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Abstract

Designers who integrate various Intellectual Property (IP) cores in modern system-on-chips (SOC) face
the important challenges of balancing the differences in throughput and latency between the IPs. This
task is made more critical by the increasing role played by on-chip communication, as wire delays become
dominant in deep sub-micron technologies and SOCs effectively behave like distributed systems. We argue
that SOC design will be an average-case design, driven by global throughput metrics, as opposed to a worst-
case design, driven by the minimization of local critical-path timing violations. We present a conceptual
model for the development of a new class of design enviroments aimed to assist designers in the quest for
a balanced design. The proposed approach guides the designers in abstracting away the functional details
of each component to focus instead on tuning the values of those properties that impact the performance
of the overall system. Synchronization, concurrency, and latency/throughput trade-offs become first-class
citizens within a design framework that targets the derivation of a balanced computational architecture by
exploiting parallelism and pipelining at a fine level of granularity. Besides the conceptual model, the main
contributions of the paper include the definition of the throughput equalization problem and its solution by
means of an exact algorithm,

1 Introduction

By offering millions of wirable gates with several levels of interconnect, state-of-the-art deep sub-micron
technologies enable the realization of products with a broad diversity of applications as a single system-on-chip
(SOC) with higher performance and lower cost. Intellectual Property (IP) reuse is considered a key technique
to manage the increasing complexity of SOC design: designers are provided access to a library of large pre-
designed modules, or cores, with the goal of enabling them to rapidly realize their systems by simply composing
these cores. However, the large variety of options available make this task difficult, while short schedules rush
early critical decisions that are quite costly to change later on in the design process [4].

IP core selection is based mainly on functionality requirements and ball-park considerations on the system
performance that designers would like to obtain with the given technology process. Alternative IP cores with
the same functionality present different figures in terms of throughput and latencies and, if selected, will impact
differently the performance of the overall system. Selecting the right components for both computation and
communication and assembling them so that they are synchronized and operate with a good level of concurrency
is a task that may turn out quite challenging and that is definitely time-consuming. In fact, the important
decision of choosing a certain component implies immediately a sequence of actions to integrate it on the chip
and properly interface it with the rest of the system, with obvious consequences on the design time. After a
series of several IP selections, interleaved by hours of subsequent simulation and design, the major risk is to
end up focusing on local timing-closure issues without improving the global system performance. In the end,



strict time-to-market constraints may preclude designers from reverting decisions and making a major global
design re-organization, thereby leaving them with a sub-optimal design, or an unbalanced-design, or both.
Furthermore, as discussed in [4], most designers rely on a register-transfer-level (RTL) system specification
and design flow for both implementation and analysis. Instead, to address the SOC challenges requires a design
methodology with the ability to evaluate options and make critical architectural decisions based on a system-
level representation in advance of an RTL design.

This paper provides the means for performance engineering in SOC design. So far, performance and
functionality have been intertwined in the ASIC flow that is centered around RTL synthesizable hardware-
description language (HDL) specifications. This paper for the first time offers a capability which has been long
available within a clock cycle, by means of various combinational logic speed-up techniques, but which has
been prohibitively complex to manage at the sequential logic level. Traditional Extended Finite State Machine-
based modeling paradigms break down when they need to confront a delay of one more or one less clock cycles
in one of the components of a complex circuit. Asynchronous techniques, which would be best to manage the
problem, are too far from mainstream use to be applicable in an ASIC design flow. Yet, any designer knows that
when his latency is about 20 ns, he can split it into 4 or 5 pipeline stages, this achieving either 200 or 250MHz
operation. The problem is that no design technique today supports him in this task.

To address these issues we present an interactive design framework that automatically analyzes the impact
of the design decisions on the performance of the global system and synthesizes alternative better solutions
ranked in order of optimality. Our throughput equalization algorithm provides designers with a tool to tackle
the problem globally, with means other than simulation and intuition. Our approach is interactive, allows
consideration of performance early in the design cycle, and targets the achievement of a balanced design that
will enhance the average-case performance of the system.

