Copyright © 2003, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

HIGH THROUGHPUT VLSI ARCHITECTURES
FOR ITERATIVE DECODERS

by

Engling Yeo

Memorandum No. UCB/ERL M03/39

16 October 2003

HIGH THROUGHPUT VLSI ARCHITECTURES
FOR ITERATIVE DECODERS

by
Engling Yeo

Memorandum No. UCB/ERL M03/39

16 October 2003

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

High Throughput VLSI Architectures
for Iterative Decoders

By
Engling Yeo

B.S. (University of California, Berkeley) 1994
M.S. (University of California, Berkeley) 1995

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy
in

Engineering — Electrical Engineering
and Computer Sciences

in the
GRADUATE DIVISION
of the
UNIVERSITY of CALIFORNIA, BERKELEY
Committee in charge:
Professor Borivoje Nikoli¢, Chair
Professor Venkatcha Anantharam

Professor Jasmina L. Vuji¢

Fall 2003

The dissertation of Engling Yeo is approved:

%{{7\&_& »J' L\'?{ IS /2(‘07;

Borivoje/Nikoli¢ (Chair) (Date)

N = 04 |18 |23

Venkatachalam Anantharam (Date)

?(L&MM(L qu\‘c'\ 10(63/1603

Jasmina L. Vuji¢ ! (Date)

ABSTRACT
High Throughput VLSI Architectures for Iterative Decoders
by
Engling Yeo

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences
University of California, Berkeley
Professor Borivoje Nikoli¢, Chair

This project addresses the algorithms for and impleinentations of iterative
decoders for error control in communication applications. The iterative codes are based
on various concatenated schemes of convolutional codes, and low-density parity check
(LDPC) codes. The decoding algorithms are instances of message passing or belief
propagation algorithms, which rely on the iterative cooperation between soft-decoding
“modules known as soft-input-soft-output (SISO) decoders.

Tterative decoding is a recent advance in communication theory that is applicable
to wireless, wireline, and optical communications systems. It promises significant
advantage in bit error rate performance at signal to noise ratios very close to the
theoretical capacity bound. However, a direct mapping of the decoding algorithms leads
to a multifold increase in the implementation complexity. As deep submicron technology
matures, there is a possibility of implementing these applications that were once thought
to be too complex to fit onto a single silicon die. We investigate the architectural and
implementation issues related to building iterative decoders in VLSI.

In this research, the computational hardware and memory requirements of
magnetic storage applications provide a platform for evaluation of iterative decoders.
The accomplishments include modifications of algorithms, their simulation, efficient

mapping into architectures, and VLSI implementations provide the final measure of

complexity in terms of power, size, and speed. The VLSI implementations of iterative
decoders based on concatenated convolutional codes or LDPC codes will demonstrate
the effectiveness of various methods for reduced-complexity decoding and reduced
control logic. Besides storage applications, these research results are applicable to

wireless, wireline and optical communications systems.

AL
6, / \:77\&*& A

Professor Borivoje Nikolié

Dissertation Committee Chair

IDETOAUCHION c.eeeeveveeeeeeereeenemesesseseessorsasesssasessssssassssssssensnnnssssseassssssnssssssanssssesse 1

