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Abstract

‘We propose an algebraic geometric solution to the iden-
tification of linear hybrid systems. Our solution es-
tablishes a connection between hybrid systems identifi-
cation and polynomial factorization: we represent the
number of discrete states as the degree of a homoge-
neous polynomial and the model parameters as roots
(factors) of such a polynomial. This interpretation al-
lows us to decouple the identification of the model pa-
rameters from the inference of the hybrid state and
from the switching mechanism generating the transi-
tions. We first derive a rank constraint on the in-
put/output data from which one can estimate the num-
ber of models N. We then estimate the model param-
eters using a linear algebraic polynomial factorization
technique that is closed-form for N < 4. Once the
mode] parameters have been identified, the estimation
of the hybrid state and of the switching parameters be-
comes a simpler problem. We present simulation exper-
iments that validate the performance of the algorithm.

1 Introduction

Hybrid dynamical models can be used to describe con-
tinuous phenomena that exhibit discontinuous behav-
ior due to sudden changes of dynamics. For instance,
the continuous trajectory of a bouncing ball results
from the alternation between free fall and elastic con-
tact. However, hybrid dynamical models can also be
used to approximate a phenomenon that does not it-
self exhibit discontinuous behavior, by concatenating
different models from a simple class. For instance, a
non-linear dynamical system can be approximated by
switching among various linear dynamical models.

In this paper we look at the problem of modeling in-
put/output data by piecewise linear (hybrid) dynam-
ical models: Given input/output data, we want to si-
multaneously estimate the number of underlying linear
models, the parameters of each model, the hybrid state
(continuous and discrete), and possibly the switching
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mechanism that governs the transitions from one linear
model to another.

Work on filtering and identification of hybrid systems
first appeared in the seventies; a review of the state of
the art as of 1982 can be found in [20]. After a decade-
long hiatus, the problem has recently been enjoying
considerable interest (see [19, 18, 9, 4, 5, 21] and refer-
ences therein). Related work has also appeared in the
machine learning community (see [8, 17, 16, 6, 7, 13]
and references therein). When the model parameters
and the switching mechanism are known, the identifi-
cation problem reduces to the design of observers for
the hybrid state; [1] considers the case in which the
discrete state is further known and proposes a Luen-
berger observer for the continuous state; [2] combines
location observers with Luenberger observers to design
a hybrid observer that identifies the discrete location
in a finite number of steps and converges exponen-
tially to the continuous state; [12] proposes a mov-
ing horizon estimator that, under certain conditions,
is asymptotically convergent and can be implemented
via mixed-integer quadratic programming. When the
model parameters and the switching mechanism are un-
known, the identification problem becomes even more
challenging: [10, 11] assume that the number of mod-
els is known, and propose an identification algorithm
that combines clustering, regression and classification
techniques; [3] also rely on a clustering algorithm that
is optimal with respect to deviations from the model.

‘We propose an algebraic geometric solution to the iden-
tification of linear hybrid systems: we represent the
number of discrete states as the degree of a homoge-
neous polynomial and the model parameters as roots
(factors) of such a polynomial. This interpretation al-
lows us to decouple the identification of the model pa-
rameters from the inference of the hybrid state. In
Section 3 we concentrate on SISO systems. We derive
a rank constraint on the input/output data from which
one can estimate the number of models N. We then
estimate the model parameters using a linear algebraic
polynomial factorization technique that is closed-form
for N < 4. Once the model parameters have been
identified, the estimation of the hybrid state and of the
switching parameters becomes a simpler problem. In
Section 4, we extend our results to MIMO systems and
in Section 5 we present simulation experiments.



2 Problem statement

We consider a class of discrete-time hybrid systems,
known as linear hybrid systems, whose evolution is de-
termined by a collection of linear models with contin-
uous state r; € R™ connected by switches, indexed by
a number of discrete states \; € {1,2,...,N}.

The evolution of the continuous state z; is described
by the linear system

T4l A(/\g)zg + B(/\g)u{ (1)
Ye C(Ae)zt, 2)

where A(k) € R**", B(k) € R**? and C(k) € RP*",
for k€ {1,2,...,N}.

