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Abstract

One of the key reasons overlay networks are seen as an ex-
cellent platform for large scale distributed systems is their re-
silience in the presence of node failures. This resilience rely
on accurate and timely detection of node failures. Despite the
prevalent use of keep-alive algorithms in overlay networks to
detect node failures, their tradeoffs and the circumstances in
which they might best be suited is not well understood. In
this paper, we study how the design of various keep-alive
approaches affect their performance in node failure detec-
tion time, probability of false positive, control overhead, and
packet loss rate via analysis, simulation, and implementa-
tion. We find that among the class of keep-alive algorithms
that share information, the maintenance of backpointer state
substantially improves detection time and packet loss rate.
The improvement in detection time between baseline and
sharing algorithms becomes more pronounced as the size of
neighbor set increases. Finally, sharing of information allows
a network to tolerate a higher churn rate than the baseline al-
gorithm.

1 Introduction

In the last few years, overlay networks have rapidly evolved
and emerged as a promising platform to deploy new appli-
cations and services in the Internet [1, 2, 10, 15, 18, 20].
One of the reasons overlay networks are seen as an excel-
lent platform for large scale distributed systems is their re-
silience in the presence of node failures. This resilience has
three aspects: data replication, routing recovery, and static
resilience [6]. Both routing recovery and static resilience re-
lies on accurate and timely detection of node failures.

Routing recoveryalgorithms are used to repopulate the rout-
ing table with live nodes when failures are detected. Failures
are repaired using cached nodes when available, otherwise
more expensive recovery mechanisms are used which incur
additional bandwidth. Thus accurate detection of node fail-
ures is important to minimize unnecessary overhead.Static
resiliencemeasures the extent to which an overlay can route
around failures even before the recovery algorithm repairs
the routing table. However, to exploit this static resilience, a

node needs to know which of its neighbors have failed. Again
accurate and timely detection of node failures is critical.

Failure detection algorithms can be broadly classified as ei-
ther active or passive. In the active approach, a node peri-
odically sends keep-alive messages. Data packets sent be-
tween nodes can be used to replace explicit keep-alive mes-
sages as an optimization. A passive approach only uses data
packets to convey liveness information. When the routing ta-
ble is symmetrical, a data packet from a node to its neigh-
bor serves as anI’m alive message and the neighbor learns
that the node is still alive. However, when the routing ta-
ble is not symmetrical, explicit acknowledgement is needed.
This is achieved by piggybacking probes on data packets,
and requiring the receiving node to send back an acknowl-
edgement [17]. When data traffic is steady, this approach is
sufficient to keep the routing tables up to date.

There are several situations in which the passive approach
is inadequate. First, when the data traffic is bursty, there are
quiescent periods in which probes cannot be piggybacked
on data packets. Second, in some overlay networks, nodes
maintain a large number of neighbors either due to aggres-
sive caching or by explicit design [7, 8]. In such networks,
there may not be a steady stream of data traffic from a node
to each of its neighbors. Third, many overlay networks do
not employ per overlay hop acks [1, 15, 18, 21, 20]. In these
situations, the active approach to failure detection is needed.

Thus the active approach is more general, and the passive ap-
proach can be viewed as an optimization of the former when
data traffic is present. Hence we focus on analyzing the prop-
erties of active keep-alive algorithms in this paper.

Two broad classes of keep-alive approaches can be identi-
fied: baseline and sharing. In baseline, each node indepen-
dently makes a decision about the status of its neighbor.
In sharing, nodes share liveness information. Sharing algo-
rithms differ in the type of information exchanged between
nodes, and the amount of keep-alive state maintained.

Despite the prevalent use of these keep-alive algorithms in
overlay networks, their tradeoffs and the circumstances in
which they might best be employed are not well understood.
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In this paper we take a step in this direction by comparing
them across detection time, probability of false positive, con-
trol overhead, and packet loss rate.

Minimizing the detection time of a node failure has two im-
mediate benefits. First, it reduces the vulnerability period
during which packets are forwarded to a failed neighbor and
enables a node to exploit its static resilience by forwarding
packets to an alternate live neighbor. Second, it allows the
network to recover faster from node failures and thus tolerate
higher churn rates. Finally, it reduces routing inconsistencies
when failed nodes are removed in a timely manner.

Clearly there is a tradeoff between minimizing the failure
detection time and the probability of false positive (making
a false detection). The problem of false positive is especially
serious when nodes share information.

Another very important cost to consider is the amount of
control overhead expended. Without this cost, the answer
to minimizing detection time is obvious and means that a
node should probe a neighbor as fast as possible under the
constraints of round trip time and burstiness of packet loss.
Thus, we examine how fast each keep-alive algorithm can
detect node failures given a control overhead.

Finally, the packet loss rate metric gives a measure of how re-
liable routing is when packets are lost due to forwarding to a
failed neighbor. This metric directly impacts higher level ap-
plication metrics such as completion time, network through-
put, lost video frames, etc.

By understanding the tradeoffs between keep-alive algo-
rithms, we can answer questions such as: given the amount
of routing state or churn rate, which keep-alive algorithm is
better suited? For example, in a fully connected network, the
baseline algorithm must use long probe intervals to prevent
nodes from being overwhelmed by probe traffic. This will
result in unacceptably long failure detection times, making
the baseline algorithm unsuitable in such networks.

To illustrate our findings, we evaluate keep-alive algorithms
in the context of Chord. Note that the keep-alive algo-
rithms only assume an overlay network where nodes main-
tain neighbors to route packets. The failure detection time,
probability of false positive, and control overhead metrics
depend on the size of neighbor set, and the packet loss rate
metric depends additionally on the path length that a packet
takes in the overlay network. These metrics do not depend
on the specifics of neighbor selection or the routing algo-
rithm. Thus the keep-alive algorithms and analysis of metrics
can be applied to other overlay networks such as RON [1],
CAN [15], Pastry [18], Tapestry [10], etc. We present the
design of keep-alive algorithms and analysis of performance
metrics independent of Chord in Sections 3 and 4.

Our main findings are:

• Detection time vs. sharing:In the absence of network fail-

ures, sharing achieves both lower detection time and con-
trol overhead than baseline, with comparable probability
of false positive. In the presence of network failures, keep-
alive algorithms that share information improves detec-
tion time at the cost of increased control overhead be-
cause network failures cause substantial false positives.
If the application-specific cost of slower failure detection
is high, then the increased control overhead may be war-
ranted.

• Detection time vs. size of neighbor set:The improvement
in detection time between baseline and sharing becomes
more pronounced as the size of neighbor set increases.
For example as the size of neighbor set increases from 22
to 88, the improvement factor in detection time increases
from 2.7 to 4.5.

• Packet loss rate vs. size of neighbor set:In baseline, a
lower degree network achieves a lower packet loss rate
because packet loss rate is a function of detection time,
which increases linearly as degree increases if the probe
bandwidth stays constant. In sharing, a fully connected
network like RON minimizes packet loss rate because
packet loss rate is a function of path length, which de-
creases as the degree increases.

• Packet loss rate vs. churn rate:For a target packet loss
rate, sharing of information allows a network to operate at
a higher churn rate than baseline. For example, baseline
can meet a target packet loss rate of 96.5% for median
node lifetime of 60 minutes, while sharing can meet the
same target packet loss rate even for median node lifetime
of 24 minutes.

