be the corresponding translated expression.
Then if Γ ` e1 : τ ; L then Γ ` e2 : τ ; L.

Proof: By induction on the type checking derivation. 2

In the rest of the paper, we always refer to expressions in the target language unless specified otherwise.
We re-state the definition of well-typed program state.

Definition 2 Γ ` (S, K, 〈e1, e2, . . . , en〉) (read “the program state (S, K, 〈e1, e2, . . . , en〉) is well-typed under
Γ”) iff

(1) Γ ` �.
(2) For each 1 ≤ i ≤ n, Γ ` ei : −; ∅.
(3) ` ∈ dom(S) iff ` ∈ dom(Γ).

(4) k ∈ dom(K) iff k ∈ dom(Γ).

(5) x /∈ dom(Γ).

(6) If Γ ` ` : τ and S(`) = v then Γ ` v : τ ;−.

(7) Suppose Γ ` k1 : ρ1 and Γ ` k2 : ρ2. Then Γ ` ρ1 < ρ2 iff k1 7→ k2 ∈ K∗
⊥.

Lemma 1 If Γ ` � and Γ ` e : τ ; L then Γ ` τ and Γ ` L.

Proof: By induction on the type checking derivation. 2

Lemma 2 (Substitution) (1) If Γ, x:τ1 ` �, Γ, x:τ1 ` e : τ2; L, and Γ ` v : τ1; ∅, then Γ ` e[v/x] : τ2; L.

(2) If Γ, ρ1<ρ2 ` �, Γ, ρ1<ρ2 ` e : τ ; L, and Γ ` ρ3 < ρ2, then Γ ` e : τ [ρ3/ρ1]; L[ρ3/ρ1].

(3) If Γ, ρ1<ρ2 ` �, Γ, ρ1<ρ2 ` τ1 < τ2, and Γ ` ρ3 < ρ2, then Γ ` τ1[ρ3/ρ1] < τ2[ρ3/ρ1].

(4) If Γ, ρ1 < ρ2, x : τ1 ` �, Γ, ρ1 < ρ2, x : τ1 ` e : τ2; L, and Γ ` ρ3 < ρ2, then Γ, x : τ1[ρ3/ρ1] ` e :
τ2[ρ3/ρ1]; L[ρ3/ρ1].

Proof: By induction on the type checking derivation. 2

Lemma 3 Suppose Γ1 ` � and Γ1 ` e : τ ; L. Then for any Γ2 ⊇ Γ1 such that Γ2 ` �, Γ2 ` e : τ ; L.

Proof: The only non-trivial case is when Γ2 contains more instances of name bindings, i.e., ρ<−’s, than
Γ1, since type environment well-formedness conditions may fail with more names. But it is easy to see that
whenever a new name is introduced in the environment, we may choose a name that has not appeared in the
environment (see (Gen’ed) and (Open •)). By Lemma 1, the choices do not affect the conclusions. Hence
the lemma follows. 2

Lemma 4 (Replacement) Suppose Γ1 ` � and Γ1 ` E[e1] : τ ; L. Then there is a sub-derivation Γ1 ` e1 :
τ1; L1 for some τ1, L1. Furthermore, for any e2 and Γ2 ⊇ Γ1 such that Γ2 ` � and Γ2 ` e2 : τ1; L1, we have
Γ2 ` E[e2] : τ ; L.

Proof: This follows from the usual replacement argument and Lemma 3. 2

Lemma 5 Suppose Γ ` R[e] : τ ; L. Let Γ ` e : τ1; L1 be a sub-derivation. Then Γ ` L1 < L.
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Proof: By induction on the type checking derivation. 2

Lemma 6 If Γ ` v : τ ; L then Γ ` v : τ ; ∅.
Proof: By induction on the type checking derivation. 2

We are now prepared prove our main theorem, re-stated here.

Theorem 3 (Subject Reduction) If Γ ` (S, K,~e) and (S, K,~e) −→ (S ′, K ′, ~e′), then there is Γ′ such that
Γ′ ` (S′, K ′, ~e).