The evolution of the discrete state A; can be described
in a variety of ways. In Jump-linear systems (JLS) A
is a deterministic but unknown input that is piecewise
constant, right-continuous and finite-valued. In Jump-
Markov linear systems (JMLS) X is an irreducible
Markov chain governed by the transition probabilities
w(k,k') = P(Ae4+1 = k'}A¢ = k). One can also have the
switching mechanism governed by the value of the con-
tinuous state, as in Piecewise affine systems (PWAS),
where ) is a piecewise constant function defined by a
polyhedral partition of the state space. We take the
least restrictive model (JLS), so that our results will
apply also to other switching mechanisms.

Given input/output data {u;, .} generated by a linear
hybrid system £ = {A(k), B(k),C(k);k = 1,...,N},
we focus our attention on how to infer the mode! param-
eters A(k), B(k), C(k) and the hybrid state {z, \;}.

3 Identification of SISO linear hybrid systems
in PWARX form

In this section, we assume that each linear system is
SISO and written in controllable canonical form

0 1 o -+ 0 0
0 0 ) O 0
Ty = : ., : z + 5 Uy (3)
0O .-« -« 0 1 0
Ap Gpol *** *+° O 1
ye=1[0 0 e, -+ ]z (4)

Furthermore, we assume that they can be written in
ARX form!

Yt =a1Yi-1 + a2Ye—2 + - + GpYt-nt (5)
ClUg—1 + CUt—2 + *++ + Cn Up—p,

1For a single SISO linear time-invariant system, both the
state-space and the ARX representations are equivalent. For
JLS, the ARX representation is slightly more restrictive. We
will address the relationship between these two representations
from an identification point of view in future research.

where n,, < n is the degree of the input. By letting

T +nu+l
Ty = (Utmnyy -+ Ut=1,Yt=ms-- - Yt—1, —Yt)” € R**"
wtl
£=(cn,, " ,C1,an,-.-a1,1)T € R*+mut

we write the ARX model of a single linear system as
the following hyperplane in R*+7+1

Tz,=0 t>n (6)
with £ representing the normal to the hyperplane.

If we denote the model parameters for each one of the
N SISO linear systems as {£;}},, the identification
and filtering problem can be stated as follows.

Problem 1 Let {u,y:}1_, be input/output data gen-
erated by a SISO linear hybrid system with known di-
mension of the state space n and degree of the input n,,.
Estimate the number of discrete states N, the model pa-
rameters {£;}1\., and the hybrid state {z;, M\ }1_q.

In the following sections, we give an algebraic geomet-
ric solution to this problem. The key idea is to consider
the input/output data generated by a SISO linear hy-
brid system as points in RX, with K = n 4+ n, + 1,
lying on one of the hyperplanes {7z = 0}¥,,. The
identification problem is then reduced to estimating
the number of hyperplanes (number of discrete states)
and their normals (the model parameters), from sample
data points (input/output data) on those hyperplanes.
In order to so, we first need to decouple the identi-
fication of the model parameters from the filtering of
the hybrid state and the identification of switching pa-
rameters. We show how to do so in Section 3.1 where
we derive the so-called hybrid decoupling constraint. In
Section 3.2 we show how to recover the number of dis-
crete states from a rank constraint on the input/output
data and the model parameters from the factorization
of a homogeneous polynomial. Section 3.3 shows how
to recover the hybrid state.

3.1 Decoupling identification from filtering

At a given time, t, the discrete state )\; takes one out
of N possible values {1,2,...,N}. In other words, for
all £ > n there exists an ¢ such that Z,Ta:t = 0. There-
fore, the following constraints must be satisfied by the
model parameters and the input/output data regard-
less of the value of the discrete state and regardless of
the switching mechanism generating the evolution of
the discrete state

N
1) =0. ™

i=1

We call equation (7) the hybrid decoupling constraint
(HDC), since it will allow us to identify the model pa-
rameters {£;}}; independently from the filtering of the



discrete state {z;, \;} and regardless of the mechanism
generating the transitions (JLS, JMLS, or PWAS). No-
tice that the HDC constraint is the only thing we can
say from input/output data for a JLS in the absence of
knowledge of the switching mechanism.