1.1. MOtIVALION ..ccvveernrecrnereecssoseesissssisesseisesesesassssssssesssnesessssssssossasanese 1
1.2. ODJECLIVE ...c.cvereenririerenssessesersirisiesisssssessossssesssssssessessessssssssssssnsssnsas 2
1.3. SCOPE Of WOIK....cviertisrisrrneritrerinaninieissnissensnsssissessenrssessnessesnssnnes 4
14. Development work in error correction codes..........ceeceeersvvcncsrenees 5
1.5. Related Work........ccccecunnnee sressesresstesniaibres b e e bes b s tesbesennessaaantent 12
Transmission Channels and Coding...........cccoeuvieissrnisninsecreesesissesssesssens 14
2.1 Channel CAPACILYcovveeerenrecrisserseisenseisnnsnsssessssessscssnssassansssecssones 15
2.2. . Partial response channelcouvevenrerersenrnerncrneieiensseesenerunne 17
2.3. Partial response maximum likelihood (PRML) systems............. 20
24. Concatenated codes in partial response channels........cc..ccceuceneee 22
Message Passing AIGOTIthms.........couiinininninisinnnicsnniniesinssnsieeinsoens 24
3.1 Constrained coding and SISO decoderscoourneneirerruneennnenn. 24
3.2 SISO AlZOTIthINSceeeirerieniereennsersesencssssssossrossossssnssssssssasssnsseone 27
3.2.1. Maximum a-posteriori deCOdErcceruerersvrssercroressensscncsnns 27
3.2.2. Soft-output Viterbi algorithm (SOVA)cccevceervrcvcrecrcnnen. 33
3.2.3. Message passing algorithm used in LDPC decoder 35
3.3. Requirements of iterative decOderscouvervcnernscriasrssanssssessiones 38
3.3.1. Computational TEQUITEMENLScecvreeruerrsreersccsersresassnesnsanes 38
3.3.2. Message-passing requirements for iterative codes................. 41
3.4. 111131117 1 44
Architectures of SISO decoders for turbo codes.........ccocernrreeeeceeccrerenncn. 46
4.1. System level considerationsceecrveesecrirsscserccserscsesessencesnnene 46
4.2, MAP decoder........cooierrinmisnenecsiniineiecsenissessessessssesncssnsesessese 47
4.2.1. Forward and backward 1€CUISIONcc..cuevecmeremmersscsecnserecranees 48
4.2.2. Combining forward / backward state metrics..........cceceereecenen. 54
4.2.3. MemoOry reqUIrCmentsccoervesuesessessesssssssessesasssessessassassesss 56
4.3. Soft output Viterbi decodercvvcervnriiserencesiscenneenseessiessssssennens 61
4.3.1. 'SOVA decoder architecturre.ccouerverseesssuecrecrnnscnesasccsssanes 61

I

4.3.2. Add-Compare-Select Structurescocevuernivnisicsnesrecserssnenn 62

4.3.3. Survivor path decodingcccecvrrurcersrcessessinsessorsenssnesennns 67
44, SUIMMATY .ccvvereivienisinnernsnssunnissisessesssssssssesnssessasssessessessesssssssassasas 71
LDPC decoder ArChiteCtures.......coccueucereceerieieisesunsninanisnesnssnesnessessasessnenes 73
5.1 Parallel architeCturescceveueeerrerserrcrssnssiesensnnsessenessesaessnseensnnens 73
5.2 Serial architeCturesccoeeeeeenssnecssersancsereseessuessisecsassssnnssnssanes 76
5.3. Shared memory architectures and partitioned matrix.................. 79
54. Computation blOCKS......ccoueviieerinententierinesesnensssssissnsisiissnsssninees 82

5.4.1. Fixed-point implementation of lookup table..........c.ccceeeceuncne 85

5.4.2. Fixed-point LDPC decoder building blocks........c.cccevreeenrucree 91
5.5. Effects of code construction on implementation..............ceceeunee. 92

5.5.1. Finite field CONStIUCHONScccceersurirurreenissernensensessasnnesansasse 92

5.5.2. Latin rectangles and improved Ramanujan graphs................. 93

5.5.3. Turbo product COAES.......cceerrurmrrrrnrarnnresessessescssssssssossssassananons 95
5.6. SUMIMATY ...cvereeeersecrniesismsniisesesiessessessoraorssssstessessssssnesssssssesssssses 95
Processing schedules of LDPC decodersccuunerenvencscescscssnsinsenscssecaes 96
6.1. Original concurrent schedule...........oevemveeiniienniseiisinsncsece 96
6.2. New staggered schedulecocoevereeieiiniecnenieinenencssissesnnans 97
6.3. Simulation AnAlYSiS.......ccceeceeeerresrereeseesserersesnissesnessasssssassassnesnnes 100
6.4. Pipelined processing €lements.........coceeeeueersnenecrescscsisneresnnnnaces 102
6.5. SUMMATY ...ccovrrerererenrreresssnserssssesesnssasessstessssssssssssossasassassssssssseses 104
Physical implementations........ceeseeeessessessesssssssasessssasasssssessscssassensacseseanens 105
7.1. FPGA implementation of a MAP decoderccococeurururcncnceneans 106
7.2. ASIC implementation of a SOVA decodercccvuvrrieesurunnns 107

7.2.1. DeSign flOWcovireevernirerenerenenienenstnreessssesesssssnssesssnsssscseass 107

7.2.2. Design Parameterscceerererneresseressesesassssessssrssmsassesineascncnss 109

7.2.3. Physical TESIS ...ccourerurmemrurerernsnssessensmssasssasassssnsssasssscsssansasans 110
7.3. Implementation of an LDPC decoder........ccooeeuevevsunsnnnrcnennene 115

7.3.1. LDPC decoder based on finite field construction................. 115

7.3.2. Design inPUL ...cceeereenrnrnrnnnernrienrsssesnessssessesssasssstsnsanssssssenes 118

10.

