Copyright © 2003, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



MULTI-VIEW OPERATION-LEVEL
DESIGN — SUPPORTING THE
DESIGN OF IRREGULAR ASIPS

by

Scott J. Weber, Matthew W. Moskewicz,
Manuel Léw and Kurt Keutzer

Memorandum No. UCB/ERL M03/12

4 April 2003



MULTI-VIEW OPERATION-LEVEL
DESIGN - SUPPORTING THE
DESIGN OF IRREGULAR ASIPS

by

Scott J. Weber, Matthew W. Moskewicz,
Manuel Léw and Kurt Keutzer

Memorandum No. UCB/ERL M03/12

4 April 2003

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



Multi-view Operation-level Design —
Supporting the Design of Irregular ASIPs

Scott J. Weber, Matthew W. Moskewicz, Manuel Léw, Kurt Keutzer

ABSTRACT

Architectural description languages are increasingly being used
to define architectures and to generate key elements of their
programming environments. A new generation of application-
specific instruction processors is emerging that does not fit well
in an instruction-set architecture paradigm. In this paper, we
propose a methodology that supports the design of a wider range
of programmable architectures than existing architecture
description languages. We achieve this through a flexible
framework that is centered on a constraint-based functional
hardware description language that abstracts computation using
the notion of primitive operations. Using multiple views acting
on a common model, our methodology ensures consistency
between architectural design, tool generation, and hardware
implementation. We term our methodology multi-view
operation-level design.

1. INTRODUCTION

Traditionally, the number of programmable architecture design
starts has been few, and as a result, little commercial tool
support exists for this market. But, with the increasing
replacement of application-specific integrated circuits (ASICs)
with application-specific instruction processors (ASIPs) it seems
natural that electronic design automation should support such
systems. These designs require a suite of development tools
including a simulator, assembler, and compiler. To actually
realize the hardware design, a netlist must be generated from a
description of the architecture in a traditional hardware
description language (HDL).

A variety of architectural description languages (ADLs) [1][2]
have been proposed to assist in the design of programmable
architectures. A common aspect of existing ADLSs is to restrict
the scope of architectures supported in order to manage the
complexity of the associated tool generation. We feel that these
restrictions will force the designers of emerging imegular
architectures, such as the IXP1200 [3] and Calisto [4], and
Virtex II Pro [5] to continue to use traditional design practices
that involve the manual construction of simulators, assemblers,
compilers, and HDL models. Manual construction is time
consuming and error-prone. If you agree that ASIP architectures
will be increasingly diverse and irregular, then it is imperative to
provide a better methodology to enable their design.

To support this new generation of ASIP architectures, we
propose a component abstraction above the register-transfer
level (RTL) abstraction that allows for the design of any
programmable architecture that can be described as an arbitrary
collection of datapaths which can be configured. RISC
datapaths, systolic arrays, special purpose co-processors, and
FPGA look-up tables all fall within this category. From each
datapath description, we automatically extract all operations that
the datapath can execute. From these extracted operations, we
are able to generate the tools required for programmable

architecture design. These tools include high-speed cycle-
accurate simulators and an assembler. It is important to note
that we can produce these tools without committing to a
particular control strategy (e.g. horizontal microcode, traditional
RISC controller, etc.). The design can be simulated with control
abstracted as a simple trace of the operations to be executed.
Ultimately, a controller that implements the control strategy
must be chosen so that a synthesizable RTL hardware model can
be produced for the complete design.

At the core of our methodology is a common model with well-
defined semantics. The model contains information about the
structure of the architecture and the supported operations.
Multiple views (synonymous with abstractions) are then
developed on top of the model to encapsulate and present the
information required by each facet of the design process.
Practically, a view consists of a set of tools that operate on a
model to extract some particular information or perform some
transformation. Views have the invariant that they must respect
all of the semantics of the model, and never infer anything that
is not present in the model. This implies that once a view is
(correctly) written, the outputs of that view will be correct by
construction with respect to any model. Thus, the multiple
views enable designers such as the simulator writer, assembly
writer, and compiler writer to work with the design from
differing but always consistent perspectives. The key to
achieving semantic consistency over such a broad range of
architectures in our methodology is an operation-level
description that captures both structural and behavioral aspects
of the design while orthogonalizing control aspects.