3.2 Identification of the model parameters

The HDC allows us to concentrate on the identification
of the number of models N and the model parameters
{€;}L, from input/output data without the need to
know the hybrid state. This is done by solving for N
and the vectors £;’s from the HDC. To this end, notice
that the HDC

N

pn(z) = [[(€Fz) =0 (8)

i=1

is a homogeneous polynomial of degree N in K = n +
ny + 1 variables. Therefore it can be written as

PN(Z) = oyt o 2% = hTun(2) =0,

9)
where h; € R represents the coefficient of the monomial
zl = zf"zé"’---z%“ with0< N; < N,j=1,... K,
and Ny + No +--- 4+ Ng = N; vy : RE — RMN s the
Veronese map of degree N defined as:

UN [Zl,...,ZK]TH[~~-1zla"']Ti (10)

with I chosen in the degree-lexicographic order, and

N+K-1 N+K-1
= (D)= (TN
is the total number of different monomials. One can
show that the vector h € RM¥ is the symmetric tensor
product of the individual model parameters {£}Y,,
i.e.
h= )" L ®Lz® @by  (12)
gEGN
where Gy is the permutation group of N elements.
Hence we will refer to h as the hybrid model parameters.

We now show how to estimate the hybrid model pa-
rameters from input/output data {z;}737-!. After
applying equation (9) to the data, we obtain the fol-
lowing system of linear equations on the hybrid model

parameters h

vn(a)T

VN(mn+l)T

Lyh= h=0eRT. (13)

UN(TniT-1 )T

We are now interested in determining whether there
exists a unique solution for h from (13), i.e. under
what conditions we have rank(Ly) = My —1. It turns
out that the uniqueness of h is very much related to
the estimation of the number of models N as shown by
the following theorem.

Theorem 1 (Number of discrete states) Given
input/output data {x,}75""!, T > My — 1, generated
by a linear hybrid system, let L; € RT*M: pe the
matriz defined in (13), but computed with the Veronese
map v; of degree i. If the data points are in general
position on the subspaces {£7z = O}, and at least
K — 1 points lie on each subspace, then:

>M; -1, i< N,
rank(L;) ¢ =M; -1, i= N, (14)
<M;-1, i> N.

Therefore, the number of discrete states N is given by:

|N = min{i : rank(L;) = M; — I}J (15)

Remark 1 In the presence of noise, one cannot di-
rectly estimate N from (15), because the matriz Ly is
always full rank. In practice we declare the rank of Ly
to be r if ory1/0r < €, where o; is the i-th singular
value of Ly and € > 0 is a pre-specified threshold.

Theorem 1 and the linear system in equation (13) al-
low us to determine the number of discrete states N
and the hybrid model parameters h, respectively, from
input/output data {xz;}7+"~!, The rest of the prob-
lem becomes now how to recover the model parameters
{£:}, from k. From equation (9) we have that recov-
ering {£;}, from h is equivalent to factoring a given
a homogeneous polynomial pn(2) of degree N into N
distinct polynomials (£7 z) of degree 1. We show now
that this polynomial factorization problem has a unique
solution that can be obtained by solving for the roots of
a polynomial of degree N in one variable, plus solving
a linear system in N variables [22].

Solving for the last 2 entries of each ¢;. Consider
the last N + 1 coefficients of py(2):

N+1
[ho,....0,N,0 » Fo,....0,N=1,1 4 --- » ho,..00n]T € RVN¥,

which define the following homogeneous polynomial of
degree N in the two variables zx_; and zk:

N

Nk-1 N
E ho,...,O,NK-hNKzK_llzKK=I I(fiK-12K-1+fiKZK)-
i=1

Since by construction £;x = 1, then ho,. o0on = 1.
Thus if we let w = zx /zx_ we have that:

N N
H(l?ik-lzx-l +likzg)=0& H(&K-l +w)=0.

i=] i=1

Hence the N roots of the polynomial

gn(w) = ho,..on 0+ ho,..oN—10w + - +wN (16)



are exactly w; = —f;x_1, foralli = 1,...,n. Therefore
we obtain the last two entries of each ¢; as:

(bir-1, bik) = (~wi , 1). (17)

Solving for the first K — 2 entries of each £;. We
now show how to compute the first K — 2 entries of
each £;. We assume that we have computed {£;}Y,,
J=J+1,... K for some J, starting with J = K—2, and
show how to linearly solve for {¢;;} . To this end, we
consider the coefficients of py(z) which are linear in z;.
These coefficients are of the form hq,..0,1,8,,,,....Nx
and are linear in £;;. To see this, notice that the poly-
nomial Zho,,,,,o,l,N,“,_,,,NKzy_,f;" .- 28¥ is equal to
the partial derivative of py(2z) with respect to z; eval-

uated at z; = 2, = .- = z; = 0. Since
o (X N i-1 N
e (H(ZTZ)) =) by (H(ﬁgz) IT (e{z)) ,
i=1 i=1 k=1 =it1
after evaluating at z; = zp = - - = z; = 0 we obtain

