Copyright © 2003, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



A STRUCTURED DESCRIPTION
OF DATAFLOW ACTORS
AND ITS APPLICATION

by

Johan Eker and J6rn W. Janneck

Memorandum No. UCB/ERL M03/13

13 May 2003



A STRUCTURED DESCRIPTION
OF DATAFLOW ACTORS
AND ITS APPLICATION

by

Johan Eker and J6rn W. Janneck

Memorandum No. UCB/ERL M03/13

13 May 2003

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



A structured description of dataflow actors and its
application

Johan Eker! and J6rn W. Janneck®

! Research, Ericsson Mobile Platforms AB
22183 Lund, Sweden
johan.eker@emp.ericsson.se
2 EECS Department, University of California at Berkeley
Berkeley, CA 94720, US.A.
janneck@eecs.berkeley.edu

Abstract. Many embedded systems have significant parts that are best conceptu-
alized as dataflow systems, in which actors execute and communicate by sending
each other packets of data. This paper proposes a structured view of these actors
that focuses on their dataflow characteristics, and it sketches a notation that di-
rectly represents this view. It then shows how exploiting this actor structure cpens
new opportunities for efficiently implementing dataflow systems, demonstrating
a technique that distributes actors into several concurrent threads and that synthe-
sizes the required synchronization code. As a result, actor descriptions become
more reusable, and reasonably efficient implementations are possible for a larger
class of dataflow models.

1 Introduction

Many modern embedded systems contain significant subsystems that are best concep-
tualized as daraflow systems, focusing on the flow of information between their compo-
nents. There are numerous different datafiow models of computation, most of which fall
into one of three categories [11): Kahn process networks [9], Dennis dataflow [3], and
dataflow synchronous languages [1]. This paper focuses on the second kind of dataflow,
whose distinguishing characteristic is its notion of firing, i.e. atomic steps performed by
the components of a model.

Various kinds of dataflow models are used to describe a wide variety of software
systems, including signal processing algorithms, control systems, communication sys-
tems (such as routers), and even graphical user interfaces and desktop applications.

In all dataflow models of computation, the model components (which we call actors,
and which might also be called processes in other models of computation) communicate
by sending each other packets of data called rokens along unidirectional channels with
exactly one reader and one writer.

A dataflow model such as the one in Fig. 1 represents the potential data dependen-
cies among different parts of a software system (its actors). However, it does not provide
information about the behavior of the actors themselves, such as when and how many
tokens of data they consume and produce during their execution. As a result, general
dataflow models do not provide much information about how the execution of an actor



Fig. 1. A dataflow model—actors with ports, the directed connections between their ports, and
initial tokens.

depends on the execution of other actors it communicates with—scheduling cannot be
statically determined, and consequently, implementations tend to be inefficient.

This has led to the development of a number of specialized datafiow formalisms, or
models of computation, which are often geared towards a specific application domain—
such as synchronous dataflow (SDF) [10], Kahn process networks [9], cyclo-static
dataflow (CSDF) [5], and Boolean dataflow (BDF) [2]. These models impose restric-
tions on what actors are allowed to do—e.g., actors may only consume and produce
a constant number of tokens per activation, they must use blocking read operations
to access input tokens and the like. The resulting static analysis either allows signifi-
cantly more efficient implementations (as in SDF, CSDF) and/or provides assurances
about the resulting software system (e.g. bounded buffer usage for SDF, determinacy
for Kahn process networks).

However, specialized dataflow models of computation have two important draw-
backs. First, they usually require actors to be described in a way that is designed to
match their specific requirements, making it difficult to use these actors in any other
context, such as e.g. another dataflow model of computation. More importantly, they
are often very rigid, and cannot be adapted to and used in circumstances that need more
flexibility—e.g., synchronous dataflow requires actors to consume and produce a con-
stant number of tokens at each activation, which makes it impossible to directly provide
irregular occurring input data to such an actor.

This paper proposes a way of structuring the description of actors so that they can
be used more flexibly in dataflow models, while still retaining the efficiency of more
constrained dataflow models of computation whenever possible. It presents a small ex-
ample that showcases some of the structural analyses and subsequent use of the obtained
results in generating code from a dataflow model.



