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Abstract

VIRAM1 (Vector Intelligent RAM 1) is a low-power multimedia processor with embedded DRAM
designed at UC Berkeley in 2002 and fabricated in 2003. It includes a scalar core and four vector
computation units, called lanes. The goals of the chip, low-power media processing, require that
the vector lanes have efficient integer multipliers that can work with a variety of data sizes. In this
report, I describe an efficient partitionable integer multiplier that is designed to work in VIRAM1’s
vector computation lanes. The multiplier is capable of operating with a latency of two cycles at
200 MHz in a 1.2 V, .18 µm process at 64, 32, or 16 bit data width sizes, while consuming less
than 250 mW of power. I describe and evaluate design options for different parts of the multiplier,
and analyze the results of the chosen options.
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Chapter 1

Introduction and Goals

1.1 The VIRAM1 Datapath and its Integer Multiplier

IRAM (Intelligent RAM) is an approach to designing systems using embedded DRAM and pro-
cessing on the same die. [FP+97] Vector IRAM (VIRAM) is an architecture that uses this approach
to extend a traditional scalar microprocessor with vector processing. [PA+97-2] The first Univer-
sity of California, Berkeley implementation of a VIRAM processor is VIRAM1, which taped out
in October of 2002.

From its beginning, VIRAM1 was designed to be a low-power multimedia processor. The
IRAM architecture that it is based upon was developed to conserve power. [FP+97] Design
decisions were evaluated in the context of executing multimedia applications on a portable de-
vice. Power, clock rate, and computation goals were all designed within a multimedia context.
[KGW+00]

VIRAM1 contains 13 megabytes of DRAM, a MIPS core that executes scalar instructions,
and four computation units (called lanes) that execute vector instructions. Each of the vector lanes,
pictured in Figure 1.1, contains a register file, a memory interface, a flag register file and associated
processing unit (used for conditional execution), and two arithmetic units. The first arithmetic unit
can execute floating point instructions, integer multiplications, and basic integer operations; the
second arithmetic unit can not execute floating point instructions or integer multiplications, to save
circuit area. The circuitry used to execute floating point and basic integer operations has traditional
design goals and constraints, and so I do not elaborate upon them further. The integer multiplier,
which has more novel design specifications, is described in detail in this paper. [M00]

1.2 Multimedia Applications

Multimedia applications are becoming increasingly important in the design of modern micropro-
cessors. As consumer demand for products that excel at executing multimedia applications out-
shadows demand for more powerful processors to execute business, technical, or scientific appli-
cations, the goals of a microprocessor designer must also change to reflect the new demand.

The growing demand for processors to execute multimedia applications goes hand-in-hand with
consumer devices that are becoming increasingly popular. Cell phones, portable music players,
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Figure 1.1: VIRAM1 vector lane

video recorders and players, and speech recognition devices all push the demand for microproces-
sors that can execute multimedia applications efficiently.

Many consumer multimedia devices benefit from power-efficient circuits. Portable devices
operate on a battery: lower-power circuits translate into longer battery life, and longer operating
time for the device without changing or recharging batteries.

Multimedia applications are largely defined by the application core, which is often a signal
processing algorithm. Video encoding and decoding, including compression, is used by video
playback devices and recorders. Audio algorithms can include decompression for playback de-
vices, compression and encoding for recorders, and additional processing for speech recognition
devices, such as echo cancellation or lexeme analysis and dictionary lookup.

Multimedia cores have a number of common features. They tend to operate on narrow width
data items, often 8 or 16 bits; they are applied to large amounts of streamed data; and the cores
themself may be individually rather simple, but are applied many times to the data. They also share
a number of typical algorithms: impulse response filters are used in audio and video processing;
edge detection filters can be used to recognize items in pictures or video; discrete cosine trans-
forms are commonly used in compression operations; and array-type operations are used in many
algorithms.

These multimedia devices, with their lower-power demands and common signal-processing-
style computation cores, are the focus of VIRAM1’s goals. They determine how design decisions
were made and affect the microprocessor on all levels, from circuits to architecture.

1.3 The Importance of Partitionability

VIRAM1 targets multimedia applications, which typically process large amounts of relatively
narrow-width streaming data. They also can require the ability to do higher-precision, wide cal-
culations. These two seemingly at-odds requirements present a unique challenge in the design of
arithmetic circuits.

2



Table 1.1 shows the data widths that are typical for the types of applications that VIRAM1
targets [KP02, K02]. The widths range from 8 to 32 bits.

Application Data size Description
From MiBench:

cjpeg 32 JPEG image compresion algorithm
mad 32 MPEG audio compression decoder

tiffdither 16 TIFF image dithering algorithm
ispell 8 Spell checking utility

From DSPstone:
adpcm 16 G.721 ADPCM transcoder

convolution 16 General convolution algorithm
fft 16 General Fast Fourier Transform algorithm

Table 1.1: Typical data sizes for target applications

One approach to dealing with the issue of the need to perform both narrow-width and higher-
precision calculations is to use a single, high-precision arithmetic unit to perform all calculations.
Narrow-width values can be extended to higher precisions, and then calculations on that data can be
performed on the same hardware that operates on wider data. Unfortunately, the approach of using
wide arithmetic units to perform calculations on narrow-width data means that a large amount of
circuit potential remains unexploited. For example, a standard 64-bit multiplier will leave three-
fourths of its circuits effectively unused when operating on 32-bit data, and fifteen-sixteenths of its
circuits unused when operating on 16-bit data. [L97]

Unexploited circuit potential has a number of drawbacks. For one, it means that the arithmetic
unit is not executing at as high a throughput as it could: if an arithmetic unit’s circuits are all being
effectively used, more calculations will be performed sooner. Unused circuitry also consumes
area, which could have been used for other circuitry, and increases die size, which increases the
cost of the chip. Wide arithmetic units that operate on narrow data may do so by extending the
width of narrower data, which can waste power, if the wider calculation performs unnecessary
subcalculations that consume power.

A more effective way to deal with the need to perform both narrow and wide operations is to
use partitionable circuits. Partitionable circuits can execute wide operations, but can also be split
up to execute multiple narrower operations on the same hardware. By performing multiple smaller
operations at once, overall throughput for the arithmetic unit increases, and unnecessary circuitry
that consumes space and power is reduced.

Another benefit of partitionable circuits is that partitioned circuits are generally easier to use
in a more power-effective manner. If a partitioned circuit is operating on narrow data, but is not
performing its maximum number of operations, it is clear which sections are in use or not. Con-
sequently, partitionability makes it easier to design circuitry that reduces energy consumption in
those blocks, for example by gating clocks or preventing inputs from changing. A non-partitioned
circuit operating on a single narrow data item will not have as clear a path to reduce the power
from unnecessary circuitry.

3



1.4 Multiplier Circuit Goals

Since VIRAM1 targets portable applications, a low operating voltage of 1.2 volts was chosen for
logic circuits. Initial simulations showed that at this voltage, a 5 ns clock cycle (200 MHz) was
attainable, and would lead to the desired performance for target applications.

Consequently, the integer multiplier has to operate on a 5 ns clock cycle. The latency for all
multiply operations is two clock cycles.

Besides those initial voltage and cycle constraints, low power and low area are also desired
goals.