Proof: Firstly, we show that for each ei ∈ ~e, if ei is not a value then (S, K,~e) is of the form matching
the left hand side of −→ in one of the reduction rules from Figure 7 with ei as the evaluating thread. To
see this, first note that for [Proj], [App], [Ref], [Assign], [Deref], [Open], [Limit], [Grant], [NewKey], and
[Associate], the redex indeed does appear in some context of the form E[access A in R[ ]] since otherwise
it must appear in some context of the form R[ ] but then by Lemma 5 Γ 6` ei : −; ∅. Secondly, for [Assign]
(ref. [Deref]), the location assigned (ref. dereferenced) must be in the store because otherwise it violates
Definition 2 (3).

Therefore it suffices to show the statement in the theorem holds for each forms matching (S, K,~e).

[Tuple] Suppose
Γ ` (S, K, 〈. . . , E[〈v1, v2, . . . , vn〉], . . .〉)

So we have Γ ` E[〈v1, v2, . . . , vn〉] : −; ∅. By inspection of the type checking rules, there must be a sub-
derivation with (Tuple) as the last rule.

For 1 ≤ i ≤ n, Γ ` vi : τi; Li

Γ ` 〈v1, v2, . . . , vn〉 : ⊥ 〈τ1, τ2, . . . , τn〉;
⋃

1≤i≤n Li

We have
(S, K, 〈. . . , E[〈v1, v2, . . . , vn〉], . . .〉) −→

(S, K, 〈. . . , E[bot 〈v1, v2, . . . , vn〉], . . .〉)
Let Γ′ = Γ. We have by (Tuple’ed)

Γ′ ` bot : ⊥
For 1 ≤ i ≤ n, Γ′ ` vi : τi; ∅

Γ′ ` bot 〈v1, v2, . . . , vn〉 : ⊥ 〈τ1, τ2, . . . , τn〉; ∅
Then by Lemma 1 and (Subsumption),

Γ′ ` bot 〈v1, v2, . . . , vn〉 : ⊥ 〈τ1, τ2, . . . , τn〉;
⋃

1≤i≤n

Li

Hence by Lemma 4, it follows that

Γ′ ` (S, K, 〈. . . , E[bot 〈v1, v2, . . . , vn〉], . . .〉)

[Proj] Suppose
Γ ` (S, K, 〈. . . , E[access A in R[(k 〈. . . , vi, . . .〉).i]], . . .〉)

So we have Γ ` E[access A in R[(k 〈. . . , vi, . . .〉).i]] : −; ∅. By inspection of the type checking rules, there
must be a sub-derivation with (Proj) as the last rule.

Γ ` k 〈. . . , vi, . . .〉 : ρ 〈τ1, τ2, . . . , τn〉; L
Γ ` (k 〈. . . , vi, . . .〉).i : τi; L ∪ {ρ}

We first show that

(S, K, 〈. . . , E[access A in R[(k 〈. . . , vi, . . .〉).i]], . . .〉)
−→ (S, K, 〈. . . , E[access A in R[vi]], . . .〉)
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It suffices to show that k ∈ CloseK(A). By Lemma 5 and (InAccess), it must be the case that

Γ ` {ρ} < {ρ | Γ ` k : ρ for some k ∈ A}
By inspection of the type checking rules, we see that there must be ρ′ such that

Γ ` k : ρ′ Γ ` ρ′ < ρ

So by Definition 2 (7), k ∈ CloseK(A).
Now let Γ′ = Γ. We next show that

Γ′ ` (S, K, 〈. . . , E[access A in R[vi]], . . .〉)
By inspection of the type checking rules, we see that the sub-derivation of the premise must end with
(Tuple’ed) followed by zero or more (Subsumption)’s. So

Γ′ ` vi : τ ′i ; ∅ Γ′ ` τ ′i < τi Γ′ ` ∅ < L ∪ {ρ}
So by Lemma 1 and (Subsumption)

Γ′ ` vi : τi; L ∪ {ρ}
So by Lemma 4 it follows that,

Γ′ ` (S, K, 〈. . . , E[access A in R[vi]], . . .〉)

[App] Suppose
Γ ` (S, K, 〈. . . , E[access A in R[(k λx:•.e) v]], . . .〉)

So we have Γ ` E[access A in R[(k λx :•.e) v]] : −; ∅. By inspection of the type checking rules, there must
be a sub-derivation with (App) as the last rule.