The paper is organized as follows. In Section 2, we review prior
work on ADLs. In Section 3, we discuss multi-view design. In
Section 4, we use a small example to illustrate how one designs
a micro-architecture in the architecture view. Section 5
discusses how the operation view is generated. Section 6
discusses how the high-speed cycle-accurate simulator is
generated. Section 7 discusses the assembly view. Section 8
discusses the hardware view. A case study is presented in
Section 9. Future work is discussed in Section 10. We
conclude in Section 11.

2. PRIOR WORK

Within the last decade, a variety of ADLs (references to the
ADLs named here can be found in the surveys [1}[2]) have been
introduced to assist in the development of new architectures. All
ADLs must make trade-offs among ease-of-expression, breadth
of architectures supported, and the quality of the generated
tools. Behavioral ADLs (nML, ISDL, and CSDL) allow
designers to describe the instruction semantics to create a
programmer’s view of the architecture. In fact, Target Compiler
Technologies' has commercialized the use of nML in its

! http://www.retarget.com



Chess/Checkers [6] environment. However, the lack of
sufficient structural details in behavioral ADLs makes it difficult
to extract an efficient micro-architecture.

To attack this limitation, mixed ADLs (FlexWare, Maril,
HMDES, TDL, EXPRESSION, and LISA) were developed to
enable designers to describe the instruction semantics, the
micro-architectural structure, and a mapping between the two.
In fact, companies such as AXYS” and LISATEK? are providing
high performance cycle-accurate simulators and system
integration tools based on custom processors described with
LISA [7]. However, these ADLs, as well as the behavioral
ADLs, lack support for designs outside a limited family of
architectures and system integration is performed in an informal
manner.

One way to model architectures outside the scope of these ADLs
is to use a HDL such as Verilog, VHDL, or SystemC. These
languages support any architecture, but lack the notion of
operations.  Stylized HDLs such as the structural ADL
MIMOLA [8] do capture the concept of instructions albeit with
the requirements that they are single-cycle microcoded
operations. The MIMOLA effort demonstrates that it is possible
to extract instructions [9], generate a compiler and a simulator,
and synthesize a design from a single low-level description.
Tools supporting MIMOLA, however, assume certain uses of
architecture features such as a program counter, a register file,
instruction memory, and single-cycle operations.

The existing ADLs have certainly enabled the use of a broader

scope of programmable architectures in designs. However, ADL
developers are faced with the dilemma that they want to support
a wider a range of architectures without sacrificing generated
tool quality. We address this dilemma by developing an
operation-level ~ abstraction capable of modeling any
programmable architecture. We then formalize the activity of
generating tools and HDL models from this abstraction as a
process of restrictions and invariant preserving transformations.
The range of architectures that we support is then no longer a
function of the ADL but of the breadth of the available views.

3. MULTI-VIEW

Traditionally, a HDL is used to describe a micro-architecture.
However, HDLs lack semantics to make a formal distinction
between the control logic and the datapath. Architects instead
make this distinction by specifying the instructions and the
corresponding  control logic manually. Validating the
correctness of these instructions requires extensive simulation
and is error prone. To alleviate the pain of verification in our
approach, we have developed an operation-level abstraction that
separates control from data, thus enabling the exportation of the
architecture as a set of operations.

Abstracting an architecture as a collection of operations is a key
enabler for our multi-view methodology. The abstraction gives
us the model from which the simulator, assembler, and compiler
views can be developed. Using these views, the simulator,
assembler, and compiler can then be automatically generated.
Furthermore, the underlying model allows us to develop these
multiple views without requiring a single cumbersome syntax

£ http://www.axysdesign.com
3 hitp://www.lisatek.com

for all views. We feel that no single syntax is natural for
architects, compiler designers, and simulator writers because
each is concerned with different facets of the design.