Clock cycle 5 ns

Operating voltage 1.2 V

Latency 2 cycles

Area < 2 mm2 in .18 µm process

Power < 250 mW

Table 1.2: Goals for VIRAM1 Vector Integer Multiplier

4



Chapter 2

Related Work and Background Information

2.1 Overall Multiplier Organization

Multiplier operation can be split into three main parts:

1. Partial product generation

2. Carry-save addition to generate summands

3. Carry-propagate addition to produce the final result.

Additionally, many multipliers employ Booth encoding, which adds an encoding and decoding
step to the process. [B51] A multiplier that can operate on negative values will also require some
additional steps: they may be explicit separate steps, or can be folded into one of the previous steps
(for example, as part of partial product generation).

The general multiplication procedure, excluding Booth encoding, is shown in Figure 2.1 and
proceeds as follows. First, individual bits of the multiplicand are “multiplied” by individual bits
of the multiplier; since the operation involves only single bits, the calculation is identical to a
logical-and operation.

Partial products generation results in many different bit-weight positions (a result of 2n bits,
and therefore positions, may be generated from an n ∗ n multiplication). Each of those positions
contains a number of partial products (from 1 to n for an n ∗ n multiplication) that must be added
to generate the final result in that bit position.

The process of adding up the partial products is generally split into two parts: first, partial prod-
ucts of a single bit-weight are added in a carry-save manner, and then a final single carry-propagate
addition is performed on the resulting summands. Splitting the addition in this way minimizes the
number of carry-propagate adds that must be performed; since their latency is greater than that of
a carry-save add, the overall latency of the adding is reduced.

Carry-save additions of partial products in a single bit-weight position are performed with an
adder array. The adder array comprises a large number of compressors, which are simple circuits
that reduce a large number of equal-value inputs to a smaller number of outputs by adding the
inputs and producing some outputs with higher value. The simplest compressor is a 3-input, 2-
output full adder that takes three equal-value inputs and produces a sum bit, with the same value
as the input bits, and a carry bit, which has a value equal to twice that of the input bits.

5



The final addition is a carry-propagate addition, which takes as inputs the summands produced
by the adder array and produces as outputs the final result of the multiplication.
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Figure 2.1: Multiplication

2.2 Partial Product Generation

One of the first steps in multiplication is partial product generation. In binary multiplication, partial
product generation creates all of the terms that result from multiplying each bit in the multiplicand
with each bit in the multiplier. An unsigned multiplicand A can be represented as:

an−1an−2· · ·a2a1a0 =

n−1∑

i=0

ai2
i (Equation 2.1)

and unsigned multiplier B as:

bn−1bn−2· · ·b2b1b0 =

n−1∑

j=0

bi2
i (Equation 2.2)

The result of multiplying A and B is then:
n−1∑

i=0

n−1∑

j=0

aibj2
(i+j) (Equation 2.3)

Each of the intermediate terms that are added are the partial products.
The multiplication of each pair of bits is usually performed by logical-anding the bits. That

process works correctly for positive numbers, but will produce incorrect results for negative num-
bers: it produces negative partial products, which can’t be added directly by the adder array. Baugh
and Wooley [BW73] address this issue by replacing negative terms with their two’s complement
forms and rearranging. If A and B now represent signed values, they can be represented as:

A = − an−12
(n−1)

+

n−2∑

i=0

ai2
i

B = − bn−12
(n−1)

+

n−2∑

j=0

bj2
j

(Equation 2.4)

and their product P as
6



P = A×B =an−1bn−1 +

n−2∑

i=0

n−2∑

j=0

aibj2
(i+j)

−

n−2∑

i=0

an−1bi2
(n−1+i)

−

n−2∑

i=0

bn−1ai2
(n−1+i)

(Equation 2.5)

The subtracted terms in the above equation can be replaced with their two’s complement:

− 2
(2n−1)

+ 2
(2n−2)

+ 2
(n−1)

+

n−2∑

i=0

an−1bi2
(n−1+i)

− 2
(2n−1)

+ 2
(2n−2)

+ 2
(n−1)

+

n−2∑

i=0

bn−1ai2
(n−1+i)

(Equation 2.6)

Baugh and Wooley continue to rearrange the above equation to match their circuit goals. Their
arrangement simplifies dealing with negative numbers, but uses logical-ands and logical-ors. Those
logical operations can be implemented, but it is usually easier to use circuits that perform logical
nands and nors instead. Dada [D85] recognized that removing logical-ands and logical-ors is
beneficial in many cases, and adapts Baugh and Wooley’s formula by rearranging terms further:

− 2
(2n−1)

+ 2
n

+

n−2∑

i=0

an−1bi2
(n−1+i)

+

n−2∑

i=0

bn−1ai2
(n−1+i) (Equation 2.7)

2.3 Adder Array

Once individual bits have been multiplied and partial products generated, they have to be added.
To reduce latency, the addition is split into a carry-save add and a carry-propagate add. The carry-
save add is performed by the adder array, which takes all of the bits in a single bit position and
adds them.

Because of the relative complexity of adding partial products as compared to generating them,
and because of the large number of partial products, the adder array is generally the largest part
of a multiplier. Therefore, the size and layout efficiency of the adders in the array, and the routing
between them, have a significant impact on the overall size of the multiplier.

The latency of the adder array can be significant as well. The type of adders in the array, and
the way they are arranged, can have a large impact on the overall speed of the multiplier.

Unfortunately, the different aspects of adder array design are often at odds with each other. An
array built from small adders using simple routing will consume a small amount of circuit area,
but may have a large tree height that leads to long latency. The different design tradeoffs must be
considered in the context of the overall goals of the multiplier. It’s important to be able to measure
the relative strengths and weaknesses of different designs to be able to compare them effectively.

7



The efficiency of an adder array can be measured in various ways. One can look at the total
size of the array, but that will include the size of the particular adders used, and the size consumed
by routing. Comparing those directly requires that different designs be implemented, which is very
time-consuming.

Adder trees, which define how the adders in the array are connected, can be compared to
exclude the variable of adder size. [SKG77] One way to compare trees is to take a look at the
tree height: a smaller height means that there are fewer sequential adders required in an addition,
which can mean that the latency of the addition will be lower. Another way to compare trees is
to try to use some characteristic of the tree design to extrapolate information about the likely size
of the tree. For example, feedthroughs, which are the number of wires that route a signal past a
particular adder in a tree, can be used to get an idea of the routing complexity of that tree. [MJ92]

An important type of adder array is built from Wallace trees. [W64] The general scheme in
Wallace tree design is to group partial products in threes, assign each of those groups to the inputs
of a full adder, and then successively combine the resulting outputs with additional full adders.
Wallace trees have the smallest tree height for trees made of full adders, but the design does not
lead to regular layout, and the routing complexity can lead to a routing-dominated circuit of large
size.

Another important type of tree used in adder arrays is Balanced Delay trees. [ZM86] Balanced
Delay trees are defined by their goal of matching latency to the inputs of any particular adder in the
tree. A subclass of Balanced Delay trees that is designed for multiplier adder arrays is Overturned
Stairs trees. Overturned Stairs trees have a very regular, dense layout, and have a maximum number
of feedthroughs of two for any tree height. The drawback to using Overturned Stairs trees instead
of Wallace trees in adder arrays is that Overturned Stairs trees can require a greater tree height than
Wallace trees to add the same number of inputs.