11.

7.3.3. FPGA implementation...........cccverserreiennensessnesesnnnssesseensncnons 122

7.3.4. ASIC implementation........ccesvereerrsresesseresssesessesseesesenscsssssens 122
7.4. Other state of the art implementationsc.ccceeueereeenrnnrvernene 124
7.5. SUMIMATY ..ccvovvrersrnnssunsisesiencssessesmsnsssssessssssssssessasssssssssesssnssnssassass 125
CONCIUSIONScooeerersnersosesssnssarsecsessassaessnsssessesssnssssnsssssssssesssnarassnsassnssnsans 126
8.1. FULLTEeeovenerrecneeenneessssssssssosesssessessesssssesssessrossassessnsssssssssase 127
Appendix A: Pin list for SOVA decoder.......ooeeueeinresvirnencninnennennennneen 130
9.1. Pad Frami€.......cccereververensicrissnnsesssssecssssessessenssesssscsssssassesssssnsssesns 130
9.2. Pin LISt ...coueeeeererecerscsesnnisissssisacsiesisiessisssscnsssassssssssasssnsnssssans 130
Appendix B: PIN LIST FOR LDPC DECODER............ccccceveruernceannnn 133
10.1. Pad Frame........cccoveerremncrinsueininncisnnissnesssiessecsssnessesessesssssissssanes 133
102, PIN LISt .ccucciicreercnencssinencncisisnisssississessessnssssisssnssesssssesaens 133
Appendix C: Modifications to ASIC DESIGN FLOWcceeeune 138
11.1. Design SYnthesisccocecereeruccrcnruiruensreniensamssssensnneseissesesssssessses 138
11.2. Placementcccceveeereeressnisnnsnicsnisnnssesssnnsnsssessssesssessnssassssssssassae 139
11.3. VO pad placementccceoeereereeruerecreerensunsecsssesssesssssassnssnsssensases 139
11.4. POWET TOUHNE ..vevverrerecereesssasssnssssessnssssasessssssescessasessssissssarescsosecs 141
11.5. Clock tree generation........cceveevureruesrresnisnssansssssescsssssnssassasessassnns 145
11.6. Detailed routing.........ccccecereesecrerercsensecssusnssnsssssssscssssacssessssssssases 145
11.7. Cadence Opus dfIl........cccoorreeriniirunrnsenesinsnecrunisscssessesensnssanes 147
11.8. Pullup and Pulldown Cells..........ccceeriruniriernennncuesnnnsuesaerennnsanns 148

Figure 1-1. Turbo (a) encoder and (b) decoder consisting of serial concatenation of a