Software designers have long known that functionality and performance are orthogonal requirements, that
can be satisfied independent of each other, by optimizing small modules, and using a model of computation,
e.g. Kahn Process or dataflow networks, that ensures the independence of computed results on the performance
of each module. In this paper, we use Marked Graphs as a formal model to capture both the synchronization
requirements among system components, and the flexibility in trading off cycle time and latency. This works
can be seen as a generalization of the well-known concept of retiming [8, 13], since it includes the performance
aspect of interconnection into the retiming graph, and it allows us to optimize simultaneously the performance
impact of more or less pipelining and of more or less communication latency. As the final chip implementa-
tion is derived, our techniques can be combined with the result of recent works on throughput-driven on-chip
communication synthesis [9, 12). Previously, even high-level synthesis approaches that considered latency as
a parameter, to optimize area and throughput, were looking only at one process at a time. In this work for the
first time we consider multiple processes by using a global cost function, while [7] looked at process interaction
locally, in a greedy fashion. On the other hand, [10] considered only rate analysis, rather than using rates for
efficient synthesis and optimization. Finally, the theory of latency-insensitive design [3] does provide an au-
tomatic way to build interface logic around IP cores that make them robust to arbitrary latency-variations, but
it has been focusing mainly on the a posteriori correction of latency communication mismatches (due to long
interconnect delays) without considering the opportunity of automatically re-organizing the balance between
communication and computation.

After providing some basic background on Petri Nets and Marked Graphs in Section 2, in Section 3 we
discuss our adoption of Marked Graphs (MG) as the underlying formal model for the system exploration effort.
We use MGs as the common semantic abstraction to model both the stand-alone instances from the IP core
libraries as well as the systems that are obtained by composing them. The convenience offered by MGs to
formally capture synchronization as well as performance properties (throughput, latency) allows us to define
the throughput equalization problem as a vehicle to guide the system-level design exploration. In Section 5, we
present an algorithm to solve exactly this problem and we illustrate it by means of simple examples. Finally, in
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Figure 1: A Marked Graph With Tmin(M G) = L2 =2.

Section 6 we draw some concluding remarks.

2 Background: Marked Graphs

We provide here just a basic set of definitions that are necessary for the rest of the paper, while we refer to
the work by T. Murata [11] for a complete presentation of both Petri Nets and Marked Grapbs.
Definition 2.1 A Petri Net is a 5-tuple, PN = (P,T, F, W, My) where P is a finite set of places, T is a finite
set of transitions, F C (P x T)U (T x P) is a set of arcs (flow relation), W : F — Z* is a weight function,
My : P — Z* is the initial marking, and such that PN'T =0 A PUT = 0. A Petri Net is said to be ordinary if
all of its arc weights are equal to one. A Petri Net is said to be safe if the number of tokens in each place is not
greater than one for any marking reachable from M.

In order to simulate the dynamic behavior of a system a marking in a Petri Net is changed according to the
following firing rules:

1. A transition s € 7 is said to be enabled if each input place p of 7 is marked with at least w(p,?) tokens,
where w(p,?) is the weight of the arc from p to 7.

2. An enabled transition may or may not fire (depending on whether or not the event takes actually place).

3. A firing of an enabled transition ¢ removes w(p,?) tokens from each input place p of ¢, and adds w(¢, p)
tokens to each output place p of 1.

A Petri Net is said to be live for the initial marking Mj if, no matter what marking has been reached from 4 ,
it is possible to ultimately fire any transition of the net by progressing through some further firing sequence. A
Petri Net that is not live is deadlocked.

Definition 2.2 4 Marked Graph M G = (P, T, F, W, M) is an ordinary Petri Net such that each place p € P
has exactly one input transition and exactly one output transition. A Marked graph M G is consistent if there
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Figure 2: Petri Net and Marked Graph Examples.

exists a marking My and a firing sequence G from My back to My such that every transitions occurs at least
once in G.

Figure 2 illustrates the above definitions through some examples adapted from [11]: Figure 2(a) shows a
Petri Net representing a dataflow that computes the expression x = g—f’g. Notice that this is not a marked graph
because the place labeled “a — b” has two output transitions. Figure 2(b) shows a marked graph representing
paralle] activities in a deterministic system: transitions #, and #3 may occur in parallel, while they are always
preceded by one occurrence of transition #) and followed by one occurrence of transition t4. Since each place
in a marked graph has exactly one incoming arc and exactly one outgoing arc (both with unit weight), marked
graphs can be drawn more simply as marked directed graphs, where arcs correspond to places, vertices to
transitions, and tokens are placed on arcs. This is the representation that we use in the rest of the paper. The
marked graph of Figure 2(b) can be redrawn as the marked directed graph shown in Figure 2(c).

