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Abstract node needs to know which of its neighbors have failed. Again

accurate and timely detection of node failures is critical.
One of the key reasons overlay networks are seen as an ex-

cellent platform for large scale distributed systems is their re- Failure detection algorithms can be broadly classified as ei-
silience in the presence of node failures. This resilience rely ther active or passive. In the active approach, a node peri-
on accurate and timely detection of node failures. Despite theodically sends keep-alive messages. Data packets sent be-
prevalent use of keep-alive algorithms in overlay networks to tween nodes can be used to replace explicit keep-alive mes-
detect node failures, their tradeoffs and the circumstances inSages as an optimization. A passive approach only uses data
which they might best be suited is not well understood. In Packets to convey liveness information. When the routing ta-
this paper, we study how the design of various keep-alive ble is symmetrical, a data packet from a node to its neigh-
approaches affect their performance in node failure detec-bor serves as ahm alive message and the neighbor learns
tion time, probability of false positive, control overhead, and that the node is still alive. However, when the routing ta-
packet loss rate via analysis, simulation, and implementa-b|e is not symmetrical, explicit acknowledgement is needed.
tion. We find that among the class of keep-alive algorithms This is achieved by piggybacking probes on data packets,
that share information, the maintenance of backpointer stateand requiring the receiving node to send back an acknowl-
substantially improves detection time and packet loss rate.€dgement [17]. When data traffic is steady, this approach is
The improvement in detection time between baseline and sufficient to keep the routing tables up to date.

sharing algorithms becomes more pronounced as the size offhere are several situations in which the passive approach

neighbor setincreases. Finally, sharing of information allows is inadequate. First, when the data traffic is bursty, there are
a network to tolerate a higher churn rate than the baseline al-quiescent periods in which probes cannot be piggybacked

gorithm. on data packets. Second, in some overlay networks, nodes
) maintain a large number of neighbors either due to aggres-
1 Introduction sive caching or by explicit design [7, 8]. In such networks,

there may not be a steady stream of data traffic from a node
to each of its neighbors. Third, many overlay networks do

not employ per overlay hop acks [1, 15, 18, 21, 20]. In these
situations, the active approach to failure detection is needed.

In the last few years, overlay networks have rapidly evolved
and emerged as a promising platform to deploy new appli-
cations and services in the Internet [1, 2, 10, 15, 18, 20].
One of the reasons overlay networks are seen as an excel
lent platform for large scale distributed systems is their re- Thus the active approach is more general, and the passive ap-
silience in the presence of node failures. This resilience hasproach can be viewed as an optimization of the former when
three aspects: data replication, routing recovery, and staticdata traffic is present. Hence we focus on analyzing the prop-
resilience [6]. Both routing recovery and static resilience re- erties of active keep-alive algorithms in this paper.

lies on accurate and timely detection of node failures. Two broad classes of keep-alive approaches can be identi-

Routing recoverglgorithms are used to repopulate the rout- fied: baseline and sharing. In baseline, each node indepen-
ing table with live nodes when failures are detected. Failures dently makes a decision about the status of its neighbor.
are repaired using cached nodes when available, otherwisdn sharing, nodes share liveness information. Sharing algo-
more expensive recovery mechanisms are used which incurrithms differ in the type of information exchanged between
additional bandwidth. Thus accurate detection of node fail- nodes, and the amount of keep-alive state maintained.

ures is important to minimize unnecessary overh&atic Despite the prevalent use of these keep-alive algorithms in
resiliencemeasures the extent to which an overlay can route gyerjay networks, their tradeoffs and the circumstances in

around failures even before the recovery algorithm repairs \yhich they might best be employed are not well understood.
the routing table. However, to exploit this static resilience, a



In this paper we take a step in this direction by comparing
them across detection time, probability of false positive, con-
trol overhead, and packet loss rate.

Minimizing the detection time of a node failure has two im-

mediate benefits. First, it reduces the vulnerability period
during which packets are forwarded to a failed neighbor and
enables a node to exploit its static resilience by forwarding
packets to an alternate live neighbor. Second, it allows the
network to recover faster from node failures and thus tolerate

higher churn rates. Finally, it reduces routing inconsistencies ®

when failed nodes are removed in a timely manner.

Clearly there is a tradeoff between minimizing the failure
detection time and the probability of false positive (making
a false detection). The problem of false positive is especially
serious when nodes share information.

Another very important cost to consider is the amount of
control overhead expended. Without this cost, the answer
to minimizing detection time is obvious and means that a

node should probe a neighbor as fast as possible under the

constraints of round trip time and burstiness of packet loss.
Thus, we examine how fast each keep-alive algorithm can
detect node failures given a control overhead.

Finally, the packet loss rate metric gives a measure of how re- ¢

liable routing is when packets are lost due to forwarding to a
failed neighbor. This metric directly impacts higher level ap-
plication metrics such as completion time, network through-
put, lost video frames, etc.

By understanding the tradeoffs between keep-alive algo-

rithms, we can answer questions such as: given the amount

of routing state or churn rate, which keep-alive algorithm is

ures, sharing achieves both lower detection time and con-
trol overhead than baseline, with comparable probability
of false positive. In the presence of network failures, keep-
alive algorithms that share information improves detec-
tion time at the cost of increased control overhead be-
cause network failures cause substantial false positives.
If the application-specific cost of slower failure detection
is high, then the increased control overhead may be war-
ranted.

Detection time vs. size of neighbor s€he improvement

in detection time between baseline and sharing becomes
more pronounced as the size of neighbor set increases.
For example as the size of neighbor set increases from 22
to 88, the improvement factor in detection time increases

from 2.7 to 4.5.

Packet loss rate vs. size of neighbor set:baseline, a
lower degree network achieves a lower packet loss rate
because packet loss rate is a function of detection time,
which increases linearly as degree increases if the probe
bandwidth stays constant. In sharing, a fully connected
network like RON minimizes packet loss rate because
packet loss rate is a function of path length, which de-
creases as the degree increases.

Packet loss rate vs. churn rat&or a target packet loss
rate, sharing of information allows a network to operate at
a higher churn rate than baseline. For example, baseline
can meet a target packet loss rate of 96.5% for median
node lifetime of 60 minutes, while sharing can meet the
same target packet loss rate even for median node lifetime
of 24 minutes.

better suited? For example, in a fully connected network, the The rest of the paper is organized as follows. In Section 2,
baseline algorithm must use long probe intervals to preventye describe the network model assumed in this paper. Sec-

nodes from being overwhelmed by probe traffic. This will

tion 3 discuss the design of keep-alive algorithms. We then

result in unacceptably long failure detection times, making consider the performance metrics by which these algorithms

the baseline algorithm unsuitable in such networks.

can be evaluated in Section 4. Section 5 presents experimen-

To illustrate our findings, we evaluate keep-alive algorithms tal results in the context of Chord. We discuss related work
in the context of Chord. Note that the keep-alive algo- in Section 6, and conclude in Section 7.

rithms only assume an overlay network where nodes main-

tain neighbors to route packets. The failure detection time, 2 Network Model

probability of false positive, and control overhead metrics

depend on the size of neighbor set, and the packet loss ratdVe assume an overlay network withnodes, where each
metric depends additionally on the path length that a packetN0deA knowsd other nodes in the network. We call this set
takes in the overlay network. These metrics do not dependthe neighbor sebf A and we denote it byv(A). Node A

on the specifics of neighbor selection or the routing algo- Maintains its neighbor set by sending acknowledgred/ou
rithm. Thus the keep-alive algorithms and analysis of metrics &llve?probes evenyA seconds to each of its neighbors.