convolution code with EPR4 channel...........coueiincneniieereniieereiessiessessssessessessesessssnens 7
Figure 1-2. Complexity comparisons between various coding schemes.ccooeurinuncnecee 9
Figure 2-1. Generic representation of communication systems............; 15
Figure 2-2. Plot of relationship between minimum rate of code and available SNR for a
band-limited binary tranSmMiSSiON........cevesrrerseiersenmarennissssssssssessessusesissssssssssnisssssssassennns 17
Figure 2-3. Various types of partial response channels.cccocoeuveurieeiiineiesstersiansessnne 18
Figure 2-4. Impulse response for a PR4 SYStEIN........c.couieiiiiniiiiinnsienesiiuinssessssssesssnsssnsns 19
Figure 2-5. Impulse response for an EPR4 SYStEN.cccovueiniiuimsisicnieincnsnnenssnnsnnnes 19
Figure 2-6. Rate %2 convolutional encoder; code polynomial is (1, %). 20
Figure 2-7. Finite state machine (a) and trellis (b) representation of convolutional
EIICOMET. ...ccvvevereereesirresssesssensessessassssassssesssessisstessassssssasssasessssssassssssessassosssonasssessssssansssnssssse 21
Figure 2-8. Serially concatenated codes that make use of a partial-response channel as an
ITNET ENICOMCT. ..o veerreerrrrenreeraerserseesesesssssssssssesssessaossnsssssssssssnnssassssssesssasesssssensstssasssasssssssssscas 23
Figure 2-9. Iterative decoder system for serially concatenated codes..........ooeveureceisssnacace 23
Figure 3-1 Bi-partite graph representation of a 4-state trellis code.cocoeensererniiiecnense 25
Figure 3-2. Bi-partite graph representation of LDPC COdes.ccovurmmmrurnmssnscsnsesiacacnes 26
Figure 3-3. Convolutional encoder for 1+ D - D 2R st 28
Figure 3-4. Trellis of an 8-state convolutional Code.......ocvuviniuiiinerniienninstsciisssessesiene 28
Figure 3-5. Convolutional encoder with MAP deCOder.cocuuuimiuninemnnenisssecnnensesccnecs 28
Figure 3-6. Two-stage traceback in a SOVA decoder to determine the two ML paths, &
ANA B, cvreeerereemcnssssinsissis st es s s s s e s s s s R s s 34
Figure 3-7. Plot Of @(X) AZAINSE X.....cveeerueeecsrsenncirinisisisistsisessitiississssssnanssssssssssssstasasss 37
Figure 3-8. Arithmetic computation associated with nodes in factor graphs of (a) a
convolutional code, and (b) an LDPC COdE.cuurvrrrimriemnrerieresisesesssnssesssssssssssessessens 40
Figure 3-9. Pseudo random interleaver realized with three single-bit registers................ 43
Figure 3-10. Interleavers and deinterleavers implemented using alternating read/write
DUETEES. ..eeeveeveerverseriesessaessssssesasssesssssssssesssessnsssnsssssssssssassnessnssssessesnsssssssosassasssessassssessnssassn 43
Figure 4-1. Pipelined blocks in a generic COMMUNiCations FECEIVET. ...cowcruesresusmsrcnscssess 47
Figure 4-2. MAP algorithm defines operations on a vertical slice of trellis.c...cc....... 48

Figure 4-3. Add-Compare-Select-Add unit for either forward or backward recursions

using the P(.) operator as indicated within the DOX......ccevenrveiiinieiiniinnnnciiienennnne 50
Figure 4-4. Retimed ACSA that hides penalty of final addition.cecoeuseuvunveerinicences 50
Figure 4-5. Radix-2 trellis and AACS StTUCHUTE.cc.covererirsserisctsineisninsessnstssissesncinsanaes 51
Figure 4-6. Radix-4 trellis and AACS SIIUCIUTE.c.cvererrremsarisraresnseasessesssssssssnonsisssseas 51
Figure 4-7. Radix-2 concurrent AACS SLIUCHULE.cvveierireneresereesunsiosissssesssessasseissosnsns 52
Figure 4-8. Radix-2 compare-select-add-add (CSAA) structure e 53
Figure 4-9. Transformed add-compare-select-add (ACSA) SLUCKUTE..........cceveeeereesnsarrenns 53
Figure 4-10. & block makes use of a binary tree of W(.) OPErators.ccoverererverninerenes 55
Figure 4-11. Direct implementation of BCJR requires memory storage of path metrics
corresponding to each node in the trellis for the entire length of the block code............... 57
Figure 4-12. Backward iteration using 2 overlapping windows, Wy and W, for BCJR
algorithm. The shaded outputs are not used in the ensuing & block.ccccvurererernerennnnes 59
Figure 4-13. State-slice of a MAP decoder SLIUCHUTE.ccervrrerrerneerersnasessanseesaesssessssasanes 59
Figure 4-14. Memory read and write access of branch metrics Y.cceerevverecerscencscaneenes 60
Figure 4-15. System architecture of 8-state SOVA decoder.........ccoouomnirenennecisensenisesnsnnns 63
Figure 4-16. Area comparisons of (a) various ACS structures and (b) a detailed
magnification of the ACS, concurrent ACS, CSA COMPAriSON.ccouererereeresessesesrsesnssones 65
Figure 4-17. Power comparisons of (a) various ACS structures and (b) a detailed
magnification of the ACS, concurrent ACS, CSA COMPATISON.ceerrrerrrererssssnsssensrsnssenas 66
Figure 4-18. Example 8-state register-exchange survivor memory unit used in VA-SMU.
.. eeesasssserassacssesasens 09
Figure 4-19. State-slice of register-exchange used in the path-equivalence detector (PED).
... 71
Figure 4-20. Pipelined section of reliability measure unit (RMU).ccccveveeueernnrnienenenes 71
Figure 5-1. Paralle]l architecture........cccvueeuireiinerernesunsiesnrueesnsuesesnessessesssesssssesessessesseaeneane 74
Figure 5-2. Parallel LDPC decoder with serial input stream from channel decoder. 75
Figure 5-3. Serial architeCture..........ccccerurrrrrieneenreseesresiorninnrisiessessnssnesssseessessessssssessssnesees 77
Figure 5-4. Serial decoding by alternating between two memory buffers containing
consecutive blocks Of data........ccciceierinrrennieniiisinnieniesncriiiiesrsssaessssesssesssessesssessssseses 77
Figure 5-5. Tracing dependencies through a bipartite graph.ccoeevervrereniennnnnnne. 79

