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VOLUME 2

PTOLEMY Il SOFTWARE
ARCHITECTURE

This volume describes the software architecture of Ptolemy II. The first chapter covers the kemel
package, which provides a set of Java classes supporting clustered graph topologies for models. Clus-
ter graphs provide a very general abstract syntax for component-based modeling, without assuming or
imposing any semantics on the models. The actor package begins to add semantics by providing basic
infrastructure for data transport between components. The data package provides classes to encapsu-
late the data that is transported. It also provides an extensible type system and an interpreted expres-
sion language. The graph package provides graph-theoretic algorithms that are used in the type system
and by schedulers in the individual domains. The plot package provides a visual data plotting utility
that is used in many of the applets and applications. Vergil is the graphical front end to Ptolemy II and
Vergil itself uses Ptolemy II to describe its own configuration.

Volume 1 gives an introduction to Ptolemy II, including tutorials on the use of the software, and vol-
ume 3 describes the domains, each of which implements a model of computation.
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1.1 Abstract Syntax

The kernel defines a small set of Java classes that implement a data structure supporting a general
form of uninterpreted clustered graphs, plus methods for accessing and manipulating such graphs.
These graphs provide an abstract syntax for netlists, state transition diagrams, block diagrams, etc. An
abstract syntax is a conceptual data organization. It can be contrasted with a concrete syntax, which is
a syntax for a persistent, readable representation of the data, such as EDIF for netlists. A particular
graph configuration is called a topology.

Although this idea of an uninterpreted abstract syntax is present in the original Ptolemy Classic
kernel [18], in fact the original Ptolemy kernel has more semantics than we would like. It is heavily
biased towards dataflow, the model of computation used most heavily. Much of the effort involved in
implementing models of computation that are very different from dataflow stems from having to work
around certain assumptions in the kernel that, in retrospect, proved to be particular to dataflow.

A topology is a collection of entities and relations. We use the graphical notation shown in figure
1.1, where entities are depicted as rounded boxes and relations as diamonds. Entities have ports,
shown as filled circles, and relations connect the ports. We consistently use the term connection to
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The Kernel

d_enf)te the association between connected ports (or their entities), and the term /ink to denote the asso-
ciation between ports and relations. Thus, a connection consists of a relation and two or more links.

The use of ports and hierarchy distinguishes our topologies from mathematical graphs. In a mathe-
matical graph, an entity would be a vertex, and an arc would be a connection between entities. A vertex
could be represented in our schema using entities that always contain exactly one port. In a directed
graph, the connections are divided into two subsets, one consisting of incoming arcs, and the other of
outgoing arcs. The vertices in such a graph could be represented by entities that contain two ports, one
for incoming arcs and one for outgoing arcs. Thus, in mathematical graphs, entities always have one or
two ports, depending on whether the graph is directed. Our schema generalizes this by permitting an
entity to have any number of ports, thus dividing its connections into an arbitrary number of subsets.

A second difference between our graphs and mathematical graphs is that our relations are multi-
way associations whereas an arc in a graph is a two-way association. A third difference is that mathe-
matical graphs normally have no notion of hierarchy (clustering).

Relations are intended to serve as mediators, in the sense of the Mediator design pattern of
Gamma, ef al. [34]. “Mediator promotes loose coupling by keeping objects from referring to each
other explicitly...” For example, a relation could be used to direct messages passed between entities. Or
it could denote a transition between states in a finite state machine, where the states are represented as
entities. Or it could mediate rendezvous between processes represented as entities. Or it could mediate
method calls between loosely associated objects, as for example in remote method invocation over a
network.

1.2 Non-Hierarchical Topologies

The classes shown in figure 1.2 support non-hierarchical topologies, like that shown in figure 1.1.
Figure 1.2 is a UML static structure diagram (see appendix A of chapter 1).

1.2.1 Links

An Entity contains any number of Ports; such an aggregation is indicated by the association with
an unfilled diamond and the label “0..n” to show that the Entity can contain any number of Ports, and
the label “0..1” to show that the Port is contained by at most one Entity. This association is uses the
NamedList class shown at the bottom of figure 1.2 and defined fully in figure 1.3. There is exactly one

-—— Connection ——p»

Link Link
Relation
» A
Connection Connection

oz
B
-

)

FIGURE 1.1. Visual notation and terminology.
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instance of NamedList associated with Entity, and it aggregates the ports.

A Port is associated with any number of Relations (the association is called a /ink), and a Relation
is associated with any number of Ports. Link associations use CrossRefList, shown in figure 1.2. There
is exactly one instance of CrossRefList associated with each port and each relation. The links define a
web of interconnected entities.

On the port side, links have an order. They are indexed from 0 to », where # is the number returned
by the numLinks() method of Port. .

1.2.2 Consistency

A major concern in the choice of methods to provide, and in their design, is maintaining consis-
tency. By consistency we mean that the following key properties are satisfied:

*  Every link between a port an a relation is symmetric and bidirectional. That is, if a port has a link

NamedObj CrossReflList
1.1
=<
jﬁ port . 1.4
f -_contai : Entity 1.1
ﬁ_relab’onstist : CrossRefList
Entity containerf#_insideLinks : CrossRefList
+Port() Relation
-_portList ; NamedList +Port(workspace : Workspace)
LEREY0 +Port(container : Entity, name : String) -_portList : CrossRefList
g . +connectedPortList() : List " +Relation
Ig,’:gg{:m‘;ai‘;"_‘%mw sinsertLink(nt  index, relation : Relation) "™ +Rolat 0 : String)
+Entity(workspace : Workspace, name : String)Fontainee *isLinked(s : Relation) : boclean 0.n I 0.n [*Relation(w: Workspace, name : String)
+connectedPortList) : List +link{relation : Relation) ___|*Relation(w : Workspace)
+connectionsChanged(port : Port) ﬁfnkedRelatgonLlsto : List ) link {+inkedPortList() : List
+getPort(name : String) : Port +linkedRelations() : Enumeration +inkedPortList(except : Port) : List
+linkedRelationList() : List tnumLinks( : int ! *linkedPorts() : Enumeration
+newPort(name : String) : Port +setContainer(entity : Entity) +linkedPorts(except : Port) : Er
+poriListg : List tunlink(index :int) +numLinks() : int
+removeliPorts( #un!‘!nk(velanon : Relation) +unlinkAllQ)
g addPort{port - Port) wn:nk:goo tsiner(conta Ertiy) t_checkPort(port : Port)
| . checkContainef(container : En etPortList() : CrossRefList
femovePort(port : Port [L:heckunk(relaﬁon : Relation) = 0
1.1 o 1.1
- portsin list { 0.n
O.n
1.9 11
port list NamedList autilitys
CrossRefList
-_listVersion : long
-_size : int
+CrossRefList(container : Object)
+CrossRefList({ iner : Object, original : CrossRefList)|
+first() : Object
+getContai . El

+insertLink(index : int, farList : CrossRefList)
+isLinked(o : Object) : boolean

+link(farList : CrossRefList)

+size() : int

+unlink(index : int)

+unlink(o : Object)

[+ unlinkAll()

FIGURE 1.2. Key classes in the kernel package and their methods supporting basic (non-hierarchical) topol-
ogies. Methods that override those defined in a base class or implement those in an interface are not shown.
The “+” indicates public visibility, “4#” indicates protected, and “-” indicates private. Capitalized methods are
constructors. The classes shown with dashed outlines are in the kernel.util subpackage.
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to a relation, then the relation has a link back to that port.

. Eyery object that appears on a container s . st of contained objects has a back reference to its con-
tainer.

In particular, the design of these classes ensures that the _container attribute of a port refers to an entity
that includes the port on its _portList. This is done by limiting the access to both attributes. The only
way to specify that a port is contained by an entity is to call the setContainer() method of the port. That
method guarantees consistency by first removing the port from any previous container’s _pottList,
then adding it to the new container’s port list. A port is removed from an entity by calling setCon-
tainer() with a null argument.

A change in a containment association involves several distinct objects, and therefore must be
atomic, in the sense that other threads must not be allowed to intervene and modify or access relevant
attributes halfway through the process. This is ensured by synchronization on the workspace, as
explained below in section 1.6. Moreover, if an exception is thrown at any point during the process of
changing a containment association, any changes that have been made must be undone so that a consis-
tent state is restored.

1.3 Support Classes

The kemnel package has a subpackage called kernel.util that provides the key base class for almost
all Ptolemy II objects, NamedObj, shown in figure 1.3. This class defines notions basic to Ptolemy I
of containment, naming, and parameterization, and provides generic support for relevant data struc-
tures. Although nominally the Nameable interface is what defines the naming and containment rela-

tionships, in practice, much of Ptolemy II relies on implementations of Nameable being instances of
NamedOb;.

1.3.1 Containers

Although NamedObj does not provide support for constructing clustered graphs, it provides rudi-
mentary support for container associations. An instance can have at most one container. That container
1s viewed as the owner of the object, and “managed ownership” [59] is used as a central tool in thread
safety, as explained in section 1.6 below.

In the base classes shown in figure 1.2, only an instance of Port can have a non-null container. It is
the only class with a setContainer() method. Instances of all other classes shown have no container,
and their getContainer() method will return null. Below we will discuss derived classes that have con-
tainers.

Every object is associated with exactly one instance of Workspace, as shown in figure 1.4, but the
workspace is not viewed as a container. A workspace is specified when an object is constructed, and no
methods are provided to change it. It is said to be immutable, a critical property in its use for thread
safety. An object with a container always inherits its workspace from the container.

1.3.2 Name and Full Name

The Nameable interface shown in figure 1.3 supports hierarchy in the naming so that individual
named objects in a hierarchy can be uniquely identified. By convention, the fi:// name of an object is a
concatenation of the full name of its container, if there is one, a period (“.”), and the name of the
object. The full name is used extensively for error reporting. A top-level object always has a period as
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NamedOb)|

,........
[oa—

[+tATTRIBUTES : int
+CLASSNAME ; int
+COMPLETE - int
+CONTENTS : int
+DEEP : int — -~ - " n
[+FULLNAME : it +description() : String - ,H +addDebuglListener(listener : DebugListener)

alnterfacen
= Nameable Debuggabte

FLINKS ; int +getContainer() : N " +removeDebuglistener(iistener : DebugListener)
# changel.isteners : List +getFullName() : String
{ debugging : boolean +getName() : String
+_debuglisteners : LinkedList [+setName(name : String)
$_uniqueNameindex : int
#_ workspace : Workspace dlnterfacen
-_attributes : NamedList ModelErrorHandier
-_modelErorHandler : ModelErrorHandler
-_MoMLinfo : MoMLlInfo _0[1—>
-_name : String +handleError( : NamedObj, exception : illegalActionException)|
+NamedObj() A
+NamedObj(name : String) T
+NamedObj(w : Workspace, name : String) H
+NamedObj(w : Workspae)
+addChangeListener(listener : ChangeListener) BasicMode!ErrorHandler|
+addDebugListener(l : Debuglistener)
|+attributeChanged(a : Attribute)
+attributeList() : List
+attributeList(filter : Class) : List
+attributeTypeChanged(a : Attribute)
+clone(destination : Workspace) : Object
+deepContains(inside : NamedOb) : boolean

PtolemyThread

+depthinHierarchy() : int
+description(detail : int) : String S —r
+exportMoML() : Stri +PtolemyThrea

Mx::nMoMLgiame ?%tring) +PtolemyThread(target : Runnable)

+exportMoML (output : Wiriter) +PtolemyThread(target : Runnable, name : String)

+exportMoML(output : Wiriter, depth : int) +PtolemyThread(name : String)

+exportMoML (output : Writer, depth : int, name : String) +PtolemyThread(group : ThreadGroup, target : Runnable)
+getAttribute(name : String) : Attribute +PtolemyThread(group : ThreadGroup, target : Runnable, name : String)
|+getAttribute(name : String, ¢ : Class) : Attribute 0 +PtolemyThread(group : ThreadGroup, name : String)
+getModelErrorHandler() : ModelErmrorHandler -n
+getMoMLInfo() : MoMLInfo
+getName(parent : NamedOb)) : String

handleModelEror( : NamedObj, e : lllegalActionException ..
ChangeList (listener : Ch jq i :,?,,,) plion) «Interfacer 0.n
ﬂemweDebungstenef(l Debungs\ener) DebugEvent «lnterfacen
DebuglListener
+setDelevMoMLDefmmonTo(delefTo NamedObj)
ModelErrorHandler(handler : ModelErmorHandler) +getSource() : NamedObj
ﬁopleve:lo: NamedObé‘ +toString() : String - ~DebugEvent)
{+uniqueName(prefix : String) : Strin
‘wal’?datesmableso 9 attributes Omessage(messaoe String)|
{+workspace() : Workspace A
#_addAttrib  Attribute) 0.1
#_anachText(name : S!mg. text : String) l
#_debug(event : DebugEvent)
#_debug(message : String) 0..1 | attributes list
#_debug(part1 : String, pant2 : String) 2 RecorderListener
#_debugipartt : String, part2 : String, pant3 : String) autility»
#_debug(p1 : String, p2 : String, p3 : String, p4 : String) NamedList
#_description(detail : mt indent : int, bracket : int) : String +RecorderListener()
#_exportMoMLC put : Writer, depth : int) -_container : Nameable +getMessages() : String
g _getlndentPrefn((depth int) : String -_namedlist : LinkedList +reset()
#_removeAttribute(attribute : Attribute) +NamedList{)
#_splitName(name : String) : String) +NamedList{container : Nameable)
+_stripNumericSuffix(name : String) : String +NamedList(original : NamedList)

+append(element : Nameable)
+clone() : Object
+elementList() : List

+first() : Nameable
#get(name Stnn?). ‘fwlameetlxl?. . StreamListener
NamedObj.MoMLInfo i ..,‘“‘ (name : String, element ; : Nameable)
[+className : String :g:'e(;t :BName‘able - Sting. N | +StreamListener()
+deferredFrom : List +prepend(element : Nameable) +StreamListener(stream : OutputStream)
+deferTo : NamedObj +remove(element : Nameable)
+elementName : String {( : String) : N; bt
+source : String *rgrmve_Allo
+MoMLinfo{owner : NamedObj) *size( : int
[+getDeferredFrom() : List

FIGURE 1.3. Support classes in the kemel.util package.
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the first character of its full name. The full name is returned by the getFullName() method of the
Nam: able interface.

NamedObj is a concrete class implementing the Nameable interface. It also serves as an aggrega-
tion of attributes, as explained below in section 1.3.4.

Names of objects are only required to be unique within a container. Thus, even the full name is not
assured of being globally unique.

Here, names are a property of the instances themselves, rather than properties of an association
between entities. As argued by Rumbaugh in [113], this is not always the right choice. Often, a name is
more properly viewed as a property of an association. For example, a file name is a property of the
association between a directory and a file. A file may have multlple names (through the use of sym-
bolic links). Our design takes a stronger position on names, and views them as properties of the object,
much as we view the name of a person as a property of the person (vs. their employee number, for
example, which is a property of their association with an employer).

1.3.3 Workspace

Workspace is a concrete class that implements the Nameable interface, as shown in figure 1.4. All
objects in a Ptolemy II model are associated with a workspace, and almost all operations that involve
multiple objects are only supported for objects in the same workspace. This constraint is exploited to
ensure thread safety, as explained in section 1.6 below.

«interface»
Nameable
NamedObj 0 Workspace
.n
i P
i-_workspace : Workspace ; 1 -_directory : _LinkedList
r+workspace() : Workspace; -_name . String

-_readers : Hashtable
-_readOnly : boolean

-_writer ; Thread
+Workspace()
+Workspace(name : String)
+add(item : NamedObj)
+description{detail : int) : String
+directoryList() : List
+doneReading()
+doneWriting()
+getReadAccess()
+getVersion() : long
+getWiriteAccess()
+incrVersion()

+isReadOnly() : boolean
+remove(item : NamedObj)
+removeAll()

+setReadOnly(b : boolean)
+wait(obj . Object)
#_description(detall : int, indent : int, bracket : int) : String|

FIGURE 1.4. Workspace is the key gatekeeper class supporting multithreaded access to Ptolemy II models.
It supports exclusive write access and shared read access. Every instance .. NamedObj is associated w1th
exactly one instance of Workspace.
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1.3.4 Attributes

In almost all applications of Ptolemy II, entities, ports, and relations need to be parameterized. An
instance of NamedObj (figure 1.3) can have any number of instances of the Attribute class attached to
it, as shown in figure 1.5. Attribute is a NamedObj that can be contained by another NamedObj, and
serves as a base class for parameters.

Attributes are added to a NamedObj by calling their setContainer() method and passing it a refer-
ence to the container. They are removed by calling setContainer() with a null argument. The Named-
Obj class provides the getAttribute() method, which takes an attribute name as an argument and returns
the attribute, and the attributeList() method, which returns a list of the attributes contained by the
object.

By itself, an instance of the Attribute class carries only a name, which may not be sufficient to
parameterize objects. Several derived classes implement the Settable interface, which indicates that
they can be assigned a value via a string. A simple attribute implementing the Settable interface is the
StringAttribute. It has a value that can be any string. A derived class called Variable that implements
the Settable interface is defined in the data package. The value of an instance of Variable is typically an
arithmetic expression.

An attribute that is not an instance of Settable is called a pure attribute. Its mere presence has sig-
nificance.

Attribute names can be any string that does not include periods, but it is recommend to stick to
alphanumeric characters, the space character, and the underscore. Names beginning with an underscore
are reserved for system use. The following names, for example, are in use:

Table 1.1:Names of special attributes

name class use
_createdBy ptolemy.kernel.util. VersionAttribute Version of Ptolemy II that last wrote the file.
_doc ptolemy.actor.gui.Documentation Default documentation attribute name.
_generator ptolemy.codegen.gui.GeneratorTableauAttribute Parameters for code generators.
_icon ptolemy.vergil.toolbox.Editorlcon Icon renderer attribute.
_iconDescription | ptolemy.kernel.util.StringAttribute XML description of an icon.
_library ptolemy.moml.LibraryAttribute Associates an actor library with a model.
_libraryMarker ptolemy.kernel.util. Attribute Marks its container as a library vs. a composite entity.
_location ptolemy.moml.Location Records the location of a visual rendition of an object.
_nonStrictMarker | ptolemy.kernel.util. Attribute Marks its container as a non-strict entity.
_parser ptolemy.moml.ParserAttribute Records the MoML parser used.
_url ptolemy.moml.URL Attribute Identifies the URL for the model definition.
_vergilLocation ptolemy.actor.gui.LocationAttribute Location of the vergil window.
_vergilSize ptolemy.actor.gui.Size Attribute Size of the graph pane in the vergil window.

Heterogeneous Concurrent Modeling and Design 7
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FIGURE 1.5. An instance of NamedObj can contain any number of instances of Attribute. The Ptolemy II
kernel provides a few basic attributes, as shown here. Attributes that have values implement the Settable inter-
face. Attributes whose values are numeric data or data structures are described in the Data Package chapter.
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1.3.5 List Classes

Figures 1.2 and 1.3 show two list classes that are used extensively in Ptolemy II, NamedList and
CrossRefList. These pre-date the extensive list classes in the java.util package, and could probably be
replaced with those today. NamedList implements an ordered list of objects with the Nameable inter-
face. It is unlike a hash table in that it maintains an ordering of the entries that is independent of their
names. It is unlike a vector or a linked list in that it supports accesses by name. It is used, for example,
to maintain a list of attributes to maintain the list of ports contained by an entity.

The class CrossRefList is a bit more interesting. It mediates bidirectional links between objects
that contain CrossRefLists, in this case, ports and relations. It provides a simple and efficient mecha-
nism for constructing a web of objects, where each object maintains a list of the objects it is linked to.
That list is an instance of CrossRefList. The class ensures consistency. That is, if one object in the web
is linked to another, then the other is linked back to the one. CrossRefList also handles efficient modi-
fication of the cross references. In particular, if a link is removed from the list maintained by one
object, the back reference in the remote object also has to be deleted. This is done in O(1) time. A more
brute force solution would require searching the remote list for the back reference, increasing the time
required and making it proportional to the number of links maintained by each object.

1.4 Clustered Graphs

The classes shown in figure 1.2 provide only partial support for hierarchy, through the concept of a
container. Subclasses, shown in figure 1.6, extend these with more complete support for hierarchy.
ComponentEntity, ComponentPort, and ComponentRelation are used whenever a clustered graph is
used. All ports of a ComponentEntity are required to be instances of ComponentPort. CompositeEntity
extends ComponentEntity with the capability of containing ComponentEntity and ComponentRelation
objects. Thus, it contains a subgraph. The association between ComponentEntity and CompositeEntity
is the classic Composite design pattern [34].

1.4.1 Abstraction

Composite entities are non-atomic (isAtomic() returns false). They can contain a graph (entities
and relations). By default, a CompositeEntity is transparent (isOpaque() returns false). Conceptually,
this means that its contents are visible from the outside. The hierarchy can be ignored (flattened) by
algorithms operating on the topology. Some subclasses of CompositeEntity are opaque (see the Actor
Package chapter for examples). This forces algorithms to respect the hierarchy, effectively hiding the
contents of a composite and making it appear indistinguishable from atomic entities.

A ComponentPort contained by a CompositeEntity has inside as well as outside links. It maintains
two lists of links, those to relations inside and those to relations outside. Such a port serves to expose
ports in the contained entities as ports of the composite. This is the converse of the “hiding” operator
often found in process algebras [89]. In Ptolemy, ports within an entity are hidden by default, and must
be explicitly exposed to be visible (linkable) from outside the entity!. The composite entity with ports
thus provides an abstraction of the contents of the composite.

A port of a composite entity may be opaque or transparent. It is defined to be opagque if its con-
tainer is opaque. Conceptually, if it is opaque, then its inside links are not visible from the outside, and
the outside links are not visible from the inside. If it is opaque, it appears from the outside to be indis-

1. Unless level-crossing links are allowed, which is discouraged.
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FIGURE 1.6. Key classes supporting clustered graphs.
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tinguishable from a port of an atomic entity.

The transparent port mechanism is illustrated by the example in figure 1.7!. Some of the ports in
figure 1.7 are filled in white rather than black. These ports are said to be transparent. Transparent ports
(P3 and P4) are linked to relations (R1 and R2) below their container (E1) in the hierarchy. They may
also be linked to relations at the same level (R3 and R4).

ComponentPort, ComponentRelation, and CompositeEntity have a set of methods with the prefix
“deep,” as shown in figure 1.6. These methods flatten the hierarchy by traversing it. Thus, for example,
the ports that are “deeply” connected to port P1 in figure 1.7 are P2, P5, and P6. No transparent port is
included, so note that P3 and P4 are not included.

Deep traversals of a graph follow a simple rule. If a transparent port is encountered from inside,
then the traversal continues with its outside links. If it is encountered from outside, then the traversal
continues with its inside links. Thus, for example, the ports deeply connected to P5 are P1 and P2.
Note that P6 is not included. Similarly, the deepEntityList() method of CompositeEntity looks inside
transparent entities, but not inside opaque entities.

Since deep traversals are more expensive than just checking adjacent objects, both ComponentPort
and ComponentRelation cache them. To determine the validity of the cached list, the version of the
workspace is used. As shown in figure 6.3, the Workspace class includes a getVersion() and incrVer-
sion() method. All methods of objects within a workspace that modify the topology in any way are
expected to increment the version count of the workspace. That way, when a deep access is performed
by a ComponentPort, it can locally store the resulting list and the current version of the workspace.
The next time the deep access is requested, it checks the version of the workspace. If it is still the same,
then it returns the locally cached list. Otherwise, it reconstructs it.

For ComponentPort to support both inside links and outside links, it has to override the link() and
unlink() methods. Given a relation as an argument, these methods can determine whether a link is an
inside link or an outside link by checking the container of the relation. If that container is also the con-

//E] —0 B )

-

FIGURE 1.7. Transparent ports (P3 and P4) are linked to relations (R1 and R2) below their container (E1)
in the hierarchy. They may also be linked to relations at the same level (R3 and R4).

1. In that figure, every object has been given a unique name. This is not necessary since names only need to be
unique within a container. In this case, we could refer to P5 by its full name .E0.E4.P5 (the leading period indi-
cates that this name is absolute). However, using unique names makes our explanations more readable.

Heterogeneous Concurrent Modeling and Design 11
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tainer of the port, then the link is an inside link.

1.4.2 Level-Crossing Connections

For a few applications, such as Statecharts [41], level-crossing links and connections are needed.
The example shown in figure 1.8 has three level-crossing connections that are slightly different from
one another. The links in these connections are created using the liberalLink() method of Component-
Port. The link() method prohibits such links, throwing an exception if they are attempted (most appli-
cations will prohibit level-crossing connections by using only the link() method).

An alternative that may be more convenient for a user interface is to use the connect() methods of
CompositeEntity rather than the link() or liberalLink() method of ComponentPort. To allow level-
crossing links using connect(), first call allowLevelCrossingConnect() with a true argument.

The simplest level-crossing connection in figure 1.8 is at the bottom, connecting P2 to P7 via the
relation RS. The relation is contained by E1, but the connection would be essentially identical if it were
contained by any other entity. Thus, the notion of composite entities containing relations is somewhat
weaker when level-crossing connections are allowed.

The other two level-crossing connections in figure 1.8 are mediated by transparent ports. This sort
of hybrid could come about in heterogeneous representations, where level-crossing connections are
permitted in some parts but not in others. It is important, therefore, for the classes to support such
hybrids.

To support such hybrids, we have to modify slightly the algorithm by which a port recognizes an
inside link. Given a relation and a port, the link is an inside link if the relation is contained by an entity
that is either the same as or is deeply contained (i.e. directly or indirectly contained) by the entity that

S = Y

FIGURE 1.8. An example with level-crossing transitions.
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contains the port. The deepContains() method of NamedObj supports this test.

1.4.3 Tunneling Entities

The transparent port mechanism we have described supports connections like that between P1 and
P5 in figure 1.9. That connection passes through the entity E2. The relation R2 is linked to the inside of
each of P2 and P4, in addition to its link to the outside of P3. Thus, the ports deeply connected to P1
are P3 and P5, and those deeply connected to P3 are P1 and P5, and those deeply connected to P5 are
P1 and P3.

A tunneling entity is one that contains a relation with links to the inside of more than one port. It
may of course also contain more standard links, but the term “tunneling” suggests that at least some
deep graph traversals will see right through it.

Support for tunneling entities is a major increment in capability over the previous Ptolemy kemel
[18] (Ptolemy Classic). That infrastructure required an entity (which was called a star) to intervene in
any connection through a composite entity (which was called a galaxy). Two significant limitations
resulted. The first was that compositionality was compromised. A connection could not be subsumed
into a composite entity without fundamentally changing the structure of the application (by introduc-
ing a new intervening entity). The second was that implementation of higher-order functions that
mutated the graph [69] was made much more complicated. These higher-order functions had to be
careful to avoid mutations that created tunneling.

1.4.4 Cloning

The kemnel classes are all capable of being cloned, with some restrictions. Cloning means that an
identical but entirely independent object is created. Thus, if the object being cloned contains other
objects, then those objects are also cloned. If those objects are linked, then the links are replicated in
the new objects. The clone() method in NamedObj provides the interface for doing this. Each subclass
provides an implementation.

There is a key restriction to cloning. Because they break modularity, level-crossing links prevent
cloning. With level-crossing links, a link does not clearly belong to any particular entity. An attempt to
clone a composite that contains level-crossing links will trigger an exception.

FIGURE 1.9. A tunneling entity contains a relation with inside links to more than one port.
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1.4.5 An Elaborate Example

An elaborate example of a clustered graph is shown in figure 1.10. This example includes
instances of all the capabilities we have discussed. The top-level entity is named “EQ.” All other enti-
ties in this example have containers. A Java class that implements this example is shown in figure 1.11.
A script in the Tcl language [101] that constructs the same graph is shown in figure 1.12. This script
uses Tcl Blend, an interface between Tcl and Java that is distributed by Scriptics. Such scripts are used
extensively in the Ptolemy II regression test suite.

The order in which links are constructed matters, in the sense that methods that return lists of
objects preserve this order. The order implemented in both figures 1.11 and 1.12 is top-to-bottom and
left-to-right in figure 1.10. A graphical syntax, however, does not generally have a particularly conve-
nient way to completely control this order.

The results of various method accesses on the graph are shown in figure 1.13. This table can be
studied to better understand the precise meaning of each of the methods.

E0

/
fE4

e

FIGURE 1.10. An example of a clustered graph.
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public class ExampleSystem |
private CompositeEntity e0, e3, e4, e7, el0;
private ComponentEntity el, e2, e5, e6, 8, e9;
private ComponentPort p0, pl, p2, p3, p4, p5, pé, p7, p8, p9, plO, pll, pl2, pl3, p4;
private ComponentRelation rl1, r2, r3, r4, r5, r6, r?, r8, r9, rl0, rll, rl2;

public ExampleSystem() throws IllegalActionException, NameDuplicationException |
e0 = new CompositeEntity();
e0.setName ("EO") ;
e3 = new CompositeEntity(e0, "E3");
e4 = new CompositeEntity(e3, "E4");
e7 new CompositeEntity(e0, "E7"};
el0 = new CompositeEntity(e0, “E10");

non

el = new ComponentEntity(ed4, "E1");

e2 = new ComponentEntity(e4, "E2");

e5 = new ComponentEntity({e3, "E5");

e6 = new ComponentEntity(e3, "E6");

e8 = new ComponentEntity(e7, "E8");

e% = new ComponentEntity(el0, "ES");

pO0 = (ComponentPort) e4.newPort ("PO");
pl = (ComponentPort) el.newPert("P1");
p2 = (ComponentPort) e2.newbPort("P2");
p3 = (ComponentPort) e2.newPort("P3");
p4 = {(ComponentPort) e4.newPort("P4");
pS = {ComponentPort) e5.newPort ("PE");
p6 = {ComponentPort) e5.newPort ("Pé&");
p7 = {ComponentPort) e3.newPort ("P7");
p8 = {CompcnentPort) e7.newbPcrt ("ES");
p% = (ComponentPort) ef.newPort ("PS");
pl0 = (ComponentPort) e8.newPort("P10");
pll = (ComponentPort) e7.newbcrt ("P11");
pl2 = (CompcnentPort) elO.newPort!("F12"};
pl3 = (ComponentPort} e10.newBort ("P13");
pl4 = (ComponentBcrt) e%.newkcrt("p14");

rl = e4.connect (pl, p0, "R1");

r2 = e4.connect(pl, p4d4, "R2");
p3.link(r2);

r3 = ed.connect(pl, p2, "K3");

r4 = e3.connect (p4, p7, "RI");

r5 = e3.connect(p4, pS, "R5");
e3.allowlevelCrossingCcnnact (true);
rs = e3.connect (c3, pf, "RE™);

r7 = eQ.connect (p7, pl3, "R7");

r8 = e7.connect(p%, p&, "R8");
r$ = e7.connect (pl0, pll, "RO"};
r1o0 e0.connect (p8, pl2, “R1O");

rll = el0.connect(pl2, pl3, "R11"};
rl2 = el0.connect(pl4, pl13, "R12";;
pll.link(r7);

FIGURE 1.11. The same topology as in figure 1.10 implemented as a Java class.
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1.5 Opaque Composite Entities

One of the major tenets of the Ptolemy project is that of modeling heterogeneous systems through
the use of hierarchical heterogeneity. Information-hiding is a central part of this. In particular, transpar-
ent ports and entities compromise information hiding by exposing the internal topology of an entity. In
some circumstances, this is inappropriate, for example when the entity internally operates under a dif-
ferent model of computation from its environment. The entity should be opaque in this case.

An entity can be opaque and composite at the same time. Ports are defined to be opaque if the
entity containing them is opaque (isOpaque() returns true), so deep traversals of the topology do not
cross these ports, even though the ports support inside and outside links. The actor package makes

# Create composite entities
set e0 [java::new pt.kernel.CompositeEntity EO]
set e3 [java::new pt.kernel.CompositeEntity $e0 E3])
set e4 [java::new pt.kernel.CompositeEntity $e3 E4]
set e7 (java::new pt.kernel.CompositeEntity $e0 E7)
set el0 [Java::new pt.kernel.CompositeEntity $e0 E10)

# Create component entities.

set el [java::new pt.kernel.ComponentEntity Se4 E1)

set e2 [}ava::new pt.kernel.ComponentEntity $e4 E2]

set e5 [java::new pt.kernel.ComponentEntity $e3 E5)

set e6 [java::new pt.kernel.ComponentEntity $e3 E6]

set e8 (java::new pt.kernel.ComponentEntity $e7 E8]

set e9 [java::new pt.kernel.ComponentEntity $el0 E9)

# Create ports.

set p0 ($e4 newPort PO}
set pl [$el newPcrt P1]
set p2 [$e2 newPort P2]
set p3 [$e2 newPort P3)
set p4 [Sed newPort P4)
set p5 {$e5 newPort PBS)
set p€ [$e6 newPort P§]
set p7 [$e3 newbcrt F7]
set p8 [$e7 newFort P§]
set p9 [$eB8 newBort P9]
set pl0 [Se€ newPort F10)
set pll [$e7 newPort P11)
set pl2 [$el0 newPort P12)
set pl3 [$el0 newPort F13}
set pl4 ($e9 newFcrt P14)

reate links

rl [Sed connect $pl $pQ R1)

r2 [$ed connsct $pl Spd RI)

link $r2

r3 [$ed ccnnect $pl Spl R3}

r4 [$e3 connect $p4d $p7 R4}

r5 [$e3 connect $pd Spt RE|
=zllowLevelCrcssingConnecr. trus
ré [$e3 ccnnect $p2 Spé RE|

r7 {$e0 connect $p7 $pll3 R7)

r® [$e7 connect $p¢ Spf RP)

r9 [$e7 connect Spl0 Spll R3)
rl0 ($e0 connect $p8 Spl2 R10}
r1l [$el0 connect $pl2 $pl3 R11)
rl2 [$el0 connect $pl4 $pl3 R1Z)
$pll link $r7
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FIGURE 1.12. The same topology as in figure 1.10 described by the Tcl commands to create it.
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extensive use of such entities to support mixed modeling. That use is described in the Actor Package
chapter. In the previous generation system, Ptolemy Classic, composite opaque entities were called
wormholes.