N
N
Zho,...,o,LNJ“,...,NKZJ.,J.'{’~ P PAES Z tiygi (2), (18)

=1
where
i-1 K N K
Gd@=TI| X tsz| II | 3 tsz ) 9)
k=1 \j=J+1 k=i+1 \j=J+1

is a homogeneous polynomial of degree N —1 in the last
K ~J variables in z. Let V{ be the vector of coefficients
of the polynomial g/ (z). From equation (18) we get

4%] ho.....0,1,N=1,0,...0
2%} ho,...0,1,N=21,...0

W v 1 : (20)
enyg ho....,0,1,0,0,....N-1

from which we can linearly solve for the unknowns
{€is}Y,. Notice that the vectors {V; }X., are known,
because they are functions of £, j > J + 1, which are
known.

We have shown the following.

Theorem 2 (Estimating the model parameters)
Given input/output date {x;}7""', T > My -1,
generated by a linear hybrid system with N discrete
states, the model parameters {€;}., can be computed
as follows:

1. Solve for the hybrid model parameters h € RM~
Jrom the null space of Ly € RT*M~ (13),

2. Solve for the model parameters {Z,-}ﬁ;l by factor-
ing pn(z) = hTun(2) as (6] 2)(&5 2) - - (£y 2).
The factorization problem is equivalent to solving
for the roots of a polynomial of degree N in one
variable plus K —2 linear systems in N variables.

Example 1 If N =2 and K = 3, then

p2(2) = (Ln121 + L1222 + 23) (€121 + 2222 + 23)
= (] 2) (€3 z) = [22, 2129, 2123, 23, 2223, 23] h

= (£11€21)22 + (C11€22+ €12021) 2122+ (€11 + L1 z1 23+

hz,0,0 h1,1,0 hi,0,1
£12020)22 + (b12+8a2) 2023 + (1 )z2.
(b12€22)25 + (Lr2+£22) 2223 + (1 )23
ho,2,0 ho,1,1 ho,0,2

Since h € R® is known, so is the second order polyno-
mial

Q2(’w) = h0,2,0 + ho_l'l‘w -+ w? = (312 + w)(fgz + w).

Thus we can obtain —f15 and —f32 from the roots w,
and wy of ga(w). Finally, we notice that hy,10 and
hi,0,1 are linear functions of the remaining unknouns
11 and £3,. Thus we can compute them from the linear

system
b b2 || & | _ [ k1o
[ 1 1 ] [ €1 | | o (21)
Notice that this linear system has a unique solution if
and only if €y — €12 # 0, i.e. if wy # wy.

3.3 Filtering of the hybrid state

Given the number of discrete states N and the model
parameters {£;}7_,, we now show how to reconstruct
the hybrid state trajectory {z;,A;} from input/output
data {z,}73". To this end, we first notice that at
each time ¢ there exists a unique? 1 such that £7 z, = 0.
Therefore, the discrete state can be trivially identified
as:

A¢ = argmin(€7x,)2. (22)
1

Furthermore, since the model parameters £; are known,
the entire evolution of the state space parameters
(A, Cy) = (A(Me), C(\r)) is known. Therefore, we can
express the output y, directly as a function of the initial
continuous state zo and the (known) input u, as

2In principle, it is possible that a data point z; belongs to
more than one subspace t?z = 0. However, the set of all such
points is a set of measure zero on the variety {2 : pn(2) =
0}. Unique association of each data point to one subspace is
guaranteed if the observability conditions described in [21] are
satisfied.



Yo Co
n Ci4o
2| = CaA1 A To+ (23)

Yt CiAi_1--- Ao

0 0 s 0 Ug

ClBo 0 v 0 Uy

C2A1 By CaB; U2
CiAi-1---A1By CiBy_1 U-1

from which we can solve for z¢ uniquely, provided that
the matrix multiplying zo has full rank. This is guaran-
teed if the observability conditions of [21] are satisfied.
Given z9, u; and ), the continuous state trajectory
{z¢} can be trivially recovered from equation (1).

