
Exploiting Prediction to Reduce Power on Buses

Victor Wen
vwen@cs.berkeley.edu

Report No. UCB/CSD-3-1294

November 2003

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Exploiting Prediction to Reduce Power on Buses

Victor Wen
vwen@cs.berkeley.edu

Abstract

We explore the possibility of reducing energy consumed
by on-chip buses via stateful and stateless coding tech-
niques. We explore the design of a number of simple coding
schemes and simulate them using a modified SimpleScalar
simulator and SPEC benchmarks. We show an average of
36% savings in transitions on internal buses such as the re-
order buffer and register file. To quantify actual power sav-
ings, we design a simple dictionary based encoder/decoder
circuit in a 0.13�m process, extract it as a netlist, and sim-
ulate its behavior under SPICE. Utilizing a realistic wire
model with repeaters, we show that we canbreak evenat
median length scales of less than 11.5mm at 0.13�m and
project a break-even point of 2.7mm for a larger design at
0.07�m.

1. Introduction
Scaling trends have continually increased the importance of
wires relative to logic. Among other things, the ever rising
ambitions of computer architects have caused wire lengths
to remain constant or increase – even as transistor sizes have
shrunk. This observation suggests that energy conscious de-
signers should focus some of their attention on the energy
dissipated by on-chip wires. Clearly, this process can in-
volve a variety of techniques at the level of technology, cir-
cuits, and architectures. Many of these techniques are com-
plementary.

In this paper, we exploit abundant transistors to trans-
form information into a form that is less energy costly to
communicate; our techniques are complementary to other
options such reducing voltage swing. Energy is consumed
when wires change state. Thus, our goal will be to elim-
inate or reduce the total number of wire transitions, with
a focus on adjacent wires to reduce cross-coupling energy.
Compression techniques have long been used to reduce the
volume of off-chip communication. Given the large capaci-
tances of cross-chip interconnects, compression circuits can
easily save more power than they utilize. In contrast, we ad-
dress a more difficult question: is it possible to reduce the
traffic overon-chipbuses andsave energy while doing so?

Optional Transition Coding

Width WidthWidth

Latch Latch

Long bus

B BC

Width
C

Width
C Width C

[RAW + Residual]

Predict/Encode Predict/Decode

Long bus

Figure 1. Bus transcoding to reduce power:Arbitrary predic-
tion and/or compression algorithms can be used to reduce traf-
fic on long buses—as long as the state at either end is kept con-
sistent. Optional transition-coding can be inserted to reduce
the coding problem to one of minimizing Hamming weight of
successive values.

Since on-chip wires have capacitances which are orders-
of-magnitude smaller than cross-chip interconnects, the an-
swer to this question requires careful accounting of the en-
ergy consumed by the encoding and decoding process.

1.1. The Bus Transcoder
Figure 1 shows the basic idea, which we call “bus transcod-
ing” (hereafter called “transcoding”). Circuits at either end
of a long bus reduce the number of bus transitions. The en-
coder takes inWB bits and encodes them asWC bits. These
bits are then transmitted along the wire (with repeaters as
necessary). At the destination, the decoder takes inWC bits
and restores the originalWB bits. In general,WB 6= WC .
For this paper, we will assume that the encoder and decoder
are operating synchronously. In this case, these elements
can have arbitrarily complicated internal state; it is assumed
that the encoder FSM utilizes the input stream to make its
state transitions, while the decoder FSM uses the output
stream to make its transitions. The goal of this transcod-
ing process is to reduce the total energy expended on the
long bus.

We can envision many different transcoders. However, in
keeping with a philosophy that the encoder and decoder are
drop-in cells, we prefer techniques that do not change the
timing of the bus. This simple goal rules out naive uses of
compression that generate long, multi-cycle code words.

1

Transition Coder

Predictor

WB

WB
WB W + 2B

W + 2B

Mux

2

Figure 2. Utilizing Prediction for Transcoding:The predictor
generates a sorted list of up to2WB possible values. These val-
ues are sorted by prediction confidence. On match, a code is
generated to indicate which of the values matched. Two con-
trol bits select between predictions, raw data and raw inverted
data.

One simple enhancement to the scheme described above
is to inserttransition codingmodules at either end of the
bus. As shown by the figure, this enhancement causes the
encoding of data from encoders and decoders to represent
wire changesrather than absolute values: a one (1) on an
output from the encoder represents a wire that will change
its value (expend energy), while a zero (0) represents no
energy expenditure. This change in representation greatly
simplifies the energy optimization problem—even when ac-
counting for cross-coupling between adjacent wires. For in-
stance, we can easily performinversion codingin which we
send a value or its inverse to reduce transitions.

If some coding process reduces transitions on a bus, then
we can conclude that it willsave energyfor some bus length.
This is not a particularly sophisticated argument – energy
consumption increases with increasing amount of commu-
nication and scales linearly with the length of the bus. For a
given bus, type of traffic, and technology, we could say that
there is abreak-evenlength of the bus at which a transcoder
can save energy. As technology sizes shrink, this bus length
will shrink as well, since the power consumed by the en-
coder and decoder will decrease.

1.2. Using Data Prediction to Reduce Power
One interesting viewpoint for transcoder design is to uti-
lize value prediction techniques[7, 19] – often viewed as
providing limited performance enhancement – to save en-
ergy. In effect, we can run the same predictor on either
end of the bus and compare its result with the actual value
to be transmitted. Since both predictors are running syn-
chronously and on identical values, they will provide iden-
tical predictions. When these predictions match with a value
to be transmitted, we send nothing—to say that the predic-
tion was correct. When they do not match, we send the orig-
inal information directly (and transition a special control
bit). Should the predictors attain a 100% prediction rate,
then no energy would be consumed sending information.
Many data prediction techniques, in particular value pre-
diction, have reasonably high prediction rates [19], and if

we can apply some of these techniques to the bus traffic, we
could achieve a respectable reduction in energy by reduc-
ing the number of transition on the bus.

Figure 2 shows how we can use predictor confidence [8]
to improve our technique. Assume that the set of possible
predicted values are sorted by confidence. These values may
come from a single prediction strategy, or a complex com-
bination of multiple prediction strategies. The highest con-
fidence value will be matched with a code word that has
the lowest energy cost. Given transition coding, this would
be the all zero vector (no transitions). The nextWB val-
ues could be matched with the unique vectors of Hamming
weight one (i.e. with a single bit set). After this, we would
have to start using vectors with higher Hamming weight,
possibly sorted to account for cross-coupling.Whatever the
case, the predicted values are assigned code words from the
space ofWB-bit words. When the predictor is presented
with a new input word, the predictor checks its list of en-
coded values. If any of them match, it send the correspond-
ing code. If none of them match, it will send either the data
or its inverse.

1.3. Our Contributions
Previous studies of on-chip bus compression suffer from
two deficiencies. First, they utilize random traffic, a poor
approximation to real traffic. This has a tendency to under-
estimate the potential advantages of compression technol-
ogy. In contrast, we examine traces of internal traffic from
several buses in a simulation of a running superscalar pro-
cessor. Our unique spin on this study will be to consider
data prediction technologies as a foundation for transcod-
ing.

Second, previous studies have focused on the reduction
in bus trafficwhile completely ignoring the complexity and
energy consumed by the encoding and decoding circuits.
Two very important questions can only be answered by at-
tempting to design a complete transcoder circuit:

1. Will the transcoder power be so high that no
reasonably-sized chip will meet the break-even point?

2. Is the area consumed by transcoder logic too large for
practical use?

We design a transcoder in a 0.13�m silicon technology,
carefully producing a compact, energy efficient layout. We
discuss some of its internal circuits, consider its size, and
provide an accurate analysis of its potential for saving en-
ergy.

Our results show that despite potentially large reduc-
tions in bus energy achieved by more complicated predic-
tion methods, a very simple, energy efficient transcoder is
the only method which can effectively save energy for on-
chip buses of reasonable length. With the transcoder of Sec-
tion 5, we show that we canbreak evenat length scales

2

of less than 11.5mm at 0.13�m and a projected length of
2.7mm for a more complex design in 0.07�m.

The rest of this paper is as follows: Section 2, presents
related work. Section 3 presents a detailed model of long
wires for modern chips. Then, Section 4 explores the poten-
tial savings that could be gained through prediction tech-
nologies, using SimpleScalar [6] and SPEC benchmarks.
Section 5 follows with the architecture and layout of a prac-
tical bus compression engine. We describe future work and
conclude in section 7.