The rest of the paper is organized as follows. In Section 2,
we describe the network model assumed in this paper. Sec-
tion 3 discuss the design of keep-alive algorithms. We then
consider the performance metrics by which these algorithms
can be evaluated in Section 4. Section 5 presents experimen-
tal results in the context of Chord. We discuss related work
in Section 6, and conclude in Section 7.

2 Network Model

We assume an overlay network withn nodes, where each
nodeA knowsd other nodes in the network. We call this set
the neighbor setof A and we denote it byN(A). NodeA
maintains its neighbor set by sending acknowledgedare you
alive?probes every∆ seconds to each of its neighbors.

Node failure We assume nodes fail in a failstop (non-
Byzantine) manner. As shown in a recent study [19], nodes
in an overlay network such as Gnutella fail1 for time peri-
ods on the order of hours, and come back up as new nodes.
This suggests that the fail stop failure model is a reasonable
assumption. To make the analysis tractable, we assume that

1Or equivalently leave the network ungracefully.
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Figure 1:Keep-alive algorithms.

N(F ) neighbor set ofF
B(F ) nodes which haveF as a neighbor (backpointer set)
d |N(F )|, size of neighbor set
b |B(F )|, size of backpointer set
p one-way network loss rate
prtt round-trip network loss rate
u one-way network unavailability
urtt round-trip network unavailability
c timeout counter threshold for removing a neighbor
k boost counter threshold for removing a neighbor
∆ probe interval
Tto probe timeout value
Tqp probe interval of “quick” probes
Tboost maximum time span of lastk boosts
R aggregate probe rate received at a node
pspike probability of receivingk or more boosts

within the time windowTboost due to network loss
pmiss probability that the time span ofk boosts

is greater thanTboost whenF fails

Table 1:Notations.

nodes join according to a Poisson process and fail according
to an exponential distribution (as in [12]).

Packet lossPacket loss introduced by the underlying net-
work is an important issue that every keep-alive algorithm
must address. We assume that packets can be lost due to two
types of network problems. First, packets can be lost due to
transient problems such as network congestion. In this case,
we assume that packet loss is independent across keep-alive
probes. Traces of packet loss collected in [25] show that the
dependence in packet loss over time is mostly 1 second or
less. Since keep-alive probes are sent with a large tempo-
ral separation, typicallyO(seconds) in practice, the indepen-
dence assumption is reasonable. When a probe is lost, a node
will send several “quick” probes before concluding that a
neighbor has failed. Second, packets can be lost due to net-
work link failures which cause network paths to be unavail-
able for an extended period of time. When a probe is lost due
to network link failures, we assume that subsequent quick
probes are lost because network link failures typically last
longer than the time it takes to send the quick probes.

Propagation delay With propagation delay, a node has to
wait for some time before it can conclude that a probe is
lost. Specifically, a node considers a probe lost if it does not
receive an acknowledgement withinTto seconds.

Probe traffic Another important issue that needs to be ad-
dressed is the presence of nodes with large in-degrees. In
some overlay networks, nodes maintain a large number of
neighbors either due to aggressive caching or by explicit de-
sign [7, 8]. This can result in a network with large in-degree
b, where each node can end up with a large number of nodes
probing it. In such networks, a node with a large in-degree
may be overwhelmed by the amount of probe traffic it re-
ceives, and the probes themselves may cause self-induced
losses. Therefore, a node must bound the aggregate rate of
probes received to some reasonable rateR.

Our goals are to examine how keep-alive algorithms can de-
tect failures as soon as possible when a node can no longer
communicate with a neighbor, and in general how the design
of various keep-alive approaches affect their performance
in detection time, probability of false positive, control over-
head, and packet loss rate. As noted earlier, minimizing the
detection time reduces routing inconsistencies because failed
nodes are removed faster from routing tables. On the other
hand, more aggressive failure detection can result in a higher
probability of false positive, which in turn increases routing
inconsistencies.

Table 1 gives the definition of notations used in this paper.

3 Keep-Alive Algorithms

In this section, we describe the operation of five different
keep-alive algorithms. These algorithms differ in the amount
of information exchanged between nodes, the type of infor-
mation exchanged, and the amount of keep-alive state main-
tained. Our goal here is not to model a specific keep-alive
algorithm, but rather to capture the essential aspects of iden-
tifiably different approaches towards failure detection.

3.1 Design Space

We begin with a discussion of the design space of keep-alive
algorithms and the axes we explore in this paper.
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Axes Baseline SN+BPTR SN SNP+BPTR SNP
I’m alive vs. are you alive? Are you alive? Are you alive? Are you alive? Are you alive? Are you alive?
Node vs. network failures both both both both both
Sharing information no yes yes yes yes
Negative vs. positive information - negative negative both both
Keep-alive state no yes no yes no

Table 2:Design space of keep-alive algorithms.

I’m alive vs. are you alive? There are two different ap-
proaches to keep-alive messages. In theI’m alive ap-
proach [18, 23], a node periodically sends “I’m alive” mes-
sages to its neighbors. In theare you alive?approach [1, 9,
10, 15, 18, 20], a node probes a neighbor with a “are you
alive?” message, and the neighbor replies with a “yes I’m
alive” message. When the routing table is symmetrical, a
“I’m alive” message from a node to its neighbor allows the
neighbor to learn that the node is still alive. However, when
the routing table is not symmetrical, explicit acknowledge-
ment from the neighbor is needed. Thus, theare you alive?
approach is more general than theI’m alive approach in that
the routing table does not need to be symmetrical. In ad-
dition, the I’m alive approach does not detect asymmetries
in network connectivity. In particular, if node A can talk to
node B while B cannot talk to A, then B will not detect such
pathologies from the “I’m alive” messages and continue to
send packets to A. For these reasons, we only explore theare
you alive?approach to keep-alive algorithms in this paper.

Node vs. network failuresThere are two reasons for which
a node cannot communicate with a neighbor: (1) the neigh-
bor is down, (2) there is a network failure to or from the
neighbor. It is important to detect both types of communica-
tion failures, and a node should stop forwarding packets to
a neighbor with which it cannot communicate with. We de-
fine afalse positiveas the event in which a neighbor is alive
and paths to and from the neighbor are up but loss of keep-
alive probes indicates otherwise. We evaluate keep-alive al-
gorithms under both node and network failures.

Sharing vs. not sharing information In order to detect fail-
ures, a node has to probe on its own or share information with
other nodes. It is straightforward to see that sharing of live-
ness information reduces the failure detection time because
ideally the first node that detects a failure can announce this
to everyone else. However, the problem of false positive is
compounded when nodes share information about the loss of
probes. We explore these issues by looking at keep-alive al-
gorithms in which nodes independently make decisions, and
ones which share information.

Negative vs. positive informationNodes can share either
negative (node is down) or positive (node is up) informa-
tion. Sharing of negative information reduces the detection
time of a node failure, while sharing of positive information
reduces the probability of false positive. There are several

works that present failure detectors based on the sharing of
positive information only [9, 23]. These have a lower prob-
ability of false positive than ones that share negative infor-
mation. However, the failure detection time is the same as
that of baseline or worse by a factor ofO(log n) as ana-
lyzed in [9]. Thus we do not consider keep-alive algorithms
that only share positive information. Instead we explore al-
gorithms which share negative information, and look at how
effective the sharing of positive information on top of nega-
tive information reduces the probability of false positive.

Keep-alive state vs. no stateNodes can maintain additional
keep-alive state to make the sharing of information most ef-
fective. We examine the efficacy of keep-alive algorithms
which do not maintain additional state, and the improvement
in failure detection time for ones which do.