Our methodology dictates that views must work only with
semantics explicit in the model. We do not guarantee that a
view will succeed in manipulating the model. It is up to the
designer of a view to ensure that any transformation that a view
applies to the model has the intended effect, and that any
outputs of the view represent correct extractions of information
in the model. The issue of designing and verifying the views
themselves is outside the scope of this paper, but there are many
alternatives, including standard random simulation as well as
formal verification techniques similar to those used to verify that
multiple specifications of a single processor conform to some
property [10].

To illustrate the benefits and limitations of the multi-view
methodology, consider the creation of a compiler view. The
intent of a compiler view is to provide a means to automatically
generate a compiler given an architecture. Because our
underlying model is quite descriptive, it is possible to design an
architecture outside the scope of a compiler view. For example,
a compiler view that only understands non-clustered
architectures may fail if the architecture has a split register file.
To solve this problem, either the architecture view is restricted
or the compiler view is enhanced. It is exactly this appropriate
defining, partitioning, and restricting of views that is the
cornerstone to a successful framework.

Operation
View

Simulation  §
View

Architecture
View

Hardware
View

Assembly
View

-

Figure 1. Multiple Views

To demonstrate the methodology, we propose an initial
framework composed of the five views shown in Figure 1.
Designers can compose hardware blocks in the architecture
view. The computational functions that can be performed by the
architecture are extracted and presented by the operation view.
The simulation view uses information from the architecture and
operation views to generate a high-speed cycle-accurate
simulator. In order to program the architecture, a simple
traditional assembler is generated in the assembly view. Finally,
a synthesizable RTL hardware model is generated in the
hardware view, thus enabling a realization of the architecture.
These views represent an introduction to a framework which
will also include a compiler view.

4. ARCHITECTURE VIEW

The architecture view provides the designer the ability to
describe the datapath. In our architecture view, datapaths are



described by connecting actors with signals between ports. The
term color refers to an abstract property used to distinguish
signals. Rather than encoding signals as a collection of bits (as
in a traditional HDL), we instead abstract the interesting
properties of signals by choosing appropriate colors. The
coloring of a signal subsumes the traditional notions of a signal
of having a “type”, a constant value, or a symbolic value.
Generally, a signal has a set of possible colors determined by its
context. There is a color, “not present”, which corresponds to a
logical “X” in a three-valued logic. A signal has this color when
it contains no information. Almost all signals have the “not
present” color in their set of possible colors. Signals such as the
control inputs to multiplexers are generally abstracted as
enumerations of constants because all possible values of these
signals must be distinguishable during analysis.

Colors can be grouped together into sets (hereafter referred to as
color-sets). Besides equality, which is defined over all colors,
color-sets may have additional axiomatic relations defined. For
example, the bit vector color-set has the standard logical and
arithmetic functions that one would expect in an HDL. The
colors in a color-set not only include constants (expressed as
“color-set.color”), but also symbolic variables (expressed as
“color-set.varname”). For example, each source in a circuit will
introduce a fresh symbolic color. The signal bound to each
source will have only this color in its set of possible colors
(technically, because sources can be unused, “not present” is
also a possible color for source signals). Additional symbolic
colors are introduced to represent all possible computation by
actors. All such computation by actors cccurs within firing
rules which define the axiomatic relations between inputs and
outputs. Firing rules can only be active when certain color
constraints on the signals bound to the ports of the actor are met.
Note that this is not the same as a simple color-set constraint,
because it can also test against specific colors. Additionally,
actors specify a validity constraint using first-order logic over
the “activeness” of their firing rules. Typically, this constraint
specifies that at least one firing rule is active, but more
sophisticated constraints are possible and sometimes necessary.
In our current system, we have defined the three color-sets as
shown in Table 1.

Table 1. Color-set Definitions
Color-set Description
X Set containing only "not present” color.
enum Set of colors for abstracting enumerations.
bit Set of colors for abstracting bit vectors.