Γ ` k λx:•.e : ρ (τ1
L1−→ τ2); L2 Γ ` v : τ1; L3

Γ ` k λx:•.e v : τ2; L1 ∪ L2 ∪ L3 ∪ {ρ}
We first show that

(S, K, 〈. . . , E[access A in R[(k λx:•.e) v]], . . .〉) −→
(S, K, 〈. . . , E[access A in R[e[v/x]]], . . .〉)

It suffices to show that k ∈ CloseK(A). By Lemma 5 and (InAccess), it must be the case that

Γ ` {ρ} < {ρ | Γ ` k : ρ for some k ∈ A}
By inspection of the type checking rules, we see that there must be ρ′ such that

Γ ` k : ρ′ Γ ` ρ′ < ρ

So by Definition 2 (7), k ∈ CloseK(A).
Now let Γ′ = Γ. We next show that

Γ′ ` (S, K, 〈. . . , E[access A in R[e[v/x]]], . . .〉)
By inspection of the type checking rules, we see that the sub-derivation of the first premise must end with
(Fun’ed) followed by zero or more (Subsumption)’s. So

Γ′, x:τ ′1 ` e : τ ′2; L′1 Γ′, x:τ ′1 ` �
Γ′ ` τ1 < τ ′1 Γ′ ` τ ′2 < τ ′2
Γ′ ` L′

1 < L1 Γ′ ` ∅ < L2

So by (Subsumption),
Γ′ ` v : τ ′1; L3

and by Lemma 2 (1), Lemma 1, and (Subsumption),

Γ′ ` e[v/x] : τ2; L1 ∪ L2 ∪ L3

So by Lemma 4 it follows that

Γ′ ` (S, K, 〈. . . , E[access A in R[e[v/x]]], . . .〉)
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[Ref] Suppose
Γ ` (S, K, 〈. . . , E[ref v], . . .〉)

So we have Γ ` E[ref v] : −; ∅. By inspection of the type checking rules, there must be a sub-derivation
with (Ref) as the last rule.

Γ ` v : τ ; L
Γ ` ref v : ⊥ ref (τ); L

We have
(S, K, 〈. . . , E[ref v], . . .〉) −→

(S ∪ {` 7→ v}, K, 〈. . . , E[bot loc (`)], . . .〉)
for ` /∈ dom(S). Let Γ′ = Γ, `:τ . We have by (Loc)

Γ′ ` bot : ⊥ Γ′ ` ` : τ

Γ′ ` bot loc (`) : ⊥ ref (τ); ∅
Then by Lemma 1 and (Subsumption),

Γ′ ` bot loc (`) : ⊥ ref (τ); L

Now, we have Γ′ ` ` : τ , (S ∪{` 7→ v})(`) = v, and Γ ` v : τ ;−. Hence by Lemma 3 and Lemma 4, it follows
that

Γ′ ` (S ∪ {` 7→ v}, K, 〈. . . , E[bot loc (`)], . . .〉)

[Assign] Suppose

Γ ` (S ∪ {` 7→ −}, K, 〈. . . , E[access A in R[(k loc (`)) := v]], . . .〉)
So we have Γ ` E[access A in R[(k loc (`)) := v]] : −; ∅. By inspection of the type checking rules, there
must be a sub-derivation with (Assign) as the last rule.