2.4 Final Adder

Once the partial products have been generated and reduced to two bits in each position, the final
addition must be a carry-propagate addition that produces the final result. The area of the final
adder can be relatively small compared to that of the adder array, because it has to operate on many
fewer bits. For greater-width multiplications, the latency of this add can be comparable or greater
than that of the adder array, because the addition has to proceed sequentially through the entire
width of the result.

One important type of adder used as the final adder is a carry-lookahead adder. If the two
summands of an addition are represented in this fashion:

A = an−1an−2· · ·ai· · ·a2a1a0

B = bn−1bn−2· · ·bi· · ·b2b1b0

(Equation 2.8)

then the equations for each bit position of the resulting sum are:

si = ai bi ci + ai bi ci + ai bi ci + ai bi ci (Equation 2.9)

where ci represents the carry-in to bit position i and the carry-out from the bit position i − 1.

8



The carry-in bits can be expanded, and the resulting equations can be implemented directly for
each bit position, leading to reduced serialism in the output bits and a lower overall latency. The
largest problem with carry-lookahead adders is their large area requirement.

A carry-select adder, as Figure 2.2 shows, splits the full addition into smaller segments and
adds those in a straightforward carry-propagate fashion. Each segment, except for the first, is
added twice: once with a 0 for the carry-in, and once with a 1. When the first segment completes
its addition, the resulting carry-out is used to select which of the results from the second segment
is used for the final result. The carry-out of the selected result in the second segment is used to
select which of the results is used from the third segment, and so on.
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Figure 2.2: Carry-select adder

2.5 Compressor

A compressor is simply an adder circuit. It takes as inputs a number of equally-weighted bits, adds
them, and produces as output the sum, in the form of a bit with the same weight as the inputs and
one or more bits that have a value greater than that of the inputs. Compressors are commonly used
to reduce a large number of inputs to a smaller number, such as in a multiplier, where they are
used to reduce the many partial products to a final summed value. The reduction in the number of
individual bits representing the value leads to the name “compressor”.

Compressors are usually the basic subblock that multiplier adder arrays are built around. The
logical design of a compressor is integral to the adder tree design, since the number of inputs and
outputs determines the basic tree component.

3:2 compressors, which are just full adders, add three equally-weighted inputs to produce a
sum bit that has the same weight as the inputs, and a carry bit which has a weight equal to twice
that of the inputs. It is the basic blocks of many adder trees.

4:2 compressors have five inputs of equal weight, and produce three bits: a sum of equal
weight to the inputs, and two carry bits which have a weight equal to twice that of the inputs. 4:2
compressors are often connected with one of the carry-out bits feeding an input on another block
as a carry-in, which allows them to reduce 4 inputs to 2 outputs as well as propagating carries.
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Because compressors are the basic circuit that multiplier adder arrays are built from, and be-
cause the adder array is such a large part of the overall multiplier, compressor circuit design plays
a large role in determining the multiplier’s performance. Compressors are a worthwhile target for
attempting circuit optimizations, exploring different logic families, and concentrating design ef-
fort. As with any circuit optimizations, the typical tradeoffs of area, power, speed, and design time
are all in effect.

2.6 Summary of Related Work

The main steps of multiplication are:

1. Partial product generation

2. Carry-save adding

3. Carry-propagate adding

For the first step, partial product generation, Dada’s rearrangment of Baugh and Wooley’s
formula to deal with multiplying negative numbers works well and fits perfectly with the goals of
this multiplier.

The second step, carry-save adding, combines partial products with the use of an array of adder
trees. There are a number of choices of tree types to consider: Wallace trees are efficient but have
irregular routing; Balanced Delay trees have a more regular layout, but are less efficient; other trees
have lay in between. Trees can be evaluated on the height of the trees required to add a certain
number of inputs, on routing complexity, or total size of the array.

The second step requires another decision: the type of compressor that the adder trees are built
from. To some degree, the compressor type depends on the tree type: some trees must be built from
blocks that add and produce certain numbers of bits. Most trees, though, use 3:2 compressors,
or full adders. The usual concerns of area, latency, and power all apply to the circuit designs
considered for the compressors.

The final step of carry-propagate addition presents us with the wide array of choices avail-
able for adders. The usual tradeoffs or layout area, latency, and power efficiency apply. Carry-
lookahead adders are fast, but consume large amounts of area and power. Very simple adders can
have a large latency. An adder that balances the tradeoffs, such as a carry-select adder, can obtain
a large amount of the benefit in all of the characteristics to be considered.
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Chapter 3

Modified Overturned Stairs Tree

The largest part of the multiplier is the adder array. The array contains a number of adders arranged
in trees, which sum the partial products. The tree contains both the compressors used to perform
the additions, and the arrangement of the interconnect between them.

Because the adder array is such a large part of the multiplier, its design is critical in determining
the overall characteristics of the multiplier. The type of tree chosen for the arrangement of the
adders has a large impact on the speed and area of the multiplier array.

The goals of the tree used in the adder array include low tree height to reduce the latency of
the additions, a simple circuit to reduce the layout complexity, and regular overall layout to reduce
the size of the entire array. To meet these goals, a modified version of an Overturned Stairs tree is
used in the adder array.

3.1 Original Overturned Stairs Tree

Overturned Stairs (OS) trees [MJ90] are a form of Balanced Delay trees [ZM86]. Balanced Delay
trees are defined by their organization which leads to equal latency to the inputs of any particular
adder.

As Figure 3.1 shows, Overturned Stairs trees are created recursively, using branches which
consist of full adders chained together to add inputs. Each branch terminates in a connector, which
consists of two full adders that add two inputs from their own branch and three inputs from the
previous branch, and generate three outputs for the next branch.

The tree starts off with just a single full adder for the first branch and the two terminating full
adders for the second branch, and each successive branch is one full adder deeper than the previous.
The successive increasing of branch height leads to the balanced-delay property, and creates the
overturned-stairs characteristic shape. The final branch contains a terminating root full adder that
receives the three outputs from that branch’s connector.

3.2 Tree Heights

Different adder array designs that use the same basic adder blocks (for example, full adders) can
be compared for latency by comparing the maximum tree height of each design.
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Figure 3.1: Overturned Stairs tree

Number of OS Wallace
Inputs Tree Height Tree Height

4 2 2
8 4 4
16 6 6
24 7 7
32 9 8
40 10 8
48 10 9
56 11 9
64 12 10

Table 3.1: Tree height required for various numbers of inputs

As the examples in Table 3.1 demonstrate, the standard Overturned Stairs tree may have a
greater tree height in general, but there are certain values of numbers of inputs that require the
same height for both Overturned Stairs and Wallace trees [W64]. Therefore, no latency penalty
is incurred by using Overturned Stairs trees instead of Wallace trees for adding those numbers of
inputs; in fact, the simpler organization of Overturned Stairs trees will most likely lead to a simpler
layout that has lower interconnect latency.

For adding 16, 32, and 64 bits, a Wallace trees requires heights of 6, 8, and 10 adders; an
Overturned Stairs tree requires heights of 6, 9, and 12 adders.
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3.3 Difficulties in Partitioning OS Tree

Partitioning a multiplier allows the same hardware to be used to perform a single large multi-
plication or several smaller multiplications. Designing a multiplier to be partitionable requires
designing all of the subcomponents to be partitionable at the appropriate sizes. For the adder ar-
ray, the partitioning requires that the trees used to add the partial products be able to be split into
smaller trees.