Figure 5-6. MXN parity check matrix partitioned into jXk subblocks.cccceeueinruenene. 80

Figure 5-7. Shared memory architectures with shared computational logic, and

INEEICOMNMECE. ...uvererevecreereereesereressnesessssssssssessssssassessnssssssesssasssnossessassssssssassasssnsssnsasssasssssssnsons 82
Figure 5-8. Binary adder tree to compute O, messages in a multi-stage pipeline. 84
Figure 5-9. Recursive pipelined implementation to compute Ry, MESSAZES.cveverrerennres 84
Figure 5-10. the® ™! - @ Mapping.........ccousvereersmsmmsrsssmssessasisssssssssssssssssssssssassssssssssesssssss 86
Figure 5-11. The original ®(-) function, and its scaled dEerivatives.coeeussersricunecens 86
Figure 5-12. Tree structure of 2-input © operators evaluate check-to-variable messages.
... 89
Figure 5-13. Correction terms f(x,y) plotted against 3-bit integer inputs x and y......... 89
Figure 5-14. Evaluation of correction terms rounded to 0.25 levels.ccooevereeanserensenee. 90
Figure 5-15. Simulation results with a rate 3/4 4095-bit LDPC code based on finite-field
construction, with the © approxXimation.eeeerereeesereseiesesesescsssssssnsuiesssasnsnsanensinssasens 91
Figure 5-16. Rendition of 1023x4092 parity check matrix used in codes based on finite
fields. Black dots represent NON-ZEr0 ENLIIES.ceerrrerrrescrennsuessssesisrsssnsessnsnssasaesessessanans 93
Figure 5-17. Shared memory decoder architecture for LDPC codes based on Latin
TECTANEIES. ..vcvcvrereresecriinsesisisesisstesissssssstsssassssstststsssessssacassstnssssssassanasassesssansasansasssssasseas 94
Figure 5-18. Architecture of TPC decoder partitions the code into 16x16 blocks. 94
Figure 6-1. Concurrent decoding schedule of the message passing algorithm; circles
represent variable nodes; boxes represent Check NOdes.cuuucuiverrimesissisrenssnscssssnssaseas 97
Figure 6-2. Staggered decoding schedule of the modified message passing algorithm with
L S(E) I=1. cuveveeereereensecsssessssscsssossussssssmsssossssssesssssssssssssnsressassasssassssssnmsssnssssssnsssssassasaranssss 99
Figure 6-3. Architecture for random LDPC decoder with X iterations of staggered
SCHEAUIE. «...eveeeeeereeenieearierersessnesseessassasssssstssssssossassssssessasssssssensasnessassasssssssseseassassessssssssssns 99
Figure 6-4. Simulation results from random codes (a), and GF codes (b) with concurrent
vs. staggered decoding SChEdUIE.cevveerusisicnnncsissusisiseciiieninesctstsssnssssnsnsssnescasasasaracs 101
Figure 6-5. Staggered decoding schedule using one processing element with a 3-stage
PIPELME. 1oecuvuecrenserrsesrsesssissnesssssssssnsesssssssssistsssssssssssissssasissstsssssssssssssmensssssssssassssssessass 103
Figure 7-1. Dataflow graph of the ACS of a SOVA decoder design in Matlab Simulink™.
... 108
Figure 7-2. High-level dependency graph for the automated design flow [74]. 109
Figure 7-3. Printed circuit board used for testing of SOVA decoders.eueueuseuseneenne 110
Figure 7-4. Setup for logical verification of SOVA decoderscccovevmemsiseuecnecscusecnee 111
Figure 7-5. Test structure around CSA for critical path analysis.......c.coeeeesessesneseneces 112