To summarize, we evaluateare you alive?keep-alive al-
gorithms that differ in the amount and type of information
shared and the amount of keep-alive state maintained un-
der both node and network failures. Table 2 summarizes how
each of the keep-alive algorithms we evaluate fits in the de-
sign space. Figure 1 illustrates the keep-alive algorithms we
consider next, and Figure 2 presents the pseudocode.

3.2 Baseline

In this algorithm, a node independently makes a decision
about the status of its neighbor. We note that this is the basic
keep-alive algorithm employed by virtually all overlay net-
works to maintain liveness information [1, 10, 15, 18, 20].

Figure 1(a) shows the messages exchanged between a node
A and its neighborF . NodeA sends a probe toF every∆
seconds, and waits for an acknowledgement. The probe in-
terval∆ should be chosen such that the aggregate probe rate
received at a node is approximatelyR. If a probe is not ac-
knowledged withinTto seconds, it is considered lost. When
a probe loss occurs, the next probe packet is sentTqp (> Tto)
seconds after the previous probe, up to a maximum ofc−1
quick probes (see functioncheck timeout in Figure 2). Note
that because we limit the rate of probes received at a node,
sendingc−1 quick probes atTqp seconds apart should not
exacerbate network congestion if the first probe is lost due
to network congestion. As an example, ifR is one probe
per second, then probe losses due to network congestion will
only add at mostc−1 additional probes per second received
at a node. A node removes a neighbor from its routing table
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// sending a probe
probe neighbor(id)

nbr = getneighbor(id);
sendprobe(nbr);
generatenext checktimeout event(nbr,Tto);

// checking for probe timeout
check timeout(id)

nbr = getneighbor(id);
if (exist timeout(nbr))

nbr.to count++;
if (nbr.to count≥ c)

if (keepalivetype = SN)
sendboostneighbors(nbr);

if (keepalivetype = SN+BPTR)
sendboostbackpointers(nbr);

removeneighbor(nbr);
probeinterval =Tqp;

else
probeinterval =∆;

generatenext probeneighborevent(nbr, probeinterval);

// on receiving a probe ack packet p
recv ack(p)

nbr = getneighbor(p.id);
if (keepalivetype = SNP)

sendposinfo neighbors(nbr);
if (keepalivetype = SNP+BPTR)

sendposinfo backpointers(nbr);
nbr.boostcount = nbr.tocount = 0;

// on receiving a boost packet p
recv boost(p)

nbr = getneighbor(p.id);
nbr.boostcount++;
if (keepalivetype = SN∨ SNP)

if (nbr.boostcount≥ k)
removeneighbor(nbr);

if (keepalivetype = SN+BPTR∨ SNP+BPTR)
time span = time span of lastk boosts;
if (nbr.boostcount≥ k ∧ time span< Tboost)

removeneighbor(nbr);

// on receiving a positive information packet p
recv posinfo(p)

nbr = getneighbor(p.id);
nbr.boostcount = 0;

Figure 2:The pseudocode executed by a node on sending a probe, receiving a probe ack, receiving a boost, receiving a positive information
packet, and checking for probe timeout.

after c consecutive timeouts. The advantage of the baseline
algorithm is that it is intuitive and easy to implement.

3.3 Sharing Negative Information with Back-
pointer State (SN+BPTR)

To reduce the failure detection time in baseline, a node has
to probe a neighbor more aggressively. However, this comes
at the cost of increased control overhead. An alternative is
to probe at the same rate, but share negative (node is down)
information among nodes who are interested in a particular
neighbor. Thus we now consider the SN+BPTR algorithm,
which shares negative information to reduce failure detection
time. In addition, each node also maintains keep-alive state
such that information regarding a neighbor reaches the set of
nodes interested in the liveliness of that neighbor.

Each node sends a keep-alive probe to each of its neighbors
every∆ seconds, and waits for an acknowledgement as in
the baseline algorithm. LetB(F ) be the set of nodes which
have a nodeF in their neighbor sets. We call this set the
backpointersof F , which is precisely the set of nodes in-
terested in the liveness ofF . When a node inB(F ) expe-
riencesc consecutive timeouts toF , it sends this negative
information (boost) to all other nodes inB(F ) (see function
check timeout in Figure 2). Figure 1(b) shows a network of
four nodes, whereB(F ) consists ofA, B, andC. WhenA
experiencesc consecutive timeouts toF , it sends boosts to

other backpointers (B andC).

Clearly, sharing of negative information reduces the detec-
tion time, and the challenge here is to minimize the probabil-
ity of false positive. As the in-degreeb of a node increases,
∆ has to increase proportionally to maintain the aggregate
probe rateR received at the node constant. As a result, the
probability of a node receivingk or more boosts from other
backpointers within a probe interval∆ due to network losses
can be significant.

To see this, consider the approximation of the number of
boosts received within∆ by a binomial distribution withb
trials. Then the probability of successfully receivingk or
more boosts inb trials increases rapidly asb increases. To de-
couple the probability of false positive from the in-degree of
a node, we impose a constraint such that the time span of the
lastk boosts must be less than a time window,Tboost. This
effectively reduces the probability of false positive from re-
ceivingk or more boosts in a probe interval∆ to receivingk
or more boosts in asmallertime windowTboost. Section 4.2
describes how to configureTboost such that a node will re-
ceivek or more boosts with low probability when a neighbor
is up, but with high probability when a neighbor indeed fails.

In SN+BPTR, a node maintains two separate counters for
each of its neighbors. One for the number of consecutive
probe timeouts, and the other for the number of consecu-
tive boosts received from other nodes. It removes a neighbor
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from its routing table if it experiencesc consecutive time-
outs, or receivesk consecutive boosts within the time win-
dowTboost (see functionrecv boostin Figure 2).

3.4 Sharing Negative Information (SN)

In this algorithm, we examine the effectiveness of sharing
without maintaining backpointer state.

Each node sends a keep-alive probe to each of its neighbors
every∆ seconds, and waits for an acknowledgement as in
the baseline algorithm. When a nodeA experiencesc con-
secutive timeouts to a neighborF , it sends a boost to its other
neighbors. Figure 1(c) shows a network of four nodes, where
nodeA has neighborsB, C, andF . When nodeA experi-
encesc consecutive timeouts toF , it sends boost messages
to neighborsB andC. A node maintains two separate coun-
ters for each of its neighbors as in SN+BPTR. It removes a
neighbor from its routing table if it experiencesc consecutive
timeouts, or receivesk consecutive boosts.

The advantage of SN is that it does not maintain additional
state, and the size of an acknowledgement is smaller than that
of SN+BPTR. However, as we show in Section 4, the effec-
tiveness of this algorithm on reducing detection time depends
on the probability that two neighbors share a third neighbor.

3.5 Sharing Negative and Positive Informa-
tion with Backpointer State (SNP+BPTR)

SNP+BPTR is similar to the SN+BPTR algorithm, with the
addition of sharing of positive (node is up) information to
reduce the probability of false positive.

Figure 1(d) shows a network of four nodes, where the back-
pointer set of nodeF consists of nodesA, B, andC. WhenA
receives an acknowledgement fromF and its boost counter
for F is nonzero, it sends this positive information (posinfo)
to other backpointers (B andC) (see functionrecv ack in
Figure 2). WhenB receives the posinfo, it resets the boost
counter forF to zero (see functionrecv posinfo in Fig-
ure 2). Note that whenF is down, posinfo is never propa-
gated because no node will receive acknowledgements from
F . WhenF is up but the path between it and a node is down,
the node will still removeF from its routing table despite
posinfo because posinfo only resets the boost counter and
not the timeout counter.