2. Related Work

There have been a number of papers on the subject of cod-
ing for low power. Bus-Invert coding [23] and partial bus-
invert coding [20] implement the same idea of inverting the
bus value to be sent if more than half the wires are chang-
ing. [16] provides the circuits necessary to implement the
scheme including a novel analog majority voter to count the
number of ones on the input. Additional schemes include
workzone encoding for address buses [15], which was ex-
tended in [1] to partition the memory space into a number
of sectors that represent different segments of the address
space. [13] proposes a similar design of sending the code-
word xor’ed with the current input that has the lowest Ham-
ming weight.

In addition to these experimental approaches, several pa-
pers propose more complicated algorithmic solutions. [21]
proposes a static code-book but the encoding used is de-
termined by the one that minimizes a more complex fit-
ness function including inter-wire capacitance. [9] proposes
a more complicated scheme for address buses that re-maps
transitioning and non-transitioning wires to shield cross-
coupled wires.

At the circuit level, Zhang et al. [25] proposes circuit en-
hancements to reduce the voltage swing on wire transitions
in interconnect.

Basu et al. [4] proposes placing a value cache at both
ends of a communication channel. When “hit”, the system
sends the index to the cache entry, instead of whole word, to
reduce transitions. Their scheme focuses on off-chip buses
and for DSP and embedded applications.

Parcerisa and Gonz´alez [18] applied value prediction
technique for inter-cluster communication for clustered mi-
croarchitecture. However, their goal is to reduce long wire
delay instead of energy.

Our technique differs from those listed above by incor-
porating value prediction techniques to reduce on-chip com-
munication energy. In our paper, we also evaluate our en-
ergy reduction scheme against real bus traffic generated by
SPEC benchmarks rather than randomly generated bus traf-
fic.

ÿ�ÿ��� ÿ���

� � � �� �

� � � � � � � �

Figure 3. Wire Model: Wires involve wire-to-substrate capac-
itance (CS) and inter-wire capacitance (CI). The ratio of the
two (� =

CI

CS
) denotes the relative importance oftransitions

and cross-coupling.

cascade
Buffer

Uniformly repeated line

Figure 4. Repeater Model:After an initial buffer cascade, re-
peaters are placed uniformly throughout wire.
3. Interconnect Models
Our first order of business is to understand the character-
istics of buses in modern integrated circuits. Energy con-
sumption involves two distinct elements:capacitancesbe-
tween wires and the substrate, andrepeatersto control la-
tency.

3.1. Interwire Capacitance
Every wire transition expends energy. Furthermore, wires
that are adjacent to one another expend energy through
cross-coupling. A simple model that accounts for these two
effects is shown in Figure 3 [21]. This figure illustrates two
distinct types of capacitive couplings1: wire-substrate ca-
pacitance (CS) and inter-wire capacitance (CI). These val-
ues depend on technological effects such as the width and
height of wires, oxide thickness, distance between wires,
etc. Total capacitance growslinearly in the length of the
data bus.

The relationship between expended energy and bus tran-
sition activity is governed by the equation for energy stored
in a capacitor:E = 1

2
CV 2, whereC is the size of the ca-

pacitor andV is the voltage stored on the capacitor. Dur-
ing the process of charging this capacitor, the power sup-
ply expends2E total energy. We model the energy dissi-
pation in two chunks:E during the initial charge, andE
during the discharge. Consequently, the energy expended is
proportionalto the number of transitions (charge/discharge
operations). In combination with the circuit of Figure 3, we
can derive a model for the energy expended by wiren (Wn),
denoted byEn:

En / Lbus � (�n +��n) (1)

1 We will ignore other parasitic effects (such as coupling between non-
adjacent wires), since these are small in comparison [9].

3

 0

 1

 2

 3

 4

 5

 6

 5 10 15 20 25 30

E
ne

rg
y

(p
J)

Wire Length (mm)

Repeater_013u
Repeater_010u
Repeater_007u

Wire_013u
Wire_010u
Wire_007u

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 5 10 15 20 25 30

D
el

ay
 (

ps
)

Wire length (mm)

Repeater_013u
Repeater_010u
Repeater_007u

Wire_013u
Wire_010u
Wire_007u

Figure 5. Energy consumed by wire capacitance to substrate
and adjacent wires for different technologies (L=1: : :30mm)

Figure 6. Average wire propagation delay as a function of wire
length (L=1: : :30mm) given our technology parameters

Here,Lbus is the length of the bus,� is the ratio between
inter-wire and wire-substrate capacitances (Figure 3),�n is
the total number of bus transitions onWn, and�n is the to-
tal number of pair-wise inter-bus transitions betweenWn

andWn+1. Energy scales linearly with wire length because
capacitance scales linearly with length.

�n =
X

t

(W t

n
�W t+1

n
) �
X

t

jW t

n
�W t+1

n
j (2)

�n =
X

t

j(W t

n �W t

n+1)� (W t+1
n �W t+1

n+1)j (3)

To explore the effectiveness of power reduction techniques,
we compute values for�n and�n over the course of some
simulation. We can attack either or both terms as a way to
reduce the energy of communication.

3.2. Signal Repeaters
For longer on-chip wires, repeaters are placed throughout to
reduce delay. Therefore, we introduce a standard buffered
wire model [2, 3, 17] that will later be included in the en-
ergy savings analysis of the various coding methods.

Our buffered model is illustrated in Figure 4. This stan-
dard model involves uniformly placed inverters of equal
size throughout the length of the wire. An exponentially-
increasing cascade drives the sending end of the wire.
The ideal size and number of repeaters are technology-
dependent. Consequently, we derived wire parameters as
discussed in [12], including real technology parameters2.
The initial drivers are needed because the size of repeaters
are large (40 to 50 times wider than minimum size invert-
ers). Although there are alternative approaches for repeater
placement [22], this repeater scheme is the most commonly
used at this time.

2 Wire parameters (resistance, capacitance and inductance) were de-
rived from the Berkeley Predictive Technology Model (BPTM) [5], us-
ing wire geometries and dielectric values from the International Tech-
nology Roadmap for Semiconductors (ITRS) road map. The wires are
placed at minimum pitch apart for this study.

Technology Wire type Average�
0.13um Unbuffered wire 14.0

With repeaters 0.670
0.10um Unbuffered wire 16.6

With repeaters 0.576
0.07um Unbuffered wire 14.5

With repeaters 0.591
Table 1. Effective� values for various technologies.

The energy and delay of our wire model for various tech-
nology is shown in Figure 5 and Figure 6. These graphs are
generated with HSPICE simulations using real process pa-
rameters (for 0.13�m) and BPTM parameters (for 0.10�m
and 0.07�m). The number of repeaters to place varies with
length of wire and is calculated based on [12]. Energy and
delay for unbuffered wires are also included for compari-
son. Unbuffered wires exhibit quadratic delay with respect
to length whereas the standard repeater model delay is lin-
ear. The buffered wire consumes more energy due to large
repeaters.

Based on the energy consumptions from the simulations,
we show the average effective� for buffered and unbuffered
wire in Table 1. Although inter-wire capacitance, CI , is
significant in long wires, its effect is less pronounced in
buffered wires because repeater capacitances increases CS .

4. Bus Traces and Compression
In this section, we describe the bus traffic we investigate for
energy reduction. We briefly look at some of the statistical
characteristics of this traffic. From here, we present some
coding schemes and determine how well each of them re-
duce wire energy, taking into account coupling transitions.

4.1. Extracting Realistic Bus Traffic
To explore traffic along realistic buses, we instrumented
SimpleScalar 3.0 [6] to capture data values on internal
buses. SimpleScalar is a well-knownfunctionalsimulator
for out-of-order execution. In functional simulation, the re-
sults of instructions are computed immediately upon in-

4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000 1e+06

F
ra

ct
io

n
of

 to
ta

l v
al

ue
s

Number of unique values

gcc, reg bus
gcc, memory data bus

su2cor, reg bus
su2cor, memory data bus

swim, reg bus
swim, memory data bus

turb3d, reg bus
turb3d, memory data bus

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

A
ve

ra
ge

 fr
ac

tio
n

of
 v

al
ue

s
ar

e
un

iq
ue

Window size

su2cor reg bus
swim reg bus

gcc reg bus
turb3d reg bus

gcc memory data
su2cor memory data

swim memory data
turb3d memory data

Figure 7. CDF of most frequent unique values that appears in
traces (for memory data and register buses)

Figure 8. Average fraction of unique values to total values
found within some window size (for memory data and regis-
ter buses)

struction dispatch, with simple accounting to track input and
output dependencies through registers and memory. User
defined latency parameters are used to determine when in-
dividual dependencies can be resolved. As a result, there
are no “buses” with realistic timing in SimpleScalar. To ad-
dress this problem, we enhanced SimpleScalar withbus tim-
ing generatorsthat extract values from the ongoing simula-
tion and re-timed them to resemble actual bus timing.