VI

Figure 7-6. Separate clock trees reduce parasitic effects of additional speed test

TEQUITEINENIScururercaisreiseresisssersressassisnsssssssssseasssnssasasssssssresissssssssssasssssssssssistsestossssasses 112
Figure 7-7. Variable delay controlled by VAd2...........ccuvuiiinmnmesininiiniiiesennsisecenns 113
Figure 7-8. Plot of correct output vectors (blue) and actual vectors output by chip (red) at
SKEW dElaY Of 1.61S.ccvreurinisinirinniriiseseiirsrsissstssssssnsesessssssscsstssssssstsssssssssasasasssssasesssssnas 113
Figure 7-9. Die MiCTOZIAPN.......ccovviiieritnieisericinitestscsisisiiiesisi ittt se e snecasacs 114
Figure 7-10. Performance of EPR4 SOVA decoder.c.coovmieiinesenennencsstinenenssenes 114
Figure 7-11. Example of 1:4 column SPLtNg.cccceveveremimiminiiiitiiiinntesscstiane 117
Figure 7-12. Shift register-based implementation of LDPC code generated from 2D
GF(2M) with 1:4 column splitting and a message computation latency of 2.................. 117
Figure 7-13. Horizontal partitioning of the 1023x4092 parity check matriX.................. 117
Figure 7-14. Top level design entry view in Mathworks Simulinkcceeeeuevenninnnes 119
Figure 7-15. Screen capture of top-level LDPC decoder design in Simulink................. 121
Figure 7-16. Layout of LDPC decoder in 0.13pm CMOS, occupying 3.2mm X 2.7mm.l ’s
Figure 7-17. Design methodology. Shaded symbols indicate steps modified from the
standard INSECHA FlOW.cceveerereererenrseessesinscssessessesnesnessnesssssessonsassasssssessassessssssssssssanonnses 124
Figure 11-1. J/O Pad aIrangement...........ccevmeseeeseensesensesesssssccsssesisasasmsessssssssessssassesasanas 142
Figure 11-2. Power and ground supply grid.ccoceceveroeeineiennienciiniesnnnennntesaeenennes 143
Figure 11-3. Connection between supply I/O pads and metal4 supply rings................. 144
Figure 114. Filler cells with decoupling CapaCitors.......cccevereeereesensesnsssssossssessnssessnesesas 146
Figure 11-5. Pullup and pulldown cells inserted during synthesis.c.coeccucecunncnnnen. 148

ACKNOWLEDGEMENTS

My lovely wife, Ailee, has supported me in much more ways than meets the eye.
She put down everything she had in Singapore, td start a new life with me in United
States. She took care of all administrative details, including the final spell check of every
journal I ever published. She volunteered to take care of my mother when she was
hospitalized. Her happy disposition and composed demeanor calmed my nerves in
difficult times. She had made the last four years the best of my life. In short, she has
given me more than what I could ever hope to give in return.

I would like to thank my parents, Ng Yoke Foon and Yeo Hoon Chor, my sister,
Lou Miang, and brother Eng Khiew, for their constant support and encouragement
through every major decision in life, including the choice to return to college after a
three-year stint in Singapore. I like to thank my parents-in-law, Ho Choon Meng and
Ong Ngoh for their love and financial help. Despite the distance, support from family
has remained strong. This has kept Ailee and I motivated throughout this experience.

My advisor, Professor Borivoje Nikolic, played an enormous role in helping me
learn more than what I have set out to accomplish. He has been mentor and friend to me.
Although working with him can hardly be described as a smooth ride, the results have
been more than rewarding. I would also like to thank Professor Venkat Anantharam for
providing technical advice over the length of this research, as well as Professor Bob
Brodersen and Professor Phil Spector for contributing valuable suggestions to my
research.

