Copyright © 2003, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

GENERALIZED PRINCIPAL COMPONENT
ANALYSIS (GPCA): AN ALGEBRAIC
GEOMETRIC APPROACH TO SUBSPACE
CLUSTERING AND MOTION SEGMENTATION

by

René Esteban Vidal

Memorandum No. UCB/ERL M03/35

28 August 2003

GENERALIZED PRINCIPAL COMPONENT
ANALYSIS (GPCA): AN ALGEBRAIC
GEOMETRIC APPROACH TO SUBSPACE
CLUSTERING AND MOTION SEGMENTATION

by

René Esteban Vidal

Memorandum No. UCB/ERL M03/35

28 August 2003

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Generalized Principal Component Analysis (GPCA):
an Algebraic Geometric Approach to Subspace Clustering and Motion Segmentation

by
René Esteban Vidal

B.S. (P. Universidad Catélica de Chile) 1995
M.S. (University of California at Berkeley) 2000

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy

in
Engineering — Electrical Engineering and Computer Sciences
in the

GRADUATE DIVISION
of the
UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Shankar Sastry, Chair
Professor Jitendra Malik
Professor Charles Pugh

Fall 2003

The dissertation of René Esteban Vidal is approved:

Olfoa /83

Chair !

w “ olf15[03

Date

J —
C&/& %A Twnsasy [3, 3003

University of California at Berkeley

(2002

Fall 2003

Generalized Principal Component Analysis (GPCA):
an Algebraic Geometric Approach to Subspace Clustering and Motion Segmentation

Copyright 2003
by
René Esteban Vidal

For the classes of problems considered in this thesis, such segmentation independent con-
straints are polynomials of a certain degree in several variables. The degree of the polynomials
corresponds to the number of groups and the factors of the polynomials encode the model parame-

ters associated with each group. The problem is then reduced to

1. Computing the number of groups from data: this question is answered by looking for polyno-
mials with the smallest possible degree that fit all the data points. This leads to simple rank
constraints on the data from which one can estimate the number of groups after embedding

the data into a higher-dimensional linear space.

2. Estimating the polynomials representing all the groups from data: this question is trivially
answered by showing that the coefficients of the polynomials representing the data lie in the
null space of the embedded data matrix.

3. Factoring such polynomials to obtain the model for each group: this question is answered
with a novel polynomial factorization technique based on computing roots of univariate poly-
nomials, plus a combination of linear algebra with multivariate polynomial differentiation and
division. The solution can be obtained in closed form if and only if the number of groups is

less than or equal to four.

The theory presented in this thesis is applicable to segmentation problems in which the
data has a piecewise constant, piecewise linear or piecewise bilinear structure and is well motivated
by various problems in computer vision, robotics and control. The case of piecewise constant data
shows up in the segmentation of static scenes based on different cues such as intensity, texture and
motion. The case of piecewise linear data shows up computer vision problems such as detection
of vanishing points, clustering of faces under varying illumination, and segmentation of dynamic
scenes with linearly moving objects. It also shows up in control problems such as the identification
of linear hybrid systems. The case of piecewise bilinear data shows up in the multibody structure
from motion problem in computer vision, i.e., the problem of segmenting dynamic scenes with

multiple rigidly moving objects.

Professor Shankar Sastry
Dissertation Committee Chair

To my family,
Kathia, Amelia and Oscar

for their endless love, support and patience.

iii

iv

Contents

List of Figures vii

List of Tables xi

1 Introduction 1

1.1 Motivation v o v it e e e e e e e e e 1

1.2 Dissertation contributions it e e e e e e 5

1.2.1 Piecewise constant data: polynomial segmentation 8

1.2.2 Piecewise linear data: generalized principal component analysis 8

1.2.3 Piecewise bilinear data: multibody structure frommotion 10

1.3 Thesisoutine o v v v i it ittt e e 11

2 Polynomial Segmentation (Polysegment) 12

2.0 Introduction v v i vt e e e e e e e e e e e e e e e e 12

2.1.1 Contributionst .t i e e e e e e 14

2.12 Previouswork e e e e 15

2.2 One-dimensional clustering: the case of one eigenvector 16

221 Theidealcase. ¢ it it i i e e e e e e 16

222 Thegeneralcasettt nnesennnnn. 18

2.3 Two-dimensional clustering: the case of two eigenvectors 21

2.4 K-dimensional clustering: the case of multiple eigenvectors 22
2.5 Initialization of iterative algorithms in the presence ofnoise 25.

251 TheK-meansalgorithm 25

2.5.2 The Expectation Maximization algorithm 26

2.6 Applications of Polysegment in computervision 27

2.6.1 Image segmentationbasedonintensity 27

2.6.2 Image segmentationbasedontexture 32

2.7

2.6.3 Segmentation of 2-D translational motions from feature points or optical flow 34
2.6.4 Segmentation of 3-D infinitesimal motions from optical flow in multiple views 38
2.6.5 Face clustering with varying expressions 41
Conclusions, discussions and futurework 43

3 Generalized Principal Component Analysis (GPCA) 44
3.0 Inmtroduction e e e e e e e . 44
3.1.1 Previous work on mixtures of principal components 46

3.1.2 Our approach to mixtures of principal components: GPCA 47

3.2 Representing mixtures of subspaces as algebraic sets and varieties 50
3.3 Estimating a mixture of hyperplanes of dimension K -1 53
3.3.1 Estimating the number of hyperplanes n and the vector of coefficientsc, . 54

3.3.2 Estimating the hyperplanes: the polynomial factorization algorithm (PFA) . 57
3.3.3 Estimating the hyperplanes: the polynomial differentiation algorithm (PDA) 66

3.4 Estimating a mixture of subspaces of equal dimensionk < K. 71
3.4.1 Projecting samples onto a (k + 1)-dimensional subspace 72

3.42 Estimating the number of subspaces n and their dimensionk 74

3.4.3 Estimating the subspaces: the polynomial differentiation algorithm (PDA) . 77

3.5 Estimating a mixture of subspaces of arbitrary dimensions {k;}; 81
3.5.1 Obtaining subspace bases by polynomial differentiation 81

3.5.2 Obtaining one point per subspace by polynomial division 85

3.6 Optimal GPCA in the presenceofnoise 88
3.7 Initialization of iterative algorithms in the presence ofnoise 90
3.7.1 TheK-subspacealgorithm 91

3.7.2 The Expectation Maximization algorithm 92

3.8 Experimentsonsyntheticdata 00000 93
3.9 Applications of GPCA incomputervision 95
- 3.9.1 Detectionof vanishingpoints 95
3.9.2 Segmentation of 2-D translational motions from image intensities 96

3.9.3 Segmentation of 2-D affine motions from feature points or optical flow .. 98

3.9.4 Segmentation of 3-D translational motions from feature points 102

3.9.5 Face clustering under varying illumination 105

3.10 Application of GPCA to identification of linear hybrid systems 106
3.11 Conclusions and Openissues v v v v v vt bttt 108
4 Segmentation of 2-D Affine Motions from Image Intensities 112
41 Introduction it i i it e e e e e e e e e e e e e e 112
411 Previouswork it it e e e e 113

412 Contributions i it e e e e e e s 115

42 Multibodyaffinegeometry oo i e 116
4.2.1 The affine motion segmentationproblem 116

4.2.2 The multibody affineconstraint 117

423 The multibody affinematrix 118

4.3 Estimating the number of affine motions n and the multibody affine matrix 4 . . . 120
4.4 Multibody affine motion estimation and segmentation 122
4.4.1 Estimating the optical flow field from the multibody affine motion A 122

442 Estimating individual affine motions {A;}%, from the optical flow field . . 124

4.5 Optimal segmentation of 2-D affinemotions 126
4.6 Experimentalresultst 128
47 Conclusions i i it i e e e e 130

5 Segmentation of 3-D Rigid Motions: Multibody Structure from Motion

5.1 Introduction

......................................

5.1.1 Contributions e e e e
5.2 Multibodyepipolargeometryo e
5.2.1 Two-view multibody structure from motion problem
5.2.2 The multibody epipolarconstraint
5.2.3 The multibody fundamental matrix
5.3 Estimating the number of motions n and the multibody fundamental matrix F . . .
5.4 Null space of the multibody fundamental matrix
5.5 Multibody motion estimation and segmentation
5.5.1 Estimating the epipolar lines {£’ };V=1
5.5.2 Estimatingtheepipoles{e;}?;
5.5.3 Estimating the individual fundamental matrices {F;}.;,
5.54 Segmentingthe featurepoints
5.5.5 Two-view multibody structure from motion algorittm
5.6 Optimal segmentation of 3-Drigidmotions
57 Experimentalresultst

5.8 Conclusions
6 Conclusions

Bibliography

......................................

vi

131
131
132
134
134
134
135
137
139
143
143
145
147
148
149
153
158
159

161
162

List of Figures

1.1
1.2
1.3

14
1.5

2.1

22

23

24

2.5
2.6

2.7

2.8

Inferring a constant, linear and nonlinear model from a collection of data points. . .
Approximating of a nonlinear manifold with a piecewise linearmodel.
A traffic surveillance sequence with multiple moving objects. The motion of each
object is represented with a different rotation and translation, (R, T), relative to the
cameraframe. v it e e e e e e e e e
A hierarchy of segmentationproblems. 00 .
Inferring different piecewise smooth models fromdata.

A similarity matrix for two groups (left) and its leading eigenvector (right), after
segmentation. Dark regions represent S;; = 0 and light regions represent S;; = 1. .
Eigenvector obtained from noisy image measurements and the “ideal” eigenvector.
Before segmentation (left) and after segmentation (right).
A case in which individual eigenvectors contain two groups, while all three eigen-
Vectors CONtain three roups. . . . « v v v v v v v v ot v v v e e
Projecting the rows of X € RY*2 onto any line not perpendicular to the lines
passing through the cluster centers preserves the segmentation. In this example, one
can project onto the horizontal axis, but not onto the vertical axis.
Input images for intensity-based image segmentation.
Intensity-based segmentation of the penguin image. From top to down: group 1,
group 2, group 3 and overall segmentation computed by assigning each pixel to the
closestgraylevel. i e
Intensity-based segmentation of the dancer image. From top to down: group 1,
group 2, group 3 and overall segmentation computed by assigning each pixel to the
closestgraylevel. i
Intensity-based segmentation of the baseball image. From top to down: group 1,
group 2, group 3 and overall segmentation computed by assigning each pixel to the

closestgraylevel. e

vii

[(8]

N oW

13

22

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16
3.1

3.2

33

Texture-based segmentation results for the tiger image. (a) Original 321 x 481
image. (b) The original image is segmented into 4 groups by applying Polysegment
to the image intensities. (c) A 4-dimensional texton is associated with each pixel by
computing a histogram of quantized intensities in a 23 x 23 window around each
pixel. Polysegment is applied in each dimension in texton space to separate the
textons into 10 groups. The image in (c) is generated with the average intensity
of the pixels belonging to each group of textons. (d) Polysegment is applied to
the intensity of the image in (c) to obtain the final segmentation into 6 groups.
(e) The overall texture-based segmentation is overlayed onto the original image.
() Human segmentation results from the Berkeley segmentation dataset [38]. The
overall execution timeis24seconds. 0000,
Texture-based segmentation results for the 321 x 481 marmot image. Five groups are
obtained by segmenting 4-D textons computed in a 31 x 31 window. The execution
mMEeisS258eC. . . . v v i e e e e e e e e e e
Texture-based segmentation results for the 128 x 192 zebra image. Two groups are

- obtained from 5-D textons computed in a 11 x 11 window. The execution time is

Segmenting the optical flow of a video sequence using Polysegment with K = 2.
At each frame, we use the optical flow of all N = 240 x 352 pixels to build the data
matrix L, € CNx(n+1) corresponding to n = 3 motions: the two robots and the
background. We then obtain a vector ¢ € C**! such that L,c = 0, and compute
{d; € C?}7., as the roots of the polynomial 3"%_, cxz*. We then assign each pixel
J to motion model d; € R2if i = argming fjuj —dgll.
Motion-based segmentation results for the streer sequence. The sequence has 18
frames and 200 x 200 pixels. The camera is panning to the right while the car
is also moving to the right. (a) Frames 3, 8, 12 and 16 of the sequence with their
optical flow superimposed. (b) Group 1: motion of the camera. (c) Group 2: motion
ofthecar. e
Motion-based segmentation results for the sphere-cube sequence. The sequence
contains 10 frames and 400 x 300 pixels. The sphere is rotating along a vertical
axis and translating to the right. The cube is rotating counter clock-wise and trans-
lating to the left. The background is static. (a) Frames 2-7 with their optical flow
superimposed. (b) Group 1: cube motion. (c) Group 2: sphere motion. (d) Group
J:staticbackground. e
A subset of the ORL Database of Faces (AT&T Cambridge) consisting of N = 40
images of n = 4 faces (subjects 21-24) with varying expressions.
Clustering faces with varying expressions using Polysegment with K = 2.