Partitioning an adder tree is simplest if the tree can be split at the appropriate size without
much modification. Such modification, usually involving additional routing between compressors,
creates a number of inefficiencies. Adding routing generally expands the size of the adder array,
which can either consume space that would otherwise be available to other circuits, or else expands
the size of the entire chip and increases costs. Furthermore, additional routing negatively affects the
adder array itself, since expanding the circuits means that the parasitic resistance and capacitance
of the interconnect increases. Greater parasitics consume extra power, and can cause delay in the
circuit. Additionally, modifying the circuits a large amount increases complexity, which increases
design and verification time.

There is generally no straightforward way to partition the original OS tree in half or other
useful fractions. It is possible to break the interconnect at appropriate places to create subtrees
that can add the required number of inputs, but the resulting trees are not symmetrical, leading to
great complexity in designing the partitioned version of the trees, and making it difficult to further
partition the resulting subtrees.

3.4 Modified OS Tree

A modified version of the OS tree embodies many of the advantages of the original OS tree, but
is easily partitionable. The basic idea is to start with OS trees of the minimum partition size, and
combine them into successively larger OS trees. Figure 3.2 shows a 64-bit tree built from 16-bit
trees in this way.

Unmodified OS trees produce two bits at each bit position. The same size, two bits, is still
required at all partition sizes of the tree, to feed to the final carry-propagate adder.

The smallest-partition tree already produces outputs in the correct form for the final adder. The
next-larger-partition tree contains two smallest-partition trees, and therefore produces four bits in
each bit position. To turn that result into the correct form for the final adder, the modified OS tree
uses 4:2 compressors to combine the results of the smaller trees. The next-largest-partition tree
then simply consists of two smallest-partition trees and a set of 4:2 compressors in a combiner
form.

The same process of using a set of 4:2 compressors to combine two smallest-partition trees
into a next-larger-partition tree can be iterated to produce trees of any power of two multiple of the
smallest partition.

The result at the appropriate level, from the smallest size up to the largest available partition
that uses all the combiners, is selected with multiplexors and fed to the final adder.

Combining trees with compressors increases the number of inputs that the tree can add. The
overall capacity of the multiplier is determined both by the number of inputs that each tree slice
can add, and the width of the adder array. Extending the smallest multiplier blocks to wider lengths
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is relatively easy: the first and last slices of the smaller arrays must be slightly modified to be able
to pass signals between blocks for larger multiplications.

In the multiplier designed for VIRAM1, the minimum partition size is 16 bits, and the larger
sizes are 32 and 64 bits, which make use of 2 and 4 smaller OS trees respectively. Figure 3.3
shows the complete array of smaller multipliers, and which ones are used to perform various-sized
multiplications.
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3.5 Additional Modifications

There are a number of small additional modifications that must be made to let multiple smaller
trees operate together.

For the multiplier to be able to handle negative numbers, certain bits on the input must be
inverted and two additional single ‘1’ bits must be added at the appropriate place. When a single
multiplication spans multiple blocks, individual blocks must be able to invert or add the correct
bits for that block. Therefore, the steps taken to allow negation must be split up into four parts:
negating the bottom bits, negating the left bits, adding the bit for the top left block, and adding the
bit for the bottom left block. The appropriate steps must be activated for the correct blocks, based
on the block location and the multiplication size.

A single multiplier requires some modification to the last few rows to handle some low-end
bits that otherwise aren’t added, and the inputs to the first row must be chosen to represent some
high-end bits that otherwise aren’t added. The modified multiplier must be able to independently
select either one, or neither, of those modifications, in order to handle multiplications that span
multiple blocks horizontally.

3.6 Comparison to Original OS Tree

The modified OS tree shares many of the characteristics of the original OS tree that it is built from,
but does have some significant differences, from circuit performance to design complexity.

It can be difficult to accurately compare the original circuit to the modified version. One diffi-
culty in comparison is that the original version can not perform multiple simultaneous multiplica-
tions, and so does not have the same functionality as the modified tree. To deal with this difficulty,
the modified tree will be compared with both the original tree for the required sizes (16, 32, and 64
inputs), as well as an approach that uses the original trees to perform the required operations. The
required functionality can be obtained by using a 64-bit multiplier, a 32-bit multiplier, two 16-bit
multipliers, and a small number of multiplexors to select the correct output. Figure 3.4 shows an
example of how the submultipliers can be connected to create a full multiplier that provides all the
necessary functionality. For example, to perform four 16-bit multiplications with this design, two
would be performed by the 16-bit multipliers and two would be performed by the 64-bit and 32-bit
multipliers using sign-extended versions of the inputs. The design that uses multiple original trees
will be referred to as the “combined original” tree design in following comparisons.

Another difficulty in comparison between the circuits is deciding which characteristics to ex-
amine. The characteristics that are important for VIRAM1, beyond the correct functionality, in-
clude layout area and power. Both of those characteristics are highly dependent on the layout of
subblocks, which can vary with different fabrication technology and different layout engineers. To
help partly mitigate those factors as sources of uncertainty, the longest path length (in terms of
basic subblocks) will also be examined.

3.6.1 Longest Path

The tree height of the original OS tree varies, depending on the size of the tree. The modified OS
tree is built out of smallest-size-partition OS trees, but has additional components that effectively
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add to the tree height. The original OS tree passes only through a number of full adders, and the
final adder. The modified OS tree passes through a number of full adders, through a number of
combiners (although that number is zero for the smallest-size-partition), a multiplexor, and then
the final adder. Table 3.2 summarizes the heights for original OS trees, Wallace trees (for efficiency
comparison), the combined original tree, and the modified OS tree.

Tree Type Full Adders Combiners Muxes Adder
Original, 16 input 6 0 0 1
Original, 32 input 9 0 0 1
Original, 64 input 12 0 0 1
Wallace, 16 input 6 0 0 1
Wallace, 32 input 8 0 0 1
Wallace, 64 input 10 0 0 1

Combined Original 12 0 1 1
Modified 6 2 1 1

Table 3.2: Longest-path elements for trees and multipliers

The individual Original and Wallace trees provide only part of the required function-
ality. The Combined Original tree uses multiple unmodified Overturned Stairs tree
to provide all the required functionality. The Modified tree is the new approach that
provides all the required functionality.

The comparison can be more direct by weighting the various components in terms of their
“cost” in terms of full adders. Since the cost is being measured in terms of a different circuit type,
it’s important to determine what metric of cost is being considered equivalent between the circuits.
In this case, since the comparison is for maximum tree height, the cost metric is in terms of latency.

The combiner circuit consists of a number of compressors which are approximately equal to
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1.5 full adders. The multiplexor circuit is approximately equal to 2 full adders. The adder circuit
is approximately equal to 2 full adders. Table 3.3 shows the results of the weighted comparison.

Tree Type Full Adders
Combiners

(wtd)
Muxes
(wtd)

Adder
(wtd)

Longest
Path

Original, 16 input 6 0 0 1 ∗ 2 8
Original, 32 input 9 0 0 1 ∗ 2 11
Original, 64 input 12 0 0 1 ∗ 2 14
Wallace, 16 input 6 0 0 1 ∗ 2 8
Wallace, 32 input 8 0 0 1 ∗ 2 10
Wallace, 64 input 10 0 0 1 ∗ 2 12

Combined Original 12 0 1 ∗ 2 1 ∗ 2 16
Modified 6 2 ∗ 1.5 1 ∗ 2 1 ∗ 2 13

Table 3.3: Longest-path weights for trees and multipliers

The individual Original and Wallace trees provide only part of the required function-
ality. The Combined Original tree uses multiple unmodified Overturned Stairs tree
to provide all the required functionality. The Modified tree is the new approach that
provides all the required functionality.