can be applied to other overlay networks such as RON [1], Node failure We assume nodes fail in a failstop (non-
CAN [15], Pastry [18], Tapestry [10], etc. We present the Byzantine) manner. As shown in a recent study [19], nodes
design of keep-alive algorithms and analysis of performancein an overlay network such as Gnutella faibr time peri-

metrics independent of Chord in Sections 3 and 4.
Our main findings are:

e Detection time vs. sharingn the absence of network fail-

ods on the order of hours, and come back up as new nodes.
This suggests that the fail stop failure model is a reasonable
assumption. To make the analysis tractable, we assume that

10r equivalently leave the network ungracefully.
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Figure 1:Keep-alive algorithms.
N(F) | neighbor set of" Propagation delay With propagation delay, a node has to
B(F) | nodes which havé” as a neighbor (backpointer set) wait for some time before it can conclude that a probe is
d N(F)], size of neighbor set lost. Specifically, a node considers a probe lost if it does not
b B(F)], size of backpointer set receive an acknowledgement withi, seconds.
P one-way network loss rate ) . .
Drec round-trip network loss rate Probe traffic Another important issue that needs to be ad-
© one-way network unavailability dressed is the presence of nodes with large in-degrees. In
Urte round-trip network unavailability some overlay networks, nodes maintain a large number of
c timeout counter threshold for removing a neighbar neighbors either due to aggressive caching or by explicit de-
k boost counter threshold for removing a neighbor sign [7, 8]. This can result in a network with large in-degree
A probe interval b, where each node can end up with a large number of nodes
Tio probe timeout value probing it. In such networks, a node with a large in-degree
Typ probe interval of “quick” probes may be overwhelmed by the amount of probe traffic it re-
Thoost | Maximum time span of lagt boosts ceives, and the probes themselves may cause self-induced
R aggregate probe rate received at a node losses. Therefore, a node must bound the aggregate rate of
Pspike | Probability of receivingt or more boosts probes received to some reasonable Fate
within the time windowT,,,s: due to network loss ) . )
Pmiss | probability that the time span & boosts Our goals are to examine how keep-alive algorithms can de-
is greater thaf}e.: when F fails tect failures as soon as possible when a node can no longer
communicate with a neighbor, and in general how the design
Table 1:Notations. of various keep-alive approaches affect their performance

in detection time, probability of false positive, control over-

head, and packet loss rate. As noted earlier, minimizing the

detection time reduces routing inconsistencies because failed
nodes join according to a Poisson process and fail accordingnodes are removed faster from routing tables. On the other
to an exponential distribution (as in [12]). hand, more aggressive failure detection can result in a higher
probability of false positive, which in turn increases routing

Packet lossPacket loss introduced by the underlying net- inconsistencies.

work is an important issue that every keep-alive algorithm

must address. We assume that packets can be lost due to twdable 1 gives the definition of notations used in this paper.
types of network problems. First, packets can be lost due to

transient problems such as network congestion. In this case3  Keep-Alive Algorithms

we assume that packet loss is independent across keep-alive

probes. Traces of packet loss collected in [25] show that the In this section, we describe the operation of five different
dependence in packet loss over time is mostly 1 second orkeep-alive algorithms. These algorithms differ in the amount
less. Since keep-alive probes are sent with a large tempo-of information exchanged between nodes, the type of infor-
ral separation, typicall{)(seconds) in practice, the indepen- mation exchanged, and the amount of keep-alive state main-
dence assumption is reasonable. When a probe is lost, a nod&ined. Our goal here is not to model a specific keep-alive
will send several “quick” probes before concluding that a algorithm, but rather to capture the essential aspects of iden-
neighbor has failed. Second, packets can be lost due to netiifiably different approaches towards failure detection.

work link failures which cause network paths to be unavail-

able for an e?(tendgd period of time. When a probe is lost d_ue 3.1 Design Space

to network link failures, we assume that subsequent quick

probes are lost because network link failures typically last We begin with a discussion of the design space of keep-alive
longer than the time it takes to send the quick probes. algorithms and the axes we explore in this paper.



Axes

Baseline

SN+BPTR

SN

SNP+BPTR

SNP

I'm alive vs. are you alive?

Are you alive?

Are you alive?

Are you alive?

Are you alive?

Are you alive?

Node vs. network failures

both

both

both

both

both

Sharing information no yes yes yes yes
Negative vs. positive information - negative negative both both
Keep-alive state | no yes no yes no

Table 2:Design space of keep-alive algorithms.

I'm alive vs. are you alive? There are two different ap-  works that present failure detectors based on the sharing of
proaches to keep-alive messages. In thm alive ap- positive information only [9, 23]. These have a lower prob-
proach [18, 23], a node periodically sends “I'm alive” mes- ability of false positive than ones that share negative infor-
sages to its neighbors. In tlzee you alive?approach [1, 9, mation. However, the failure detection time is the same as
10, 15, 18, 20], a node probes a neighbor with a “are you that of baseline or worse by a factor 6flogn) as ana-
alive?” message, and the neighbor replies with a “yes I'm lyzed in [9]. Thus we do not consider keep-alive algorithms
alive” message. When the routing table is symmetrical, a that only share positive information. Instead we explore al-
“I'm alive” message from a node to its neighbor allows the gorithms which share negative information, and look at how
neighbor to learn that the node is still alive. However, when effective the sharing of positive information on top of nega-
the routing table is not symmetrical, explicit acknowledge- tive information reduces the probability of false positive.

ment from the neighbor is needed. Thus, #he you alive? a0 ajive state vs. no statélodes can maintain additional
approach is more general than it alive approach in that oo ajive state to make the sharing of information most ef-
the routing table does not need to be symmetrical. In ad- to e We examine the efficacy of keep-alive algorithms

dition, the'm alive approach does not detect asymmetries \hich go not maintain additional state, and the improvement
in network connectivity. In particular, if node A can talk to ;. t5ilure detection time for ones which do.

node B while B cannot talk to A, then B will not detect such ) ) ]
pathologies from the “I'm alive” messages and continue to 10 Summarize, we evaluaire you alive?keep-alive al-
send packets to A. For these reasons, we only explorarthe gorithms that differ in the amount and type of information

you alive?approach to keep-alive algorithms in this paper. ~ Shared and the amount of keep-alive state maintained un-
der both node and network failures. Table 2 summarizes how

each of the keep-alive algorithms we evaluate fits in the de-
sign space. Figure 1 illustrates the keep-alive algorithms we
consider next, and Figure 2 presents the pseudocode.

Node vs. network failuresThere are two reasons for which

a node cannot communicate with a neighbor: (1) the neigh-
bor is down, (2) there is a network failure to or from the
neighbor. It is important to detect both types of communica-
tion failures, and a node should stop forwarding packets to
a neighbor with which it cannot communicate with. We de-
ﬁne afalse pOSitiVG’:\S the event in Wh|Ch a neighbor iS aIiVe In th|s a|g0rithm' a node independent'y makes a decision
and paths to and from the neighbor are up but loss of keep-ahout the status of its neighbor. We note that this is the basic
alive probeS indicates otherwise. We evaluate keep-alive al'keep_a|ive a|gorithm employed by Virtua”y a" Over|ay net-
gorithms under both node and network failures. works to maintain liveness information [1, 10, 15, 18, 20].