Three (n = 3) 2-dimensional subspaces S;, Sz, S in R3. The objective of GPCA
is to identify all three subspaces from samples {2} drawn from these subspaces. . .
Two 1-dimensional subspaces Ly, L in R3 projected onto a 2-dimensional plane
Q. Clearly, the membership of each sample (labeled as “+”on the lines) is preserved
through the projection. e
A set of samples that can be interpreted as coming either from four 1-dimensional

subspaces Ly, Ly, L3, L4 in R3, or from two 2-dimensional subspaces P;, P; in R3.

viii

40

42

45

72

74

34

3.5

3.6

3.7
3.8

39

3.10

3.11

3.12

3.13

3.14

3.15
4.1

4.2

5.1

52

53

ix

Error versus noise for data lying on n = 4 subspaces of R3 of dimension k = 2.
Left: PFA, PDA-alg (m = 1 and m = 3) and PDA-rec (§ = 0.02). Right: PDA-
rec, K-subspace and EM randomly initialized, K-subspace and EM initialized with

PDA-rec, and EM initialized with K-subspace initialized with PDA-rec. 94
Error versus noise for PDA-rec (6 = 0.02) for data lyingonn = 1,...,4 subspaces
of REofdimension k= 2. v vttt ittt e e e 94

Detecting vanishing points using GPCA. Left: Image #364081 from the Corel
database with 3 sets of 10 parallel lines superimposed. Center: Comparing the van-
ishing points estimated by PDA and PDA followed by K-subspace with the ground
truth. Right: Segmentation of the 30 lines givenby PDA. 96
The flower garden sequence and its image derivatives projected onto the I-I, plane. 97
Segmenting frames 1, 11, 21 and 31 of the the flower garden sequence using GPCA

applied to the image derivatives. oo 98
Segmenting a sequence with a hand moving behind a moving semi-transparent
screen using GPCA applied to the image derivatives. 99

Epipolar geometry: Two projections z, 2 € R3 of a 3-D point p from two vantage
points. The relative Euclidean transformation between the two vantage points is
given by T; € R®. The intersection of the line (01, 02) with each image plane is the
so-called epipole e;. The epipolar line £ is the intersection of the plane (p, 01, 02)
withthe firstimageplane.. i i i e e 102
Performance of PDA on segmenting 3-D translational motions. Left: Estimation
error as a function of noise for n = 2, 3,4 motions. Right: Percentage of correctly

classified image pairs as a function of noise forn = 2,3,4 motions. 104
Segmenting 3-D translational motions using GPCA. Segmentation obtained by PFA
and PDA using different changes of coordinates. 104

Clustering a subset of the Yale Face Database B consisting of 64 frontal views under
varying lighting conditions for subjects 5, 8 and 10. Left: Image data projected onto
the three principal components. Right: Clustering of the images using PDA. 105
Mean error over 1000 trials for the identification of the model parameters (top) and
the discrete state (bottom) as a function of the standard deviation of the measure-

MENtEITOr O. . . v v v v v v v v s o s o P IR IR 109
Evolution of the estimated discretestate Az, « « v ¢ v v v v v v v e oo . 109
Error in the estimation of the 2-D affine motion models as a function of noise in the

image partial derivatives (std. in%).o oo 129
Segmenting a sequence with two affine motions from image intensities. 129

Two views of two independently moving objects, with two different rotations and

translations: (R, T}) and (Rg, T3) relative to the camera frame. 135
The intersection of v, (P2) and null(F) is exactly n points representing the Veronese
map of the n epipoles, repeatedornot. Lo 142

The multibody fundamental matrix F maps each point x; in the first image to n
epipolar lines £, . . . , £, which pass through the n epipoles ey, . . ., e respectively.
Furthermore, one of these epipolar lines passes throughxa. 144

54

5.5

5.6

5.7

When n objects move independently, the epipolar lines in the second view associ-
ated with each image point in the first view form n. groups and intersect respectively
at n, distinct epipoles inthesecond view. o0
Transformation diagram associated with the segmentation of an image pair (1, Z2)
inthepresence of nmOLiONS.t e
Error in the estimation of the rotation and translation as a function of noise in the
image points (std. inpixels).o e e
Segmenting a sequence with 3-D independent rigid motions.

147

Xi

List of Tables

2.1 Execution time (seconds) of each algorithm for a MATLAB implementation, run-
ningon a 400 MHz PentiumIIPC. 30

3.1 Mean computing time and mean number of iterations for each one of the algorithms. 95

5.1 Comparison between the geometry for two views of 1 rigid body motion and the
geometry of nrigidbodymeotions. 000 . 153

Xii

Acknowledgements

First and foremost, I would like to thank my research advisor, Professor Shankar Sastry for his
extraordinary support in all aspects of my graduate life. His superb guidance, encouragement and
enthusiasm, his pleasant personality, and the care and respect he shows for his students have made
working with him a great pleasure. His commitment to the highest intellectual standards, the depth
and breath of his research, and his broad and far-reaching vision have been and will continue to be
a constant source of inspiration.

I would also like to thank Professor Jitendra Malik and Professor Charles Pugh for serving
on my Dissertation Committee and Professor David Forsyth for serving on my Qualifying Exami-
nation Committee. Professor Malik introduced me to various segmentation problems in computer
vision. His expertise, questions and suggestions have been very useful on improving my PhD work.

My deepest gratitude goes to Professor Yi Ma at UIUC, with whom I have had an ex-
tremely pleasant and fruitful collaboration over the past few years. His mathematical expertise,
passion for geometry, attention to detail, and brilliant questions and suggestions have significantly
improved the material of this thesis. I am also very grateful to Professor Soatto at UCLA, with
whom I spent a fantastic year as a visiting student at the UCLA Vision Lab. His inspirational ad-
vice, constant motivation, and extraordinary care and support have been invaluable. I also thank Dr.
Omid Shakernia at UC Berkeley for innumerable hours of inspiring discussions and joint work on
vision-based control, omnidirectional vision, pursuit-evasion games, and so many other things.

My research has also benefited from discussions and interactions with Professor Jana
Kd&seck4 at George Mason University, who introduced me to the beauty of epipolar geometry and
motivated me to do research in computer vision, Professor Kostas Daniilidis at the University
of Pennsylvania, who introduced me to the geometry of omnidirectional cameras, and Professor
Ruzena Bajcsy and Dr. Christopher Geyer at UC Berkeley, with whom I have had wonderful dis-
cussions about various problems in computer vision. I would also like to thank Professor George
Pappas at the University of Pennsylvania and Professor John Lygeros at the University of Patras,
who introduced me to the world of nonlinear and hybrid systems, Professor John Oliensis at the
Stevens Institute of Technology, who shared with me his expertise in structure from motion and
factorization methods during a summer internship at NEC Research Institute, Dr. Peter Cheeseman
at NASA Ames, who introduced me to the connections between SLAM and vision during a summer
internship at RIACS, NASA Ames, and Dr. Noah Cowan at Johns Hopkins University for wonderful

discussions about vision, robotics, and vision-based control.

I am very grateful to have been surrounded by an extraordinary team of graduate students
and researchers that have made my graduate life very pleasant and always challenging. I would
like to thank all my colleagues in the Berkeley Aerial Robot Project, especially Professor Jodo
Hespanha, Shawn Hsu, Jin Kim, Shahid Rashid, Peter Ray, Shawn Schaffert, Cory Sharp, David
Shim, and Bruno Sinopoli, my colleagues in the Berkeley Computer Vision Reading Group Parvez
Ahammad, Aaron Ames, Marci Meingast and Jacopo Piazzi, and my colleagues in the UCLA Vision
Lab Alessandro Bissacco, Gianfranco Doretto, Alessandro Duci, Paolo Favaro, Hailin Jin, Jason
Meltzer, and Payam Saisan.

My former research advisor Professor Aldo Cipriano and my friend Dr. Julio Concha
were fundamental on my coming to Berkeley. Without their extraordinary support, advice, encour-
agement, teaching and friendship I wouldn’t have made it here in the first place. Many thanks!

Finally, I would like to thank my family for their endless love, support, patience, and care
during all these years, especially Kathia, Amelia and Oscar, to whom this thesis is lovely dedicated.

Chapter 1

Introduction

1.1 Motivation

A wide variety of problems in engineering, applied mathematics and statistics can be
phrased as an inference problem, that is a problem in which one is supposed to infer a model that
explains a given a collection of data points. In many cases, the data can be explained by a single
smooth model that can be as simple as the mean of the data as illustrated in Figure 1.1(a), or a hyper-
plane containing the data as illustrated in Figure 1.1(b), or as complex as an arbitrary manifold as
illustrated in Figure 1.1(c). The second case shows up, for example, in face recognition where
one assumes that the intensities in the image of a face under varying illumination lie on a linear
subspace of a higher-dimensional space. The third case shows up, for example, in the identification
of linear dynamical systems, where one is supposed to estimate the parameters A and C, and the

state trajectory {z;,t = 1,2, ...} of a linear dynamical system
Ti41 = Amt (l-l)

y =Cxy 1.2)

from the measured output {y,t = 1, 2,...}. The third case also shows up in the structure from mo-
tion problem in computer vision, where one is supposed to estimate the motion (rotation and transla-
tion) of a camera observing a cloud of points in 3-D space from two perspective views {(a:{ , zg)}jil

of such points. The camera motion and the image points are related by the epipolar constraint
o} Fa] =0, (1.3)

where the so-called fundamental matrix F is a rank-2 matrix encoding the motion parameters.

(a) Inferring the mean (b) Inferring a hyperplane (c) Inferring a manifold

Figure 1.1: Inferring a constant, linear and nonlinear model from a collection of data points.

When the equations relating the data points and the model parameters are linear on the
latter, the inference problem becomes relatively simple and can be usually solved using tools from
linear algebra and optimization, such as least squares. When the equations relating the data and the
model parameters are nonlinear, the inference problem is more challenging and one needs to exploit
the algebraic, geometric or statistical structure of the problem in order to render it tractable. For
example, in the structure from motion problem one can exploit the fact that F' € so(3) x SO(3) to
obtain a linear solution for the translation and rotation of the camera.

When the inference problem is not tractable, one can resort to some sort of approximation.
The most natural approximation is to assume that the data is generated by a finite mixture of simpler
(tractable) smooth sub-models. For example, in intensity-based image segmentation, one could
model the image brightness as a piecewise constant function taking on a finite number of gray
levels. The inference problem is that of estimating the number of the gray levels, their values, and
the assignment of pixels to gray levels. A second example, which we will later call generalized
principal component analysis, could be to approximate a manifold with a mixture of linear sub-
models as illustrated in Figure 1.2. This case shows up in the face recognition example, where
the images of multiple faces under varying illumination span multiple linear subspaces of a hjgher-‘
dimensional space, and the task is to recognize how many faces are present in a given dataset
and the subspace associated with each image. Similarly, one could think of approximating the
nonlinear dynamics of an unmanned aerial vehicle (UAV) with a linear hybrid system, i.e., a mixture
of linear dynamical sub-models of the type (1.1) and (1.2) connected by switches from one sub-
model to the other. One could have, for example, a different linear sub-model for take off, landing,
hovering, pirouette, etc., and would like to estimate such linear sub-models from measurements for
the position, orientation and velocity of the UAV, without knowing which measurement corresponds

to which linear sub:model.

8 -
4 5\
2 o
o g
-2 12 O

-
-4 e

\
g :
-8
-5 o

Figure 1.2: Approximating of a nonlinear manifold with a piecewise linear model.

However, there is a wide variety of inference problems in which using a mixture of sub-
models is not merely a modeling assumption, but an intrinsic characteristic of the problem. Consider
for example the problem of estimating the motion (translation and rotation) of multiple moving
objects from a collection of image measurements collected by a moving perspective camera, i.e.,
the multibody structure from motion problem in computer vision. In this case, the objective is to
find a collection of motion sub-models { F;}_, fitting a set of image measurements {(a, m-;)}g":l
without knowing which sub-model F; corresponds to which measurement (], &) as illustrated in

Figure 1.3.