3.6.2 Layout Area

Area is an important characteristic of a circuit. Particularly for a large, repeated array such as in a
multiplier, small differences in subblocks can add up to significant increases in die size. Further-
more, since there are four lanes in VIRAM1, any increase in a single lane will be multiplied by
four times as much area consumed in the entire chip.

The best way to measure circuit area is to design the circuits and see exactly how much area
they consume. That way, all of the routing complexity, additional support circuitry, and other issues
relating to area consumption are all taking into account. Unfortunately, there are some roadblocks
to doing the layout for every circuit that one wishes to compare. First of all, layout of a large circuit
can take an extremely long time. Doing the layout for a number of circuits in order to compare
them accurately can take prohibitively long. Additionally, the comparison is only valid inasmuch
as it represents the skill and time that the designer was willing or able to put into the circuits. A
better layout engineer, or one who is willing to spend more time optimizing the layout, may be
able to produce the same circuit in a smaller area.

One way to ameliorate some of the uncertainty and time constraints when comparing layout
area is to estimate the size of the entire block by looking at actual layout for common subblocks.
For example, the original and modified OS trees both use the same compressors, multiplexors, and
adders; by laying out those blocks, measuring their area, and examining how many of each of them
are required for each tree type, the total size can be estimated.

The technique of estimating the total size by looking at layout of subblocks does raise some
important issues. The technique does not work well for very different circuits: the original and
modified OS trees can be compared reasonably accurately, while the comparison between an OS
tree and a Wallace tree might not reflect the additional routing complexity of the Wallace tree, and
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a comparison between a tree based on 3:2 compressors and one that uses 4:2 compressors as basic
subblocks can be even less accurate.

Table 3.4 shows the estimated size for the original OS tree multipliers, the complete multiplier
built from unmodified trees, and the modified OS tree multiplier. The estimates are based on
layout of the subblocks done in IBM’s CMOS 7SF foundry technology, with a .18 µm gate and
three levels of metal. Individual transistors were sized to meet timing goals.

Tree Type Total Area, µm2

Original, 16 input 73,427
Original, 32 input 314,616
Original, 64 input 1,300,416

Combined Original 1,882,010
Modified 1,600,445

Table 3.4: Area estimates

The individual Original trees provide only part of the required functionality. The Com-
bined Original tree uses multiple unmodified Overturned Stairs tree to provide all the
required functionality. The Modified tree is the new approach that provides all the
required functionality.

3.6.3 Power

Because VIRAM1 is targeted at portable devices, power is an important concern. The more power
that is consumed, the shorter the battery life will be.

To measure the power of the circuits, the basic circuit blocks were laid out. The circuits were
then extracted using Avant!’s StarEX. Spice circuit descriptions of the complete circuits were built,
using the extracted decks of the basic blocks as subcircuits. The 16-input multiplier was simulated
in HSpice to obtain a baseline power report for comparison, and that value was compared with
the power measurement from Synopsys’s NanoSim to verify the reported results. The different
designs were then simulated in NanoSim for 1000 cycles of random inputs, with the input vectors
staying the same for each bit size (e.g., all runs with 16-bit inputs used the same vectors). Table
3.5 summarizes the results.

3.6.4 Qualitative Issues

There are a number of issues that arise from the modifications to the original tree that are not easy
to summarize quantitatively.

The modified multiplier has a significant amount of additional layout complexity compared
to the original trees. There is a significant amount of extra routing between the blocks that is not
required for a single original multiplier. Furthermore, some additional basic subblocks are required
(such as the combiners) in the modified multiplier; they are not very complex, but they do add to
the design time. The single 16-bit multiplier subblock is also more complicated than a standalone
16-bit multiplier: it has to be able to handle either passing its results out of the low-bit end or
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Tree Type Power, mW
Power, % Above

Base
Original, 16 input 8.24 -
Combined Original, four 16-bit mults (avg) 23.95 190.7%
Modified, single 16-bit mult 8.25 0.1%
Modified, four 16-bit mults (avg) 8.69 5.5%
Original, 32 input 29.09 -
Combined Original, two 32-bit mults (avg) 55.92 92.2%
Modified, single 32-bit mult 36.66 26.0%
Modified, two 32-bit mults (avg) 37.44 28.7%
Original, 64 input 143.75 -
Combined Original, 64-bit mult 146.49 1.9%
Modified, 64-bit mult 151.43 5.3%

Table 3.5: Power measurements

The individual Original trees provide only part of the required functionality. The Com-
bined Original tree uses multiple unmodified Overturned Stairs tree to provide all the
required functionality. The Modified tree is the new approach that provides all the re-
quired functionality. For 16-bit and 32-bit operations, the table shows results with the
modified tree performing both a single operation and the maximum number of simul-
taneous operations.

adding the results in the same way that the standalone block does. Similarly, the 16-bit subblocks
have to split up the steps needed to handle negative multiplications and enable them independently.

The 16-bit subblocks in different positions in the complete modified multiplier have different
functionality requirements: for example, some of them never have to enable any of the modifica-
tions necessary to deal with negative numbers. One way to handle this is to use identical, flexible
16-bit subblocks, and simply never enable the modifications for blocks that do not require them.
Another option is to design different blocks that only contain the modifications that they need. The
tradeoff is between a simpler design that requires less design time but consumes unnecessary area
and power, or a smaller design that takes longer to create. The area and power estimates for the
design measured reflect the simpler design, with greater area and power values.

The complete original multiplier is built out of four smaller multipliers. Each one has a con-
venient layout shape, but it’s not clear that there is an efficient manner to lay out all four together.
The area numbers reported for the complete adder above do not reflect the potential wasted space
from putting them together.

Additionally, the complete original multiplier requires three different trees to be built: the 16-
input, 32-input, and 64-input trees. The trees are similar to each other, but they’re not identical, so
some additional layout time will be required, compared to the modified multiplier.
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3.7 Limitations of Technique

The modifications to the original OS tree fit the requirements of VIRAM1 well, but the technique
in general still has a number of important limitations that can reduce its attractiveness for certain
applications.

The multiplier in VIRAM1 is required to perform 16-, 32-, and 64-bit multiplications. There-
fore, the partitioning is somewhat limited: only two half-size partitioning steps are needed. Further
partitioning (down to 8- or 4-bit multiplications) using the same technique would require more par-
titioning steps. Each additional step involves adding another level of combiners, which increases
the latency for the multiplication.

Increasing the levels of partitioning incurs additional area penalties as well. VIRAM1’s modi-
fied OS tree performs 64-bit multiplications with a total of 16 16-bit OS tree blocks. If the design
was modified to also allow the multiplier to perform 8-bit multiplications, a total of 64 blocks
would be requires; for 4-bit multiplications, a total of 256 blocks would be required.