In this paper, we explore two buses: thememory busand
theinteger register bus. The memory bus tends to have high
capacitance due to the fact that it extends off-chip or, in the
case of Systems on a Chip (SOC), travels a long distance
on chip. The integer register bus tends to have high fan-
outs, and thus may have high capacitance. These two buses
are not the only long/capacitive buses in a microprocessor.
Rather, they are intended to be representatives for evalua-
tion of bus encoding.

Output Bus to Caches/Memory:The most detailed Sim-
pleScalar simulator, sim-outorder, performs a fair amount of
timing and dependency accounting. To simulate the exter-
nal data and address buses, we maintained a queue of time-
ordered entries for the value on the bus from the current cy-
cle into the future. Memory events are inserted in the sched-
uler queue when load or store instructions are ready to exe-
cute. If the data must be fetched from main memory, the ac-
cess latency calculated by sim-outorder generates an event
corresponding to a future cycle in which the value will ap-
pear on the data bus. We refer to this bus as the “memory
bus” throughout the rest of the paper.

Register file output to functional units:The synthesis of bus
behavior was easy for the register bus, since every instruc-
tion goes through an explicit pipeline stage in SimpleScalar.
Hence, we could easily determine what value would be on
the register bus each cycle. We refer to this bus as the “reg-
ister bus” throughout the rest of the paper.

4.2. Trace characteristics
To evaluate bus value compression effectiveness, we start
by investigating some statistical properties of the bus val-
ues themselves. We pick some statistics which would shed
light on how a few particular compressors might perform
and use this to motivate a more detailed investigation later
in this section of specific coding mechanisms.

Figure 7 shows the cumulative distribution function of all
unique values, sorted in order of most frequent to least fre-
quent. This graph attempts to show how many unique val-
ues make up the majority of trace values for several bench-
marks from a 10 million value trace. For the 4 benchmarks
we chose to look at in this analysis, none of them have a
unique value set size with significant coverage until we get
into the 100-1000 value range. This suggests that a strictly
frequency-based compression approach will not be very ef-
fective unless we can afford a very large dictionary size to
hold 100s-1000s of unique bus values.

Figure 8 shows the average fraction of values in a trace
that are unique in a window, given a particular window size.
This statistic shows that a Window-based dictionary com-
pressor might have some success with even a small num-
ber of unique entries (10s of entries) because the fraction
of values in a window are relatively small for even a 10 en-
try window.

4.3. Coding schemes
Now that we have seen a number of bus traffic character-
istics, we delve into bus coding techniques. In this section,
we look at a number of quasi-stateless and stateful coding
mechanisms and then evaluate their effectiveness at reduc-
ing bus energy.

Spatial encoder:If WC = 2WB , then we can arrange to
take the input value and code it as a single value on the2WB -
bit bus. This means that every possible input value causes at
most one transition on the bus. We call this the “Spatial En-
coder” since it converts each input value to a transition at

5

32 input bits
 .
 .
 .

 .
 .

4294967296 output bits
 .

0
0
0
0
0
.
.
.

1
1
1
1
1
.
.
.

0
1
0
1
0
.
.
.

1
0
1
0
1
.
.
.

1
1
0
0
1
1
.
.

. . . .

output to bus

input for bus

Minimum Hamming Weight

last bus value

Figure 9. Spatial coder:This stateless coder is represented as a
demultiplexer

Figure 10. Generalized inversion coder:This stateless coder
chooses a bit vector that will minimize total and coupled tran-
sitions for a given input and current bus value

current bus input

0

stride 2 predict

stride 1 predict

...

previous bus input shift register

or drop
select entry

current
bus input

Frequency table
Shift register

Figure 11. Stride predictor:Block diagram of a simple stride
predictor. Strides of one and two are calculated in the diagram
but generalizes to any number of strides

Figure 12. Context-based coder:Input compared to entries in
shift register and frequency table. On match, index of entry
sent. Otherwise, new value shifted into shift register and exit-
ing value dropped or replaces LFU entry in frequency table.

a particular spatial location in the long bus. This provides
extremely low communication energy at the expense of an
impractical, exponential cost in area. In Figure 9, the spa-
tial encoder is represented as a demultiplexer.

Inversion encoder:A more complicated stateless encoder
is the generalized inversion coder in Figure 10. This gen-
eral inversion encoder first produces a “transition vector”
by xor’ing the current and new bus value, and then xors
this transition vector with one of a number of available con-
stant bit patterns to generate the next bus value. The bit pat-
tern chosen is the one that results in the minimum total and
coupled transitions after xor’ing. The computed bus value
is sent along with a number of bits to identify which con-
stant bit pattern was chosen allowing the decoder to repro-
duce the original data.

LAST-value predictor:A LAST-value predictor [14] cap-
tures strings of repeated values. Although we do not use
this predictor by itself, we include it in combination with
all of the remaining predictors. We assign code “0” to re-

peated values to avoid a penalty relative to the un-encoded
case (which expends no energy when the bus is unchanged).

Strided predictor:Our first viable predictor contains mul-
tiple stride predictors and makes use of prediction con-
fidence. As shown in Figure 11, a shift register contain-
ing previous bus values is used to calculate the stride of
every data-word, every other data-word, every 3rd data-
word, etc. The lower order strides are encoded with lower
weight codes because they are assumed to be more fre-
quently matched (having a constant stride every 4th cycle is
usually more probable than every 67th cycle). Thus the pre-
dictors in which we have more confidence, are assigned a
lower weight code. The lowest instruction interval to match
the stride for the bus value to be encoded is used. The value
sent is then just a indication of which strided predictor out-
put should be used by the decoder.

Window-based predictor:Our second predictor captures
the locality implied by Figure 8. It keeps the last few unique
values in a shift-register and encodes them as low-weight

6

Freq: 1
Code: 0x3

Freq: 10
Code: 0x2

Freq: 7
Code: 0x4

Freq: 5
Code: 0x8

Freq: 100
Code: 0x0

Freq: 14
Code: 0x1

0x0

0x5

0xA

0x2

0xB

0xF

Freq: 14
Code: 0x1

0x0

0x5

0xA

0x2

0xB

0xF Freq: 1
Code: 0x3

Freq: 10
Code: 0x2

Freq: 7
Code: 0x4

Freq: 5
Code: 0x8

Code: 0x0
Freq: 100

Figure 13.Value-based, Context-based predictor:Coding based
on the frequency of values. Here, states represent possible bus
values, arcs represent transitions between them

Figure 14. Transition-based, Context-based predictor:Coding
based on the frequency of transitions from value to value

codes. A shift occurs when a value appears that is not al-
ready in the register, entering a new value and discarding
the oldest value.

Context-based predictor:We considered two flavors
of Context-based transcoder 1) value-based, and 2)
transition-based. In the value-based transcoder, we per-
form transition activity compression by coding based
on the frequencies of bus values. We maintain a ta-
ble of frequently seen bus values and assign low Ham-
ming weight codes to more frequent values [19] (see
Figure 13). In the transition-based transcoder, we as-
sign code based on the frequency of value transitions (i.e.
number of identical consecutive inputs). We maintain a ta-
ble of pairs of input values and assign low-weight codes to
more frequent pairs (see Figure 14).

The schematics for the Context-based transcoder is
shown in Figure 12. When the value to be sent is not in the
table, the value is sent un-encoded. For table with num-
ber of entries less than bus width, the code-word associ-
ated with each entry can be a single bit since each wire
in the bus can uniquely identify an entry. On the other
hand, if the number of entries is greater than bus width,
then some entries will have code-words with more Ham-
ming weight.

Each entry has a frequency counter which is incremented
on a match to the bus input. Naively, a new bus value could
be inserted into the table immediately, replacing the lowest
frequency value. However, this causes thrashing on lowest
value. Instead, we utilize a Window-based predictor struc-
ture (shift-register) with frequency counts at the input. En-
tries in the shift register accumulate counts and are later en-
tered into the frequency table if their frequency count is
above threshold. To accommodate phases in computation,
we introduced a periodic reduction in counter values; every

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0.1 1 10 100

N
or

m
al

iz
ed

 E
ne

rg
y

P
er

ce
nt

ag
e

R
em

ai
ni

ng

Actual wire Λ

memory bus average λ0
memory bus average λ1
memory bus average λN
register bus average λ0
register bus average λ1
register bus average λN

random λ0
random λ1
random λN

Figure 15.Inversion coder:Normalized energy of coded wire as
a function the wire’s � on the register bus for inversion coders
which do not necessarily code according to the correct�

so often, we divide all of the counters by 2. We call this pe-
riod the “counter division time.” Undivided frequency table
entries could accumulate very high frequency counts long in
the past which no longer represent relevant statistics of cur-
rent bus traffic.