Section 2 introduces our actor model, and a structured notation for actors. It also
illustrates how these descriptions can be used to manipulate actors and to analyze them.
Section 3 applies the notation and the associated techniques to the example in Fig. 1,
generating reasonably efficient code for it. We conclude with a discussion of the results
and an outlook to further work.

2 Describing dataflow actors

Before we can discuss dataflow models, we need to be more specific about the com-
ponents of these models, the dataflow actors. In this section we first present a simple
formal model for dataflow actors as a foundation for the subsequent discussion. Then
we identify an important criterion for structuring actor descriptions, and sketch a nota-
tion for dataflow actors that reflects this structure.

2.1 Preliminaries

In the following, we assume a universe of all token values I/ that can be exchanged be-
tween actors. The communication along each connection between actors can be viewed
as a sequential stream of tokens, and actors will remove tokens from this stream and
add tokens to it. We define the set S=q.;U* as the set of all finite sequences over U.
The set Seo=gesS U SN is the set of all finite and infinite sequences over U. We write
the empty sequence as A. The length of a finite sequence s is denoted by | s |.

The elements of S, (and consequently S) are partially ordered by their prefix rela-
tion: s C r iff s is a prefix of r, i.e. r starts with the tokens of s in the order they occur
in s. For example, abc C abed, and ab C ab, but abec Z cabd. Note that for any
SESx,ACsandsCs.

Many actors have multiple input and output sequences, so most of the time we will
work with tuples of sequences, i.e. with elements of S™ or S, for some n. The prefix
order extends naturally to tuples as follows:

(8i)i=1.n C (ri)i=1.mn Sdeg Vi=1l.n:5Cr;

Note that since S., and S7, under the prefix order both have a least element, and
every chain in them has a least upper bound, they are complete partial orders. This prop-
erty is relevant when relating dataflow models with a notion of firing to Kahn process
networks, as in [11, 6).

In the following we use projections from S™ to S®, with m > n. These are func-
tions that extract from an m-tuple an n-tuple such that for each value its number of
occurrences in the argument is not smaller than the number of occurrences in the result.
We write projections using the letter = with appropriate subscripts, and use them to map
the input and output of an actor onto a subset of its ports. A special kind of projection
maps a tuple onto one port, say p, of the actor. We write this projection as .



2.2 Dataflow actors

We can now define a dataflow actor as an entity that makes atomic steps, and that in
each such step consumes and produces a finite (and possibly empty) sequence of tokens
at each input or output port. It also has a state (which we will not further characterize),
which may change during this step. :

Definition 1 ((Dataflow) actor, transition) Let U be the universe of all values, and
S = U* be the set of all finite sequences in U. For any non-empty set X of states an
m-to-n dataflow actor (or just actor for short, when m and n are understood or not
relevant) is a labeled transition system

<0'01217's>')
with og € X its initial state, and
TCEXxS"x8"x X

its transition relation. An element of T is called a transition. Finally, - is a non-reflexive,
anti-symmetric and transitive partial order relation on 7, called its priority relation.
For any transition (0, s, s',0') € T we also write
sms’

g—0
T

or, if T, or s and s’ are understood or not relevant,
s—s’ ’ ’
o—>0 or 0—>0 or 06— o0

calling o (0') a direct predecessor (successor) of o’ (o), and s (s') the input (output) of
the transition. Together, (s, s') are the transition label.
The set of all m-to-n actors with firing is A™ ™. The set of all actors is

A=d¢f U Am—n

m,neN

The core of this definition can be found in [11], where “firing rules” defined the
input tuples and a firing function mapped those to output tuples. State was added in
an extension proposed in [6]. Here, we add the priority relation, which makes actors
much more powerful, by e.g. allowing them to test for the absence of tokens. On the
other hand, it can make them harder to analyze, and it may introduce unwanted non-
determinism into a dataflow model. We will see further uses of this facility in the context
of the example.

Intuitively, the priority relation determines that a transition cannot occur if some
other transition is possible. We can see this in the definition of a valid step of an actor,
which is a transition such that two conditions are satisfied: the required input tokens
must be present, and there must not be another transition that has priority.



Definition 2 (Enabled transition, step) Given an m-to-n dataflow actor (o9, X, 7, <),
a state 0 € X' and an input tuple v € S™, a transition o i?- o' is enabled iff

sCv

risr! Py rsr’
~dog—+o’"€er:rCovAdc —>0' >0 —+ 0"

A step from state o with input v is any enabled transition o 22% o', The residual
input tuple v’ is defined by v = s + v'.