3.2 Baseline

Sharing VS. not Sharing informationIn order to detect fail- Figure 1(a) shows the messages exchanged between a node
ures, a node has to pI’Obe on its own or share information with A and its neighboF_ NodeA sends a probe td’' everyA

other nodes. It is Straightforward to see that Sharing of live- Seconds’ and waits for an acknow'edgement_ The probe in-
ness information reduces the failure detection time becaUSQerva|A should be chosen such that the aggregate probe rate
Ideally the first node that detects a failure can announce thiSreceived at a node is approximatéﬁ[y If a probe is not ac-

to everyone else. However, the problem of false positive is knowledged withirT}, seconds, it is considered lost. When
compounded when nodes share information about the loss ofy probe loss occurs, the next probe packet is sent> Tio)
probes. We explore these issues by looking at keep-alive al-seconds after the previous probe, up to a maximumdf
gorithms in which nodes independently make deCiSionS, and quick probes (See functiaheck timeoutin Figure 2) Note
ones which share information. that because we limit the rate of probes received at a node,
Negative vs. positive informationNodes can share either sendingc—1 quick probes aff;, seconds apart should not
negative (node is down) or positive (node is up) informa- €xacerbate network congestion if the first probe is lost due
tion. Sharing of negative information reduces the detection to network congestion. As an example,fifis one probe
time of a node failure, while sharing of positive information per second, then probe losses due to network congestion will

reduces the probability of false positive. There are several only add at most—1 additional probes per second received
at a node. A node removes a neighbor from its routing table



// on receiving a probe ack packet p
recv_ack(p)
nbr = getneighbor(p.id);
if (keepalivetype = SNP)
sendposinfaneighbors(nbr);
if (keepalivetype = SNP+BPTR)
sendposinfabackpointers(nbr);
nbr.boostcount = nbr.tacount = O;

/I sending a probe
probe_neighbor(id)
nbr = getneighbor(id);
sendprobe(nbr);
generatenext checktimeoutevent(nbrT;,);

/I checking for probe timeout
checktimeout(id)
nbr = getneighbor(id);
if (existtimeout(nbr))
nbr.tacount++;
if (nbr.to_count> c)
if (keepalivetype = SN)
sendboostneighbors(nbr);
if (keepalivetype = SN+BPTR)
sendboostbackpointers(nbr);
removeneighbor(nbr);
probeinterval =Ty,;
else
probeinterval =A;
generatenext probeneighborevent(nbr, prohénterval);

/I on receiving a boost packet p
recv_boosi(p)
nbr = getneighbor(p.id);
nbr.boostcount++;
if (keepalivetype = SNV SNP)
if (nbr.boostcount> k)
removeneighbor(nbr);
if (keepalivetype = SN+BPTR/ SNP+BPTR)
time_span = time span of lagtboosts;
if (nbr.boostcount> k A time_span< Thoost)
removeneighbor(nbr);

/I on receiving a positive information packet p
recv_posinfo(p)

nbr = getneighbor(p.id);

nbr.boostcount = 0;

Figure 2:The pseudocode executed by a node on sending a probe, receiving a probe ack, receiving a boost, receiving a positive information
packet, and checking for probe timeout.

after ¢ consecutive timeouts. The advantage of the baselineother backpointersg andC).

algorithm is that it is intuitive and easy to implement. Clearly, sharing of negative information reduces the detec-

tion time, and the challenge here is to minimize the probabil-
3.3 Sharing Negative Information with Back- ity of false positive. As the in-degréeof a node increases,

pointer State (SN+BPTR) A has to increas_e proportionally to maintain the aggregate
probe rateR received at the node constant. As a result, the

To reduce the failure detection time in baseline, a node hasprobability of a node receiving or more boosts from other
to probe a neighbor more aggressively. However, this comesbackpointers within a probe interval due to network losses
at the cost of increased control overhead. An alternative is can be significant.

to probe at the same rate, but share negative (node is downjg see this, consider the approximation of the number of
information among nodes who are interested in a particular pgosts received within by a binomial distribution with
neighbor. Thus we now consider the SN+BPTR algorithm, tjg|s. Then the probability of successfully receivibgor
which shares negative information to reduce failure detection yqre boosts i trials increases rapidly dsncreases. To de-
time. In addition, each node also maintains keep-alive statecouple the probability of false positive from the in-degree of
such that information regarding a neighbor reaches the set ofy node, we impose a constraint such that the time span of the
nodes interested in the liveliness of that neighbor. last k boosts must be less than a time wind@,,.,. This
Each node sends a keep-alive probe to each of its neighborsffectively reduces the probability of false positive from re-
every A seconds, and waits for an acknowledgement as in ceivingk or more boosts in a probe intenailto receivingk

the baseline algorithm. Le®(F) be the set of nodes which ~ or more boosts in amallertime windowT4,:. Section 4.2
have a nodé’ in their neighbor sets. We call this set the describes how to configurg,,,; such that a node will re-
backpointersof F, which is precisely the set of nodes in- ceivek or more boosts with low probability when a neighbor
terested in the liveness df. When a node inB(F') expe- is up, but with high probability when a neighbor indeed fails.

information poos) to all other nodes iB(F) (see function  each of its neighbors. One for the number of consecutive
checktimeout in Figure 2). Figure 1(b) shows a network of - 5rope timeouts, and the other for the number of consecu-

four nodes, wheré3(F") consists ofd, B, andC. WhenA  tjye poosts received from other nodes. It removes a neighbor
experiences consecutive timeouts t#), it sends boosts to



from its routing table if it experiencesconsecutive time-  positive.
outs, or receives consecutive boosts within the time win-

) o Figure 1(e) shows a network of four nodes, where ndde
dow To0s: (See functiorrecv_boostin Figure 2).

has neighbor®, C, andF. When nodeA receives a probe
acknowledgement from a neighbérand its boost counter
for F'is nonzero, it sends this positive information to its other
In this algorithm, we examine the effectiveness of sharing neighborsnodesB andC). When nodeB receives the pos-
without maintaining backpointer state. itive information and ha$’ as a neighbor, it resets the boost

3.4 Sharing Negative Information (SN)

Each node sends a keep-alive probe to each of its neighbor§Ounter forf” to zero.

every A seconds, and waits for an acknowledgement as in SNP reduces the probability of false positive in SN without
the baseline algorithm. When a nodeexperienceg con- slowing down failure detection but at a cost of increased con-
secutive timeouts to a neighbBt it sends a boost to its other  trol overhead from the propagation of posinfo messages.
neighborsFigure 1(c) shows a network of four nodes, where

node A has neighbor®3, C, and F. When nodeA experi-

encesc consecutive timeouts tf, it sends boost messages 3.7 Implementation Details of Backpointer

to neighborsB andC'. A node maintains two separate coun- State

ters for each of its neighbors as in SN+BPTR. It removes a

neighbor from its routing table if it experiencesonsecutive A way to maintain the backpointer state in SN+BPTR or
timeouts, or receivels consecutive boosts. SNP+BPTR iranyoverlay network is the following. A node

The advantage of SN is that it does not maintain additional £ keeps the list of all nodes which hageas their neighbor.
state, and the size of an acknowledgementis smaller than that Nis list contains all nodes which have sent keep-alive probes
of SN+BPTR. However, as we show in Section 4, the effec- t0 £’ during the lastA seconds. Upon receiving a keep-alive
tiveness of this algorithm on reducing detection time dependsProbe from noded, F' sends this list tod. A stores this list
on the probability that two neighbors share a third neighbor. and associates it with node.
. . . In networks with large in-degrég it is too costly for a node

3.5 Sharing Negative and Positive Informa-  r 4 inciude its complete set of backpointers in its probe ack

tion with Backpointer State (SNP+BPTR)  packets. Instead” can send subsets of its backpointers to

SNP+BPTR is similar to the SN+BPTR algorithm, with the nodes that probe it, which _forms a virtual graph among the
addition of sharing of positive (node is up) information to backpointers for braadcasting boost messages.

reduce the probability of false positive. An efficient broadcast algorithm in terms of control over-
head is the following. Nodé&' builds a virtual Chord network
from its backpointers, and when one of thef),probesF’,

F can then send bacdk’s log(d) fingers in the virtual Chord
network in the probe acknowledgement packet. WHezx-
periences a probe timeout 19, it can initiate a broadcast
amongF'’s backpointers using the idea presented in [5]. This
broadcast mechanism reaches all other 1 nodes in the