Examples in Figure 2 illustrate how actors are defined in our
language. For each firing rule, the color constraints are in
parentheses after the name of the rule, and the axiomatic
relations are contained in the curly braces. The first actor is a
demux which has two rules for passing the input to the
appropriate output port, and one rule that does nothing. The
second and third actors represent an incrementer and
decrementer, respectively. The final actor is a mux. Note that
the color constraints for the mux and demux match against a
specific color on the control signal, but only check color-set
membership on the other signals. This distinction is typical of
the difference between what are traditionally considered control
and data signals. When analyzing different configurations of the

hardware, control signals tend to have constant values whereas
data signals tend to remain symbolic variables. However, the
framework makes no formal distinction between control and
data signals.

Although not shown in Figure 2, two primitive state actors, the
register and flip-flop, are also defined. A register holds a value
written to it until the value is overwritten. A flip-flop holds the
value written to it for one cycle. Both of these state actors are
parameterized by size. With these primitive state elements, we
can define RAMs, ROMs, register files, and other useful
components. However, it is important to understand that
operations as defined here always occur within a single cycle,
and thus for analysis, all state elements are constrained to appear
as sources or sinks.

fire0(in € bit, sel & enum.0, out{0] & bit, outf1] € X) {outf0] = in;)
frel(in € bit, sel € enum.1, outf1) € bit, otf0) € X) {outf1] = in)
no_firefne X, sele X, {0l € X, o) X) 0

valid = fire0 v firel v no_fire

fire(fn e bit, out & bit) fout = In + 1}}
no_fiefne X, oute X) 0
valid = fire v no_fire

fre(tn € bit, oute bi) {out=in- 13}
no_fire(in € X, oute X)
valid = fire v no_fire

fire(in[0] € bit, in[1) € X, sel € enum.0, out e bit) (out = in[0})
fire(in]1] & bit, inf0] € X, sele enum.1, ot & bi) fout = Inf1))
no_fre(in[0} e X, inf1] € X, sele X, ot € X)

valid = fre0 v fire1 v no_fire

Figure 2. Actor Semantics

After defining the actors, an architect composes them by
connecting their ports with signals in a hierarchical schematic
editor. Most architects will use predefined library actors which
are parameterized by port width. An example composition is
shown in Figure 3. We purposely leave ports unconnected if we
want these ports to be programmable. The non-determinism of
these ports will be leveraged in the operation view to generate
the supported operations of the micro-architecture.

sel

sel
in n out
>
Figure 3. Example Architecture

We have developed a particular architecture view based on a
constraint-based functional language, but other architecture
views that are capable of describing our wide range of
architectures could also be used or developed. For example, the
MIMOLA ADL [8] could be used. In fact, our architecture view
is similar to MIMOLA except that we abstract control values.
The abstraction enables delaying the encoding of control until it
is actually needed in the hardware view. Furthermore, we
automatically generate the encoding.



5. OPERATION VIEW

The operation view provides the designer the ability to extract
all interesting configurations of the datapath described in the
architecture view. To extract the operations, we first translate
the design to first order logic. Figure 4, for example,
demonstrates the formulation of the architecture shown in
Figure 3. The possible colors for each signal are defined as a
set. Each actor has a set (named actor.fire) that encodes which
of its firing rules are active. Because the validity constraint for
each of these actors is a simple disjunction of its rules, the set is
constrained to be non-empty.

Dine {X,x), Dsete {X,0,1),R0e (X. 81 R1e {X, &), R2e {X, ¢}, R3¢
{X. 1), Msel € {X, 0, 1), M.out e {X, cz, B), D.fire < (fire0, fire1, no_fire},
inc.fire < {fire, no_fire}, dec.fire < {fire, no_fire), M.fire < {fire0, fire1, no_fire}
((Din=y AD.sel=0AR0=58AR1 =X} (fire0 € D.fire)) A

((Din=yx AD.sel=1AR0=X AR1=¢) & (fvel € D.fire)) A
((Din=X A D.sel=X AR0=X AR1=X) & (no_fire € D.fire)) A