(Rza 2)

//
(R1,Th)

Figure 1.3: A traffic surveillance sequence with multiple moving objects. The motion of each object
is represented with a different rotation and translation, (R, T'), relative to the camera frame.

In either case, a modeling assumption or an intrinsic characteristic of the problem, the
estimation of a mixture of smooth sub-models from a collection of data points is a rather challenging

problem, because one needs to simultaneously estimate
1. The number of sub-models in the mixture;
2. The parameters of each sub-model;

3. The segmentation of the data, i.e., the association between data points and sub-models.

It is important to notice that if the segmentation of the data was known, then the estimation
of the parameters of each sub-model would be simple, because by assumption each sub-model is
tractable. Conversely, if the parameters of each sub-model were known, then the segmentation of
the data would be trivial, because one could just assign each point to the closest sub-model. Since in
practice neither the model parameters nor the segmentation of the data are known, the estimation of
a mixture model is usually though of as a "chicken-and-egg” problem: in order to estimate the sub-
models one needs to first segment the data and in order to segment the data one needs to know the
sub-model associated with each data point. The main challenge is then the simultaneous estimation
of both the membership of each data point and the parameters of the sub-model for each class.

Statistical approaches to simultaneous data segmentation and model estimation assume
that the data points are generated by a mixture of probabilistic sub-models. The problem is then

equivalent to

1. Learning the number of sub-models and their parameters (e.g., mean and covariance);

2. Assigning points to sub-models based on the posterior probability of a point belonging to a
sub-model.

However, the estimation of the mixture model is in general a hard problem which is usually solved
using the Expectation Maximization (EM) algorithm [14]. The EM algorithm is an iterative proce-
dure in which one first estimates the segmentation of the data given a prior on the parameters of each
sub-model (E-step) and then maximizes the expected log-likelihood of the model parameters given a
prior on the grouping of the data (M-step). The main disadvantage of this iterative procedure is that
its convergence to the global optimum is in general very sensitive to initialization, because the com-
plete log-likelihood function presents several local maxima. Furthermore, most iterative algorithms
rely on prior knowledge about the number of sub-models to be estimated, and their performance

deteriorates when the given number of sub-models is incorrect. One may therefore ask:
Is there an algebraic way of initializing statistical approaches to data segmentation?

Furthermore, since some information about the number of sub-models must also be contained in the

data, we may ask
Is there an algebraic way of obtaining an initial estimate for the number of sub-models?

To our surprise, these questions have never been addressed in an analytic fashion. Most

of the currently existing methods!

1We will provide a more detailed review of each one of these algorithms in the introduction section of each chapter.

1. Use a random initialization for the sub-model parameters.

2. Use some other iterative algorithm for initialization, such as K-means, that alternates between

data segmentation and model estimation, also starting from a random initialization.

3. Use spectrai clustering techniques which are based on thresholding the eigenvectors of a
matrix whose i entry represents a measure of the similarity between points ¢ and 7, the so-
called similarity matrix. Questions such as which and how many eigenvectors to use? and

how to combine those eigenvectors to obtain an initial segmentation? are still open problems.

4. Use some ad-hoc procedure that depends on the particular problem being solved. For ex-
ample, in 2-D motion segmentation it is customary to fit a single affine motion model to the

whole scene and then fit a second model to the outliers and so on.

In a sense, all these techniques attempt to do clustering first to then obtain an estimate
of the sub-model parameters, and then iterate between these two stages. Therefore, none of them
attempts to directly resolve the “chicken-and-egg” dilemma of clustering versus model estimation.
In other words, none of them is able to estimate all the sub-models simultaneously using all the data,
without previous knowledge about the segmentation of the data points.

According to [18], “It is hard to see that there could be a comprehensive theory of seg-

mentation ... There is certainly no comprehensive theory of segmentation at time of writing ...”.

1.2 Dissertation contributions

This thesis represents a first step towards our long term goal of developing a mathematical

theory of data segmentation. In particular, we are interested in answering the following questions.
1. Are there classes of segmentation problems that can be solved analytically?
2. Under what conditions can these classes of segmentation problems be solved in closed form?
3. Under what conditions do these classes of segmentation problems have a unique solution?
4. Is there an algebraic formula for determining the number of sub-models?

In this thesis, we provide a complete answer to the last three questions for the following

classes of segmentation problems (see Figure 1.4).

Segmentation of
Piecewise Constant Data

A

Segmentation of
Piecewise Linear Data

\

Segmentation of
Piecewise Bilinear Data

Figure 1.4: A hierarchy of segmentation problems.

1. Piecewise constant data: In this case, we assume that the data points are clustered around
a finite collection of cluster centers as illustrated in Figure 1.5(a). This case shows up in a
variety of applications in computer vision, including image segmentation problems based on
intensity, texture, motion, etc. We will denote this case as Polynomial Segmentation (Poly-

segment), since our solution will be based on computing roots of univariate polynomials.

2. Piecewise linear data: In this case, we assume that the data points lie on a finite collec-
tion of linear subspaces, as illustrated in Figure 1.5(b) for the case of lines in R2. We will
denote this case as Generalized Principal Component Analysis (GPCA), since it is a natural
generalization of PCA [29], which is the problem of estimating a single linear subspace from
sample data points. GPCA shows up in a variety of applications in computer vision, including

vanishing point detection, segmentation of linearly moving objects, face recognition, etc.

3. Piecewise bilinear data: In this case, we assume that the data lies on a finite collection of
manifolds with bilinear structure, i.e., the data points (x;, z2) satisfy equations of the form
xd Fx; = 0, where F is a matrix representing the model parameters. We show an example
of a mixture of two bilinear surfaces for ; € R? and x, € R in Figures 1.5(c)-(d). We will
denote this case as Multibody Structure from Motion, since it very much related to the 3-D

motion segmentation problem in computer vision.

-5

(c) Piecewise bilinear data (d) Piecewise bilinear data

Figure 1.5: Inferring different piecewise smooth models from data.

The main contribution of this thesis is to show that for these three classes of segmenta-
tion problems the “"chicken-and-egg” dilemma can be completely solved using algebraic geometric
techniques. In fact, it is possible to use all the data points simultaneously to recover all the model
parameters without previously segmenting the data. In the absence of noise, this can be done in
polynomial time using linear techniques and the solution can be obtained in closed form if and only
if the number of groups is less than or equal to 4. In the presence of noise, the algebraic solution
leads to an optimal objective function that depends on the model parameters and not on the segmen-
tation of the data. Alternatively, the algebraic solution can be used as an initialization for any of the
currently existing iterative techniques. Although these three classes of segmentation problems may
seem quite different from each other, we will show that they are strongly related. In fact, we will
show that the piecewise bilinear case can be reduced to a collection of piecewise linear problems.
Similarly we will show that the piecewise linear case can be reduced to a collection of piecewise
constant problems. The following sections give a more detailed account of our contributions for

each class of data segmentation problems.

1.2.1 Piecewise constant data: polynomial segmentation

We propose a simple analytic solution to the segmentation of piecewise constant data and
show that it provides a solution to the well known eigenvector segmentation problem. We start
by analyzing the one-dimensional case and show that, in the absence of noise, one can determine
the number of groups n from a rank constraint on the data. Given n, the segmentation of the
measurements can be obtained from the roots of a polynomial of degree n in one variable. Since
the coefficients of the polynomial are computed by solving a linear system, we show that there is
a unique global solution to the one-dimensional segmentation problem, which can be obtained in
closed form if and only if 7 < 4. This purely algebraic solution is shown to be robust in the presence
of noise and can be used to initialize an optimal algorithm. We derive such an optimal objective
function for the case of zero-mean Gaussian noise on the data points.

We then study the case of piecewise constant data in dimension two. We show that the
same one-dimensional technique can be applied in the two-dimensional case after embedding the
data into the complex plane. The only difference is that now the polynomial representing the data
will have complex coefficients and complex roots. However, the cluster centers can still be recovered
from the real and imaginary parts of the complex cluster centers. We then study the case of piecewise
constant data in a higher-dimensional space and show that it can be reduced to a collection of one
or two-dimensional clustering problems.

We present applications of polynomial segmentation on computer vision problem such as
image segmentation based on intensity or texture, 2-D motion segmentation based on feature points,

3-D motion segmentation based on optical flow, and face clustering with varying expressions.

1.2.2 Piecewise linear data: generalized principal component analysis

We consider the so-called Generalized Principal Component Analysis (GPCA) problem,
i.e., the problem of identifying n linear subspaces of a K-dimensional linear space from a collec-
tion of sample points drawn from these subspaces. In the absence of noise, we cast GPCA in an
algebraic geometric framework in which the number of subspaces n becomes the degree of a cer-
tain polynomial and the subspace parameters become the factors (roots) of such a polynomial. In
the presence of noise, we cast GPCA as a constrained nonlinear least squares problem which mini-
mizes the error between the noisy points and their projections subject to all mixture constraints. By
converting this constrained problem into an unconstrained one, we obtain an optimal function from

which the subspaces can be directly recovered using standard non-linear optimization techniques.

In the case of subspaces of dimension k = K — 1, i.e., hyperplanes, we show that the
number of hyperplanes n can be obtained from the rank of a certain matrix that depends on the
data. Given n, the estimation of the hyperplanes is essentially equivalent to a factorization problem
in the space of homogeneous polynomials of degree n in K variables. After proving that such a
problem admits a unique solution, we propose two algorithms for estimating the hyperplanes. The
polynomial factorization algorithm (PFA) obtains a basis for each hyperplane from the roots of a
polynomial of degree n in one variable and from the solution of K — 2 linear systems in n variables.
This shows that the GPCA problem has a closed form solution when n < 4. The polynomial
differentiation algorithm (PDA) obtains a basis for each hyperplane by evaluating the derivatives of
the polynomial representing the hyperplanes at a collection of points in each one of the hyperplanes.
We select those points either by intersecting the hyperplanes with a randomly chosen line, or by else
by choosing points in the dataset that minimize a certain distance function.

In the case of subspaces of equal dimension k1 = --- = k, = k < K — 1, we first
derive rank constraints on the data from which one can estimate the number of subspaces n and
their dimension k. Given n and k, we show that the estimation of the subspaces can be reduced
to the estimation of hyperplanes of dimension ¥ = K’ — 1 which are obtained by first projecting
the data onto a K’-dimensional subspace of RK. Therefore, the estimation of the subspaces can
be done using either the polynomial factorization or the polynomial differentiation algorithm for
hyperplanes.

In the case of subspaces of arbitrary dimensions, 1 < k1, ..., ks < K — 1, we show that
the union of all subspaces can be represented by a collection of homogeneous polynomials of degree
n is K variables, whose coefficients can be estimated linearly from data. Given such polynomials,
we show that one can obtain vectors normal to each one of the subspaces by evaluating the deriva-
tives of such polynomials at a collection of points in each one of the subspaces. The estimation of
the dimension and of a basis for (the complement of) each subspace is then equivalent to applying
standard PCA to the set of normal vectors. The above algorithm is in essence a generalization of
the polynomial differentiation algorithm to subspaces of arbitrary dimensions.

Our theory can be applied to a variety of estimation problems in which the data comes
simultaneously from multiple (approximately) linear models. Our experiments on low-dimensional
data show that PDA gives about half of the error of the PFA and improves the performance of iter-
ative techniques, such as K-subspace and EM, by about 50% with respect to random initialization.
We also present applications of our algorithm on computer vision problems such as vanishing point

detection, 2-D and 3-D motion segmentation, and face clustering under varying illumination.

10

1.2.3 Piecewise bilinear data: multibody structure from motion

We present an algebraic geometric approach to segmenting static and dynamic scenes
from image intensities (2-D motion segmentation) or feature points (3-D motion segmentation).