Note that the second condition for a transition to be enabled becomes vacuously true
if == 0, leaving s C v, the usual dataflow condition. We call an actor with an empty
priority relation a pure dataflow actor.

As an example, consider a possible definition for actor C from the example in Fig.
1, as depicted in Fig. 2a. After defining the actor name and its input and output ports,
its description consists of two procedures: the first, canFire, determines whether the
conditions are fulfilled to fire this actor. In the example, this is the case if there is 1
input token available on each input port. The procedure step specifies what happens
when the actor fires. For this actor, this depends on the value of one of the input tokens.
In either case, one token is produced on the x output port, but on the y output port we
may or may not see a token produced. This actor has no state, or rather it has precisely
one, its initial state og.

1 actor C
2 ab=2zy
3 canFire 1 acter C
4 return hasToken(a, 1) 2 eb=zy:
5 and hasToken(b, 1) 3 one:actiona: [v),b: [w]=
6 step: 4 z : [C1{v,w)]
@@ 7 v := get(a) ® s guard q(v)
8 w = get(b) 6 two:actiona: [v],b: [w] =
9 if g(v) 7 z : [Ca(v, w)),y : [v]
10 put(z, C1 (v, w)) 8
11 else i0  priority one > two
12 put(z, Ca(v, w))
13 put(y,v)

Fig. 2. The procedural (a) and action-structured (b) description of actor C in Fig. 1.

2.3 An action structure for actors

While the description in Fig. 2a is relatively straightforward, it does not match our
definition of a dataflow actor very well—the token production and consumption of a



transition are implicit, and the result of a potentially very complex program. This is
unfortunate, because this information is crucial for many applications, and should thus
be easy to extract from an actor description, both for human readers and for automatic
tools.

We therefore propose a notation that is closer to the structure of Def. 1, and that rep-
resents externally observable actor behavior (i.e. its token consumption and production)
more directly.! The representation of C in this notation is shown in Fig. 2b. The body
of this description consists of two actions, each of which specifies part of the transition
relation. Each action consists of (a) input patterns, describing how many tokens are to
be read from each input port, and what these are called in the rest of the action, (b)
output expressions computing the output values as a function of the input (and the state,
if the actor has state, which C does not), and (c) a guard, which is a Boolean expression
that must be true for the action to be enabled. Actions also can contain a body, which
defines modifications of the actor state. They may optionally be labeled (by “one” or
“two” in the example).

For instance, the following actor produces the running sum of its input:

1 actor Sum

2 V= sum:

3 s5:=0

4 actionv: [a] = sum: [s]
5 do

6 s =84

This action defines a family of transitions of the form

[s — n) 22250 [s—>n+v)

where [s > n] is the state of the actor binding 7 to the actor variable s.

An action represents a set of transitions, and the union of these sets is the transition
relation of the actor. As a result, the lexical ordering of actions inside an actor descrip-
tion is irrelevant. Therefore, non-determinism is easily expressed by several actions:

1 actor Merge

2 a,b=out:

3 actiona: [v) = out : [v]
4 actionb: fv] = out : [v]

If we want to express that the transitions defined by an action have priority over
those defined by another action, we need to do so explicitly, using the priority con-
struct, as shown in Fig. 2b%—it specifies that the transitions resulting from the action
labeled “one” have priority over those resulting from action “two,” thereby piecewise

! The notation proposed here is a simplified form of the CAL actor language, defined in [4).

% In this case, an equivalent result could have been obtained by guarding the second action
by —g(v). Our choice reflects good specification style, and was also intended to showcase a
common use of priorities.



constructing the priority relation of the actor.3 A biased merge actor could look like
this:

1 actor BiasedMerge

2 a,b= out:

3  A:actiona: [v] = out: [v]
4

s

B : action b : [v]) = out : [v]

priority A > B
Actors can of course consume (or produce) any number of tokens in one firing. The fol-
lowing actor, for example, consumes two and distributes them to its two output ports:

1 actor DistributeTwo
2  a=>outl,out2:
3 actiona : [vl,v2] = outl : [v1], out2 : [v2]

Not every conceivable actor can be described by a finite number of these actions,
and neither by the richer actions supported in the CAL actor language. However, those
that cannot be represented turn out to be rather unusual cases.*

Before we turn back to our example, the next section discusses a few simple con-
cepts and operations on actors, and how they relate to action-structured descriptions.