(Dfire + @) A

{(R0=38 A R2=¢) < (fire € inc.fire)) A

{(R0O= X A R2 = X) < (no_fire € inc.fire)) A

(incfire = @) A

((R1=e AR3=7) & (fire € dec.fire)) A
{(R1=X AR3 = X) & (no_fire € dec.fire)) A
(dec.fire = @) A

{(R2=¢p AR3 = X AMsel=0 A Mout = ) & (fired € Mfire)) A
((R2=X AR3=yAMsel=1AMout=p) < (firel € Mfire)) A
{(R2=X AR3 =X AM.sel = X A Mout = X} & (no_fire € M.fire)) A
(M.fire ¢ @)

(011 = [Dxl); [fell = Melt s (1) = 18 + 9; il = (tel - 9; fod) = (60 : O8N = Oyl

Figure 4. First Order Logic Formulation of Example

After formulating the architecture as a first order logic
expression, we then find the set of satisfying solutions. These
solutions represent the operations supported by the architecture.
The solutions are found using an iterative SAT procedure shown
in Figure 5 called FindMinimalOperations (FMO). The
procedure must be restricted to find “minimal” solutions, as
there are generally an exponential number of solutions, scaling
with the amount of independent parallelism in the design. A
solution is “minimal” when no additional signals can be “X" (or
not present) and still satisfy the model. The inner loop of FMO
does this minimization. Following the creation of an operation,
we restrict the model formula so that subsequent “minimal”
operations are not simply combinations of previous operations.
By limiting FMO in this manner, we can quickly find the
supported operations. Either the assembly or compiler view
then combines these operations in time and/or space to create
what would be considered more traditional instructions.

Figure 6 shows the resulting solutions found by running FMO
on the example architecture in Figure 3. Each solution indicates
the colors of the signals. The first solution represents the
operation to do nothing, the second solution performs the
increment operation, and the third solution is the decrement
operation. The associated axiomatic relations will allow us to
construct logic that computes the values of any sink signal’s
symbolic colors in terms of the source signals’ symbolic colors.

It is common that some of the operations generated are
unwanted or have spatial and/or temporal constraints between

each other. A spatial constraint indicates that a set of operations
always occur together on a cycle, whereas, a temporal constraint
specifies a particular order for a set of operations. Using these
constraints, we can build traditional instructions by chaining
operations. For example, a three-operand register-to-register
“add” instruction for a 5-stage DLX would be implemented by
adding a temporal constraint to the set of operation constraints.
The constraint would indicate that the operations that constitute
the “add” in the IF, ID, EX, MEM, and WB stages occur one
cycle after another in that pipeline order. Removing operations
and constraining relationships between operations allows a
hardware view to synthesize more efficient control. For this
reason, we view restricting and constraining operations as an
integral part of the design process. The unrestricted operations
and constraints between these operations represent the
programmability of the architecture.

BASE is the CNF formulation of the model

NET is the set of net fiterals

CERT is a certificate, i.e. set of [iterals (satisfying the BASE)

CERTS is the set of all CERT

present: (NET x CERTS) — boolean (true if net is present in the cert)
isSatisfiable: ALL_CNFS — boolean (true if the CNF is satisfiable)
gelCertificate: the last certificate that made isSatisfiable TRUE

OPERATIONS = {}, OPNETS = §§
while (isSatisfiable(BASE)) {
do{
C = getCertificate()
“remove the constraints added in [1]°
BASE = BASE A (% {—neti | nete NET A —present(net, C))) i
BASE = BASE A (TTi {~-net | net € NET A presentne, C)}) 2
} while (isSatisfiable(BASE))
“remove the constraints added in [2]°
“create new operation named 'op’ based on the certificate”
OPNETS = OPNETS U {op — {net | net e NET A —present{net, C))}
OPERATIONS = OPERATIONS L op
BASE = BASE A (ITi {neti | netie NET A present{net;, C)} <> op) 3]
BASE = BASE A (i {neti | nety e NET)
A (T {—opj | opje OPERATIONS A netie OPNETS(opp))) [4]