In the 2-D motion segmentation case, we introduce the multibody affine constraint as a
geometric relationship between multiple affine motion models and the image intensities generated
by them. This constraint is satisfied by all the pixels in the image, regardless of the motion model
associated with each pixel, and combines all the motion parameters into a single algebraic structure,
the so-called multibody affine matrix. Given the image data, we show that one can estimate the
number of motion models from a rank constraint and the multibody affine matrix from a linear
system. Given the multibody affine matrix, we show that the optical flow at each pixel can be
obtained from the partial derivatives of the multibody affine constraint. Given the optical flow at
each pixel, we show that the estimation of the affine motion models can be done by solving two
GPCA problems. In the presence of noise, we derive an optimal algorithm for segmenting dynamic
scenes from image intensities, which is based on minimizing the negative log-likelihood subject to
all multibody affine constraints. Our approach is based solely on image intensities, hence it does not
require feature tracking or correspondences. It is therefore a natural generalization of the so-called
direct methods in single-body structure from motion to the case of multiple motion models.

In the 3-D motion segmentation case, we introduce the so-called multibody epipolar con-
straint and its associated multibody fundamental matrix as natural generalizations of the epipolar
constraint and of the fundamental matrix to multiple moving objects. We derive a rank constraint
on the image points from which one can estimate the number of independently moving objects as
well as linearly solve for the multibody fundamental matrix. We prove that the epipoles of each in-
dependent motion lie exactly in the intersection of the left null space of the multibody fundamental
matrix with the so-called Veronese surface. Given the multibody fundamental matrix, we show that
the epipolar lines can be recovered from the derivatives of the multibody epipolar constraint and
that the epipoles can be computed by applying GPCA to the epipolar lines. Given the epipoles and
epipolar lines, the estimation of individual fundamental matrices becomes a linear problem. The
segmentation of the data is then automatically obtained from either the epipoles and epipolar lines
or from the fundamental matrices. In the presence of noise, we derive the optimal error function for
simultaneously estimating all the fundamental matrices from a collection of feature points, without
previously segmenting the image data. Our results naturally generalize the so-called feature based

methods in single-body structure from motion to the case of multiple rigidly moving objects.

11

1.3 Thesis outline

This thesis is organized in the following four chapters.

e Chapter 2, Polynomial Segmentation, covers the segmentation of piecewise constant data.
Section 2.2 covers the segmentation of one-dimensional data. This case is the simplest seg-
mentation problem, yet it allows to illustrate most, if not all, the concepts of the overall theory
presented in this thesis. Thus we recommend the reader to clearly understand all the details
before jumping into the the remaining chapters. In spite of its simplicity, the one-dimensional
case is strongly related with the spectral clustering techniques that we mentioned in the pre-
vious section. In fact, the solution to the one-dimensional case provides an automatic way of
thresholding the eigenvectors of a similarity matrix. The generalization to higher-dimensions
is covered in Sections 2.3 and 2.4 and is a straightforward extension of the one-dimensional
case. Such an extension indeed provides a solution to the problem of simultaneously thresh-

olding multiple eigenvectors, which is the basis for spectral clustering techniques.

e Chapter 3, Generalized Principal Component Analysis (GPCA), covers the segmentation
of piecewise linear data, i.e., data lying on a collection of subspaces. Section 3.2 gives the
basic formulation of the problem. Section 3.3 covers the case of subspaces of co-dimension
one (hyperplanes), including the polynomial factorization (Section 3.3.2) and polynomial dif-
ferentiation (Section 3.3.3) algorithms. Section 3.4 covers the case of subspaces of equal di-
mension, which is reduced to the case of hyperplanes via a projection. Section 3.5 covers the
case of subspaces of arbitrary dimensions via polynomial differentiation and division. Sec-
tions 3.6 derives an optimal function for obtaining the subspaces from noisy data. Section 3.7

shows how to use GPCA to initialize iterative algorithms such as K-subspace and EM.

e Chapters 4 and 5 extend the theory of Chapter 3 to the case of piecewise bilinear data. Al- '
though the segmentation of piecewise bilinear data can always be reduced to the segmentation
of piecewise bilinear, the last step of the reduction is combinatorial. Therefore, we have cho-
sen to concentrate on the problem of segmenting dynamic scenes from 2-D imagery, because
in this case the combinatorial part can be bypassed by exploiting the geometric structure of
the problem. Chapter 4 covers the segmentation of static and dynamic scenes from image in-
tensities, and is a natural generalization of the so-called direct methods to the case of multiple
motion models. Chapter 5 covers the segmentation of dynamic scenes from feature points,
and is a natural generalization of the eight-point algorithm to multiple rigidly moving objects.

12

Chapter 2

Polynomial Segmentation (Polysegment)

2.1 Introduction

Eigenvector segmentation is one of the simplest and most widely used global approaches
to segmentation and clustering [42, 11, 40, 45, 68]. The basic algorithm is based on thresholding
the eigenvectors of the so-called similarity matrix and can be summarized as having the following
steps [40]:

1. Associate to each data point a feature vector. Typical feature vectors in image segmentation

are the pixel’s coordinates, intensity, optical flow, output of a bank of filters, etc.

2. Form a similarity matrix S € RV*V corresponding to N data points. Ideally S;; = 1 if
points i and j belong to the same group and S;; = O otherwise. A typical choice for S;; is
exp(—d?j /20?), where d;; is a distance between the features associated to points ¢ and j and
o is a free parameter. d;; is chosen so that the intragroup distance is small and the intergroup
distance is large. When the points are ordered according to which group they belong, the
similarity matrix should be block diagonal as illustrated in Figure 2.1.

3. Group the points by thresholding an eigenvector ¢ € R¥ of the similarity matrix S € RV xN,
Ideally, if two points ¢ and j belong to the same group, then z; = ;. Thus if the points
are reordered according to which group they belong, the eigenvector should be a piecewise
constant function of the points as illustrated in Figure 2.1.

In practice, the data points are corrupted with noise, the intragroup distance is nonzero

and the intergroup distance is not infinity. This means that, in general, z; # z; even if points ¢

13

N 1 N

Figure 2.1: A similarity matrix for two groups (left) and its leading eigenvector (right), after seg-
mentation. Dark regions represent S;; = 0 and light regions represent S;; = 1.

. /.v. el

1 N 1 N

Figure 2.2: Eigenvector obtained from noisy image measurements and the “ideal” eigenvector. Be-
fore segmentation (left) and after segmentation (right).

and j belong to the same group. We illustrate this phenomenon in Figure 2.2, where the leading
eigenvector of S is not piecewise constant, yet there is an unknown underlying piecewise constant

eigenvector: the “ideal” eigenvector. The question is

How does one recover the “ideal” eigenvector from the “noisy” one? Is there an analytic

way of doing so?

Furthermore, since information about the number of groups is also contained in the noisy eigenvec-

tor
How does one obtain an estimate of the number of groups from the noisy eigenvector?

To our surprise, these questions have never been addressed in an analytic fashion. Most
of the existing work (See Section 2.1.2 for a review) uses heuristics to threshold one or more eigen-

vectors of the similarity matrix and then extract the segmentation.

14

2.1.1 Contributions

In this chapter, we address the eigenvector segmentation problem in a simple algebraic
geometric framework. We assume that the number of groups is unknown and that there exists a
set of underlying “ideal” eigenvectors which are permutations of piecewise constant vectors. The
problem then becomes one of estimating the number of groups, the “ideal” eigenvectors and the cor-
responding permutation from a set of “noisy” eigenvectors of S. We propose to solve this problem
using polynomial segmentation (Polysegment), a simple technique that transforms each eigenvector
into a univariate polynomial. The number of groups n becomes the degree of the polynomial and
the finite values that the “ideal” eigenvectors can take become the roots of the polynomial.

In Section 2.2 we consider the case of a single eigenvector. In Section 2.2.1 we derive
a rank condition on the entries of the “ideal” eigenvector from which we determine the number of
groups n. Once the number of groups has been determined, the segmentation of the data points
can be obtained from the roots of a polynomial of degree n in one variable, whose coefficients can
be computed by solving a linear system. This shows that there is a unique global solution to the
eigenvector segmentation problem, which can be obtained in closed form if and only if n < 4. In
Section 2.2.2 we show that this purely algebraic solution is robust in the presence of noise since it
corresponds to the least squares solution to the algebraic error derived in the ideal case. In the case
of zero-mean Gaussian noise on the entries of the eigenvector, we show that such a sub-optimal
objective function can be easily modified to obtain an optimal function for the chosen noise model.

In Section 2.3 we consider the problem of segmenting the data from two eigenvectors and
show that Polysegment can be directly applied after transforming the two (real) eigenvectors into
a complex one, and then working with complex polynomials. In Section 2.4 we study the case of
multiple eigenvectors and show that it can be reduced to the case of one or two eigenvectors after a
suitable projection. We show how to use Polysegment to initialize K-means and EM in Section 2.5. -

In Section 2.6 we present experimental results on intensity-based image segmentation that
show that Polysegment performs similarly or better than K-means and EM, but is computationally
less costly, because it only needs to solve one linear system in n variables plus one polynomial of
degree n in one variable. We also present experimental results on texture-based image segmentation
that show that Polysegment is very efficient at computing and segmenting textures and produces a
visually appealing segmentation of natural scenes from the Berkeley segmentation dataset. We then
apply Polysegment to 2-D and 3-D motion segmentation using either point features or optical flow.

Finally, we present experimental results on face clustering with varying expressions.

15

2.1.2 Previous work

Spectral clustering techniques were first applied to motion segmentation by Boult and
Brown [7]. The authors propose a rank constraint to estimate the number of independent motions
and obtain the segmentation of the image data from the leading singular vectors of the matrix of
feature points in multiple frames. A similar technique was earlier proposed by Scott and Longuet-
Higgins [42] in the context of feature segmentation. The authors assume that the number of groups
n is given and use the first n eigenvectors of the similarity matrix S to build a segmentation matrix
Q such that Q;; = 1 if pixels belong to the same group and zero otherwise. In the presence of
noise, the segmentation of the data is obtained by thresholding Q, which is sensitive to noise. The
same technique was later applied by Costeira and Kanade [11] to orthographic motion segmenta-
tion. In this case the similarity matrix is obtained as the outer product of a matrix formed from a
collection of feature points in multiple frames. Instead of thresholding Q, the authors obtain the
segmentation by partitioning a graph that is formed from the entries of Q. An alternative approach
to thresholding @ based on model selection techniques was proposed by Kanatani [31]. Shi and
Malik [45] demonstrated that segmentation based on a single eigenvector can be interpreted as a
sub-optimal solution of a two-way graph partitioning problem. They explored three algorithms for
image segmentation. In the rwo-way Ncut they threshold the second eigenvector of a normalized
similarity matrix into two groups. The choice of two groups is arbitrary, and can produce the wrong
segmentation for eigenvectors such as the one in Figure 2.2. In the recursive two-way Ncut each
one of the two groups is further segmented into two sub-groups by applying the two-way Ncut to
the eigenvectors associated to the similarity matrices of the previously computed groups. In this
case it is unclear when to stop subdividing currently computed groups. The authors also explore a
K-way Ncut that uses K eigenvectors. The K entries corresponding to each pixel are used as feature
vectors that are clustered using the K-means algorithm with random initialization. They do not pro-
vide an analytic way of initializing K-means. Weiss [68] showed that the eigenvector segmentation
algorithms in [11, 40, 42, 45] are very much equivalent to each other. In some special cases, he
also analyzed the conditions under which they should give a good segmentation. For example, the
algorithm in [42] gives a good segmentation when the intergroup similarities are zero, the intra-
group similarities are positive and the first eigenvalue of each intragroup similarity matrix is bigger
than the second eigenvalue of any other. Similar conditions were derived in [39]. Unfortunately,
these conditions depend on the spectral properties of the segmented data and hence they cannot be

checked when the true segmentation is unknown.

16

2.2 One-dimensional clustering: the case of one eigenvector

Assume that we are given an eigenvector z € RN of a similarity matrix S € RV*V,
where N is the number of data points, and that we would like to segment the entries of x into
an unknown number of groups n. We assume that there exists an (unknown) ideal eigenvector T
that takes on a finite number of values, i.e., Z; € {p1,12,--.,tn}, With g1 # -+ F py, for

4 =1,..., N. We define the eigenvector segmentation problem as follows.

Problem 1 (Eigenvector segmentation problem)
Given an eigenvector = € RY of a similarity matrix S € RV*¥ | estimate the number of groups 7,

the constants {x;}- ;, and the segmentation of the data, i.e., the group to which each point belongs.