Figure 1(d) shows a network of four nodes, where the back-
pointer set of nodé’ consists of noded, B, andC. WhenA
receives an acknowledgement frdrmand its boost counter
for F'is nonzero, it sends this positive informatigroginfg
to other backpointers and C) (see functiorrecv_ack in
Figure 2). WhenB receives the posinfo, it resets the boost
counter for F' to zero (see functiomecv_posinfo in Fig- . . .
ure 2). Note that whet" is down, posinfo is never propa- backpointers set after exactly- 1 messages itog(d) time
gated because no node will receive acknowledgements fromSteps'
F.WhenF is up but the path between it and a node is down, Although this broadcast algorithm is efficient in terms of
the node will still removeF from its routing table despite  control overhead, it is not robust against network loss. If a
posinfo because posinfo only resets the boost counter andhode does not receive a boost message due to network loss,
not the timeout counter. then the subtree of receivers rooted at this node will not
receive the message. A more robust broadcast algorithm is
for a node to send back random subsets of its backpointers
such that every backpointer will receive a copy of the boost
nessage with high probability [24]. When a backpointer re-
ceives a boost message, it sends the message to the subset of
backpointers it knows about. To suppress duplicates, a boost
3.6 Sharing Negative and Positive Informa- message is sent only if it has not been received by the back-
tion (SNP) pointer before. The cost of a more robust broadcast algo-
rithm is the associated increase in control overhead because
SNP is similar to the SN algorithm, with the addition of shar- a backpointer can now receive more than one copy of a boost
ing of positive information to reduce the probability of false message.

The advantage of SNP+BPTR is that it reduces the num-
ber of false positives caused by boosts in SN+BPTR without
slowing down failure detection since posinfo is not propa-

increased control overhead due to posinfo messages.



Detection Probability of Control | of theb backpointers of that has nodel as a neighbor. Let
time false positive overhead | ¢ = |B(F; A)| + 1. Let U; be the time difference between

Baseline 2 Proc 2d | X, and X, for theith backpointer inB(F; A) U A. It will
SN+BPTR ik pm + (X pspine(d)) 2d+boost | take on averagk A/(s + 1) seconds for the first out of s
SN ik pm + (< Pspike(€)) 2d+boost | packpointers to send a keep-alive messageé &dter it fails.
SNP+BPTR prrk Prtt + (X pepine (b)) | 2d+b00St+pos| wiith that, the average time it takes noddo detect that its
SNP otk | P+ (< plpire () | 2d+boost+pos| neighborF has failed is

Table 3:Detection time (commofy, (c—1)+T}, term omitted for 0= s+1 kar 3)

space reasons), probability of false positive, and control overheadThe variance of detection time in SN i@ 1()82(k+21)) The
i i i s+ s+

of various keep-alive algorithms. value ofs depends on how the overlay network is connected.

In Chord withlog, n neighbors, the clustering coefficient is

log — [13], which means that on average- 2. We will see

in Section 5 that the degree of sharing is greater than that
when Chord maintains a list of successors in addition to the

log, n neighbors.

4 Performance Metrics

In this section, we discuss performance metrics and develop
simple analytic models that allow us to compare quantita-
tively the performance of keep-alive algorithms. These re-

sults are summarized in Table 3. SNP+BPTR The average failure detection time here is the
same as that for SN+BPTR as derived in Equation 2.
4.1 Detection Time SNP The average failure detection time here is the same as

As noted in Section 1, minimizing failure detection time thatfor SN as derived in Equation 3.
is fundamental to the resilience of overlay networks. First, - .
it reduces the probability of forwarding to a failed neigh- 4.2 Probability of False Positive

bor. Second, it allows the network to tolerate higher churn As noted earlier, minimizing the detection time reduces rout-
rates. Third, it reduces routing inconsistencies because faileding inconsistencies because failed nodes are removed faster
nodes are removed faster from routing tables. from routing tables. On the other hand, more aggressive fail-

BaselineLet X; be the time when a neighbor fail&, be the ure detection can result in a more false positives (making a
time when a node sends a keep-alive message to that neighfalse detection), which increases inconsistency. In this sec-

bor after it has failed, anti beX2 — Xi. ThenU has a Uni- tion, we examine this tradeoff in keep-alive algorithms.
form distribution on[0, A] with an expected value o /2. We first focus on transient network problems because it is
The average time it takes a node to detect that a neighbor hagonceptually simple; we will generalize the analysis to a net-
failed is then A work with link failures in Section 4.2.2.

0=—+T7 (1) _

2 ) o 4.2.1 Transient Network Losses

wherer = Ty, (¢ — 1) + T},. The variance of detection time
is A?/12. We assume that packet loss is independent across keep-alive

probes. Traces collected in [25] show that packet losses are
mostly correlated across periods of 1 second or less. Since
keep-alive probes are typically separatedgeconds) in
practice, we feel this assumption is reasonable.

SN+BPTR Consider a nodé” with b backpointers. Lel;
be the time difference betweety and X for theith back-
pointer of F'. According to a well known order statistic theo-
rem [4], thekth smallest random variable 6fUniform ran-
dom variables o, A] follows theA 3y, distribution, where BaselineEach node experiencesconsecutive timeouts on
By is the Beta distribution with parametersindb — k + 1. its own before concluding that a neighbor has failed. The
The expected value df;, is k/(b + 1). Thus it will take on ~ probability of false positive is simply

averagek A/(b + 1) seconds for the first out of b back-

pointers to send a keep-alive messageg tfter it fails. With Pip = Pru (4)
that, the average time it takes a node to detect that a neighboSN+BPTR In addition to false positives caused bgonsec-
has failed is A utive timeouts that occur in baseline, false positives might
0= ) k+T (2) also occur under SN+BPTR when a node recelvesmore
(bt 1) boost messages within the time wind@y,s: .

Th_e vquance of detection t'm_e n SN+BPTR( +1)2(b+2) ! Choosing a small€rfy,.s: lowers the probability that a node
WhICh is smaller than the variance of detection time in base- receivest or more boosts when a neighbor is up and incurs
line. a false positive. On the other harifi,,..; should be large
SN Consider a node’ with b backpointers, and a back- enough such that a node has a chance to redeeosts
pointer A. Let B(F; A) = B(F) N B(A), which is a subset ~ when a neighbor actually fails. We now look at this tradeoff.



10° ‘ ‘ Packet IP/UDP | Type | finger | IP+ | Total
.l type hdrs ID | port

Probe 28 1 32 61

10" Ack 28 1 32 61

- Ack (BPTR) 28 1 32| 6b| 61+

7 Boost 28 1 32 61

£10° Posinfo 28 1 32 61

107

Table 4:Sizes of various packet types in bytes.
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14

07 s 10 15 cept that the size of the backpointer &4tF") effectively re-
Thnestieeeend duces fron to s for a backpointert with s = | B(F; A)|+1.

glgure 3! pmiss and pspike as a function of the time window 422 Network Link Failures
boost+
We now consider a more realistic network where packets can

be lost due to link failures in addition to transient problems.

To make the analysis tractable, consider the case where Ioss;hﬁli?aﬁﬁr?: ngagebzr:ﬁﬁti?:gtﬁg Snle\:/:\illzrtl)(ilﬁsﬂ\jvggreeto
H ’ rtt - ’
I(;ri1sl<_s_on network paths from r_10des B(F) to a nodeF' are tpr =1 — (1 — )2,

joint. Note that this constitutes a best case scenario for
SN+BPTR. The probability of false positive for the baseline algorithm
remains the same as in Equation 4. When there are link fail-
ures on a network path between a node and its neighbor, the
node will remove the neighbor afterconsecutive timeouts.
This is considered a true positive because a node should re-
move a neighbor with whom it cannot communicate with.