“remove the constraints added in [3), and (4]"
Figure 5. FindMinimalOperations (FMO)

We have developed a particular operation view that utilizes SAT
to extract the operations. The MIMOLA effort also provides a
method to extract operations using BDDs [9]). However, our
approach offers the designer the freedom to delay the control
implementation as mentioned in Section 4. To support this
abstraction, we perform a simple transformation of the design to
first-order logic. We then apply SAT to extract the operations.
In practice, we have found that this formulation is
straightforward and easy to solve.

NOP:D.sel=XADin=X ARO=XAR1=XAR2=XAR3=XA
M.sel=X AMout=X A D.fire = no_fre A inc.fire = no_fire A

dec.fire = no_fire A M.fire = no_fire

inc:Dsel=0ADin=x% ARO=8ARI=XAR2=06AR3=XA

M.sel = 0 A M.out = & A D.fire = fireD  inc.fire = fire A dec.fire = no_fire A
M.fire = fire0
dec:D.sel=1ADin=4AR0O=XAR1zeAR2=XAR3=yA

M.sel= 1 AMout=p A D.fire =firel A inc.fire = no_fire A dec.fire = fire A
M.fire = firel

Figure 6. Satisfying Certificates for Example



6. SIMULATION VIEW

After describing the architecture and extracting the supported
operations, we must provide a means to simulate the operations.
Our simulator view provides the capability to generate a high-
speed cycle-accurate simulator for the architecture. Given an
operation, we translate any necessary axiomatic relations into
operations of a language such as C/C++. For each operation
found with the static analysis performed in the operation view,
we are able to remove all of the control signals or any others
which are constant leaving only the relevant state-to-state
combinational logic for each instruction (an instruction is
defined as a set of operations to be executed within a cycle).
Furthermore, since the program is specified as a series of
symbolic operations, there is no need to simulate or specify any
particular encoding of the operations or decoder. The resulting
simulator is a compiled-code simulator for any realization of this
architecture.

If a control strategy (consisting of an encoding of the
instructions and decoder logic) exists, then an interpretive
simulator can be generated. We provide a mechanism to
generate a simple default control strategy using horizontal
microcode. An interpretive simulator can be useful if the
program to be executed is not known. However, the interpretive
simulator suffers in performance compared to the compiled-code
simulator.

Our generated simulators are comparable to other top
performing simulators such as LISA [7] and JACOB [11].
However, we feel that our simulators have several advantages:
they support a wider range of architectures, generating the
simulator from the extracted operations ig simpler than the LISA
approach [7], and the strong semantics of our underlying model
allows for fairly aggressive optimizations and transformations.

7. ASSEMBLY VIEW

Our assembly view represents the first step towards the
generation of a compiler. Given a set of operations, we generate
an assembler for that set. The primary task of the assembler is to
read an assembly code file and produce the appropriate pre-
decoded machine code for our simulator. The assembly code
file consists of a list of groups of concurrent operations that are,
in turn, to be executed in sequential order. During the machine
code generation, the assembler verifies that a group of
operations can be “issued” together. To verify this property, we
perform a satisifiability check on the model with the union of all
firing rules in the group of operations forced to be active. Ifit is
satisfiable, then the group of operations can be issued together.
We also check that the spatial and temporal constraints are met.
This is important because the simulator (which has the control
logic simplified away) does not perform any such check, and
clearly we do not wish to simulate operation combinations that
are not possible on the actual hardware.

8. HARDWARE VIEW

We can simulate and program our architecture without explicitly
specifying the control logic, but to actually realize an
implementation of the architecture, we must commit to a control
strategy. There are many control strategies. For very simple
programs, a dedicated FSM that represents the program can be
designed.  Another simple control strategy that we have

implemented as the default is horizontal microcode. More
elaborate control strategies such as reconfigurable control and
RISC or VLIW encoding schemes could also be designed. Each
control strategy uses the information about the operations
supported and the spatial and control constraints to optimize the
generated controller. Once a control strategy has been chosen,
the hardware view can then produce a synthesizable RTL
hardware model by combining the information in the
architecture view with the control strategy to realize an
implementation. We then leverage a traditional HDL flow to
generate hardware and provide combinational timing feedback
for each operation.