2.4 Properties, projections, and partitions

For many applications, we need to rely on actors having specific properties—for in-
stance, if we want to apply synchronous dataflow techniques to a dataflow model (static
scheduling and buffer allocation), the actors in the model need have constant token
production and consumption rates. This property can be formulated as follows:

VpEPm:3keN:Vo 2% o' er: | my(s) |=k
/\VpGPoutzElkeN:Voﬂa'erz | 7p(s)) |= &k

Where P;,, and P, are the sets of input and output ports, respectively.’ This property
is obvious from an action-structured description of an actor: we only need to count the
input and output tokens at each port in each action.

In many cases, such a property may not hold for the entire actor, but only for parts
of it. For example, actor C is not a synchronous dataflow actor, because sometimes
it produces an output token at y, and sometimes it does not. But assume we use C
in a synchronous dataflow model without actually connecting its y output to anything,

3 There is a subtle technicality due to the fact that in principle a transition can result from more
than one action. In this case, the highest priority is chosen—cf. [4] for details.

4 See [8] for details on the different kinds of actions and actors.

5 In Def. 1, ports are identified by position, hence we may think of the port sets as sets of natural
numbers. Actor descriptions, of course, use symbolic names for ports, but we simply assume
that there exists some mapping from these names to the respective position in the input or
output tuple, and take the liberty to use the symbolic constants whenever this is convenient.



effectively discarding whatever it produces—in that case, we could use C inside an SDF
model, because it does have constant token rates on all its other ports.

The notion we employed here is that of an actor projection, i.e. the view of an actor
through a subset of its ports. We can formally describe it as follows:

Definition 3 (Actor projection) Givenanactor (0o, X, 7, >-), and two projections (Tin, Tout)
on its input and output ports, we define an actor projection

(00, 2,7, ") =des (00, Z, 7, ) V(min,mous)
as follows. For any transition in T, we define its projection
(0,8,8",0") L(minswoue)y=des (0, Min(8), Toue(s'), 0*)
and then we define the projected transition relation and the priority relation like this:

T, = {t l("‘:’ntﬂoul) ' t € T}
t1 Liminsrout) = 82 L(tin moue) def T > 82 A b1 Limen imoue) 7 12 Limenstone)

Note that it is necessary to eliminate those cases where the projection of two dif-
ferent transformations yields the same result, because otherwise >’ would no longer be
irreflexive.

We can easily see how to perform projection on an action-structured description—
we just eliminate the corresponding parts in the input patterns and output expressions,
along with the respective port declaration. For instance, projecting actor C in Fig. 2b
onto its input ports a and b and its output port x results in the following actor descrip-
tion:

1 actor C — abx

2 a,b=z:

3 one:actiona: [v],b: [w] =
4 z : [Ci(v, w)]

5 guard g(v)

6 two:actiona: [v],b: [w]=
7 z : [Ca(v, w)]

8

1o  priority one > two

This is clearly an SDF actor.5 A projection that results in an SDF actor is maximal if
there is no larger set of ports such that projecting onto it would also result in an SDF
actor.

Not all such projections yield legal actor descriptions. For example, the comple-
mentary projection onto just the y port results in the following actor:

6 In practice, depending on the language constructs it offers, an actor language may allow the
static recognition of larger classes of actors, e.g. cyclo-static dataflow actors, which also sup-
port static schedules, or other efficient implementation techniques. We use SDF as an example
because it is simple, well-understood, widely used, and can be recognized without introducing
more complex language features.



1 actor C —y

2 =y

3 one:action =

4 guard g(v)  // undefined variable

5 two:action=y:[v] //undefined variable
6

8

priority one > two

This actor is illegal, because it contains references to an undefined variable (its defini-
tion in an input pattern had been removed).