Γ ` k loc (`) : ρ ref (τ); L1 Γ ` v : τ ; L2

Γ ` (k loc (`)) := v : τ ; L1 ∪ L2 ∪ {ρ}
We first show that

(S ∪ {` 7→ −}, K, 〈. . . , E[access A in R[(k loc (`)) := v]], . . .〉)
−→ (S ∪ {` 7→ v}, K, 〈. . . , E[access A in R[v]], . . .〉)

It suffices to show that k ∈ CloseK(A). By Lemma 5 and (InAccess), it must be the case that

Γ ` {ρ} < {ρ | Γ ` k : ρ for some k ∈ A}
By inspection of the type checking rules, we see that there must be ρ′ such that

Γ ` k : ρ′ Γ ` ρ′ < ρ

So by Definition 2 (7), k ∈ CloseK(A).
Now let Γ′ = Γ. We next show that

Γ′ ` (S ∪ {` 7→ v}, K, 〈. . . , E[access A in R[v]], . . .〉)
By inspection of the type checking rules, we see that the sub-derivation of the first premise must end with
(Loc) followed by zero or more (Subsumption)’s. So

Γ′ ` ` : τ

(Subtyping is invariant under pointer types.) Hence Definition 2 (6) is satisfied. Also by Lemma 1 and
(Subsumption)

Γ ` v : τ ; L1 ∪ L2 ∪ {ρ}
Hence by Lemma 4, it follows that

Γ′ ` (S ∪ {` 7→ v}, K, 〈. . . , E[access A in R[v]], . . .〉)
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[Deref] Suppose

Γ ` (S ∪ {` 7→ v}, K, 〈. . . , E[access A in R[! k loc (`)]], . . .〉)
So we have Γ ` E[access A in R[! k loc (`)]] : −; ∅. By inspection of the type checking rules, there must
be a sub-derivation with (Deref) as the last rule.

Γ ` k loc (`) : ρ ref (τ); L
Γ ` ! k loc (`) : τ ; L ∪ {ρ}

We first show that

(S ∪ {` 7→ v}, K, 〈. . . , E[access A in R[! k loc (`)]], . . .〉)
−→ (S ∪ {` 7→ v}, K, 〈. . . , E[access A in R[v]], . . .〉)

It suffices to show that k ∈ CloseK(A). By Lemma 5 and (InAccess), it must be the case that

Γ ` {ρ} < {ρ | Γ ` k : ρ for some k ∈ A}
By inspection of the type checking rules, we see that there must be ρ′ such that

Γ ` k : ρ′ Γ ` ρ′ < ρ

So by Definition 2 (7), k ∈ CloseK(A).
Now let Γ′ = Γ. We next show that

Γ′ ` (S ∪ {` 7→ v}, K, 〈. . . , E[access A in R[v]], . . .〉)
By inspection of the type checking rules, we see that the sub-derivation of the premise must end with (Loc)
followed by zero or more (Subsumption)’s. So

Γ′ ` ` : τ

(Subtyping is invariant under pointer types.) Hence by Definition 2 (6) and Lemma 6, it must be the case
that

Γ ` v : τ ; ∅
So by Lemma 1 and (Subsumption)

Γ ` v : τ ; L ∪ {ρ}
Hence by Lemma 4, it follows that

Γ′ ` (S ∪ {` 7→ v}, K, 〈. . . , E[access A in R[v]], . . .〉)

[Spawn] Suppose
Γ ` (S, K, 〈. . . , E[spawn e], . . .〉)

So we have Γ ` E[spawn e] : −; ∅. By inspection of the type checking rules, there must be a sub-derivation
with (Spawn) as the last rule.

Γ ` e : τ ; ∅
Γ ` spawn e : ⊥ int; ∅

We have
(S, K, 〈. . . , E[spawn e], . . .〉) −→

(S, K, 〈. . . , E[bot 0], . . . , access ∅ in e〉)
Let Γ′ = Γ. We have by (Int’ed)

Γ′ ` bot : ⊥
Γ′ ` bot 0 : ⊥ int; ∅

Also by (InAccess),
Γ′ ` e : τ ; ∅ Γ′ ` ∅ < ∅
Γ′ ` access ∅ in e : τ ; ∅

Hence by Lemma 4, it follows that

Γ′ ` (S, K, 〈. . . , E[bot 0], . . . , access ∅ in e〉)
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[Inst] Suppose
Γ ` (S, K, 〈. . . , E[access A in R[(k Λ • .v) [•]]], . . .〉)

So we have Γ ` E[access A in R[(k Λ • .v) [•]]] : −; ∅. By inspection of the type checking rules, there must
be a sub-derivation with (Inst •) as the last rule.