Let pspike b€ the probability of receiving or more boost
messages withiffy,,s; at a node inB(F'), as derived in
Equation 6. In the event thator more nodes itB(F') expe-
riencec consecutive timeouts t6' within the time window
Thoost, then every other node iB(F') will get k& or more
boost messages, and incur a false positive. Figure 3 showsThe probability of false positive for sharing algorithms in-

thatpspike increases slowly Withlyoos:. creases when link failures are present. Consider the set of
If we only consider the probability of false positive, then network paths between nodes sharing information about a

Troost Should be as small as possible. However, as mentioneandeF and the nodd". If the network paths.completely .
earlier,T},... must be large enough such that a nod&(iF) overlap, then boost messages due to link failures result in
’ 008 " .« .

will receive  boost messages withifi,y,.; with high prob- true positives at nodes receiving the boost messages. How-

ability when F' indeed fails. Letp,,;.. bke/ this probability ever, if the network paths are disjoint, then boost messages

as derived in Equation 8. Figure L?ié:shows thaff: in-1 due to link failures cause false positives at nodes receiving

creasesp,i.. decreases rlapidly ot the boost messages. Thus, we analyze the case in which net-
s ' work paths are disjoint because it constitutes a worst case

Thus, givenA, b, and R, we can find the desired trade- gcenario for sharing and thus provides an upper bound on
off point between probability of false positive and detection the probability of false positive.

time.

POS

) The derivation 0pspik. andpsmke in Equations 6 and 9 still
SN The analysis for SN+BPTR holds here except that the ho|ds in the presence of link failures except for the following.

size of the backpointer sék(I") effectively reduces from  \when a probe is lost due to link failures, subsequent quick
bto s for a backpointerd with s = [B(F; A)| + 1. The de-  probes are lost with high probability because network link
crease in probability of false positive comparedto SN+BPTR fajlures typically last longer than the time it takes to send the

depends on the value ef quick probes. Thus the probability of sending a boost mes-
SNP+BPTR For a false positive to occur, a node B(F') sage when a neighbor is up increas_es fpdppto pF,, +uy,
must receivek or more boost messag@sthout any inter- and the one way network loss rate increases fpdop + u.

POSs

vening posinfo messages. Thus the propagation of positiveEquations 7 and 11 staje,x. andpy ;. under transient
information in SNP+BPTR reduces the probability of receiv- Nnetwork problems and link failures.

ing k or more boost messages within,,s; seconds from

Pspike 1O Do, @S derived in Equation 9. For examplefif 4.3 Control Overhead

=1 probe/second;=3, k =3, p =0.05, andTp,.s: = 10 sec-
onds, them,yir. =8.15 x 1075, andp?", - =5.46 x 1077,
which is about 15 times smaller.

Besides the detection time and probability of false positive,
a very important metric to consider is the amount of control
overhead expended. In this section, we examine the control

SNPThe derivation op? ;. for SNP+BPTR holds here ex-  overhead involved in the keep-alive algorithms. The sizes of



various keep-alive message types in bytes are summarized ini (p¥,, +u,+:) plus the extraneous boost messages sent when
Table 4. a neighboris down. Note that the size of probe acknowledge-

BaselineThe control overhead in baseline consists of probes MeNt packets in SN is the same as that in baseline.

and probe acknowledgements. A node probes its neighborSNP+BPTR In addition to the control overhead in
everyA seconds, thus the average number of keep-alive mes-SN+BPTR, SNP+BPTR also sends positive information
sages sent by a node withneighbors during\ seconds is packets to backpointers when a node receives a probe ac-
2d. knowledgement from a neighbdr with a nonzero boost

SN+BPTR The control overhead for SN+BPTR also in- counter. Note that positive information is never sent when
cludes boost messages sent to backpointers when a node ef€!ghPorz” is down. Thus the number of posinfo messages
counters: consecutive timeouts. If a neighbiis alive, then ~ S€Ntby a ntzde with neighbors duringA seconds is approx-

the number of boost messages sent by a node duisgc- imatelyd (pry, + wrte) (1 — pree — wret) b.

onds regarding” is approximately(p¥,, + u,+;) b, whereb SNP In addition to the control overhead in SN, SNP also
is the size of the backpointer setBf If F'is down, thenthe  sends positive information packets to other neighbors when
boost messages save the receivers of these messages fromnode receives a probe acknowledgement from a neighbor
sending probes themselves to detect the failur®.of with a nonzero boost counter. The number of posinfo mes-

Ideally, the saving of probes is counter-balanced by the boostS29€S sent by a n(]zde withneighbors duringh seconds is
messages. In practice, some of the boost messages may BPPrOXIMatelyl” (pry, + wree) (1= prev — trer)-
extraneous as in the following cases. A neighbBanay fail

shortly after noded starts probing it, and thud is only in 4.4 Packet Loss Rate

the backpointer lists of a few nodes that proleafter A and In this section, we examine the effect of node failure detec-

before " failed. In this case, these few nodes may quickly o time on packet loss rate, which directly impacts higher
detect the failure of” from boost messages of other back- |oye| application metrics such as completion time, network
pointers, and thus do not send boost messagds fnother throughput, lost video frames, etc

case is when the size of the backpointer set maintaindd by o )

is smaller than the actual number of backpointers, so some'Ve assume that nodes fail independently with rateThe
backpointers may not know about Finally, A may not re- up-time of each node is exponentially distributed, and its av-
ceive some of the boost messages from backpointefs of ~€rage valuel/As, is much larger tham. This means the
due to network loss. In these casasyill eventually remove ~ Probability thata node ?i‘s failed attime 9, given the node

F by its own probe losses, but the resulting boost messagedVas up attime, is1—e~° °/ due to the memoryless property

sent byA may be extraneous to other backpointers. of the exponential distribution. This is approximately equal
tod Ay for § Ay < 1. Thus, the probability that a node for-

Svards a packet to a neighbor that has already failéd\g.
Assuming thaié Ay < 1, the packet loss rate on a path of
lengthl is

Thus the number of keep-alive messages sent by a nod
with d neighbors during\ seconds is approximatey +

d (p,]ftt + u,t) b plus the extraneous boost messages sent
when a neighbor is down. Finally, the probe acknowledge-
ment packets are larger under SN+BPTR than that of base- p=1-(1-4 )\f)l ~ 10 s (5)
line due to the inclusion of the list of backpointers.

SNThe control overhead for SN consists of probes and probe )
acknowledgements as in baseline, and also boost messagéd Evaluation
sent to other neighbors when a node encount@&@nsecu-

tive timeouts. If a neighbof’ is alive, then the number of
boost messages sent by a notlduring A seconds regard-

We now present simulation and experimental results evalu-
ating the benefit and cost of the keep-alive algorithms in the
context of Chord [20]. Note that the keep-alive algorithms

ing F' is approximately(p®,, + u,.+;)d, whered is the size of can be aopli o
; rt . pplied to any network, and Chord is simply an ex-
the neighbor set afl. If F'is down, then the saving of probes ample on which we test the algorithms.

from boost messages is less than that in SN+BPTR because
of the following reasons. First, the boost messages are sent té=hord is a distributed protocol that provides a hash function
nodes who may not hav€ as a neighbor. Second, the boost Mapping keys to nodes responsible for them. It assumes a
messages may not reach all nodeﬁ({f‘)_ This means the circular identifier space of intege[’@, 2m). Chord ensures
nodes that are not reached will remavépy their own probe  that the node responsible for a key is found aftitog n)
losses, and thereby generate even more boost messages thA@ps.

are only partially useful. The routing state maintained by each netleonsists of two
Thus the number of keep-alive messages sent by a noddypes of neighbors: successors and fingers. Successors are
with d neighbors during\ seconds is approximatey + the first few nodes that succeedon the identifier circle.