I survived the pressures and rigors of graduate school, thanks to support from the
group of Kangngee Chia, Kinkok Chan, Youyenn Teo, Boonkiat Law, Yeechia Yeo,
~ Ruolei Ng, and alas, four-year-old Sheyuan. These folks were family to me.
Incidentally, they were the first people on earth to celebrate my passing of the qualifying
examination; the party conveniently took place on the weekend before the examination,
and proceeded without me. Thanks also to Joshua Garrett, Benny Warlick, Fujio
Ishihara, Mike Chen, and Liangteck Pang for riding with me almost every other weekend.
For a number of years, I have preached the benefits of mountain biking to everybody 1

il

met at Cory Hall. Little did this group realize that my intentions were to get these

weekend warriors to share the burden of carrying emergency bike equipment.

My research has had no shortage of help coming from the students and staff at
Cory Hall and the Berkeley Wireless Research Center. Thanks to Payam Pakzad, in
particular, for providing most of the theoretical background at the early stages of this
work. Thanks to Rhett Davis, Stephanie Augsburger, Tina Smilkstein, and Brian
Richards for the help in the SSHAFT design flow, which led to the first tapeout. Thanks
to Chen Chang, Kimmo Kuusilinna, Nathan Chan, Joshua Garrett and Fujio Ishihara for
help in the BEE design flow, which led to the second tapeout. Radu Zlatanovici,
Socrates Vamvakos, Stephanie Augsburger, Isaac Sever, Ben Wild, Dejan Markovic,
Roy Sutton, and Kostas Sarrigeoridis, thanks for the constructive criticisms for many of
my practice talks. In addition, Tom Boot and Brenda Vanoni have been extremely

helpful with purchase reimbursements and last-minute courier packages.

I also had the opportunity to work with a number of distinguished undergraduates
from UC Berkeley and University of Wisconsin. Melinda Ler, Jane Nguyen, Steve
Fang, Henry Lam, and Allen Chen volunteered their time to work on my project, and

contributed in many aspects.

Finally, this research has benefited from the generosity extended from beyond the
Berkeley campus. Thanks to Kiyoshi Fukahori, Tom Souvignier, and David Gruetter of
Texas Instruments for sponsoring the UC Micro project, and supervising my summer
internship in 2000. Thanks to Brian Marcus, Bruce Wilson, and Yuan Xing Lee of IBM
for technical advice. Thanks to Pantas Sutardja, Nersi Nazari, Toai Doan, and Zining
Wu of Marvell for sponsoring the UC Micro project, and feedback on the progress of the
work. Thanks to Bhusan Gupta, Ben Coates and Srikanth Muroor of STMicroelectronics
for advice with physical IC design and fabrication of test chips.

1. INTRODUCTION

1.1. Motivation

The development of the communications industry is characterized by exponential
growth in volume of data and throughput rates. These growths are accompanied by
reduced signal-to-noise ratios at which data is detected. In order to maintain the signal
integrity, the level of sophistication in error correction methods is required to keep pace
with the communication applications. Modern communication systems employ various
forms of redundancies to achieve resilience against interference and noise arising out of a
multitude of sources.

The complexity of integrated circuits for signal processing has historically tracked
the progress in silicon process technology. Each new silicon process generation has
allowed integration of increasingly more complex signal processing schemes into a chip,
constrained by cost and power requirements. For example, detectors used in disk-drive
read channel integrated circuits have moved from 8-state conventional Viterbi decoders,
common in 0.35um technoiogy, to current, state of the art 0.13um detectors that
incorporate 32-state noise-predictive decoders. Despite an exponential growth in
implementation complexity, there is diminishing marginal improvement in bit error rate
(BER) performance. The situation is thus ripe for revolutionary changes to the coding
and signal processing techniques to éhallenge currently prevalent classes of error-

correction algorithms.

Recently, a new class of error correcting codes has demonstrated performance
within 0.5dB of the theoretical limits. These codes comprise two or more concatenated
block codes with corresponding decoders that iteratively exchange messages reflecting
the confidence of each decoded bit. The messages are based on a probability measure
rather than the decisions of the decoded bits. Known as the ‘soft’ information’, the value
of this measure is repeatedly accessed and refined over the several iterations of decoding.
This approach to decoding represents a departure from traditional error-correction
algorithms. These methods are collectively known as iterative decoding.