Γ ` k Λ • .v : ρ1 (∀ρ2<ρ3.τ); L Γ ` ρ4 < ρ3

Γ ` (k Λ • .v) [•] : τ [ρ4/ρ2]; L ∪ {ρ1}
We first show that

(S, K, 〈. . . , E[access A in R[(k Λ • .v) [•]]], . . .〉)
−→ (S, K, 〈. . . , E[access A in R[v]], . . .〉)

It suffices to show that k ∈ CloseK(A). By Lemma 5 and (InAccess), it must be the case that

Γ ` {ρ} < {ρ | Γ ` k : ρ for some k ∈ A}
By inspection of the type checking rules, we see that there must be ρ′ such that

Γ ` k : ρ′ Γ ` ρ′ < ρ

So by Definition 2 (7), k ∈ CloseK(A).
Now let Γ′ = Γ. We next show that

Γ′ ` (S, K, 〈. . . , E[access A in R[v]], . . .〉)
By inspection of the type checking rules, we see that the sub-derivation of the first premise must end with
(Gen’ed) followed by zero or more (Subsumption)’s. So

Γ′, ρ2<ρ′3 ` v : τ ′; ∅ Γ′, ρ2<ρ′3 ` �
Γ′ ` ρ3 < ρ′3 Γ′ ` τ ′ < τ

Γ′ ` ∅ < L

So we have
Γ′ ` ρ4 < ρ′3

and by Lemma 2 (2), Lemma 1, and (Subsumption),

Γ′ ` v : τ [ρ4/ρ2]; L ∪ {ρ1}
So by Lemma 4 it follows that

Γ′ ` (S, K, 〈. . . , E[access A in R[v]], . . .〉)

[Pack] Suppose
Γ ` (S, K, 〈. . . , E[pack v as •], . . .〉)

So we have Γ ` E[pack v as •] : −; ∅. By inspection of the type checking rules, there must be a sub-derivation
with (Pack •) as the last rule.

Γ ` v : τ [ρ3/ρ1]; L Γ ` ρ3 < ρ2

Γ ` pack v as • : ⊥ (∃ρ1<ρ2.τ); L
We have

(S, K, 〈. . . , E[pack v as •], . . .〉) −→
(S, K, 〈. . . , E[bot pack v as •], . . .〉)

Let Γ′ = Γ. We have by (Packed)

Γ′ ` bot : ⊥ Γ′ ` v : τ [ρ3/ρ1]; ∅ Γ′ ` ρ3 < ρ2

Γ′ ` bot pack v as • : ⊥ (∃ρ1<ρ2.τ); ∅
Then by Lemma 1 and (Subsumption),

Γ′ ` bot pack v as • : ⊥ (∃ρ1<ρ2.τ); L

Hence by Lemma 4, it follows that

Γ′ ` (S, K, 〈. . . , E[bot pack v as •], . . .〉)
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[Open] Suppose
Γ ` (S, K, 〈. . . , E[access A in R[

open x = (k pack v as •) as • in e]], . . .〉)
So we have

Γ ` E[access A in R[open x = (k pack v as •) as • in e]] : −; ∅
By inspection of the type checking rules, there must be a sub-derivation with (Open •) as the last rule.

Γ ` (k pack v as •) : ρ1 (∃ρ2<ρ3.τ1); L1

Γ, ρ2<ρ3, x:τ1 ` e : τ2; L2

Γ ` τ2 Γ ` L2 Γ, ρ2<ρ3, x:τ1 ` �
Γ ` open x = (k pack v as •) as • in e : τ2; L1 ∪ L2 ∪ {ρ1}

We first show that

(S, K, 〈. . . , E[access A in R[
open x = (k pack v as •) as • in e]], . . .〉)

−→ (S, K, 〈. . . , E[access A in R[e[v/x]]], . . .〉)