2.2.1 The ideal case

Imagine for the time being that we had access to the ideal eigenvector . In this case,
the segmentation problem can be trivially solved by sorting the entries of == &. However, we will
pretend as if we did not know the sorting-based solution so that we can derive the equations that =
has to satisfy. It turns out that those equations are precisely the ones that will enable us to recover
& from &, when & is unknown.

Let = € R be an indefinite variable representing say the j* entry of & € RV. Then, there

exists a constant u; such that =z = ;. This means that

(z=m)V(z=p2) V- V(2= pn), @1

which can be compactly written as the following polynomial of degree n in z:

Pn(z) = ﬁ(w — i) = Zn:ckm" =0. 2.2)

i=1 k=0

Since the above equation is valid for every entry of &, we have that

1 7y 22 | | eo
1 2o z2 --- zP :
Lne= | 2 2 =0. @2.3)
:] enm1
1 zy =% - z%| [1

where L,, € RV*("+1) s the data matrix and ¢ € R™*! js the vector of coefficients of p,(z).

17

In order for the linear system of equation (2.3) to have a unique solution for the vector of
coefficients ¢ € R™*+!, we must have that rank(L,) = n. This rank constraint on L, € RV x(n+1)

provides a criterion to determine the number of groups 7 from the eigenvector x, as follows.

Theorem 1 (Number of groups) Let L; € RN*(+1) pe the matrix formed from the first i + 1
columns of L,. If N > n, then

>i, ifi<mn,
rank(L;) { =4, ifi=n, 2.4
<i, ifi>n.
Therefore, the number of groups n is given by
n = min{i : rank(L;) = i}. 2.5)

Proof. Consider the polynomial p,(z) as a polynomial over the algebraically closed field C and
assume that gy # p2 # --- # pn. Then the ideal I generated by p,(z) is a radical ideal with
Pn(z) as its only generator. According to Hilbert’s Nullstellensatz (see page 380, [34]), there is a

one-to-one correspondence between such an ideal I and the algebraic set
Z(I)={z:Vpel,p(z)=0}cCcC

associated to it. Hence its generator p, (z) is uniquely determined by points in this algebraic set. By
definition, p, () has the lowest degree among all the elements in the ideal I. Hence no polynomial
with lower degree would vanish on all points in {1, g2, . . ., #tn }. Furthermore, since all the con-
stants p; are real, if z + /—1y € Cisin Z(I), then (z+ v=1y) = iy & (z = w) A (y =0).
Hence all points on the (real) line determine the polynomial p,(z) uniquely and vice-versa. Since
the coefficients of the polynomial py,(z) lie in the null space of Ly, and the rank of L, determines
the number of solutions, it follows that the null space of L; is trivial if # < n, one-dimensional if

i = n and at least two-dimensional if ¢ > n. This completes the proof. []

The intuition behind Theorem 1 can be explained as follows. Consider for simplicity
the case of n = 2 groups, so that p,(z) = pa(z) = (z — p1)(z — po), with 3 # uz. Then it
is clear that there is no polynomial of degree one, p;(z) = = — p, that is satisfied by all the data.
Similarly, there are infinitely many polynomials of degree 3 or more that are satisfied by all the data,
namely any multiple of p(z). Thus the degree n = 2 is the only one for which there is a unique
polynomial representing all the data. Since the vector of coefficients ¢ € R™*! of the polynomial

18

pn(z) lies in the null space of Ly, and the rank of L, determines the number of solutions of the
linear system in (2.3), the number of groups is determined as the degree for which the null space of
L., is one-dimensional.

We can therefore use Theorem 1 to estimate the number of groups incrementally from
equation (2.5), starting withz = 1,2, .. ., etc. Notice that the minimum number of points needed is
N > n, which is linear on the number of groups.!

Once the number of groups n has been computed, we can linearly solve for the vector
of coefficients ¢ from equation (2.3). In fact, after rewriting (2.3) as a (non-homogeneous) linear
system with unknowns [cg, ¢1, .. ., cn-1]7, the least squares solution for [co, c1, .. ., cn-1]7 can be

obtained by solving the linear system

1 Bl - B El="]

z z?) ... E[z"! z"

Ble] B} B ||| | Bl 2.6)
Bl Blg - B2 L7 [y

where E[z*] = & S2I; =% is the k** moment of the data. This shows that for a mixture of n
groups, it is enough to consider all the moments of the data up to degree 2n — 1.
Finally, since _
n n
pa(z) =z - m) =) az* =0, 2.7

i=1 k=0
given n and ¢ we can obtain {4;}2, as the n roots of the polynomial p,(x). Given {p;}7, the

segmentation is obtained by assigning point j to group ¢ whenever p; = z;.

Remark 1 (Solvability of roots of univariate polynomial) It is well-known from abstract alge-
bra [34] that there is a closed form solution for the roots of univariate polynomials of degree n < 4.

Hence, there is a closed form solution to the eigenvector segmentation problem for n < 4 as well.

2.2.2 The general case

Let us now consider the case in which we are given a noisy eigenvector & whose ideal
eigenvector is unknown. As before, let z be an indefinite variable representing say the 7" entry
of . Then, there exists a constant u; such that z = p;, hence we must have

pn(z) = (z = p1)(@ — p2) - (z — pn) = D _ cxz® = 0. (2.8)
k=0

1We will see in future chapters that this is no longer the case for more general segmentation problems.

19

By applying the above equation to each entry of &, we abtain the system of linear equations
L,c=0, 2.9

where L,, € RV*("+1) j5 defined in (2.3). We can solve this equation in a least-squares sense by

minimizing the algebraic error

N n 2
Exc) = Z(p,. (@)=Y (chm;?) = ||Lnc]?. (2.10)

j=1 i=1 \k=0
The solution c to the above problem is simply the singular vector of L,, corresponding to the smallest
singular value. Given c, the cluster centers {u;}7-; can be obtained as the n roots of p,(z). Finally,
given {u;}7,, the segmentation of the data is obtained by assigning point j to the group i that
minimizes the distance between z; and y;, i.e., point j is assigned to the group

i=arg, min (z;~ te)?. (2.11)

In summary, if the number of groups n is given, then the same algorithm that we derived
in the ideal case can be directly applied to compute the vector of coefficients c, the cluster centers
{#:}7, and the segmentation of the data. Now if the number of groups 7 is unknown, we cannot
directly compute it from the rank condition in (2.5), because the matrix L; may be full rank for any
¢ 2 1. Therefore, we determine the number of groups by thresholding the singular values of the
data matrix. That is, we estimate the number of groups as

n=min{i : 0;4+1/0; < €}, (2.12)

where o; is the i** singular value of L; and e is a pre-specified threshold that depends on the noise
level. One can also use the geometric information criterion to estimate the rank as shown in [32].

Even though we have derived the polynomial segmentation algorithm Polysegment in a
purely algebraic setting, it turns out that it also has a probabilistic interpretation. Let {x}}fﬂ be a
noise corrupted version of the ideal data {;}Y j=1 drawn from a mixture model with means {p;}%-;.
The problem is then to estimate the means of the mixture model {x;}?, from the noisy sample data
{z;}iL,. The following lemma [54] shows that the algebraic solution described above is exactly
the moment estimator for certain types of distributions, e.g., Exponential and Gamma.

Lemma 1 (Moment estimator for mixtures of scalar random variables) Given a collection of
points {z;} j=1 drawn from a mixture model with means {p;}~.,, if the probability distribution for
group i is such that E(z*) = pf foralli = 1,...,nand for all k > 1, then the solution for {mi}i,
given by (2.6) and (2.7) corresponds to the moment estimator for the means of the mixture model.

20

Consider now the case in which the data {z; }§Y=1 is corrupted with i.i.d. zero-mean Gaus-
sian noise. Since this case does not satisfy the conditions of Lemma 1, the algebraic solution is
not necessarily optimal in a maximum likelihood sense. We therefore seek an optimal solution by

solving the following constrained optimization problem

N
. -\
o1 Z(”‘J z5) @.13)
Jj=1
n
subject to zij;? =0, j=1,..,N. (2.14)
k=0

Since pn(Z) = pa(z) + Pa(z)(Z — z) + O((Z — 2)?) and (z —) is assumed to be
zero-mean and Gaussian, after neglecting higher order terms an optimal objective function can be
obtained by minimizing

N 2 N n k 2
: pn(xj)) D k=0 CkT;
Eo(c) = =] . 2.15
o(c) ; (Pi.(%‘) ,_21 " kot L (2.15)

Minimizing Eo(c) is an unconstrained optimization problem in n variables, which can be solved

with standard optimization techniques. Notice that the optimal error Eo(c) is just a normalized
version of the algebraic emror E4(c). Given n and ¢ we obtain the constants {y;}}., as before, i.e.,

they are the n roots of the polynomial p,(z). Given the constants {;}, the segmentation of the
data is obtained as in (2.11).

Remark 2 (Solving for {;}.; directly) Notice that in the nonlinear case it is not necessary to
solve for c first. Instead one can define the optimal error Eo as a function of {p;}i, directly,
because pn(z;) = (zj — p1) - - (xj — in). The error becomes

N 2 N n 2
Pr(zi)\" _ _ (=i —)
Z (P%(f"j)) z (E?:l He;ei(xj - ug)) ’ (2.16)

In the presence of noise is better to search for {p;}%_, directly, without computing c first. This is
because the unconstrained minimization of Eo(c) does not consider the constraints on the entries

of ¢ associated to the fact that p,(z) should have real roots.

Remark 3 (Approximate distance from a point to its cluster center) Notice from (2.16) that ifa
point z; is close to cluster center yu;, then the denominator is approximately equal to [] ..;(z; — Le)-
After dividing the numerator by the denominator, we notice that the contribution of point j to the
error Eo(c) is equal 1o (z; — 11;)%. Therefore, the error function Eo(c) is a clever way of writing

the sum of the square distances from each point to its own cluster center, modulo higher order terms.

21

2.3 Two-dimensional clustering: the case of two eigenvectors

Consider now the case in which we are given eigenvectors z; € R" and z3 € R" of a
similarity matrix S € RV*N_ As before, the objective is to find two ideal eigenvectors &; € RV
and & € RY such that the rows of the matrix X = [&, &;] € RY*? take on finitely many values
{p; € R2}2,. Alternatively, we can interpret the above problem as a clustering problem in R2.
We could imagine that each row of the data matrix X = [x; 2] € RV*? is a data point to be
clustered and that {g;}- , are the (unknown) cluster centers.

We now show that the two-eigenvector problem can be solved using the same technique
we used in the single-eigenvector case, i.e., polynomial segmentation, except that we need to use
complex coordinates. To this end, let us interpret the cluster centers as a collection of complex
numbers {g; € C}_, and let z = =; +/—1x3 € CV be a new (complex) eigenvector. Then each

coordinate z € C of the (noisy) eigenvector z € CV must approximately satisfy the polynomial

pr(2)=[]J(z-p) =) az*=0 @17)

i=1 k=0
As before, by applying the above equation to each one of the V entries of z we obtain the following

linear system on the vector of (complex) coefficients ¢ € C*+1
L,c=0, (2.18)

where L, € CV*("+1) j5 defined similarly to (2.3), but computed from the complex eigenvector 2.
We can now solve for ¢ in a least-squares sense from the SVD of L,. Given ¢, we compute the n
roots of pn(z), which correspond to the n cluster centers in R? {g;}2.,. The clustering of the data

is then obtained by assigning each row of X to the closest cluster center, similarly to (2.11).

Remark 4 (A difference between one-dimensional and two-dimensional cases) Although the one-
dimensional and two-dimensional cases are conceptually identical, in the noisy case there is a po-
tential difference that is worth mentioning. In the one-dimensional case we are dealing with poly-
nomials in R, and R is not an algebraically closed field. Therefore the roots of p»(z) may not be all
real, because we never enforced that when solving for the vector of coefficients c from Lp,c = 0. In
the two-dimensional case, on the other hand, we are working in C which is an algebraically closed
field, hence all the roots are complex and there is no need 1o constraint the roots of pn(z) when
solving for c. However this difference is only conceptual. In practice one always gets real solutions
in the one-dimensional case. For example, if n = 2 one can solve for c from (2.6) and show that
¢a = Var[z), ¢; = E[z?|E[x] — E[x®] and co = E[x®]E[z] — E[x?)? < 0, hence c2 — 4cocz > 0.

22

2.4 K-dimensional clustering: the case of multiple eigenvectors

In many segmentation problems a single eigenvector will not be enough for obtaining the
correct segmentation. We illustrate this in Figure 2.3, where individual eigenvectors contain two
groups, while all three eigenvectors contain three groups.