Definition 2.3 A4 Marked Graph M G is timed if there exists a delay 1; associated with each transition in
t; € T. The cycle time T of a consistent timed M G is the time to complete a firing sequence o leading back to
the starting marking. The minimum cycle time T, of a marked graph M G can be computed exactly as:

. _ ZhEc d(’i)
Tnin(MG) = ceC(M g) ( Mo(c) ) o

where C(M G) denotes the set of cycles in M G and My(c) denotes the number of tokens in cycle c € C(M G)
at My. A cycle c whose cycle time coincides with Toin(M G) is said critical.

Figure 1 illustrates a marked graph M G having 6 cycles. These are reported in Table 1 together with the
corresponding cycle time that have been computed assuming that Vr; € T (MG), d(t;) = 1. Hence, M G has
minimum cycle time Tpin(HM G) = 2.

By noticing that the firing of a transition removes one token from each of the incoming arcs and it adds one
token to each of the outgoing arcs, it is easy to see that the number of tokens in any cycle of a marked graph
is constant. Also, for a connected marked graph with initial marking My, a firing sequence o can lead back to
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c; | vertices (transitions) Mo(c) | t(ci)
c1 | {vio,v1s,v19,v22,v13, V17,21, V23, V24, V25 } 5 10/5
c2 {Vs,Vlz,V|6,V20} 3 4/3
c3 | {v10,v14,18, V16, V20, V6, V9, V13, V17, V21, V23, V24, v2s} | 10 | 13/10
C4 {V|0,V|4,vls,Vm,Vzo,Vs,Vn,V3,V5,V7} 8 10/8
cs | {ve,vs,vi2,v16,v20} 4 5/4
cs | {v10,v14, V18, V16,20, V6, V8, V11, V3, Vs5,17} 9 11/9

Table 1: Cycles and cycle times for the marked graph of Figure 1.

Mp if and only if it fires every transition an equal number of times. Formal proves of these facts can be found
in [1].

3 The Conceptual Model

The conceptual model presented in this section is the underpinning of our approach. We use marked graphs
as the common semantic abstraction to model both the communication and computation features of the single
components of a given IP library as well as the interaction of the components instanced into the design and
the performance of the overall system. Marked graphs are good to model deterministic (decision-free) con-
current systems (and their synchronization mechanisms) and, among the various models of computation that
are derivative of Petri Nets, they are considered the most amenable to analysis [11]. As we anticipated above,
we want to abstract away the details of the format and the type of the data that are computed by the modules
and are transmitted on the channels to simply focus on the presence/absence of data elements on the channels.
Hence, we use the notion of 7oken to denote the presence of a new data item on a channel. The computation of
a component (or of a sub-component) corresponds to the consumption of one single data token from each input
channel and the production of one single data token on each output channel.

Since we want to use marked graphs also as a compact model to express the throughput and latency prop-
erties of a system (and its components), we make the following assumptions/restrictions with respect to the
general definitions given in Section 2:

o Each marked graph M G is safe, live, consistent, and timed.
o Each transition in M G has unit delay, i.e.:

Vi € T(MG), d(t) = 1.

o For each marked graph, M G the firing rule (2) following Definition 2.1 is changed as follows: an enabled
transition always fires.

Based on these assumptions, it is natural to think the behavior of the system represented by M G has an infinite
sequence of atomic reactions: during each reaction all enable transitions do fire, thereby contributing to the
enabling of transitions that will fire at the following reactions. Notice that the absence of a token at one of
the incoming arcs of a transition (vacancy) is sufficient to keep the transition disabled (AND firing rule). It
should not come as a surprise that this model presents several commonalities with the synchronous program-
ming model [2], which has been proven quite effective as a simple way to access the power of concurrency in
functional specification.