1.6 Concurrency

Concurrency is an expected property in many models. Network topologies may represent the
structure of computations which themselves may be concurrent, and a user interface may be interacting
with the topologies while they execute their computation. Moreover, Ptolemy II objects may interact
with other objects concurrently over the network via RMI, datagrams, TCP/IP, or CORBA.

Both computations within an entity and the user interface are capable of modifying the topology.
Thus, extra care is needed to make sure that the topology remains consistent in the face of simulta-
neous modifications (we defined consistency in section 1.2.2).

Concurrency could easily corrupt a topology if a modification to a symmetric pair of references is
interrupted by another thread that also tries to modify the pair. Inconsistency could result if, for exam-
ple, one thread sets the reference to the container of an object while another thread adds the same
object to a different container’s list of contained objects. Ptolemy II prevents such inconsistencies from
occurring. Such enforced consistency is called thread safety.

Table 1.1:Methods of ComponentRelation

Method Name Rl | R2 | R3 | R4 | RS [ R6 | R7 | R8 | R9 | R10 | Ri1 | R12
getLinkedPorts Pl Pl P1 P4 P4 |P3 P7 |P9 P10 |P8 |P12 |Pl14
PO P4 |P2 P7 |P5 P6 P13 |P8 P11 |P12 [P13 ([PI3
P3 P11

deepGetLinkedPorts P1 P1 P1 P1 Pl P3 P1 P9 P10 | P9 P9 P14
P9 P2 P3 P3 P6 P3 Pl P1 Pl Pl P1

P14 P9 P5 P9 P3 P3 P3 P3 P3
P10 P14 P14 |P10 [P9 P10 [PI0O |P10
PS5 P10 P10 P14

P3

Table 1.2:Methods of ComponentPort

Method Name PO [ P1 | P2 { P3| P4 |P5 | P6(P7 |PS | P9 |P10|P11]|P12| P13 | P14

getConnectedPorts PO (P1 |PI |P7 |P4 |P3 (P13 (P12 |P& |P1l [P7 |P8 |P7 |[PI3
P4 P4 |PS P11 Pi3 P11
P3 P6
P2

deepGetConnectedPorts PO |PI (P1 (P9 |P1 [P3 (P9 (Pl |P1 |P1 |P1 |[P9 |PI |PI
P14 P9 {Pl14 [P3 P14 |P3 |P3 |P3 |P3 P3 IP3
P10 P14 |P10 P10 |P10 (P10 |P9 [P9 P10 |P10
P5 P10 |PS P14 P14
P3 PS5
P2 P6

FIGURE 1.13. Key methods applied to figure 1.10.
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1.6.1 Limitations of Monitors

Java threads provide a low-level mechanism called a monitor for controlling concurrent access to
data structures. A monitor locks an object preventing other threads from accessing the object (a design
pattern called mutual exclusion). Unfortunately, the mechanism is fairly tricky to use correctly. It is
non-trivial to avoid deadlock and race conditions. One of the major objectives of Ptolemy I1 is provide
higher-level concurrency models that can be used with confidence by non experts.

Monitors are invoked in Java via the “synchronized” keyword. This keyword annotates a body of
code or a method, as shown in figure 1.14. It indicates that an exclusive lock should be obtained on a
specific object before executing the body of code. If the keyword annotates a method, as in figure
1.14(a), then the method’s object is locked (an instance of class A in the figure). The keyword can also
be associated with an arbitrary body of code and can acquire a lock on an arbitrary object. In figure
1.14(b), the code body represented by brackets {..} can be executed only after a lock has been
acquired on object 0bj.

Modifications to a topology that run the risk of corrupting the consistency of the topology involve
more than one object. Java does not directly provide any mechanism for simultaneously acquiring a
lock on multiple objects. Acquiring the locks sequentially is not good enough because it introduces
deadlock potential, i.e., one thread could acquire the lock on the first object block trying to acquire a
lock on the second, while a second thread acquires a lock on the second object and blocks trying to
acquire a lock on the first. Both methods block permanently, and the application is deadlocked. Neither
thread can proceed.

One possible solution is to ensure that locks are always acquired in the same order [59]. For exam-

public class A |
public synchronized void foo() |

)

) try |
workspace () .getReadAccess|();
® // ... code that reads
} finally {
public class B | workspace () .doneReading () ;
public void foo(} | )
synchronized(oki) |
d
| (d)
}
) try |
workspace() .getWriteAccess();
) // ... code that writes
| finally {
workspace() .dcneWriting();
public class C extends NamedObkj { )
public void foc() |

synchronized (workspace()) |
LR * e
} ©

}
]

©
FIGURE 1.14. Using monitors for thread safety. The method used in Ptolemy Il is in (d) and (e).
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ple, we could use the containment hierarchy and always acquire locks top-down in the hierarchy. Sup-
pose for example that a body of code involves two objects a and b, where a contains b (directly or
indirectly). In this case, “involved” means that it either modifies members of the objects or depends on
their values. Then this body of code would be surrounded by:

synchronized(a) {
synchronized (b) {

)
}

If all code that locks a and b respects this same order, then deadlock cannot occur. However, if the
code involves two objects where one does not contain the other, then it is not obvious what ordering to
use in acquiring the locks. Worse, a change might be initiated that reverses the containment hierarchy
while another thread is in the process of acquiring locks on it. A lock must be acquired to read the con-
tainment structure before the containment structure can be used to acquire a lock! Some policy could
certainly be defined, but the resulting code would be difficult to guarantee. Moreover, testing for dead-
lock conditions is notoriously difficult, so we implement a more conservative, and much simpler strat-
egy.

1.6.2 Read and Write Access Permissions for Workspace

One way to guarantee thread safety without introducing the risk of deadlock is to give every object
an immutable association with another object, which we call its workspace. Immutable means that the
association is set up when the object is constructed, and then cannot be modified. When a change
involves multiple objects, those objects must be associated with the same workspace. We can then
acquire a lock on the workspace before making any changes or reading any state, preventing other
threads from making changes at the same time.

Ptolemy II uses monitors on instances of the class Workspace. As shown in figure 1.3, every
instance of NamedObj (or derived classes) is associated with a single instance of Workspace. Each
body of code that alters or depends on the topology must acquire a lock on its workspace. Moreover,
the workspace associated with an object is immutable. It is set in the constructor and never modified.
This is enforced by a very simple mechanism: a reference to the workspace is stored in a private vari-
able of the base class NamedObj, as shown in figure 1.3, and no methods are provided to modify it.
Moreover, in instances of these kemel classes, a container and its containees must share the same
workspace (derived classes may be more liberal in certain circumstances). This “managed ownership”
[59] is our central strategy in thread safety.

As shown in figure 1.14(c), a conservative approach would be to acquire a monitor on the work-
space for each body of code that reads or modified objects in the workspace. However, this approach is
too conservative. Instead, Ptolemy I allows any number of readers to simultaneously access a work-
space. Only one writer can access the workspace, however, and only if no readers are concurrently
accessing the workspace.

The code for readers and writers is shown in figure 1.14(d) and (). In (d), a reader first calls the
getReadAccess() method of the Workspace class. That method does not return until it is safe to read
data anywhere in the workspace. It is safe if there is no other thread concurrently holding (or request-
ing) a write lock on the workspace (the thread calling getReadAccess() may safely hold both a read
and a write lock). When the user is finished reading the workspace data, it must call doneReading().
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Failure to do so will result in no writer ever again gaining write access to the workspace. Because it is
so important to call this method, it is enclosed in the finally clause of a try statement. That clause is
executed even if an exception occurs in the body of the try statement.

The code for writers is shown in figure 1.14(e). The writer first calls the getWriteAccess() method
of the Workspace class. That method does not return until it is safe to write into the workspace. It is
safe if no other thread has read or write permission on the workspace. The calling thread, of course,
may safely have both read and write permission at the same time. Once again, it is essential that done-
Writing() be called after writing is complete.

This solution, while not as conservative as the single monitor of figure 1.14(c), is still conservative
in that mutual exclusion is applied even on write actions that are independent of one another if they
share the same workspace. This effectively serializes some modifications that might otherwise occur in
parallel. However, there is no constraint in Ptolemy II on the number of workspaces used, so sub-
classes of these kemnel classes could judiciously use additional workspaces to increase the parallelism.
But they must do so carefully to avoid deadlock. Moreover, most of the methods in the kernel refuse to
operate on multiple objects that are not in the same workspace, throwing an exception on any attempt
to do so. Thus, derived classes that are more liberal will have to implement their own mechanisms sup-
porting interaction across workspaces.

There is one significant subtlety regarding read and write permissions on the workspace. In a mul-
tithreaded application, normally, when a thread suspends (for example by calling wait()), if that thread
holds read permission on the workspace, that permission is not relinquished during the time the thread
is suspended. If another thread requires write permission to perform whatever action the first thread is
waiting for, then deadlock will ensue. That thread cannot get write access until the first thread releases
its read permission, and the first thread cannot continue until the second thread gets write access.

The way to avoid this situation is to use the wait() method of Workspace, passing as an argument
the object on which you wish to wait (see Workspace methods in figure 1.3). That method first relin-
quishes all read permissions before calling wait on the target object. When wait() returns, notice that it
is possible that the topology has changed, so callers should be sure to re-read any topology-dependent
information. In general, this technique should be used whenever a thread suspends while it holds read
permissions.

1.6.3 Making a Workspace Read Only

Acquiring read and write access permissions on the workspace is not free, and if it is performed
often, it can significantly degrade performance. Thus, in some situations, an application may simply
wish to prohibit all modifications to the topology for some period of time. This can be done by calling
setReadOnly() on the workspace (see Workspace methods in figure 1.3). Once the workspace is read
only, requests for read permission are routinely (and very quickly) granted, and requests for write per-
mission trigger an exception. Thus, making a workspace read only can significantly improve perfor-
mance, at the expense of denying changes to the topology.

1.7 Mutations

Often it is necessary to carefully constrain when changes can be made in a topology. For example,
an application that uses the actor package to execute a model defined by a topology may require the
topology to remain fixed during segments of the execution. During these segments, the workspace can
be made read-only (see section 1.6.3), significantly improving performance.
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The util subpackage of the kernel package provides support for carefully controlled mutations that
can occur during the execution of a model. The relevant classes and interfaces are shown in figure
1.15. Also shown in the figure is the most useful mutation class, MoMLChangeRequest, which uses
MoML to specify the mutation. That class is in the moml package.

The usage pattern involves a source that wishes to have a mutation performed, such as an actor
(see the Actor Package chapter) or a user interface component. The originator creates an instance of
the class ChangeRequest and enqueues that request by calling the requestChange() of any object in the
Ptolemy II hierarchy. That object typically delegates the request to the top-level of the hierarchy, which
in turn delegates to the manager. When it is safe, the manager executes the change by calling execute()
on each enqueued ChangeRequest. In addition, it informs any registered change listeners of the muta-
tions so that they can react accordingly. Their changeExecuted() method is called if the change suc-
ceeds, and their changeFailed() method is called if the change fails. The list of listeners is maintained

Object
B NamedObj
requestjchange
# changeList  List
+addChangeListener(listener : ChangeListener)
+removeChangeListener(listener : ChangeListener)
specifies the list of list 3 hange(request : ChangeRequest)
creatés delegates change request to\',
Manager
ChangeRequest
executes the change
-_description : String
-_exception : Exception
-_listeners : List
-_errorReported : boolean
-_source : Object notifies of Completion
-_pending : boolean
-_persistent : boolean winterfacen
+Ch R : Object, description : String)| ChangeListener
4addChangeLtslener(hstener ChangeLsstener)
+execute(}

+getDescription() : String
+getSource() : Object o) o
+isErrorReported() : boolean = J A = =
+isPersistent() : bootean A
+removeChangel.istener(listener : ChangeListener) :
+setErrorReported(reported : boolean)
+setListeners(listeners : Llst)

|+changeExecuted(change : ChangeRequest)
- P " t emor : £

........................

[+setPersi tp :b )
+waitForCompletion() StreamChangelistener
#_execule()
-_output : PrintStream
OS(reamChangeLts(ener()
R " | font - \
momi package StreamClI {out : OutputS )

MoMLChangeRequest

_base : URL
_context : NamedObj
_parser : MoMLParser
:%4-_propagating : boolean
MoMLChangeReq t(origi : Object, : String)
McMLChangeReq (origi : Object, : NamedObj, request : String)
MoMLChangeR (origi : Object, . NamedObj, request : String, base : UR|

getDeferredToParenl(ob|ect NamedObj) : NamedObj

FIGURE 1.15. Classes and interfaces that support controlled topology mutations. A source requests topology
changes and a manager performs them at a safe time.
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by the manager, so when a listener is added to or removed from any object in the hierarchy, that request
- delegated to the manager.

1.7.1 Change Requests

A manager processes a change request by calling its execute() method. That method then calls the
protected _execute() method, which actually performs the change. If the _execute() method completes
successfully, then the ChangeRequest object notifies listeners of success. If the _execute() method
throws an exception, then the ChangeRequest object notifies listeners of failure.

The ChangeRequest class is abstract. Its _execute() method is undefined. In a typical use, an origi-
nator will define an anonymous inner class, like this:

CompositeEntity container = ... ;
ChangeRequest change = new ChangeRequest (originator, "description™) {
protected void _execute() throws Exception {
... perform change here ...
}
}:

container.requestChange (change) ;

By convention, the change request is usually posted with the container that will be affected by the
change. The body of the _execute() method can create entities, relations, ports, links, etc. For example,
the code in the _execute() method to create and link a new entity might look like this:

Entity newEntity = new MyEntityClass (originator, "NewEntity");
relation.link(newEntity.port);

When _execute() is called, the entity named newEntity will be created, added to originator (which is
assumed to be an instance of CompositeEntity here) and linked to relation.

A key concrete class extending ChangeRequest is implemented in the moml package, as shown in
figure 1.15. The MoMLChangeRequest class supports specification of a change in MoML. See the
MoML chapter for details about how to write MoML specifications for changes. The contexr argument
to the second constructor typically gives a composite entity within which the commands should be
interpreted. Thus, the same change request as above could be accomplished as follows:

CompositeEntity container = ... ;
String moml = "<group>"
+ "<entity name=\"\" class=\"MyEntityClass\"/>"
+ "<link port=\"portname\" relation=\"relationname\"/>"
+ "</group>";
ChangeRequest change =
new MoMLChangeRequest (originator, container, moml):;
container. requestChange {change);

1.7.2 NamedObj and Listeners

The NamedObj class provides addChangeListener() and removeChangeListener() methods, so that
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interested objects can register to be notified when topology changes occur. In addition, it provides a
method that originators can use to queue requests, requestChange().

A change listener is any object that implements the ChangeListener interface, and will typically
include user interfaces and visualization components. The instance of ChangeRequest is passed to the
listener. Typically the listener will call getOriginator() to determine whether it is being notified of a
change that it requested. This might be used for example to determine whether a requested change suc-
ceeds or fails.

The ChangeRequest class also provides a waitForCompletion() method. This method will not
return until the change request completes. If the request fails with an exception, then waitForComple-
tion() will throw that exception. Note that this method can be quite dangerous to use. It will not return
until the change request is processed. If for some reason change requests are not being processed (due
for a example to a bug in user code in some actor), then this method will never return. If you make the
mistake of calling this method from within the event thread in Java, then if it never returns, the entire
user interface will freeze, no longer responding to inputs from the keyboard or mouse, nor repainting
the screen. The user will have no choice but to kill the program, possibly losing his or her work.

1.8 Exceptions

Ptolemy II includes a set of exception classes that provide a uniform mechanism for reporting
errors that takes advantage of the identification of named objects by full name. These exception are
summarized in the class diagram in figure 1.16.

1.8.1 Base Class

KernelException. Not used directly. Provides common functionality for the kernel exceptions. In par-
ticular, it provides methods that take zero, one, or two Nameable objects an optional cause (a Throw-
able) plus an optional detail message (a String). The arguments provided are arranged in a default
organization that is overridden in derived classes.

The cause argument to the constructor is a Throwable that caused the exception. The cause argu-
ment is used when code throws an exception and we want to rethrow the exception but print the stack-
trace where the first exception occurred. This is called exception chaining.

JDK 1.4 supports exception chaining. We are implementing a version of exception chaining here
ourselves so that we can use JVMs earlier than JDK1 4.

In this implementation, we have the following differences from the JDK 1.4 exception chaining
implementation:

*  In this implementation, the detail message includes the detail message from the cause argument.

* In this implementation, we implement a protected _setCause() method, but not the public init-
Cause() method that JDK 1.4 has.

1.8.2 Less Severe Exceptions

These exceptions generally indicate that an operation failed to complete. These can result in a
topology that is not what the caller expects, since the caller’s modifications to the topology did not suc-
ceed. However, they should never result in an inconsistent or contradictory topology.

lllegalActionException. Thrown on an attempt to perform an action that is disallowed. For example,
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Exception ERunﬂmeExceptian KernelRuntimeException
<3— |

-_cause : Throwable

-_message : String

+KemelRuntimeException()

|*KemelRuntimeException(cbjects : Collection, cause : Throwable, detail : String)
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FIGURE 1.16. Summary of exceptions defined in the kemnel.util package. These are used primarily through
constructor calls. The form of the constructors is shown in the text. Exception and RuntimeException are
Java exceptions.
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the action would result in an inconsistent or contradictory data structure if it were allowed to complete.
Example: an attempt to set the container of an object to be another object that cannot contain it because
it is of the wrong class.

NameDuplicationException. Thrown on an attempt to add a named object to a collection that requires
unique names, and finding that there already is an object by that name in the collection.

NoSuchltemException. Thrown on access to an item that doesn't exist. Example: an attempt to remove
a port by name and no such port exists.

1.8.3 More Severe Exceptions

The following exceptions should never trigger. If they trigger, it indicates a serious inconsistency
in the topology and/or a bug in the code. At the very least, the topology being operated on should be
abandoned and reconstructed from scratch. They are runtime exceptions, so they do not need to be
explicitly declared to be thrown.

KernelRuntimeException. Base class for runtime exceptions. This class extends the basic Java Runt-
imeException with a constructor that can take a Nameable as an argument. This exception supports all
the constructor forms of KemelException, but is implemented as a RuntimeException so that it does
not have to be declared.. In particular, it provides methods that take zero, one, or two Nameable objects
an optional cause (a Throwable) plus an optional detail message (a String). The arguments provided
are arranged in a default organization that is overridden in derived classes. The cause argument is used
to implement a form of exception chaining.

InvalidStateException. Some object or set of objects has a state that in theory is not permitted. Exam-
ple: a NamedObj has a null name. Or a topology has inconsistent or contradictory information in it,
e.g., an entity contains a port that has a different entity as its container. Our design should make it
impossible for this exception to ever occur, so occurrence is a bug. This exception is derived from the
Java RuntimeException.

InternalErrorException. An unexpected error other than an inconsistent state has been encountered.
Our design should make it impossible for this exception to ever occur, so occurrence is a bug. This
exception is derived from the Java RuntimeException.
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2.1 Concurrent Computation

In the kernel package, entities have no semantics. They are syntactic placeholders. In many of the
uses of Ptolemy II, entities are executable. The actor package provides basic support for executable
entities. It makes a minimal commitment to the semantics of these entities by avoiding specifying the
order in which actors execute (or even whether they execute sequentially or concurrently), and by
avoiding specifying the communication mechanism between actors. These properties are defined in the
domains.

In most uses, these executable entities conceptually (if not actually) execute concurrently. The goal
of the actor package is to provide a clean infrastructure for such concurrent execution that is neutral
about the model of computation. It is intended to support dataflow, discrete-event, synchronous-reac-
tive, continuous-time, communicating sequential processes, and process networks models of computa-
tion, at least. The detailed model of computation is then implemented in a set of derived classes called
a domain. Each domain is a separate package.

Ptolemy Il is an object-oriented application framework. Actors [1] extend the concept of objects to
concurrent computation. Actors encapsulate a thread of control and have interfaces for interacting with
other actors. They provide a framework for “open distributed object-oriented systems.” An actor can
create other actors, send messages, and modify its own local state.

Inspired by this model, we group a certain set of classes that support computation within entities in
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the actor package. Our use of the term “actors,” however, is somewhat broader, in that it does not
require an entity to be associated with a single thread of control, nor does it require the execution of
threads associated with entities to be fair. Some subclasses, in other packages, impose such require-
ments, as we will see, but not all.

Agha’s actors [1] can only send messages to acquaintances — actors whose addresses it was given
at creation time, or whose addresses it has received in a message, or actors it has created. Our equiva-
lent constraint is that an actor can only send a message to an actor if it has (or can obtain) a reference to
a receiver belonging to an input port of that actor. The usual mechanism for obtaining a reference to a
receiver uses the topology, probing for a port that it is connected to. Our relations, therefore, provide
explicit management of acquaintance associations. Derived classes may provide additional implicit
mechanisms. We define actor more loosely to refer to an entity that processes data that it receives
through its ports, or that creates and sends data to other entities through its ports.

The actor package provides templates for two key support functions. These templates support mes-
sage passing and the execution sequence (flow of control). They are templates in that no mechanism is
actually provided for message passing or flow of control, but rather base classes are defined so that
domains only need to override a few methods, and so that domains can interoperate.

2.2 Message Passing

The actor package provides templates for executable entities called actors that communicate with
one another via message passing. Messages are encapsulated in tokens (see the Data Package chapter).
Messages are sent and received via ports. IOPort is the key class supporting message transport, and is
shown in figure 2.2. An IOPort can only be connected to other IOPort instances, and only via IORela-
tions. The 10Relation class is also shown in figure 2.2. TypedIOPort and TypedlORelation are sub-
classes that manage type resolution. These subclasses are used much more often, in order to benefit
from the type system. This is described in detail in the Type System chapter.

An instance of IOPort can be an input, an output, or both. An input port (one that is capable of
recerving messages) contains one or more instances of objects that implement the Receiver interface.
Each of these receivers is capable of receiving messages from a distinct channel.

The type of receiver used depends on the communication protocol, which depends on the model of
computation. The actor package includes two receivers, Mailbox and QueueReceiver. These are
generic enough to be useful in several domains. The QueueReceiver class contains a FIFOQueue, the
capacity of which can be controlled. It also provides a mechanism for tracking the history of tokens
that are received by the receiver. The Mailbox class implements a FIFO (first in, first out) queue with
capacity equal to one.

2.2.1 Data Transport

Data transport is depicted in figure 2.1. The originating actor E1 has an output port P1, indicated in
the figure with an arrow in the direction of token flow. The destination actor E2 has an input port P2,
indicated in the figure with another arrow. El calls the send() method of P1 to send a token 7 to a
remote actor. The port obtains a reference to a remote receiver (via the IORelation) and calls the put()
method of the receiver, passing it the token. The destination actor retrieves the token by calling the
get() method of its input port, which in turn calls the get() method of the designated receiver.

Domains typically provide specialized receivers. These receivers override get() and put() to imple-
ment the communication protocol pertinent to that domain. A domain that uses asynchronous message
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passing, for example, can usually use the QueueReceiver shown in figure 2.2. A domain that uses syn-
chronous message passing (rendezvous) has to provide a new receiver class.

In figure 2.1 there is only a single channel, indexed 0. The “0” argument of the send() and get()
methods refer to this channel. A port can support more than one channel, however, as shown in figure
2.3. This can be represented by linking more than one relation to the port, or by linking a relation that
has a width greater than one. A port that supports this is called a multiport. The channels are indexed
0,...,N-1,where N is the number of channels. An actor distinguishes between channels using this
index in its send() and get() methods. By default, an IOPort is not a multiport, and thus supports only
one channel (or zero, if it is left unconnected). It is converted into a multiport by calling its setMulti-
port() method with a true argument. After conversion, it can support any number of channels.

Multiports are typically used by actors that communicate via an indeterminate number of channels.
For example, a “distributor” or “demultiplexor” actor might divide an input stream into a number of
output streams, where the number of output streams depends on the connections made to the actor. A
stream is a sequence of tokens sent over a channel.

An IORelation, by default, represents a single channel. By calling its setWidth() method, however,
it can be converted to a bus. A multiport may use a bus instead of multiple relations to distribute its
data, as shown in figure 2.4. The width of a relation is the number of channels supported by the rela-
tion. If the relation is not a bus, then its width is one.

The width of a port is the sum of the widths of the relations linked to it. In figure 2.4, both the
sending and receiving ports are multiports with width two. This is indicated by the “2” adjacent to each
port. Note that the width of a port could be zero, if there are no relations linked to a port (such a port is
said to be disconnected). Thus, a port may have width zero, even though a relation cannot. By conven-
tion, in Ptolemy II, if a token is sent from such a port, the token goes nowhere. Similarly, if a token is
sent via a relation that is not linked to any input ports, then the token goes nowhere. Such a relation is

receiver.put(t) get(0)
¢ N
R1

FIGURE 2.1. Message passing is mediated by the IOPort class. Its send() method obtains a reference to a
remote receiver, and calls the put() method of the receiver, passing it the token . The destination actor
retrieves the token by calling the get() method of its input port.

receiver.put(t1)

FIGURE 2.3. A port can support more than one channel, permitting an entity to send distinct data to distinct
destinations via the same port. This feature is typically used when the number of destinations varies in dif-
ferent instances of the source actor.
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+isMultiport() : boolean
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+send(channelindex : int, token : Token)
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-_token : Token
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FIGURE 2.2. Port and receiver classes that provide infrastructure for message passing under various com-
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said to be dangling.

A given channel may reach multiple ports, as shown in figure 2.5. This is represented by a relation
that is linked to multiple input ports. In the default implementation, in class IOPort, a reference to the
token is sent to all destinations. Note that tokens are assumed to be immutable, so the recipients cannot
modify the value. This is important because in most domains, it is not obvious in what order the recip-
ients will see the token.

The send() method takes a channel number argument. If the channel does not exist, the send()
method silently returns without sending the token anywhere. This makes it easier for model builders,
since they can simply leave ports unconnected if they are not interested in the output data.

IOPort provides a broadcast() method for convenience. This method sends a specified token to all
receivers linked to the port, regardless of the width of the port. If the width is zero, of course, the token
will not be sent anywhere.

2.2.2 Example

An elaborate example showing all of the above features is shown in figure 2.6. In that example, we
assume that links are constructed in top-to-bottom order. The arrows in the ports indicate the direction
of the flow of tokens, and thus specify whether the port is an input, an output, or both. Multiports are
indicated by adjacent numbers larger than one.

The top relation is a bus with width two, and the rest are not busses. The width of port P/ is four.
Its first two outputs (channels zero and one) go to P4 and to the first two inputs of P5. The third output
of P1 goes nowhere. The fourth becomes the third input of P35, the first input of P6, and the only input
of P8, which is both an input and an output port. Ports P2 and P8 send their outputs to the same set of
destinations, except that P8 does not send to itself. Port P3 has width zero, so its send() method returns

receiver.put(t0)
receiver.put(t1)

( get(0), get(1)
P2

E2

\> token tO, t1

FIGURE 2.4. A bus is an [ORelation that represents multiple channels. It is indicated by a relation with a
slash through it, and the number adjacent to the bus is the width of the bus.

get(0)token (clong
ofy

E3

FIGURE 2.5. Channels may reach multiple destinations. This is represented by relations linking mulup]e
nput ports to an output port.
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without sending the token anywhere. Port P6 has width two, but its second input channel has no output
ports connected to it, so calling get(1) will trigger an exception that indicates that there is no data. Port
P7 has width zero so calling get() with any argument will trigger an exception.

2.2.3 Transparent Ports

Recall that a port is transparent if its container is transparent (isOpaque() returns false). A Com-
positeActor is transparent unless it has a local director. Figure 2.7 shows an elaborate example where
busses, input, and output ports are combined with transparent ports. The transparent ports are filled in
white, and again arrows indicate the direction of token flow. The Jacl code to construct this example is
shown in figure 2.8.

FIGURE 2.7. An example showing busses combined with input, output, and transparent ports.
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By definition, a transparent port is an input if either
* it is connected on the inside to the outside of an input port, or
* itis connected on the inside to the inside of an output port.
That is, a transparent port is an input port if it can accept data (which it may then just pass through to a
transparent output port). Correspondingly, a transparent port is an output port if either
* itis connected on the inside to the outside of an output port, or
* itis connected on the inside to the inside of an input port.
Thus, assuming P1 is an output port and P7, P8, and P9 are input ports, then P2, P3, and P4 are both
input and output ports, while P5 and P6 are input ports only.

Two of the relations that are inside composite entities (R1 and R5) are labeled as busses with a star
(*) instead of a number. These are busses with unspecified width. The width is inferred from the topol-
ogy. This is done by checking the ports that this relation is linked to from the inside and setting the
width to the maximum of those port widths, minus the widths of other relations linked to those ports on
the inside. Each such port is allowed to have at most one inside relation with an unspecified width, or
an exception is thrown. If this inference yields a width of zero, then the width is defined to be one.
Thus, R1 will have width 4 and R5 will have width 3 in this example. The width of a transparent port is

set e0 [java::new ptclemy.actor.CompositeActor] $rl setWidth 0
$e0 setDirector Sdirector $r2 setWidth 3
$e0 setManager $manager $r4 setWidth 2

$r5 setWidth 0

set el [java::new ptolemy.actor.CompositeActor $e0 E1]

set e2 [java::new ptolemy.actor.AtomicActor $el E2) $pl link Sri1

set e3 [java::new ptolemy.actor.CompositeActor $e0 E3) $p2 link $ri1

set e4 [java::new ptolemy.actcr.AtomicActor $e3 E4) $p3 link $r1

set e5 [java::new ptolemy.actor.AtcmicActor $e3 ES] Sp4 link Sr1

set e€ [java::new ptolemy.actor.AtomicActer $e0 E§] $p2 link S$r2
$p5 link $r2

set pl [java::new ptolemy.actcr.IOPort $e2 P1 false true] $p2 link S$r3

set pl {}ava::new ptolemy.actor.IOPort S$el P2} $p5 link $r3

set p3 (java::new ptolemy.actor.IOPort $el P3| $p€ link Sr3

set p4 (java::new ptolemy.actor.IOPort $=l1 P{] $p3 link Sr4

set pS (java::new ptolemy.actor.IOFort $e3 P§) $p7 link Sr4

set pf [java::nsw ptolemyv.acztor.IOPort $el P6) $pt link SrS

set p7 [java::new ptclemy.actcr.IOPort S$e€ F7 true false) $p8 link $r5

set p8 [java::new ptolemy.actor.IOFcrt S$e4 P8 true false SpS link S$ré

set p9 [java::new ptolemy.acrtcr.IOPcrt $e5 P9 true false] Sp% link Sré¢
Sp¢ link Sr7

set rl [java::new ptolemy.actor.IORelaticn Sel F1) Sp% link Sr7

set r2 [java::new ptelemy.actcor.IORelatizn $eC R2)

set rl} [java::naw ptolemy.acter.IORelaticn $e0 R3)

set r4 [java::new ptolemy.actor.IORelaticn $e0 R4)

set r5 [java::new ptclemy.actor.IORelaticn $e3 R5]

set r¢ [java::new ptolemy.actor.IORelaticn $e3 Ré6)

set r7 [java::new ptclemy.actcr.IORelaticn $e2 R7)

Spl setMultiport true

Sp2 setMultiport true

Sp3 setMultiport true

$p4 setMultipert true

$p5 setMultipcrt true

$p7 setMultiport true

$p8 setMultiport true

$p9 setMultiport true

FIGURE 2.8. Tcl Blend code to construct the example in figure 2.7.
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the sum of the widths of the relations it is linked to on the outside (ust like an ordinary port). Thus, P4
has width 0, P3 has width 2, and P2 has width 4. Recall that a port can have width 0, but a relation can-
not have width less than one.

When data is sent from P1, four distinct channels can be used. All four will go through P2 and P35,
the first three will reach P8, two copies of the fourth will reach P9, the first two will go through P3 to
P7, and none will go through P4.