4.4. Coding effectiveness
With the coding schemes described, we are now going to
determine the amount of bus energy each scheme can elim-
inate. Unless otherwise noted, we assume the transition to
coupling energy ratio is 1 (� = 1). We also do not take into
consideration the energy used in the encoding and decod-
ing process. We will address this in Section 5.

Inversion performance:Figure 15 shows how well a num-
ber of these inversion encoders perform when using the fol-
lowing input streams: the register file output bus and the
memory data bus from 4 SPEC benchmarks, and uniformly
distributed random data. Three different minimizing func-

7

-5

 0

 5

 10

 15

 20

 25

 30

 35

 5 10 15 20 25 30

N
or

m
al

iz
ed

 E
ne

rg
y

R
em

ov
ed

Strides

random
ijpeg

m88ksim
go

gcc
compress

perl
hydro2d

fpppp
apsi

applu
wave5
turb3d

tomcatv
swim

su2cor
mgrid

-10

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30

N
or

m
al

iz
ed

 E
ne

rg
y

R
em

ov
ed

Strides

random
ijpeg

m88ksim
go

gcc
compress

perl
hydro2d

fpppp
apsi

applu
wave5
turb3d

tomcatv
swim

su2cor
mgrid

Figure 16. Strided Predictor Performance:Percent of normal-
ized energy removed by strided predictor on memory bus

Figure 17. Strided Predictor Performance:Percent of normal-
ized energy removed by strided predictors on register bus

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60

N
or

m
al

iz
ed

 E
ne

rg
y

R
em

ov
ed

Shift Register Size

ijpeg
m88ksim

go
gcc

compress
perl

hydro2d
fpppp

apsi
applu

wave5
turb3d

tomcatv
swim

su2cor
mgrid

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60

N
or

m
al

iz
ed

 E
ne

rg
y

R
em

ov
ed

Shift Register Size

ijpeg
m88ksim

go
gcc

compress
perl

hydro2d
fpppp

apsi
applu

wave5
turb3d

tomcatv
swim

su2cor
mgrid

Figure 18. Window-based transcoder:Normalized energy vs
shift register size on memory bus.

Figure 19. Window-based transcoder:Normalized energy vs
shift register size on register bus.

tions are used:�0,�1, and�N. In �0, the function chooses
a bit pattern assuming the technology specific� in equa-
tion 1 is 0, which is equivalent to the encoder in [23]. In�1,
the function assumes� = 1, and in�N, the function knows
the correct value of�. We then ran the inversion coder with
varying actual� and calculate energy saved for each of the
functions. Note that – except for high values of actual�,
codes with measured� = 1 (�1) is pretty accurate approxi-
mation. The figure shows that with the exception of� � :5,
using random data to determine the energy consumption of
an encoding scheme will generally produce results that are
better than what would occur in reality. This is why we eval-
uated our techniques on actual SPEC benchmark bus traces.

Strided performance:To evaluate the performance of the
strided predictor, we look at how much energy expendi-
ture (in the form of transitions and cross coupling events)
is removed by having stride predictors available up to some
interval. Figure 16 and 17 plot the energy reduced by the
stride predictors, normalized to the un-encoded case, as a
function of the number of stride predictors used. On the
memory data bus in Figure 16, there is an observable jump
in energy reduction between 3 stride predictors and 4 stride

predictors but it is not large and the performance scales
more or less linearly otherwise for most benchmarks.

With different bus traffic, like one of the register file
output ports, Figure 17 again gives no obvious conclusion
of how many stride predictors would be useful across the
benchmarks. It is still the case though that adding more
stride predictors reduces the number of bus transitions and
thus the energy, which is what we would expect. These re-
sults show us that there probably is not an obvious num-
ber of stride predictors which would perform well over all
workloads in many cases.

Thus, this stride predictor encoding scheme works rea-
sonably well in reducing the energy expended by a bus.
However, if we compare Figures 16 and 17 to Figure 15, we
see that for the same bus and wire model, some of the state-
less inversion coders remove more energy than the biggest
stride predictors. This indicates that perhaps the stride pre-
dictors are not the best stateful coding mechanism.

Window-based performance:Figures 18 and 19 plot en-
ergy removed by Window-based transcoder, as a function
of shift-register size. The knees of the curves center around
8. At this configuration, the transcoder removes about 19-

8

 0

 10

 20

 30

 40

 50

 60

 70

 80

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

N
or

m
al

iz
ed

 E
ne

rg
y

R
em

ov
ed

Table Size

random
ijpeg

m88ksim
go

gcc
compress

perl
hydro2d

fpppp
apsi

applu
wave5
turb3d

tomcatv
swim

su2cor
mgrid

Figure 20.Context-based transcoder:Normalized energy vs fre-
quency table size on memory bus for transition-based design
(shift reg size = 8)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

N
or

m
al

iz
ed

 E
ne

rg
y

R
em

ov
ed

Table Size

random
ijpeg

m88ksim
go

gcc
compress

perl
hydro2d

fpppp
apsi

applu
wave5
turb3d

tomcatv
swim

su2cor
mgrid

Figure 21.Context-based transcoder:Normalized energy vs fre-
quency table size on register port for transition-based design
(shift reg size = 8)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

N
or

m
al

iz
ed

 E
ne

rg
y

R
em

ov
ed

Table Size

random
ijpeg

m88ksim
go

gcc
compress

perl
hydro2d

fpppp
apsi

applu
wave5
turb3d

tomcatv
swim

su2cor
mgrid

Figure 22.Context-based transcoder:Normalized energy vs fre-
quency table size on memory bus for value-based design (shift
reg size = 8)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

N
or

m
al

iz
ed

 E
ne

rg
y

R
em

ov
ed

Table Size

random
ijpeg

m88ksim
go

gcc
compress

perl
hydro2d

fpppp
apsi

applu
wave5
turb3d

tomcatv
swim

su2cor
mgrid

Figure 23.Context-based transcoder:Normalized energy vs fre-
quency table size on register port for value-based design (shift
reg size = 8)

25% of the energy—a respectable performance.

Context-based performance:Figure 20 and Figure 21 plot
the energy removed by the transition-based transcoder, nor-
malized to the un-encoded case. Comparing this with value-
based transcoder (Figures 22 and 23), we see that the
transition-based transcoder does not perform as well as
value-based, given the same amount of hardware due to the
fact there are many more arcs than states.3 Because there
are many more arcs, the probability is less that a given bus
input will hit in either the frequency table or shift regis-
ter compared against value-based scheme. Thus, we focus
on value-based scheme for subsequent studies.

There are a number of parameters for the Context-based
transcoder architecture. The primary ones being the length
of the shift register, the counter division time, and the size

3 For 32-bit bus, there are232 states but almost264 arcs.

of the frequency table. The length of shift register is impor-
tant because it dictates how long a new value can accumu-
late frequency counts before it’s shifted out. The counter di-
vision time determines how quickly the frequency counts
are divided to accommodate phases of computation.

For frequency table sizes, Figures 22 and Figures 23
show that somewhere between 20 and 32 to be optimal for
a shift register size of 8. These plots exhibit a more no-
ticeable asymptote than the stride predictor simulations. We
reach the point of diminishing returns for the frequency ta-
ble size greater than 16. For shift register size, we found
that 8 entries to be a good trade-off between normalized en-
ergy removed and hardware complexity, as shown in Fig-
ure 24. For division time, we experiment and find that the
normalized energy removed levels off around 4096 cycles
for many of the benchmarks and differing frequency table
sizes, as shown in Figure 25.

From these result, the Context-based encoder removes

9

 0

 10

 20

 30

 40

 50

 60

 70

 80

 4 8 12 16 20 24 28 32

N
or

m
al

iz
ed

 E
ne

rg
y

R
em

ov
ed

Shift Register Size

li:16
li:64

compress:16
compress:64

gcc:16
gcc:64
perl:16
perl:64

fpppp:16
fpppp:64

apsi:16
apsi:64

swim:16
swim:64

Figure 24. Context-based transcoder:Normalized energy vs
shift register size for the register output port with tables sizes
of 16 & 64 for value-based design

 0

 10

 20

 30

 40

 50

 60

 70

 80

 4 16 64 256 1024 4096 16384

N
or

m
al

iz
ed

 E
ne

rg
y

R
em

ov
ed

Counter Divide Period

li:16
li:64

compress:16
compress:64

gcc:16
gcc:64
perl:16
perl:64

fpppp:16
fpppp:64

apsi:16
apsi:64

swim:16
swim:64

Figure 25. Context-based transcoder:Normalized energy vs
counter divide frequency for the register port with table sizes
of 16 & 64 for value-based design

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70

E
ne

rg
y

(p
J)

Number of total value entries

15mm Context
15mm Window
10mm Context
10mm Window

5mm Context
5mm Window

Figure 26. Energy budget of a number of different wire lengths

about 25% to 35% of normalized energy on average for rea-
sonable shift register sizes (4 to 8) and table sizes (24 to 32).
If we compare these results to the inversion coders and the
stride predictors, the stride predictors remove only 10% to
15% of the energy and the inversion coders remove 15% to
20% (except for the random input).