Of course, the technique of modifying OS trees for partitioning that is described in this paper
could be changed slightly for dealing with additional levels of partitioning. For example, if one
additional level of partitioning was required, the same design that is presented in this paper could
be used without splitting the 16-bit OS trees, but instead adding additional 8-bit OS trees to perform
the additional smaller multiplications. Four of the 8-bit multiplications could be performed on the
16-bit adders, and the other four could be performed with the extra adders. There are a number
of drawbacks to extending the adder this way: additional routing would be required to apply the
input operands to both the original and the extra set of adders, the 16-bit multipliers performing
8-bit multiplications would consume unnecessary power, and the circuitry the makes the extra 8-bit
adders is essentially duplicating hardware that is already there.
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Chapter 4

4:2 Compressor

The modified Overturned Stairs (OS) tree that is used in VIRAM1 consists of smaller, unmodified
OS trees that are combined to form larger trees capable of adding the appropriate number of inputs.
Since the smaller trees perform carry-save additions, they produce two bits in each bit-weight
position.

The final adder requires two bits as inputs for each bit-weight position. The smallest, 16-bit
multipliers produce the necessary two bits, but as the size of the operands increases and more
small trees are used to perform the calculation, the total number of resulting bits in each bit-weight
position increases. For example, a 32-bit multiplication produces a result that is twice as wide as
a 16-bit multiplication, but uses four times as many 16-bit blocks; therefore, instead of producing
two bits at each position, it produces four bits. These bits have to be reduced, or compressed, to
the appropriate number to feed to the final adder. That compression is accomplished by using a 4:2
compressor.

4.1 Compressor’s Role

Compressors can come in a variety of forms, but their common characteristic is that they reduce
a number of equal-weight input bits to a smaller number of output bits, by adding inputs and
producing output bits that have a greater weight. A simple full adder is therefore a 3:2 compressor.
It takes three equally-weighted input bits, and produces two outputs: a sum, which has the same
weight as the input bits, and a carry, which has a weight equal to twice that of the input bits.

The compressors that are used in VIRAM1’s multiplier need to take four input bits at each
position, and produce two output bits. The compressor that fits this requirement is called a 4:2
compressor.

The combiners shown in Figure 4.1 are a series of 4:2 compressors that combine the outputs of
two 16-bit OS trees and produce a single pair of output bits in each bit weight position.

4.2 Traditional Compressor

A 4:2 compressor actually takes five input bits and produces three output bits; they are called 4:2
compressors because in the way that they are normally used, one input bit and one output bit are
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Figure 4.1: Combiner

used as a carry-in and carry-out, leaving four input bits and two output bits available to compress
data.

The carry-in and carry-out bits have to have the characteristic that the value of the carry-out bit
does not depend on the carry-in bit. That way, the compressors can be chained together without
performing a long-latency carry-propagate add. The carry-save configuration of 4:2 compressors
means that their latency does not depend on the number of compressors chained together, as it
would if the carry were propagated.

The functionality of a 4:2 compressor can be achieved by used two 3:2 compressors, which
are simply full adders. Figure 4.2, taken from [ZM86], shows two full adders in a 4:2 compressor
configuration. The first full adder receives three input bits, and the second receives two input bits
and the sum output bit of the first full adder.

The configuration shown in Figure 4.2 works, but is higher latency than is necessary.
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Figure 4.2: Traditional 4:2 compressor
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4.3 New VIRAM1 Compressor

The first step in determining how hand-layout logic circuits for VIRAM1 would be designed was
to examine a number of logic families. Basic families, as well as other ones such as those listed
in [ABE96], were considered. A few basic circuits that would be commonly used were laid out,
extracted with Avant!’s StarEX, and simulated with HSpice. The important characteristics of the
different logic families, including power consumption, performance, ease of layout, and area were
examined to determine the basic design style that would be used for hand layout.

The Complimentary Pass-Transistor Logic with Transmission Gate (CPL-TG) family described
in [ABE96] seemed to offer the best match to the goals of VIRAM1, and was therefore used as a
starting point for circuit design. Individual circuits were changed depending on their purpose and
requirements.

Once the logic family and primitives were established, a number of different designs were
examined. Figure 4.3 shows the final design. The sum bit is generated with a series of exclusive-or
operations. The carry and carry-out bits are generated by using intermediate exclusive-or results
to select appropriate inputs from a multiplexor. Carry-out does not depend on input D or E; input
E is only applied at the last logic level, so using carry-out and input E as the carry-out and carry-in
for a series of chained compressors will not increase the overall latency.
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Figure 4.3: New VIRAM1 compressor

4.4 Comparison to Traditional Compressor

The 4:2 compressor in VIRAM1 is used in combiners that connect 16-bit multipliers to perform
larger multiplications. Area, speed, and power are all concerns. To measure the performance of
the new design and compare to the traditional design, both circuits were built from primitives and
simulated using HSpice.
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4.4.1 Latency

Both compressors were simulated with HSpice to determine their latency. Because the 4:2 com-
pressors in VIRAM1 are used by chaining them together, the latency is measured by simulating
them in that configuration. Table 4.1 summarizes the latency results.

Design Latency, ns
Traditional Compressor .234

New VIRAM1 Compressor .193

Table 4.1: 4:2 compressor latency

4.4.2 Layout Area

Both compressors were laid out to get an accurate representation of their circuit area. Table 4.2
shows the resulting area.

Design Area, µm2

Traditional Compressor 292.6
New VIRAM1 Compressor 285.2

Table 4.2: 4:2 compressor latency

4.4.3 Power

The traditional and new compressors were simulated using HSpice with a large number of in-
put vectors to determine their average power usage. Since the 4:2 compressors in VIRAM1 are
chained together, and many of the combiners feed other combiners, the power was measured with
each circuit driving inputs of a copy of that circuit (that is, the traditional compressor drove other
traditional compressors, and the new compressor drove other new compressors). Table 4.3 shows
the results.

Design Power, µW
Traditional Compressor 58.3

New VIRAM1 Compressor 40.8

Table 4.3: 4:2 compressor power consumption

4.5 Conclusion

The VIRAM1 4:2 compress is approximately 3% smaller, 21% faster, and uses 43% less power
than the traditional 4:2 compressor.
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Chapter 5

Full Multiplier

The full multiplier contains a large number of straightforward smaller subcircuits that are not as
novel as the modified adder tree or 4:2 compressor, but are nonetheless important to the multiplier’s
correct operation.

5.1 Description of Multiplier Sections

5.1.1 Partial Product Generation

Partial product generation is the first step in multiplication. The basic idea is straightforward: “mul-
tiply” individual bits of the multiplier and multiplicand together. For positive numbers in binary
arithmetic, the multiplication operation is simply a logical-and. Dealing with negative numbers is
slightly more complicated. [BW73] explains a method to deal with negative numbers simply, and
it is refined in [D85] to simplify the generation by using only logical-nand circuits.

The partial products in VIRAM1 follow the description in [D85], except that both the partial
product and its inverse are generated to feed the normal and negated inputs of the compressors in
the adder trees.

5.1.2 Final Adder

The final adder in the multiplier is a carry-propagate adder. It takes two bits in each bit-weight
position and adds them, producing the final sum.

The design of the adder is very straightforward. The only deviation from a regular adder is that
it has to be partitionable to support partitioned multiplications. The modification is quite easy to
achieve: the carry chain simply has to be cut at the appropriate places. A multiplexor then selects
either the carry-out from the previous section, or a ‘0’ bit as carry-in.