By default, an IORelation is not a bus, so its width is one. To turn it into a bus with unspecified
width, call setWidth() with a zero argument. Note that getWidth() will nonetheless never return zero (it
returns at least one). To find out whether setWidth() has been called with a zero argument, call
isWidthFixed() (see figure 2.2). If a bus with unspecified width is not linked on the inside to any trans-
parent ports, then its width is one. It is not allowed for a transparent port to have more than one bus
with unspecified width linked on the inside (an exception will be thrown on any attempt to construct
such a topology). Note further that a bus with unspecified width is still a bus, and so can only be linked
to multiports.

In general, bus widths inside and outside a transparent port need not agree. For example, if M <N
in figure 2.9, then first M channels from P1 reach P3, and the last N - M channels are dangling. If
M>N, then all N channels from P1 reach P3, but the last M—N channels at P3 are dangling.
Attempting to get a token from these channels will trigger an exception. Sending a token to these chan-
nels just results in loss of the token.

Note that data is not actually transported through the relations or transparent ports in Ptolemy II.
Instead, each output port caches a list of the destination receivers (in the form of the two-dimensional
array returned by getRemoteReceivers()), and sends data directly to them. The cache is invalidated
whenever the topology changes, and only at that point will the topology be traversed again. This sig-
nificantly improves the efficiency of data transport.

2.2.4 Data Transfer in Various Models of Computation

The receiver used by an input port determines the communication protocol. This is closely bound
to the model of computation. The IOPort class creates a new receiver when necessary by calling its
_newReceiver() protected method. That method delegates to the director returned by getDirector(),
calling its newReceiver() method (the Director class will be discussed in section 2.3 below). Thus, the
director controls the communication protocol, in addition to its primary function of determining the
flow of control. Here we discuss the receivers that are made available in the actor package. This should
not be viewed as an exhaustive set, but rather as a particularly useful set of receivers. These receivers
are shown in figure 2.2.

Mailbox Communication. The Director base class by default returns a simple receiver called a Mail-

FIGURE 2.9. Bus widths inside and outside a transparent port need not agree..
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box. A mailbox is a receiver that has capacity for a single token. It will throw an exception if it is
empty and get() is called, or it is full and put() is called. Thus, a subclass of Director that uses this
should schedule the calls to put() and get() so that these exceptions do not occur, or it should catch
these exceptions.

Asynchronous Message Passing. This is supported by the QueueReceiver class. A QueuecReceiver con-
tains an instance of FIFOQueue, from the actor.util package, which implements a first-in, first-out
queue. This is appropriate for all flavors of dataflow as well as Kahn process networks.

In the Kahn process networks model of computation [54], which is a generalization of dataflow [69],
each actor has its own thread of execution. The thread calling get() will stall if the corresponding queue
is empty. If the size of the queue is bounded, then the thread calling put() may stall if the queue is full.
This mechanism supports implementation of a strategy that ensures bounded queues whenever possi-
ble [103].

In the process networks model of computation, the history of tokens that traverse any connection is
determinate under certain simple conditions. With certain technical restrictions on the functionality of
the actors (they must implement monotonic functions under prefix ordering of sequences), our imple-
mentation ensures determinacy in that the history does not depend on the order in which the actors
carry out their computation. Thus, the history does not depend on the policies used by the thread
scheduler.

FIFOQueue is a support class that implements a first-in, first-out queue. It is part of the actor.util
package, shown in figure 2.10. This class has two specialized features that make it particularly useful
in this context. First, its capacity can be constrained or unconstrained. Second, it can record a finite or
infinite history, the sequence of objects previously removed from the queue. The history mechanism is
useful both to support tracing and debugging and to provide access to a finite buffer of previously con-
sumed tokens.

An example of an actor definition is shown in figure 2.11. This actor has a multiport output. It
reads successive input tokens from the input port and distributes them to the output channels. This
actor is written in a domain-polymorphic way, and can operate in any of a number of domains. If it is
used in the PN domain, then its input will have a QueueReceiver and the output will be connected to

public class Distributor extends TypedAtomicActor |

public TypedIOFort _input;
putlic TypedIOFcrt _output;

public Distributor (CompositeActor container, String name)
throws NameDuplicationExcepticn, IllegalActionException |
super (container, name);
_input = new TypedIOPort(this, "input", true, false);
_output = new TypedIOPcrt(this, "output®", false, trus);
_output.setMultiport (true);

}

pukblic void fire() throws IllegalActicnExcepticn |
fer (int i=0; i < _ocutput.getWidth(); i++) {
_cutput.send{i, _input.get(0));

)
}

FIGURE 2.11. An actor that distributes successive input tokens to a set of output channels.
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ports with instances QueueReceiver.

Rendezvous Communications. Rendezvous, or synchronous communication, requires that the origina-
tor of a token and the recipient of a token both be simultaneously ready for the data transfer. As with
process networks, the originator and the recipient are separate threads. The originating thread indicates
a willingness to rendezvous by calling send(), which in turn calls the put() method of the appropriate
receiver. The recipient indicates a willingness to rendezvous by calling get() on an input port, which in
turn calls get() of the designated receiver. Whichever thread does this first must stall until the other
thread is ready to complete the rendezvous.

This style of communication is implemented in the CSP domain. In the receiver in that domain, the
put() method suspends the calling thread if the get() method has not been called. The get() method sus-
pends the calling thread if the put() method has not been called. When the second of these two methods
is called, it wakes up the suspended thread and completes the data transfer. The actor shown in figure
2.11 works unchanged in the CSP domain, although its behavior is different in that input and output
actions involve rendezvous with another thread.

Nondeterministic transfers can be easily implemented using this mechanism. Suppose for example
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FIGURE 2.10. Static structure diagram for the actor.util package.
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that a recipient is willing to rendezvous with any of several originating threads. It could spawn a thread
for each. These threads should each call get(), which will suspend the thread until the originator is will-
ing to rendezvous. When one of the originating threads is willing to rendezvous with it, it will call
put(). The multiple recipient threads will all be awakened, but only one of them will detect that its ren-
dezvous has been enabled. That one will complete the rendezvous, and others will die. Thus, the first
originating thread to indicate willingness to rendezvous will be the one that will transfer data. Guarded
communication [7] can also be implemented.

Discrete-Event Communication. In the discrete-event model of computation, tokens that are trans-
ferred between actors have a time stamp, which specifies the order in which tokens should be pro-
cessed by the recipients. The order is chronological, by increasing time stamp. To implement this, a
discrete-event system will normally use a single, global, sorted queue rather than an instance of FIFO-
Queue in each input port. The kernel.util package, shown in figure 2.10, provides the CalendarQueue
class, which gives an efficient and flexible implementation of such a sorted queue.

2.2.5 Discussion of the Data Transfer Mechanism

This data transfer mechanism has a number of interesting features. First, note that the actual trans-
fer of data does not involve relations, so a model of computation could be defined that did not rely on
relations. For example, a global name server might be used to address recipient receivers. To construct
highly dynamic networks, such as wireless communication systems, it may be more intuitive to model
a system as an aggregation of unconnected actors with addresses. A name server would return a refer-
ence to a receiver given an address. This could be accomplished simply by overriding the getRemoteR-
eceivers() method of IOPort or TypedIOPort, or by providing an alternative method for getting
references to receivers. The subclass of IOPort would also have to ensure the creation of the appropri-
ate number of receivers. The base class relies on the width of the port to determine how many receivers
to create, and the width is zero if there are no relations linked.

Note further that the mechanism here supports bidirectional ports. An IOPort may return true to
both the isInput() and isOutput() methods.

2.3 Execution

The Executable interface, shown in figure 2.12, is implemented by the Director class, and is
extended by the Actor interface. An actor is an executable entity. There are two types of actors, Atom-
icActor, which extends ComponentEntity, and CompositeActor, which extends CompositeEntity. As
the names imply, an AtomicActor is a single entity, while a CompositeActor is an aggregation of
actors. Two further extensions implement a type system, TypedAtomicActor and TypedCompositeAc-
tor.

The Executable interface defines how an object can be invoked. There are eight methods. The
preinitialize() method is assumed to be invoked exactly once during the lifetime of an execution of a
model and before the type resolution (see the type system chapter), and the initialize() methods is
assumed to be invoked once after the type resolution. The initialize() method may be invoked again to
restart an execution, for example, in the *-chart model (see the FSM domain). The prefire(), fire(), and
postfire() methods will usually be invoked many times. The fire() method may be invoked several
times between invocations of prefire() and postfire(). The stopFire() method is invoked to request sus-
pension of firing. The wrapup() method will be invoked exactly once per execution, at the end of the
execution.
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Actor Package

The terminate() method is provided as a last-resort mechanism to interrupt execution based on an
external event. It is not called during the normal flow of execution. It should be used only to stop run-
away threads that do not respond to more usual mechanism for stopping an execution.

An iteration is defined to be one invocation of prefire(), any number of invocations of fire(), and
one invocation of postfire(). An execution is defined to be one invocation of preinitialize(), followed
by one invocation of initialize(), followed by any number of iterations, followed by one invocation of
wrapup(). The methods preinitialize(), initialize(), prefire(), fire(), postfire(), and wrapup() are called
the action methods. While, the action methods in the executable interface are executed in order during
the normal flow of an iteration, the terminate() method can be executed at any time, even during the
execution of the other methods.

The preinitialize() method of each actor gets invoked exactly once. Typical actions of the preini-
tialize() method include creating receivers and defining the types of the ports. Higher-order function
actors should construct their models in this method. The preinitialize() method cannot produce output
data since type resolution is typically not yet done. It also gets invoked prior to any static scheduling
that might occur in the domain, so it can change scheduling information.

The initialize() method of each actor gets invoked once after type resolution is done. It may be
invoked again to restart the execution of an actor. Typical actions of the initialize() method include cre-

ating and initializing private data members. An actor may produce output data and schedule events in
this method.

The prefire() method may be invoked multiple times during an execution, but only once per itera-
tion. The prefire() returns true to indicate that the actor is ready to fire. In other words, a return value of
true indicates “you can safely invoke my fire method,” while a false value from prefire means “My
preconditions for firing are not satisfied. Call prefire again later when conditions have change.” For
example, a dynamic dataflow actor might return false to indicate that not enough data is available on
the input ports for a meaningful firing to occur.

The fire() method may be invoked multiple times during an iteration. In most domains, this
method defines the computation performed by the actor. Some domains will invoke fire() repeatedly
until some convergence condition is reached. Thus, fire() should not change the state of the actor.
Instead, update the state in postfire().

In opaque composite actors, the fire() method is responsible for transferring data from the opaque
ports of the composite actor to the ports of the contained actors, calling the fire() method of the direc-
tor, and transferring data from the output ports of the composite actor to the ports of outside actors. See
section 2.3.4 below.

In some domains, the fire method initiates an open-ended computation. The stopFire() method
may be used to request that firing be ended and that the fire() method return as soon as practical.

The postfire() method will be invoked exactly once during an iteration, after all invocations of the
fire() method in that iteration. An actor may return false in postfire to request that the actor should not
be fired again. It has concluded its mission. However, a director may elect to continue to fire the actor
until the conclusion of its own iteration. Thus, the request may not be immediately honored.

The wrapup() method is invoked exactly once during the execution of a model, even if an excep-
tion causes premature termination of an execution. Typically, wrapup() is responsible for cleaning up
after execution has completed, and perhaps flushing output buffers before execution ends and killing
active threads.

The terminate() method may be called at any time during an execution, but is not necessarily
called at all. When terminate() is called, no more execution is important, and the actor should do every-
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thing in its power to stop execution right away. This method should be used as a last resort if all other
mechanisms for stopping an execution fail.

2.3.1 Director

A director govemns the execution of a composite entity. A manager governs the overall execution
of amodel. An example of the use of these classes is shown in figure 2.13. In that example, a top-level
entity, EO, has an instance of Director, D1, that serves the role of its local director. A local director is
responsible for execution of the components within the composite. It will perform any scheduling that
might be necessary, dispatch threads that need to be started, generate code that needs to be generated,
etc. In the example, D1 also serves as an executive director for E2. The executive director associated
with an actor is the director that is responsible for firing the actor.

A composite actor that is not at the top level may or may not have its own local director. If it has a
local director, then it defined to be opaque (isOpaque() returns true). In figure 2.13, E2 has a local
director and E3 does not. The contents of E3 are directly under the control of D1, as if the hierarchy
were flattened. By contrast, the contents of E2 are under the control of D2, which in turn is under the
control of D1. In the terminology of the previous generation, Ptolemy Classic, E2 was called a worm-
hole. In Ptolemy II, we simply call it a opaque composite actor. It will be explained in more detail
below in section 2.3.4.

We define the director (vs. local director or executive director) of an actor to be either its local
director (if it has one) or its executive director (if it does not). A composite actor that is not at the top
level has as its executive director the director of the container. Every executable actor has a director
except the top-level composite actor, and that director is what is returned by the getDirector() method
of the Actor interface (see figure 2.12).

When any action methed is called on an opaque composite actor, the composite actor will gener-
ally call the corresponding method in its local director. This interaction is crucial, since it is domain-
independent and allows for communication between different models of computation. When fire() is
called in the director, the director is free to invoke iterations in the contained topology until the stop-
ping condition for the model of computation is reached.

The postfire() method of a director returns false to stop its execution normally. It is the responsibil-
ity of the next director up in the hierarchy (or the manager if the director is at the top level) to conclude
the execution of this director by calling its wrapup() method.

D1: local director

FIGURE 2.13. Example application, showing a typical arrangement of actors, directors, and managers.
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The Director class provides a default implementation of an execution, although specific domains
may override this implementation. In order to ensure interoperability of domains, they should stick
fairly closely to the sequence.

Two common sequences of method calls between actors and directors are shown in figure 2.14 and
2.15. These differ in the shaded areas, which define the domain-specific sequencing of actor firings. In
figure 2.14, the fire() method of the director selects an actor, invokes its prefire() method, and if that
returns true, invokes its fire() method some number of times (domain dependent) followed by its post-
fire() method. In figure 2.15, the fire() method of the director invokes the prefire() method of all the
actors before invoking any of their fire() methods.

When a director is initialized, via its initialize() method, it invokes initialize() on all the actors in
the next level of the hierarchy, in the order in which these actors were created. The wrapup() method
works in a similar way, deeply traversing the hierarchy. In other words, calling initialize() on a com-
posite actor is guaranteed to initialize in all the objects contained within that actor. Similarly for wra-
pup().

The methods prefire() and postfire(), on the other hand, are not deeply traversing functions. Call-
ing prefire() on a director does not imply that the director call prefire() on all its actors. Some directors
may need to call prefire() on some or all contained actors before being able to return, but some direc-
tors may not need to call prefire() on any contained objects at all. A director may even implement
short-circuit evaluation, where it calls prefire() on only enough of the contained actors to determine its
own return value. Postfire() works similarly, except that it may only be called after at least one suc-
cessful call to fire().

The fire() method is where the bulk of work for a director occurs. When a director is fired, it has
complete control over execution, and may initiate whatever iterations of other actors are appropriate
for the model of computation that it implements. It is important to stress that once a director is fired,
outside objects do not have control over when the iteration will complete. The director may not iterate
any contained actors at all, or it may iterate the contained actors forever, and not stop until terminate()
is called. Of course, in order to promote interoperability, directors should define a finite execution that
they perform in the fire() method.

In case it is not practical for the fire() method to define a bounded computation, the stopFire()
method is provided. A director should respond when this method is called by returning from its fire()
method as soon as practical.

In some domains, the firing of a director corresponds exactly to the sequential firing of the con-
tained actors in a specific predetermined order. This ordering is known as a static schedule for the
actors. Some domains support this style of execution. There is also a family of domains where actors
are associated with threads.

2.3.2 Manager

While a director implements a model of computation, a manager controls the overall execution of
a model. The manager interacts with a single composite actor, known as a top level composite actor.
The Manager class is shown in figure 2.12. Execution of a model is implemented by three methods,
execute(), run() and startRun(). The startRun() method spawns a thread that calls run(), and then imme-
diately returns. The run() method calls execute(), but catches all exceptions and reports them to listen-
ers (if there are any) or to the standard output (if there are no listeners).

More fine grain control over the execution can be achieved by calling initialize(), iterate(), and
wrapup() on the manager directly. The execute() method, in fact, calls these, repeating the call to iter-
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ate() until it returns false. The iterate method invokes prefire(), fire() and postfire() on the top-level
composite actor, and returns false if the postfire() in the top-level composite actor returns false.

An execution can also be ended by calling terminate() or finish() on the manager. The terminate()
method triggers an immediate halt of execution, and should be used only if other more graceful meth-
ods for ending an execution fail. It will probably leave the model in an inconsistent state, since it works
by unceremoniously killing threads. The finish() method allows the system to continue until the end of
the current iteration in the top-level composite actor, and then invokes wrapup(). Finish() encourages
actors to end gracefully by calling their stopFire() method.

Execution may also be paused between top-level iterations by calling the pause() method. This
method sets a flag in the manager and calls stopFire() on the top-level composite actor. After each top-
level iteration, the manager checks the flag. If it has been set, then the manager will not start the next
top-level iteration until after resume() is called. In certain domains, such as the process networks
domain, there is not a very well defined concept of an iteration. Generally these domains do not rely on
repeated iteration firings by the manager. The call to stopFire() requests of these domains that they sus-
pend execution.

2.3.3 ExecutionListener

The ExecutionListener interface provides a mechanism for a manager to report events of interest to
a user interface. Generally a user interface will use the events to notify the user of the progress of exe-
cution of a system. A user interface can register one or more ExecutionListeners with a manager using
the method addExecutionListener() in the Manager class. When an event occurs, the appropriate
method will get called in all the registered listeners.

Two kinds of events are defined in the ExecutionListener interface. A listener is notified of the
completion of an execution by the executionFinished() method. The executionError() method indicates
that execution has ended with an error condition. The managerStateChanged() indicates to the listener
that the manager has changed state. The new state can be obtained by calling getState() on the man-
ager.

A default implementation of the ExecutionListener interface is provided in the StreamExecution-
Listener class. This class reports all events on the standard output.

2.3.4 Opaque Composite Actors

One of the key features of Ptolemy II is its ability to hierarchically mix models of computation in a
disciplined way. The way that it does this is to have actors that are composite (non-atomic) and
opaque. Such an actor was called a wormhole in the earlier generation of Ptolemy. Its ports are opaque
and its contents are not visible via methods like deepEntityList().

Recall that an instance of CompositeActor that is at the top level of the hierarchy must have a local
director in order to be executable. A CompositeActor at a lower level of the hierarchy may also have a
local director, in which case, it is opaque (isOpaque() returns true). It also has an executive director,
which is simply the director of its container. For a composite opaque actor, the local director and exec-
utive director need not follow the same model of computation. Hence hierarchical heterogeneity.

The ports of a composite opaque actor are opaque, but it is a composite (it can contain actors and
relations). This has a number of implications on execution. Consider the simple example shown in fig-
ure 2.16. Assume that both E0 and E2 have local directors (D1 and D2), so E2 is opaque. The ports of
E2 therefore are opaque, as indicated in the figure by their solid fill. Since its ports are opaque, when a
token is sent from the output port P1, it is deposited in P2, not P5. '
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In the execution sequences of figures 2.14 and 2.15, E2 is treated as an atomic actor by D1; i.e. D1
acts as an executive director to E2. Thus, the fire() method of D1 invokes the prefire(), fire(), and post-
fire() methods of E1, E2, and E3. The fire() method of E2 is responsible for transferring the token from
P2 to P5. It does this by delegating to its local director, invoking its transferlnputs() method. It then
invokes the fire() method of D2, which in turn invokes the prefire(), fire(), and postfire() methods of
E4.

During its fire() method, E2 will invoke the fire() method of D2, which typically will fire the actor
E4, which may send a token via P6. Again, since the ports of E2 are opaque, that token goes only as far
as P3. The fire() method of E2 is then responsible for transferring that token to P4. It does this by dele-
gating to its executive director, invoking its transferOutputs() method.

The CompositeActor class delegates transfer of its inputs to its local director, and transfer of its
outputs to its executive director. This is the correct organization, because in each case, the director
appropriate to the model of computation of the destination port is the one handling the transfer. It can
therefore handle it in a manner appropriate to the receiver in that port.

Note that the port P3 is an output, but it has to be capable of receiving data from the inside, as well
as sending data to the outside. Thus, despite being an output, it contains a receiver. Such a receiver is
called an inside receiver. The methods of IOPort offer only limited access to the inside receivers (only
via the getlnsideReceivers() method and getReceivers(relation), where relation is an inside linked
relation).

In general, a port may be both an input and an output. An opaque port of a composite opaque actor,
thus, must be capable of storing two distinct types of receivers, a set appropriate to the inside model of
computation, obtained from the local director, and a set appropriate to the outside model of computa-
tion, obtained from its executive director. Most methods that access receivers, such as hasToken() or
hasRoom(), refer only to the outside receivers. The use of the inside receivers is rather specialized,
only for handling composite opaque actors, so a more basic interface is sufficient.

2.4 Scheduler and Process Support

The actor package has two subpackages, actor.sched, which provides rudimentary support for
domains that use static schedulers to control the invocation of actors, and actor.process, which pro-
vides support for domains where actors are processes. The UML diagrams are shown in figure 2.17

M: Manager
D1: local director

2: local director

FIGURE 2.16. An example of an opaque composite actor. EO and E2 both have local directors, not necessar-
ily implementing the same model of computation.
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and figure 2.18.
2.4.1 Statically Scheduled Domains

The StaticSchedulingDirector class extends the Director base class to add a scheduler. The sched-
uler (an instance of the Scheduler class) creates an instance of the Schedule class which represents a
statically determined sequence of actor firings. The scheduler also caches the schedule as necessary
until it is invalidated by the director. This means that domains with a statically determined schedule
(such as CT and SDF) need only implement the action methods in the director and a scheduler with the
appropriate scheduling algorithm.

The Schedule base class contains a list of schedule elements, each with a repetitions factor that
determines the number of times that element will be repeated. Since a schedule itself is a schedule ele-
ment, schedules can be defined recursively. Another type of schedule element is a firing, which repre-
sents a firing of a single actor. An iterator over all firings contained by a schedule is returned by the

Director NamedOb)

StaticSchedulingDirector
; Scheduler
-_scheduler : Scheduler
+StaticSchedulingDirector() #_DEFAULT SCHEDULER NAME : Strin
+StaticSchedulingDirector(workspace : Workspace) +Scheduler()
+StaticSchedutingDirector(container : CompositeEntity, name : String) +Scheduler(ws : Workspace)
+getScheduler() : Scheduler +getSchedule() : Schedule
+invalidateSchedule() +isValid() : boolean
+isScheduleValid() : boolean +schedule() : Enumeration
+setScheduler(scheduler : Scheduler) +setValid(valid : boolean)
+setScheduleValid({valid : boolean) #_makeSchedulerOf(dir : StaticSchedulingDirector)
#_schedule() : Enumeration

ScheduleElemnent ilnvalirlstateExt:aptioﬂi
*D‘ H

throws

+ScheduleElement()
+actorlterator() : lterator
+finnglterator() : iterator

+getRepetitionsCounty() : int =
+setRepetitionsCount(count : int) NotSchedulableException

1.n -_unschedulableActors : Enumeration

+NotSchedulableException(detait : String)
1.1 +NotSchedulableException(obj : Nameable, detail : String)
+NotSchedulableException(obj1 : Nameable, obj2 : Nameable, detail : String)
Firing +NotSchedulableException(actors : Enumeration, detail : String)
Schedule +getUnschedulabteActors() : Enumeration
+hasUnschedulableActors() : boolean
+Firing()

+add(e : ScheduleElement) +Firing(a : Actor)

+add(index : int, e : ScheduleElement) +getActor() : Actor

+get(index : int) : ScheduleElement +setActor(a : Actor)

+iterator() : iterator
+remove(index : int)
+size() : int

FIGURE 2.17. UML static structure diagram for the actor.sched package.
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firinglterator() method on the schedule. In the iterator, the schedule is expanded recursively, with each
firing repeated the appropriate number of times.!

Director

A_l

ProcessDirector

#_notDone : boolean

+ProcessDirector()
+ProcessDirector(workspace : Workspace)

# actorBlocked(l : LinkedList)

$ actorBlocked(r : ProcessReceiver)

+_actorHasStopped()

t_actorUnBlocked(| : LinkedList)

#_actorUnBlocked(r : ProcessReceiver)
addNewThraad(thr : ProcessThtead)
}_areActorsDead!! d
#_areAllActorsStopped() : boolean
#_decreaseActiveCount()

#_getActiveActorsCount() : long

¢ getBlockedActorsCount() : long

|+ProcessDirector(container : CompositeEntity, name : String)

Branch
+getConsR 0 : P R
etProdReceiver() : Pi R
+isActive() : boolean
registerR “Blocked(r. Receiver)
gisterReceiverUnblocked(r : ProcessReceiver)
+setActive(b : boolean)
+ransferToken()

BranchController

creator

pepn
_getProcessThread(actor : Actor, director : ProcessDirector) : ProcessThread ﬁ::;né?a?;:::(':ﬁ%pom
L increaseActiveCount) +deactivateBranches()
A 0: +getBlockedReceivers() : LinkedList
A.| +getBranchList( : LinkedList
+getParent() : CompositeActor
+hasBranches() : boolean
CompositeP| Direct +isActive() : boolean
+isBlocked() : boclean
l+setActive() : boolean
+composttsProcessDtredor0 E_z hBlocked(r : P Receiver)
Director( : CompositeP! Director, name : String) A bl ’(" )
0(‘ iteP) Director{w : Work )
wreateanchController(pons lterator) _________________________
ller() : BranchC: i alnterfacen
+get0utputContro!!er0 BranchController Recevier
tBranchCi I
*stopOMputBranchControueto
_areActost, Blnckedo bool
_cuntrollerUnbbcked(c BranchComroller)
t_isinputControllerBlocked() : boolean
#_isOutputControllerBlocked() : boolean
teg:stelBIockedRcvtsthExecuhveo boolean
= dlock() : bool, «lnterfacen
_______________________________ ProcessReceiver
| I
Thread PtolemyThread t Actor 1 createe
< b ! +get(b : Branch)
b ! +isC. ctedToBoundary() : b
+runQ [ | +isConnectedToBoundaryinside() : boolean
ZE - Mo e ’ToB daryOutside() - bool
-nd‘ 0;'— K
? threadFor t ideBoundary() : b
*ISOutsnleBoundary() boolean
+isProducerReceiver() : boolean
ProcessThread +isReadBlocked() : boolean
NotifyThread [+isWriteBlocked() : boolean
+requestFinish()
Py Thread(actor : Actor, di M Director) +reset()
+NotifyThread(lock : Object) *getActor() : Actor +put(t : Token, b : Branch)
+NotifyThread(locks : LinkedList) +canceiStopThread()
+stopThread()
+wrapup()

FIGURE 2.18. UML static structure diagram for the actor.process package.

1. Note that creating an iterator does not require expanding the data structure of the schedule

into a list first.
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2.4.2 Process Domains

Many domains, such as CSP, PN and DDE, consist of independent processes that are communicat-
ing in some way. These domains are collectively termed process domains. The actor.process package
provides the following base classes that can be used to implement process domains.

ProcessThread. In a process domain, each actor represents an independently executing process. In
Ptolemy II, this is achieved by creating a separate Java thread for each actor [99][59]. Each of these
threads is an instance of ptolemy.actor.ProcessThread.

The thread for each actor is started in the prefire() method of the director. After starting, this thread
repeatedly calls the prefire(), fire(), and postfire() methods of its associated actor. This sequence con-
tinues until the actor’s postfire() method of returns false. The only way for an actor to terminate grace-
fully in PN is by returning from its fire() method and then returning false in its postfire() method. If an
actor finishes execution as above, then the thread calls the wrapup() method of the actor. Once this
method returns, the thread informs the director about the termination of this actor and finishes its own
execution. The actor will not be fired again unless the director creates and starts a new thread for the
actor.

ProcessReceiver. In the process domains, receivers represent the communication and synchronization
points between different threads. To facilitate creating these domains, receivers in process domains
should implement the ProcessReceiver interface. This interface provides extended information about
status of the receiver, and the threads that may be interacting with the receiver.

ProcessDirector and CompositeProcessDirector. These classes are base classes for directors in the
process-based domains. It provides some basic infrastructure for creating and managing threads. Most
importantly, it provides a strategy pattern for handling deadlock between threads. Subclasses usually
override methods in this class to handle deadlock in a domain-dependent fashion. In order to detect
deadlocks, this base class maintains a count of how many actors in the system are executing and how
many are blocked for some reason. This method of detecting deadlock is suggested in [58]. When no
threads are able to run, the director calls the _resolveDeadlock() method to attempt to resolve the dead-
lock.

The initialize() method of the process director creates the receivers in the input ports of the actors,
creates a thread for each actor and initializes these actors. It also initializes the count of active actors in
the model to the number of actors in the composite actor. The prefire() method starts up all the created
threads. This method returns true by default. The fire() method of a process director does not actually
fire any contained actors. Instead, each actor is iterated by its associated process thread. The fire
method simply blocks the calling thread until deadlock of the process threads occurs. In this case, the
calling thread is unblocked and the fire method returns. The postfire() method simply returns true if the
director was able to resolve the deadlock at the end of the fire method, or false otherwise. Returning
true implies that if some new data is provided to the composite actor it can resume execution. Return-
ing false implies that this composite actor will not be fired again. In that case, the executive director or
the manager will call the wrapup() method of the top-level composite actor, which in tumn calls the
wrapup() method of the director. This causes the director to terminate the execution of the composite
actor.

Introduction to Java Threads. The process domains, like the rest of Ptolemy 11, are written entirely in
Java and take advantage of the features built into the language. In particular, they rely heavily on
threads and on monitors for controlling the interaction between threads. In any multi-threaded environ-
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ment, care has to be taken to ensure that the threads do not interact in unintended ways, and that the
model does not deadlock. Note that deadlock in this sense is a bug in the modeling environment, which
is different from the deadlock talked about before which may or may not be a bug in the model being
executed.

A monitor is a mechanism for ensuring mutual exclusion between threads. In particular if a thread
has a particular monitor, acquired in order to execute some code, then no other thread can simulta-
neously have that monitor. If another thread tries to acquire that monitor, it stalls until the monitor
becomes available. A monitor is also called a Jock, and one is associated with every object in Java.

Code that is associated with a lock is defined by the synchronized keyword. This keyword can
either be in the signature of a method, in which case the entire method body is associated with that
lock, or it can be used in the body of a method using the syntax:

synchronized(object) {
.. //Part of code that requires exclusive lock on object

)

This causes the code inside the brackets to be associated with the lock belonging to the specified
object. In either case, when a thread tries to execute code controlled by a lock, it must either acquire
the lock or stall until the lock becomes available. If a thread stalls when it already has some locks,
those locks are not released, so any other threads waiting on those locks cannot proceed. This can lead
to deadlock when all threads are stalled waiting to acquire some lock they need.

A thread can voluntarily relinquish a lock when stalling by calling object.wait() where object is the
object to relinquish and wait on. This causes the lock to become available to other threads. A thread
can also wake up any threads waiting on a lock associated with an object by calling notify All() on the
object. Note that to issue a notifyAll() on an object it is necessary to own the lock associated with that
object first. By careful use of these methods it is possible to ensure that threads only interact in
intended ways and that deadlock does not occur.

Approaches to locking used in the process domains. One of the key coding patterns followed is to
wrap each wait() call in a while loop that checks some flag. Only when the flag is set to false can the
thread proceed beyond that point. Thus the code will often look like

synchronized(object) {

while (flag) {
object.wait();
}
}

The advantage to this is that it is not necessary to worry about what other thread issued the notify All()
on the lock; the thread can only continue when the notifyAll() is issued and the flag has been set to
false.

One place that contention between threads often occurs is when a thread tries to acquire another
lock only to issue a notifyAll() on it. To reduce the contention, it often easiest if the notifyAll() is
issued from a new thread which has no locks that could be held if it stalls. This is often used in the CSP
domain to wake up any threads waiting on receivers after a pause or when terminating the model. The

Heterogeneous Concurrent Modeling and Design 49



Actor Package

ptolemy.actor.process.NotifyThread class can be used for this purpose. This class takes
a list of objects in a linked list, or a single object, and issues a notifyAll() on each of the objects from
within a new thread.

Synchronization Hierarchy. Previously we have discussed how model deadlock is resolved in process
domains. Separate from these notions is a different kind of deadlock that can occur in a modeling envi-
ronment if the environment is not designed properly. This notion of deadlock can occur if a system is
not thread safe. Given the extensive use of Java threads throughout Ptolemy II, great care has been
taken to ensure thread safety; we want no bugs to exist that might lead to deadlock based on the struc-
ture of the Ptolemy II modeling environment. Ptolemy II uses monitors to guarantee thread safety. A
monitor is a method for ensuring mutual exclusion between threads that both have access to a given
portion of code. To ensure mutual exclusion, threads must acquire a monitor (or Jock) in order to
access a given portion of code. While a thread owns a lock, no other threads can access the correspond-
ing code.