The Window and Context-based transcoders have rela-
tively little arithmetic logic compared to the other options.
The inversion coder must compute up to 64 transition vec-
tors and then decide the one with the smallest Hamming
weight. This would involve 64, 32-bit xors for the transi-
tion vectors, accumulators for the weight calculation and
comparators. Stride predictors require 2 subtractions and a
comparison for each desired stride. The Context-based en-
coder requires only frequency comparisons and counters.
The Window-based encoder is even simpler. Given their su-
perior potential for removing energy, we continue to explore
Window and Context-based encoders in following sections.

5. Toward Building a Real Transcoder
The very first task in designing a real transcoder is to
determine how much energy we can use for encod-
ing/decoding process. We called this metric,energy
budget. Using such metric and careful analysis of en-
ergy consuming operations of the transcoder, we de-
signed low-power circuitry to implement transcoder func-
tion and ultimately laying it out to determine final energy
consumption. Because it is nearly impossible to simu-
late the entire circuit for the duration of SPEC benchmark
runs in SPICE, we devised a statistical model to approx-
imate the energy consumed by the transcoder. Further-
more, we estimated the energy consumption of transcoder
for 0.10�m and 0.07�m technology using BPTM mod-
els. Finally we presented the crossover points4 for various
technologies and Window-based transcoder on two differ-
ent buses.

5.1. Energy budget
If we consider the energy consumed by wire transitions of
various coupling combinations and the transitions we elimi-
nate using some coding module, we obtain what we will call
ourenergy budget. This metric is independent of the partic-
ular implementation we choose to use for our encoding and
decoding modules, and depends only on our particular wire
model and transition code.

In Figure 26, we show the transcoder energy budget as a
function of size in both Window-based and Context-based
designs. The different lines correspond to particular wire
lengths and transcoder configurations. Since transcoder en-
ergy is independent of wire length and each transition saved

4 Crossover points are defined as the wire length in which the energy of
transcoder+wire equals to the energy of pure wire. It’s an important
metric because our transcoder will start saving energy from that point
on.

10

0

.

.

...

CounterTag PB

0xFFEE

0x1122

0

0

9

8

0x9988

0x3344

0x7788

0

0

0

6

6

6
Match

0x5438 7

.

(a) Entry “0x7788” is a
match

...

...

CounterTag PB

0xFFEE

0x1122

0

0

9

8

0x9988

0x3344

0x7788

0

0

1

6

6

6

0x5438 7 0

Set PB

(b) Pending bit for en-
try “0x7788” is set

...

...

CounterTag PB

0xFFEE

0x1122

0

0

9

8

0x3344 0

0

6

6

6

0x5438 7 0

0x9988

0x7788 1
Swap

(c) Entry “0x7788” and
entry “0x9988”

swapped

...

...

CounterTag PB

0xFFEE

0x1122

0

0

9

8

1

0

6

6

6

0x5438 7 0

0x9988

00x3344

0x7788
Swap

(d) Entry “0x7788” and
entry “0x3344”

swapped

...

...

CounterTag PB

0xFFEE

0x1122

0

0

9

8

0

0

7

6

6

0x5438 7 0

0x9988

00x3344

0x7788
Incr Counter

(e) Counter for entry
“0x7788” incremented,
pending bit unset b/c
“0x5438” has higher
counter value than

“0x7788”
Figure 27.Swapping Algorithm

is worth more energy for longer lengths, we see that the en-
ergy budget increases with increasing wire length. Because
the Context-based architecture saves only a small fraction
more transitions than the Window-based architecture for
shorter wire lengths, they have approximately the same en-
ergy budget. For longer wires (� 15mm), the energy bud-
get gap between them widens.

In the following section, we are going introduce a sim-
ple base case, the inversion coder, for comparison. Then we
are going to make a detailed implementation analysis of
the transcoder designs to get an estimate on complexities,
area and energy. We must choose one of the two transcoder
designs for the energy budget analysis. Since both designs
save about the same amount of energy, we consider a com-
plexity metric to break the tie.

5.2. Base Case: Simple Inversion Coder
We examined a simple inversion coder to compare against
the Context-based and Window-based transcoder. The in-
version coder we studied is slightly different than those de-
scribed in previous literatures [16, 20, 23]. Since our goal
is to minimize transitions, instead of minimizing the Ham-
ming weight based on input alone, we minimize the Ham-
ming weight of the XOR of input and the current bus value.
The reasoning for this approach is to minimize transitions
for a string of repeated values (in which case, transition cod-
ing will perform worse than un-encoded case).

5.3. Transcoder Designs
In this section, we describe an efficient sorting algorithm,
transcoder operations, and custom circuits for the Context-
based and Window-based transcoder. We also discuss the
complexities of these two designs.

5.3.1. Efficient Sorting Algorithm To avoid storing the
codewords directly in the frequency table, we used the po-
sition of an entry in the table as the code. Thus it is im-
portant to ensure that the most frequent values in the fre-
quency table are coded with minimum weight codes. There-

fore, sorting the frequency table is necessary to keep the
counter values in order. We devised a low-overhead sorting
algorithm to keep frequency table sorted in Context-based
transcoder. This algorithm avoids a full resorting upon ev-
ery table update. Performing general sorting in hardware is
non-trivial and requires a large amount of area. Most sort-
ing scheme requires orderO(N logN) comparators for the
sorting network and/or a memory element [11, 24]. To avoid
such overhead, we introduce the following invariants:

Invariant 1: Each entry must have an unique tag. Thus
there can be at most one match for a bus value.

Invariant 2: Entries placed higher in the table have fre-
quency counter values greater or equal to the entries
located lower in the table.

Invariant 1 is used so we can use the match lines as the
code word transmitted and we do not need to store the code
words in the frequency table. This simplifies the actual en-
coding logic.

Invariant 2 is used to avoid the complexity of general
sorting. To perform a full sort, each entry in the frequency
table must be able to swap with any other entry arbitrarily
and entry pairs must be able to perform full comparisons be-
tween the counter values5. The amount of wire connections
goes up byO(n2). The wires will have large load capaci-
tance and every swapping will cause large significant power
consumption. Instead of allowing arbitrary swapping, we
limit each entry to swapping with its neighbors only. Thus
there are onlyO(n) connections. This not only reduces load
capacitances on these local wires, it also keeps their lengths
short to further reduce wire capacitance. Implementing a
full comparator requires more hardware and increases the
complexity of the encoder. Thus we decide to use XOR
comparators that only distinguish equal or not equal cases.

5 By full comparison, we mean that the comparison logic can distin-
guish that a value is greater than, equal to or less than another value.

11

The next challenge is to preserve sorted order under this re-
striction. We introduce a pending bit for each entry to ac-
complish this. The algorithm works as follows:

1 When there is a “hit” in the frequency table, instead
of incrementing the counter of the “hit” entry immedi-
ately, we set the pending bit, indicating that the counter
has a pending increment.

2 Every cycle, the top entry of the frequency table will
have its counter incremented if its pending bit(s) are
set.

3 Every cycle, pair-wise comparison between entries
are performed. If the counter values are different be-
tween adjacent entries (i.e. the lower entry has a lower
counter value than the higher entry), then we do not
swap them. We increment the counter(s) if the respec-
tive pending bit(s) is set, and unset the pending bit.
However, if the entry counters are the same and the
pending bit is set for the lower entry, then we swap the
two entries.

The reason we use the pending bit to indicate imminent in-
crements is to handle the situation where there are two or
more consecutive entries with the same counter values. In
that case, if we increment the counters immediately and
swap the two entries, we will break the invariant that entries
lower have smaller counter values than higher entries. Fig-
ure 27 (a) to (e) illustrates how this algorithm preserves the
invariant. In (a), entry “0x7788” was “hit”. Thus, the pend-
ing bit is set in (b). Then the counter values of “0x7788”
and “0x9988” are compared and found to be equal. In (c),
the FSM swaps “0x7788” and “0x9988” because the pend-
ing bit of “0x9988” is not set. In (d), the FSM swaps,
again, “0x7788” and “0x3344” since the pending bit of
“0x3344” is not set. In (e), the, counter for “0x7788” is in-
cremented and pending bit is unset since “0x5438” has a
greater counter value than “0x7788”. From these figures, it
is clear that if the counter is incremented as soon as a “hit”
occurs, invariant 2 cannot be preserved6.