It suffices to show that k ∈ CloseK(A). By Lemma 5 and (InAccess), it must be the case that

Γ ` {ρ1} < {ρ | Γ ` k : ρ for some k ∈ A}

By inspection of the type checking rules, we see that there must be ρ′1 such that

Γ ` k : ρ′1 Γ ` ρ′1 < ρ1

So by Definition 2 (7), k ∈ CloseK(A).
Now let Γ′ = Γ. We next show that

Γ′ ` (S, K, 〈. . . , E[access A in R[e[v/x]]], . . .〉)

By inspection of the type checking rules, we see that the sub-derivation of the first premise must end with
(Packed) followed by zero or more (Subsumption)’s. That is, for some ρ4

Γ′ ` v : τ ′1[ρ4/ρ2]; ∅
Γ′ ` ρ4 < ρ′3 Γ′ ` ρ′3 < ρ3

Γ′, ρ2<ρ′3 ` τ ′1 < τ1

So we have by Lemma 2 (3)
Γ′ ` τ ′1[ρ4/ρ2] < τ1[ρ4/ρ2]

so
Γ′ ` v : τ1[ρ4/ρ2]; ∅

Furthermore, because Γ′ ` τ2, Γ′ ` L2 and Γ′ ` ρ4 < ρ2, we have by Lemma 2 (4)

Γ′, x:τ1[ρ4/ρ2] ` e : τ2; L2

Hence by Lemma 2 (1)
Γ′ ` e[v/x] : τ2; L2

Finally by Lemma 4 it follows that

Γ′ ` (S, K, 〈. . . , E[access A in R[e[v/x]]], . . .〉)
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[Limit] Suppose
Γ ` (S, K, 〈. . . , E[access A in R[

limit k′1 lkey (k1), . . . , k′n lkey (kn) in e]], . . .〉)
So we have

Γ ` E[access A inR[
limit k′1 lkey (k1), . . . , k′n lkey (kn) in e]] : −; ∅

By inspection of the type checking rules, there must be a sub-derivation with (Limit) as the last rule.

For 1 ≤ i ≤ n, Γ ` k ′i lkey (ki) : ρ′i lkey (ρi); Li

Γ ` e : τ ; L Γ ` L < {ρ1, ρ2, . . . , ρn}
Γ ` limit k′1 lkey (k1), . . . , k′n lkey (kn) in e :

τ ; L ∪⋃
1≤i≤n−1(Li ∪ {ρ′i})

Let B = CloseK(A) ∩ CloseK({k1, k2, . . . , kn}). We first show that

(S, K, 〈. . . , E[access A in R[
limit k′1 lkey (k1), . . . , k′n lkey (kn) in e]], . . .〉) −→
(S, K, 〈. . . , E[access A in R[access B in e]], . . .〉)

It suffices to show that for 1 ≤ i ≤ n, k ′i ∈ CloseK(A). By Lemma 5 and (InAccess), it must be the case
that

Γ ` {ρ′i} < {ρ | Γ ` k : ρ for some k ∈ A}
By inspection of the type checking rules, we see that there must be ρ′′i such that

Γ ` k′i : ρ′′i Γ ` ρ′′i < ρ′i

So by Definition 2 (7), k′i ∈ CloseK(A).
Now let Γ′ = Γ. We next show that

Γ′ ` (S, K, 〈. . . , E[access A in R[access B in e]], . . .〉)
Firstly, by Lemma 5

Γ′ ` L < {ρ | Γ ` k : ρ for some k ∈ A}
Hence by Γ′ ` L < {ρ1, ρ2, . . . , ρn} and Definition 2 (7), it follows that

Γ′ ` L < {ρ | Γ ` k : ρ for some k ∈ B}
(Since subtyping is invariant for limit key types.) Then by Lemma 1 and (Subsumption),

Γ′ ` access B in e : τ ; L ∪
⋃

1≤i≤n−1

Li ∪ {ρ′i}

Hence by Lemma 4, it follows that

Γ′ ` (S, K, 〈. . . , E[access A in R[access B in e]], . . .〉)

[Grant] Suppose

Γ ` (S, K, 〈. . . , E[access A in R[grant k1 gkey (k2) in e]], . . .〉)
So we have Γ ` E[access A in R[grant k1 gkey (k2) in e]] : −; ∅. By inspection of the type checking rules,
there must be a sub-derivation with (Grant) as the last rule.