There are several objects that serve as locks in Ptolemy II. In the process domains, there are four
primary objects upon which locking occurs: Workspace, ProcessReceiver, ProcessDirector and Atomi-
cActor. The danger of having multiple locks is that separate threads can acquire the locks in competing
orders and this can lead to deadlock. A simple illustration is shown in figure 2.19. Assume that both
lock 4 and lock B are necessary to perform a given set of operations and that both thread 1 and thread
2 want to perform the operations. If thread 1 acquires A and then attempts to acquire B while thread 2
does the reverse, then deadlock can occur.

There are several ways to avoid the above problem. One technique is to combine locks so that
large sets of operations become atomic. Unfortunately this approach is in direct conflict with the whole
purpose behind multi-threading. As larger and larger sets of operations utilize a single lock, the limit of
the corresponding concurrent program is a sequential program!

Another approach is to adhere to a hierarchy of locks. A hierarchy of locks is an agreed upon order
in which locks are acquired. In the above case, it may be enforced that lock 4 is always acquired before
lock B. A hierarchy of locks will guarantee thread safety [59].

The process domains have an unenforced hierarchy of locks. It is strongly suggested that users of
Ptolemy II process domains adhere to this suggested locking hierarchy. The hierarchy specifies that
locks be acquired in the following order:

Workspace @———> ProcessReceiver —> ProcessDirector _— AtomicActor

The way to apply this rule is to prevent synchronized code in any of the above objects from making a
call to code that is to the left of the object in question.

Thread 1 w
OLock A
OLock B

k Thread 2

FIGURE 2.19. Deadlock Due to Unordered Locking.
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There is one further rule that implementors of process domains should be aware of. A thread
should give up all the read permissions on the workspace before calling the wait() method on the
receiver object. This commonly happens in the get() and put() methods of process receivers, which
implement the synchronization between threads. We require this because of the explicit modeling of
mutual exclusion between the read and write activities on the workspace. If a thread holds read permis-
sion on the workspace and suspends while a second thread requires a write access on the workspace
before performing the action that the first thread is waiting for, a deadlock results. Furthermore, a
thread must also regain those read accesses after returning from the call to the wait() method. For this a
wait(Object object) method is provided in the class Workspace that releases read accesses on the work-
space, calls wait() on the argument object, and regains read access on the workspace before returning.
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3.1 Introduction

The data package provides data encapsulation, polymorphism, parameter handling, an expression
language, and a type system. Figure 3.1 shows the key classes in the main package (subpackages will
be discussed later).

3.2 Data Encapsulation

The Token class and its derived classes encapsulate application data. Tokens can be transported via
message passing between Ptolemy II objects, and can be used to parameterize Ptolemy II actors.
Encapsulating data in this way provides a standard interface so that data can be handled uniformly
regardless of its detailed structure. Such encapsulation allows for a great degree of extensibility, per-
mitting developers to extend the library of data types that Ptolemy 1I can handle. It also permits a user
interface to interact with application data without detailed prior knowledge of the structure of the data.

Token classes are provided for encapsulating many different types of data, such as integers
(IntToken), double precision floating point numbers (DoubleToken), and complex numbers (Complex-
Token). A special Token subclass (EventToken) exists for representing the presence of a “pure event”
that encapsulates no data. Tokens can encapsulate data structures of arbitrary size. All data tokens
share several properties, including immutability, type-polymorphic operations, and the possibility for
automatic type conversions. These properties will be described in later sections.
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FIGURE 3.1. Static Structure Diagram (Class Diagram) for the classes in the data package.
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3.2.1 Matrix data types

The MatrixToken base class provides basic structure for two-dimensional arrays of data. Various
derived classes encapsulate data of different types, such as integers, and complex numbers. Standard
matrix-matrix and scalar-matrix operations are defined.

3.2.2 Array and Record data types

An ArrayToken is a token that contains an array of tokens. All the element tokens must have the
same type, but that type is arbitrary. For instance, it is possible to constructs arrays of arrays of any
type of token. The ArrayToken class differs from the various MatrixToken classes in that MatrixTo-
kens contain only be constructed for primitive data, such as int or double, while an array can be con-
structed for arbitrary token types. In other words, matrix tokens are specialized for storing two
dimensional structures of primitive data, while array tokens offer more flexibility in type specifica-
tions.

A RecordToken contains a set of labeled values, and operates similarly to struct in the C lan-
guage. The values can be arbitrary tokens and are not required to have the same type.

3.2.3 Fixed Point Data Type

The FixToken class encapsulates fixed point data. The UML diagram showing classes involved in
the definition of the FixPoint data type is shown in Figure 3.2. The FixToken class encapsulates an
instance of the FixPoint class in the math package. The underlying FixPoint class is implemented using
Java’s Biglnteger class to represent fixed point values. The advantage of using the Biglnteger package
is that it makes this FixPoint implementation truly platform independent and furthermore, it doesn’t
put any restrictions on the maximal number of bits allowed to represent a value.

The precision of a FixPoint data type is represented by the Precision class. This class does the
parsing and validation of the various specification styles we want to support. It stores a precision into
two separate integers. One number represents the number of integer bits, and the other number repre-
sents the number of fractional bits. For convenience, the precision of fixed point data can be specified
in two different ways:

(m/n): The total precision of the output is m bits, with the integer part having n bits. The fractional

part thus has m — » bits.

(m.n): The total precision of the output is # + m bits, with the integer part having m bits, and the
fractional part having » bits.

The Quantization class represents various quantization techniques. Creating a FixPoint value
requires specifying a double value and an instance of the Quantization class. For convenience, static
methods are provided in the Quantizer class that create FixPoint instances without referencing a Quan-
tization explicitly. During conversion, the handling of overflow and underflow is handled by specify-
ing instances of the Overflow class.

The convertToDouble() method in the FixToken class converts a fixed point value into a double
representation. Note that the getDouble() method defined by Token is not used since conversion from a
FixPoint to a double is not, in general, a lossless conversion and is hence not allowed automatically.
For details about how to represent Fixed Point numbers in the expression language, see volume 1, the
Expressions chapter.
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FIGURE 3.2. Organization of the FixPoint Data Type.
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3.2.4 Function Closures

The FunctionToken class encapsulates functions that can be evaluated. These function closures can
be passed as messages just like any other tokens. When a function closure is created, all identifiers that
are not arguments to the function are evaluated. The arguments to the function, however are only eval-
uated when the function is applied. For information on how functions closures can be represented in
the expression language, see volume 1.

3.3 Immutability

Tokens in Ptolemy II are, in general, immutable. This means that a token’s value cannot be
changed after the token is constructed. The value of a token must be specified by constructor argu-
ments, and there is no other mechanism for setting the value. If a token encapsulating another value is
required, a new instance of Token must be constructed.

There are several reasons for making tokens immutable.

*  First, when a token is sent to several receivers, we want to be sure that all receivers get the same
data. Each receiver is sent a reference to the same token. If the Token were not immutable, then it
would be necessary to clone the token for all receivers after the first one.

* Second, since a token is passed between two actors, they may both have a reference to the token. If
the token were mutable, then the token would represent shared state of the two actors, requiring
synchronization and limiting the ability to represent distributed computation. Immutable tokens
passed between actors ensures that the concurrency of actors is determined solely by a model of
computation.

*  Third, we use tokens to parameterize actors, and parameters often have mutual dependencies. That
is, the value of a parameter may depend on the value of other parameters. The value of a parameter
is represented by an instance of Token. If that token were allowed to change value without notify-
ing the parameter, then the parameter would not be able to notify other parameters that depend on
its value. Thus, a mutable token would have to implement a publish-and-subscribe mechanism so
that parameters could subscribe and thus be notified of any changes. By making tokens immutable,
we greatly simplify the design.

* Finally, having our Tokens immutable makes them similar in concept to the data wrappers in Java,
like Double, Integer, etc., which are also immutable.

In most cases, the immutability of tokens is enforced by the design of the Token subclasses. One
exception is the ObjectToken class. An ObjectToken contains a reference to an arbitrary Java object
created by the user, and a reference to this object can be retrieve through the getValue() method. Since
the user may modify the object after the token is constructed, the immutability of an ObjectToken is
difficult to ensure. Although it could be possible to clone the object in the ObjectToken constructor and
return another clone in the getValue() method, this would require the object to be cloneable, severely
limiting the use of the ObjectToken. In addition, since the default implementation of clone() only
makes a shallow copy, this approach is not able to enforce immutability on all cloneable objects. Clon-
ing a large object could be prohibitively expensive. For these reasons, the ObjectToken does not
attempt to enforce immutability, but rather relies on the cooperation from the user. Violating this con-
vention could lead to unintended non-determinism.

For matrix tokens, enforced immutability requires the contained matrix (Java array) to be copied
when the token is constructed and when the matrix is returned in response to queries such as intMa-
trix(), doubleMatrix(), etc. Since the cost of copying large arrays is non-trivial, the user should not
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make more queries than necessary. For optimization, some matrix token classes have a constructor that
takes a flag, which specifies whether the given array needs to be copied or not. The getElementAt()
method can be used to read the contents of the matrix without copying the internal array.

3.4 Polymorphism

3.4.1 Polymorphic Arithmetic Operators

One of the goals of the data package is to support polymorphic operations between tokens. For
this, the base Token class defines methods for primitive arithmetic operations, which are add(), multi-
ply(), subtract(), divide(), modulo() and equals(). Derived classes override these methods to provide
class specific operation where appropriate. The objective here is to be able to say, for example,

a.add(b)

where a and b are arbitrary tokens. If the operation a + b makes sense for the particular tokens, then
the operation is carried out and a token of the appropriate type is returned. If the operation does not
make sense, then an exception is thrown. Consider the following example

IntToken a = new IntToken(5);
DoubleToken b = new DoubleToken(2.2);
StringToken c = new StringToken(“hello”);

then
a.add (b)
gives a new DoubleToken with value 7.2,
a.add(c)
gives a new StringToken with value “5Hello™, and
a.modulo(c)
throws an exception. Thus in effect we have overloaded the operators +, -, *, /. %, and ==,

It is not always immediately obvious what is the correct implementation of an operation and what
the return type should be. For example, the result of adding an integer token to a double-precision
floating-point token should probably be a double, not an integer. The mechanism for making such
decisions depends on a type hierarchy that is defined separately from the class hierarchy. This type
hierarchy is explained below.

The token classes also implement the methods zero() and one() which return the additive and mul-
tiplicative identities respectively. These methods are overridden so that each token type returns a token
of its type with the appropriate value. For matrix tokens, zero() returns a zero matrix whose dimension
is the same as the matrix of the token where this method is called; and one() returns the left identity,
i.e., it returns an identity matrix whose dimension is the same as the number of rows of the matrix of
the token. Another method oneRight() is also provided in numerical matrix tokens, which returns the
right identity, i.e., the dimension is the same as the number of columns of the matrix of the token.

Since data is transferred between entities using Tokens, it is straightforward to write polymorphic
actors that receive tokens on their inputs, perform one or more of the overloaded operations and output
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the result. For example an add actor that looks like this:

might contain code like: .

Token inputl, input2, output;

// read Tokens from the input channels into inputl and input2 variables
output = inputl.add(input2);

// send the output Token to the output channel.

We call such actors data polymorphic to contrast them from domain polymorphic actors, which are
actors that can operate in multiple domains. Of course, an actor may be both data and domain polymor-
phic.

3.4.2 Automatic Type Conversion

For the above arithmetic operations, if the two tokens being operated on have different types, type
conversion is needed. Generally speaking, Ptolemy II automatically performs conversions that do not
lose numerical precision. Other conversion must be explicitly represented by the user. The admissible
automatic type conversions between different token types are modeled as a partially ordered set called
the type lattice, shown in figure 3.3. In that diagram, type 4 is greater than type B if there is a path
upwards from B to 4. Thus, ComplexMatrix is greater than Int. Type 4 is less than type B if there is a
path downwards from B to 4. Thus, Int is less than ComplexMatrix. Otherwise, types A and B are
incomparable. Complex and Long, for example, are incomparable. In the type lattice, a type can be
automatically converted to any type greater than it.

This hierarchy is realized by the TypeLattice class in the data.type subpackage. Each node in the
lattice is an instance of the Type interface. The TypeLattice class provides methods to compare two
token types.

Two of the types, Numerical and Scalar, are abstract. They cannot be instantiated. This is indicated
in the type lattice by italics.

Type conversion is done by the convert() method in type classes. This method converts the argu-
ment into a token with the same type. For example, Base Type.DoubleType.convert(Token token) con-
verts the specified token into an instance of DoubleToken. The convert() method can convert any token
immediately below it in the type hierarchy into an instance of its own class. If the argument is higher in
the type hierarchy, or is incomparable with its own class, the convert() method throws an exception. If
the argument to convert() already has the correct type, it is returned without any change. Many of the
simpler token classes also provide a static convert() method that can be used more simply than the con-
vert() method of the corresponding type.

Most implementations of the add(), subtract(), multiply(), divide(), modulo(), and equals() meth-
ods require that the type of the argument and the implementing class be comparable in the type hierar-
chy. If this condition is not met, these methods will throw an exception. If the type of the argument is
lower than the type of the implementing class, then the argument is usually converted to the type of the
implementing class before the operation is carried out. One exception is the implementation of these
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methods for matrix tokens. To allow matrices to be multiplied and divided by scalars, the normal con-
version is not performed. The MatrixToken base class deals specially with scalar-matrix operations.

To allow this, the implementation of most operations is somewhat more complicated if the type of
the method argument is higher than the implementing class. In this case, we assume the operation is
implemented in the class that has the higher type (the matrix token in the above example). Since token
operations need not be commutative, for example, "Hello" + "world" is not the same as "world"
+ "Hello", and 3-2 is not the same as 2-3, the implementation of arithmetic operations cannot simply
call the same method on the class of the argument. Instead, a separate set of methods is provided,
which perform token operations in the reverse order. These methods are addReverse(), subtractRe-
verse(), multiplyReverse(), divideReverse(), and moduloReverse(). The equality check is always com-
mutative so no equalsReverse() is needed. Under this setup, a.add(b) means a+b, and a.addReverse(b)
means b+a, where a and b are both tokens. If, for example, when a.add(b) is invoked and the type of b
is higher than a, the add() method of a will automatically call b.addReverse(a) to carry out the addi-
tion.

For scalar and matrix tokens, methods are also provided to convert the content of the token into
another numeric type. In the ScalarToken base class, these methods are intValue(), longValue(), doubl-
eValue(), fixValue(), and complexValue(). In the MatrixToken base class, the methods are intMatrix(),

General

String

Matrix

Numerical

BooleanMatrix F ixMﬁ thatrix ComplexMatrix

DoubleMdtrix

Object

Array  Record

IntMatrix

Boolean Scalar
/ Complex
Fix Long / Double

Int
I,
UnsignedByte.
/

UNKNOWN
FIGURE 3.3. The type lattice.
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longMatrix(), doubleMatrix(), fixMatrix(), and complexMatrix(). The default implementation in these
two base classes simply throws an exception. Derived classes override these methods according to the
automatic type conversion relation of the type lattice. For example, the IntToken class overrides all the
methods defined in ScalarToken, but the DoubleToken class does not override the intValue() method,
since automatic conversion is not allowed from a double to an integer.

3.5 Variables and Parameters

In Ptolemy II, any instance of NamedObj can have attributes, which are instances of the Attribute
class. A variable is an attribute that contains a token. Its value can be specified by an expression that
can refer to other variables. A parameter, implemented by the Parameter class, is in most ways func-
tionally identical to a variable, but also appears modifiable from the user interface. See figure 3.4 and
figure 3.5. The presence of these two separate classes allows variables to exist which are internal to an
actor, and not visible to an end user. For the rest of this section we consider parameters and variables to
be largely interchangeable.

3.5.1 Values

The value of a variable can be specified by a token passed to a constructor, a token set using the
setToken() method, or an expression set using the setExpression() method.

When the value of a variable is set by setExpression(), the expression is not actually evaluated
until you call getToken() or getType(). This is important, because it implies that a set of interrelated
expressions can be specified in any order. Consider for example the sequence:

Variable v3 = new Variable(container, "v3");
Variable v2 = new Variable(container, "v2");
Variable vl = new Variable(container, "v1"):;
v3.setExpression("vl + v2");
v2.setExpression("1.0");
vl.setExpression("2.0");

v3.getToken ()}

Notice that the expression for v3 cannot be evaluated when it is set because v2 and v1 do not yet have
values. But there is no problem because the expression is not evaluated until getToken() is called.
Obviously, an expression can only reference variables that are added to the scope of this variable
before the expression is evaluated (i.e., before getToken() is called). Otherwise, getToken() will throw
an exception. By default, all variables contained by the same container or any container above in the
hierarchy are in the scope of this variable. Thus, in the example above, all three variables are in each
other's scope because they belong to the same container. This is why the expression "v1 + v2" can be
evaluated. If two containers above in the hierarchy contain the same variable, then the one lowest in
the hierarchy will shadow the one that is higher. That is, the lower one will be used to evaluate the
expression,

3.5.2 Types

Ptolemy 1, in contrast to Ptolemy Classic, does not have a plethora of type-specific parameter
classes. Instead, a parameter has a type that reflects the token it contains. The allowable types of a
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«Interface»
Attribute ptolemy.kernel.util,ValueListener: _I—

«Interface»
ptolemy.kernel.util.Settable

+valueChanged(settable : Settable)

A\ Q

«Interface»
ptolemy.data.type. Typeable

+getType() : Type

+getTypeTerm() : InequalityTerm

+validate()

+EXPERT : Settable. Visibility

+FULL ; Settable,Visibility

+NONE : Settable Visibility
+addValueListener(l : ValueListener)
+getExpression() : String

+getVisibility() : Settable.Visibility
+removeValuelistener(l : ValueListener)
+setExpression(expression : String)
+setVisibility (visibility : Settable. Visibiity)

+isTypeAcceptable() : boolean
+setTypeAtLeast(lesser : Typeable)
+setTypeAtLeast{typeTerm : InequalityTerm)
+setTypeAtMostitype : Type)
+setTypoeEquals(type : Type)
+setTypeSameAs(equal : Typeable)
+lypeConstraintList() : List

&

[

Variable

-_currentExpression : String

-_parser : PtParser

-_token : Token

+Variable()

+Variable(workspace : Workspace)
+Variable(container : NamedObj, name : String)
+Variable(container : NamedObj, name : String, token : Token)
+addToScope(variables : Enumeration)
+addToScope(var : Variable)

+getScope() : List

+getToken() : Token

uses to parse PtParser
1.1 0.1
contained
Token
0.1 1.1

+isknown() : boolean

+isLazy() : boolean

+propagate()

+removeFromScope(variables : Enumeration)
+removeFromScope(var : Variable)

+reset()

+setLazy(lazy : boolean)

+setToken(token : Token)
+setUnknown(unknown : boolean)

+validate() .
#_addScopeDependent(var : Variable)
#_addValueDependent(Variable : var)
#_isLegallnScope(var : Variable)
#_notifyValueListeners()

Parameter

+Parameter()

+Parameter(workspace : Workspace)

+Parameter(container : NamedObj, name : String)
+Parameter(container : NamedObj, name : String, token : Token)

FIGURE 3.4. Static structure diagram for the Variable and Parameter classes in the data.expr package.
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PtParser

-_classasSearched : List

+PtParser()

+PtParser(stream : InputStream)
+PtParser(tm : PtParserTokenManager)
{+PtParser(stream : Reader)
[+PtParser(owner : Variable)
+arrayConstruct()
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+bitwiseOr(
+disable_tracing()
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+generateParseTree(stringln : String, scope : NamedList) : ASTPtRootNode H
+generateParseTree(stringIn : String, scope : ParserScope) : AST! PtRootNodeé_;
+getNextToken() : Token H
+getRegisteredClasses() : List

+getScope() : NamedList

+getToken(index : int) : Token
+getUndefinedList(expression : String) : LinkedList
+ogicalAnd()

[+logicalEquals()

+logicalOrQ

[+matrixConstruct()

+primaryElement()

+recordConstruct()

+registerConsta ; String, value : Obj
+registerFunctionClass(newClassName : String)
[+Relnit{stream : InputStream)

Registered
Classes

Generated from PtParser.jjt
using JJTree and JavaCC

UtilityFunctions

0 : ParseExcepti

FixPointFunctions|

ParseTreeEvaluator) ParserScope

b

+Relnit{tm : PtParserTokenManager)
+Relnit{stream : Reader) CachedMethod ExplicitScope
{+relational()
+start() : ASTPtRootNode
+sum()
+term()
[tunary(
1.1 ainterfacen
» > Node
ASTPtRootNode JAJdCHd(chid - Node, index - inD)
+jjtClose()

children : ArrayList
childTokens : Token()
id :int

isConstant : boolean

+jjtGetChild(index : int) : Node
+jjtiGetNumChildren() : int
+jiGelParent() : Node

he root node is the root of the parse

ree, and is also the base class for all Generated by

JavaCC

g . +jOpen()
/_lexicalTokens : List ~ [Other nede types. +jjtSetParent(parent : Node)
#_parent : Node
¢_parser : PtParser
¢_ptToken : ptolemy.data. Token
+ASTPtRootNode(p : PtParser, i : int) Constants ConcreteMatrixToken ConcreteScalarToken
[+ASTPtRootNodei : int)
[+displayParseTree(prefix : String)
|+evaluateParseTree() : ptolemy.data. Token|
i#_resoNeNode() : ptolemy.data. Token T ]
[ | | 1 1 i 11 1 Il 1
ASTPtUnaryNode | | ASTPtSumNode [HASTPtLagicalNode[—-{ASTPtBitwiseNode| [ASTPtFunctionallfNode| [ASTPtProductNode| JASTPIRelationalNod
[
IASTPtAmayConstructNode|
[ASTPtMatrixConstructNode| |ASTPtMethodCaliNode| | ASTPtFunctionNode | | ASTPtLeafNode
ASTPtRecordConstructNede| [F.nRows: int #_methodName : String | # funcName : String | |# var : Variable
#_nColumns : int #_isArrayRef : boolean

FIGURE 3.5. Static structure diagram for the parser classes in the data.expr package
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param:: :er or variable can also be constrained using the following mechanisms:

*  You can require the variable to have a specific type. Use the setTypeEquals() method.

*  You can require the type to be at most some particular type in the type hierarchy (see the Type Sys-
tem chapter to see what this means).

*  You can constrain the type to be the same as that of some other object that implements the Type-
able interface.

*  You can constrain the type to be at least that of some other object that implements the Typeable
interface.

Except for the first type constraint, these are not checked by the Variable class. They must be checked

by a type resolution algorithm, which is executed before the model runs and after parameter values
change.

The type of the variable can be specified in a number of ways, all of which require the type to be
consistent with the specified constraints (or an exception will be thrown):

* Itcan be set directly by a call to setTypeEquals(). If this call occurs after the variable has a value,
then the specified type must be compatible with the value. Otherwise, an exception will be thrown.
Type resolution will not change the type set through setTypeEquals() unless the argument of that
call is null. If this method is not called, or called with a null argument, type resolution will resolve
the variable type according to all the type constraints. Note that when calling setTypeEquals() with
a non-null argument while the variable already contains a non-null token, the argument must be a
type no less than the type of the contained token. To set type of the variable lower than the type of
the currently contained token, setToken() must be called with a null argument before setType-
Equals().

*  Setting the value of the variable to a non-null token constrains the variable type to be no less than
the type of the token. This constraint will be used in type resolution, together with other con-
straints.

*  The type is also constrained when an expression is evaluated. The variable type must be no less
than the type of the token the expression is evaluated to.

*  Ifthe variable does not yet have a value, then the type of a variable may be determined by type res-
olution. In this case, a set of type constraints is derived from the expression of the variable (which

presumably has not yet been evaluated, or the type would be already determined). Additional type
constraints can be added by calls to the setTypeAtLeast() and setTypeSameAs() methods.

Subject to specified constraints, the type of a variable can be changed at any time. Some of the type
constraints, however, are not verified until type resolution is done. If type resolution is not done, then
these constraints are not enforced. Type resolution is normally done by the Manager that executes a
model.
The type of the variable may change when setToken() or setExpression() is called.
* If no expression, token, or type has been specified for the variable, then the type becomes that of
the current value being set.
 Ifthe variable already has a type, and the value can be converted losslessly into a token of that
type, then the type is left unchanged.

* If the variable already has a type, and the value cannot be converted losslessly into a token of that
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type, then the type is changed to that of the current value being set.

If the type of a variable is changed after having once been set, the container is notified of this by call-
ing its attributeTypeChanged() method. If the container does not allow type changes, it should throw
an exception in this method. If the value is changed after having once been set, then the container is
notified of this by calling its attributeChanged() method. If the new value is unacceptable to the con-
tainer, it should throw an exception. The old value will be restored.

The token returned by getToken() is always of the type given by the getType() method. This is not
necessarily the same as the type of the token that was inserted via setToken(). It might be a distinct
type if the contained token can be converted losslessly into one of the type given by getType(). In rare
circumstances, you may need to directly access the contained token without any conversion occurring.
To do this, use getContainedToken().

3.5.3 Dependencies

Expressions set by setExpression() can reference any other variable that is within scope. By
default, the scope includes all variables contained by the same container or any container above it in
the hierarchy. In addition, any variable can be explicitly added to the scope of a variable by calling
addToScope().

When an expression for one variable refers to another variable, then the value of the first variable
obviously depends on the value of the second. If the value of the second is modified, then it is impor-
tant that the value of the first reflects the change. This dependency is automatically handled. When you
call getToken(), the expression will be reevaluated if any of the referenced variables have changed val-
ues since the last evaluation.

3.6 Expressions

Ptolemy Il includes a extensible expression language. This language permits operations on tokens
to be specified in a scripting fashion, without requiring compilation of Java code. The language was
designed to be extremelv succinct, using overloaded operators instead of verbose references to meth-
ods in the token classes.! The expression language can be used to define parameters in terms of other
parameters, for example. It is also used to provide end-users with the ability to describe simple state-
less actors without resorting to writing Java code through the Expression actor. The expression lan-
guage is also used to give guards and resets for finite state machines in an intuitive fashion. The use of
the expression language is described in volume 1.

The expression language is extensible. The extension mechanism is based on the reflection pack-
age in Java used to add primitive functions and constants to the expression language. The expression
language is also purely functional, meaning that it lacks sequencing constructs and side effects. Build-
ing state and sequencing into models is done through the use of models of computation, allowing a
much richer set of concurrent control structures than is possible with traditional imperative languages.
The language is higher-order, since it is integrated with the the FunctionToken class. This allows for

1. The Ptolemy II expression language uses operator overloading, unlike Java. Although we fully agree that the
designers of Java made a good decision in omitting operator overloading, our expression language is used in sit-
uations where compactness of expressions is extremely important. Expressions often appear in crowded dialog
boxes in the user interface, so we cannot afford the luxury of replacing operators with method calls. It is more
compact to say “2*(P1 + 2i)” rather than “2.multiply(Pl.add(2i)),” although both will work in the expression Jan-
guage.
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new functions to be easily declared as part of a model, using expressions and for these expressions to
be manipulated and passed through a model as data. Because the expression language is side-effect
free this mechanism does not interact in unexpected ways with concurrent models of computation.
Lastly, the expression language is strongly typed, allowing transparent integration with the static type
checking of components specified using expression. When combined with the higher-order constructs
the resulting language has the feel of typed lambda calculus.
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3.7 Unit System

The unit system in Ptolemy II is based on the paper “Automatic Units Tracking” by Christopher
Rettig [109]. The basic idea is to define a suite of parameters to represent the various measurement
units of a unit system, such as “meter,” “cm,” “feet,” “miles,” “seconds,” “hours,” and “days.” In each
unit category (“length” or “time” for example), there is a base unit with respect to which all the others
are specified. If the base unit of length is meters, then “cm” (centimeter) will be specified as
“0.01 * meters”. Derived units are specified by just multiplying and dividing base units. For example
“newton” is specified as “meter * kilogram / second"2”.

The unit parameters contain tokens just like other parameters. To track units, the category informa-
tion is stored together with measurement data in scalar tokens, and is used when arithmetic operations,
such as add() and multiply(), are performed. The subclasses of ScalarToken, including IntToken and
DoubleToken, override these methods to perform unit checking.

The ptolemy.data.unit package provides three classes (BaseUnit, UnitCategory, and UnitSystem)
that allow a unit system to be specified using MoML, as illustrated in figure 3.6. When such a unit sys-
tem is added to the model shown in figure 3.7, the units can be used in expressions to specify the value
of actor parameters. The displayed result of executing the model is “10.0 * m /s”.

Several basic unit systems are provided with Ptolemy I1. In the Vergil graph editor, they appear in
the utilities library. A unit system added to a composite actor can only be used inside that actor. The

<property name="Sample" class="ptolemy.data.unit.UnitSystem">
<property name="m" class="ptolemy.data.unit.BaseUnit" wvalue="1.0">
<property name="Length" class="ptolemy.data.unit.UnitCategory"/>
</property>
<property name="cm" class="ptolemy.data.expr.Parameter” value="0.01*m"/>
<property name="s" class="ptolemy.data.unit.BaseUnit" value="1.0">
<property name="Time" class="ptolemy.data.unit.UnitCategory"/>
</property>
<property name="ms" class="ptolemy.data.expr.Parameter”" value="0.001*s"/>
</property>

FIGURE 3.6. A sample unit system.

FIGURE 3.7. A model that uses the sample unit system.
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user can customize a unit system by adding units, or create new unit systems based on those provided.
The current implementation of unit systems has the following limitations:

*  Only scalar values can have units.

*  The result of calling a function on a value with units is unit-less.
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Appendix A: Expression Evaluation

The evaluation of an expression is done in two steps. First the expression is parsed to create an
abstract syntax tree (AST) for the expression. Then the AST is evaluated to obtain the token to be
placed in the parameter. In this appendix, “token” refers to instances of the Ptolemy II token classes, as
opposed to lexical tokens generated when an expression is parsed.

A.1 Generating the parse tree

In Ptolemy II the expression parser, called PtParser, is generated using JavaCC and JJTree. Jav-
aCC is a compiler-compiler that takes as input a file containing both the definitions of the lexical
tokens that the parser matches and the production rules used for generating the parse tree for an expres-
sion. The production rules are specified in Backus normal form (BNF). JJTree is a preprocessor for
JavaCC that enables it to create a parse tree. The parser definition is stored in the file PtParser.jjt, and
the generated file is PtParser.java. Thus the procedure is

PtParser.jjt PtParser.jj PtParser.java
e G T G- T

Note that JavaCC generates top-down parsers, or LL(K) in parser terminology. This is different
from yacc (or bison) which generates bottom-up parsers, or more formally LALR(1). The JavaCC file
also differs from yacc in that it contains both the lexical analyzer and the grammar rules in the same
file.

The input expression string is first converted into lexical tokens, which the parser then tries to
match using the production rules for the grammar. Each time the parser matches a production rule it
creates a node object and places it in the abstract syntax tree. The type of node object created depends
on the production rule used to match that part of the expression. For example, when the parser comes
upon a multiplication in the expression, it creates an ASTPtProductNode. If the parse is successful, it
returns the root node of the parse tree for the given string.

In order to reduce the size of the parse tree, nodes that representing many basic operations are
designed to have more than two children, even for binary operations. For instance, the parse tree for
the expression “2 + 3 + “hello”™ only has one sum node. The children are evaluated in the correct order
for the associativity of the operator. In this case, the expression evaluates to the string token with value
“Shello”.

Note that although functions and constants are registered with the parser, the parser does not actu-
ally resolve the values of identifiers. This resolution is performed when the parse tree is actually eval-
uated. The evaluation process only resorts to registered functions and constants if there are no
identifiers defined in the model. This prevents registered functions and constants from unexpectedly
shadowing parameters in the model, leading to unexpected behavior. It also allows new functions and
constants to be registered without changing the behavior of existing models. Essentially, functions and
constants registered with the parser act as a global scope in which all models exist with their own local
scopes.

One of the key properties of the expression language is the ability to refer to other parameters by
name. Since an expression that refers to other parameters may need to be evaluated -several times
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(when the referred parameter changes), it is important that the parse tree does not need to be recreated
every time. The classes for representing the parse tree are designed to carry little state, other than the
representation of an expression. Generally speaking, users of parse trees, such as the Variable class,
cache parse trees for re-evaluation. A new parse tree is only generated when the expression changes.
Note, however that the Parser itself is not cached, since it contains a significant amount of internal
state.

A.2 Traversing the parse tree

After being generated, the parse tree can be manipulated or traversed, in order to analyze various
properties of the original expression. In order to facilitate traversal of the parse tree, the classes repre-
senting parse tree nodes implement a visitor design pattern. Each node implements a visit() method
that accepts an instance of the ParseTreeVisitor class. When the visit() method of a node is invoked,
the node calls an appropriate method of the visitor corresponding to the same node class. The visitor
can then operate on the node and recursively invoke the visit method of child nedes to traverse the
entire parse tree. This pattern allows the entire logic of a parse tree traversal to be placed in a single
class that is largely decoupled from the parse tree itself. Several visitors have been written, and are
described below.