Given these assumptions, it is easy to see that as long as M G presents a cycle, the sequence of atomic
reactions is periodic. The rate at which tokens occurs on a given arc (and correspondingly the rate at which a
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Figure 3: Instance MGs for Library Multipliers (target T = 2ns).

given transition fires) represents the throughput of the system modeled by M G. This is denoted as 3(M G) and
can be computed as the inverse of the minimum cycle time, i.e. (M G) = m-) As a consequence, (M G)

is a rational number in the interval ]0, 1], In fact, the maximum achievable system throughput, equal to 1, is
obtained when before and after each transition every place in the system contains one token or, equivalently,
each firing in the firing sequence ¢ involves every transition in M G. Since we assume that each transition has
unit delay, Equation 1 computing the minimum cycle time of M G can be simplified as:

lc]
ce%g) (%(C)) @

where |c| denotes the number of vertices (transitions) on cycle ¢. For the marked graph M G of Figure 1
it is easy to verify by inspection that Ty, (M G) = 2 and, therefore, 3(M G) = 0.5. For a more complex
graph M G, one can build a companion graph G from M G as follows: (1) for each token of the marking
My of M G build a vertex of G; (2) for each path connecting two tokens add an arc g ; into G to connect the
corresponding vertices and set the weight w(a;) of the arc equal to the number of places traversed by this

path. Then minimum cycle time Tmin(M G) coincides with the maximum cycle mean of G, which is defined
as mem(G) = maxceg (E'Jf“aw(a—')) and can be found using one of the many efficient algorithms that have been

proposed, dating back to Karp’s Algorithm [1, 5, 6).

Tmin(M G) =

3.1 Modeling IP Library Cores

SOC designers have access to various IP core libraries and, in general, each library offers more than one
implementation for the same functionality module. For instance, designers who need to integrate one or more
multipliers on their SOC may have to choose between a combinational multiplier or a pipelined multiplier, and,
among the variety of pipelined multipliers, they may have to decide if they need a 3-stage pipelined multiplier
of a 5-stage one. Sometimes IP cores are offered as so-called hard IPs, which are pre-synthesized blocks for
a given technology. Often, designers use soft IP, that is RTL synthesizable specifications that will naturally
lead to different results when synthesized using different technology libraries. We are interested in providing a
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Figure 4: From Specification to Core Instantiation (target 7t = 2ns).

conceptual model for the characterization of the elements of an IP core library in terms of both the maximum
sustainable throughput © and the minimum required latency A . The maximum sustainable throughput is the
rate at which the IP core can be fed new data at its inputs. The minimum required latency is the number of
clock cycles that pass by from the instant when the IP core samples new data at its input ports until the instant
when it produces the corresponding results at its output ports. These figures may depend on several factors. In
case of a library of soft IP cores, the logic synthesis step is likely among the most influential factors. Here, for
the sake of simplicity, we assume to have a library of synthesized IP modules and we model them using only
the two parameters that have the strongest impact on both 9 and A. They are:

e L: the number of pipelined stages of a sequential module. If the module is combinational then L = 1.

o O: the critical path of the module. This is expressed in time units and represents a lower bound constraint
on the period of the clock that can be used to run the module.

Now, for a given rarget period © of the design global clock, we can use the previous parameters to compute
the maximum throughput 9, the minimum latency A (expressed in number of global clock cycles), and the
minimum absolute latency A (expressed in time units). This is done using the following expressions:

-1
6
o - (1%])
A = % @)
= AT 5)

We want to clarify that, while writing the previous expressions, we assume that we are dealing with an ideal
nominal-design situation. Naturally, more accurate expressions can be derived by, for instance, taking account
of the various terms that contribute to the clock period overhead and subtracting from the target clock period
the amount corresponding to clock skew, clock jitter, and latch overhead.
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Table 2: Throughput and latency values for the elements of an hypothetic IP library as function of target clock
periods =.

Table 2 reports the latency and throughput values as functions of some possible-target clock periods for the
elements of an hypothetic IP core library. The library provides modules grouped in three distinct functional

types: adders, multipliers, and divisors. We assume that, for an hypothetic technology process the library
provides:

¢ one combinational adder with critical path 8 < 1ns;

o five distinct multipliers ranging from a combinational multiplier with critical path 8 < 11ns to a 5-stage
pipelined multiplier with critical path § < 2xs.

o three divisors: a combinational one with critical path 8 < 12ns, a 2-stage pipelined divisor with critical
path & < 10ns, and a 3-stage pipelined divisor with critical path 8 < 7ns.