Occasionally, actors exhibit a kind of interna] concurrency in the sense that actions
only interact via the actor state, but not by using the same ports. Consider the following
description of actor B from Fig. 1:

1 actor B

2 a,b=zy:

3 s:=1inilp

4 actiona: [v]=> z: [By(v,s))
5 do
6

7

9

s := Ba(v, s)
action b : [v] = y : [Ba(v, )]
10 do
u s = By(v,s)

Its two actions use disjoint sets of ports, even though they both affect and depend on
the actor state. (This is of course the reason why these two actions need to be realized
in the same actor, rather than just in two independent actors: actors cannot share state.)
‘When implementing this actor, we could run the two actions in different threads on
different processors, as long as we make sure that they do not both access the state
at the same time. Therefore, determining sets of independent ports can be crucial to
efficiently implementing a network of dataflow actors.
We call these sets an actor partitioning, which we define as follows.

Definition 4 (Port dependency, actor partitioning) Given an actor with input ports
P, output ports P,, and transition relation v, we define a dependency relation =
between ports in Pi, U P,y as the reflexive, and transitive closure over the following

1
direct dependency relation =:
1 .
Pi 2 gi Gaes o, 5,5,0") € T, (s) # AATG(s) # A
1
Po & go ®aes I(0,5,5',0") € T i mp,(5') # AT (') # A
1
pi gpo Sdef 3(0’51 3,90") €T ﬂpi(s) 5£ A Aﬂpo(sl) 7“' A

1 1
Po = Pi Sdef Pi = Po



Sor all p;,q; € P;y, and p,,qo € Poys. Clearly, = is an equivalence relation over the
actor ports.
The set (Pin U Pout)/ = of equivalence classes is called the actor partitioning.

For example, actor C has only one such equivalence class, its actor partitioning is
{{a,b,z,y}}. By contrast, actor D has the partitioning {{a, z}, {b, y}}. Constructing
an actor partitioning from the action-structured description is straightforward: the to-
ken rates of all transitions that are represented by an action are identical, therefore we
can substitute actions for transitions in the definition above, and easily construct the
equivalence relation, and its equivalence classes.

The next section discusses the use of these constructions in the context of deriving
an implementation for a datafiow model.

3 Example: Implementing a dataflow model

We now turn to the task of implementing the dataflow model in Fig. 1, assuming the
actor definitions in Fig. 3. Of these, actor A is particularly interesting: similar to B, it
has a nontrivial partitioning into {{a, b, 2,3}, {2} }, and both partitions also happen to
have constant token rates. But unlike B, the {z}-partition is a source in the sense that it
has no input port. Its firing is controlled by the state, which is modified by both actions.
The dual of this situation can be found in actor D, whose {a}-partition is only an input
port, and the associated action just modifies the state.

There are many ways of implementing a dataflow model. If it can be statically
scheduled, then it is often a good idea to do so, and to turn the model into a sequen-
tial program with preallocated buffers.” However, for arbitrary dataflow networks, there
are typically two extremes: (1) A fully parallel implementation, where each actor is as-
signed a thread or process, and communication happens exclusively via asynchronous
messages that are queued by the receiver until they can be consumed. (2) An entirely
sequential simulator, that iterates over the actors in the model and fires them when they
are firable, queuing the resulting tokens until they are used.

None of these options are very attractive for most practical cases. The first results
in a lot of context switching (or alternatively requires many parallel resources), most
of which will be useless because an actor will find that it still does not have enough
input tokens to fire. The second variant eliminates any real concurrency from the imple-
mentation, which is usually at odds with the choice of a dataflow model for expressing
parallel computation in the first place.

However, the results of section 2 allow a somewhat more flexible approach to
dataflow implementation, which rests on recognizing partial synchronous dataflow “is-
lands” that can be scheduled statically, and regions that can be executed concurrently,
even when they cut through actors. In these cases, we can derive the appropriate syn-
chronization code to ensure that the atomicity of an actor transition is preserved.

7 Of course, if such a schedule contains complex computation that is potentially concurrent,
it may be preferable to parallelize this part of the schedule. Since this work focuses on the
interaction between statically schedulable regions inside an arbitrary dataflow model, we will
make the simplifying assumption that we prefer a straightforward sequential implementation
for statically scheduled parts of the model.