In this section, we generalize Polysegment to deal simuitaneously with multiple (noisy)
eigenvectors? &1, xa,....cx € RN of a similarity matrix S € RV*V. The objective is to find
a collection of ideal eigenvectors &, Z3,...,Tx € R¥ such that the rows of the matrix of ideal
eigenvectors X = [&1,%,...,2K] € RV*X take on finitely many values {p; € RE}2,. As
before, we can interpret the multiple eigenvector segmentation problem as a clustering problem in
RX in which we would like to cluster the rows of X = [z1,Z2,...,zk] € RV*¥ around the

cluster centers {u; € R¥}2 ;.

15 15 1.5
1 1 1
05 0.5 05
[0 0
~-0.5 -0.5 .
0 20 40 60 0 20 40 80 -0 50 20 40 60

Figure 2.3: A case in which individual eigenvectors contain two groups, while all three eigenvectors
contain three groups.

In principle, one may wonder if it is possible to solve the case of K > 2 eigenvectors by
applying the same trick of the K = 2 case, namely to identify R? with the complex plane. Unfortu-
nately, one cannot directly generalize the properties of complex numbers to higher dimensions. In
the case K = 4, for example, one could think that working with quaternions could be the solution.
However, unlike the multiplication of complex numbers, the multiplication of quaternions is not
commutative. Furthermore, it is unclear how to solve for the roots of a polynomial on quaternions.

Therefore, in solving the case K > 2 we will look for an alternative solution based on
reducing the problem to the cases K = 1 and/or K = 2. To this end, notice that the case K = 2
can be reduced to the case K = 1 by projecting the rows of X € R"V*2 onto a one-dimensional

subspace. We illustrate this in Figure 2.4, where three clusters are projected onto the horizontal axis,

2In general, it is enough to use K = rank(S) eigenvectors. Thus K can be obtained by choosing the eigenvectors of
S that are such that the corresponding eigenvalues are above a certain threshold.

23

3
P AR AT S
. ...'. . .
2 ‘tﬁ.:::!!' e 4
15F o 0-0. -
* o'céo. . : * ..aé’o..
1.0“:!!.’."\-af'." B
“.‘.’c : .:O.\
0.5 :
O :
0 1 2 3 4

Figure 2.4: Projecting the rows of X € R™*2 onto any line not perpendicular to the lines passing
through the cluster centers preserves the segmentation. In this example, one can project onto the
horizontal axis, but not onto the vertical axis.

and the segmentation of the data is preserved. More generally, given a matrix with K eigenvectors
X € RV*K we can project its rows onto almost every? one-dimensional subspace of RX and the
segmentation into 7 clusters is preserved. Since choosing a particular projection is equivalent to
choosing a vector A € R¥ and defining a new (projected) data set X\ € R¥, one can now apply
Polysegment with K = 1 to the new single eigenvector x = X) and obtain the segmentation of the
data. Similarly, we can choose a matrix A € R¥*2 and project the rows of X onto a 2-dimensional
subspace to obtain two eigenvectors X A € RV*2, We can then apply the Polysegment with K = 2
to the data, by embedding it into the complex plane.

In order to make the segmentation less dependent on a particular choice of the projection,
we choose a collection of projections. For example, we can choose to project along each one of
the axis in RK, which gives the original eigenvectors x, . .., zx.* Then one can apply polynomial
segmentation with K = 1 to each one of them to obtain their corresponding “ideal” eigenvectors
&1,&o,...,2x € RV Since the entries of each z; € RN take on at most n different values, many
of the rows of X = [&;, &3,...,%k] € RV*X will be repeated. In fact, the n different rows of
X should correspond to the cluster centers {g2;}2.,. Therefore, the segmentation of the data can be
achieved by sorting the rows of X.

Algorithm 1 summarizes the overall algorithm.

3Except when the one-dimensional subspace is perpendicular to the line connecting any pair of cluster centers.

“Notice that projecting along one of the axis may not preserve the segmentation of the data, as illustrated in Figure 2.4
However, at least one of the r projections has to preserve the segmentation of the data into » groups, otherwise the number
of groups is less than n.

Algorithm 1 (Polysegment: Polynomial segmentation algorithm)

Let zy, s, ...,zx € RY be a given collection of eigenvectors of a similarity matrix S € RV*V,
Alternatively, let the N rows of X=[z,...,zk]€ RV *K be a set of points in RX to be clustered.

1. For{=1,...,.K

(a) Compute the number of groups n¢ < n for eigenvector x, from (2.12).
(b) Given ng, compute the vector of coefficients ¢ € R"¢*! from the linear system (2.3).
(c) Given c, compute the roots g1, . . . , fin, of the polynomial 3¢ o cxz*.
(d) Compute the j* entry of the “ideal” eigenvector (&¢); as arg ming,,}((ze); — i)
2. Set the number of groups n as the number of distinct rows in the matrix of ideal eigenvectors
X =[&1,..., &) € RVXK,

3. Set {uz; € RX}7_, to be the n different rows in X.

4. Sort the rows of X according to {2;}2_, to obtain the segmentation of the N data points.

Remark 5 (Multiple cues) Notice that the multiple eigenvector algorithm can be naturally used to
simultaneously incorporate many cues. In image segmentation, for example, one could have one
similarity matrix for each cue (motion, intensity, color, texture, etc.) and obtain their eigenvectors.
Then Polysegment can be applied to the collection of all eigenvectors obtained from all cues. Al-
ternatively, one can combine the individual similarity matrices into a single matrix, as proposed

in [45], and then apply Polysegment to the eigenvectors of the combined similarity matrix.

Remark 6 (Number of groups) According to Algorithm 1, in the absence of noise the number of
groups n contained in all the eigenvectors will be given by the number of distinct rows in the matrix
X. In fact, except for the degenerate case mentioned in footnote 3, each column of X should give
the correct number of groups. In the presence of noise, however, each individual eigenvector will
provide a possibly different segmentation of the data, hence the number of different rows in X will
be much larger than the number of different entries in each column of X. Therefore, Algorithm 1
will tend 1o overestimate the number of groups and some post-processing will be needed to reduce
the number of groups. In Section 2.6.2 we will discuss a particular strategy for reducing the number

of groups in the case of texture-based image segmentation.

25

2.5 Initialization of iterative algorithms in the presence of noise

In this section, we briefly describe two iterative algorithms for piecewise constant data
segmentation and model estimation,” K-means and Expectation Maximization (EM), and show how
to use Polysegment to initialize them. Since both K-means and EM can be applied to the segmen-
tation of multiple eigenvectors, as in the previous section, we assume that we are given a matrix
X = [x1,...,zx] € RV*X containing K eigenvectors. We will denote the j** row of X as
y; € R¥ and consider it as one of the data points to be clustered. Also we let {p; € R}, be

the collection of cluster centers.

2.5.1 The K-means algorithm

The K-means algorithm minimizes a weighted square distance from point g ; to the cluster

center p; which is defined as
N =

o> wisllyy — sl (2.19)

j=1i=1
where the weights w;; represent the membership of the data to each one of the clusters. The K-
means algorithm starts by initializing the cluster centers, which can be done randomly or by choos-
ing a subset of the data points {y; }f’=1 Then, the algorithm minimizes the error function (2.19)
using a coordinate descent algorithm that iterates between two steps. In the first step it minimizes

over {w;;} with {s;} held constant, which gives the following formula for the weights

1 i=argmingy, nlly; — pell?

Wi; = (2.20)

0 otherwise

In the second step it minimizes over the cluster centers {g;}7_, with the weights {w;;} held con-

stant, which leads to the following formula for the cluster centers

N
o1 WiY;

N
2 icn Wij

Notice that the Polysegment algorithm also gives an estimate of the cluster centers {g2;}7.;,

= (2.21)

but it does not require initialization. One can therefore use the solution of Polysegment to initialize

K-means, thus replacing the random initialization of the cluster centers.

SWe refer the readers to [30] for more details.

26

2.5.2 The Expectation Maximization algorithm

For the EM algorithm, we assume that the data points are generated by firstly choosing

one of the clusters according to a multinomial distribution with parameters {0 < m; < 1}1,,
1™ = 1, and secondly choosing a point y; from one of the clusters, say cluster , according to

a Gaussian distribution with mean p1; € R¥ and covariance 021 € RX*¥, Let z;; = 1 denote the
event that point j corresponds to cluster i. Then the complete log-likelihood (neglecting constant

factors) on both the data y; and the latent variables z;; is given by

|12 2
o [T (2 (-"—yz—'il)) = 33 o) — log(o) - g L

j=1li=1 j=1i=1
The EM algorithm maximizes the complete log-likelihood using a coordinate ascent algorithm that
iterates between the following two steps, starting from an initial estimate for the model parameters

{(”'ia O, Wi)}?=l'
E-step: Computing the expected log-likelihood. Given a current estimate for the model parame-

ters 6 = {(p;,0:, ™) } 1, , one can compute the expected value of the latent variables

;_r.:- p(_ [Iyi—n.-llz)
7, Texp(— "—”ﬁ;“i)

wij = Elz;ly;, 0] = P(zi; = 1]y;,0) =

Then the expected complete log-likelihood is given by

2
Yj — i
Z Zw‘J (log(m;) — log(a:)) — wij I .72 2 t"
j=1i=1
M-step: Maximizing the expected log-likelihood. The Lagrangian for ; is
n N n ZN o
=1 W2
ZZW;‘J‘ log(m;) + A(1 - Z-,rt.) = m= JN .
=17=1 i=1
The first order condition for p; is
>N wiy
S wiglyy -) =0 = py = SIIY

j=1 E:—-l Wij

Finally, after taking derivatives of the expected log-likelihood with respect to o; one obtains

N
ol = Zj=l 'wij”yj - w2

N
' 2 j=1 Wij

27

If all clusters have the same covariance, i.e., if forall i = 1,...,n we have o; = o, then we have

N
2 _ i1 j=1 wij"'.‘lj - Pi||2
N .

Therefore, from an optimization point of view, the K-means and EM algorithms are very

o

similar (at least in the case of Gaussian noise for EM). They both minimize a weighted distance
function, and the only difference is in the computation of the weights. While the K-means algorithm
uses a “hard” assignment w;; € {0,1}, the EM algorithm uses a “soft” assignment w;; € [0, 1].
However, from an statistical point of view the K-means algorithm does not have any probabilis-
tic model in mind, while the EM algorithm can be shown to converge to a local maxima of the
log-likelihood. However, convergence to the global maximum is not guaranteed and depends on
initialization. Since the Polynomial Segmentation (Polysegment) algorithm proposed in the previ-
ous section does not need initialization, it can be naturally used to to initialize the cluster centers

{m:}7=; in K-means, EM, or any other iterative algorithm.

2.6 Applications of Polysegment in computer vision

In this section, we present examples of the application of Polysegment to various problems
in computer vision, such as image segmentation based on intensity and texture, 2-D and 3-D motion

segmentation, and face clustering with varying expressions.

2.6.1 Image segmentation based on intensity

Image segmentation refers to the problem of separating the pixels of an image (or those
of an image sequence) into a collection of groups, where each group is defined by similarity of one
or more of a collection of features such as intensity, motion, texture, color, etc.

In this section, we apply Polysegment to the problem of segmenting an image based on
intensity. Instead of computing the eigenvectors of the standard similarity matrix defined by

S;ij = exp (—(&; - I;)/20?) , (2.22)

where I; is the intensity of pixel i, we apply Polysegment directly to the image intensities. That is,
we form a single vector x € RY, where N is the number of pixels, with its 7*# entry defined as
z; = I;, for j = 1,..., N. This choice of « has the advantage of avoiding the computation of the
eigenvectors of a large N x N matrix and, as we will see in short, it produces a visually appealing

segmentation of the image intensities.

28

‘We applied the K-means, Expectation Maximization (EM) and Polynomial Segmentation
(Polysegment) algorithms to the penguin, dancer and baseball images shown in Figure 2.5. In all
cases the number of groups is obtained from the Polysegment algorithm as n = 3. This number is
given as an input to K-means and EM, because they need to know the number of groups in advance.
The K-means algorithm is randomly initialized with 3 intensity values uniformly chosen on the

interval [0, 1]. The EM algorithm is initialized with K-means, unless otherwise stated.