Each entry in Table 2 represents an example of IP core instance for a given target clock period nt. For each core
instance, we build an instance marked graph 1M G that structurally captures the corresponding values of § and
A by performing the following steps: (1) create a chain of vertices (transitions) that is as long as A; (2) add a
feedback arc from a vertex v in the chain back to the first vertex and distribute tokens on the arc of the resulting
cycle ¢ such that 7(c) = 9~!; (3) distribute tokens on the arcs belonging to the path from v to the last vertex v/
according to the value of 9. Figure 3 shows the M Gs associated to the library multipliers for & = 2ns.

Now, let’s assume that we need to use the IP cores of Table 2 to build a module that given a value xp and a
sequence ay,...,ay computes a sequence of values x; defined as:

xe=xo+3h (L), ke (1,N]
The block diagram at the top of Figure 4 illustrates a possible dataflow that implements the given specification
using two adders, one multiplier, and one divisor. Then, let’s assume that our first idea is to aim for a design
with a target clock period of 2ns. The bottom of Figure 4 illustrates the marked graph M G that we obtain by
simply putting together the I Gs for the corresponding IP cores.
At this point, some considerations are in order:



Figure 5: Equalized M G with 3(M G) = 0.80.

o First, it is obvious that in general the distributions of the tokens on /M G may not be self-consistent
because it is not necessary the case that the minimum cycle time of the resulting marked graph M G
coincides with the minimum cycle times of each stand-alone component M G.

e Asit is the case even for this simple example, the composition of 7M Gs, generally, creates new cycles
in additions to those already present in the stand-alone graphs. For instance, in Figure 4, we see that we
have three additional cycles: one looping around the multiplier, the divisor, and the output adder; one
looping around the two adders and the divisor, and, finally, a new self-loop around the output adder.

e Marked graph M G is a representation of the first-cut design targeting a clock period T = 2ns. By
analyzing M G we can compute 3(M G) = (Tmin(M G))~' = 1/4 and, therefore, realize that the effective
clock frequency ¢esr(M G) = ﬁi‘i@ = 1/8ns = 125Mhz. Also, we can compute the latency A(M G) =
2-21 = 42ns. What remains to be understood is whether this design is the best solution for the given
technology and IP core library.

In the next sections, we will attempt to give answers to all these issues while discussing the throughput equal-
ization problem.

4 Four Basic M G Transformations

From the previous section we learned how to use marked graphs to capture a complex system as a compo-
sition of simpler component and to express throughput and latency properties of both system and components.
In this section we introduce a set of basic marked graph transformations that ultimately allow us to derive an
alternative system implementation from a given one.

Let’s consider a generic marked graph M G. In general, M G will have multiple cycles and these cycles
will intersect in various ways. We want to capture analytically how the vertices and the arcs are shared among
intersecting cycles of M G. Given a cycle ¢ € C(M G), for all vertices v; € M G and all arcs aj € M G, we
define two binary variables:



e x(vj,c) is equal to 1 if v; € ¢, to 0 otherwise.
® y(aj,c) is equal to 1 if a; € c, to 0 otherwise.

Now, we can write the expression that gives the cycle time of a cycle ¢ € 21 G as follows:
Definition 4.1 For a given initial marking My, the extended form of the cycle time of cycle ¢ € C (MG) is:

Z x(vi,c) - m(v;)

VJGMG

Z y(aj’ C) : n(aj)

CIEMG

T(c, Mp) =

©

where Vv;, (m(v;) = 1) and for all a;, n(ay) is equal 1o one if a; presents a token in the initial marking My,
otherwise it is equal to zero.

Expression 6 can be written for each cycle of M G. For each vertex v; € G, the term x(vi,C) - m(v;) accounts
for the latency contribution associated to v; in case v; belongs to c. Similarly, for each arc a; € G the term
¥(a;,C) - n(a;) accounts for the throughput contribution associated to arc a; if this arc belongs to ¢ and if it
presents a token.