1

VO N AW

actor A
a,b=>z,y,2:
8:=inity
action == z: [A1(s)]
guard p(s)
do
8= Az(s)

actiona : [v),b: [w] =
z: [As(v,w)),y : [As(w)]
do
s:= As(v,w, s)

actor C

a,b=>z,y:
one :actiona : [v],b: {w] => z : [Ci(v, w)}
guard g(v)
two : action a : [v],b: [w] =
z: [Cz(v,w)],y : [v]
priority one > two

actor
a,b=z:
one : actiona : [v],b: [w] =
z : [Er(v, w)]
two : action a : [v] => z : [E2(v)]
priority one > two

8 :=1inilg

action a : [v] = z: [B1{v, s)]

do

T si= B;(v,s)

action b : [v] => y : [Bs(v, s)]

do

8:= Ba(v,s)

actiona :
do
8S:=v

action b :

Fig. 3. Actor definitions for the model in Fig. 1.

] =

[v] => z : [D(v, s)]

Fig. 4. Partioning of the model in Fig. 1. Dashed lines are non-SDF connections.



Statically schedulable islands. We first determine for each actor maximal subactors
that are SDF. In the example, these are {A.a, A.b, A.z, A.y} (we use the notation X.p
to identify the port p of actor X), {A.z}, {B.e, B.z}, {B.b, B.y}, {C.a,C.b,C.z},
{D.a}, {D.b, D.z}, and { E.b, E.x}. Considering only connections between these SDF
partitions, we compute static schedules for the resulting SDF islands in the model. In
the example, we would disregard the connection between C.y and E.a for this purpose,
and consider A.b a free input port.

Model partitioning. We partition the model based on actor partitionings. Note that
these cannot be smaller than the maximal SDF subactors. Each SDF subactor will be
contained by precisely one partition. Conversely, an actor partition may contain any
number of SDF subactors, including none. Now we define a model partition as follows.
Two ports are in the same model partition if

1. They are both in the same actor partition.
2. They are both part of the same SDF island.

The resulting model partitioning is shown in Fig. 4. Each partition can be assigned
to a different thread. Communication along connections that are part of an SDF island
happens via preallocated buffers (in the example, these are all of length 1, and thus
can be represented by a single variable), while all other communication is performed
using FIFO queues. Whenever the model partitioning cuts through an actor, it needs to
synchronize on a semaphore—in the example, this needs to be done for actors A, B, and
D. For simplicity, we assume that queue accesses are automatically synchronized.

Based on this partitioning, and the static schedules within each partition, we can
now generate code for each of the threads, which is shown in Fig. 5. The code starts
with a few state variables that were part of the actors, and declaring semaphores required
for synchronization. We have named variables representing static buffers according to
the receiver port—bg is the buffer in front of port E.b. State variables are called s,
with the name of the actor as subscript. In the interest of clarity, the code has not been
optimized in any way, so that e.g. locks are in fact held longer than strictly necessary.

Note how thread 1 waits for input on the external input queue, and how the code
blocks corresponding to the statically scheduled actors follow each other. They are sur-
rounded by lock/unlock pairs if they come from an actor who were cut by the model
partitioning. Also worth noting is the way the non-SDF connection is realized by a
queue (Queue3) in both thread 1 and 2.

4 Discussion and conclusion

In this paper we propose a new way of structuring and describing dataflow actors that
have a notion firing. Our goal is to make the actor descriptions more flexible, and more
amenable to analysis. The new notation is designed to directly represent the semantic
model we use for dataflow actors. We present a few simple analysis techniques and
apply them to the transformation of a dataflow model into reasonably efficient code.

In some ways, the work reported here can be viewed as complementing the work in
[71, which describes a semantic framework for composing a network of actors under an



arbitrary model of computation into a composite actor. By contrast, this paper focuses
on a very specific model of computation, viz. dataflow, and the result of the composition
is not another actor, it is a concurrent imperative program.

1 asg =0

2 bp =2

3 sa:=1nity

4 sp :=1inilp

5 8p :=1tnitp

6

7 semaphore M4, Mg, Mp
1 Threadl :

2 forever

3 wait until available(Queuel, 1)
4 lock M4

5 w = get(Queuel)

6 ac = Aa(aA,sA)

7 ap = Ag(w,s4)

8 84 = As(as,w,84)
9 unlock M4

10

u lock Mp

12 b = Bl(aa,sB)

13 sp = Bz(ag, sB)
14 unlock Mp

15

16 ifg(ac)

17 val := Ci{ac, bc)
18 as = val

19 put(Queue2, val)
20 else
21 val := 02(0.(_',', bc)
22 aa = val
23 put(Queue2, val)
24 put(Queued, ac)