The advantage of SNP+BPTR is that it reduces the num-
ber of false positives caused by boosts in SN+BPTR without
slowing down failure detection since posinfo is not propa-
gated when a node is down. However, this comes at a cost of
increased control overhead due to posinfo messages.

3.6 Sharing Negative and Positive Informa-
tion (SNP)

SNP is similar to the SN algorithm, with the addition of shar-
ing of positive information to reduce the probability of false

positive.

Figure 1(e) shows a network of four nodes, where nodeA
has neighborsB, C, andF . When nodeA receives a probe
acknowledgement from a neighborF and its boost counter
for F is nonzero, it sends this positive information to its other
neighbors(nodesB andC). When nodeB receives the pos-
itive information and hasF as a neighbor, it resets the boost
counter forF to zero.

SNP reduces the probability of false positive in SN without
slowing down failure detection but at a cost of increased con-
trol overhead from the propagation of posinfo messages.

3.7 Implementation Details of Backpointer
State

A way to maintain the backpointer state in SN+BPTR or
SNP+BPTR inanyoverlay network is the following. A node
F keeps the list of all nodes which haveF as their neighbor.
This list contains all nodes which have sent keep-alive probes
to F during the last∆ seconds. Upon receiving a keep-alive
probe from nodeA, F sends this list toA. A stores this list
and associates it with nodeF .

In networks with large in-degreeb, it is too costly for a node
F to include its complete set of backpointers in its probe ack
packets. InsteadF can send subsets of its backpointers to
nodes that probe it, which forms a virtual graph among the
backpointers for broadcasting boost messages.

An efficient broadcast algorithm in terms of control over-
head is the following. NodeF builds a virtual Chord network
from its backpointers, and when one of them,A, probesF ,
F can then send backA’s log(d) fingers in the virtual Chord
network in the probe acknowledgement packet. WhenA ex-
periences a probe timeout toF , it can initiate a broadcast
amongF ’s backpointers using the idea presented in [5]. This
broadcast mechanism reaches all otherb − 1 nodes in the
backpointers set after exactlyb − 1 messages inlog(d) time
steps.

Although this broadcast algorithm is efficient in terms of
control overhead, it is not robust against network loss. If a
node does not receive a boost message due to network loss,
then the subtree of receivers rooted at this node will not
receive the message. A more robust broadcast algorithm is
for a node to send back random subsets of its backpointers
such that every backpointer will receive a copy of the boost
message with high probability [24]. When a backpointer re-
ceives a boost message, it sends the message to the subset of
backpointers it knows about. To suppress duplicates, a boost
message is sent only if it has not been received by the back-
pointer before. The cost of a more robust broadcast algo-
rithm is the associated increase in control overhead because
a backpointer can now receive more than one copy of a boost
message.

6



Detection Probability of Control
time false positive overhead

Baseline ∆
2

pk
rtt 2d

SN+BPTR ∆
b+1

k pk
rtt + (∝ pspike(d)) 2d+boost

SN ∆
s+1

k pk
rtt + (∝ pspike(c)) 2d+boost

SNP+BPTR ∆
b+1

k pk
rtt + (∝ ppos

spike(b)) 2d+boost+pos
SNP ∆

s+1
k pk

rtt + (∝ ppos
spike(c)) 2d+boost+pos

Table 3:Detection time (commonTqp(c−1)+Tto term omitted for
space reasons), probability of false positive, and control overhead
of various keep-alive algorithms.

4 Performance Metrics

In this section, we discuss performance metrics and develop
simple analytic models that allow us to compare quantita-
tively the performance of keep-alive algorithms. These re-
sults are summarized in Table 3.

4.1 Detection Time

As noted in Section 1, minimizing failure detection time
is fundamental to the resilience of overlay networks. First,
it reduces the probability of forwarding to a failed neigh-
bor. Second, it allows the network to tolerate higher churn
rates. Third, it reduces routing inconsistencies because failed
nodes are removed faster from routing tables.

BaselineLetX1 be the time when a neighbor fails,X2 be the
time when a node sends a keep-alive message to that neigh-
bor after it has failed, andU beX2−X1. ThenU has a Uni-
form distribution on[0, ∆] with an expected value of∆/2.
The average time it takes a node to detect that a neighbor has
failed is then

δ =
∆
2

+ τ (1)

whereτ = Tqp (c− 1)+Tto. The variance of detection time
is ∆2/12.

SN+BPTR Consider a nodeF with b backpointers. LetUi

be the time difference betweenX1 andX2 for theith back-
pointer ofF . According to a well known order statistic theo-
rem [4], thekth smallest random variable ofb Uniform ran-
dom variables on[0, ∆] follows the∆ βk distribution, where
βk is the Beta distribution with parametersk andb− k + 1.
The expected value ofβk is k/(b + 1). Thus it will take on
averagek ∆/(b + 1) seconds for the firstk out of b back-
pointers to send a keep-alive message toF after it fails. With
that, the average time it takes a node to detect that a neighbor
has failed is

δ =
∆

b + 1
k + τ (2)

The variance of detection time in SN+BPTR is∆2k(b−k+1)
(b+1)2(b+2) ,

which is smaller than the variance of detection time in base-
line.

SN Consider a nodeF with b backpointers, and a back-
pointerA. Let B(F ; A) = B(F ) ∩ B(A), which is a subset

of theb backpointers ofF that has nodeA as a neighbor. Let
s = |B(F ; A)| + 1. Let Ui be the time difference between
X1 andX2 for the ith backpointer inB(F ; A) ∪ A. It will
take on averagek ∆/(s + 1) seconds for the firstk out of s
backpointers to send a keep-alive message toF after it fails.
With that, the average time it takes nodeA to detect that its
neighborF has failed is

δ =
∆

s + 1
k + τ (3)

The variance of detection time in SN is∆
2k(s−k+1)

(s+1)2(s+2) . The
value ofs depends on how the overlay network is connected.
In Chord withlog2 n neighbors, the clustering coefficient is

1
log2 n [13], which means that on averages = 2. We will see
in Section 5 that the degree of sharing is greater than that
when Chord maintains a list of successors in addition to the
log2 n neighbors.

SNP+BPTR The average failure detection time here is the
same as that for SN+BPTR as derived in Equation 2.

SNPThe average failure detection time here is the same as
that for SN as derived in Equation 3.

4.2 Probability of False Positive

As noted earlier, minimizing the detection time reduces rout-
ing inconsistencies because failed nodes are removed faster
from routing tables. On the other hand, more aggressive fail-
ure detection can result in a more false positives (making a
false detection), which increases inconsistency. In this sec-
tion, we examine this tradeoff in keep-alive algorithms.

We first focus on transient network problems because it is
conceptually simple; we will generalize the analysis to a net-
work with link failures in Section 4.2.2.

4.2.1 Transient Network Losses

We assume that packet loss is independent across keep-alive
probes. Traces collected in [25] show that packet losses are
mostly correlated across periods of 1 second or less. Since
keep-alive probes are typically separated byO(seconds) in
practice, we feel this assumption is reasonable.

BaselineEach node experiencesc consecutive timeouts on
its own before concluding that a neighbor has failed. The
probability of false positive is simply

pfp = pc
rtt (4)

SN+BPTR In addition to false positives caused byc consec-
utive timeouts that occur in baseline, false positives might
also occur under SN+BPTR when a node receivesk or more
boost messages within the time windowTboost.