5.3.2. Required OperationsTo perform the cod-
ing and sorting functionalities, the Window-based and
Context-based transcoder design needs a number of ele-
mentary operations which make up its dynamic power con-
sumption. The operations are labeled in Figure 28 and are
the following:

count: Counters are necessary to track the relative fre-
quency of a particular bus value. All lookup table
and shift register entries must have individual counters

6 One caveat of this algorithm is that “hit” to an entry with pending bit
already set will be lost. However, this does not affect the correctness
of the algorithm, only that some counter values might not be as high
as it should be.

=

=

=

=

count

counterMatchshift

count

swap

====

=

=

=

=

bus input

match

match

Figure 28. Energy consuming operations in transcoder.

which count up when the associated value is observed
on the bus. Our design uses Johnson counters as an en-
ergy efficient counting method7. For each clock cycle,
a single Johnson counter will increase.

match: The bus input value is compared to all the en-
tries in the shift register and lookup table to determine
whether we can send a dictionary index instead of the
full value. To minimize the energy cost of these match-
ings, we make use of a selective precharge matching
circuit [26].

counter comparison: We must compare counters to sort
frequency table entries. An arbitrary sort is costly; in-
stead, westart with all entries sorted by frequency. We
maintain this invariant by catching situations in which
adjacent counter values match and the lower value is
incremented; we then swap these entries. Values from
the shift register enter the table when they are more fre-
quent than the least-frequent table entry.

swap: When two frequency table entries accumulate fre-
quency counts such that the now less frequent value
is still in the more frequent position, we must swap
them. Swapping is accomplished through a combina-
tion of transmission gates and multiple clocks.

shift: A new bus value can be inserted into the shift regis-
ter every cycle. The value on the end of the shift reg-
ister shifts off the end and is either inserted into the
frequency table or discarded based on its frequency
count. The shift register entries do not actually change
positions, rather the oldest value is replaced with the
newest and a tail pointer is updated for each shift.

last value tracking: We must catch repeated strings of val-
ues to achieve LAST-value prediction (coded as “0”).

5.3.3. Customized CircuitsTo implement the operations
described above, we made use of some novel circuit tech-

7 Johnson counters are energy efficient because for each count, only one
bit will make transition. Furthermore, control logic for Johnson coun-
ters are trivial.

12

DATA DATA

MATCH

DATA

SHIFT

VALUE VALUE
CAM cell_0

CAM cell_1

CAM cell_7

DATAload

match

Figure 29. Low power CAM cell with shift:This circuit mini-
mizes the number of clock lines required for operation.

Figure 30. Pointer-based 8 entry shift register.Instead of shift-
ing tag value between entries, we kept a bit indicating the tail
of the shift register. This reduces many bit changes within the
tags

bitbit

VDD

bitbit

VDD

�C

compoutcompout

�H

�H

�N

�N

�H

�H

�N

�N

Figure 31. CAM Cells: Circuit diagram of two neighboring
CAM cells for Context-based transcoder.�H , �H , �N and
�N control the connection between the cross-coupled invert-
ers while�C controls the connection between two neighboring
cells.

niques to ensure lower power consumption for the encoder
and decoder circuits.

Johnson counters: Instead of using binary counter, we
employed a Johnson counter which is more energy and
area efficient. For our hardware, we concatenated four
4-bit Johnson counters together to achieve a maximum
count of 4096 (84) before saturation.

Selective precharge matching:If each new bus value had
to probe all the values in the frequency table and shift
register every cycle, this would result in many unnec-
essary charging and discharging cycles. Instead, we
used a circuit which selectively precharged the lower
order bits in the CAM cells [26]. Only if the lower or-
der bits match do we charge the comparators of the re-
maining bits in an entry to complete the match. This
reduce the number of unnecessary charging and dis-
charging of all 32 bits table or shift register entry.

Single clock shift cell: As shown in Figure 29, we uses a
single PMOS pass transistor to enable/disable feed-
back loop between the cross-coupled inverter. The ad-
vantage of this design over transmission gate is that no

complementary shift signal is needed and there is one
less clock to route.

Pointer-based shift entries: We used pointer-based shift
register design, as shown in Figure 30. Thus for ev-
ery shift, only the value at head entry gets changed.
This design is nice because it saves the number of bit
transitions (therefore energy) on the shift registers for
a shift operation.

Pointer-based last value:Since the last input value is in
the shift register, we maintain a vector of bits (one bit
per entry) to point at this value. This approach reuses
the matching circuits for LAST-value functionality.

Efficient entry swapping: To reduce the energy used by
the swapping of table entries for the sorting mecha-
nism, the frequency table is composed of customized
CAM cells that allow for efficient swapping between
neighbors (see Figure 31). This circuit design is area
efficient; requiring only two additional transistors for
adjacent swapping. When two neighboring cells need
to be swapped,�H , �H , �N , and�N are disabled to
break the positive feedback. After some delay,�C is
enabled to connect the neighboring cells. At this point,
the output of one inverter from each cell will write its
value to the other inverter in the neighboring cell. Then
�H , �H , �N and�N are re-asserted to enable the feed-
back path.

5.3.4. DiscussionThe frequency table adds considerable
complexity to the Context-based design. If we compare the
two designs with the total number of entries constant, we
see that the Window-based design only requires shifting bus
value entries and value matching circuitry as shown in Fig-
ure 28. When we add the frequency tracking of the fre-
quency table, all value entries must be augmented with a
Johnson counter, counter matching circuitry and the neces-
sary control logic to determine swapping, counting and sort-
ing. In a preliminary transistor level schematic of the full
Context-based design, we noted that the counter and counter
match circuitry takes approximately 33% of the circuit area.

13

Figure 32. Context-based design:Actual encoder layout using
0.18�m process. The width and height for this layout is 400�m
by 500�m

Figure 33. 8 entry Window-based design:Encoder layout us-
ing 0.13�m technology. The width and height for this layout is
165�m and 75�m

In the following section, we are going to describe and eval-
uate the physical implementations of the transcoders.

5.4. Evaluating the Implementation
We implemented the Inversion coder, Context-based and
Window-based transcoder in layout to evaluate accurate en-
ergy consumptions.

5.4.1. Three Designs

Inversion Coder:We constructed a version of inversion
coder in layout using standard cells to compare against the
Context-based transcoder. A major component of any inver-
sion coder is a majority voter that will count the number of
“ones” in its input and assert “1” if it’s majority. [16] de-
scribes a novel analog majority voter circuitry using current
mirrors for 8 bits. However, after extensive simulation, we
found such design unsuited for wider buses (i.e.32 bits) due
to low noise margin and constant direct current. Thus we re-
implemented the majority voter using carry-save adder de-
sign [10] to add up the number of “ones”. The energy ex-
penditure of this design will be described later in this sec-
tion.

Context-based:The Context-based design implements
“Johnson counters”, “selective precharge matching”, “ef-
ficient entry swapping” circuit techniques and the sorting
algorithm. We laid out the encoder using 0.18�m pro-
cess as shown in Figure 32. The encoder is 400�m high by
500�m wide, occupying an area of 200000�m2.8 The de-

coder should take up almost equal area since it shares si-
miliar designs as encoder. Most of the area is taken up
by tags and counters; the actual control takes very lit-
tle area. Data comes in to the input buffers at left and either
the code or the original data emerges from the right. This
layout contains 4 shift register entries and 28 frequency ta-
ble entries, the maximum number of entries for 1 bit code.
The control is distributed across the width of the layout be-
tween the tags and counters.

Window-based:The Window-based design implements
“single clock shift cell”, “pointer-based shift entry” and
“pointer-based last value tracking”. It does not need to im-
plement the sorting algorithm because there are no coun-
ters to sort. The physical layout was done using ST
Micro’s 0.13�m process as shown in Figure 33. The en-
coder is 75�m high by 165�m wide, taking up an area
of 12400�m2. In this layout, data goes into the in-
put buffer at top and output at bottom. The ShiftTag section
stores the unique 8 values and with embedded match-
ing logic. The control logic to the left decides whether to
send codeword or actual data on the bus and also deter-
mines the entry to shift out when a new value comes in. The
MuxXorLatch at the bottom implements transition cod-
ing.

8 Even with a first-order scaling, it will still take up almost 100000�m2

in 0.13�m.