From Equation 6, it is clear that if we remove a tokens from an arc g ; of ¢ while leaving all the other arcs in
M G unaffected, we end up increasing the cycle time of each cycle containing a ;. Furthermore, if a; belongs to
a critical cycle, we obviously increase the minimum cycle time of M G, thereby affecting negatively its overall
throughput. Conversely, if we find an arc a ; without a token and we put one on it, while leaving all the other
arcs in M G unaffected, we decrease the cycle time of each cycle containing a;. We call these two opposite
transformations respectively token addition and token removal. We define now two other transformations that
obtain similar results by operating on the numerator of Equation 6 instead of the denominator. While leaving
the rest of M G we can singled out a vertex v; and split it into two new ones. For all cycles ¢ containing v;, the
effect is naturally to observe an increase of the value of 7(c, Mp). We call this transformation vertex splitting.
The reverse transformation, vertex collapsing, naturally consists in the removal of v; and it is completed by
connecting all the vertices directly feeding v; with all the vertices that are directly fed by v;. Differently from
token addition and token removal, vertex splitting and vertex collapsing may change the graph structure. It is
easy to see that the two vertices created from splitting v; belong to the same cycles to which v; used to belong.
Differently from vertex splitting, vertex collapsing may also affect the graph cycle structure, because one or
more cycles to which v; used to belong can disappear as the connection between the vertices that were feeding
vi and those that were fed by v; are merged.

These four basic M G transformations can be used independently or in combination. They clearly represent
the simplest way of modeling the idea of pipelining/un-pipelining a component (or changing the number of
stages of its pipeline) and adding/reducing communication latencies between components or sub-components.

We encode the M G transformation using a variable »'(v;) for each vertex vi € M G and a variable »’(a;) for
eacharc aj € M G. These variables take values in the integer interval [—1,1] based on the following definitions:

e m'(v;) = —1 : collapse vertex v;;

m'(v;) = 0 : leave vertex v; untouched:;

m'(v;) =1 : split vertex v;;

n'(aj) = —1 : remove the token from arc a JH

n'(a;) = 0 : leave arc a; untouched;

10



Figure 6: Equalized M G with 9(M G) = 0.83.

e n'(aj) =1 : put the token on arc a;;

Hence, the values of variables m’(v;),n(a;) unambiguously capture a specific combination of basic transfor-
mations on M G, while the following expression givess exactly the resulting cycle time for each ¢ € C(M G):

Y, x(vi,C) - [m(vi) +m' ()]

_ eV
t(c, Mp) = %y(aj,c) . [n(aj) + n’(aj)]
aed |

Since the minimum cycle time is the inverse of the system throughput, this collection of four basic transforma-
tions represents a simple but effective toolkit to carry out both the performance analysis and design exploration
of the system under the guidance of latency/throughput trade-offs. In, the following section we show how the
definition of throughput equalization problem and its solution allows us perform these activities in an organized
and effective manner.

S The Throughput Equalization Problem
The throughput equélizqtion problem is defined as follows.
Problem 5.1 (Throughput Equalization Problem)

Given: An M G with an initial marking My, |V/| vertices, |4| arcs, and X cycles.

Minimize: ThecostC= Y |m'(v})|+ Y, |n'(a;)| overall integer variables m'(vy), ..., m'(vjy|) and #'(ay), ..., (a)4)),
v,V ajeA
with Vi € [, |V]), (m'(vi) € [-1,1] and Vj € [1, |4]], (v (a)) € [-1,1].
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Subjectto: 3g€Qt,g> 1, Vke [1,K] :
Y. x(vi,Ci) - [m(vi) +m' (v;)]

vieV

> a;.Co) - +r(a)]
ajed

It is easy to see that Problem 5.1 has always a solution. In fact, the trivial variable configuration that
is obtained by setting Vv, (m/(v;) = 0) and Va;, (#(a;) = 1 < n(a;) = 0) always satisfies the problem
constraints with ¢ = 1. Notice also that each configuration of the integer variables n'(v;),...,m’ (vpy) and
r'(a1),...,n'(a)4)) unambiguously leads us to derive a new graph M G whose cycles have all cycle times equal
to the corresponding value of g. The cost function that we use in the above definitions is a very simple one and
it is motivated by finding the throughput equalization while applying the minimum amount of M G transforma-
tions from the given design. Hence, this cost function is ideal when the problem is solved as an intermediate
step for an interactive design exploration engine. More sophisticated cost functions can obviously be defined.
In any case, algorithm RateEqualizer illustrated in Figure 8 not only solves Problem 5.1 exactly, but may also
be used to return all the variable configurations that satisfy some input problem constraints specified in terms
of the desired throughput range and the maximum number of transformations allowed.