Choosing a smallerTboost lowers the probability that a node
receivesk or more boosts when a neighbor is up and incurs
a false positive. On the other hand,Tboost should be large
enough such that a node has a chance to receivek boosts
when a neighbor actually fails. We now look at this tradeoff.
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To make the analysis tractable, consider the case where lossy
links on network paths from nodes inB(F ) to a nodeF are
disjoint. Note that this constitutes a best case scenario for
SN+BPTR.

Let pspike be the probability of receivingk or more boost
messages withinTboost at a node inB(F ), as derived in
Equation 6. In the event thatk or more nodes inB(F ) expe-
riencec consecutive timeouts toF within the time window
Tboost, then every other node inB(F ) will get k or more
boost messages, and incur a false positive. Figure 3 shows
thatpspike increases slowly withTboost.

If we only consider the probability of false positive, then
Tboost should be as small as possible. However, as mentioned
earlier,Tboost must be large enough such that a node inB(F )
will receivek boost messages withinTboost with high prob-
ability whenF indeed fails. Letpmiss be this probability,
as derived in Equation 8. Figure 3 shows that asTboost in-
creases,pmiss decreases rapidly.

Thus, given∆, b, and R, we can find the desired trade-
off point between probability of false positive and detection
time.

SN The analysis for SN+BPTR holds here except that the
size of the backpointer setB(F ) effectively reduces from
b to s for a backpointerA with s = |B(F ; A)| + 1. The de-
crease in probability of false positive compared to SN+BPTR
depends on the value ofs.

SNP+BPTR For a false positive to occur, a node inB(F )
must receivek or more boost messageswithout any inter-
vening posinfo messages. Thus the propagation of positive
information in SNP+BPTR reduces the probability of receiv-
ing k or more boost messages withinTboost seconds from
pspike to ppos

spike, as derived in Equation 9. For example, ifR
= 1 probe/second,c = 3, k = 3, p = 0.05, andTboost = 10 sec-
onds, thenpspike = 8.15× 10−8, andppos

spike = 5.46× 10−9,
which is about 15 times smaller.

SNPThe derivation ofppos
spike for SNP+BPTR holds here ex-

Packet IP/UDP Type finger IP+ Total
type hdrs ID port
Probe 28 1 32 61
Ack 28 1 32 61
Ack (BPTR) 28 1 32 6 b 61+
Boost 28 1 32 61
Posinfo 28 1 32 61

Table 4:Sizes of various packet types in bytes.

cept that the size of the backpointer setB(F ) effectively re-
duces fromb to s for a backpointerA with s = |B(F ; A)|+1.

4.2.2 Network Link Failures

We now consider a more realistic network where packets can
be lost due to link failures in addition to transient problems.
Let u be the average unavailability of a network path due to
link failures, andurtt be the round-trip unavailability, where
urtt = 1− (1− u)2.

The probability of false positive for the baseline algorithm
remains the same as in Equation 4. When there are link fail-
ures on a network path between a node and its neighbor, the
node will remove the neighbor afterc consecutive timeouts.
This is considered a true positive because a node should re-
move a neighbor with whom it cannot communicate with.

The probability of false positive for sharing algorithms in-
creases when link failures are present. Consider the set of
network paths between nodes sharing information about a
nodeF and the nodeF . If the network paths completely
overlap, then boost messages due to link failures result in
true positives at nodes receiving the boost messages. How-
ever, if the network paths are disjoint, then boost messages
due to link failures cause false positives at nodes receiving
the boost messages. Thus, we analyze the case in which net-
work paths are disjoint because it constitutes a worst case
scenario for sharing and thus provides an upper bound on
the probability of false positive.

The derivation ofpspike andppos
spike in Equations 6 and 9 still

holds in the presence of link failures except for the following.
When a probe is lost due to link failures, subsequent quick
probes are lost with high probability because network link
failures typically last longer than the time it takes to send the
quick probes. Thus the probability of sending a boost mes-
sage when a neighbor is up increases frompk

rtt to pk
rtt+urtt,

and the one way network loss rate increases fromp to p + u.
Equations 7 and 11 statepspike andppos

spike under transient
network problems and link failures.

4.3 Control Overhead

Besides the detection time and probability of false positive,
a very important metric to consider is the amount of control
overhead expended. In this section, we examine the control
overhead involved in the keep-alive algorithms. The sizes of
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various keep-alive message types in bytes are summarized in
Table 4.

BaselineThe control overhead in baseline consists of probes
and probe acknowledgements. A node probes its neighbor
every∆ seconds, thus the average number of keep-alive mes-
sages sent by a node withd neighbors during∆ seconds is
2d.

SN+BPTR The control overhead for SN+BPTR also in-
cludes boost messages sent to backpointers when a node en-
countersc consecutive timeouts. If a neighborF is alive, then
the number of boost messages sent by a node during∆ sec-
onds regardingF is approximately(pk

rtt + urtt) b, whereb
is the size of the backpointer set ofF . If F is down, then the
boost messages save the receivers of these messages from
sending probes themselves to detect the failure ofF .

Ideally, the saving of probes is counter-balanced by the boost
messages. In practice, some of the boost messages may be
extraneous as in the following cases. A neighborF may fail
shortly after nodeA starts probing it, and thusA is only in
the backpointer lists of a few nodes that probedF afterA and
beforeF failed. In this case, these few nodes may quickly
detect the failure ofF from boost messages of other back-
pointers, and thus do not send boost messages toA. Another
case is when the size of the backpointer set maintained byF
is smaller than the actual number of backpointers, so some
backpointers may not know aboutA. Finally,A may not re-
ceive some of the boost messages from backpointers ofF
due to network loss. In these cases,A will eventually remove
F by its own probe losses, but the resulting boost messages
sent byA may be extraneous to other backpointers.

Thus the number of keep-alive messages sent by a node
with d neighbors during∆ seconds is approximately2d +
d (pk

rtt + urtt) b plus the extraneous boost messages sent
when a neighbor is down. Finally, the probe acknowledge-
ment packets are larger under SN+BPTR than that of base-
line due to the inclusion of the list of backpointers.

SNThe control overhead for SN consists of probes and probe
acknowledgements as in baseline, and also boost messages
sent to other neighbors when a node encountersc consecu-
tive timeouts. If a neighborF is alive, then the number of
boost messages sent by a nodeA during∆ seconds regard-
ing F is approximately(pk

rtt + urtt)d, whered is the size of
the neighbor set ofA. If F is down, then the saving of probes
from boost messages is less than that in SN+BPTR because
of the following reasons. First, the boost messages are sent to
nodes who may not haveF as a neighbor. Second, the boost
messages may not reach all nodes inB(F ). This means the
nodes that are not reached will removeF by their own probe
losses, and thereby generate even more boost messages that
are only partially useful.

Thus the number of keep-alive messages sent by a node
with d neighbors during∆ seconds is approximately2d +

d2(pk
rtt+urtt) plus the extraneous boost messages sent when

a neighbor is down. Note that the size of probe acknowledge-
ment packets in SN is the same as that in baseline.

SNP+BPTR In addition to the control overhead in
SN+BPTR, SNP+BPTR also sends positive information
packets to backpointers when a node receives a probe ac-
knowledgement from a neighborF with a nonzero boost
counter. Note that positive information is never sent when
neighborF is down. Thus the number of posinfo messages
sent by a node withd neighbors during∆ seconds is approx-
imatelyd (pk

rtt + urtt) (1− prtt − urtt) b.