A.2.1 Evaluating the parse tree

Parse trees are evaluated using a visitor implemented by the ParseTreeEvaluator class. The parse
tree is evaluated in a bottom up manner as each node can only determine its type after the types of all
its children have been resolved. As an example consider the input string 2 + 3.5. The parse tree
returned from the parser will look like this:

I
I Tree evaluation

|
i
ntToken(Z) DoubleToken(3.5) |
}

During evaluation, the value of the leaf nodes is first determined, which is trivial in this this case, since
the values of leaves are constants. These values are then propagated upwards, determining the value of
each internal node, until the value of the root node is returned. In this case a DoubleToken with value
5.5 will be returned as the result. If an error occurs during evaluation of the parse tree, an Illegal Ac-
tionException is thrown with a error message about where the error occurred.

When the ParseTreeEvaluator reaches a instance of the ASTPtLeafNode class that references an
identifier, it resolves the identifier into a value through the ParserScope interface. By resolving the val-
ues of identifiers through a ParserScope, identifiers can be resolved in different ways depending on
how the expression is used. This mechanism is used, for instance to implement the evaluation of func-
tion closures and the Expression actors, which interpret expressions differently from parameters. Only
if an identifier is not found in scope, is the identifier resolved against the constants registered in the
parser.

70 Ptolemy O



Data Package

When the ParseTreeEvaluator reaches a instance of the ASTPtFunctionApplicationNode class, it is
handled similarly to a leaf node with an identifier. The name of the function is resolved in the scope, in
case the identifier refers to a function closure, an array token, or a matrix token. If the identifier is not
found in scope, then reflection to look for that function in the list of classes registered with the parser.

A.2.2 Inferring types of parse trees

The ParseTreeTypelnference class visits parse trees to analyze the type of token resulting from
evaluation. For the most part, this operates the same as as the ParseTreeEvaluator class, using a Parser-
Scope to resolve the types of identifiers. If identifiers are not present in scope, then they are searched
for in the constants or functions registered with the parser.

One difficulty with type inference is that the type of tokens returned from a function invocation
can often not be determined from the return type of the Java method. For instance, if the Java method
has a return type corresponding to the Token base class, then any token class might be produced. To
resolve the types of these methods, the ParseTreeTypelnference class uses Java reflection to find a
method with a corresponding name that gives the return type of the original function. For instance, the
max() method in the UtilityFunctions class returns the maximum value of an input ArrayToken. Since
the ArrayToken can contain any type, the UtilityFunctions class contains a parallel maxReturnType()
method that takes a single Type argument, and returns a type. During type inference, this method is
found and invoked to properly infer the type returned from the max() method.

A.2.3 Retrieving identifiers in parse trees

The ParseTreeFreeVariableCollector class visits parse trees and extracts the names of all identifi-
ers that need to be resolved to values outside of the expression. In particular, it does not return the
names of identifiers that are bound to the arguments of function closures. These identifiers are not
accessible outside of the expression. As an example, the expression “foo + bar” has two free variables
that must be given values. However, the expression “function(foo:int) foo + bar” has only one free
variable, since the identifier “foo” is bound to the argument of the function closure.

A.2.4 Specializing parse trees

The ParseTreeSpecializer class visit parse trees and simplifies them. Primarily, this involves
replacing identifier references in leaf nodes with constant values. This operation is an important part of
creating FunctionTokens, since the expression inside a function closure can only reference identifiers
that are explicitly bound to arguments of the FunctionToken. By specializing the parse tree for the
expression, we ensure that the FunctionToken has no dependence on the scope in which it was created.
The specializer also analyses the parse tree, finding any internal nodes that are constant after replacing
identifiers. These constant nodes are evaluated and replaced by leaf nodes.

A.3 Node types

There are currently fourteen node classes used in creating the syntax tree. For some of these nodes
the types of their children are fairly restricted and so type and value resolution is done in the node. For
others, the operators that they represent are overloaded, in which case methods in the token classes are
called to resolve the node type and value (i.c. the contained token). By type resolution we are referring
to the type of the token to be stored in the node.
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ASTPtArrayConstructNode. This node is created when an array construction sub-expression is parsed.
It contains one child node for each element of the array.

ASTPtAssignmentNode . This node is created when an assignment is parsed. It contains exactly two
children. The first child is an ASTPtLeafNode corresponding to the identifier being assigned to and the
second child corresponds to the assigned expression.

ASTPtBitwiseNode. This node is created when a bitwise operation (&, |, ) is parsed. It contains at least
two child nodes, and each element has the same operation applied.

ASTPtFunctionApplicationNode. This node is created when a function is invoked. The first child is
always a node giving the function that will be invoked. For built-in functions, this child will be a leaf
node containing an identifier naming the function. The remaining children correspond to arguments of
application from left to right.

ASTPtFunctionDefinitionNode. This node is created when a function definition is parsed. For each
argument of the function definition, there are two child nodes. The first child node is a leaf node that
contains an identifier for the argument name, while the second gives an expression for the type of the
argument. If no type is specified, then a child node is created that evaluates to a type of general. The
last child node contains an expression tree that defines the function.

ASTPtFunctionallfNode. This is created when a functional if is parsed. This node always has three
children, the first for the boolean condition and the remaining two children for each branch of the
expression.

ASTPtLeafNode. This represents the leaf nodes in the AST. The node contains either a token corre-

sponding to constant values, or a string name for an identifier in the expression. This node contains no
children.

ASTPtLogicalNode. This node is created when a logical operation (&&, ||) is parsed. It contains at least
two child nodes, and each element has the same operation applied.

ASTPtMatrixConstructNode. This is created when a matrix construction sub-expression is parsed. If
the matrix is specified explicitly, then this node contains one child node for each element of the matrix.
If the matrix is specified using sequence notation for each row, then the node contains three children
for each row of the matrix.

ASTPtMethodCallNode. This is created when a method call is parsed. The first child corresponds to

the value the method is being invoked on, while the remaining children correspond to arguments of the
method call.

ASTPtProductNode. This is created when an arithmatic product operation (*, /, %) is parsed. It con-
tains at least two child nodes, although the same operation need not be applied to each child. The node
contains a list of operations corresponding to the individual operations that need to be applied. This list
has one fewer element than the number of children.

ASTPtRecordConstructNode. This is created when a record construct sub-expression is parsed. It con-
tains one node for each value in the record and a list of names corresponding to the label for each
value.

ASTPtRelationalNode. This is created when one of the relational operators (I=, ==, > >= <, <=) js
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parsed. It contains exactly two child nodes.
ASTPtRootNode. Parent class of all the other nodes.

ASTPtSumNode. This is created when a arithmatic summation operation (+, -) is parsed. It contains at
least two child nodes, although the same operation need not be applied to each child. The node con-
tains a list of operations corresponding to the individual operations that need to be apphed This list
has one fewer element than the number of children.

ASTPtUnaryNode. This is created when a unary negation operator (!, ~, -) is parsed. It always contains
exactly one child node.

A.4 Extensibility

The Ptolemy II expression language has been designed to be extensible. The main mechanisms for
extending the functionality of the parser is the ability to register new constants with it and new classes
containing functions that can be called. However it is also possible to add and invoke methods on
tokens, or to even add new rules to the grammar, although both of these options should only be consid-
ered in rare situations.

To add a new constant that the parser will recognize, invoke the method registerConstant(String
name, Object value) on the parser. This is a static method so whatever constant you add will be visible
to all instances of PtParser in the Java virtual machine. The method works by converting, if possible,
whatever data the object has to a token and storing it in a hashtable indexed by name. By default, only
the constants in java.lang Math are registered.

To add a new Class to the classes searched for a a function call, invoke the method register-
Class(String name) on the parser. This is also a static method so whatever class you add will be
searched by all instances of PtParser in the JVM. The name given must be the fully qualified name of
the class to be added, for example “java.lang.Math”. The method works by creating and storing the
Class object corresponding to the given string. If the class does not exist an exception is thrown. When
a function call is parsed, an ASTPtFunctionNode is created. Then when the parse tree is being evalu-
ated, the node obtains a list of the classes it should search for the function and, using reflection,
searches the classes until it either finds the desired function or there are no more classes to search. The
classes are searched in the same order as they were registered with the parser, so it is better to register
those classes that are used frequently first.
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4.1 Introduction

The Ptolemy II kernel provides extensive infrastructure for creating and manipulating clustered
graphs of a particular flavor. Mathematical graphs, however, are simpler structures that consist of
nodes and edges, without hierarchy. Edges link pairs of nodes, and therefore are much simpler than the
relations of the Ptolemy II kemel. Moreover, in mathematical graphs, no distinction is made between
multiple edges that may be adjacent to a node, so the ports of the Ptolemy II kernel are not needed. A
large number of algorithms have been developed that operate on mathematical graphs, and many of
these prove extremely useful in support of scheduling, type resolution, and other operations in Ptolemy
II. Thus, we have created the graph package, which provides efficient data structures for mathematical
graphs, and collects algorithms for operating on them. At this time, the collection of algorithms is
nowhere near as complete as in some widely used packages, such as LEDA [87]. But this package will
serve as a repository for a growing suite of algorithms.

The graph package provides basic infrastructure for both undirected and directed graphs. Acyclic
directed graphs, which can be used to model complete partial orders (CPOs) and lattices, are also sup-
ported with more specialized algorithms.

The graphs constructed using this package are designed to provide broad support for algorithms
that operate on generic, mathematical graphs. A typical use of this package is to construct a graph that
represents the topology of a CompositeEntity, run a graph algorithm, and extract useful information
from the result. For example, a graph might be constructed that represents data precedences, and a
topological sort might be used to generate a schedule. In this kind of application, the hierarchy of the
original clustered graph is flattened, so nodes in the graph represent only opaque entities.
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4.2 Classes and Interfaces in the Graph Package

Figure 4.1 shows the class diagram of the graph package. The classes Node, Edge, Graph, Direct-
edGraph and DirectedAcyclicGraph support graph construction and provide graph algorithms. Cur-
rently, only a limited set of algorithms, such as topological sort and transitive closure, are
implemented; other algorithms will be added as needed. The CPO interface defines the basic CPO
operations, and the class DirectedAcyclicGraph implements this interface. An instance of DirectedA-
cyclicGraph is also a finite CPO where all the elements and order relations are explicitly specified.
Defining the CPO operations in an interface allows future expansion to support infinite CPOs and
finite CPOs where the elements are not explicitly enumerated. The InequalityTerm interface and the
Inequality class model inequality constraints over the CPO. The details of the constraints will be dis-
cussed later. The InequalitySolver class provides an algorithm to solve a set of constraints. This is used
by the Ptolemy.II type system, but other uses may arise.

The implementation of the above classes is not synchronized. If multiple threads access a graph or
a set of constraints concurrently, external synchronization will be needed.

4.2.1 Node

This simple class models a vertex for inclusion in undirected or directed graphs. More specifically,
all vertices in a graph are Node instances, and each node has an optional weight (an arbitrary object
that is associated with the node). We say that a node is unweighted if it does not have an assigned
weight. It is an error to attempt to access the weight of an unweighted node. Node weights must be
genuine (non-null) objects.

Nodes are immutable.

4.2.2 Edge

This class models a weighted or unweighted edge for a directed or undirected graph. The connec-
tivity of edges is specified by source nodes and sink nodes. A directed edge is directed Jfrom its source
node o its sink node. For an undirected edge, the source node is simply the first node that was speci-
fied when the edge was created, and the sink node is the second node. This convention allows undi-
rected edges to later be converted in a consistent manner to directed edges, if desired.

On creation of an edge, an arbitrary object can be associated with the edge as the weight of the
edge. We say that an edge is unweighted if it does not have an assigned weight. It is an error to attempt
to access the weight of an unweighted edge.

In support of multigraphs, self-loop edges (edges whose source and sink nodes are identical) are
allowed.

Edges are immutable: the source node, sink node, and weight of an edge cannot be changed.

4.2.3 Graph

This class models a graph with optionally-weighted edges and nodes. Nodes and edges of a graph
are instances of Node and Edge, respectively. Thus, each node or edge may have a weight associated
with it. The nodes (edges) in a graph are always distinct, but their weights need not be.

Each node (edge) has a unique, integer label associated with it. These labels can be used, for exam-
ple, to index arrays and matrixes whose rows/columns correspond to nodes (edges).
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FIGURE 4.1. Classes in the graph package. A selected subset of class attributes and operations is shown.
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Both directed and undirected graphs can be implemented using this class. In directed graphs, the
order of nodes specified to the addEdge method is relevant, whereas in undirected graphs, the order is
unimportant. Support for both undirected and directed graphs follows from the combined support for
these in the underlying Node and Edge classes. The DirectedGraph class provides more thorough sup-
port for directed graphs.

The same node can exist in multiple graphs, but any given graph can contain only one instance of
the node. Node labels, however, are local to individual graphs. Thus, the same node may have different
labels in different graphs. Furthermore, the label assigned in a given graph to a node may change over
time (if the set of nodes in the graph changes). The weight of a node is identical for all instances of the
node in multiple graphs. All of this holds for edges all well. The same weight may be shared among
multiple nodes and edges.

Multiple edges in a graph can connect the same pair of nodes. Thus, multigraphs are supported.

Once assigned, node and edge weights should not be changed in ways that affect comparison under
the equals method Otherwise, unpredictable behavior may result.

4.2.4 Directed Graphs

The DirectedGraph class is derived from Graph. The addEdge method in DirectedGraph adds a
directed edge to the graph. In this class, the direction of the edge is said to go from a source node to a
sink node.

The computation of transitive closure operations is mmplemented in this class. The transitive clo-
sure is internally stored as a two-dimensional boolean matrix, whose indexes correspond to node
labels. The entry (i, /) is true if and only if there exists a path from the node with label i to the node
with label /. This matrix is not exposed at the public interface; instead, it is used by this class and its
subclass to do other operations. Once the transitive closure matrix is computed, graph operations like
reachableNodes can be easily accomplished.

Some methods in this class have two versions, one that operates on graph nodes, and another that
operations on node weights. The latter form is called the weights version. More specifically, the
weights version of an operation takes individual node weights or arrays of weights as arguments, and,
when applicable, returns individual weights or arrays of weights.

Multiple edges in a graph can be directed between the same pair of nodes (in the same direction).
Thus, directed multigraphs are supported.

4.2.5 Directed Acyclic Graphs and CPO

The DirectedAcyclicGraph class further restricts DirectedGraph by not allowing cycles. For per-
formance reasons, this requirement is not checked when edges are added to the graph, but is checked
when any of the graph operations is invoked. An exception is thrown if the graph is found to be cyclic.

The CPO interface defines the common operations on CPOs. The mathematical definition of these
operations can be found in [24]. Informal definitions are given in the class documentation. This inter-
face is implemented by the class DirectedAcyclicGraph.

Since most of the CPO operations involve the comparison of two elements, and comparison can be
done in constant time once the transitive closure is available, DirectedAcyclicGraph makes heavy use
of the transitive closure. Also, since most of the operations on a CPO have a dual operation, such as
least upper bound and greatest lower bound, least element and greatest element, etc., the code for the
dual operations can be shared if the order relation on the CPO is reversed. This is done by transposing
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the transitive closure matrix.

4.2.6 Inequality Terms, Inequalities, and the Inequality Solver

The InequalityTerm interface and Inequality and InequalitySolver classes support the construction
of a set of inequality constraints over a CPO and the identification of a member of the CPO that satis-
fies the constraints. A constraint is an inequality defined over a CPO, which can involve constants,
variables, and functions. As an example, the following is a set of constraints over the 4-point CPO in
figure 4.2:

asw

B <xna

a<fp
where o and B are variables, and A denotes greatest lower bound. One solution to this set of constraints
sa=p=x.

An inequality term is either a constant, a variable, or a function over a CPO. The Inequality Term
interface defines the operations on a term. If a term consists of a single variable, the value of the vari-
able can be set to a specific element of the underlying CPO. The isSettable() method queries whether
the value of a term can be set. It returns frue if the term is a variable, and false if it is a constant or a
function. The setValue() method is used to set the value for variable terms. The getValue() method
returns the current value of the term, which is a constant if the term consists of a single constant, the
current value of a variable if the term consists of a single variable, or the evaluation of a function based
on the current value of the variables if the term is a function. The getVariables() method returns all the
variables contained in a term. This method is used by the inequality solver.

The Inequality class contains two Inequality Terms, a lesser term and the greater term. The isSatis-
fied() method tests whether the inequality is satisfied over the specified CPO based on the current
value of the variables. It returns true if the inequality is satisfied, and false otherwise.

The InequalitySolver class implements an algorithm to determine satisfiability of a set of inequal-
ity constraints and to find the solution to the constraints if they are satisfiable. This algorithm is
described in [107]. It is basically an iterative procedure to update the value of variables until all the
constraints are satisfied, or until conflicts among the constraints are found. Some limitations on the
type of constraints apply for the algorithm to work. The method addInequality() adds an inequality to
the set of constraints. Two methods solveLeast() and solveGreatest() can be used to solve the con-
straints. The former tries to find the least solution, while the latter attempts to find the greatest solu-
tion. If a solution is found, these methods return frue and the current value of the variables is the
solution. The method unsatisfiedInequalities() returns an enumeration of the inequalitics that are not
satisfied based on the current value of the variables. It can be used after solveLeast() or solveGreatest()
return false to find out which inequalities cannot be satisfied after the algorithm runs. The bottomVari-
ables() and topVariables() methods return enumerations of the variables whose current values are the

FIGURE 4.2. A 4-point CPO that also happens to be a lattice.
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bottom or the top element of the CPO.

4.2.7 Graph Listeners

The GraphListener is a class for tracking changes to a graph so that graph properties can be recom-
puted only when necessary. Any given computation for the graph (e.g., computation of the transitive
closure of a directed graph) can have a graph listener associated with it. If the registerComputation
method is invoked each time the computation is performed, and results of the computation are cached,
then the obsolete method can be used to determine whether any changes to the graph have occurred
since the time the cached value was computed.

4.2.8 Labeled Lists

LabeledList is a support class for graphs in this package that allows one to construct efficient map-
pings from subsets of nodes and/or edges into arbitrary values. A LabeledList is a list of unique objects
(elements) with an assignment from the elements into consecutive integer labels. The labels are con-
secutive integers between 0 and N - 1 inclusive, where N is the total number of elements in the list.
This list features O(1) list insertion, O(1) testing for membership in the list, O(1) access of a list
element from its associated label, and O(1) access of a label from its corresponding element. The ele-
ment labels are useful, for example, in creating mappings from list elements into elements of arbitrary
arrays. More generally, element labels can be used to maintain arbitrary m -dimensional matrices that
are indexed by the list elements (via the associated element labels).

Element labels maintain their consistency (remain constant) during periods when no elements are
removed from the list. When elements are removed, the labels assigned to the remaining elements may
change.

Elements themselves must be non-null and distinct, as determined by the equals method.

This class supports all required operations of the list interface, except for the subList operation,
which results in an UnsupportedOperationException.

4.3 Example Use

4.3.1 Generating A Schedule for A Composite Actor

Figure 4.3 shows an example of using a topological sort to generate a firing schedule for a Com-
positeActor of the actor package. The connectivity information among the Actors within the composite
is translated into a directed acyclic graph, with each node of the graph represented by an Actor. The
schedule is stored in an array, where each element of the array is a reference to an Actor.

4.3.2 Forming and Solving Constraints over a CPO

The code in Figure 4.4 uses implements the InequalityTerm interface and models the constant
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Object[] generateSchedule(CompositeActor composite) |
DirectedAcyclicGraph dag = new DirectedAcyclicGraph!);
// Add all the actors contained in the composite to the graph.
Iterator actors = compcsite.deepEntityList().iterater();
while (actors.hasNext ()} {
Actor actor = (Actor)actors.next();
dag.addNodeWeight (actor) ;
}

// Add all the connectizn in the czomposite as graph edges.
actors = composite.deepEntityList().iterator();
while (actors.hasNext()) {

Actor lowerActor = (Actcrlactors.next();

// Find all the actors "higher" than the current cne.
Iterator outPorts = lowerActcr.outputbortList().iterater(};
while (cutPorts.hasNext{)) |
I0Pcrt cutputbort = (IOFcrt)outPorts.next();
Iterator inPorts =
outputPort.deepConnectedInPortList () .iterazor();
while (inPcrts.hasNext(}) |
IOPort inputbort = (IOPort)inPerts.next();
Actor higherActsor = (Actor)inputPort.getCentainer();
if (dag.ccntainsNocdeWeight (higherAcror)) |
dag.addEdge (lcwerBzter, higherActerj;

}

}
)

return dag.topologicalScrth();

FIGURE 4.3. Anexample of using a topological sort to generate a firing schedule fora CompositeActor
of the actor package.
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import ptolemy.graph.*;
import ptolemy.kernel.util.¥*;

// A constant InequalityTerm with a String Value.
class Constant implements InequalityTerm {

// Construct a constant term with the specified String value.
public Constant (String value) |{
_value = value;

}

// Return the String associated with this term.
public Object getAssociatedObject() {

return _value;
)

// Return the constant String value of this term.
public Object getValue() |
return _value;

}

// Constant terms do not contain variables, so return an array of size zero.
public InequalityTerm(] getVariables() |
return new InequalityTerm(0];

}

// Initialicze the value of this term tc the specified CEO element.
public void initialize(Obiject cbiect) throws IllegalActionExcepticn |
throw new IllegalActionExcepticn!“Constant inequality term cannot ke *
+ “initialized. Its value is set in the constructor.”);

)

// Constant terms are not settable.
public bcolean isSettatle() |
return false;

}

// Check whether the current value of this term is acceptatle.
public boclean isValueAcceptakle() |
return _value != null; // Any non-null string value is acceptable.

}

// Throw an Exception on an attempt ¢ change this constant.
public veid setValue(Cbject e) throws IllegalActicnExcepticn |
throw new IllegalActionException{“This term is a constant.”);

}

// the String value of this term.
private String _value = null;

FIGURE 4.4. A class that implements the Inequality Term interface and models the constant term.
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term. The code in Figure 4.5 also implements the InequalityTerm interface and models the variable
term. The values of these terms are Strings. Inequalities can be formed using these two classes.

As another example, the class in Figure 4.6 constructs the 4-point CPO of figure 4.2, forms a set of
constraints with three inequalities, and solves for both the least and greatest solutions. The inequalities
are a<w; b <a; b <z where w and z are constants in figure 2.3, and a and b are variables.

// This class is for figure 10.4 of the graph.fm
import ptolemy.graph.*;
import ptolemy.kernel.util.*;

// A variable InequalityTerm with a String value.

class Variable implements InequalityTerm |
// Construct a variable InequalityTerm with a null initial value.
public Variable{() {
)

// Return the Object associated with this term.
public Object getAssociatedObject() |
return _value;

}

// Return the String value of this term.
public Object getValue() {
return _value;

}

// Return an array containing this variable term.
public InequalityTerm[) getVariables({) |
InequalityTerm(] variable = new InequalityTerm[1];
variable[0] = this;
return variable;

]

// Initialize the value of this term to the specified CPO element.
public void initialize(Object object) throws IllegalActionExcepticn |
serValue(object);

}

// Variable terms are settable.
public boolean isSettable() {
return true;

}

// Check whether the current value of this term is acceprable.
public boolean isValueAcceptakle() |
return _value != null;

}

// set the value of this variable to the specified String. Not checking
// the type of the specified Object before casting for simplicity.
public void setValue(Cbject e) throws IllegalActionException |

_value = (String)e;
}

private String _value = null;

FIGURE 4.5. A class that implements the InequalityTerm interface and models the constant term.

Heterogeneous Concurrent Modeling and Design 83



Graph Package

import ptolemy.graph.*;

// An example of forming and solving inequality constraints.
public class TestSolver |
public static void main(String(] argv) {

}

// construct the 4-point CPO in figure 2.3.
CPO cpo = constructCPO();

// create inequality terms for constants w, z and
// variables a, b.
InequalityTerm tw
InequalityTerm tz
InequalityTerm ta
InequalityTerm tb

new Constant (“w”);
new Constant (“z”);
new Variable();
new Variable():;

nnoonon

// form inequalities: a<=w; b<=a; b<=z.
Inequality iaw = new Inequality(ta, tw);
Inequality iba = new Inequality(tb, ta);
Inequality ibz = new Inequality(tb, tz);

// create the solver and add the inequalities.
InequalitySclver solver = new InequalitySolver {cpo);
solver.addlnequality (iaw);
solver.addInequality(iba);
solver.addInequality(ibz);

// solve for the least solution
boolean satisfied = solver.solveleast();

// The output should be:
// satisfied=true, least sclution: a=z b=z

System.cut.println(“satisfied=" + satisfied + “, least solution:"”

+ " a=" + ta.getValue{() + ™ b=” + tb.getValue());
// solve for the greatest sclution
satisfied = solver.solveGreatest();

// The output should be:
// satisfied=true, greatest solution: a=w b=z

System.out.println(“satisfied=" + satisfied + “, greatest sclution:”
Y g

+ " a=" + ta.getValue() + “ b=" + tb.getValue());

puklic static CFO censtructCRO{) |

DirectedAcyclicGraph cpe = new DirectedAcyclicGraph();

cpe.addNodeWeight (“w”) ;
cpe.addNodeWsight (“z”) ;
cpc.addNodeWsight (“v”) ;
cpo.addNcdeWeight (“z”) ;

cpo.addEdge (“x”, “w");
cpo.addEdge (“y”, “w”);
cpe.addEdge (“z”, “x”);
cpo.addEdge (“z”, “v”);

return cpo;

FIGURE 4.6. An example that constructs the 4-point CPO of figure 4.2.
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5.1 Introduction

The computation infrastructure provided by the basic actor classes is not statically typed, i.e., the
IOPorts on actors do not specify the type of tokens that can pass through them. This can be changed by
giving each IOPort a type. One of the reasons for static typing is to increase the level of safety, which
means reducing the number of untrapped errors [21].

In a computation environment, two kinds of execution errors can occur, trapped errors and
untrapped errors. Trapped errors cause the computation to stop immediately, but untrapped errors may
go unnoticed (for a while) and later cause arbitrary behavior. Examples of untrapped errors in a general
purpose language are jumping to the wrong address, or accessing data past the end of an array. In
Ptolemy I1, the underlying language Java is quite safe, so errors rarely, if ever, cause arbitrary behav-
ior.! However, errors can certainly go unnoticed for an arbitrary amount of time. As an example, figure
5.1 shows an imaginary application where a signal from a source is downsampled, then fed to a fast
Fourier transform (FFT) actor, and the transform result is displayed by an actor. Suppose the FFT actor
can accept ComplexToken at its input, and the behavior of the DownSample actor is to just pass every

Down- .
Source () O Sample O O FFT O (O Display

FIGURE 5.1. An imaginary Ptolemy II application

1. Synchronization errors in multi-thread applications are not considered here.
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second token through regardless of its type. If the Source actor sends instances of ComplexToken,
everything works fine. But if, due to an error, the Source actor sends out a StringToken, then the
StringToken will pass through the sampler unnoticed. In a more complex system, the time lag between
when a token of the wrong type is sent by an actor and the detection of the wrong type may be arbi-
trarily long.

In languages without static typing, such as Lisp and the scripting language Tcl, safety is achieved
by writing defensive code. When safe execution is required, code must check manually at run-time
whether the types of values are correct. In Ptolemy I1, if we imitated this approach, we would have to
require actors to check the type of the received tokens before using them. For example, the FFT actor
would have to verify that the every received token is an instance of ComplexToken, or convert it to
ComplexToken if possible. This approach places the burden of type checking on actor developers, dis-
tracting them from their development effort. It also relies on a policy that cannot be enforced by the
system. Furthermore, since type checking is postponed to the last possible moment, the system does
not have fail-fast behavior, so a system may generate an error message long after long after the error
occurs, as illustrated in figure 5.1. To make matters worse, an actor may receive tokens from multiple
sources. If a token with an incompatible type is received, it can be hard to identify the original source
of the token. These potential problems can make debugging models unnecessarily difficult.

To address this and other issues discussed later, Ptolemy II includes static type checking. This
approach is a significant extension of the simple type mechanism in Ptolemy Classic. In general-pur-
pose statically-typed languages, such as C++ and Java, static type checking done by the compiler can
find many potential program errors. However, execution of a model in Ptolemy II is more similar to an
interpreted execution, and does not generally involve compilation. Nonetheless, static type checking of
the model can still be used to detect modeling errors before actors fire. In figure 5.1, if the Source actor
declares that its output port type is String, meaning that it will send out StringTokens upon firing, the
static type checker will identify this type conflict in the topology.

In Ptolemy I, because actors may contain arbitrary Java code, static typing alone is not enough to
ensure type safety at run-time. For example, even if the above Source actor declares its output type to
be Complex, it may still attempt to send out a StringToken at run-time. For instance, the Source actor
might contain a bug that incorrectly declares the type of a port. Hence run-time type checking is still
necessary for the Ptolemy framework to guarantee that all actors receive tokens of an expected type.
Fortunately, with the help of static type checking, run-time type checks can be performed automati-
cally when a token is sent out from a port. The run-time type checker simply compares the type of a
produced token against the type of the output port. This way, a type error is detected at the earliest pos-
sible time and less reliance on correct actor specifications is needed to ensure type safety. Additionally,
actors can safely cast received tokens to the type of the input port without manually checking the type,
making actor development easier.

We have found that type checking and type safety conversions can greatly increase our confidence
in making use of reusable components. However, static typing does have some drawbacks. For
instance, it often requires actor authors to explicitly declare what type(s) of data are allowed, making it
more difficult to develop components. Ousterhout [102] also argues that static typing discourages the
reuse of existing components.

“Typing encourages programmers to create a variety of incompatible interfaces,
each interface requires objects of specific type and the compiler prevents any other
types of objects from being used with the interface, even if that would be useful”.

In this chapter we will concentrate on two mechanisms for increasing the reusability of actors in the
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presence of static type checking. The first mechanism, called automatic type conversion, allows a com-
ponent to recetve multiple data types by automatically converting them to a single data type. A second
mechanism, called type resolution or type inference, allows constructing data-polymorphic actors.
Such actors operate in a similar way on different data types. This chapter will describe how these
mechanisms are integrated into the Ptolemy II static type checking framework.

One mechanism that enables polymorphism in Ptolemy II is automatic type conversion. The
allowed automatic data type conversions are represented in figure 5.2, called the type lattice. In this
diagram, a conversion from one type to another is allowed if the first type appears below the second
type in the diagram. This relationship implies a partial ordering of types, so we might say that a con-
version is allowed if the first type is less than or equal to the second type.

Automatic conversions primarily occur during data transfer from one port to another. When a data
token is received, it is automatically converted to the type of the input port receiving it. Along with the
run-time type checking of sent data described earlier, this conversion implies that across every connec-
tion from an output port to an input, the type of the output must be the same as or lower than the type
of the input. This requirement is called the type compatibility rule. For example, an output port with
type Int can be connected to an input port with type Double, and tokens sent by the output port will be
converted to type Double before being received. On the other hand, a Double to Int connection will
generate a type error during static type checking, since no conversion is possible. These conversions

General
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Numerical
BooleanMatrix FixMatrix thatrix ComplexMatrix

Object |

D}bleM trix Record
tMatrix
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FIGURE 5.2. The Type Lattice T"O™®
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are performed transparently by the Ptolemy II system (actors are not aware it). Automatic conversions
arc also often performed in the data package when type-polymorphic operations are applied to values
of different types.

The type lattice was constructed based on a principle of lossless conversion. A conversion is
allowed automatically as long as important information about value of data tokens are not lost. Such
conversions are referred to as widening conversions in Java. For instance, converting a 32-bit signed
integer to a 64-bit IEEE double precision floating point number is allowed since every integer can be
represented exactly as a floating point number. On the other hand, data type conversions that lose
information are not included in the type lattice of automatic conversions. In fact, the concentration on
lossless conversions is somewhat arbitrary, but we find that it is relatively easy to use, since it mini-
mizes unintentional loss of numerical precision.

While automatic type conversion allows an actor to receive data of different types, the operation
performed by the actor is always performed on the same type of data, determined by the type of the
ports. However, There are cases where an actor operates on tokens without regard for the actual types
of the tokens. For example, the DownSample in figure 5.1 does not care about the type of token going
through it; it works with any type of token. In general, the types on some or all of the ports of a poly-
morphic actor are not rigidly defined to specific types when the actor is written, so the actor can inter-
act with other actors having different types, increasing reusability.

In Ptolemy Classic, the ports on type-polymorphic actors whose types are not specified are said to
have ANYTYPE. ANYTYPE ports were allowed to be connected to ports of any other type. However,
in the presence of such ports means that type safety cannot be ensured. Instead, Ptolemy II allows ports
to have undeclared type, suggesting that the type of those ports has not been determined but cannot be
assigned arbitrarily. Instead of being given as constants, the acceptable types on polymorphic actors
are described by a set of type constraints. The type checker checks the applicability of a type-polymor-
phic actor in a model by finding specific types for ports that satisfy the type constraints. This process is
called type resolution or type inference, and the specific types are called the resolved types. Assuming
the type constraints of actors are consistent with the actor implementation, this technique can ensure
the type safety of actor connections. Type constraints and the type resolution algorithm are described
more completely in the next section.