Γ ` k1 gkey (k2) : ρ1 gkey (ρ2); L1

Γ ` e : τ ; L2 ∪ {ρ2}
Γ ` grant k1 gkey (k2) in e : τ ; L1 ∪ L2 ∪ {ρ1}
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We first show that

(S, K, 〈. . . , E[access A in R[grant k1 gkey (k2) in e]], . . .〉) −→
(S, K, 〈. . . , E[access A in R[access A ∪ {k2} in e]], . . .〉)

It suffices to show that k1 ∈ CloseK(A). By Lemma 5 and (InAccess), it must be the case that

Γ ` {ρ1} < {ρ | Γ ` k : ρ for some k ∈ A}
By inspection of the type checking rules, we see that there must be ρ′ such that

Γ ` k1 : ρ′ Γ ` ρ′ < ρ1

So by Definition 2 (7), k1 ∈ CloseK(A).
Now let Γ′ = Γ′. We next show that

Γ′ ` (S, K, 〈. . . , E[access A in R[access A ∪ {k2} in e]], . . .〉)

By Lemma 5
Γ′ ` L < {ρ | Γ ` k : ρ for some k ∈ A}

Therefore by Definition 2 (7), it follows that

Γ′ ` L ∪ {ρ2} < {ρ | Γ ` k : ρ for some k ∈ A ∪ {k2}}
(Since subtyping is invariant for grant key types.) Then by Lemma 1 and (Subsumption),

Γ′ ` access A ∪ {k2} in e : τ ; L1 ∪ L2 ∪ {ρ2}
Hence by Lemma 4, it follows that

Γ′ ` (S, K, 〈. . . , E[access A in R[access A ∪ {k2} in e]], . . .〉)

[NewKey] Suppose

Γ ` (S, K, 〈. . . , E[access A in R[newkey<k1 lkey (k2)]], . . .〉)

So we have Γ ` E[access A in R[newkey<k1 lkey (k2)]] : −; ∅. By inspection of the type checking rules,
there must be a sub-derivation with (NewKey) as the last rule.

Γ ` k1 lkey (k2) : ρ1 lkey (ρ2); L
Γ ` newkey<k1 lkey (k2) :

⊥ (∃ρ3 < ρ2.⊥ 〈⊥ lkey (ρ3),⊥ gkey (ρ3)〉); L ∪ {ρ1}
We first show that

(S, K, 〈. . . , E[access A in R[newkey<k1 lkey (k2)]], . . .〉) −→
(S, K ∪ {k3 7→ k2}, 〈. . . , E[access A in R[
bot pack bot 〈bot lkey (k3), bot gkey (k3)〉 as •]], . . .〉)

for some k3 /∈ dom(K) ∪ {bot, top}. It suffices to show that k1 ∈ CloseK(A). By Lemma 5 and (InAccess),
it must be the case that

Γ ` {ρ1} < {ρ | Γ ` k : ρ for some k ∈ A}
By inspection of the type checking rules, we see that there must be ρ′ such that

Γ ` k1 : ρ′ Γ ` ρ′ < ρ1

So by Definition 2 (7), k1 ∈ CloseK(A).
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Pick ρ3 /∈ dom(Γ) ∪ {⊥,>}. Let Γ′ = Γ, ρ3<ρ2, k :ρ3. We next show that

Γ′ ` (S, K ∪ {k3 7→ k2}, 〈. . . , E[access A in R[
bot pack bot 〈bot lkey (k3), bot gkey (k3)〉 as •]], . . .〉)

By (Packed) and (Tuple’ed), we have

Γ′ ` bot pack bot 〈bot lkey (k3), bot gkey (k3)〉 as • :
⊥ (∃ρ3 < ρ2.⊥ 〈⊥ lkey (ρ2),⊥ gkey (ρ2)〉); ∅