A number of basic adder designs were examined. The final design that is used in the multiplier
is a carry-select design. Small sections of the result are added with chains of full adders. Each
section, except the first, is added twice: once with a ‘1’ bit as the carry-in, and once with a ‘0’ bit.
All additions proceed in parallel. Once the first addition completes, its carry-out result is used to
select which of the additions for the next section is the correct one. The result of that section is
used to select the next one, and so on.
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In a normal carry-select adder, each section size is chosen so that it is as long as possible,
while still producing its results before the outputs of the previous section are chosen. Making the
section smaller than that would not speed up the addition, since the results can’t be used before the
previous section’s correct carry-out bit is determined, and maximizing the lengths of each section
reduces the number of sections and the number of serial selections that must be performed.

In VIRAM1, however, the requirement of partitionability limits the size of adder sections.
Instead of treating the adder as if it is a single 128-bit adder, section sizes must be determined as
if the adder were only a 32-bit adder. In practice, the limited size of the sections increases the
number of sections in the adder, which slightly increases the latency for the addition. The increase
amounts to approximately 7% for the straightforward carry-select adder design used in VIRAM1.

5.1.3 Negative Numbers

The partial product generation scheme used in VIRAM1 and proposed in [D85] handles multipli-
cations of negative numbers. Two differences from normal partial product generation result:

• Certain bits must be complemented

• A few additional ‘1’ bits must be added at the appropriate place

For multiplying an m-bit number A and an n-bit number B, the complemented bits can be
represented by the following formula:

a(m−1)bi2
(m−1+i) for 0 ≤ i < n − 1

b(n−1)ai2
(n−1+i) for 0 ≤ i < m − 1

(Equation 5.1)

Figure 5.1a shows the partial products in their normal multiplication organization; Figure 5.1b
shows them in the bit-slice organization that corresponds to the way that are normally laid out. In
both cases, the bits that must be complemented are shaded. As Figure 5.1b shows, those comple-
mented bits are on the left and bottom of the array. Note, however, that the bit at the very bottom
left (representing a(m−1)b(n−1)2

(m+n−2)) is not inverted.
The ‘1’ bits that must be added have the value:

2
(m+n−1), 2(m−1), 2(n−1) (Equation 5.2)

For an adder array that takes two inputs of the same size, those three bits reduce down to two:

2
(2n−1), 2n (Equation 5.3)

Figure 5.1 shows the two bits specified in Equation 5.3.
The modified Overturned Stairs tree used in VIRAM1 combines individual 16-bit multiplier

blocks to perform larger multiplications. Since each basic multiplier block represents only a frac-
tion of larger multiplications, they do not have the same bits complemented. Figure 5.2 shows
four 16-bit multiplier blocks combined to perform a single 32-bit multiplication, with the comple-
mented bits in each block shaded.

The requirement of being able to complement different bits depending on the size of the mul-
tiplication and each block’s position slightly increases the complexity of the overall multiplier.
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Figure 5.1: Negative numbers in 16-bit multiplication
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Figure 5.2: Negative numbers in 32-bit multiplication

5.1.4 Overall Multiplier Organization

VIRAM1’s multiplier combines small blocks to perform larger multiplications. A total of sixteen
16-bit multipliers are used in the full multiplier.

Figure 5.3 shows the organization of the 16-bit multipliers and how they are combined to per-
form a 64-bit multiplication. The 16-bit multipliers are combined horizontally by simply passing
in intermediate bits from the last row of one multiplier to the first row of the next-least-significant
multiplier. The bits are passed in exactly the same way they are passed within each block, so no
combiner is necessary.

There is a small modification required to pass bits horizontally between blocks in larger multi-
plications. Normally, the last few rows of each multiplier differ slightly from other rows by adding
in extra partial products that result at the low end of a multiplication. For blocks that are combined
horizontally, the last few rows must be able to operate either normally by adding in the extra bits,
or as any other row and not adding in the extra bits. The modification is easy to make with a few
multiplexors.
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Figure 5.3: Blocks and combiners for 64-bit multiplication

Combining blocks vertically is slightly more complex. First, rows are combined in pairs: the
first and second row are combined as one pair, and the third and fourth rows are combined as
another. Then, the result from the first combiner is itself combined with the result from the second.

The combiners operate on the normal outputs from each block, which is a pair of bits in each
position. Therefore, there is no need for modification of the blocks to allow for combining verti-
cally.

Another potential complication with combining blocks is that they must be combined slightly
differently for different-size multiplications. To reduce the need for input multiplexors, the blocks
used for each size are chosen so that each block’s input bits are the same, regardless of the multi-
plication size. The correct routing for the output of each block, however, changes depending on the
multiplication size. Figure 5.4 shows the multiplier organization for 32-bit multiplications: note
that the blocks are numbered the same as in Figure 5.3, but this time only half of them are active.

The routing for 16-bit multiplications is slightly different from both 32-bit and 64-bit multipli-
cations. It is, though, quite simple: the four blocks used (numbered 0, 5, 10, and 15 in Figures 5.3
and 5.4) each produce 32 output bits. No combiners are needed for 16-bit multiplications.

Because the results are produced at different locations for different size multiplications, the
correct output needs to be selected. Multiplexors along the edge of the adder array select the
appropriate bits to feed to the final adder to produce the result. Some parts of the final result are
always produced at the same location and therefore do not need to be selected with a multiplexor:
for example, bits 15-0 of the final result are always produced at the side of block 0 (as Figures
5.3 and 5.4 show). Other parts of the result are produced in either two or three different locations,
and must be selected appropriately. Each multiplexor is smaller than a full adder, and in total they
consume less than 4% of the multiplier’s area; their total latency is less than a full adder.
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Figure 5.4: Blocks and combiners for 32-bit multiplication

5.2 Power, Performance, and Area

The important characteristics for VIRAM1 include power, performance, and area.

5.2.1 Power

Table 5.1 shows the important power results taken from Table 3.5 for the modified multiplier and
the complete multiplier built from original trees. All results represent the average case when each
multiplier is performing the maximum number of operations: e.g., four 16-bit multiplications, two
32-bit multiplications, or a single 64-bit multiplication. Both multipliers were simulated with the
same basic circuit blocks.

Bit size Tree Type Power, mW

16 bit
Complete Original 23.95
Modified 8.69

32 bit
Complete Original 55.91
Modified 37.44

64 bit
Complete Original 146.49
Modified 151.43

Table 5.1: Power measurements

The modified tree is significantly more power-efficient for both 16-bit and 32-bit multipli-
cations. The most significant source of power savings comes from using fewer compressors to
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perform the calculation: in the original, smaller multiplications are performed by sign-extending
inputs and performing the calculation on larger multipliers.

For 64-bit multiplications, the complete original is marginally more power-efficient than the
modified version. The main source of extra power consumed in the modified version is the com-
biners that are used to allow the smaller multipliers to perform larger multiplications.

The target multimedia applications described in Table 1.1 all show data sizes of 32 bits or
fewer. Unless a program were to perform nearly all 64-bit multiplications, the modified multiplier
is going to consume less power.

5.2.2 Performance

The multiplier for VIRAM1 needs to be able to perform a multiplication in two 5 nanosecond
cycles. The adder array consumes a significant part of the time required to perform a multiplication.

The original multiplier has a total effective circuit path length equivalent to 16 full adders. The
modified multiplier has an effective circuit path length equivalent to 13 full adders. In practical
terms, that means that if both circuits were completely custom-designed, the original multiplier
would need to be designed with faster basic blocks, which would most likely consume more area
and power.

5.2.3 Area

If both multipliers were built from the same basic subcircuits, the complete original multiplier
would require a total of 1,882,010 µm2, while the modified multiplier would require 1,600,445
µm2. Hence, the modified multiplier uses about 15% less area.