(a) Penguin (b) Dancer (c) Baseball

Figure 2.5: Input images for intensity-based image segmentation.

Figures 2.6(a)-(c) plot the segmentation results given by each algorithm for the penguin
image. Each one of the three groups is plotted in white. We observe that K-means and EM converge
to a local minima, while Polysegment gives a good segmentation and is about 5 times faster than
K-means and 35 times faster than EM, as shown in Table 2.1. In Figures 2.6(d)-(e) the solution of
Polysegment is used to re-initialize K-means and EM. They now give a good segmentation, although
the solution of Polysegment is still slightly better. Notice that the execution time of K-means and
EM reduces around 40% and 20%, respectively, when initialized with Polysegment.

Figure 2.7 plots the segmentation results for the dancer image. Notice that all the algo-
rithms give a very similar segmentation of the image. However, Polysegment is approximately 5
times faster than K-means and 20 times faster than EM. When re-initialized with Polysegment, the
execution time of K-means reduces by about 40%, while the execution time of EM does not change.

Figure 2.8 plots the segmentation results for the baseball image. As before, all algorithms
give a similar segmentation, but Polysegment is at approximately 5 times faster.

In summary, these examples show that Polysegment produces a segmentation of 1-D data
that is similar to the ones given by K-means and EM, though in about 20% of the execution time.
This is because for N pixels and n groups, Polysegment only needs to solve one N x (n+ 1) linear

system, and then find the roots of a polynomial of degre n.

29

(a) K-means (b) EM (c) Polysegment

(d) Polysegment + K-means (e) Polysegment + EM

Figure 2.6: Intensity-based segmentation of the penguin image. From top to down: group 1, group
2, group 3 and overall segmentation computed by assigning each pixel to the closest gray level.

30

Table 2.1: Execution time (seconds) of each algorithm for a MATLAB implementation, running on
a 400 MHz Pentium II PC.

Image Size K-means EM Polysegment Polysegment Polysegment

+ K-means K-means + EM

Penguin 117 x 180 1.74 10.9 0.31 1.10 8.0
Dancer 67 x 104 0.53 2.37 0.12 0.37 2.37
Baseball 147 x 221 2.11 9.72 0.47 1.50 9.45

(a) K-means (b) EM (c) Polysegment

Figure 2.7: Intensity-based segmentation of the dancer image. From top to down: group 1, group 2,
group 3 and overall segmentation computed by assigning each pixel to the closest gray level.

31

(a) K-means (b) EM (c) Polysegment

Figure 2.8: Intensity-based segmentation of the baseball image. From top to down: group 1, group
2, group 3 and overall segmentation computed by assigning each pixel to the closest gray level.

32

2.6.2 Image segmentation based on texture

In this section, we apply Polysegment to the problem of segmenting an image based on
texture. We propose a simple algorithm that uses Polysegment to compute textons based on quan-
tized image intensities (no color information is used), and then segments the image by applying
Polysegment in each dimension of the texton space. The algorithm proceeds as follows.

1. Intensity-based segmentation. The original image is segmented into n; groups by applying
Polysegment to the vector of image intensities & € RY¥. Figures 2.9(b), 2.10(b) and 2.11(b)
show examples of applying Polysegment based on intensity to images with texture.

2. Texton computation. As expected, the “quantized” image obtained in the previous step is
approximately constant in regions with little texture and has a larger variability in regions with
a lot of texture. Therefore, we can use the distribution of the quantized image intensities in a
neighborhood of each pixel as a measure of the texturedness of a region. More specifically,
we compute a histogram of quantized intensity values in a w X w neighborhood of each pixel.
We interpret such a histogram as a vector in R™ and call it fexton, since it defines a measure
of the texturedness around each pixel. We then form a matrix of textons X € R¥*"t whose
4h row is equal to the texton associated with pixel j. We interpret each column of X as an
eigenvector of some similarity matrix.

3. Texton segmentation. The textons computed in the previous step are segmented into groups
by applying Polysegment to the matrix of textons X € R™V*", as described in Algorithm 1.

4. Reducing the number of groups. As discussed at the end of Section 2.4, Polysegment can
produce a large number of groups when applied to multiple eigenvectors. In order to reduce
the number of groups, we associate a new image to the output of the previous step and attempt
to segment it into a smaller number of groups. More specifically, for each one of the group
of pixels obtained in the previous step, we compute the average value of their intensity in the
original image and generate a new quantized image containing those values. Figures 2.9(c),
2.10(c) and 2.11(c) show some examples of these new quantized images.

5. Final segmentation. Apply Polysegment based on intensity to the image obtained in the
previous step. The result corresponds to the final texture-based segmentation of the original
image. Figures 2.9(d), 2.10(d) and 2.11(d) show some examples of applying Polysegment
based on intensity to the images in Figures 2.9(c), 2.10(c) and 2.11(c), respectively.

®In principle one could consider each texton as a feature vector associated with each pixel, form a similarity matrix
from the distance between pairs of features, and compute a set of eigenvectors of such a similarity matrix. This second
approach is however very computationally intensive when N is large.

33

(a) Original image (b) Intensity segmentation (c) Initial texture segmentation

(d) Final texture segmentation (e) Final segmentation overlay (f) Human segmentation

Figure 2.9: Texture-based segmentation results for the tiger image. (a) Original 321 x481 image. (b)
The original image is segmented into 4 groups by applying Polysegment to the image intensities.
(c) A 4-dimensional texton is associated with each pixel by computing a histogram of quantized
intensities in a 23 x 23 window around each pixel. Polysegment is applied in each dimension
in texton space to separate the textons into 10 groups. The image in (c) is generated with the
average intensity of the pixels belonging to each group of textons. (d) Polysegment is applied to the
intensity of the image in (c) to obtain the final segmentation into 6 groups. (e) The overall texture-
based segmentation is overlayed onto the original image. (f) Human segmentation results from the
Berkeley segmentation dataset [38]. The overall execution time is 24 seconds.

The above algorithm for texture computation and segmentation was implemented in MAT-
LAB and runs in approximately 20-30 seconds for 321 x 481 images, and 5-10 seconds for 128 x 192
images’. We tested the algorithm on some images from the Corel database and the Berkeley seg-
mentation dataset [38]. Figure 2.9 shows segmentation results for the image of a tiger. The water
is separated into two groups due to variations of intensity. The tiger is segmented into four groups.
The largest group corresponds to the body of the tiger and the others correspond to smaller parts in
the body that have a different texture. The tail and the bushes are not segmented properly because

they are averaged out when computing textons in a 31 x 31 window. Notice that the segmentation

"Computation times are for a MATLAB implementation running on a 400 MHz Pentium II PC.

34

results are similar to those obtained by human subjects.

Figure 2.10 shows segmentation results for the image of a marmot lying on a rock with
some other rocks on the background. The algorithm gives a nice segmentation of the image, espe-
cially for the rocks in the front and in the upper right comer. The front of the marmot is correctly
segmented, but its back is not separated from the big rock in the center, because there is no clear
texture boundary. The algorithm could not segment the two large rocks on the top left of the image.

Figure 2.11 shows segmentation results for the image of a zebra with grass on the back-
ground. Our algorithm gives a nice segmentation of the image into two groups: the zebra and the
grass. These results outperform those reported in [45] that apply the normalized cuts algorithm to
the eigenvectors of a similarity matrix computed from the output of a bank of filters.

2.6.3 Segmentation of 2-D translational motions from feature points or optical flow

A classic problem in visual motion analysis is to estimate a motion model for a set of 2-D
feature points as they move in a video sequence. Ideally, one would like to fit a single model that
describes the motion of all the feature points in the image. In practice, however, different regions
of the image will obey different motion models due to depth discontinuities, perspective effects,
multiple moving objects, etc. Therefore, one is faced with the problem of fitting multiple motion
models to the image, without knowing which pixels are moving according to the same model.

The typical solution to the above problem is problem is to consider a local approach in
which one considers a window around each pixel (or the K-nearest neighbors of each feature point)
and assumes that within each window there is a single motion model. Choosing a small window
ensures that there is a single model in the window, though in the presence of noise the estimation
of the model is poor. Choosing a large window does improve the estimates of the motion model.
However, it is more likely that the window will contain more than one motion model.

In this section, we consider the 2-D motion segmentation problem in the case of 2-D
translational motions and show that it is a direct application of Polysegment with K = 2.8 We
demonstrate that one can globally fit multiple motion models by applying Polysegment to all the
features, without having to choose a window (reighborhood) around each pixel (feature point).
Alternatively, one can also apply Polysegment within a window. However, since Polysegment is not
restricted to estimating a single motion model, one can choose a large window to obtain a robust

estimate of the models, without having to worry about crossing motion boundaries.

8We will discuss more complex motion models later in the thesis. For example, see Section 3.9.3 for the segmentation
of affine motion models also from feature points.

35

(c) Initial texture segmentation

geEn exr - S

(d) Final texture segmentation (e) Final segmentation overlay (f) Human segmentation

Figure 2.10: Texture-based segmentation results for the 321 x 481 marmot image. Five groups are
obtained by segmenting 4-D textons computed in a 31 x 31 window. The execution time is 25 sec.

(a) Original image

(c) Initial texture segmentation

(d) Final texture segmentation (e) Final segmentation overlay

Figure 2.11: Texture-based segmentation results for the 128 x 192 zebra image. Two groups are
obtained from 5-D textons computed in a 11 x 11 window. The execution time is 25 sec.

36

2-D Motion segmentation from feature points

We let {z] € R?}Y, and {2} € R?}.; be a collection of N feature points in two
frames from a sequence. Under the 2-D translational motion model each feature moves according
to one out of n possible 2-D displacement vectors {d; € R2}7. ;. That is, for each feature pair
(2], z}) there exist a 2-D displacement d; such that

=2l +d;. (2.23)

The problem is now to estimate the n motion models {d; € R?}?, from the collection of N
feature pairs {(z7, w%)}f’:I To this end, we define a set of complex data points {2; € C};-Ll from
the displacement of the features in the image plane between the two views {:z:% - :z:{ €]RQ};-V:l.
Then, the motion models {d; € R2}%, can be immediately obtained by applying Polysegment to
the complex data {z; € C}iL,.

2-D Motion segmentation from optical flow

Imagine now that rather than a collection of feature points we are given the optical flow
{u; € R?})L, between two consecutive views of a video sequence. If we assume that the optical
flow is piecewise constant, i.e., the optical flow of every pixel in the image takes only n possible
values {d; € R?}?_,, then at each pixel j we have that there exists a motion d; such that

uj =d;. (2.24)

The problem is now to estimate the n motion models {d; € R?}2_, from the optical flow {u;}X.,.
Notice that this problem is equivalent to the problem of segmenting the image into n regions with
constant flow within the region. We solve this problem by applying Polysegment with K = 2 to the
optical flow data {u; };'V=1 interpreted as a collection of points in the complex plane C.

We tested the proposed approach by segmenting 12 frames of a real sequence consisting
of an aerial view of two robots moving on the ground. At each frame, we apply the Polysegment
algorithm with K = 2 to the optical flow® of all N = 240 x 352 pixels in the image and segment the
image measurements according to the n = 3 estimated translational motion models corresponding
to the two robots and the background. Figure 2.12 shows the results of applying our algorithm to
segmenting the pixels in frames 1, 4, 7, and 10 of the sequence. Notice that the three different

motion models are correctly estimated, and the two moving robots are correctly segmented.

9We compute optical flow using Black’s code at http: / /www.cs . brown. edu/people/black/ignc.html.

37

Figure 2.12: Segmenting the optical flow of a video sequence using Polysegment with K = 2. At
each frame, we use the optical flow of all N = 240 x 352 pixels to build the data matrix L, €
CV*(nt1) corresponding to n = 3 motions: the two robots and the background. We then obtain
a vector ¢ € C"*! such that L,c = 0, and compute {d; € C2}7_; as the roots of the polynomial
> ko ckz*. We then assign each pixel j to motion model d; € R2 if i = arg ming ||u; — dg||.

38

2.6.4 Segmentation of 3-D infinitesimal motions from optical flow in multiple views

In this section, we apply Polysegment to the problem of segmenting the 3-D infinitesimal
motion of n independently and rigidly moving objects observed by a moving perspective camera in
multiple frames. We let (u}, v}) be the optical flow of pixel 7 in frame j relative to frame 0, with
i=1,...,Nandj=1,..., f. Let U and V be the multi-frame optical flow matrices

ol v v
U=|: : and V = :
uy . uifV o V}V

We showed in [63] (see also [37]) that the matrix S = [U, V][U, V]T € RV*¥ defines
a similarity matrix for the 3-D motion of the objects. Since the eigenvectors of S are the singular
vectors of W = [U, V] € R¥N*2f, we will apply our segmentation algorithm to the singular vectors
of W, since it is computationally more efficient when 2f << N.