9. CASE STUDY

To demonstrate and evaluate our tools and methodology, we
supported an experienced industrial ASIC designer who
implemented a channel encoding processor using our
methodology (Figure 7). The processor is capable of performing
CRC, UMTS Turbo/convolutional encoding, and 802.11a
convolutional encoding. @ The design is composed of
approximately 60 actors which are divided into a “control”
plane composed of a PC and zero-overhead looping logic, and a
“data” plane composed of a register file, accumulator, and bit
manipulation unit. The division of planes is for the designer,
not the tool. The designer chose to leverage our default control
strategy generation (horizontal micro-code) by leaving the select
ports of the multiplexers, the register file address ports, and
immediate value ports unconnected. The non-determinism of
these unknown values represents the programmability of the
architecture; the generated controller must produce appropriate
values for these ports on each cycle. Upon analysis, the design
has 46 operations, of which half were unwanted and thus
restricted.

maskbitin  data input

\ 4

> IMEM

Loop Counter

DataPath / BMU

PCand |
1 PCStack [¢

data output

Figure 7. Channel Encoding Processor

To program the processor, each instruction generally consists of
“control” and “data” operations. The *“data” operations are
specialized bit manipulation operations for CRC and
convolution encoding. Due to resource sharing, most of these
operations are mutually exclusive. The “control” operations are
things such as increment PC, set loop counter, decrement loop
counter, and test end of loop. These can be combined to form
an instruction that, for example, decrements the lcop counter,
branches if the loop counter is 0, otherwise increments the PC.
The instruction also includes additional data plane operations.
The applications targeted for the processor contain many




streaming tasks that require multiple cycles per sample. To
implement these applications, the designer created zero-
overhead loops containing small sets of instructions to perform
each task. Effectively a designer can use an ASIC methodology
to design a programmable architecture by specifying the
requisite “control” and “data” planes and leverage our
methodology to extract the operations and generate the
simulator and assembler.

The combined runtimes of each view are low enough to enable
design space exploration. All experiments were performed on a
1.33 GHz Athlon with 768MB of memory. For the channel
encoding processor, it takes 24 seconds to generate the
operations, 5 seconds to generate the interpretive or compiled-
code simulator, and half a second to compile the simulator. Our
views are all written in Java, but we use relsat [12] in the FMO
algorithm. In order to get the highest performance simulator, we
generate C++ and use gec3.2 with —O3 to create the simulator.
The compiled-code simulator executes approximately 40 million
instructions (i.e. cycles) a second. The interpretative simulator
executes approximately 5 million instructions (i.e. cycles) a
second.  Each operation requires on the order of 10 host
machine instructions for decoding control (which is only present
in the interpretive simulator), and roughly one instruction for
each integer computation. These performance numbers are on
par with existing pipeline and cycle accurate simulators.

10. FUTURE WORK

Our most ambitious effort is our compiler view. Like the
assembly view, the compiler view is parameterized by the
generated operations. Unlike the assembly view, the compiler
view will accept programs in a higher level language and will be
able to optimize such programs using heuristics we develop to
map a program to the primitive operations. This view will
complete the flow from a high-level language and architecture to
machine code running on actual hardware. The most difficult
step is to formulate traditional compiler optimizations in a way
that is compatible with a highly variable and heterogeneous set
of operations. Most likely, a combination of traditional hand-
written heuristics (for control flow) and generic combinational
matching (for straight line code) [13] will be required. We
believe that such an approach will allow us to use a single
compiler view to capture a larger family of programmable
architectures than is currently possible with existing compilers.