5.2.4 Summary

The modified multiplier is approximately 20% faster and uses about 15% less area than a multiplier
built from traditional blocks. The power consumed by the modified multiplier is about 60% less
than what the traditional multiplier uses for 16-bit operations, and about 30% less for 32-bit op-
erations; because of additional circuitry, and modified multiplier consumes about 3% more power
than the traditional multiplier for 64-bit calculations.

5.3 Comparison to Synthesized Multiplier

An alternative to a hand-designed multiplier that was considered for VIRAM1 is a synthesized
multiplier. A synthesized multiplier would be designed in Verilog and compiled to a circuit netlist
using either Synopsys’s Design Compiler or Module Compiler tools. The netlist would then be
used to produce layout for the multiplier by using an automatic place and route tool.

There are two strong benefits to using a synthesized multiplier: synthesizing a circuit is much
faster than laying it out by hand, and modifying a synthesized design is much quicker than with a
custom-layout circuit.

Synthesizing does have drawbacks. The most significant problems that synthesized circuits
have is that they tend to be larger and consume more power than custom-layout circuit.
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If a design uses both custom-layout and synthesized blocks, usually the datapaths are designed
by hand and control is synthesized. For each case, the benefits of each methodology are high-
lighted, and the drawbacks are minimized.

Datapaths are quite regular, often being design by repeating a bit-slice with few changes. That
regularity means that they can usually be designed by hand in a reasonable amount of time. Fur-
thermore, their specification does not often change, which means that they don’t usually require
modification once they’ve been designed. Datapaths are commonly the place where a large portion
of both chip area and power are consumed, so designing them by hand can have a large benefit.

Control blocks generally don’t have subcircuits that can be greatly optimized for power and
area, which means that they don’t stand to gain much from being designed by hand. They’re often
highly irregular and complex, which means that designing them by hand is extremely difficult.
Most bugs and specification changes for a chip require the control to change, which is relatively
easy to do in a synthesized block but can be very difficult in a custom-layout block.

Datapaths are often laid out by hand, but synthesizing them is becoming more common. With
a large library of components from which to select, a good synthesis tool can do a reasonable job
of minimizing circuit area and power. If the datapath is somewhat complicated, the benefits of
synthesis become more important: the circuit will be quicker to design, and if any changes are
needed, they will be easier to implement.

Unfortunately, an accurate comparison would require a complete implementation of both de-
signs. Although synthesis would require less time than custom hand layout, a serious implemen-
tation would require several iterations of synthesizing, timing analysis, and re-synthesis. Time
constraints prevent such an undertaking at this point; a good, in-depth analysis would be interest-
ing future work.
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Chapter 6

Summary and Future Work

6.1 Results

The initial goals of the vector integer multiplier for VIRAM1 were to design a partitionable mul-
tiplier that would operate in two 5 ns cycles at 1.2V, be smaller than 2 mm2 in a .18 µm process,
and consume less than 250 mW of power. The multiplier as designed meets the functional require-
ments, takes just over 1.6 mm2, and operates at less than 155 mW of power for 64-bit multiplica-
tions — significantly less for smaller multiplications.

The multiplier meets the goals. In the process of designing the circuits, many benefits of the
new approaches were shown, and some drawbacks were also revealed.

6.2 Benefits

The biggest benefit from the proposed design is that it saves significant power when performing
16-bit and 32-bit multiplications, which are the sizes most commonly required for the multimedia
applications that VIRAM1 targets. The reduced power consumption translates into longer battery
life, which is an important concern for portable devices.

The design performs well in other areas as well. The area of the proposed design is slightly
lower than that of a multiplier built from single-size blocks. Additionally, the computational length
of longest path in the new design is less than that of the old design, which allows the new design
to be built with smaller, more power-efficient circuits.

The new design has another benefit: it can be built with only a single type of adder tree being
designed. The design built from single-size multiplier blocks requires that 16-bit, 32-bit, and 64-
bit trees all be designed and tested. The adder trees all share elements of their design, and all
have common subblocks, but the trees are not identical. Tree design and testing was a significant
amount of the time consumed for the proposed multiplier; duplicating that effort two more times
would be a large effort.
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6.3 Drawbacks

One drawback resulting from designing the multiplier from smaller multiplier blocks is that there
are a greater number of blocks that must be designed. Most of them are quite simple, but they must
all still be designed and verified. A multiplier built from single-size blocks would only require
those blocks and a multiplexor to select the correct result. The multiplier design that was used
requires multiplier blocks, combiners, and multiplexors; additionally, the multiplier blocks require
a number of small modifications to make them operate correctly when being combined.

Another drawback to the technique of combining smaller blocks is that a large amount of
routing between the blocks is required. While the total size may still be less than a multiplier built
from single-size blocks, the savings end up being reduced by the area taken up for routing.

The routing penalty becomes more significant as more levels of partitionability are required.
By the time that two smaller partitions are required, for a total of three sizes (such as in VIRAM1,
which required 64-bit, 32-bit, and 16-bit multiplications) the routing is already significant; another
level would make the routing dominant.

6.4 Future Work

There are a number of alternative approaches to the design of the multiplier that could provide
interesting analyses.

6.4.1 Synthesized Multiplier

One of the most interesting comparisons that could be made is between a hand-layout design and
a synthesized design. The two techniques are very different, so there is a big potential for large
differences in their performance; quantifying those differences would be very useful to someone
considering both design alternatives.

The benefits and drawbacks of hand-layout and synthesized design are known in a general
sense, but it’s difficult to tell exactly how much the effective the benefits of either approach would
be. The multiplier circuit in VIRAM1 has a relatively large amount of complexity that could make
either alternative more or less attractive than it might otherwise be.

6.4.2 Different Tree Designs

The tree design used here was a relatively simple modification from the original Overturned Stairs
tree. More analysis of different approaches could provide new insight into better methods.

The 16-bit multiplier blocks that were used here were designed to be slightly different depend-
ing on where they were within the top-level hierarchy. That way, the extra circuitry that some
blocks required would not be wasted in blocks that would never use them. Unfortunately, that
approach led to a large amount of extra design and verification time. A quantification of the costs
of designing only a single flexible block that will work in any location would be interesting and
extremely useful in deciding whether the time savings of not designing blocks separately would be
worth the additional costs of wasted area.
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6.5 Conclusion

A multiplier for VIRAM1 was designed that meets the design requirements. The multiplier is able
to calculate one 64-bit, two 32-bit, or four 16-bit operations at once. It operates in two cycles at
1.2 V in a .18 µm process.

The multiplier meets other goals, as well. It is approximately 1.6 mm2, and consumes less than
155 mW of power.

The multiplier is based around an adder array that uses Overturned Stairs trees. The basic OS
trees are used to form 16-input multiplier blocks, which are then combined with 4:2 compressors
to perform larger multiplications. Because the blocks are split up, it is easy to perform two or four
simultaneous smaller multiplications. The subblock design also makes it simple to turn off blocks
that are not being used, and to thereby save power.

The 4:2 compressors used in VIRAM1 are based on Complimentary Pass-Transistor Logic with
Transmission Gate logic. They are smaller, faster, and use less power than the simple alternative
of using two 3:2 compressors, or full adders, chained together.

The current design works well, but there is further analysis that should be done to investigate
possible improvements.
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