14

Technology Voltage (V) Area (�m2) Op energy (pJ) Leakage (pJ) Delay (ns) Cycle Time (ns)

0.13�m 1.2 12400 1.39 0.00088 3.1 4
0.10�m 1.1 7340 1.07 0.00338 2.4 3.2
0.07�m 0.9 3600 0.55 0.00787 2 2.7

InvertCoder 1.2 4700 1.76 0.00055 2.2 2.2
Table 2. Leakage energy, delay and cycle time of transcoder for various technologies. Note: Delay is measured as data ready to bus
out; leakage energy is per cycle. The area for 0.10�m and 0.07�m technologies are scaled based on 0.13�m area. The voltage is
based on ITRS roadmap projected values. The InvertCoder is constructed using 0.13�m technology.

events

Energy estimates
from individual

Transition
counts

applu

gccgo

SPEC benchmarks

SimpleScalar

Transcoder

Postprocess

Energy estimate

Circuit layout

SPICE

extract to
SPICE

model

Figure 34. Experimentation methodology:SimpleScalar com-
municates selected bus values to transcoder. Transcoder out-
puts the raw data, including transition counts and actual hard-
ware operations performed. The output is then post-processed
with input from SPICE simulation of the actual layout to pro-
duce energy estimates

5.4.2. MethodologyTo evaluate the layouts, we first ex-
tract them to SPICE netlists and simulate for cost of energy
operations under HSPICE. The energy costs of these oper-
ations are then combined with actual number of operations
performed for a particular benchmark to obtain full energy
expenditures.

The simulation flow used in this paper is shown in Fig-
ure 34. We instrumented SimpleScalar to output various bus
values every cycle and feed the value into our transcoder
simulator. The output of the transcoder simulator is then
post-processed to obtain transition and energy expenditures.

The ultimate goal of transcoding is to reduce the energy
consumed by buses. Thus it is critical to determine how
much energy is used to perform the encoding and decod-
ing process for an actual layout. The ideal and most accu-
rate method for determining the power consumption of the
coding circuitry would be to make a physical layout of the
circuit and simulate it for power usage on the buses for the
previously mentioned benchmarks. This would have been
too slow.

Instead, as shown by Figure 34, we gathered statis-
tical averages of various operations in the high-level
transcoder module. This module closely simulates the hard-
ware transcoder architecture and keeps a running total of

the energy consuming operations performed by this archi-
tecture. These numbers are later combined with energy dis-
sipation numbers derived from HSPICE simulations of an
actual extracted layout netlist. Based on these energy num-
bers and operation counts, we derive total energy expendi-
ture.

We validate the derived total energy expenditure against
energy obtained by running the layout netlist with a short
100 cycle trace. The derived energy comes within 6% of
the actual energy expenditure. This method, although less
accurate than simulation of the complete layout, achieved
tremendous increase in simulation speed.

To obtain estimates of energy usage from our transcoder
circuit layout with future technologies, we used a number
of tricks to scale the layout extraction SPICE netlist. We
used the Berkeley Predictive Technology models [5] for
0.10�m, and 0.07�m processes. We used the less accurate
BPTM technology models because ST Micro models were
not available for other process technologies.

We performed the technology scaling through the fol-
lowing procedure: (1) transistor gate lengths and widths,
along with source/drain peripheral lengths are scaled lin-
early by the quotient between desired and current minimum
feature sizes. Source and drain areas are scaled quadrati-
cally. (2) Wire capacitances are scaled based on the Berke-
ley Predictive Technology Model estimates for interconnect
dimensions and their parasitic capacitor model. (3) This
modified extraction netlist was simulated using HSPICE to
find energy consumption of the scaled circuit.

5.4.3. ResultsGiven the discussions from previous sec-
tions, the Context-based design requires at least 33% (more
in layout) more area, more global clocks and more com-
plicated control than Window-based design. Since the gain
in terms of energy budget for the Context-based design is
small for relatively short wire lengths, we decided to inves-
tigate the Window-based transcoder in depth.

Inversion coder:Using the simulation methodology de-
scribed in previous section, we found that, on average, the
inversion coder consumes 1.76 pJ per cycle. This is in-
adequate to break-even, even at 30mm because the inver-
sion coder removes less transitions than our transcoder. The
characteristics of the inversion coder are presented in Ta-
ble 2.

15

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20 25 30

T
ot

al
 e

ne
rg

y
no

rm
al

iz
ed

 to
 u

ne
nc

od
ed

 c
as

e

Wire length in mm

ijpeg
m88ksim

go
gcc

compress
perl

hydro2d
fpppp

apsi
applu

wave5
turb3d

tomcatv
swim

su2cor
mgrid

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20 25 30

T
ot

al
 e

ne
rg

y
no

rm
al

iz
ed

 to
 u

ne
nc

od
ed

 c
as

e

Wire length in mm

ijpeg
m88ksim

go
gcc

compress
perl

hydro2d
fpppp

apsi
applu

wave5
turb3d

tomcatv
swim

su2cor
mgrid

Figure 35.Window-based Performance:Energy expenditure vs
bus length on register bus (Shift register size = 8)

Figure 36.Window-based Performance:Energy expenditure vs
bus length on memory bus (Shift register size = 8)

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 5 10 15 20 25 30

T
ot

al
 e

ne
rg

y
no

rm
al

iz
ed

 to
 u

ne
nc

od
ed

 c
as

e

Wire length in mm

0.13u 8-entry specINT
0.10u 8-entry specINT
0.07u 8-entry specINT
0.13u 8-entry specFP
0.10u 8-entry specFP
0.07u 8-entry specFP

0.13u 16-entry specINT
0.10u 16-entry specINT
0.07u 16-entry specINT
0.13u 16-entry specFP
0.10u 16-entry specFP
0.07u 16-entry specFP

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0 5 10 15 20 25 30

T
ot

al
 e

ne
rg

y
no

rm
al

iz
ed

 to
 u

ne
nc

od
ed

 c
as

e

Wire length in mm

0.13u 16-entry specFP
0.13u 8-entry specFP

0.10u 16-entry specFP
0.07u 16-entry specFP
0.10u 8-entry specFP
0.07u 8-entry specFP

0.13u 16-entry specINT
0.13u 8-entry specINT

0.10u 16-entry specINT
0.10u 8-entry specINT

0.07u 16-entry specINT
0.07u 8-entry specINT

Figure 37. Crossover Length:Wire lengths at which energy
used by Window-based transcoder equals energy saved by cod-
ing on register bus for current and projected technologies.

Figure 38. Crossover Length:Wire lengths at which energy
used by Window-based transcoder equals energy saved by cod-
ing on memory bus for current and projected technologies.

Window-based:We present the impact our transcoder have
on real circuits in Table 2. Even though leakage energy in-
creases as technology shrinks, it is still orders of magnitude
smaller than dynamic energy of the encoder. It is because
our encoder small and consists of less than 5k transistors.
The delay for the encoder is high due to the serial NAND
match design. This delay could be reduced by making op-
timizations for speed in the matching circuit, and adding
a small amount of additional power. The matching circuit
is currently made of two NAND trees of 16 bits each, but
one could imagine breaking this tree into more groups of
smaller numbers of bits or changing it into a flatter OR-
based matching circuit. Additionally, due to limited man-
power, we were unable to fully optimize transistor sizings
in the swapping circuits. A better designed version would
have less latency.

To obtain energy expenditure, we utilized parameters
obtained from the spice simulation of an actual layout
for Window-based design. We also utilized various scaling
methods to obtain statistical energy expenditure estimates
for a number of different device technologies.

We obtained the following energy graphs for SPEC95
benchmarks on memory and register bus for various wire

Technology Entries SPECint SPECfp ALL

0.13�m 8 12.7mm 9.4mm 11.5mm
16 9.5mm 6.9mm 7.0mm

0.10�m 8 9.5mm 6.9mm 8.0mm
16 7.1mm 5.0mm 6.4mm

0.07�m 8 4.5mm 2.9mm 4.1mm
16 3.2mm 2.4mm 2.7mm

Table 3. Median crossover lengths for Window-based design.

lengths with Window-based design. Figure 35 and 36 shows
the ratio of transcoder+wire energy versus pure wire energy
with 8 entry shift register design. The 8 entry design per-
forms fairly well on register bus, with energy savings on
almost all benchmarks at wire length greater than 15mm
and median at around 11.5mm. However, for SWIM, the
transcoder begins to save energy as short as 3mm. The result
is less encouraging for memory bus. This is due to the fact
that the absolute number of transitions removed is low (even
though fraction of transitions reduced were high). Thus en-
ergy removed on wire transitions was not enough to offset
the transcoder circuitry energy. Perhaps a different coding
scheme with simpler encoder is needed to save wire transi-
tion energy on memory bus.