Remark 2 (Inferring the switching parameters)
Once the model parameters and the hybrid state have
been identified, the problem of estimating the switching
parameters, e.g. the partition of the state space
for PWAS, becomes a simpler problem. We refer
interested readers to [3, 10] for specific algorithms.

4 Identification of MIMO systems

Let us first consider the case of a linear hybrid system
with a single output but multiple inputs u; € R?, ¢ > 1.
In principle, the transfer function for each linear system
is given by

— |n(z) na(z) ny(z)
G(z) = [d:(z) e e (24)
However, we can always compute a common denomi-
nator, d(z) = 1 —ay27! — ... a,z™™, so that, without

loss of generality, each ARX model reads.

h=a1y-1+ay-2+ - -+ anYi_n+
1,2 2 1
g1+ QUi g+ U+
cfuf_y +uf_p+-- +clgul

4
t—ny

where u¢ = (ug,u?,--- ,uf)T € R? and n}, is the degree
of input i = 1,...,q. The above ARX model can be
written as

Loy =(c7T,...,c7,aT)@l,...,ul,y7)T = 0 (25)

where x; € R¥ and £ € RX, with K = n+Z‘~=1 nj+1,

= (. el)T € R™ i=1l.q
a=(an, - ,a;,1)T ¢ R*!
ug:(u:_n.‘f‘a""ug_l)TGRnf‘ j=1)""q

Ye = Wt-ns- Y1, )T € R™HL

Therefore, the same identification procedure for SISO
systems can be directly applied to MISO systems, as
long as the degree of the numerators and denominator,
nd and n respectively, are known.

Consider now the more general case in which each lin-
ear system is MIMO with transfer function of the form

jug ... e
N (
g .. ey

Again, without loss of generality, we can assume that
there is a common denominator d*(z) of degree n, for

each output ¢ = 1,...,p. Similarly to (25), we obtain
the following system of equations on the data points

G(z) = e RPX9(z).  (26)

.cll e cPl- T Dutl-
cl? | |u

LTz, = ol 0 yi =0 (27
| 0 a?]| |yt

where £ € RP*K with K = 3°7_ (n + 1) + 39_, nd,

a’ € R**! is the parameters of the i-th output y;,
t=1,...,p, and Y= (y:_ni’ o Yi-1s _yZ)T € R™H.

Therefore, the input/output data generated by a lin-
ear system lies in a (K - p)-dimensional subspace of
R¥. This implies that the identification of MIMO lin-
ear hybrid systems is equivalent to the identification of
a collection of N (K — p)-dimensional subspaces of RX
from sample points on those subspaces, without know-
ing which sample points belong to which subspaces.

The case p = 1 (MISO systems) corresponds to the
identification of a collection of N hyperplanes. Since
the algebraic variety associated with N hyperplanes
can be uniquely described with a single homogeneous
polynomial, as described in Section 3 one can reduce
the identification problem to estimating such a poly-
nomial from data and then factorizing it to obtain the
model parameters.

The case p > 1 is more complex, because there are
multiple polynomials describing the algebraic variety
associated with a collection of N subspaces. Multiple
polynomials arise in the case of subspaces because one
can change the basis for the orthogonal complement to
each subspace®. In the case of hyperplanes the basis
for the orthogonal complement is uniquely defined by
the normal to the subspace.

3Since the coefficients of the polynomials representing all the
subspaces must lie in the null space of the data matrix Ly in (13),
we conclude that rank(Ly) < My - 1.
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Figure 1: Samples on two 1-dimensional subspaces L1, L2
in R® projected onto a 2-dimensional plane P.
The membership of each sample (labeled as
“+”) is preserved through the projection.

It turns out that one can avoid estimating multiple
polynomials by first projecting the data onto a lower-
dimensional linear space. Consider, for example, the
problem of estimating two lines L; and L, in R3 from
sample data points (see Figure 1). In this case, one
can project the lines onto a plane P not orthogonal to
the plane containing the lines, and the segmentation
of the data is preserved. In the plane, the two lines
are represented by a single polynomial. We showed
in [22] that, for subspaces of arbitrary dimension, one
can always project the data onto a lower-dimensional
subspace in which the data is represented by a unique
homogeneous polynomial. Furthermore, the set of pro-
jections that fail to preserve the segmentation of the
data is only a zero-measure set [14].