SNP In addition to the control overhead in SN, SNP also
sends positive information packets to other neighbors when
a node receives a probe acknowledgement from a neighbor
with a nonzero boost counter. The number of posinfo mes-
sages sent by a node withd neighbors during∆ seconds is
approximatelyd2 (pk

rtt + urtt) (1 − prtt − urtt).

4.4 Packet Loss Rate

In this section, we examine the effect of node failure detec-
tion time on packet loss rate, which directly impacts higher
level application metrics such as completion time, network
throughput, lost video frames, etc.

We assume that nodes fail independently with rateλf . The
up-time of each node is exponentially distributed, and its av-
erage value,1/λf , is much larger thanδ. This means the
probability that a node has failed at timet+δ, given the node
was up at timet, is1−e−δ λf due to the memoryless property
of the exponential distribution. This is approximately equal
to δ λf for δ λf � 1. Thus, the probability that a node for-
wards a packet to a neighbor that has already failed isδ λf .
Assuming thatlδλf � 1, the packet loss rate on a path of
lengthl is

pl = 1− (1− δ λf )l ≈ lδ λf (5)

5 Evaluation

We now present simulation and experimental results evalu-
ating the benefit and cost of the keep-alive algorithms in the
context of Chord [20]. Note that the keep-alive algorithms
can be applied to any network, and Chord is simply an ex-
ample on which we test the algorithms.

Chord is a distributed protocol that provides a hash function
mapping keys to nodes responsible for them. It assumes a
circular identifier space of integers[0, 2m). Chord ensures
that the node responsible for a key is found afterO(log n)
hops.

The routing state maintained by each nodeA consists of two
types of neighbors: successors and fingers. Successors are
the first few nodes that succeedA on the identifier circle.
The ith finger is the first node that succeedsA by at least
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2i−1, where1 ≤ i ≤ m. Note that the keep-alive algorithms
do not differentiate on the types of neighbors.

In order to ensure that packets route correctly as the set of
participating nodes changes, Chord must ensure that each
node’s routing state is up to date. It does this using asta-
bilizeprotocol that each node periodically runs everyTs sec-
onds. In each stabilization round, a node updates its immedi-
ate successor and another node in its routing state.

5.1 Modelnet Experiments

We run our experiments on Modelnet [22], an emulation en-
vironment that allows us to run unmodified code in a config-
urable Internet-like environment with reproducible results.
Our testbed is a cluster of 40 IBM xSeries PCs with Dual
1GHz Pentium III processors and 1.5GB RAM, connected
by Gigabit Ethernet, and running either Debian GNU/Linux
or FreeBSD. We use Modelnet to impose wide-area delay
and bandwidth restrictions, and the Inet topology generator2

to create a 10,000-node wide-area AS-level network with
500 client nodes connected to random stubs by 1 Mbps links.
To increase the scale of experiments without overburdening
the capacity of Modelnet by running more client nodes, each
client node runs 4 Chord instances, for a total of 2000.

5.1.1 Methodology

In each experiment, we start a Chord network with 2000
nodes by joining a new node to a random bootstrap node
once a second. Then we repeatedly kill and replace a ran-
dom node, timed by a Poisson process.

Key lookups (packets) are initiated from random sources to
random keys, timed by a Poisson process at a rate of 200
per second. Packets are routed recursively; each intermediate
node forwards a packet to the next until it reaches the node
responsible for the key.

We model two different kinds of network loss. In the first
loss model (LM1), packet losses are due to transient net-
work problems, and each packet traversing an overlay link is
dropped independently with the fixed probabilityp = 0.4%.
In the second loss model (LM2), we also inject network link
failures according to the model of network path unavailabil-
ity developed in [3]. In this model, we pick a failure duration
from the CDFR(t) = 1 − 19t−0.85 for each path, and then
compute the mean time to failure (MTTF) so that the average
unavailability of the path is 1.25%. Path failures are timed by
a Poisson process with mean MTTF.

5.1.2 LM1 Results: Metrics vs. Size of Neighbor Set

Here we hold the total keep-alive probe rate constant and
study how the performance metrics vary as the size of neigh-
bor setd increases. In baseline, SN, and SNP, each node
sends one keep-alive probe everyT . Hence∆ = dT , and

2http://topology.eecs.umich.edu/inet/
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Figure 4:Histogram of node failure detection time ford = 44 and
median lifetime of 30 minutes

∆ is proportional tod. In SN+BPTR and SNP+BPTR, each
node receives, on average, one keep-alive probe everyT sec-
onds from itsb backpointers. Hence∆ = bT , and∆ is pro-
portional tob. For all algorithms, the aggregate probe rate is
approximatelyn/T .

In Chord, each node maintainslog2 n fingers andlog2 n suc-
cessors for a total of2 log2 n neighbors by default. We in-
crease the size of neighbor set from2 log2 n to 4 log2 n to
8 log2 n, which correspond roughly tod = 22, 44, and88
for a network of 2000 nodes. The actual number of neigh-
bors is smaller because the successors and fingers partially
overlap.

For this set of experiments, we hold the median node lifetime
at 30 minutes, and setT=1 second.

Detection time Figure 4 shows the histogram of node fail-
ure detection time in 1-second bins ford = 44. As expected,
the results for baseline is uniformly distributed on the inter-
val [0,∆] + τ . In SN+BPTR and SNP+BPTR, the worst case
detection time is∆ + τ because there are cases in which a
node will not receive boosts and must rely on its own probe
timeouts to detect a neighbor failure. For instance, a nodeA
may start probing a neighborF shortly before or even afterF
fails, not leaving time forF ’s other backpointers to learn of
A and send boosts. Also, boosts may be dropped by the net-
work, orF may limit the size of the backpointer set it main-
tains and distributes. Figure 4 shows that these cases happen
infrequently, and in fact the mode of detection time in boost-
ing is around 3 seconds. In SN and SNP, the reduction in
detection time is less significant because the effectiveness of
sharing depends on the probability that two neighbors share
a third neighbor.

Figure 5 plots the mean failure detection time versus the
size of neighbor setd. The solid lines correspond to experi-
mental results, and the dotted lines correspond to the values
predicted with the equations. The results show that the ana-
lytical equations are quite accurate. In baseline (recall from
Equation 1),δ = ∆

2 + τ . By substituting∆ = dT , we get
δ = Td

2 + τ , which increases linearly withd. Figure 5 shows
approximately the same detection times as well as the lin-
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Figure 6:Control overhead vs. size of neighbor set for median
lifetime of 30 minutes.

earity ind (note that the x-axis is logarithmic). In SN+BPTR
and SNP+BPTR (recall from Equation 2),δ = ∆

b+1 k+τ . By

substituting∆ = bT , we getδ = bT
b+1 k + τ , which remains

approximately constant asd (and thusb) increases. Fork =
3, δ is approximately3+τ seconds. The improvement in de-
tection time between baseline and SN+BPTR becomes more
pronounced as the size of neighbor set increases. In SN and
SNP, the detection time is less than in baseline, but the reduc-
tion is not as significant as in SN+BPTR and SNP+BPTR be-
cause value ofs in Chord (recall from Equation 3) is smaller
thanb.

Probability of false positive The probability of false posi-
tive calculated as the ratio of false positives found per minute
to the total number of probes started each minute. The prob-
ability of false positive is approximately the same for all five
algorithms, at around1×10−6 (the graph is omitted in the in-
terest of space). According to Equation 4, the probability of
false positive is5 × 10−7 whenp = 0.4%, which is close to
the experimental numbers. Thus, when packet losses are due
to transient network problems, sharing negative information
reduces detection time without increasing the probability of
false positive by much.