The ith finger is the first node that succeed<y at least



Detection Time Histogram, 2000 node network

2i=1 wherel < i < m. Note that the keep-alive algorithms
do not differentiate on the types of neighbors.

In order to ensure that packets route correctly as the set of
participating nodes changes, Chord must ensure that each
node’s routing state is up to date. It does this usirgiaa
bilize protocol that each node periodically runs evégysec-
onds. In each stabilization round, a node updates its immedi-
ate successor and another node in its routing state.

Fraction of Total Failures Detected

L i b0 oosbe -
0 5 10 15 20 25 30 35 40
Mean Detection Time (seconds)

5.1 Modelnet Experiments

Baseline —x—

SN —=— SNP —a—
SN+BPTR —— SNP+BPTR —e—

We run our experiments on Modelnet [22], an emulation en-

vironment that allows us to run unmodified code in a config- Figure 4:Histogram of node failure detection time fér= 44 and
urable Internet-like environment with reproducible results. median lifetime of 30 minutes

Our testbed is a cluster of 40 IBM xSeries PCs with Dual
1GHz Pentium IIl processors and 1.5GB RAM, connected
by Gigabit Ethernet, and running either Debian GNU/Linux
or FreeBSD. We use Modelnet to impose wide-area delay
and bandwidth restrictions, and the Inet topology genetator
to create a 10,000-node wide-area AS-level network with
500 client nodes connected to random stubs by 1 Mbps links. In Chord, each node maintaikg, » fingers andog, n suc-
To increase the scale of experiments without overburdeningcessors for a total dtlog, n neighbors by default. We in-
the capacity of Modelnet by running more client nodes, each crease the size of neighbor set fr@tog, n to 4log, n to

A is proportional tad. In SN+BPTR and SNP+BPTR, each
node receives, on average, one keep-alive probe &vseg-
onds from itsh backpointers. HencA = bT', andA is pro-
portional tob. For all algorithms, the aggregate probe rate is
approximatelyn /T

client node runs 4 Chord instances, for a total of 2000. 8log, n, which correspond roughly td = 22, 44, and88
for a network of 2000 nodes. The actual number of neigh-
5.1.1 Methodology bors is smaller because the successors and fingers partially
overlap.

In each experiment, we start a Chord network with 2000
nodes by joining a new node to a random bootstrap node For this set of experiments, we hold the median node lifetime
once a second. Then we repeatedly kill and replace a ran-at 30 minutes, and sét=1 second.

dom node, timed by a Poisson process. Detection time Figure 4 shows the histogram of node fail-

Key lookups (packets) are initiated from random sources to Ure detection time in 1-second bins fbe= 44. As expected,
random keyS, timed by a Poisson process at a rate of 200the results for baseline is Uniformly distributed on the inter-
per second. Packets are routed recursively; each intermediat¥al [0,A] + 7. In SN+BPTR and SNP+BPTR, the worst case
node forwards a packet to the next until it reaches the nodedetection time isA + 7 because there are cases in which a
responsible for the key. node will not receive boosts and must rely on its own probe
timeouts to detect a neighbor failure. For instance, a nbde
may start probing a neighbér shortly before or even aftéf

fails, not leaving time foif’s other backpointers to learn of

A and send boosts. Also, boosts may be dropped by the net-
work, or F' may limit the size of the backpointer set it main-
tains and distributes. Figure 4 shows that these cases happen
infrequently, and in fact the mode of detection time in boost-
ing is around 3 seconds. In SN and SNP, the reduction in
detection time is less significant because the effectiveness of
sharing depends on the probability that two neighbors share
a third neighbor.

We model two different kinds of network loss. In the first
loss model {.M;), packet losses are due to transient net-
work problems, and each packet traversing an overlay link is
dropped independently with the fixed probability= 0.4%.

In the second loss model {\1,), we also inject network link
failures according to the model of network path unavailabil-
ity developed in [3]. In this model, we pick a failure duration
from the CDFR(t) = 1 — 19t~%-% for each path, and then
compute the mean time to failure (MTTF) so that the average
unavailability of the path is 1.25%. Path failures are timed by

a Poisson process with mean MTTF.
Figure 5 plots the mean failure detection time versus the

5.1.2 LM, Results: Metrics vs. Size of Neighbor Set size of neighbor sef. The solid lines correspond to experi-

hold th Lk i mental results, and the dotted lines correspond to the values
Here we hold the total keep-alive probe rate constant and e jicted with the equations. The results show that the ana-

study how the performance metrics vary as the size of neigh-y sica| equations are quite accurate. In baseline (recall from
bor setd increases. In baseline, SN, and SNP, each nOdeEquation 1)§ = & 4+ . By substitutingA — dT’, we get
9 - 2 . - 1

sends one keep-alive probe evdfyHenceA = dT’, and 0= % + 7, which increases linearly witli. Figure 5 shows
2http://topology.eecs.umich.edu/inet/ approximately the same detection times as well as the lin-
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Detection Time vs. Size of Neighbor Set, 2000 node network
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Figure 5:Node failure detection time vs. size of neighbor set for
median lifetime of 30 minutes
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Figure 6:Control overhead vs. size of neighbor set for median
lifetime of 30 minutes.

earity ind (note that the x-axis is logarithmic). In SN+BPTR
and SNP+BPTR (recall from Equation 2)= b% k+7.By
substitutingA = bT', we gets = £5 k + 7, which remains
approximately constant as(and thush) increases. Fok =

3, is approximately + 7 seconds. The improvementin de-

Correctness vs. Size of Neighbor Set, 2000 node network
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Figure 7:Percent of packets completed and consistent vs. size of
neighbor set for median lifetime of 30 minutes.

because the probe intervAl increases linearly withl. At

d = 88, the bandwidth consumed is approximately 655 bytes
per second. SN+BPTR consumes more bandwidth because
of boosts due to false positives and inclusion of the back-
pointer list in probe acknowledgemeritsAt d = 88, the
bandwidth consumed is approximately 1190 bytes per sec-
ond, which is 1.8 times higher than in baseline. However, the
detection time in SN+BPTR is 4.5 times lower than in base-
line. In order to achieve the same deduction in detection time
in baseline, a node has to probe 4.5 times faster (see Equa-
tion 1), or consume 4.5 times more bandwidth. This means
that SN+BPTR can achieve both lower detection time and
control overhead than baseline, with comparable probability
of false positive in the absence of network link failures. In
SN, the bandwidth consumed is slightly higher than that of
baseline due to boosts. The control overhead in SNP+BPTR
and SNP are approximately the same as in SN+BPTR and
SN because there are very few false positives which trigger
the propagation of posinfo messages.

tection time between baseline and SN+BPTR becomes morep, ket loss ratePackets can be lost due to the underlying
pronounced as the size of neighbor set increases. In SN andyeqyork or forwarding to failed neighbors. Each keep-alive

SNP, the detection time is less than in baseline, but the reduc
tion is not as significant as in SN+BPTR and SNP+BPTR be-
cause value of in Chord (recall from Equation 3) is smaller
thanb.