In addition to ports, the parameters which are used to configure actors are also typed objects. By
defining a uniform interface for setting up type constraints, Ptolemy II supports type constraints
between parameters and ports, as well as between ports. This extends the range of type checking to
allow parameters with arbitrary type, such as those that determine the values produced by source
actors.

In Ptolemy 11, typing does apply some restrictions on the interaction of actors. Particularly, actors
cannot be interconnected arbitrarily if the type compatibility rule is violated. However, such models
rarely make any sense, so the benefit of typing should far outweigh the inconvenience caused by this
restriction. On the other hand, type declarations and type constraints help to clarify the interface of
actors and makes them more manageable. Static typing also provide an opportunity for model compiler
and circuit synthesis tools to generate type specialized code, when a Ptolemy system is synthesized to
hardware, type information can be used for efficient synthesis. If the type checker asserts that a certain
polymorphic actor will only receive IntTokens, then only hardware dealing with integers needs to be
synthesized.

To summarize, Ptolemy II takes an approach of static typing coupled with run-time type checking.
Lossless data type conversions during data transfer are automatically executed. Polymorphic actors are
supported through type resolution. '
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5.2 Formulation

5.2.1 Type Constraints

In a Ptolemy II topology, the type compatibility rule imposes a type constraint across every con-
nection from an output port to an input port. It requires that the type of the output port, outType, be the
same as the type of the input port, inType, or less than inType under the type lattice. This can be written
as an inequality:

outType < inType @)

This constraint guarantees that there is an allowed automatic conversion that can be performed during
data transfer. If both the outType and inType are declared, the static type checker simply checks
whether this inequality is satisfied, and reports a type conflict if it is not.

In addition to the above constraint imposed by the topology, actors may also impose constraints.
This happens when one or both of the outType and inType is undeclared, in which case the actor con-
taining the undeclared port needs to describe the acceptable types through type constraints. All the type
constraints in Ptolemy II are described in the form of inequalities like the one in (1). If a port or param-
eter has a declared type, its type appears as a constant in the inequalities. On the other hand, if a port or
parameter has an undeclared type, its type is represented in the inequalities by a variable, called a type
variable. The value of type variables are allowed to range over the elements of the type lattice. The
type resolution algorithm resolves the values of type variables subject to the constraints of the model
and the actors. If no solution exists, a type conflict error will be reported. As an example of the ine-
quality constraints, consider figure 5.3.

The port of actor A1 has declared type /nt and the ports of A3 and A4 have declared type Double.
The types of the ports of A2, on the other hand, have been left undeclared. If the type variables of the
undeclared types are o, B, and v, then the type constraints from the topology are:

Int<a
Double < B
v < Double

Now, assume A2 is a polymorphic adder, capable of doing addition for integer, double, and complex
numbers, and the requirement is that it does not lose precision during the operation. Then the type con-
straints for the adder can be written as:

asy

FIGURE 5.3. A topology with types.

Heterogeneous Concurrent Modeling and Design 89



Type System

B=vy
y < Complex

The first two inequalities constrain the output precision to be no less than input, the last one
requires that the data on the adder ports can be converted to Complex losslessly. These six inequalities
form the complete set of constraints and are used by the type resolution algorithm to solve for a., B, and
v. Hence, the problem has been converted from type resolution into a problem of solving a set of ine-
qualities. An efficient algorithm is available to solve constraints in finite lattices [107], which is
described in the appendix through an example. This algorithm finds the set of most specific types for
the undeclared types in the topology that satisfy the constraints, if they exist.

This inequality formulation is inspired by the type inference algorithm in ML [91]. There, equali-
ties are used to represent type constraints. In Ptolemy II, the lossless type conversion hierarchy natu-
rally implies inequality relation among the types. In ML, the type constraints are generated from
program constructs. In a heterogeneous graphical programming environment like Ptolemy II, the sys-
tem does not have enough information about the function of the actors, so actors must specify type
information either by declaring port types, or by providing type constraints to describe the acceptable
types of undeclared ports.

As mentioned earlier, the static type checker flags a type conflict error if the type compatibility
rule is violated on a certain connection. There are other kind of type conflicts indicated by one of the
following:

*  The set of type constraints are not satisfiable.
*  Some type variables are resolved to Unknown.
*  Some type variables are resolved to an abstract type, such as Numerical in the type hierarchy.

The first case can happen, for example, if the port of actor A1 in figure 5.3 has declared type Com-
Pplex. The second case can happen if an actor does not specify any type constraints on an undeclared
output port. This is due to the nature of the type resolution algorithm where it assigns all the unde-
clared types to Unknown at the beginning. If the type constraints do not restrict a type variable to be
greater than Unknown, it will stay at Unknown after resolution. The third case is considered a conflict
since an abstract type does not correspond to an instantiable token class.

5.2.2 Run-time Type Checking and Lossless Type Conversion

The declared type is a contract between an actor and the Ptolemy II system. If an actor declares an
output port to have a certain type, it asserts that it will only send out tokens whose types are less than
or equal to that type. If an actor declares an input port to have a certain type, it requires the system to
only send tokens that are instances of the class of that type to that input port. Run-time type checking
enforces this contract, regardless of whether individual actors respect it. When a token is sent out from
an output port, the run-time type checker queries its type and compares the type with the declared type
of the output port. If the type of the token is not less than or equal to the declared type, a run-time type
error will be generated.

As discussed before, type conversion is performed automatically when a token sent to an input
port has a type less than the typé of the input port. This conversion enables an actor to safely cast a
received token to the type of the port. On the other hand, when an actor sends out tokens, the tokens
being sent do not have to have the exact declared output port type. Any type that is less than the
declared type is acceptable. For cxample, if an output port has declared type Double, the actor can send
IntToken from that port. As can be seen, the automatic type conversion simplifies the input/output han-
dling of the actors. '
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Note that even with the convenience provided by the type conversion, actors should still declare
the input types to be the most general that they can handle and the output types to be the most specific
type that includes all tokens they will send. This maximizes their applications. In the previous exam-
ple, if the actor only sends out IntToken, it should declare the output type to be Int to allow the port to
be connected with an input with type Int.

If an actor has ports with undeclared types, its type constraints can be viewed as both a require-
ment and an assertion from the actor. The actor requires the resolved types to satisfy the constraints.
Once the resolved types are found, they serve exactly the same role as declared types at run time. The
the type checking and type conversion system guarantees the type of tokens received by an actor, and
the actor guarantees the types of tokens sent by the actor. These assumptions and guarantees are sum-
marized for all possible types by the type constraints of the actor.

3.3 Structured Types

Structured types include those tokens which aggregate other tokens of arbitrary type, such as array
and record types. As described in the Data Package chapter, an ArrayToken contains an array of
tokens, and the element tokens can have arbitrary type. For example, an ArrayToken can contain an
array of StringTokens, or an array of ArrayTokens. In the latter case, the ArrayToken can be regarded
as a two dimensional array. RecordToken contains a set of labeled tokens, like the structure in the C
language. It is useful for grouping multiple pieces of related information together. In the type lattice in
figure 5.2, array and record types are incomparable with all the base types, except the top and the bot-
tom elements of the lattice. Note that the lattice nodes Array and Record actually represent an infinite
number of types, so the type lattice becomes infinite.

The order relation between two array types is that type {B} (the type of arrays containing elements
of type B) is less than type {4} if B is less than A. This is a recursive definition if the element types 4
and B are themselves structured types. For example, {Int} < {Double}, {{Int}} < {{Double}}, where
{{Int}} is an array of array. Note that {Int} and {{Double}} are incomparable.

The order relation between two record types follows the standard depth subtyping and width sub-
typing relations.[21] In depth subtyping, a record type C is a subtype of a record type D if the type of
some fields of C is a subtype of the corresponding fields in D. In width subtyping, a record with more
fields is a subtype of a record with less fields. For example, we have:

{x=String, y = Int} < {x = String, y = Double}

{x=String, y = Double, z = Int} < {x = String, y = Double}

Here, we use the {label = type, label = type, ...} syntax to denote record types. Notice that the
width subtyping rule implies a type conversion which loses information, discarding the extra fields of
a record.

One final structured type is the type of function closures. Each function closure is represented by
an instance of the FunctionToken class. Function closures take several arguments and return a single
value. The type system supports function types where the arguments have declared types, and the
return type is known. Function types are related in a way that is contravariant (oppositely related)
between inputs and outputs. Namely, if function(x:/nt, y:Int) Int is a function that of two integer argu-
ments that returns an integer, then

function(x:/nt, y:Int) Int < function(x:Int, y:Int) Double

function(x:Int, y:Double) Int < function(x:/nt, y:Int) Int

The contravariant notion here is easiest to think about in terms of the automatic type conversion of
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one function into another. A function that returns In can be converted into a function that returns Dou-
ble by adding a conversion of the returned value from Int to Double. On the other hand, a function that
takes an Int cannot be converted into a function that takes a Double, since that would mean that the
function is suddenly able to accept Double arguments when it could not before, and there is no auto-
matic conversion from Double to Int. Functions that are lower in the type lattice assume less about
their inputs and guarantee more about their outputs. Note particularly that the names of arguments do
not affect the relation between two function types, since argument binding is by the order of arguments
only. Additionally, functions with different numbers of arguments are considered incomparable. Even-
tually, we intend to provide an actor token as well, which would have both contravariance of the types
of input and output ports as well as allowing width subtyping, similarly to records. The presence of
function types that can be used as any other token results in what is commonly termed a higher-order
type system.

Type constraints can be specified between the element type of a structured type and the type of a
Ptolemy object. For example, a type constraint can specify that the type of a port is no less than the
type of the elements of an ArrayToken.

5.4 Implementation

S.4.1 Implementation Classes

All the classes for representing the types and the type lattice are under the data.type package, as
shown in figure 5.4. The Type interface defines the basic operations on a type. BaseType contains a
type-safe enumeration of primitive types. For example, Unkmown, the bottom element of the type lat-
tice which can be resolved to any type is represented by the field BaseType. UNKNOWN. ArrayType
and RecordType are derived from an abstract class StructuredType. Each type has a convert() method
to convert a token lower in the type lattice to one of its type. For base types, this method just calls the
same method in the corresponding tokens. For structured types, the conversion is done within the con-
crete structured type classes.

The Typeable interface defines a set of methods to set type constraints between typed objects. It is
implemented by the Variable class in the data.expr package and the TypedIOPort class in the actor
package. The TypeConstant class encapsulates a constant type. It implements the InequalityTerm inter-
face and can be used to set up type constraints between a typed object and a constant type.

In the actor package, the Actor interface, the AtomicActor, CompositeActor, IOPort and IORela-
tion classes are extended with TypedActor, TypedAtomicActor, TypedCompositeActor, TypedIOPort
and TypedIORelation, respectively, as shown in figure 5.5. The container for TypedIOPort must be a
ComponentEntity implementing the TypedA ctor interface, namely, TypedAtomicActor or TypedCom-
positeActor. The TypedIORelation class is only able to connect instances of the TypedlOPort. Type-
dIOPort has a declared type and a resolved type. Declaring a type of BaseType. UNKNOWN allows
the type system to infer the resolved type of a port. If a port has a declared type that is not Base-
Type. UNKNOWN, the resolved type will be the same as the declared type.

5.4.2 Type Checking and Type Resolution

Static type checking and type resolution are performed by the resolve Types() method of the Typed-
CompositeActor class. This method finds all connections within the composite by first finding the out-
put ports on deep contained entities, and then finding input ports deeply connected to those output
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ports. Transparent ports are ignored for type checking. For each connection, if the types on both ends
are declared, static type checking is performed using the type compatibility rule. If the model contains
other opaque TypedCompositeActors, this method recursively calls the _checkDeclaredTypes()
method of the contained actors to perform type checking on the entire hierarchy. Hence, if resolve-

Types() is called with the top level TypedCompositeActor, type checking is performed through out the
hierarchy.

«interface»
Type TypeLattice
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FIGURE 5.4. Classes in the data.type package.
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If a type conflict is detected, i.e., if the declared type at the source end of a connection is greater
than or incomparable with the type at the destination end of the connection, then the ports at both ends
of the connection are recorded and will be returned in a List at the end of type checking. Note that type
checking does not stop after detecting the first type conflict, so the returned List contains all the ports
that have type conflicts. This behavior is similar to a regular compiler, where compilation will gener-
ally continue after detecting errors in the source code.
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FIGURE 5.5. Classes in the actor package that support type checking.
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The TypedActor interface declares a typeConstraintList() method, which returns the type con-
straints of this actor. The TypedAtomicActor base class provides a default implementation of this
method, which requires that the type of any.input port with undeclared type must be less than or equal
to the type of any undeclared output port. Ports with declared types are not included in the default con-
straints. If all of an actor’s ports have declared types, no constraints are generated. This default is
appropriate for many type-polymorphic actors such as the Commutator actor, the Multiplexer actor,
and the DownSample actor in figure 5.1. In addition, the typeConstraintList() method also collects all
the constraints from the contained Typeable objects, which are TypedIOPorts and Variables.

The typeConstraintList() method in TypedCompositeActor collects all the constraints for a model,
including the constraints for actors and the constraints for connections between actors. It works in a
similar fashion as the _checkDeclaredTypes() method, by recursively traversing the containment hier-
archy. It also scans all the connections and forms additional type constraints on connections involving
undeclared types. As with _checkDeclaredTypes(), if this method is called on the top level container,
all the type constraints within the entire model are returned.

The Manager class has a resolveTypes() method that performs both type checking and resolution.
It uses the InequalitySolver class in the graph package to solve the constraints. If type conflicts are
detected during type checking or after type resolution, this method throws a TypeConflictException.
This exception contains a list of inequalities where type conflicts occurred. The resolve Types() method
is invoked by the Manager of a model between the preinitialize() and initialize() phases, and after any
mutations are processed.

Run-time type checking is performed in the send() method of TypedIOPort. The checking is sim-
ply a comparison of the type of the token being sent with the resolved type of the port. If the type of the
token is less than or equal to the resolved type, type checking is passed, otherwise, an Illegal ActionEx-
ception is thrown.

Type conversion, if needed, is also done in the send() method. The type of the destination port is
the resolved type of the port containing the receivers that the token is sent to. If the token does not have
that type, the convert() method on that type is called to perform the conversion.

5.4.3 Setting Up Type Constraints

The class Inequality in the graph package is used to represent type constraints. This class refer-
ences two objects implementing the InequalityTerm interface, one for each side of the inequality. The
InequalityTerm interface is implemented by inner classes of TypedlOPort, Variable, ArrayType, and
RecordType, to encapsulate the type of the port, the variable, and the element type of structured types.
In most cases, type constraints can be set up easily through the methods in the Typeable interface. For
example, to constrain that the type of a port to be no greater than Double:

port.setTypeAtMost (BaseType.DOUBLE) ;
to constrain that the type of a port to be no less than the type of a parameter:
port.setTypeRAtLeast (parameter);
to specify that a parameter can only contain an ArrayToken, and to constrain the type of a port to be no
less than the element type of that array:

parameter.setTypeEquals (new ArrayType (BaseType.UNKNOWN) ) ;
ArrayType arrayType = (ArrayType)parameter.getType();
InequalityTerm elementTerm = arrayType.getElementTypeTerm() ;
port.setTypeAtLeast (elementTerm);
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These kinds of constraints appear in source actors such as Clock and Pulse, where the actor outputs a
sequence of values specified by an ArrayToken.

In some actors, simple constraints between variables are not capable of representing the type con-
straints between ports and parameters. In such cases, monotonic functions can be used to specify more
complex type constraints. That is, constraints in the form f(a) < B are admitted, where f(c) is a mono-
tonic function of o, and B can be a constant or a variable. An example of this appears in the Abso-
luteValue actor in the actor library. Here, one of the type constraints is: If the input type is not
Complex, the output type is the same as the input type, otherwise, the output type is Double. This con-
straint can be expressed as f(inputType) < outputType, where

f(inputType) = inputType, if inputType # Complex
f (inputType) = Double, if inputType = Complex.

This function is implemented by an inner class of AbsoluteValue that implements Inequality Term.
The evaluation is done in the getValue() method of InequalityTerm as:

public Object getValue() {

// _port is the input port

Type inputType = port.getType():;

return inputType == BaseType.COMPLEX ? BaseType.DOUBLE : inputType;
}

Directly implementing the InequalityTerm interface is actually rather complex, and is imple-
mented in the same pattern for all monotonic function constraints. The MonotonicFunction base class,
which implements the uninteresting parts of the InequalityTerm interface, allows actors to easily
implement new monotonic function constraints. Lastly, if the methods in Typeable are not sufficient
for specifying complicated constraints, or the default implementation of the typeConstraints() method
in the TypedAtomicActor is not appropriate, this method can be overridden, but this is rarely needed.

5.4.4 Some Implementation Details

The implementation of the structured types is more involved than the base types. This is because
the base types are atomic, but structured types that contain type variables are mutable entities. For
example, the declared type of a port can be {Unknown}, meaning that it is an array of undefined ele-
ment type. After type resolution, that type may be updated to {Double}. Types that are mutable are
variable types. The isConstant() method in Type determines if a type contains a type variable. Type
variables are represented by a type initialized to BaseType. UNKNOWN.

When a typed object is cloned, if its type is a variable structured type, that type must be cloned
because the original and the cloned Typeable objects may have different types in the future. Similarly,
when constructing structured types with variable structured types as element types, the element types
must be cloned. However, constant structured types do not need to be cloned. This means that an
instance of a constant StructuredType can be shared by many objects, but an instance of a variable
StructuredType can only have one user. To ensure this, structured types are always cloned when ports
and parameters that contain them are cloned. This incurs some redundant cloning, but the overhead is
small.

A variable type can be updated to another type, provided that the new type is compatible with the
variable type. For example, a type variable o can be updated to any type, {o.} can be updated to {Inz}.
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However, {a} cannot be updated to Int. If a variable type can be updated to a new type, the new type is
called a substitution instance of the variable type. This term is borrowed from type literature. Formally,
a type is a substitution instance of a variable type if the former can be obtained by substituting the type
variables of the latter to another type. The method isSubstitutionInstance() in the Type base class per-
forms this check.

The updateType() method in StructuredType is used to change the variable element type of a struc-
tured type. For example, if the types of two ports are {Int} and {o} respectively, and a type constraint is
that the second port is no less than the type of the first, that is, {Inf} < {a}, the type resolution algo-
rithm will change the resolved type of the second port to {Inz}. This step cannot be done by simply
changing the type reference in the second port to an instance of {Int}, since type constraints may be set
up between o and another typed objects. Instead, updateType() only changes the type reference for o
to Int.

3.5 Examples

5.5.1 Polymorphic DownSample

In figure 5.1, if the DownSample is designed to do downsampling for any kind of token, its type
constraint is just samplerln < samplerOut, where samplerln and samplerOut are the types of the input
and output ports, respectively. The default type constraints works in this case. Assuming the Display
actor just calls the roString() method of the received tokens and displays the string value in a certain
window, the declared type of its port would be General. Let the declared types on the ports of FFT be
Complex, the The type constraints of this simple application are:

sourceOut < samplerin

samplerin < samplerOut

samplerOut < Complex

Complex < General

Where sourceOut represents the declared type of the Source output. The last constraint does not
involve a type variable, so it is just checked by the static type checker and not included in type resolu-
tion. Depending on the value of sourceOut, the ports on the DownSample actor would be resolved to
different types. Some possibilities are:

¢ If sourceOut = Complex, the resolved types would be samplerin = samplerOut = Complex.

* If sourceOut = Double, the resolved types would be samplerln = samplerOut = Double. At run-
time, Double Tokens sent out from the Source will be passed to the DownSample actor unchanged.
Before they leave the Downsample actor and are sent to the FFT actor, they are converted to Com-
plexTokens by the system. The ComplexToken output from the FFT actor are instances of Token,
which corresponds to the General type, so they are transferred to the input of the Display without
change.

*  If sourceOut = String, the set of type constraints do not have a solution, a typeConflictException
will be thrown by the static type checker.

5.5.2 Fork Connection

Consider two simple topologies in figure 5.6. where a single output is connected to two inputs in
5.6(a) and two outputs are connected to a single input in 5.6(b). Denote the types of the ports by a/, a2,
a3, bl, b2, b3, as indicated in the figure. Some possibilities of legal and illegal type assignments are:
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* In5.6(a),if al =Int, a2 = Double, a3 = Complex. The topology is well typed. At run-time, the
IntToken sent out from actor A1 will be converted to DoubleToken before transferred to A2, and
converted to ComplexToken before transferred to A3. This shows that multiple ports with different
types can be interconnected as long as the type compatibility rule is obeyed.

* In5.6(b),if b1 = Int, b2 = Double, and b3 is undeclared. The the resolved type for 53 will be Dou-
ble. If b1 = Int and b2 = Boolean, the resolved type for b3 will be String since it is the lowest ele-
ment in the type hierarchy that is higher than both /nt and Boolean. In this case, if the actor B3 has
some type constraints that require 43 to be less than String, then type resolution is not possible, a
type conflict will be signaled.

3.6 Actors Constructing Tokens with Structured Types

The SDF domain contains two actors that perform conversion between a sequence of tokens and
an ArrayToken. Type constraints in these actors ensure that the type of the array element is the same as
the type of the sequence tokens. When two SequenceToArray actors are cascaded, the output of the
second actor will be an array of array. Cascading ArrayToSequence with SequenceToArray restores the
sequence. In these actors, the arrayLength parameter determines the size of the produced or consumed
array, and also determines the number of tokens produced or consumed in each firing. If the ArrayTo-
ken received by ArrayToSequence does not have specified length and the enforceArrayLength parame-
ter is true, an exception will be thrown.

bl
al b3
a3 b2

(a) (®

FIGURE 5.6. Two simple topologies with types.

{Double} {{Double}}
ouble
a Double SequenceToArray O—————=() SequenceToArray
source Double
{Double}
{Double} Double
Array ToSequence {ArrayToSequence Recorder
{{Double}} {Double} Double

FIGURE 5.7. Conversion between sequence and array.
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The actor.lib package contains two actors that assemble and disassemble RecordTokens: Recor-
dAssembler and RecordDisassembler. The former assembles tokens from multiple input ports into a
RecordToken and sends it to the output port, the latter does the reverse. The labels in the RecordToken
are the names of the input ports. Type constraints ensure that the type of the record fields is the same as
the type of the corresponding ports.
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Appendix B: The Tpe Resolution Algorithm

The type resolution algorithm starts by assigning all the type variables the bottom element of the
type hierarchy, Unknown, then repeatedly updating the variables to a greater element until all the con-
straints are satisfied, or when the algorithm finds that the set of constraints are not satisfiable. The kind
of inequality constraints the algorithm can determine satisfiability are the ones with the greater term
(the right side of the inequality) being a variable, or a constant. The algorithm allows the left side of
the inequality to contain monotonic functions of the type variables, but not the right side. The first step
of the algorithm is to divide the inequalities into two categories, Cvar and Cchst. The inequalities in
Cvar have a variable on the right side, and the inequalities in Ccnst have a constant on the right side. In
the example of figure 5.3, Cvar consists of:
Int<a
Double < p
asy
B<y

And Censt consists of:
v < Double
y < Complex

The repeated evaluations are only done on Cvar, Censt are used as checks after the iteration is fin-
ished, as we will see later. Before the iteration, all the variables are assigned the value Unknown, and
Cvar looks like:

Int < a(Unknown)
Double < B(Unknown)
o(Unknown) < y(Unknown)
B(Unimown) < y(Unknown)
Where the current value of the variables are inside the parenthesis next to the variable.

At this point, Cvar is further divided into two sets: those inequalities that are not currently satis-
fied, and those that are satisfied:

Not-satisfied Satisfied
Int < o(Unknown) a(Unknown) < y(Unknown)
Double < B(Unknown) B(Unknown) <y(Unknown)

Now comes the update step. The algorithm takes out an arbitrary inequality from the Not-satisfied
set, and forces it to be satisfied by assigning the variable on the right side the least upper bound of the
values of both sides of the inequality. Assuming the algorithm takes out Jnf < o(Unknown), then

o = IntvUnknown = Int 2)

After a is updated, all the inequalities in Cvar containing it are inspected and are switched to either
the Satisfied or Not-satisfied set, if they are not already in the appropriate set. In this example, after
this step, Cvar is:

Not-satisfied Satisfied
Double < B(Unknown) Int < o(Int)
a(Int) < y(Unknown) B(Unknown) < y(Unknown)

The update step is repeated until all the inequalities in Cvar are satisfied. In this example, B and y
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will be updated and the solution is:
a=Int, B=v= Double

Note that there always exists a solution for Cvar. An obvious one is to assign all the variables to
the top element, General, although this solution may not satisfy the constraints in Ccnst. The above
iteration will find the least solution, or the set of most specific types.

After the iteration, the inequalities in Censt are checked based on the current value of the variables.
If all of them are satisfied, a solution to the set of constraints is found.

This algorithm can be viewed as repeated evaluation of a monotonic function, and the solution is
the fixed point of the function. Equation (2) can be viewed as a monotonic function applied to a type
variable. The repeated update of all the type variables can be viewed as the evaluation of a monotonic
function that is the composition of individual functions like (2). The evaluation reaches a fixed point
when a set of type variable assignments satisfying the constraints in Cvar is found..

Rehof and Mogensen [107] proved that the above algorithm is linear time in the number of occur-
rences of symbols in the constraints, and gave an upper bound on the number of basic computations. In
our formulation, the symbols are type constants and type variables, and each constraint contains two
symbols. So the type resolution algorithm is linear in the number of constraints.
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6.1 Overview

The plot package provides classes, applets, and applications for two-dimensional graphical display
of data. It is available in a stand-alone distribution, or as part of the Ptolemy II system.

There are several ways to use the classes in the plot package:

*  You can use one of several domain-polymorphic actors in a Ptolemy II model to plot data that is
provided as an input to the actor.

*  You can invoke an executable, ptplot, which is a shell script, to plot data in a local file or on the
network (via a URL).

*  Youcan invoke an executable, histogram which is a shell script, to plot histograms of data in a
local file or on the network (via a URL)

*  Youcan invoke an executable, pxgraph, which is a shell script, to plot data that is stored in an
ascii or binary format compatible with the older program pxgraph, which is an extension of
David Harrison’s xgraph.

*  Youcan invoke a Java application, such as PlotMLApplication, by using the java program that is
included in your Java distribution.

*  You can use an existing applet class, such as PlotMLApplet, in an HTML file. The applet parame-
ter dataurl specifies the source of plot data. You do not even have to have Ptplot installed on
your server, since you can always reference the Berkeley installation.

*  Youcan create new classes derived from applet, frame, or application classes to customize your
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plots. This allows you to completely control the placement of plots on the screen, and to write Java
code that defines the data to be plotted.

The plot data can be specified in any of three data formats:

* PlotML is an XML extension for plot data. Its syntax is similar to that of HTML. XML (extensible
markup language) is an internet language that is growing rapidly in popularity.

*  An older, simpler textual syntax for plot data is also provided, although in the long term, that syn-
tax is unlikely to be maintained (it will not necessarily be expanded to support new features). For
simple data plots, however, it is adequate. Using it for applets has the advantage of making it pos-
sible to reference a slightly smaller jar file containing the code, which makes for more responsive
applets. Also, the data files are somewhat smaller.

* A binary file format used by pxgraph, is supported by classes in the compat package. Formatting
information in pxgraph (and in the compat package) is provided by command-line arguments,
rather than being included with the binary plot data, exactly as in the older program. Applets spec-
ify these command-line arguments as an applet parameter (pxgraphargs).

6.2 Using Plots

If $PTII represents the home directory of your Ptplot installation (or your Ptolemy Il installation),
then, $PTIl/bin is a directory that contains a number of executables. Three of these invoke plot applica-
tions, ptplot, histogram, and pxgraph. We recommend putting this directory into your path so
that these executables can be found automatically from the command line. Invoking the command

ptplot

with no arguments should open a window that looks like that in figure 6.1. You can also specify a file
to plot as a command-line argument. To find out about command-line options, type

ptplot -help
The ptplot command is a shell script that invokes the following equivalent command:

java -classpath S$PTII ptolemy.plot.plotml.EditablePlotMLApplication

Since it is a shell script, it will work on Unix machines and Windows machines that have Cygwin'
installed. In the same directory are three Windows versions that do not require Cygwin, ptplot.bat,
histogram.bat, and pxgraph.bat, which you can invoke by typing into the DOS command
prompt, for example,

ptplot.bat

1. The 1.3.x version of the Cygwin Toolkit is a freely available package available from
http://cygwin.com. A Ptolemy I specific version of Cygwin can be found at
http://ptolemy eecs.berkeley.eduw/ptolemyIl/ptiIlatest/cygwin.htm
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These scripts make three assumptions.

*  First, java is in your path. Type “Java -version” to verify that the java program is in your
path and is working properly. Note that Ptplot 3.x and later require Java 1.1 or later, Java 1.3 is pre-
ferred.

*  Second, the environment variable PTII is set to point to the home directory of the plot (or Ptolemy
IT) installation. Type “echo 2PTI1%” in a Windows DOS shell and “echo $PTII” in Unix or
Windows Cygwin bash shell to check this.

*  The directory $PTII/bin is in your path. Under Windows without Cygwin, type “echo %PATHS™.
Type “type ptplot”in Windows with Cygwin and “which ptplot™ in Unix to check this.

In Windows, environment variables and your path are set in the System control panel. You can now

explore a number of features of ptplot.

6.2.1 Zooming and filling

To zoom in, drag the left mouse button down and to the right to draw a box around an area that you
want to see in detail, as shown in figure 6.2. To zoom out, drag the left mouse button up and to the
right. To just fill the drawing area with the available data, type Control-F, or invoke the fill command
from the Special menu. In applets, since there is no menu, the fill command is (optionally) made avail-
able as a button at the upper right of the plot.

6.2.2 Printing and exporting

The File menu includes a Print and Export command. The Print command works as you expect.
The export command produces an encapsulated PostScript file (EPS) suitable for inclusion in word
processors. The image in figure 6.3 is such an EPS file imported into FrameMaker.

At this time, the EPS file does not include preview data. This can make it somewhat awkward to

FIGURE 6.1. Result of invoking piplot on the command line with no arguments.
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work with in a word processor, since it will not be displayed by the word processor  * ‘le editing (it
will, however, print correctly). It is easy to add the preview data using the freely a = able program
Ghostview!. Just open the file using Ghostview and, under the edit menu, select “Add EPS Preview.”

Export facilities are also available from a small set of key bindings, which permits them to be

FIGURE 6.2. To zoom in, drag the left mouse button down and to the right to draw a box around the region
you wish to see in more detail.

1. Ghostview is available http://www.cs.wisc.edw/~ghost
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invoked from applets (which have no menu bar) and from the standalone scripts:

*  Control-c: Copy plot to clipboard (EPS format), if permitted.

*  D: Dump the plot to standard output in PlotML format.

» E: Export the plot to standard output in EPS format.

» F:Fill the plot.

* Hor ?: Display a simple help message.

* Control-d or q: Quit

The encapsulated PostScript (EPS) that is produced is tuned for black-and-white printers. In the
future, more formats may supported. . Also at this time (JDK 1.3.0 under Windows 2000), Java's inter-
face the clipboard may not work, so Control-C might not accomplish anything. Note further that with
applets, you may find it best to click near the title rather than clicking inside the graph itself and then
type the command.

Exporting to the clipboard and to standard output, in theory, is allowed for applets, unlike writing
to a file. Thus, these key bindings provide a simple mechanism to obtain a high-resolution image of the
plot from an applet, suitable for incorporation in a document. However, in some browsers, exporting to
standard out triggers a security violation. You can use Sun's appletviewer instead.

6.2.3 Editing the data

You can modify the data that is plotted by first selecting a data set to modify using the Edit dataset
command in the Edit menu, selecting a dataset and then dragging the right mouse button. Figure 6.4
shows the result of modifying one of the datasets (the one in red on a color display). The modification
is carried out by freehand drawing, although considerable precision is possible by zooming in. Use the
Save or SaveAs command in the File menu to save the modified plot (in PlotML format).

Sample plot

v a0

pa

time x1 02

FIGURE 6.3. Encapsulated postscript generated by the Export command in the File menu of ptplot can be
imported into word processors. This figure was imported into FrameMaker.
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6.2.4 Modifying the format

You can control how data is displayed by invoking the Format command in the Edit menu. This
brings up a dialog like that at bottom in figure 6.5. At the top is the dialog and the plot before changes
are made, and at the bottom is after changes are made. In particular, the grid has been removed, the
stems have been removed, the lines connecting the data points have been removed, the data points
have been rendered with points, and the color has been removed. Use the Save or SaveAs command in
the File menu to save the modified plot (in PlotML format). More sophisticated control over the plot
can be had by editing the PlotML file (which is a text file). The PlotML syntax is described below.