Hence by Lemma 1 and (Subsumption),

Γ′ ` bot pack bot 〈bot lkey (k3), bot gkey (k3)〉 as • :
⊥ (∃ρ3 < ρ2.⊥ 〈⊥ lkey (ρ2),⊥ gkey (ρ2)〉); L ∪ {ρ1}

Also, it is easy to see that Definition 2 (4) and (7) is satisfied. Hence

Γ′ ` (S, K ∪ {k3 7→ k2}, 〈. . . , E[access A in R[
bot pack bot 〈bot lkey (k3), bot gkey (k3)〉 as •]], . . .〉)

[Associate] Suppose
Γ ` (S, K, 〈. . . , E[access A in R[

associate k1 r with k2 lkey (k3)]], . . .〉)
So we have

Γ ` E[access A in R[associate k1 r with k2 lkey (k3)]] : −; ∅
By inspection of the type checking rules, there must be a sub-derivation with (Associate) as the last rule.

Γ ` k1 r : ρ1 σ; L1 Γ ` k2 lkey (k3) : ρ2 lkey (ρ3); L2

Γ ` associate k1 r with k2 lkey (k3) : ρ3 σ; L1 ∪ L2 ∪ {ρ1, ρ2}
We first show that

(S, K, 〈. . . , E[access A in R[
associate k1 r with k2 lkey (k3)]], . . .〉) −→

(S, K, 〈. . . , E[access A in R[k3 r]], . . .〉)
It suffices to show that k1 ∈ CloseK(A) and k2 ∈ CloseK(A). By Lemma 5 and (InAccess), it must be the
case that

Γ ` {ρ1} < {ρ | Γ ` k : ρ for some k ∈ A}
By inspection of the type checking rules, we see that there must be ρ′ such that

Γ ` k1 : ρ′ Γ ` ρ′ < ρ1

So by Definition 2 (7), k1 ∈ CloseK(A). The case for k2 is analogous.
Now let Γ′ = Γ. We next show that

Γ′ ` (S, K, 〈. . . , E[access A in R[k3 r]], . . .〉)
The cases split between (Int’ed), (Loc), (Lkey), (Gkey), (Tuple’ed), (Fun’ed), (Gen’ed), and (Packed) de-
pending on σ, but in each case we have

Γ′ ` k3 r : ρ3 σ; ∅
(Since subtyping is invariant for limit key types.) Then by Lemma 1 and (Subsumption),

Γ′ ` k3 r : ρ3 σ; L1 ∪ L2 ∪ {ρ1, ρ2}
Hence by Lemma 4, it follows that

Γ′ ` (S, K, 〈. . . , E[access A in R[k3 r]], . . .〉)
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[InAccess] Suppose
Γ ` (S, K, 〈. . . , E[access A in v], . . .〉)

So we have Γ ` E[access A in v] : −; ∅. By inspection of the type checking rules, there must be a
sub-derivation with (InAccess) as the last rule.

Γ ` v : τ ; L Γ ` L < {ρ | Γ ` k : ρ for some k ∈ A}
Γ ` access A in v : τ ; ∅

We have
(S, K, 〈. . . , E[access A in v], . . .〉) −→ (S, K, 〈. . . , E[v], . . .〉)

Let Γ′ = Γ. Then by Lemma 6,
Γ ` v : τ ; ∅

Hence by Lemma 4, it follows that
Γ′ ` (S, K, 〈. . . , E[v], . . .〉)

This concludes the proof of Theorem 3. 2

Let e be a source program. We say that e gets stuck if it cannot be translated to the target language or
if its evaluation reaches a state of the form (S, K, 〈. . . , err, . . .〉).
Corollary 1 (Type Soundness) If the program e is well-typed then it does not get stuck.

Proof: Recall that each source program e is well-typed iff ∅ ` e : −; ∅. The corollary follows from Theorem 2
and Theorem 3 since the initial state (∅, ∅, 〈e〉) is well-typed under the type environment ∅. 2 The
corollary implies that a well-typed program does not violate its access control policy.
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