Probability of false positive The probability of false posi-

algorithm experiences the same network loss rate, thus any
improvementin the packet loss rate is attributed to faster fail-
ure detection reducing the packets forwarded to failed neigh-
bors. Figure 7 plots the percent of packets completed and
consistent vs. the size of neighbor §eTo measure inconsis-

tive calculated as the ratio of false positives found per minute tency, each packet is simultaneously routed by ten different
to the total number of probes started each minute. The prob-nodes in the network and the results are compared. If there
ability of false positive is approximately the same for all five is a majority among the results, any result not in the ma-
algorithms, at arountix 10~° (the graph is omitted in the in-  jority is considered an inconsistency; if there is no majority,
terest of space). According to Equation 4, the probability of all results are considered inconsistent [17]. In baseline (re-
false positive i x 10~7 whenp = 0.4%, which is close to call from Equations 1 and 5),varies linearly withd, andyp,

the experimental numbers. Thus, when packet losses are dugaries linearly withs. However,p; also varies linearly with

to transient network problems, sharing negative information the hop count, which decreases @sncreases. Thus correct-
reduces detection time without increasing the probability of ness decreases (although not quite linearly) aiscreases,
false positive by much. which means a lower degree network minimizes packet loss

Control overhead Network traffic consists of keep-alive rate. In SN+BPTR and SNP+BPTR, remains approxi-

messages, the stabilization protocol, and lookup traffic. Fig-  3The entire backpointer list is included in these experiments,
ure 6 plots the bandwidth consumed per node. In baseline,sending subsets of backpointers as described in Section 3.7 will
the bandwidth stays approximately constant/ascreases lower the bandwidth.
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Figure 8:Node failure detection time vs. churn rate tbe 44. Figure 9:Contyg).

mately constant ag increases. Thus the percent correct in-
creases ag increases because the hop coltecreases,
which means a fully connected network like RON minimizes
packet loss rate. The behaviors of SN and SNP are some-
where in between baseline and SN+BPTR and SNP+BPTR.
As d increases, correctness increases as in SN+BPTR and
SNP+BPTR. However, asincreases furthermore, the linear
increase in as in baseline starts to dominate, and percent of

Percentage of Packets Completed and Consi

.
60 30 15
Median Node Lifetime (minutes)

packets completed and consistent starts to decrease. Baseline —%— SN —m—

Baseline (analysis) ------ SNP+BPTR

SN+BPTR (analysis) ----@--

5.1.3 LM, Results: Metrics vs. Churn Rate
. Figure 10:Percent of packets completed and consistent vs. churn
Overlay networks are intended to scale to at least hundredsate ford = 44.

of thousands of nodes, where nodes are joining and leaving,
putting the network into a continuous state of “churn”. Here
we observe how well the network can tolerate churn under
each keep-alive algorithm. We use median lifetimes of 60,
30, 15, and 7.5 minutes, which correspond to churn rates of
0.39,0.77, 1.54, and 3.08 leaves per second for our network

of 2000 nodes. The size of neighbor sdj {s 44 in these
experiments. Packet loss rateRecall from Equation 5p; increases lin-

early with the node failure ratg;. Figure 10 shows that the
percent of packets completed and consistent decreases ap-
proximately linearly as the churn rate increases. We see that
sharing of information allows the network to support a higher
churn rate than baseline.

Control overheadFigure 9 plots the bandwidth consumed at

a node as churn rate increases. In sharing algorithms (recall
from Section 4.3), some boosts may be extraneous when a
node fails. As churn increases, bandwidth increases slightly
for SN+BPTR, SNP+BPTR, SN, and SNP as there are more
node failures and thereby more extraneous boosts.

Detection time Figure 8 shows that the detection time in
baseline, SN, and SNP remain approximately constant as
churn increases. This is expected from Equations 1 and 3,
which show that varies withA ands, but does not depend

on the churn rate. However, the detection time in SN+BPTR
and SNP+BPTR increases slowly as churn increases, which5.1.4 LM,
is not expected from Equation 2. This is because when nodes

join and leave quickly, the backpointer list maintained at a So far, we have considered tihé/; loss model with packet
nodeF' may not propagate in time to its set of backpointers loss due to transient network problems. In this section, we
B(F), and the local backpointer lists &(F') may become  evaluate the keep-alive algorithms underihé-, loss model
stale. However, for median lifetimes of 60 to 15 minutes, we with the addition of network link failures. At the moment our
see that the detection time in SN+BPTR and SNP+BPTR is testing code is unable to produce network link failures on
still about 3-4 times lower than that of baseline b= 44, Modelnet, but we are working to extend it in the near future.
and about 2 times lower in SN and SNP. Instead, we simulate a network with= 1000 nodes, mean

Probability of false positive As before, the probability of ~ lfetime =22 minutesd =128, andp = 0.05.

false positive remains approximately constarit at10~° as Results for detection time is similar to that under fh&f;
churnincreases (the graph is omitted in the interest of space)loss model, and we omit it in the interest of space. Fig-
This is expected from Equations 4, 6, and 9, which show that ure 11(a) plots the probability of false positive versus time.
pyp Varies with the network loss rate, but does not depend onp;, in baseline is approximately x 10~2 as analyzed in
the churn rate. Section 4.2.2p, in SN+BPTR and SN is higher because

Results
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Figure 11:(a) Probability of false positive; (b) control overhead; (c) packet loss rai¢ for 28 and mean lifetime of 22 minutes.

boosts due to link failures cause false positives at other nodesThe most closely related work to ours is [14], which derives
receiving the boosts. We see that sharing of positive informa- an analytical model relating packet loss probability to prob-
tion reduceg, in both SN+BPTR and SN. ing interval and node failure rate for tihaselinekeep-alive

Figure 11(b) plots the control overhead due to keep-alive algorithm. A self-tuning mechanism is proposed to increase

messages versus time. The control overhead in SN+BPTR® Probing rate of the baseline keep-alive algorithm in re-

is higher than that in baseline because of the inclusion of SPONSe t0 an increase in the estimated node failure rate. In
backpointers in probe acknowledgments and boosts sent du&°ntrast, we consider a broader range of keep-alive algo-
to false positives. We see that SNP+BPTR and SNP have anthms. Our aim is to compare and contrast a variety of keep-

higher control overhead than SN+BPTR and SN because of&!IV€ approaches that differ in the amount and type of infor-
the sharing of positive information. mation shared between nodes and the amount of keep-alive

. ) state maintained.
Figure 11(c) plots the packet loss rate versus time. The av-

erage loss rates for baseline, SN+BPTR, and SN are 10.59, 1 nere are several_ works wh?ch present failure detectors
7.4%, and 4%, which show that loss rate under SN+BPTR is P@sed on the sharing of positive information only. In 23],

2.3 times lower than that of baseline at a cost of increasedtN€ authors present a gossip-style failure detection service,
control overhead. If the application-specific cost of packet Where nodes gossip to learn about the liveness of other

loss is high, then the increased control overhead may be war-odes. Nodes timeout routing table entries that are not re-
ranted. freshed for a while. Gupta et al. [9] presents a failure detector

in which a nodeA, sends a ping message to a random other

node, B, at the start of each protocol perio@(seconds)).
6 Related Work If an acknowledgement is not received within some time-

out, thenA sends a ping request message tiher random
In traditional routing protocols such as the inter-domain rout- nodes. If one of the nodes receives an acknowledgement
ing protocol BGP [16], failure detection is performed at the from B and forwards the acknowledgement dosuccess-
link layer and the BGP layer. At the link layer, failure de- fully before the protocol period ends, thehwill not con-
tection is done at the hardware level and takes less than 10Glude B to be down. The effect of sending a ping request to
milliseconds [11]. At the BGP layer, a router periodically ¢random nodes is a decrease in the probability of false pos-
sends KEEPALIVE packets to its neighbors, similar to the itive. However, sending more probes in the baseline algo-
baseline algorithm. When a failure such as a fiber cut, inter- rithm achieves a similar reduction in the probability of false
face problem, or router crash occurs, a neighbor router maypositive. In addition, these failure detectors are designed to
be directly notified by link layer hardware, or may detect the detect node failures, but not network failures. For example, if
failure via the loss of consecutive KEEPALIVE packets. Ex- B is up, but there is a path outage betwetandB, thenA
perimental results show that failure detection is done mostly will not detect this failure if some other nodécan commu-
at the hardware level [11]. Thus sharing of liveliness infor- nicate withB and forwards this information td. In contrast,
mation is not necessary here. In addition, it is relatively rare nodeA will still be able to removeB based on losses of its
that a whole router goes down, but more likely that an inter- own probes in the keep-alive algorithms we considered.
face problem or fiber cut has occurred. In these cases, neigh—I