The entries in the format dialog are all straightforward to use except the “X Ticks™ and “Y Ticks”
entries. These are used to specify how the axes are labeled. The tick marks for the axes are usually
computed automatically from the ranges of the data. Every attempt is made to choose reasonable posi-
tions for the tick marks regardless of the data ranges (powers of ten multiplied by 1, 2, or 5 are used).
To change what tick marks are included and how they are labeled, enter into the “X Ticks” or “Y
Ticks” entry boxes a string of the following form:

label position, label position,

A label is a string that must be surrounded by quotation marks if it contains any spaces. A position is a
number giving the location of the tick mark along the axis. For example, a horizontal axis for a fre-
quency domain plot might have tick marks as follows:

FIGURE 6.4. You can modify the data being plotted by selecting a data set and then dragging the right mouse
button. Use the Edit menu to select a data set. Use the Save command in the File menu to save the modified

plot (in PlotML format).
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XTicks: -PI -3.14159, -PI/2 -1.570795, 0 0, PI/2 1.570795, PI 3.14159

Tick marks could also denote years, months, days of the week, etc.

6.3 Class Structure

The plot package has two subpackages, plotml and compat. The core package, plot, contains tool-
kit classes, which are used in Java programs as building blocks. The two subpackages contain classes
that are usable by an end-user (vs. a programmer).

Sampleplot
ime

value

0.0,100.0

0.0, PU21.5707963267948966, Pl 3.141592653589793

FIGURE 6.5. You can control how data is displayed using the Format command in the Edit menu, which
brings up the dialog shown at the right. On the top is before changes are made, and on the bottom is after.
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6.3.1 Toolkit classes

The class diagram for the core of the plot package is shown in figure 6.6. These classes provide a
toolkit for constructing plotting applications and applets. The base class is PlotBox, which renders the
axes and the title. It extends Panel, a basic container class in Java. Consequently, plots can be incorpo-
rated into virtually any Java-based user interface.

The Plot class extends PlotBox with data sets, which are collections of instances of PlotPoint. The
EditablePlot class extends this further by adding the ability to modify data sets.

Live (animated) data plots are supported by the PlotLive class. This class is abstract; a derived
class must be created to generate the data to plot (or collect it from some other application).

The Histogram class extends PlotBox rather than Plot because many of the facilities of Plot are
irrelevant. This class computes and displays a histogram from a data file. The same data file can be
read by this class and the other plot classes, so you can plot both the histogram and the raw data that is
used to generate it from the same file.

6.3.2 Applets and applications

A number of classes are provided to use the plot toolkit classes in common ways, but you should
keep in mind that these classes are by no means comprehensive. Many interesting uses of the plot
package involve writing Java code to create customized user interfaces that include one or more plots.
The most commonly used built-in classes are those in the plotml package, which can read PlotML
files, as well as the older textual syntax.

Ptplot 5.3, which shipped with Ptolemy II 3.0 requires Swing. The easiest way to get Swing is to
install the Java 1.4 (or later) Plug-in, which is part of the JRE and JDK 1.4 installation. Unfortunately,
using the Java Plug-in makes the applet HTML more complex. There are two choices:

1. Use fairly complex JavaScript to determine which browser is running and then to properly select
one of three different ways to invoke the Java Plug-in. This method works on the most different
types of platforms and browsers. The JavaScript is so complex, that rather than reproduce it here,
please see one of the demonstration html files.

2. Use the much simpler <applet> ...</applet> tag to invoke the Java Plug-in. This method works on
many platforms and browsers, but requires a more recent version of the Java Plug-in, and will not
work under Netscape Communicator 4.7x.

For details about the above two choices, see http://java.sun.com/products/plugin/versions.html.
We document the much simpler <applet> . . . </applet> tag format below

The following segment of HTML is an example:

<APFLET
code = "ptolemy.plot.plotml.FlotMLApplet™

codebase = "../../.."

archive = "ptolemy/plot/plotmlapplet.jar®

width = "600"

height = "400"

>
<PARAM NAME = "background" VALUE = "f§fafOes" >
<PARAM NAME = "dataurl" VALUE = "plctmlSample.txt” >

No Java Plug-in support for applet, see

<a htef="http://java.sun.com/products/plugin/"><:ode>http://java.sun.com/products/plugin/</code></a>
</AFFLET>

To use this yourself you will probably need to change the codebase and dataur! entries. The first points
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Pane!

PlotBox

... . various

+PiotBox()
+addlegend(dataset : Int, legend : String)
[+addXTick(tabel : String, position : double)
+addYTick(label : String, position : double)
+clear(axes : boolean)

+clearLegends()

+deferifNecessary{action : Runnable)

[ +export{out eam)
+exportimage() : Bmﬁeredlmage

B'-‘ dimag

:(Image, : gle, hints : R

+ex§orﬂma§e(]mg : Buffe
rtimage(img : Bufferedimage) : B 9

gHints, transp : boolean) : Bufferedimage

O -

+#HlIPlot()
H+getColor() : boolean
[+getColerByName(name : String) : Color
+getGrid() : boolean
[+getlegend(dataset : int) : String
+getMaximumSize() : Dimension
[+getMinimumSize() : Dimension
[+getPreferredSize() : Dimension
+ge(Titie() : String

[+getXLabel() : String

[+getXLog() : boolean

+getXRange() : doublef]

+getXTicks() : Vector])

+getyLabek) : String

+getyLog() : boolean

+getYRange() : doublef}

+getYTicks() : Vector(]

+prini(g : Graphics, format : PageFormat, index : int)
+read(in : InputStream)

+read(line : String)

+resetAxes()

+removelegend(dataset : int)
+samplePlot()

+setBackground(color : Color)
+setBounds(x : int, y : int, width : int, height : int)
+setButtons(visible : boclean)
{+setForeground(color : Color)
+setGrid{grid : boolean)
+setlabelFont{fontname : String)
[+setSize(width : int, height : int)
+setTitle(ttle : String)
+sefTitleFont{fontname : String)
[+setWrap(wrap : boolean)
+setXLabel(tabel : String)

+setXLog(log : boolean)
+setXRange(min : double, max : double)
+setYLabel(label : String)

+setYLog(log : boolean)
+setYRange(min : double, max : double)
+write{out : CutputStream)

|#write(out : OutputStream, dtd : String)
+write{out : Writer, dtd : String)
+writeData(output : Printwriter)
+writeFormat{out : Writer)

#_drawPlot(g : Graphics, clearfirst :

4_help()
#_parseline(tine : String)
{#_setPadding(padding : double)
_200m{x :int, y : int)
_zoomBox(x : int, y : int)
_2zoomStant(x : int, y - int)

Plot

-... . various

+Plot()

(+addPolint(dataset . int, X : double, y : double, connected : boolean)

+addPolntWithErrorBars({ds : int, x : double, y : double, yLow : double, yHigh : double, cnct : boclean)
+clear(dataset : int)

|+erasePoint{dataset : int, index : int)

+getConnected() : boolean
+getimpuises() : bootean
+getMarksStyle() : String
[+rgetNumDataSets() : Int

+setBars(on : boolean)

+setBars(width | double, offset: double)
+setConnected{on : boolezan)
+setConnected{on : boolean, dataset : int)
+setimpulses{on : boolean)
+setimpuises(on : boolean, dataset : int)
+setMarksStyle(style : String)

| +setMarksStyle(style . String, dataset : int)
+setPolntsPersistence(numPoints : int)
+setReuseDatasets(on : boolean)

+36tXP
i checkDataseundex(daaset int)
[ _di 1(g : Grapht sint, x: long, y : long, clip : boolean)

X drawEmrBar(g Gmphm dataset : int, x : long, ylow : long, yhigh : long, clip : boolean)
(g: d: cint, x:tong, ¥ : long, dlip : boolean)

dmwt.lne(g Graphlw dataset ; int, startx : long, starty : long, endx : long, endy : long, clip : boolean)
_drawPlol(g : Grapl rirst :

¢ drawPoint(g : Graphics dataset :int, x : Icng.y tong, clip : boctean)

t_parseLine{tine : String) : boolean

¢ write(output : PrintWriter)

#zoom(!owx double, lowy : double, hnghx double, highy : double)

[#_drawPoint(g : Guapnics set: int, x: long, y long, clip : boolean)
#_drawPlol(g : Graphics, clear : beolean, drawRect : Rectangle)

preemensssnssnessssenes. . PlotPoint
+x : double
EditablePlot +y : double
re) +yLowEB : double
_recoStack : Stack [+yHIghEB : double
-_undoStack : Stack :
-_editListeners : Vector +errorBar - boolean
+EdRtablePloy) [+originalX : double
+addEditListener(listener : EditListener) [+PlotPoint()
+getData(dataset : int) : double[}{)
+redo(}
+removeEditListener(listener : EditListener) PlotLive
+setEditable(dataset : int}
[tundo) [ plotLiveThread : T hread
I -... . various
+addPoints()
+pause()
Histogram +setButtons{visible : boolean)
+start()
-... . various +stop()
+addPeint{dataset : int, value : double)
+addPoint(dataset : int, x : double, y : double, connected : boolean)
+setBars(width : double. offset : double) EdiListener
+setBinCffset{offset . doubie)
+setBinWidth(width : double)
[#_checkDatasetindex(index : int) e —_ —
#_drawBar(g : Graphics, dataset : int, xpos : long, ypos : long, ¢iip : boolean)|  L*edD: ditied( : EditablePlot dataset : it

FIGURE 6.6. The core classes of the plot package.
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to the root directory of the plot installation (usually, the value of the PTII environment variable). The
second points to a file containing data to be plotted, plus optional formatting information. The file for-
mat for the data is described in the next section. The applet is created by instantiating the PlotMLAp-
plet class.

The archive entry contains the name of the jar file that contains all the classes necessary to run a
PlotML applet. The advantage of specifying a jar file is that remote users are likely to experience a
faster download because all the classes come over at once, rather than the browser asking for each
class from the server. A downside of using jar files in applets is that if you are modifying the source of
Ptplot itself, then you must also update the jar file, or your changes will not appear. A common
workaround is to remove the archive entry during testing, or remove the jar files themselves.

You can also easily create your own applet classes that include one or more plots. As shown in fig-
ure 6.6, the PlotBox class is derived from JPanel, a basic class of the Java Foundation Classes (JFO)
toolkit, also known as Swing. It is easy to place a panel in an applet, positioned however you like, and
to combine multiple panels into an applet. PlotApplet is a simple class that adds an instance of Plot.

Creating an application that includes one or more plots is also easy. The PlotApplication class,
shown in figure 6.7, creates a single top-level window (a JFrame), and places within it an instance of
Plot. This class is derived from the PlotFrame class, which provides a menu that contains a set of com-
mands, including opening files, saving the plotted data to a file, printing, etc.

The difference between PlotFrame and PlotApplication is that PlotApplication includes a main()
method, and is designed to be invoked from the command line. You can invoke it using commands like
the following:

java -classpath S$PTII ptolemy.plot.PlotApplication args

However, the classes shown in figure 6.7, which are in the plot package, are not usually the ones that
an end user will use. Instead, use the ones in figure 6.8. These extend the base classes to support the
PlotML language, described below. The only motivation for using the base classes in figure 6.7 is to
have a slightly smaller jar file to load for applets.

The classes that end users are likely to use, shown in figure 6.8, include:

*  PlotMLApplet: An applet that can read PlotML files off the web and render them.

*  EditablePlotMLApplet: A version that allows editing of any data set in the plot.

* HistogramMLApplet: A version that uses the Histogram class to compute and plot histograms.
*  PlotMLFrame: A top-level window containing a plot defined by a PlotML file.

*  PlotMLApplication: An application that can be invoked from the command line and reads PlotML
files.

*  EditablePlotMLApplication: An extension that allows editing of any data set in the plot.

* HistogramMLApplication: A version that uses the Histogram class to compute and plot histo-
grams,

EditablePlotMLApplication is the class invoked by the ptplot command-line script. It can open plot
files, edit them, print them, and save them.
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6.3.3 Writing applets

A plot can be easily embedded within an applet, although there are some subtleties. The simplest
mechanism looks like this:

public class MyApplet extends JApplet {
public void init() {
super.init();
Plot myplot = new Plot():
getContentPane () .add (myplot):

Frame

—

PlotFrame

[+plot : Plot
+PlotFrame()
+PlotFrameqtitle : String)
[+PlotFrame(title : String, plot : PlotBox)
+samplePlot()

i_about()

#_close()

_editFormat()

t_export()

¢_helpQ)

¢ open()

¢_print()

_read(input : InputStream, base : URL

PlotBox

tee. ........l ........... Plg{App"ca‘]on
5 Applet

+PlotApplication()

Histogram Plot +PlotApplication(title : String)
+PlotApplication(plot : PlotBox, args : String{])|

: +main(args : String) +init)
[#_parseArgs() : int ’9

#_usage() : String

PlotApplet

|-_plot : Plot

+PlotApplet()

+newPlot() : PlotBox

+plot() : Plot

#_read(input : InputStream)
#_setPlotSize(appletWidth : int, appletHeight : int)

EditablePlot PlotLIve

PlotLiveApplet

+PlotLiveA pplet()

FIGURE 6.7. Core classes supporting applets and applications. Most of the time, you will use the cldsses in
the plotml package, which extend these with the ability to read PlotML files.
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com.misiustar.xml package

XmiParser

HandlerBase +parse(systemld : String, publicld : String, stream ; InputStream, encoding : String);

+setHandler(handler : Xm{Handler)

+attribute(name : String, value : String, specified - boolean)
+charData(chars : charf], offset : int, length : int)
+endDocument() XmIException
+endElement(elementName : String)

+eror(message : String, sysid : String, lina : int, column : int)
+resolveEntity(systemid : String, publicld : String) : Object

+statDocument() +XmiException(message : String, systemid : String, line : int, column : int),
+startEloment(elementName : String) +gegessage() - String
+stantExternalEntity(systemid : String) :gzux:‘sgarfl::to : String

i+getColumn()

PlotBoxMLParser

handler

+PlotML_DTD_1 : String
_attributes : Hashtable
f_currentCharData : StringBuffer
_parser : XmiParser

}_plot : PlotBox
PlotBoxMLParser() throws
+PlotBoxMLParser(plot : PlotBox) plot package
+parse(base : URL, input : InputStream)
+parse(base : URL, reader : Reader) PlotBox
+parse(base : URL, text : String)
#_checkForNull(object : Object, message : String)
b_currentExternalEntity() : String configures

PlotApplet

P e o~

+_read(input : InputStream);

PlotMLParser R

H o Plot PlotApplication
':_connected " boolean : ;

S S
#_currentDataset : int IR H :
_currentPaintCount - double configures H h

H H +main(args : String[])
+PlotMLParser() P TTTrmmeemsasseseeaee ' i#_about()

+PlotMLParser{plot : Plot) #_read(base : URL, input : InputStream)
{#_addPoint(connected : boolean, elementName : Smng)] N

i PlotMLApplet

EditablePlotMLApplet
-
+PlotMLApplet()
+EditablePlotMLApplet() #_newParser() : PlotMLParser]
HistgramMLParser
HistogramMLApplet PlotMLApplication
|*HistogramMLParser(plot : Histogram)
+HistogramMLApplet(} +PlotMLApplication()
+PlotMLApplication(args : String[])
EditablePlotMLApplication +PlotMLApplication(plot : PlotBox, args : String]))|
[#_newParser() : PlotBoxMLParser

+EditablePlotMLApplication()

+EditablePlotMLApplication(args : String() HistogramMLApplication
+EditablePlotMLApplication(plot : EditablePlot, args : String[))

+HistogramMLApplication()
+HistogramMLA pplication(args : String[})
[*HistogramMLApplication(plot : Histogram, args - Stnngf))

FIGURE 6.8. UML static structure diagram for the plotml package, a subpackage of plot providing classes
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myplot.setTitle("Title of plot");

}

This places the plot in the center of the applet space, stretching it to fill the space available. To control
the size independently of that of the applet, for some mysterious reason that only Sun can answer, itis
necessary to embed the plot in a panel, as follows:

public class MyApplet extends JApplet {

public void init() {
super.init{();
Plot myplot = new Plot():;
JPanel panel = new JPanel{();
getContentPane () .add(panel);
panel.add (myplot) ;
nmyplot.setSize (500, 300);
myplot.setTitle("Title of plot");

]

The setSize() method specifies the width and height in pixels. You will probably want to control the
background color and/or the border, using statements like:

myplot.setBackground (background color);
myplot.setBorder (new BevelBorder (BevelBorder.RAISED));

Alternatively, you may want to make the plot transparent, which results in the background showing
through:

myplot.setOpaque(false);

6.4 PlotML File Format

Plots can be specified as textual data in a language called PlotML, which is an XML extension.
XML, the popular extensible markup language, provides a standard syntax and a standard way of
defining the content within that syntax. The syntax is a subset of SGML, and is similar to HTML. It is
intended for use on the internet. Plot classes can save data in this format (in fact, the Save operation
always saves data in this format), and the classes in the plotml subpackage, shown in figure 6.8, can
read data in this format. The key classes supporting this syntax are PlotBoxMLParser, which parses a
subset of PlotML supported by the PlotBox class, PlotMLParser, which parses the subset of PlotML
supported by the Plot class, and HistogramMLParser, which parses the subset that supports histo-
grams.
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6.4.1 Data organization

Plot data in PlotML has two parts, one containing the plot data, including format information (how
the plot looks), and the other defining the PlotML language. The latter part is called the document type
definition, or DTD. This dual specification of content and structure is a key XML innovation.

Every PlotML file must either contain or refer to a DTD. The simplest way to do this is with the
following file structure:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE model PUBLIC "-//UC Berkeley//DTD PlotML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/PlotML_l.dtd">
<plot>
format commands...
datasets...
</plot>

Here, “format commands” is a set of XML elements that specify what the plot looks like, and
“datasets” is a set of XML elements giving the data to plot. The syntax for these elements is described
below in subsequent sections. The first line above is a required part of any XML file. It asserts the ver-
sion of XML that this file is based on (1.0) and states that the file includes external references (in this
case, to the DTD). The second and third lines declare the document type (plot) and provide references
to the DTD.

The references to the DTD above refer to a “public” DTD. The name of the DTD is
-//UC Berkeley//DTD PlotML 1//EN

which follows the standard naming convention of public DTDs. The leading dash “-” indicates that
this is not a DTD approved by any standards body. The first field, surrounded by double slashes, in the
name of the “owner” of the DTD, “Uc Berkeley.” The next field is the name of the DTD, “DpTD
PlotML 17 where the “1” indicates version 1 of the PlotML DTD. The final field, “EN" indicates that
the language assumed by the DTD is English.

In addition to the name of the DTD, the bocTYPE element includes a URL pointing to a copy of
the DTD on the web. If a particular PlotML tool does not have access to a local copy of the DTD, then
it finds it at this web site. PtPlot recognizes the public DTD, and uses its own local version of the DTD,
so it does not need to visit this website in order to open a PlotML file.

An alternative way to specify the DTD is:

<?xXml version="1.0" standalone="no"?>
<!DOCTYPE plot SYSTEM "DTD location">
<plot>

format commands. . .

datasets...
</plot>

Here, the DTD location is a relative or absolute URL.

A third alternative is to create a standalone PlotML file that includes the DTD. The result is rather
verbose, but has the general structure shown below: '
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<?xml version="1.0" standalone="yes"?>
<!DOCTYPE plot [
DTD information
1>
<plot>
format commands
datasets
</plot>

These latter two methods are useful if you extend the DTD.

The DTD for PlotML is shown in figure 6.9. This defines the PlotML language. However, the
DTD is not particularly easy to read, so we define the language below in a more tutorial fashion.

6.4.2 Configuring the axes
The elements described in this subsection are understood by the base class PlotBoxMLParser.

<title>Your Text Here</title>

The title is bracketed by the start element <title> and end element </title>. In XML, end ele-
ments are always the same as the start element, except for the slash. The DTD for this is simple:

<!ELEMENT title (#PCDATA)>

This declares that the body consists of PCDATA, parsed character data.
Labels for the X and Y axes are similar,

<xLabel>Your Text Here</xLabel>
<yLabel>Your Text Here</yLabel>

Unlike HTML, in XML, case is important. So the element is xLabel not XLabel.

The ranges of the X and Y axes can be optionally given by:

<XRange min="min" max="max"/>
<yRange min="min" max="max"/>

The arguments min and max are numbers, possibly including a sign and a decimal point. If they are not
specified, then the ranges are computed automatically from the data and padded slightly so that
datapoints are not plotted on the axes. The DTD for these looks like:

<!ELEMENT xRange EMPTY>
<!ATTLIST xRange min CDATA #REQUIRED
max CDATA #REQUIRED>

The EMPTY means that the element does not have a separate start and end part, but rather has a final
slash before the closing character “/>”. The two ATTLIST elements declare that min and max
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xLog | xRange | xTicks | yLabel | yYLog | yRange | yTicks)*>
<{ELEMENT barGraph EMPTY>
<!ATTLIST barGraph width CDATA #IMPLIED
offset CDATA #IMPLIED>
<!ELEMENT bin EMPTY>
<!ATTLIST bin width CDATA #IMPLIED
offset CDATA #IMPLIED>
<!ELEMENT dataset (m | move | p | point) *>
<!ATTLIST dataset connected (yes | no) #IMPLIED
marks (none | dots | points | various | pixels) #IMPLIED
name CDATA #IMPLIED
stems (yes |} no) #IMPLIED>
<!ELEMENT default EMPTY>
<!ATTLIST default connected (yes | no) "yes"
marks (none | dots | points | various | pixels) "none"
stems (yes | no) "no™>
<!ELEMENT noColor EMPTY>
<!ELEMENT noGrid EMPTY>
<!ELEMENT reuseDatasets EMPTY>
<!ELEMENT size EMPTY>
<!ATTLIST size height CDATA #REQUIRED
width CDATA #REQUIRED>
<!ELEMENT title (#PCDATA}>
<!ELEMENT wrap EMPTY>
<!ELEMENT xLabel (§PCDATA)>
<!ELEMENT xLog EMPTY>
<!ELEMENT xRange EMPTY>
<!ATTLIST xRange min CDATA ¥REQUIRED
max CDATA #REQUIRED>
<!ELEMENT xTicks (tick)+>
<!ELEMENT yLabel (#PCDATA)>
<!{ELEMENT yLog EMPTY>
<!ELEMENT yRange EMPTY>
<!ATTLIST yRange min CDATA #REQUIRED
max CDATA #REQUIRED>
<!ELEMENT yTicks (tick)+>
<!ELEMENT tick EMPTY>
<IATTLIST tick label CDATA #REQUIRED
position CDATA $REQUIRED>
<!ELEMENT m EMPTY>
<!ATTLIST m x CDATA $IMFLIED
y CDATA $REQUIRED
lowErrcrBar CDATA ¥IMPLIED
highErrcrBar CDATA §IMFLIED>
<!ELEMENT move EMFTY>
<!ATTLIST move x CDATA #IMELIED
y CDATA #REQUIRED
lowErrorBar CDATA #IMELIED
highErrorBar CDATA #IMPLIED>
<!ELEMENT p EMPTY>
<!ATTLIST p x CDATA #IMFLIED
y CDATA #REQUIRED
lowErrorBar CDATA #IMPLIED
highErrorBar CDATA #IMFLIED>
<!ELEMENT pcint EMPTY>
<!ATTLIST point x CDATA #IMPLIED
v CDATA #REQUIRED
lowErrorBar CDATA #IMPLIED
highErrorBar CDATA §IMPLIED>

<!ELEMENT plot (barGraph | bin | dataset | default | noColor | noGrid | size | title | wrap | xLabel |

FIGURE 6.9. The document type definition (DTD) for the PlotML language.
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attributes are required, and that they consist of character data.

The tick marks for the axes are usually computed automatically from the ranges. Every attempt is
made to choose reasonable positions for the tick marks regardless of the data ranges (powers of ten
multiplied by 1, 2, or 5 are used). However, they can also be specified explicitly using elements like:

<XTicks>
<tick label="label" position="position"/>
<tick label="label" position="position"/>

</XTicks>

A label is a string that replaces the number labels on the axes. A position is a number giving the loca-
tion of the tick mark along the axis. For example, a horizontal axis for a frequency domain plot might
have tick marks as follows:

<xTicks>
<tick label="-PI" position="-3.14159"/>
<tick label="-PI/2" position="-1.570795"/>
<tick label="0" position="0"/>
<tick label="PI/2" position="1.570795"/>
<tick label="PI" position="3.14159"/>
</xTicks>

Tick marks could also denote years, months, days of the week, etc. The relevant DTD information is:

<!ELEMENT xTicks (tick)+>
<!ELEMENT tick EMPTY>
<!ATTLIST tick label CDATA #REQUIRED
position CDATA #REQUIRED>

The notation (tick) + indicates that the xTicks element contains one or more tick elements.

If ticks are not specified, then the X and Y axes can use a logarithmic scale with the following ele-
ments:

<xLog/>
<yLog/>

The tick labels, which are computed automatically, represent powers of 10. The log axis facility has a
number of limitations, which are documented in “Limitations” on page 6-126.

By default, tick marks are connected by a light grey background grid. This grid can be tuned off
with the following element:

<noGrid/>

Also, by default, the first ten data sets are shown each in a unique color. The use of color can be turned
off with the element:
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<noColor/>

Finally, the rather specialized element

<wrap/>

enables wrapping of the X (horizontal) axis, which means that if a point is added with X out of range,
its X value will be modified modulo the range so that it lies in range. This command only has an effect
if the X range has been set explicitly. It is designed specifically to support oscilloscope-like behavior,
where the X value of points is increasing, but the display wraps it around to left. A point that lands on
the right edge of the X range is repeated on the left edge to give a better sense of continuity. The fea-
ture works best when points do land precisely on the edge, and are plotted from left to right, increasing
in X.
You can also specify the size of the plot, in pixels, as in the following example:

<size width="400" height="300">

All of the above commands can also be invoked directly by calling the corresponding public meth-
ods from Java code.

6.4.3 Configuring data

Each data set has the form of the following example

<dataset name="grades" marks="dots" connected="no" stems="no">
data
</dataset>

All of the arguments to the dataset element are optional. The name, if given, will appear in a legend
at the upper right of the plot. The marks option can take one of the following values:

* none: (the default) No mark is drawn for each data point.
* points: A small point identifies each data point.
* dots: A larger circle identifies each data point.

* various: Each dataset is drawn with a unique identifying mark. There are 10 such marks, so they
will be recycled after the first 10 data sets.

* pixels: A single pixel identified each data point.

The connected argument can take on the values “yes” and “no.” It determines whether successive
datapoints are connected by a line. The default is that they are. Finally, the stems argument, which can
also take on the values “yes” and “no,” specifies whether stems should be drawn. Stems are lines
drawn from a plotted point down to the x axis. Plots with stems are often called “stem plots.”

The DTD is:

<!ELEMENT dataset (m | move | p | point)*>
<!ATTLIST dataset connected (yes | no) #IMPLIED
marks (none | dots | points | various | pixels) #IMPLIED
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name CDATA #IMPLIED
stems (yes | no) #IMPLIED>

The default values of these arguments can be changed by preceding the dataset elements with a
default element, as in the following example:

<default connected="no" marks="dots" stems="yes"/>
The DTD for this element is:

<!ELEMENT default EMPTY>

<!ATTLIST default connected (yes | no) "yes"
marks (none | dots | points | various | pixels) "none"
stems (yes | no) "no">

If the following element occurs:

<reuseDatasets/>

then datasets with the same name will be merged. This makes it easier to combine multiple data files
that contain the same datasets into one file. By default, this capability is tumed off, so datasets with the
same name are not merged.

6.4.4 Specifying data
A dataset has the form

<dataset options>
data
</dataset>

The data itself are given by a sequence of elements with one of the following forms:

<point y="yValue">

<point x="xValue" y="yValue">

<point y="yValue" lowErrorBar="low" highErrorBar="high">

<point x="xValue" y="yValue" lowErrorBar="low" highErrorBar="high">

To reduce file size somewhat, they can also be given as

<p y="yValue">

<p x="xValue" y="yValue">

<p y="yValue" lowErrorBar="low" highErrorBar="high">

<p x="xValue" y="yValue" lowErrorBar="low" highErrorBar="high">

The first form specifies only a Y value. The X value is implied (it is the count of points seen before in
this data set). The second form gives both the X and Y values. The third and fourth forms give low and
high error bar positions (error bars are use to indicate a range of values with one data point). Points
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given using the syntax above will be connected by lines if the connected option has been given value
“yes” (or if nothing has been said about it).

Data points may also be specified using one of the following forms:

<move y="yValue">

<move x="xValue" y="yValue">

<move y="yValue" lowErrorBar="low" highErrorBar="high">

<move x="xValue" y="yValue" lowErrorBar="low" highErrorBar="high">

<m y="yValue">

<m x="xValue" y="yValue">

<m y="yValue" lowErrorBar="low" highErrorBar="high">

<m x="xValue" y="yValue" lowErrorBar="low" highErrorBar="high">

This causes a break in connected points, if lines are being drawn between points. Le., it overrides the
connected option for the particular data point being specified, and prevents that point from being
connected to the previous point.

6.4.5 Bar graphs

To create a bar graph, use:

<barGraph width="barWidth" offset="barOffset"/>

You will also probably want the connected option to have value “no.” The barWidth is a real num-
ber specifying the width of the bars in the units of the X axis. The baroffset is a real number speci-
fying how much the bar of the i-th data set is offset from the previous one. This allows bars to “peek
out” from behind the ones in front. Note that the front-most data set will be the first one.

6.4.6 Histograms

To configure a histogram on a set of data, use

<bin width="binWidth" offset="binOffset"/>

The binwidth option gives the width of a histogram bin. Le., all data values within one binwidth
are counted together. The binoffset value is exactly like the baroffset option in bar graphs. It
specifies by how much successive histograms “peek out.”

Histograms work only on Y data; X data is ignored.

6.5 Old Textual File Format

Instances of the PlotBox and Plot classes can read a simple file format that specifies the data to be
plotted. This file format predates the PlotML format, and is preserved primarily for backward compat-
ibility. In addition, it is significantly more concise than the PlotML syntax, which can be advanta-
geous, particularly in networked applications.

In this older syntax, each file contains a set of commands, one per line, that essentially duplicate
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the methods of these classes. There are two sets of commands currently, those understood by the base
class PlotBox, and those understood by the derived class Plot. Both classes ignore commands that they
do not understand. In addition, both classes ignore lines that begin with “#”, the comment character.
The commands are not case sensitive.

6.5.1 Commands Configuring the Axes

The following commands are understood by the base class PlotBox. These commands can be
placed in a file and then read via the read() method of PlotBox, or via a URL using the PlotApplet
class. The recognized commands include:

* TitleText: string

e XLabel: string

* YLabel: string

These commands provide a title and labels for the X (horizontal) and Y (vertical) axes. A stringis
simply a sequence of characters, possibly including spaces. There is no need here to surround them
with quotation marks, and in fact, if you do, the quotation marks will be included in the labels.

The ranges of the X and Y axes can be optionally given by commands like:
e XRange: min, max
* YRange: min, max
The arguments min and max are numbers, possibly including a sign and a decimal point. If they are not
specified, then the ranges are computed automatically from the data and padded slightly so that
datapoints are not plotted on the axes.

The tick marks for the axes are usually computed automatically from the ranges. Every attempt is
made to choose reasonable positions for the tick marks regardless of the data ranges (powers of ten
multiplied by 1, 2, or 5 are used). However, they can also be specified explicitly using commands like:
* XTicks: label position, label position,

* YTicks: label position, label position,

A label is a string that must be surrounded by quotation marks if it contains any spaces. A position is
a number giving the location of the tick mark along the axis. For example, a horizontal axis for a fre-
quency domain plot might have tick marks as follows:

XTicks: -PI -3.14159, -FI/2 -1.570795, 0 0, FI/2 1.5707%5, PI 3.14159

Tick marks could also denote years, months, days of the week, etc.

The X and Y axes can usc a logarithmic scale with the following commands:
* XLog: on
* YLog: on
The tick labels, if computed automatically, represent powers of 10. The log axis facility has a number
of limitations, which are documented in “Limitations” on page 6-126.

By default, tick marks are connected by a light grey background grid. This grid can be turned off
with the following command:
* Grid: off
It can be turned back on with
* Grid: on
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Also, by default, the first ten data sets are shown each in a unique color. The use of color can be
turned off with the command:
¢ Color: off
It can be turned back on with

* Color: on

Finally, the rather specialized command
* Wrap: on
enables wrapping of the X (horizontal) axis, which means that if a point is added with X out of range,
its X value will be modified modulo the range so that it lies in range. This command only has an effect
if the X range has been set explicitly. It is designed specifically to support oscilloscope-like behavior,
where the X value of points is increasing, but the display wraps it around to left. A point that lands on
the right edge of the X range is repeated on the left edge to give a better sense of continuity. The fea-
ture works best when points do land precisely on the edge, and are plotted from left to right, increasing
in X,

All of the above commands can also be invoked directly by calling the corresponding public meth-
ods from some Java code.

6.5.2 Commands for Plotting Data

The set of commands understood by the Plot class support specification of data to be plotted and
control over how the data is shown.