Figure 2.13 shows the street sequence!®, which contains two independent motions: the
car translating to the right and the camera panning to the right. Figure 2.13(a) shows frames 3, 8,
12 and 16 of the sequence with the corresponding optical flow superimposed. The optical flow is
computed using Black’s algorithm!!. Figures 2.13(b)-(c) show the segmentation results. In frame 3
the car is partially occluded, thus only the frontal part of the car is segmented from the background.
The door is incorrectly segmented because it is in a region with low texture. As time proceeds,
motion information is integrated over time by incorporating optical flow from many frames in the
optical flow matrix, thus the door is correctly segmented. In frame 16 the car is fully visible and
correctly segmented from the moving background.

Figure 2.14 shows the sphere-cube sequence, which contains a sphere rotating along a
vertical axis and translating to the right, a cube rotating counter clock-wise and translating to the
left, and a static background. Even though the optical flow of the sphere appears to be noisy, its
motion is correctly segmented. The top left (when visible), top and right sides of the square are also
correctly segmented in spite of the fact that only normal flow is available. The left bottom side of the
cube is merged with the background, because its optical flow is small, since the translational motion
of the cube cancels its rotational motion. The center of the cube is never segmented correctly since
it corresponds to a region with low texturé. Integrating motion information over many frames does

not help here since those pixels are in a region with low texture during the whole sequence.

10h¢tp:/iwww.cs.otago.ac.nz/research/vision/Research/OpticalFlow/opticalflow.html#Sequences
B http://www.cs.brown.edu/people/black/ignc.html

39

(a) Optical flow (b) Group 1 (c) Group 2

Figure 2.13: Motion-based segmentation results for the street sequence. The sequence has 18 frames
and 200 x 200 pixels. The camera is panning to the right while the car is also moving to the right. (a)
Frames 3, 8, 12 and 16 of the sequence with their optical flow superimposed. (b) Group 1: motion
of the camera. (c) Group 2: motion of the car.

40

(a) Optical flow (b) Group 1 (c) Group 2 (d) Group 3

Figure 2.14: Motion-based segmentation results for the sphere-cube sequence. The sequence con-
tains 10 frames and 400 x 300 pixels. The sphere is rotating along a vertical axis and translating
to the right. The cube is rotating counter clock-wise and translating to the left. The background is
static. (a) Frames 2-7 with their optical flow superimposed. (b) Group 1: cube motion. (c¢) Group 2:
sphere motion. (d) Group 3: static background.

41

2.6.5 Face clustering with varying expressions

A fundamental problem in face recognition is to cluster a collection of images of faces
taken under varying illumination, pose, expression, etc. This is a very challenging problem, because
images of the same face may differ significantly under varying conditions. Conversely, it is easy to
build examples in which the images of two different faces appear similar from image data only.

In this section, we apply Polysegment to the problem of clustering faces with varying
expressions. We assume that the images {I; € RK };’-‘;1 cluster around n cluster centers in the
image space R¥, with each cluster center corresponding to a different individual. Since in practice
the number of pixels K is large, we first apply PCA to project the images onto RE' with K’ << K.
More specifically, we compute the SVD of the data [I1, Ia, ..., IN|gn = UXVT and generate
a new data matrix X € RV>*X' consisting of the first K’ columns of V. As before, we interpret the
rows of X as a new set of data points in RK’, so that we can avoid building a similarity matrix.

We apply Polysegment to the subset of the ORL Database of Faces (AT&T Cambridge)
shown in Figure 2.15 which consists of N = 10n images of n = 4 faces (subjects 21-24). Each
individual has 10 different facial expressions, and in some cases there is also a small change in
pose. All the images are taken with the same illumination. For computational efficiency, we first
project each image from R%, where K = 92 x 112 = 10, 304 pixels, to the first K’ = 2 principal
components using PCA. Figure 2.16(a) shows the 40 images as data points in R2. Notice that the
faces of different individuals indeed cluster around 4 cluster centers. We then apply Polysegment to
the 2-dimensional data and obtain the corresponding 4 cluster centers shown in Figure 2.16(a) with

a “o”. Figure 2.16(b) shows the clustering of the faces. Notice that there is only one mismatch.

Figure 2.15: A subset of the ORL Database of Faces (AT&T Cambridge) consisting of N = 40
images of 7 = 4 faces (subjects 21-24) with varying expressions.

0.19+

0.04r

-0 s -0.2 -0.05 0.1
(a) Images of the N = 40 faces projected onto the two principal

components, and the cluster centers (“o”) estimated by Polysegment.

Face 22+

Face 24

Face 21

Face 23

L

10 20 30 40

(b) Segmentation results obtained by assigning each image to the

closest cluster center. There is only one mismatch.

Figure 2.16: Clustering faces with varying expressions using Polysegment with K = 2.

43

2.7 Conclusions, discussions and future work

We have proposed a simple analytic solution to the problem of segmenting piecewise
constant data from the eigenvectors of a similarity matrix.

In the absence of noise, we derived a rank constraint on the entries of each eigenvector,
from which one can determine the number of groups n contained in the data. Given n, the segmen-
tation of a single eigenvector is equivalent to solving a linear system in n variables plus computing
the roots of a polynomial of degree n in one variable. In the presence of noise, we showed that.the
purely algebraic solution is robust since it minimizes the algebraic error obtained in the noise free
case. Furthermore, we derived the optimal error function for the case of zero-mean Gaussian noise
in the entries of the eigenvector. We also generalized our polynomial segmentation technique to the
case of multiple eigenvectors by reducing it to the single eigenvector case. We then showed how our
technique can be naturally used to initialize iterative algorithms such as K-means and Expectation
Maximization (EM).

We applied our algebraic algorithm (Polysegment) to the problem of segmenting an image
based on different cues such as intensity, texture or motion. Our experiments on intensity-based seg-
mentation showed that Polysegment performs similarly to K-means and EM, but is computationally
lest costly. Our experiments on texture-based image segmentation showed that Polysegment is very
efficient at computing textures and gives a visually appealing segmentation of natural scenes. Our
experiments on motion segmentation showed that Polysegment gives a good segmentation of both
static and dynamic scenes. We also applied Polysegment to the problem of clustering faces with
varying expressions. Our experiments showed the possibility of applying Polysegment to high-
dimensional data after a suitable projection. It is important to notice that none of our experiments
required the use of any of the nonlinear optimization algorithms. In all cases, a simple linear alge-
braic technique was enough to segment real noisy image data. We therefore believe that the results
- presented in this chapter are quite encouraging and we look forward to applying Polysegment to
a wider variety of segmentation problems involving piecewise constant data. We are particularly
interested in image segmentation from multiple cues.

Future work will hence concentrate on improving the simultaneous segmentation of mul-
tiple eigenvectors. Our current algorithm obtains the overall segmentation by combining individual
segmentations given by each eigenvector. This usually produces a segmentation of the scene con-
taining too many groups. We showed how to reduce the number of groups in the case of texture-

based image segmentation and expect to generalize that technique to arbitrary data in the near future.

Chapter 3

Generalized Principal Component
Analysis (GPCA)

3.1 Introduction

Principal Component Analysis (PCA) [29] refers to the problem of identifying a linear
subspace S C RE of unknown dimension k£ < K from N sample points2? € S, j =1,2,...,N.
This problem shows up in a variety of applications in many fields, e.g., pattern recognition, data
compression, image analysis, regression, etc., and can be solved in a remarkably simple way from
the singular value decomposition (SVD) of the data matrix [x!,2?,...,2V] € REK*N. In the
presence of noise, this purely algebraic solution has the geometric interpretation of minimizing the
sum of the squared distances from the (noisy) data points =7 to their projections #inS.

In addition to this algebraic-geometric interpretation, PCA can also be understood in a
probabilistic manner. In Probabilistic PCA [53] (PPCA), the noises are assumed to be independent
samples drawn from an unknown distribution, and the problem becomes one of identifying the sub-
space and the parameters of the distribution in a maximum likelihood sense. When the underlying
noise distribution is Gaussian, the algebraic-geometric and probabilistic interpretations coincide [9].
However, when the underlying distribution is non Gaussian the solution to PPCA is no longer lin-
ear. For example, in [9] PCA is generalized to arbitrary distributions in the exponential family.
The authors use Bregman distances to derive the log-likelihood as a nonlinear function of the nat-
ural parameter of the distribution. The log-likelihood is then minimized using standard nonlinear

optimization techniques.

45

Another extension of PCA is nonlinear principal components (NLPCA) or Kemnel PCA
(KPCA), which is the problem of identifying a nonlinear manifold from sample data points. The
standard solution to NLPCA [41] is based on first embedding the data into a higher-dimensional
feature space F and then applying standard PCA to the embedded data. That is, one assumes that
there exists an embedding of the data such that the embedded data points lie on a linear subspace
of a higher-dimensional space. Since in practice the dimension of F' can be large, a more practical
solution is obtained from the eigenvalue decomposition of the so-called kernel matrix, hence the
name KPCA. One of the disadvantages of KPCA is that it is unclear what kernel to use for a given
problem, since the choice of the kernel naturally depends on the nonlinear structure of the manifold
to be identified. In fact, learning kernels is an active topic of research in the KPCA community.

In this chapter, we consider the following (alternative) extension of PCA to the case of
mixtures of subspaces, which we call Generalized Principal Component Analysis (GPCA):

Problem 2 (Generalized Principal Component Analysis (GPCA))
Given a set of sample points X = {z/ € R¥ }5‘;1 drawn from n > 1 different linear subspaces

S; € RX}2_ . of dimension k; =dim(S;), 0 < k; < K, identify each subspace S; without knowing
=1

which points belong to which subspace. By identifying the subspaces we mean the following:

1. Identify the number of subspaces n and their dimensions {k;} ;;
2. Identify a basis (or a set of principal components) for each subspace S; (or equivalently S;b);

3. Group or segment the given N data points into the subspace(s) to which they belong.

Figure 3.1 illustrates the case of n = 3 subspaces of R? of dimensions ky = ko = k3 = 2.

R3

Figure 3.1: Three (n = 3) 2-dimensional subspaces Sy, S2, S3 in R3. The objective of GPCA is to
identify all three subspaces from samples {«} drawn from these subspaces.

46

3.1.1 Previous work on mixtures of principal components

Geometric approaches to mixtures of principal components have been proposed in the
computer vision community on the context of 3-D motion segmentation. The main idea is to
first segment the data associated with each subspace, and then apply standard PCA to each group.
Kanatani [31] (see also [7, 11]) demonstrated that when the pairwise intersection of the subspaces is
trivial, which implies that K > nk, one can use the SVD of all the data to build a similarity matrix
from which the segmentation can be easily extracted. In the presence of noise the segmentation of
the data becomes a quite challenging problem which can be solved using a time-consuming graph-
theoretic approach as demonstrated in [11]. When the intersection of the subspaces in nontrivial, the
segmentation of the data is usually done in an ad-hoc fashion using clustering algorithms such as K-
means. The only existing geometric solution is for the case of two planes in R3 and was developed
by Shizawa and Mase [46] in the context of 2-D segmentation of transparent motions.! To the best
of our knowledge, our work is the first one to provide a geometric solution for an arbitrary number
n of different subspaces of any dimensions kj, - - - , k, and with arbitrary intersections among them.

Probabilistic approaches to mixtures of principal components [52] assume that sample
points within each subspace are drawn from an unknown probability distribution. The membership
of the data points to each one of the subspaces is modeled with a multinomial distribution whose
parameters are referred to as the mixing proportions. The parameters of this mixture model are esti-
mated in a Maximum Likelihood or Maximum a Posteriori framework as follows: one first estimates
the membership of the data given a current estimate of the model parameters, and then estimates the
model parameters given a current estimate of the membership of the data. This is usually done in an
iterative manner using the Expectation Maximization (EM) algorithm. However, the probabilistic

approach to mixtures of principal components suffers from the following disadvantages:

1. It is hard to analyze some theoretical questions such as the existence and uniqueness of a

solution to the problem.