7, 8], Gupta et al. -h d two-hop look
bors of the router should not exchange liveliness information n [7, 8], Gupta et al. propose one-hop an 0-nop '00Up

b th i il b for other BGP . schemes in which they use a hierarchy to disseminate mem-
Sgcg:usle ¢ (.al rouder may st he up ordo er _Sess'ons'bership changes. The authors show that lookup packets are
imilarly, failure detection in the intra-domain routing pro- o e in one or two hops, and a low fraction of packets will

tocol I.S'IS is performed at the link layer and at the routing fail in the first routing attempt. The bandwidth requirement
later via 1S-1S Hello packets.
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on leaders in the hierarchy is in the Mbps range depending [8] GUPTA, A., AND ET AL. One hop lookups for peer-to-peer

on the number of nodes in the system. The promptness in

detecting a node failure is limited by the interval at which
messages are exchanged between the leaders (usually tens of  failure detectors. IProc. PODC 2001

seconds). We believe that the sharing algorithms with back-
pointer state analyzed in this paper may provide a viable al-
ternative for disseminating node failures in such networks for

faster detection time and lower probability of false positive.

7 Conclusion

In this paper we study the performance of a variety of keep-

alive algorithms that differ in the amount of information
shared between nodes, the type of information exchanged, Structured Peer-to-Peer Systems: Routing Distances and Fault

and the amount of keep-alive state maintained. We devel-

overlays. InProc. HotOS 2003
[9] GuPTA, I., AND ET AL. On scalable and efficient distributed

10] HiLDRUM, K., AND ET. AL. Distributed object location in a
dynamic network. IrProc. SPAA 2002

[11] IANNACCONE, G.,AND ET AL. Analysis of link failures in
an ip backbone. IProc. IMC 2002

[12] LIBEN-NOWELL, D., BALAKRISHNAN, H., AND KARGER,
D. Analysis of the evolution of peer-to-peer systemsPtac.
PODC 2002

[13] LoGuiNoy, D., AND ET AL. Graph-Theoretic Analysis of

Resilience. IrfProc. SIGCOMM 2003

oped analytical models, simulation, and implementation t0 [14] MaHAJAN, R., CASTRO, M., AND ROWSTRON, A. Control-

study the performance of these algorithms using the met-

rics of node failure detection time, probability of false posi-
tive, control overhead, and packet loss rate. Our results indi- (151 Rarnasamy, S., AND ET. AL. A scalable content-
cate that in the absence of network failures, the maintenance = zdqdressable network. Proc. SIGCOMM 2001

of backpointer state achieves both lower detection time and
control overhead than baseline, with comparable probabil-

ity of false positive. In the presence of network failures,

keep-alive algorithms that share information improves de- [17]
tection time at the cost of increased control overhead. If the

application-specific cost of slower failure detection is high,

then the increased control overhead may be warranted. The18l
improvementin detection time between baseline and sharing
algorithms becomes more pronounced as the size of neighbor

ling the Cost of Reliability in P2P Overlays. Froc. IPTPS
2003

[16] REKHTER, Y., AND LI, T. A border gateway protocol 4
(BGP-4), Mar. 1995. Internet RFC 1771.

RHEA, S., GEELS, D., RoscoE T., AND KUBIATOWICZ,
J. Handling churn in a dht. Tech. Rep. UCB/CSD-02-1299,
University of California at Berkeley, Dec. 2003.

RowsSTRON A., AND DRUSCHEL, P. Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-to-
peer systems. IRroc. Middleware 2001

set increases. This suggests that it is especially beneficial td19 SAROIU, S., GQUMMADI, K., AND GRIBBLE, S. A mea-

incorporate sharing information as a building block in keep-

alive algorithms for overlay networks which maintain a large
number of neighbors. Finally, sharing of information allows [20] SToICA, I., AND ET AL. Chord: A scalable peer-to-peer

a network to tolerate a higher churn rate than the baseline

algorithm. We believe that these findings will provide im-
portant insights on designing failure detection algorithms.
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APPENDIX

A Derivation of pp;.

Recall thatp,x. is the probability of receiving: or more
boost messages withifi,,.s: seconds at a node iB(F')
whenF is alive.



Letd’ be the number of nodes ii(F') that probeF’ during
the time windowT ;. Consider the approximation of the
number of boost messages received withjg,s; by a bino-
mial distribution withd’ trials, each with a success probabil-
ity of p¥,, (1 — p), wherep is the one way loss rate, apgk;

is the round-trip loss rate. Then the probability of receiving
k or more boost messagesdhtrials is

1- def(k - 17 d/apvlftt (1 - p)) (6)

wherebcedf is the binomial cumulative distribution function.
d' is approximatelR Ty..s¢, WhereR is the aggregate probe
rate received at a node.

Pspike

With network link failures, the probability of receivinigor
more boost messagesdhtrials is

1—bedf (k —1,d’, (pFy + ure) (1 — p — W)

whereu is the one-way path unavailability, ang;; is the
two-way path unavailability.

Pspike

B Derivation of p,,;ss

Recall thatp,,.;ss is the probability that the time span 6f
boost messages is greater thigp,s; whenF indeed fails.

We will use the following theorems [4] to deriyg,;ss.

Theorem 1. Spacings of order statistics of Uniform ran-
dom variables.LetUy, ..., Uy be Uniform random variables
on [0,1], and 34, ..., B4 be the corresponding order statis-
tics. LetT; be the time of arrival in a rate\ Poisson process,
whereT; is a Gamma random variable with parameters
and\. Then 611---1551) = (Tl/TdJrl,...Id/TdJrl)

Theorem 2. Sum of Exponential random variablesLet
Wy, ..., Wy be independent and identically distributed ex-
ponential random variables with rate parametar then
T, = 23111 W;fori=1,..4d+1.

P(Aﬁk - Aﬁl > Tboost)

P(ﬁk - ﬁl > Tboost/A)

P(TI;T_ Tl Tbvost)

d+1
Wo + ...+ Wy

Wi+ .o+ Wi
Wo+ ...+ Wi

Wi+ Wi + ...+ Wap

Pmiss (8)

Tboost )

= P( <

Tboost/A
(1 - Tboost/A)

Equation 8 is an upper bound pp,;ss because it ignores the
case in whichk boost messages arrive withip,,s; seconds,
but they are not the firgt boost messageB/; + ... + W, fol-
lows a gamma distribution with parametérs- 1 and, and
Wi+ Wiy + ... + Wy follows a gamma distribution with
parameterd + 1 — (k — 1) and ), and they are independent
of each other.

= P(

)
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C Derivation of p**

spike

Recall thatp? 7, . is the probability of receiving: or more
boost messages withifi,,.s; seconds without any interven-

ing posinfo messages whénis alive.

Let d’ be the number of nodes iB(F') that probeF dur-

ing the time windowT;.,s:. Consider the approximation
of the number of boost messages received withig,

by d’ independent trials, each with a success probability of
q = p&,, (1 — p), wherep is the one-way loss rate, apgl;;

is the round-trip loss rate. Then the probability of receiving
k or more boost messages is the probability that a runaof
more successes appearginndependent trials?],

dl

q
=2 ¢
i=k

where the!’s are the coefficients of the generating function,

DOS
ps;m ke —

)

AN (1 - qs
Fy(k,d') = 1_s_|_( Q) gk s ZC (10)
With network link failuresp?’", _ is
d/
Plpike = D¢ (11)
i=k
whereq is (p%,, + ur) (1 —p — u).