The style of marks used to denote a data point is defined by one of the following commands:
* Marks: none
* Marks: points
* Marks: dots
¢ Marks: various
* Marks: pixels
Here, points are small dots, while dots are larger. If various is specified, then unique marks are
used for the first ten data sets, and then recycled. If pixels is specified, then a single pixel is drawn.
Using no marks is useful when lines connect the points in a plot, which is done by default. If the above
directive appears before any DataSet directive, then it specifies the default for all data sets. If it
appears after a DataSet directive, then it applies only to that data set.

To disable connecting lines, use:
* Lines: off
To re-enable them, use
¢ Lines: on

You can also specify “impulses”, which are lines drawn from a plotted point down to the x axis.
Plots with impulses are often called “stem plots.” These are off by default, but can be turned on with
the command:

* Impulses: on

or back off with the command

* Impulses: off

If that command appears before any DataSet directive, then the command applies to all data sets. Oth-
erwise, it applies only to the current data set.
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To create a bar graph, turn off lines and use any of the following commands:
* Bars: on
* Bars: width
e Bars: width, offset
The width is a real number specifying the width of the bars in the units of the x axis. The offset is a
real number specifying how much the bar of the i-th data set is offset from the previous one. This
allows bars to “peek out” from behind the ones in front. Note that the front-most data set will be the
first one. To turn off bars, use
* Bars: off

To specify data to be plotted, start a data set with the following command:
* DataSet: string
Here, stringis alabel that will appear in the legend. It is not necessary to enclose the string in quota-
tion marks.

To start a new dataset without giving it a name, use:
* DataSet:

In this case, no item will appear in the legend.

If the following directive occurs:
* ReuseDataSets: on
then datasets with the same name will be merged. This makes it easier to combine multiple data files
that contain the same datasets into one file. By default, this capability is turned off, so datasets with the
same name are not merged.

The data itself is given by a sequence of commands with one of the following forms:
. x, v
* draw: X, y
* move: X, y
* X, ¥, yLowErrorBar, yHighErrorBar
* draw: x, y, yLowErrorBar, yHighErrorBar
* move: X, y, yLowErrorBar, yHighErrorBar
The draw command is optional, so the first two forms are equivalent. The move command causes a
break in connected points, if lines are being drawn between points. The numbers x and y are arbitrary
numbers as supported by the Double parser in Java (e.g. “1.2”, “6.3%-15", etc.). If there are four num-
bers, then the last two numbers are assumed to be the lower and upper values for error bars. The num-
bers can be separated by commas, spaces or tabs.

6.6 Compatibility

Figure 6.10 shows a small set of classes in the compat package that support an older ascii and
binary file formats used by the popular pxgraph program (an extension of xgraph to support binary
formats). The PxgraphApplication class can be invoked by the pxgraph executable in $PTII/bin. See
the PxgraphParser class documentation for information about the file format.
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6.7 Limitations

The plot package is a starting point, with a number of significant limitations.

* A binary file format that includes plot format information is needed. This should be an extension
of PlotML, where an extemal entity is referenced.

* If'you zoom in far enough, the plot becomes unreliable. In particular, if the total extent of the plot
is more than 232 times extent of the visible area, quantization errors can result in displaying points
or lines. Note that 232 is over 4 billion.

* The log axis facility has a number of limitations. Note that if a logarithmic scale is used, then the
values must be positive. Non-positive values will be silently dropped. Further log axis limita-
tions are listed in the documentation of the _gridInit() method in the PlotBox class.

*  Graphs cannot be currently copied via the clipboard.

plot package
Plof lication
Plot PlotApplet tAep
+main(args : Stri
+_read(input : InputStream); in abos.nog rol)
§# _parseArgs(args : String[])
i#_read(base : URL, input : InputStream);
configures
PxgraphParser .
PxgraphApplet PxgraphApplication
#_plot : Piot
+PxgraphParser(plot : Plot)
+parseArgs(args : String[]) +PxgraphApplet() +PxgraphApplication() )
+parseArgs(args : String[], base : URL) +PxgraphApplication(args : String[])
+parsePxgraphargs(args : String[}, base : URL) +PxgraphApplication(plot : Plot, args : String[))
+read(input : InputStream)

FIGURE 6.10. The compat package provides compatibility with the older pxgraph program.
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7.1 Introduction

When the first computers were built, it was possible to program them, but only through an arduous
manual process. One of the first pieces of software that was written was a bootloader that simplified
the process of reprogramming those computers. For example, the bootloader may load a program into
memory from a floppy drive. The bootloader was the first, simplest form of operating system. It pro-
vided infrastructure for abstracting the process of initializing the code of computers. The simplest
operating system merely provides a mechanism for invoking other programs.

Later operating system layered services on top of the bootloader that provided more facilities to
ease programming and abstract hardware. Services like file systems, device drivers, and process sched-
uling provide mechanisms through which user applications use hardware resources. These services
provide a simple abstraction layer through which many pieces of computer hardware can be accessed.
These operating systems traditionally provided some sort of command shell, such as DOS or bash. In
some cases, the invocation mechanism takes the form of a graphical user interface, where icons repre-
sent files and applications.

Some operating systems also provide more complex application support, such as user preferences,
application component management, and file to application binding. These services attempt to make it
easier to develop applications, however they are not strictly necessary for developing applications. For
example, it is fully possible to write a Windows application without using the registry, or COM
objects. However, because these services are integrated into the Operating System at a very low level,
using them can be rather tricky. Overwriting the wrong registry entry may prevent the operating sys-
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tem from working properly. Updating a COM object can preient other applications from working
properly. Netscape and Internet Explorer constantly fight over the right to open HTML files. The diffi-
culty arises because these services are built into the operating system and also impose requirements on
how applications are managed. These types of services are important when building usable applica-
tions, but they are not appropriate for inclusion in a low-level operating system.

Vergil is a set of infrastructure tools that provides these application support services as another
operating system layer. This layer is built on top of the hardware abstraction layer while making mini-
mal use of the operating system’s application support infrastructure. Java is the perfect platform on
which to build these services, since it provides good hardware abstraction on a wide variety of plat-
forms, but few services for building applications. We have used the infrastructure to build a design
application for Ptolemy II, but the infrastructure itself is general. Below we will describe the infra-
structural goals, the architecture, and how we have applied the infrastructure to the Ptolemy design
application. For information about using the Vergil Application to build a Ptolemy II model, see the
Using Vergil chapter.

7.2 Infrastructure

The goals of building design application infrastructure are somewhat different from the goals of
building a design application. Where an application is often described by the features that it imple-
ments or the manipulation that it allows, infrastructure must provide solutions to common problems
within a certain area. Below we describe the various pieces of Vergil, and how each one makes it easier
to develop consistent, usable design applications.

7.2.1 Design Artifacts

The goal of a design application is the creation of a particular type of design artifact. A design arti-
fact is any electronic entity that is created to serve a specific purpose such as a text file, a circuit
design, or a piece of computer software. Design artifacts almost always have a variety of aspects, and
it is usually difficult to display all of these aspects at once. Good examples of this are Microsoft Pow-
erPoint presentations. A presentation contains many slides, and each slide can be individually dis-
played and manipulated. Each slide can contain many different kinds of objects (which are often
themselves distinct embedded design artifacts). The presentation itself can also contain timing, narra-
tion and navigation information. The PowerPoint application can change the information displayed to
emphasize a particular aspect of the presentation, such as a particular slide or a slide overview or a
text-only view.

7.2.2 Storage policies

The most basic operation that almost any application must perform is the storage and retrieval of
designs. Most applications store design artifacts as files visible through the operating system, however
we would like to be somewhat more general and allow design artifacts to be stored in databases or
accessed through the World Wide Web. We believe that URLS are general enough to describe any such
location. The infrastructure that we would like build for handling files revolves around a storage pol-
icy. The storage policy gives a basic set of consistent rules for how design objects are persistently
stored. In plain English, these rules can be simple, or fairly complex. One example of a simple storage
policy rule might be that to open a design artifact, the location is specified using a file browser dialog.
A more complex rule could state that a design artifact cannot be closed unexpectedly without giving
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the user an opportunity to save. Implementing a storage policy in basic infrastructure is good for sev-
eral reasons. First of all, it prevents application writers from being concerned with relatively boring
parts of an application. Secondly, it is very important for application usability that the storage policy be
consistent.

7.2.3 Views

A particular design artifact may have different ways that it can be viewed and manipulated. For
example, an HTML document may be viewed as rendered HTML, or as plain text with HTML
markup. The infrastructure that we have built assumes that each different view of a design artifact is
associated with a top level frame. The creation of a view is in some respects independent from loading
a file. However, when a design artifact is first opened, a default view must be created for it. Further-
more, when the last view of the artifact is destroyed, the artifact should be closed. In this way, the view
(or views) of a design artifact are exactly analogous to the file in which the design artifact is stored.
When all of the frames are gone, the file is conceptually ‘closed’ and not accessible.

This correspondence has some important ramifications in the design of our infrastructure. Since,
from the point of view of the user the frames are the file, they must all display consistent data. Further-
more, opening a design artifact a second time should only create a new frame if the artifact is not
already open. If the design artifact is already open, then its views should simply be made visible.

7.3 Architecture

The key to the Vergil infrastructure is a set of classes that represent the different parts of common
design applications. The common application operations are then expressed in terms of these classes.
This makes it easy to create new application tools that are integrated with others built with the infra-
structure by simply extending a few classes.

7.3.1 Effigies and Tableaux

Each design artifact is represented by an instance of the Effigy class. Each effigy is associated with
a URL, corresponding to the location of the persistent storage of the effigy. Each effigy also has an
identifier, which is the unique string that identifies the effigy. This identifier should be a string repre-
sentation of the effigy’s URL. Each view of the design artifact is represented by an instance of the Tab-
leau class contained by the design artifact’s effigy. Each tableau is associated with a single frame that
presents information from the effigy. In some cases, in order to reuse code for tableaux, it is sometimes
useful to have an effigy contain other effigies. The static structure diagram for this is shown in figure
7.1.

7.3.2 Effigy Factories

Notice that the Effigy base class does not specify how it represents a particular design artifact.
This is intentional, since we are building infrastructure and do not wish to restrict ourselves to any par-
ticular representation. However, at some point the infrastructure will need to create new effigies that
are useful for a particular application. In this situation, the Factory design pattern is appropriate, which
is shown in figure 7.2. An example of how the Effigy and EffigyFactory base classes are used is shown
in figure 7.3. The example shows an effigy and factory appropriate for handling text documents.

The EffigyFactory class contains two factory methods for creating new effigies. The first factory
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method takes a source URL and is used when opening a file. The second method does not take a source
URL and is used when creating a new blank effigy. These two methods roughly correspond to the
familiar File->Open and File->New operations.

The EffigyFactory base class is also useful for implementing a deference mechanism. The base
class can contain other effigy factories and will defer to the first contained factory that successfully
creates a effigy for a given file. This deference mechanism allows the factories to be ordered so that a
more specific eti3gy (such as one that represents HTML structure) can be checked before a more gen-

CompositeEntity
Effigy 1.1 Tableau

+idenifier : StringAttribute [l ey Ty v
+url : URLAttribute -_frame : _JFrame
+Effigy(workspace : Workspace) ~_Mmaster : boolean
+Effigy(container : CompositeEntity, name : String)| +Tableau(container : CompositeEntity, name : String)
+closeTableaux() : boolean +Tableau(w : Workspace)
+getTableauFactory() : TableauFactory +close() : boolean
+getWritableFile() : File +getFrame() : JFrame
+isModifiable() : boolean 1.n +gelTille() : String
+isModified() : boolean +isEditable() : boolean
+numberOfOpenTableaux() : int +isMaster() : boolean
+setModifiable(flag : boolean) +selEditable(flag : boolean)
+sefModified(flag : boolean) {+setFrame(frame : JFrame)
+setTableauFactory(factory : TableauFaclory) 1.1 +setMaster(flag : boolean)
+showTableaux() +setTitle(title : String)
+topEffigy() : Effigy +show()
+writeFile(file : File)

Figure 7.1 Static structure diagram for effigies and tableaux.

AbstractClass creator AbstractFactory

createe

+create() : AbstractClass

ConcreteClass creator | ConcreteFactory

createe

Figure 7.2 Static structure diagram for the Factory pattern.
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eral one (such as an effigy that simply contains a text string).

7.3.3 Tableau Factories

Once an effigy has been created, a frame on the screen doesn’t actually exist to represent it yet.
The frame is created by a tableau, and the tableau is created by another factory. The TableauFactory
class implements the same deference mechanism as the EffigyFactory class. The static structure for the
tableau factory class, along with the related classes from the text example above is shown in figure 7.4.

The TableauFactory class extends Attribute, so a tableau factory can be attached to any Ptolemy II
object. When that object is opened (either by opening the file that defines it or by looking inside the
object), then the tableau factory that is attached to it determines what tableau is opened for the model.

7.3.4 Model Directory

All effigies in the application are contained (directly, or indirectly in another effigy) in an instance
of the ModelDirectory class. The model directory allows entities to be found by identifier. Whenever a
design artifact is loaded from a URL, the model directory is searched first to prevent the artifact from
being loaded again.

EffigyFactory

CompositeEntity

<] +EffigyFactory(workspace : Workspace)

+EffigyFactory(container : CompositeEntity, name : String)
+canCreateBlankEffigy() : boclean

+createEffigy(container : CompositeEntity) : Effigy
+createEffigy(container : CompositeEntity, base : URL, in : URL) : Effigy|

|*aetExtension(url : URL) : String

Effigy 2

TextEffigy.Factory

+Factory(container : CompositeEntity, name : String)

createe

TextEffigy

-_doc : Document
+TextEffigy(workspace : Workspace)
+TextEffigy(container : CompositeEntity, name : String) creator
+getDocument() : Document

+newTextEffigy(container : CompositeEntity, text : String) : TextEffigy
+newTextEffigy(container : CompositeEntity, base : URL, in : URL) : TextEffigy
+setDocument(doc : Document)

Figure 7.3 Static structure of classes that are useful for handling text documents.
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7.3.5 Configurations

An instance of the Configuration class represents the configuration of an application. That config-
uration includes not only the directory of currently open effigies but also the effigy factories and tab-
leau factories. The static structure for the Configuration and ModelDirectory classes is show in figure
7.5.

CompositeEntity
TableauFactory Tableau

+createTableau(effigy : Effigy) : Tableau

+TableauFactory(container : NamedObj, name : Smn_g_)j

TextEditorTableau.Factory creater TextEditorTableau
createe
+Factory(container : CompositeEntity, name : Stnnsi)j +TextEditorTableau(container : Effigy, name String),
TableauFrame TextEditor creétes

+text : JTextArea
+TextEditor()

+TextEditor(title : String)
+TextEditor(title : String, document : Document)

+scrollToEnd()

Figure 7.4 Static structure of how the TableauFactory class, and an example of how tableau factories are

Configuration

S——— - DIRECTORY_NAWE  Sting _

i CompositeEntity +Configuration(workspace : Workspace)

H <} +createPrimaryTableau(effigy : Effigy) : Tableau
+getDirectory() : ModelDirectory

: +getEffigy(model : NamedObj) : PtolemyEftigy
e peeeenrecssenaanas! +openModel(base : URL, in : URL, identifier : String) : Tableau
[ﬁ +openModel(base : URL, in : URL, identifier : String, EffigyFactory : factory) : Tableauy|

[+openModel(entity : NamedObj) : Tableau
+showAll()
]
! 11 !
ModelDirectory directory
1.1
+ModelDirectory(container : CompositeEntity, name String) tableauFactory
n +getEffigy(identifier : String) : Effigy 11
0.1
Effigy 0.1 | TableauFactory EffigyFactory
1..&'
L 1n Tableau ;
1 e
(< Giaates Otnt ‘ Om"_‘ l _
delegates creation of tableau delegates creation of effigy

Figure 7.5 Static structure diagram for the Configuration and ModelDirectory classes.
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7.3.6 TableauFrame

The TableauFrame class uses the above classes to implement a number of common operations.
The intention of this class is that the type-specific subclasses of the Tableau class would create
instances of TableauFrame specialized for displaying particular information. Generally, the Top base
class implements the menus for these operations and provides some abstract methods that are used for
reading and writing files. The TableauFrame class implements these abstract methods. For the rest of
this document, the line between the Top and TableauFrame classes is not terribly important, and will be
purposefully blurred for sake of clarity. The static structure for the TableauFrame class (and its super
classes) is show in figure 7.6.

7.4 Common operations

The goal of the infrastructure classes above is to implement common operations, such as storing
and creating new design artifacts, in a consistent fashion. These operations are (for the most part) actu-
ally implemented in the TableauFrame base class. Below are descriptions of each of these operations,
and how they are implemented using the architecture from the previous section.

ptolemy.gui.Top JFrame JPanel

# _directory : File

# _fileFilter : FileFilter
#_fileMenu : JMenu

#_fileMenultems : JMenultem(]

#_helpMenu : JMenu
#_helpMenuitems : JMenuitem|)
#_menubar : JMenuBar
#_statusBar : StatusBar ptolemy.gui.StatusBar Tableau
-_file : File
-_modified : boolean

-_progress : JProgressBar

+Topt() ons 0 -_message : JTextField

+centerOnScreen ) +StatusBar()

_9_—(;9;5?&';2?;2;8@233;5 Strin +progressBar() : JProgressBar 1.1 | creator
+report(ex : Exception) +setMessage(message : String)

+report(message : String)
+report(message : String, ex : Exception)
+setModified(b : boolean)

+setlLastOverallURL() 1.1
% _about() TableauFrame

#_addMenus() create
#_clear() : boolean #_initialSaveAsFileName : String

# close() : boolean #_viewMenu : JMenu

#_exit() -_tableau : Tableau

#_getName() : String +TableauFrame()

#_help() +TableauFrame(tableau : Tableau)

#_open() +getConfiguration() : Configuration

# openURL() +getDirectory() : ModelDirectory

#_print() +getEffigy() : Effigy

#_read(url : URL) +getEffigy(model : NamedObj) : PtolemyEffigy
#_save() : boolean +getTableau() : Tableau

#_saveAs() : boolean +setTableau(tableau : Tableau)

#_writeFile(file : File) #_getDefaulticonimage() : Image

Figure 7.6 Static structure diagram for the TableauFrame class.
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7.4.1 Opening an Existing Design Artifact

The File->Open menu item first opens a file browser to allow the user to select a URL, and then
uses the Configuration to open the URL. The configuration firsts checks the model directory to see if
there is already an effigy associated that URL. If there is no such effigy, then the configuration uses its
effigy factory to create a new effigy, and then uses its tableau factory to create a tableau for the effigy.
Lastly, the tableau is made visible, which results in it creating a frame on the user’s screen. The
sequence diagram is shown in figure 7.7. In addition, this first tablean is set to be a master, and it is set
to be editable if the URL represents a writable location.

Alternatively, there may already an effigy present in the directory that is associated with the URL
chosen by the user. In this case, the tableaux (if any) contained by the effigy are simply made visible.
Remember that a single application is capable of opening a wide variety of design artifacts by virtues
of the effigy factory deference mechanism explained in section 7.3.2.

t:TableauFrame c:Configuration
. c.ef;
b:JFileChooser c.d:ModelDirectory TextEfﬁgy$FaCt0ry
c.d.e:TextEffigy ctf:
shqwOpenDialdg() c.d.etTextTableau | TextTableau$Factory
u:URL

openModel(u,...)

getEffigy(u)

null

createEffigy(c.d, u, u)

new TextEffigy(c.d, e)

cde

creqtteTableau(c d.e)

—

new TextTableau(c.d.e

)

cde.t

Figure 7.7 Sequence diagram for opening an existing design artifact.
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7.4.2 Creating a New Design Artifact

Creating a new design artifact using the File->New menu item is somewhat similar to opening an
existing design artifact. However, only effigy factories that declare that they can create a blank effigy
that is not associated with a previous URL may be used. Furthermore, since an application can con-
ceivably create different types of blank effigies, it is not possible to use the effigy factory deference
mechanism to determine which effigy factory is used. The user must have another way of specifying
which effigy factory will create the blank effigy. When a TableauFrame is created, the File->New
menu is populated with a menu item for each possible effigy factory. The name of the menu item is the
same as the name of the effigy factory. The sequence diagram for creating a new design artifact is
shown in figure 7.8.

7.4.3 Saving Changes to a Design Artifact

The TableauFrame class implements menu items for both File->Save and File->Save As. The Save
operation rather simple. If the effigy is already associated with a URL that is writable, then the effigy is
simply written out to that location. Otherwise, the Save As operation is invoked instead. This may
occur if the design artifact was created from scratch as a blank effigy, or if the artifact was loaded by
HTTP. The Save As operation is a bit more complicated. The user specifies a destination URL using a
file chooser, just as when opening a new design. However, before writing the file it is necessary to
check that the URL does not already exist and that the URL is not already open. In these cases, the user
is prompted to be sure that important data is not inadvertently lost by being overwritten.

t:TableauFrame c:Configuration

c.ef:
TextEffigy$Factory
c.d.e:TextEffigy c.tf:

c.d.etTextTableau [ TextTableau$Factory

c.d:ModelDirectory

credteEffigy(c.d}

new TextEffigy(c.d, e)

cd.e

createTableau(cld.e)

new TextTableau(c.d.e| t)

cd.et

Figure 7.8 Sequence diagram for creating a new design artifact.
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7.4.4 Closing designs and Exiting the Application

The only complexities in implementing these operations are again involved with ensuring that
important data is not lost. In this case, we simply ensure that all designs are closed before exiting the
application, and that a design is not closed without attempting to save it first. Both of these cases are
prevented by setting a flag in each effigy whenever it is modified. If the flag indicates that the effigy
has been modified, then the Save operation is invoked before discarding the effigy.

Activating the close operation of a frame only results in the tableau associated with that frame
being removed. The tableau’s effigy and the other tableaux associated with that effigy are not generally
affected. There is a subtlety that arises because the application itself exists separately from any visual
representation of it. In other words, a tableau (and therefore a frame) exists for each effigy, but there is
no tableau that simply represents the application as a whole!. The subtlety is that closing all the effi-
gies should result in the application exiting. A similar issue occurs for a similar reason with effigies,
and closing all of a tableaux associated with any effigy should result in that effigy being closed.

7.5 Ptolemy Model Visualization

We have used the Vergil infrastructure to construct several visualizations that are capable of view-
ing and manipulating a Ptolemy model. For the most part, these editors are intended to work with any
Ptolemy Kernel model and are not limited to models based on the Actor package or a specific domain.
This is an extremely powerful use of the Ptolemy abstract syntax, since it allows manipulation not only
of executable models (see Chapter 7), but also actor libraries (see Figure 7.12) and the Vergil configu-
ration itself (see Figure 7.5), since they are also based on the Ptolemy Kernel (see Chapter 6). This sec-
tion serves a dual purpose: it describes not only a usable set of application tools, but also a well
developed example of using the Vergil infrastructure to present multiple views of a design artifact.

In order to represent a Ptolemy model in Vergil, there must be an effigy that has a reference to it.
The PtolemyEffigy class maintains this reference, and is also responsible for reporting any change
requests (see Section 6.7) in the model that fail. It also contains an inner class that is an effigy factory
and writes out a model using MoML (see Chapter 5). The static structure diagram for these classes is
shown in Figure 7.9 There is also an accompanying frame class, PtolemyFrame, that is intended to be
used as shown in Figure 7.10. The tableaux that are capable of creating a frame for a Ptolemy effigy
are described in the following sections.

7.5.1 Graph Tableau

The Ptolemy graph editor graphically represents the contained entities, ports, and relations of any
Ptolemy composite entity. It allows syntax-directed editing of the model and browsing of important
design information, such as Actor source code and HTML documentation. A screen shot is shown in
Figure 7.11. The left hand side provides a palette of available entities and a high-level navigation win-
dow. Entities can be dragged and dropped from the palette. External ports are created by using the tool-
bar button, and relations can be created from the toolbar button, or by control clicking on the
schematic. Links to relations can be created be made by control clicking on a port or a relation. The
visualization also allows connections directly from one port to another. These links correspond to a

1.Although it is probably good design practice to create an initial effigy and tableau that represent the
application and allows the user 1o open an initial file. )
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«interface»

—— —— — —— — —

! |
] | | |
: Changelistener | | Effigy | : EffigyFactory :
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I~
|
PtolemyEffigy PtolemyEffigy$Factory
-_model : NamedObj -_parser : Mo arser
+PtolemyEffigy(workspace : Workspace) +Factory(container : CompositeEntity, name : String)
+PtolemyEffigy(container : CompositeEntity, name : String)
+getModel() : NamedObj
+setModel(model : NamedObj)

_______________ a component named
| | 1 "blank” is cloned to

] l create a blank effigy.

Figure 7.9 Static Structure for Ptolemy effigies.

Effigy 1.n TableauFrame

1.1 0.1
Tableau 1.1

PtolemyFrame

-_model : CompositeActor

+PtolemyFrame(model : CompositeActor)
+PtolemyFrame(model : CompositeActor, tableau : Tableau)
+getModel() : CompositeEntity

»1 ] +setModel{model : CompositeEntity)
- 1..n

PtolemyEffigy

creator |ActorGraphTableau BasicGraphFrame

—>

1.1

1.1 ActorGraphFrame

createe |-_controller : EditorGraphController
+ActorGraphFrame(entity : CompositeEntity, tableau : ActorGraphTableau)

Figure 7.10 Static structure of the Ptolemy graph editor.
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relation that is linked to both ports, but the relation is not explicitly represented itself.

Note that although the editor allows any Ptolemy model 1o be edited, it does display some informa-
tion that is specific to the actor package. For example, ports are rendered differently depending on
whether they are input or output ports, and the multiports of the Multiply actor are rendered hollow.
The director (in this case, an SDF director) is also displayed as a green box.

The classes used to implement this tableau are shown in Figure 7.12. An instance of ActorGraph-
Frame is created by the tableau. The ActorGraphFrame class overrides the _createGraphPane() factory
method to create the graph editor itself, while most of the user interface components (like menus and
the palette window) are created by the BasicGraphFrame base class. This allows the code in
BasicGraphFrame to be reused with a different visual representation, such as the FSM editor described
in Section 7.5.2.

7.5.2 FSM Tableau

The Ptolemy FSM editor graphically represents the the states and transitions of a Ptolemy FSM
domain model. It allows syntax-directed editing of the model, along with links to important design
information, such as actor source code and HTML documentation. A screen shot is shown in Figure
7.13. States can be added by control-clicking on the schematic, or by dragging and dropping from the
palette on the left. Transitions are created by control dragging from an existing state.

The classes used to implement this tableau are shown in Figure 7.14. An instance of FSMGraph-
Frame is created by the tableau. The FSMGraphFrame class overrides the _createGraphPane factory
method to create the graph editor itself, while most of the user interface components (like menus and
the palette window) are created by the GraphFrame base class. Note the similarity to the ActorGraph-
Frame class described in section 7.5.1

Figure 7.11 Vergil Screenshot,
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java.awt.datatransfer.ClipboardOwner ptolemy.kemel.util.ChangeListener:

Ejava.awt.prlnt.Printable.

ptolemy.actor.gui.PtolemyFrame

...-.-------{>

-_model : CompositeActor
+getModel() : CompositeEntity
+setModel(model : CompositeEntity) A

A_‘

#_jgraph : diva.graph.JGraph

#_topLibrary : CompositeEntity

+BasicGraphFrame(entity : CompositeEntity, tableau : Tableau)
+copy()

+out()

+delete()

+getCenter() : Point2D

+getJGraph() : diva.graph.JGraph
+getVisibleCanvasRectangle() : Rectangle2D . Tableau
+getVisibleRectangle() : Rectangle2D ‘
+ayoutGraph()
+paste() : e
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+zoom()

+zoompFit()

+zoomReset()

#_createGraphPane() : diva.graph.GraphPane

creator (ActorGraphTableau

#_getDirectory() : File

#_setDirectory(directory : File) 1.1
ActorGraphFrame 1.1

-_controller : EditorGraphController createe

+ActorGraphFrame(entity : CompositeEntity, tableau : ActorGraphTableau)

1.1

ActorEditorGraphController

Figure 7.12 Static structure of the Ptolemy graph editor.
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7.5.3 Tree Tableau

Disregarding the relations between ports, a Ptolemy model is exactly the same as a hierarchical
tree of entities, ports, and attributes. The Tree Editor graphically renders a Ptolemy model in just this
way. It is most useful when the attributes of each object, or the hierarchy of objects needs to be empha-
sized. The current implementation of the Tree Tableau only allows browsing of the model, and is fairly

Figure 7.13 Vergil Screenshot.

BasicGraphFrame Tableau
A
A| 7‘
|
FSMGraphFrame 1.1 creator |FSMGraphTableau

-_controller : FSMGraphController createe 11
+FSMGraphFrame(entity : CompositeEntity, tableau : Tableau)

s

FSMGraphController:

Figure 7.14 Static structure of the Ptolemy FSM graph editor.
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incomplete. It is built using the swing JTree component, and the same base classes are used to display
the palette in the Graph Editor described in section 7.5.1. The only difference is that the Tree Tableau
uses a FullTreeModel, which includes both entities and attributes, while the palette uses an Entity Tree-
Model, which only includes entities. The static structure of the ptolemy.vergil.tree package is shown in
Figure 7.15.

7.6 Customizing User Interactions

Various mechanisms are available in Vergil supporting customized renditions. Most of these have
the form of attributes that can be inserted in objects that have visual renditions on the screen.

7.6.1 Customizing Icons

An icon for an actor consists of a background figure decorated with ports and a name. The back-
ground figure is easy to customize by creating a property called “_iconDescription” and configuring it
with SVG code. SVG (scalable vector graphics) is an XML notation for vector graphics. Currently,
only a subset of SVG is supported. An example of a suitable attribute is given below:

<property name="_iconDescription”
class="ptolemy.kernel.util.SingletonConfigurableAttribute">

<configure>
A —— ===y
: Tableau : : PtolemyFrame : | CompositeEntity |
________ I |
| 1 ] e m——————
! | | 1 T |
e T
TreeTableau

I~ «interface» |

| TreeModel |
________ | |
I I t 1.1 |— - _'
| TreeCellRenderer | eeatort.1__ | e —
) | 1..1 | createe '_ _______ |
I i Q
1 TreeTableau$TreeFrame

EntityTreeModel
+_createGraphPane() : GraphPane

PtolemyTreeCellRenderer PTree FullTreeModel

Figure 7.15 Static structure of the ptolemy.vergil.tree package.

Heterogeneous Concurrent Modeling and Design . 141



Vergil

<svg>
<text x="20"
style="font-size:14; font-family:SansSerif; £ill:blue"
y="20">Text here.</text>
</svg>
</configure>
</property>

This creates an icon that consists of text only, reading “Text here.”

It is also possible to create an alternative icon that is used when a small rendition is needed, as for
example in an icon library. Such an icon description is identical to the one above, except that it is
called “_smalllconDescription” instead of “_iconDescription.”

7.6.2 Customizing Icon Rendering

By default, an icon is rendered with the name of the instance above it. Including an attribute called
called “_hideName” results in the name not being shown. Normally, this is an instance of SingletonAt-
tribute.

By default, the name is rendered above the icon. Including an attribute called “_centerName”
causes the name to be rendered in the center of the icon.

7.6.3 Customizing the Context Menu

If an icon contains a NodeControllerFactory (which is an attribute), then the factory given by that
attribute is used to create a node controller. This can be used to customize the context menu that pops
up with a right click over an icon. Such an attribute is created as follows:

<property name="_controllerFactory"
class=“ptolemy.vergil.basic.NodeControllerFactory"/>

Normally, you will want to create a Java class that is a subclass of NodeControllerFactory.

7.6.4 Customizing Editing Parameters

By default, the Configure command in the context menu brings up an editor to edit the parameters
of an object. If the object contains an instance of EditorFactory (an attribute), then that factory is used
to bring up an editor. For example:

<property name="_editorFactory"
class="ptolemy.vergil.toolbox.AnnotationEditorFactory"/>

brings up the editor that is used to edit annotations.

The EditorPaneFactory class (also an attribute) also allows customization, but uses the default edit
parameters frame, with buttons at the bottom). See the class documentation for details.

7.6.5 Customizing the Editor for a Model

The configuration defines the default tableaux that are used to display a model or a component
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within a model (when you look inside). A model or component can override the tableau that is used by
containing an attribute that is an instance of TableauFactory. If the following example is stored in a
file, then when that file is opened, a tree view is used rather than the default schematic editor:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_1.dtd">

<entity name="top" class="ptolemy.actor.TypedCompositeActor">

<property name="_tableauFactory"
class="ptolemy.vergil.tree.TreeTableau$Factory"/>

<entity name="xxx" class="ptolemy.actor.TypedCompositeActor">
</entity>

. e

</entity>

In the following example, the default schematic editor is used when the file is opened, but when you
look inside the composite actor, a tree editor will be used:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_1.dtd">
<entity name="top" class="ptolemy.actor.TypedCompositeActor">
<entity name="xxx" class="ptolemy.actor.TypedCompositeActor">
<property name="_tableauFactory"
class="ptolemy.vergil.tree.TreeTableau$Factory"/>
</entity>

</entity>
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