11. CONCLUSION

We have shown how our operation-level abstraction enables a
semantically consistent multi-view operation-level design
methodology. This in turn enables automatic high-speed cycle-
accurate simulator, assembler, and synthesizable RTL hardware
generation. Our case study with an industrial ASIC designer has
convinced us of the soundness and utility of the approach.

We believe that our methodology benefits from the fact that it
supports a very broad range of programmable architectures. The
key is to use a single common model to generate all needed
views of the design. In this way, semantic consistency is
guaranteed. -

ASIC designers approaching ASIP design for the first time will
find it natural to describe the architecture at the hardware
description level in terms of operations, and our case study gives

support for this assertion. The assembler and compiler can then
be automatically generated in order to provide a programmer’s
view of the architecture. We believe that simulation must be
fast and accurate in order to enable the exploration of a large
design space and we automatically generate such a simulator in
our approach. We also believe that a path to implementation
must exist, and we provide such a path with our hardware view.
In this way, we help to automate the design and abstraction of a
new generation of irregular ASIP architectures.

12. REFERENCES

[1] W.Qin, S. Malik, “Architecture Description Languages for
Retargetable Compilation,” in The Compiler Design
Handbook: Optimizations & Machine Code Generation,
CRC Press, 2002, (Editors Y.N. Srikant and Priti Shankar).

[2] H. Tomiyama, A. Halambi, P. Grun, N. Dutt, and A.
Nicolau, “Architecture Description Languages for Systems-
on-Chip Design,” In Proc. of 6* Asia Pacific Conference
on cHip Design Languages (APCHDL'99), Invited paper,
pp- 109-116, Oct. 1999.

[3] Intel Corporation. IXP1200 Network Processor Database.

[4] J. Nickolls, L.J. Madar III, S. Johnson, V. Rustagi, K.
Unger, M. Choudhury, “Broadcom Calisto: A Multi-
Channel Multi-Service Communications Platform,” in Hot
Chips 14, Aug. 2002.

[5] Xilinx Corporation. Virtex Pro Il Data Sheet.

[6] D.Lanneer, J. Van Praet, A. Kifli, K. Shoofs, W. Geurts, F.
Thoen, and G. Goossens. CHESS: Re-targetable Code
Generation for Embedded DSP Processors, In Code
Generation for Embedded Processors (p. Marwedel and G.
Goossens, ed.), Kluwer Academic Publishers, 1995.

[7] S. Pees, A. Hoffman and H. Meyr, “Retargetable Compiled
Simulation of Embedded Processors Using a Machine
Description Language,” ACM Transactions on Design
Automation of Electronic Systems, Vol. 5, no. 4, Oct. 2000,
pp. 815-834.

[8] R. Leupers and P. Marwedel, “Retargetable Code
Generation Based on Structural Processor Descriptions,”
Design Automation for Embedded Systems, vol. 3, no. 1,
Jan 1998, pp. 1-36.

[9] R. Leupers, Instruction-Set Extraction, In Retargetable
Code Generation for Digital Signal Processors, Kluwer
Academic Publishers, 1997, pp. 45-83.

[10]J. R. Burch and D. L. Dill, “Automatic Verification of
Pipeline Microprocessor Control,” Proc. 6" Int't Conf.
Computer Aided Verification (CAV 94), Lecture Notes in
Computer Science, vol. 818, Springer Verlag, Berlin, 1994,
pp. 68-80.

(11]R. Leupers, J. Elste, and B. Landwehr. “Generation of
Interpretive and Compiled Instruction Set Simulators,” in
Proceedings of the Asia and South Pacific Design
Automation Conference (ASP-DAC), Jan. 1999.

[12]R. J. Bayardo Jr. and R. Schrag. “Using CSP look-back
techniques to solve exceptionally hard SAT instances.” In
Proc. of the Second Int’l Conf. on Principles and Practice



of Constraint Programming (Lecture Notes in Computer
Science 1118), 46-60, Springer, 1996.

[13]R. Joshi, G. Nelson, and K. Randall, “Denali: a goal-
directed superoptimizer,” Compag SRC Report 171.