The algorithm is organized on three basic routines. The main routine RateEqualizer invokes routine Relaxe-
dRateEqualizer to find all the candidate solutions of a relaxed version of Problem 5.1. The relaxation consists
in the fact that routine RelaxedRateEqualizer assumes that all the cycles have pairwise empty arc/vertex in-

 tersection. In other words, routine RelaxedRateEqualizer would give the exact solution if the marked graph
was a connection of distinct strongly connected components (SCCs) each having at most one cycle. Notice
that RelaxedRateEqualizer searches the solution space in a very efficient way because the independence among
the variables (m,n}), (mj,n), ..., (m,n}) does not make necessary to perform any branch-and-bound tech-
nique. Once all the candidate solutions are returned to RateEqualizer the core routine RecursiveStep is invoked
for each candidate solution. Routine RecursiveStep attempts to justify the candidate solution by finding an
assignment ' (v),...,m'(vy)) and #/(ay),...,n’ (a4), that satisfies the ratio found during the solution of the
relaxed problem without violating the reciprocal constraints that cycles sharing common variables impose on
each other. The search is limited by the maximum number of transformations allowed. All the valid solutions
are returned in increasing order of minimum cycle time.

Example 5.1 Figure 7 reports two alternative implementations for the design of Figure 4 that have been ob-
tained automatically by running the RateEqualizer algorithm. These are equalized implementations in the
sense that all cycles in the corresponding M Gs have the same cycle throughput 9(#M G): this is equal to 1/3
for the top design and 2/3 for the bottom design.

Let’s analyze first the top design: by studying the charactersistics of the 1M G for the instances of the IP
library cores, we can see that it is suggested the use of a 3-stage pipelined divisor with latency between 9 and
13 clock cycles and a 3-stage pipelined multiplier with latency between 6 and 8 clock cycles. Using equations 3
and observing the IP library illustrated in Table 2, we deduce that the optimum feasible clock period is between
2.5ns and 3ns. This is worse than the target clock period of our first-cut design that was 2ns. However, besides
having a well-balanced design, it tums out that by running the system with a clock of 2.5ns we have an effective
clock frequency of ¢, (M G) = %ﬂ}@ =1y = 4= = 133Mhz which is better than the 125Mhz figure of
our unbalanced first-cut design.

Now, let’s analyze the bottom design: first we notice that we need to pipeline the adders by 1 stage. This
can be done as long as we use a clock period longer than 2ns. Then, it is suggested the use of a 2-stage pipelined
divisor with latency between 1 and 5 clock cycles and a 4-stage pipelined multiplier with latency between 3 and
5 clock cycles. This constrains us to have a clock period longer than 5ns. However, our balanced design presents
again an effective clock frequency of ¢}, (M G) = 23G) _ 2. L = - = 133Mhz which is again better than

n
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Figure 7: Two Equalized Implementation for design of Figure 4. The top design has 3(M G) = 1 with x =
2.5ns. The bottom design has 3(M G) = % with & = 8ns.

125Mhz. Finally, as we compare the latency of the two systems, we see that the top design has a better absolute
latency A(M G) = 7-2.5ns = 17.5ns with respect to both the first-cut design (having A(M G) = 42ns) and the
bottom design (having A(M G) = 9- 5Sns = 45ns).

Example 5.2 Let’s apply the RateEqualizer algorithm also to the M G of Figure 1 having 3(M G) = 0.5. In
this graphs some vertices represent latency cycles due to the inter-communication between system components.
Here we need to equalize the cycle time of the six cycles of Table 1. The trivial solution is obtained by
equalizing all these cycles to the value 1 by inserting tokens on every arc. The RateEqualizer algorithm
finds two more interesting solutions. The solution of Figure 5 has cost equal to 9 for a system throughput
(M g’) =0.8. This is obtained by pipelining vertex vj¢, pipelining three times vertex v)3, collapsing vertices
vi4 (into vig) and vg (into both vg and vy3,) and, finally, reducing the latency of the connection from v;g to
vi3 by three. Instead, the solution of Figure 6 has the optimum cost (equal to 7) for a system throughput
9(M G") = 0.83. This is obtained by pipelining vertex v)¢ and vertex vg while collapsing ve, and reducing the
latency of the connection from v;g to v3 by three and the one from vertex v;3 to v2; by one. Notice that both
these solutions reduce the total number of cycles in the graph from 6 to 4. This may be an indication that the
original design didn’t have a good balance between communication and computation.