Control overhead Network traffic consists of keep-alive
messages, the stabilization protocol, and lookup traffic. Fig-
ure 6 plots the bandwidth consumed per node. In baseline,
the bandwidth stays approximately constant asd increases
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because the probe interval∆ increases linearly withd. At
d = 88, the bandwidth consumed is approximately 655 bytes
per second. SN+BPTR consumes more bandwidth because
of boosts due to false positives and inclusion of the back-
pointer list in probe acknowledgements3. At d = 88, the
bandwidth consumed is approximately 1190 bytes per sec-
ond, which is 1.8 times higher than in baseline. However, the
detection time in SN+BPTR is 4.5 times lower than in base-
line. In order to achieve the same deduction in detection time
in baseline, a node has to probe 4.5 times faster (see Equa-
tion 1), or consume 4.5 times more bandwidth. This means
that SN+BPTR can achieve both lower detection time and
control overhead than baseline, with comparable probability
of false positive in the absence of network link failures. In
SN, the bandwidth consumed is slightly higher than that of
baseline due to boosts. The control overhead in SNP+BPTR
and SNP are approximately the same as in SN+BPTR and
SN because there are very few false positives which trigger
the propagation of posinfo messages.

Packet loss ratePackets can be lost due to the underlying
network or forwarding to failed neighbors. Each keep-alive
algorithm experiences the same network loss rate, thus any
improvement in the packet loss rate is attributed to faster fail-
ure detection reducing the packets forwarded to failed neigh-
bors. Figure 7 plots the percent of packets completed and
consistent vs. the size of neighbor setd. To measure inconsis-
tency, each packet is simultaneously routed by ten different
nodes in the network and the results are compared. If there
is a majority among the results, any result not in the ma-
jority is considered an inconsistency; if there is no majority,
all results are considered inconsistent [17]. In baseline (re-
call from Equations 1 and 5),δ varies linearly withd, andpl

varies linearly withδ. However,pl also varies linearly with
the hop countl, which decreases asd increases. Thus correct-
ness decreases (although not quite linearly) asd increases,
which means a lower degree network minimizes packet loss
rate. In SN+BPTR and SNP+BPTR,δ remains approxi-

3The entire backpointer list is included in these experiments,
sending subsets of backpointers as described in Section 3.7 will
lower the bandwidth.
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Figure 8:Node failure detection time vs. churn rate ford = 44.

mately constant asd increases. Thus the percent correct in-
creases asd increases because the hop countl decreases,
which means a fully connected network like RON minimizes
packet loss rate. The behaviors of SN and SNP are some-
where in between baseline and SN+BPTR and SNP+BPTR.
As d increases, correctness increases as in SN+BPTR and
SNP+BPTR. However, asd increases furthermore, the linear
increase inδ as in baseline starts to dominate, and percent of
packets completed and consistent starts to decrease.

5.1.3 LM1 Results: Metrics vs. Churn Rate

Overlay networks are intended to scale to at least hundreds
of thousands of nodes, where nodes are joining and leaving,
putting the network into a continuous state of “churn”. Here
we observe how well the network can tolerate churn under
each keep-alive algorithm. We use median lifetimes of 60,
30, 15, and 7.5 minutes, which correspond to churn rates of
0.39, 0.77, 1.54, and 3.08 leaves per second for our network
of 2000 nodes. The size of neighbor set (d) is 44 in these
experiments.

Detection time Figure 8 shows that the detection time in
baseline, SN, and SNP remain approximately constant as
churn increases. This is expected from Equations 1 and 3,
which show thatδ varies with∆ ands, but does not depend
on the churn rate. However, the detection time in SN+BPTR
and SNP+BPTR increases slowly as churn increases, which
is not expected from Equation 2. This is because when nodes
join and leave quickly, the backpointer list maintained at a
nodeF may not propagate in time to its set of backpointers
B(F ), and the local backpointer lists atB(F ) may become
stale. However, for median lifetimes of 60 to 15 minutes, we
see that the detection time in SN+BPTR and SNP+BPTR is
still about 3-4 times lower than that of baseline ford = 44,
and about 2 times lower in SN and SNP.

Probability of false positive As before, the probability of
false positive remains approximately constant at1×10−6 as
churn increases (the graph is omitted in the interest of space).
This is expected from Equations 4, 6, and 9, which show that
pfp varies with the network loss rate, but does not depend on
the churn rate.
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Figure 10:Percent of packets completed and consistent vs. churn
rate ford = 44.

Control overheadFigure 9 plots the bandwidth consumed at
a node as churn rate increases. In sharing algorithms (recall
from Section 4.3), some boosts may be extraneous when a
node fails. As churn increases, bandwidth increases slightly
for SN+BPTR, SNP+BPTR, SN, and SNP as there are more
node failures and thereby more extraneous boosts.

Packet loss rateRecall from Equation 5,pl increases lin-
early with the node failure rateλf . Figure 10 shows that the
percent of packets completed and consistent decreases ap-
proximately linearly as the churn rate increases. We see that
sharing of information allows the network to support a higher
churn rate than baseline.

5.1.4 LM2 Results

So far, we have considered theLM1 loss model with packet
loss due to transient network problems. In this section, we
evaluate the keep-alive algorithms under theLM2 loss model
with the addition of network link failures. At the moment our
testing code is unable to produce network link failures on
Modelnet, but we are working to extend it in the near future.
Instead, we simulate a network withn = 1000 nodes, mean
lifetime = 22 minutes,d = 128, andp = 0.05.

Results for detection time is similar to that under theLM1

loss model, and we omit it in the interest of space. Fig-
ure 11(a) plots the probability of false positive versus time.
pfp in baseline is approximately1 × 10−3 as analyzed in
Section 4.2.2.pfp in SN+BPTR and SN is higher because
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Figure 11:(a) Probability of false positive; (b) control overhead; (c) packet loss rate ford = 128 and mean lifetime of 22 minutes.

boosts due to link failures cause false positives at other nodes
receiving the boosts. We see that sharing of positive informa-
tion reducespfp in both SN+BPTR and SN.

Figure 11(b) plots the control overhead due to keep-alive
messages versus time. The control overhead in SN+BPTR
is higher than that in baseline because of the inclusion of
backpointers in probe acknowledgments and boosts sent due
to false positives. We see that SNP+BPTR and SNP have a
higher control overhead than SN+BPTR and SN because of
the sharing of positive information.

Figure 11(c) plots the packet loss rate versus time. The av-
erage loss rates for baseline, SN+BPTR, and SN are 10.5%,
7.4%, and 4%, which show that loss rate under SN+BPTR is
2-3 times lower than that of baseline at a cost of increased
control overhead. If the application-specific cost of packet
loss is high, then the increased control overhead may be war-
ranted.

6 Related Work

In traditional routing protocols such as the inter-domain rout-
ing protocol BGP [16], failure detection is performed at the
link layer and the BGP layer. At the link layer, failure de-
tection is done at the hardware level and takes less than 100
milliseconds [11]. At the BGP layer, a router periodically
sends KEEPALIVE packets to its neighbors, similar to the
baseline algorithm. When a failure such as a fiber cut, inter-
face problem, or router crash occurs, a neighbor router may
be directly notified by link layer hardware, or may detect the
failure via the loss of consecutive KEEPALIVE packets. Ex-
perimental results show that failure detection is done mostly
at the hardware level [11]. Thus sharing of liveliness infor-
mation is not necessary here. In addition, it is relatively rare
that a whole router goes down, but more likely that an inter-
face problem or fiber cut has occurred. In these cases, neigh-
bors of the router should not exchange liveliness information
because the router may still be up for other BGP sessions.
Similarly, failure detection in the intra-domain routing pro-
tocol IS-IS is performed at the link layer and at the routing
later via IS-IS Hello packets.