The question is now how to choose a projection onto a
lower-dimensional subspace that preserves the segmen-
tation. While this may be hard in general, because we
do not know the basis for each one of the subspaces, in
the case of hybrid systems identification we are looking
for a collection of subspaces whose orthogonal comple-
ment has a particular structure given by the matrix £
in equation (27). More specifically, we can choose a
collection of p projections {m;}%_, of the form

i=1
m; :RX — RK

Ty (ug, -, uf, u)

where K; = n* + 1+ Y_ n]. Each one of those
projections allows us to identify the model parameters
(¢1,--+,c%,a') by applying our MISO identification
algorithm to the input/output data (u},---,u?,y}).
Once all the model parameters have been identified,
the filtering of the discrete state can be trivially ob-
tained, similarly to (22). The filtering of the continuous
state may also be obtained as before, but requires to
first find a state-space realization of each MIMO linear
system. See [15] for further details on how to obtain a
realization of a linear system given a transfer function
representation.

5 Experiments

We present simulation results on the identification of
1000 randomly chosen JLS with N = 3 discrete states.
Each linear system is described by the ARX model

Yt = a1(Ae)ye-1 + a2(Ae)ye—2 + c1(Ne)us—1 +w, (28)

where the dimension of the state space is n = 2, the
degree of the input is n, = 1 and the discrete state
is A\; € {1,2,3}. For each trial, the model parameters
(a1,a2) for each discrete state were randomly chosen
so that the poles of each linear system are uniformly
distributed on the annulus 0.8 < ||z|| < 1 ¢ C. The
model parameter c; for each discrete state was chosen
according to a zero-mean unit variance Gaussian dis-
tribution. The value of the discrete state was chosen
as

1 1<t<30
Ad={2 31<t<60 (29)
3 61<t<100

The initial value of the continuous state was randomly
drawn from a zero-mean Gaussian distribution with
variance ¥ = I. The input sequence was drawn from
a zero-mean unit variance Gaussian distribution. We
added zero-mean Gaussian noise with standard devia-
tion o € [0,0.01], w, to simulate a measurement error
of about 1%. Notice that the algorithm is designed for
the noise-free case.

Figure 2 shows the mean error on the estimation of
the model parameters?, continuous state®, and discrete
state®, respectively, as a function of o. Both the model
parameters and the continuous state are correctly esti-
mated with an error that increases approximately lin-
early with the amount of noise. Notice that the discrete
state is incorrectly estimated approximately 8% of the
times for o = 0.01. Notice also that there is no error
for o = 0.

Figures 3 and 4 show the reconstruction of the state
trajectory for a particular trial with ¢ = 0.01. Notice
that there are 5 time instances in which the estimates of
the discrete state are incorrect. Notice however, that
the continuous state is estimated with a small error
throughout the whole interval, in spite of erroneous
identification of the discrete state.

4The error between the estimated model parameters
(41,42, ¢1) and the true model parameters (a1, a2,¢1) was com-
puted as [|(d1,d2,€1) — (a1,a2,¢1)|l, averaged over the number
of models and trials.

5The error between the estimated continuous state £y and
the true continuous state (a1, az, 1) was computed as e — z¢]|,
averaged over the number of data points and trials.

6The error between the estimated discrete state X¢ and the
true discrete state A\; was computed as the number of times in
which A¢ # Ay, averaged over the number of trials.
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Figure 2: Mean error over 1000 trials for the identification
of the model parameters (top), the continuous
state (middle) and the discrete state (bottom)
as a function of the standard deviation of the
measurement error o.
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Figure 3: Evolution of the first (top) and second (bottom)
entry of the continuous state z; and its estimate
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Figure 4: Evolution of the estimated discrete state X;.



6 Conclusions

We have propgsed an algebraic geometric solution to
the identification of linear hybrid systems. We showed
that the identification problem of the model param-
eters can be decoupled from the inference of the hy-
brid state and made independent from the switching
mechanism generating the transitions. The decoupling
was made possible by the hybrid decoupling constraint,
which establishes an equivalence between linear hybrid
systems identification and the estimation of a collec-
tion of subspaces from data points on those subspaces.
Then, we derived a rank constraint on the input /output
data from which one can estimate the number of models
N. Given N, the estimation of the model parameters
is equivalent to a factorization problem in the space of
homogeneous polynomials, which can be solved using
linear algebraic techniques. Once the model param-
eters have been identified, the filtering of the hybrid
state and the switching parameters can be obtained
using standard techniques. We presented simulation
results evaluating the performance of the algorithm.
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