6 Conclusions

We presented a novel formal model that acts as a common semantic domain to express on one side the
latency/throughput properties of IP library components, and, on the other side, the latency/throughput trade-
offs of the various system implementations that can be obtained by composing modules that are instanced from
the IP library. Other important contributions are the definition of the system throughput equalization problem
and the derivation of the RateEqualizer algorithm that solves it exactly. The natural next step in this research is
to develop an interactive design environment for system-on-chip. SOC designers are currently facing a difficult
performance balancing problem when they must choose and assemble several IP modules from different vendor
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libraries. The goal of the new design environment will be to facilitate the exploration of latency/throughput
trade-offs at early stages of the design cycle. We trust that the techniques proposed in this paper will represent
a key part of the system, because it provides a theoretically-sound method to tackle the problem globally, with
means other than simulation and intuition.
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: RateEqualizer (m(vl), «eam(vpy),n(ay),. ..,n(am)),
: for all k € [1,X] do
my. <= Ty v x(viyCi) -m(vi); my = Zajea)(aj,Ci) - nlay)
end for
CESsort <= RelaxedRateEqualizer ( (my,my),...,(mx,nx))
: for all candidate ¢ € CESsor do
{Reset set of auxiliary variables}
forallv,eV,a;€ddo
m'(v) <= 0; b(vi) <= false; o (aj) <= 0; b(a;) < false;
10:  end for
11:  (M,N) < computeTargetValues(c)
12:  {Sort cycle row indexes in increasing order of their targets}
13: ¥ < sortCycleRowIndexes(M,N)
14:  {Fire recursive step to seck new equalization solution}
15 if (recursiveStep(#{,0) = true) then
16: s <= SaveSolution (m(v1),...,m(vp),n(a1),. .., n(ayy))
17 S=SUs
18: endif '
19: end for
1: RelaxedRateEqualizer ( (m,m),...,(mx,nx))
2 {Fi'nd (m,l’{l)" "s(”{KI",K) € [-l: l] X [_ls l] S.l.}
: {3g€Q*, Vke[L,K], (M5 =q)..)
{...and the cost C=TX_, |n,| + ;| is minimum.}
Cp <=0
: for (k= L;k< K;k++) do
Cub <= Cup +iml
: end for
: {Sort px = (my,ny) in ascending order by ratio z—f}
: P <= sortinputPairsByRatio( (my,m),...,(mg,nx) )
: {Find the candidate equalization seeds}
: CES <« findCandidateE qualizationSeeds(®P,C,)
: {Sort the candidate equalization seeds by their optimality}
: return CES;on <= sortCandidateE qualizationSeeds(CES)
: RecursiveStep (#,h)
: if (h = K) then
{No more rows to equalize. Exit recursion successfully.}
return true
end if
: k<= H[h
: MM["] <= Mlk] - Zv,eVX(Vth) . m,(vi)
: NN[k] <= N[k — Zy,ep x(vi,Ce) - m' (v1)
: R <= findSetO fConfigurations(MM[k], NN[k])
10; for all r € X do
11:  {Pick configuration r as a possible cycle solution}
12:  for all v;,a; € C; do
1B (m(v)riley) <= (nf (). ()
14: (m'(vi),n (a;)) < setVariablesFromCon figuration(r)
15: by(vi) <= b(vy); bs(a;) < bla;);

woRNALEWLN o

VCHNPUVDRWN= BLORN—DOPENQULE W

16: end for

17:  if (recursiveStep(H,h + +) = true) then
18: return true

19:  else

20: for all v;,a; € C; do

26 (m’(vi)rnl(aj)) = (m;(vi))";(aj))
22: b(vi) <= bs(w1); blay) <= bs(a;);

23: end for

24: endif

25: end for

26: return false

Figure 8: Algorithm to solve the Rate Equalization Problem