25

1
2
3
4
5
6
7
8
9

10
1
12
13
2
5
16
7

W 0 N R W N

T T
w N~ O

Thread2 :
forever

lock Mp
bp := D(bp, 3D)
unlock Mp

lock Mz

be := Ba(bs,sB)
sp := By4(bas,sB)
unlock Mp

if available(Queue3, 1)
v 1= get(Queue3)
bp := Ex(v,bg)

else
bp = Ea(bg)

Thread3 :
forever

lock M4
doFire := p(sa)
if doFire
val := A;1(s4)
84 = Az(sa)
unlock M4

if doFire
lock Mp
sp :=val
unlock Mp

Fig. 5. The generated code corresponding to the partitioning in Fig. 4: global variable initializa-

tions and code for each of the three threads.

The proposed actor notation makes actor descriptions more flexible mainly for two
reasons. (1) It is easy to identify subactors that have specialized desirable properties,
such as constant token rates. (2) It is straightforward to exploit internal parallelism,
making it easy to slice actor descriptions and distribute them over several threads, while



synthesizing the synchronization code. To our knowledge, this has not been done before
for dataflow programs.

Because of this flexibility, we can produce reasonable code for dataflow models
that are not quite statically schedulable, but that have significant parts that are, and that
communicate with each other, or with the outside world asynchronously through FIFO
queues. Many practical applications fall into this category, such as e.g. signal processing
algorithm that are asynchronously configured by outside events (e.g. caused by user
input, power events etc.), or network processors that occasionally classify, drop, or put
back packets based on header information, content, or time. The framework presented
here allows them to express these features without compromising the efficiency of the
generated code, or the analyzability of the overall model.

Future work will address more detailed analysis of actors and models, provide more
control over how models are partitioned, and produce more efficient code. For instance,
thread 3 in the example keeps polling the state s4, which can be very inefficient, par-
ticularly because it needs to lock the semaphore M4 during this time. A more efficient
implementation would put this thread to sleep until the relevant state is modified, and
then wake it up. Easily recognizing optimization potential such as this makes an action-
structured actor notation useful. ;



References

L.

10.

11.

A. Benveniste, P. Caspi, P. LeGuernic, and N. Halbwachs. Data-flow synchronous languages.
In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, A Decade of Concurrency—
Reflections and Perspectives, volume 803 of Lecture Notes in Computer Science. Springer
Verlag, Berlin, 1994.

. Joseph T. Buck. Scheduling Dynamic Dataflow Graphs with Bounded Memory using the

Token Flow Model. PhD thesis, University of California at Berkeley, 1993. also Technical
Report UCB/ERL 93/69.

. J. B. Dennis. First version data flow procedure langnage. Technical Memo MAC TM 61,

MIT Lab. Comp. Sci., May 1975.

. Johan Eker and Jorn W. Janneck. CAL actor language—language report. Technical Re-

port UCB/ERL 03/TBD, University of California at Berkeley, 2003. preliminary version on
http://www.gigascale.org/caltrop.

. Marc Engels, Greet Bilsen, Rudy Lauwereins, and Jean Peperstraete. Cyclo-static dataflow:

Mode] and implementation. In 1994, editor, 28th Annual Asilomar Conference on Signals,
Systems, and Computers, pages 503-507, October-November.

. Jorn W. Janneck. Syntax and Semantics of Graphs—An approach to the specification of

visual notations for discrete event systems. PhD thesis, ETH Zurich, Computer Engineering
and Networks Laboratory, July 2000.

. Jorn W. Janneck. Actors and their composition. Technical Report UCB/ERL 02/37, Univer-

sity of California at Berkeley, 2002.

. Jérn W. Janneck. A taxonomy of dataflow actors. Technical Report UCB/ERL 03/TBD,

University of California at Berkeley, 2003.

. Gilles Kahn. The semantics of a simple language for parallel programming. In Proceedings

of the IFIP Congress. North-Holland Publishing Co., 1974.

E. Lee and D. Messerschmitt. Synchronous Data Flow. Proceedings of the IEEE, pages
55-64, September 1987.

Edward A. Lee. A denotational semantics for dataflow with firing. Technical Report
UCB/ERL M97/3, EECS, University of California at Berkeley, January 1997.