Figure 37 and 38 shows the scaling trend for 0.10�m and

16

0.07�m technology. It also includes trends for a projected
16-entry transcoder design. The lines represents the median
of SPECint and SPECfp benchmarks with different tech-
nologies and transcoder designs. The resulting crossover
lengths are given in Table 3. As technology shrinks, the
crossover point becomes shorter, which is what we would
expect since wire power grows more dominant in smaller
technologies. The crossover points for projected 16-entry
transcoder are also shorter because a 16-entry transcoder re-
moves more energy from wire transitions. This trend signi-
fies that as technology shrinks, larger transcoders are well-
positioned to take advantage of the growing disparity be-
tween wire and device energy.

6. Future Work
The fixed length code as presented here is simple to imple-
ment and simple to transmit since it does not modify data
transmission timing. However, it is not the most efficient
coding scheme by far. Variable coding can achieve greater
compressibility in space and time. This in turn can actually
reduce the overall energy consumption over a window of
time9. However, the hardware complexities to produce vari-
able length codes are considerably greater than our coding
scheme. Furthermore, such variable-length coding scheme
will change transmission timing on the bus, further compli-
cating designer’s task to incorporate encoder/decoder. That
said, it is still interesting to investigate how well variable-
length coding scheme works and compare it to our transcod-
ing scheme.

We make the argument here that as technology continues
to shrink, the use of the transcoder will become more attrac-
tive due to smaller encoding and decoding circuits relative
to the bus length. Furthermore, our extrapolated energy con-
sumption based on BPTM SPICE models does show bet-
ter energy-saving with smaller technologies. However we
would still like to perform more exact physical level sim-
ulations of the entire bus/encoder/decoder system with dif-
ferent process technologies to observe how the total energy
usage scales.

7. Conclusion
We have briefly explored the space of prediction and com-
pression of wire transitions, evaluating the relative perfor-
mance for a number of examples. It has been shown that
these techniques are indeed effective in reducing energy
consuming wire events. We achieved an average of 36%
transition reduction for SPEC95 benchmarks on register
bus. We by no means performed a complete exploration

9 Even though instantaneous power might be greater, the transmission
is done in shorter period of time. Furthermore, there are actually less
bits to be transmitted.

of the bus value compression design space but we endeav-
ored to give a detailed look at a number of disparate possi-
bilities. From this high level evaluation, we pushed all the
way down to a silicon implementation of the context-based
transcoder. Using this physical model, along with a num-
ber of simulation tools, we performed a holistic evaluation
of the transcoder’s power consumption and bus power sav-
ings for many SPEC benchmarks.

We found that the full encoder/decoder, particularly the
8 entry Window-based transcoder, does indeed save en-
ergy for almost all SPEC95 benchmarks at wire length
greater than 15mm and median at around 11.5mm at
0.13�m for register bus. Projection of a 16-entry de-
sign at 0.07�m breaks-even at wire-lengths of only
2.7�m. Through our comprehensive energy usage eval-
uation, we believe that trading logic complexity to save
on-chip communication energy will be increasingly attrac-
tive as Moore’s law marches forward.

8. Acknowledgements
I owe a great deal of thanks to my fellow colleagues who
helped me with simulations, brain-stormed ideas and pro-
vided wonderful suggestions: Mark Whitney, Yatish Patel
and Nemanja Isailovic. I also like to thank members of
the IRAM group – Joseph Gebis, Christoforos Kozyrakis
and Sam Williams – for their generous support on my ini-
tial physical layouts. I also like to thank Berkeley Wire-
less Research Center (BWRC) for allowing me access to
technologies for which the final implementation is based
upon. Finally, I thank my research advisor, John Kubiatow-
icz, for his insightful guidance and support, without which
this work would not have been possible.

References
[1] Y. Aghaghiri, M. Pedram, and F. Fallah. Reducing transi-

tions on memory buses using sector-based encoding tech-
nique. InProceedings of the 2002 international symposium
on Low power electronics and design, pages 190–195. ACM
Press, 2002.

[2] H. B. Bakoglu. Circuits, Interconnections, and Packaging
for VLSI. Addison-Wesley, 1990.

[3] H. B. Bakoglu and J. D. Meindl. Optimal Interconnection
Circuits for VLSI. IEEE Transactions on Electron Devices,
pages 903–909, 1985.

[4] P. J. Basu K., Choudhary A. and K. M. Power protocol: re-
ducing power dissipation on off-chip data buses. InProceed-
ings 35th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-35). IEEE Comput. Soc. 2002,
pp.345-55. Los Alamitos, CA, USA., November 2003.

[5] Berkeley Predictive Technology Models. http://www-
device.eecs.berkeley.edu/˜ptm/.

[6] D. Burger and T. Austin. The Simplescalar Tool Set Version
2.0, 1997.

[7] B. Calder, G. Reinman, and D. Tullsen. Selective Value Pre-
diction. In ISCA, 1999.

[8] D. Grunwald and A. Klauser. Confidence Estimation for
Speculation Control. InISCA, 1998.

17

[9] J. Henkel and H. Lekatsas.A2BC: Adaptive Address Bus
Coding for Low Power Deep Sub-Micron Designs. InACM
Design Automation Conf., 2001.

[10] J. L. Hennessy and D. A. Patterson.Computer Architecture:
A Quantitative Approach, second edition. Morgan Kauf-
mann, San Francisco, California, USA, 1995.

[11] C. Huang, G. Yu, and B. Liu. A Hardware Design Approach
for Merge-sorting Network. InIEEE Int’l Symp. on Circuits
and Systems, 2001.

[12] Y. Ismail and E. Friedman. Effects of Inductance on the
Propagation Delay and Repeater Insertion in VLSI Circuits.
IEEE Transactions on VLSI Systems, 8(2):195–206, 2000.

[13] S. Komatsu, M. Ikeda, and K. Asada. Adaptive Codebook
Encoding for Low-Power Chip Interface.Electronics and
Communications in Japan II, 83(1):17–23, 2000.

[14] M. Lipasti, C. Wilkerson, and J. Shen. Value Locality and
Load Value Prediction. InASPLOS, 1996.

[15] E. Musoll, T. Lang, and L. Cortadella. Exploiting the local-
ity of memory references to reduce the address bus energy.
In Proceedings of the 1997 international symposium on Low
power electronics and design, pages 202–207. ACM Press,
1997.

[16] K. Nakamura and M. A. Horowitz. A 50% noise reduction
interface using low-weight coding. InSymposium on VLSI
Circuits Digest of Technical Papers. IEEE, 1996.

[17] A. Nalamalpu and W. Burleson. Repeater insertion in deep
sub-micron cmos: Ramp-based analytical model and place-
ment sensitivity analysis. InIEEE International Symposium
on Circuits and Systems, 2000.

[18] J.-M. Parcerisa and A. Gonzalez. Reducing wire delay
penalty through value prediction. InInternational Sympo-
sium on Microarchitecture, pages 317–326, 2000.

[19] Y. Sazeides and J. Smith. The Predictability of Data Values.
In MICRO, 1997.

[20] Y. Shin, S.-I. Chae, and K. Choi. Partial bus-invert coding for
power optimization of system level bus. InProceedings 1998
international symposium on Low power electronics and de-
sign, pages 127–129. ACM Press, 1998.

[21] P. Sotiriadis and A. Chandrakasan. Low Power Bus Coding
Techniques Considering Inter-wire Capacitances. InIEEE
Custom Integrated Circuits Conf., 2000.

[22] W. B. Srividya Srinivasaraghavan. Interconnect effort - a
unification of repeater insertion and logical effort. InIEEE
Computer Society Annual Symposium on VLSI (ISVLSI’03),
February 20 - 21, 2003, Februray 2003.

[23] M. Stan and W. Burleson. Bus-Invert Coding for Low-Power
I/O. IEEE Trans. on VLSI, 3(1):49–58, 1995.

[24] H. Yu, J. Lee, and J. Cho. A Fast VLSI Implementation of
Sorting Algorithm for Standard Median Filters. InIEEE Int’l
ASIC/SOC Conf., 1999.

[25] H. Zhang, V. George, and J. Rabaey. Low-Swing On-Chip
Signaling Techniques: Effectiveness and Robustness.IEEE
Trans. on VLSI, 8(3):264–272, 2000.

[26] C. Zukowski and S. Wang. Use of Selective Precharge for
Low-power Content-addressable Memories. InIEEE Int’l
Symp. on Circuits and Systems, 1997.

18