The most closely related work to ours is [14], which derives
an analytical model relating packet loss probability to prob-
ing interval and node failure rate for thebaselinekeep-alive
algorithm. A self-tuning mechanism is proposed to increase
the probing rate of the baseline keep-alive algorithm in re-
sponse to an increase in the estimated node failure rate. In
contrast, we consider a broader range of keep-alive algo-
rithms. Our aim is to compare and contrast a variety of keep-
alive approaches that differ in the amount and type of infor-
mation shared between nodes and the amount of keep-alive
state maintained.

There are several works which present failure detectors
based on the sharing of positive information only. In [23],
the authors present a gossip-style failure detection service,
where nodes gossip to learn about the liveness of other
nodes. Nodes timeout routing table entries that are not re-
freshed for a while. Gupta et al. [9] presents a failure detector
in which a node,A, sends a ping message to a random other
node,B, at the start of each protocol period (O(seconds)).
If an acknowledgement is not received within some time-
out, thenA sends a ping request message toc other random
nodes. If one of thec nodes receives an acknowledgement
from B and forwards the acknowledgement toA success-
fully before the protocol period ends, thenA will not con-
cludeB to be down. The effect of sending a ping request to
c random nodes is a decrease in the probability of false pos-
itive. However, sendingc more probes in the baseline algo-
rithm achieves a similar reduction in the probability of false
positive. In addition, these failure detectors are designed to
detect node failures, but not network failures. For example, if
B is up, but there is a path outage betweenA andB, thenA
will not detect this failure if some other nodeC can commu-
nicate withB and forwards this information toA. In contrast,
nodeA will still be able to removeB based on losses of its
own probes in the keep-alive algorithms we considered.

In [7, 8], Gupta et al. propose one-hop and two-hop lookup
schemes in which they use a hierarchy to disseminate mem-
bership changes. The authors show that lookup packets are
routed in one or two hops, and a low fraction of packets will
fail in the first routing attempt. The bandwidth requirement
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on leaders in the hierarchy is in the Mbps range depending
on the number of nodes in the system. The promptness in
detecting a node failure is limited by the interval at which
messages are exchanged between the leaders (usually tens of
seconds). We believe that the sharing algorithms with back-
pointer state analyzed in this paper may provide a viable al-
ternative for disseminating node failures in such networks for
faster detection time and lower probability of false positive.

7 Conclusion

In this paper we study the performance of a variety of keep-
alive algorithms that differ in the amount of information
shared between nodes, the type of information exchanged,
and the amount of keep-alive state maintained. We devel-
oped analytical models, simulation, and implementation to
study the performance of these algorithms using the met-
rics of node failure detection time, probability of false posi-
tive, control overhead, and packet loss rate. Our results indi-
cate that in the absence of network failures, the maintenance
of backpointer state achieves both lower detection time and
control overhead than baseline, with comparable probabil-
ity of false positive. In the presence of network failures,
keep-alive algorithms that share information improves de-
tection time at the cost of increased control overhead. If the
application-specific cost of slower failure detection is high,
then the increased control overhead may be warranted. The
improvement in detection time between baseline and sharing
algorithms becomes more pronounced as the size of neighbor
set increases. This suggests that it is especially beneficial to
incorporate sharing information as a building block in keep-
alive algorithms for overlay networks which maintain a large
number of neighbors. Finally, sharing of information allows
a network to tolerate a higher churn rate than the baseline
algorithm. We believe that these findings will provide im-
portant insights on designing failure detection algorithms.
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APPENDIX

A Derivation of pspike

Recall thatpspike is the probability of receivingk or more
boost messages withinTboost seconds at a node inB(F )
whenF is alive.
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Let d′ be the number of nodes inB(F ) that probeF during
the time windowTboost. Consider the approximation of the
number of boost messages received withinTboost by a bino-
mial distribution withd′ trials, each with a success probabil-
ity of pk

rtt (1− p), wherep is the one way loss rate, andprtt

is the round-trip loss rate. Then the probability of receiving
k or more boost messages ind′ trials is

pspike = 1− bcdf(k − 1, d′, pk
rtt (1 − p)) (6)

wherebcdf is the binomial cumulative distribution function.
d′ is approximatelyR Tboost, whereR is the aggregate probe
rate received at a node.

With network link failures, the probability of receivingk or
more boost messages ind′ trials is

pspike = 1− bcdf(k − 1, d′, (pk
rtt + urtt) (1− p− u))(7)

whereu is the one-way path unavailability, andurtt is the
two-way path unavailability.

B Derivation of pmiss

Recall thatpmiss is the probability that the time span ofk
boost messages is greater thanTboost whenF indeed fails.

We will use the following theorems [4] to derivepmiss.

Theorem 1. Spacings of order statistics of Uniform ran-
dom variables.LetU1, ...,Ud be Uniform random variables
on [0,1], andβ1, ..., βd be the corresponding order statis-
tics. LetTi be the time of arrival in a rateλ Poisson process,
whereTi is a Gamma random variable with parametersi
andλ. Then (β1,...,βd) = (T1/Td+1,...,Td/Td+1)

Theorem 2. Sum of Exponential random variables.Let
W1, ..., Wd be independent and identically distributed ex-
ponential random variables with rate parameterλ, then
Ti =

∑i
j=1 Wj for i = 1,...,d + 1.

pmiss ≤ P (∆βk −∆β1 > Tboost) (8)

= P (βk − β1 > Tboost/∆)

= P (
Tk − T1

Td+1
>

Tboost

∆
)

= P (
W2 + ... + Wk

W1 + ... + Wd+1
>

Tboost

∆
)

= P (
W2 + ... + Wk

W1 + Wk+1 + ... + Wd+1
>

Tboost/∆
(1− Tboost/∆)

)

Equation 8 is an upper bound onpmiss because it ignores the
case in whichk boost messages arrive withinTboost seconds,
but they are not the firstk boost messages.W2+ ...+Wk fol-
lows a gamma distribution with parametersk− 1 andλ, and
W1 +Wk+1 + ...+Wd+1 follows a gamma distribution with
parametersd + 1− (k − 1) andλ, and they are independent
of each other.

C Derivation of ppos
spike

Recall thatppos
spike is the probability of receivingk or more

boost messages withinTboost seconds without any interven-
ing posinfo messages whenF is alive.

Let d′ be the number of nodes inB(F ) that probeF dur-
ing the time windowTboost. Consider the approximation
of the number of boost messages received withinTboost

by d′ independent trials, each with a success probability of
q = pk

rtt (1 − p), wherep is the one-way loss rate, andprtt

is the round-trip loss rate. Then the probability of receiving
k or more boost messages is the probability that a run ofk or
more successes appears ind′ independent trials [?],

ppos
spike =

d′∑

i=k

cq
i (9)

where thecq
i ’s are the coefficients of the generating function,

Fq(k, d′) =
qksk(1 − qs)

1− s + (1− q)qksk+1
=

∞∑

i=k

cq
i s

i (10)

With network link failures,ppos
spike is

ppos
spike =

d′∑

i=k

cq
i (11)

whereq is (pk
rtt + urtt) (1 − p− u).
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