Although various forms of iterative decoding have existed for four decades, the
discovery of turbo codes [11] and methods for their decoding in 1993 were largely
acknowledged to be the raison d'étre for the current surge in iterative decoding research
and development, both in academia and industry. A large number of publications have
appeared in the areas of code design and ultimate code performance, but somewhat less
attention has been paid to decoding architectures, implementation and system issues. As
the communication industry begins to explore the deployment of iterative codes that
operate at the capacity of a given channel, a detailed understanding of the physical
requirements is necessary to provide an unbiased evaluation. Comparison between BER
performance and implementation complexities are indispensable, but will require

detailed analysis of the intrinsic requirements for implementation of iterative decoders.

1.2. Objective

Effective error correction can reduce the signal-to-noise ratio (SNR) requirement
for an end-to-end reliable communication. Lower SNR requirements in a communication
system result in a variety of implementation advantages. Each 3dB of coding gain is
capable of doubling the system throughput or transmission range, or reducing the
required bandwidth by %. To an end-user, these benefits can translate into extended
battery life in portable wireless devices by lowering transmit power, improved range in
high throughput wireline systems such as very high speed digital subscriber lines
(VDSL), or increased storage densities on magnetic media.

With this in mind, there is a necessity to explore implementation issues of
iterative decoders based on turbo codes or low-density parity check codes [56] for future
generation of communication systems. The realization of an iterative decoder will weigh
the tradeoffs between coding gain performancé and factors affecting the implementation:
namely, power, throughput and area. A number of platforms are evaluated for their
suitability towards realization of the decoder requirements. In particular, the focus will
be on viable high-performance ASIC architectures.

The introduction of any new error-correction scheme on silicon must preserve the

manufacturability and testability of today’s digital systems. Although initial iterative

2

decoders [111], [120] were based on analog signal processing, these early
implementations are sensitive to process and temperature variations, and are difficult to
test in production. On the other hand, successful digital implementations, being less
susceptible to these adverse effects, will quickly displace the analog predecessors.
Hence, the analysis of iterative decoder architectures will be centered on digital
implementations.

Iterative decoders are based on block codes, and both encoding and decoding are
processed in the context of a block of data. Depending on the application, the number of
bits in each block ranges between a few hundred (wireless) to a few thousand (magnetic
storage). The soft information exchanged between decoders is typically stored as a three
to five-bit fixed-point number. In general, large block sizes and multiple-bit messages
combine to form a memory requirement that is an order of magnitude larger than a
comparable Viterbi decoder.

The necessity to perform multiple decoding iterations implies that the complexity
of the overall decoder is several times larger than traditional decoders. In order to keep
the area of implementation and power consumption within pracﬁcal. limits, reduced-
complexity methods for the implementation of these decoders will be proposed. In
addition, complexity reduction methods are often advantageous towards improving the
throughput of the decoders. The analysis explores the tradeoffs between throughput, area
and power of implementation, as well as the effects on BER performance of the
decoders. '

This work demonstrates the effectiveness of the proposed iterative decoder
architectures on field-programmable gate arrays (FPGA) and application-specific
integrated circuits (ASIC). An FPGA implementation will offer flexibility in code design
and effective emulation of iterative decoding algorithms with fixed-point representations.
The simulation or run time of an FPGA is expected to be at least an order of magnitude
faster than the use of microprocessor-based programs. ASIC implementations offer the
best balance between performance, power, and area of implementation. Using the latest
process technology, iterative decoding at throughput rates between 500Mb/s and 1Gb/s

will be shown.

1.3. Scope of work

This research is aimed at combining the knowledge of iterative decoders at both
algorithmic and architectural levels. The results will be presented in three different
facets: architectural analysis of decoder structures, code construction exploration with
emphasis on hardware implications, and physical demonstration of decoder
implementations.

Architectural analysis will permit the realization of iterative decoding hardware
with reduced complexities. Effective architectural modifications provide the most
impact on the operating performance of the final decoder implementations. The types of
structures studied include high throughput decoders applying the Maximum A-Posteriori
(MAP) [45] algorithm or the soft-output Viterbi algorithm (SOVA) [38]. These decoders
form the building blocks of a turbo decoder. The throughput bottleneck is identified to
be the one-step recursion known as the Add-Compare-Select (ACS). This is followed by
an evaluation of several competing micro architectures, which demonstrates the optimal
range of decoding frequencies that are associated with each option. The architectural
evaluations will also include comparisons between serial and parallel structures. The
issues and difficulties related to implementation of a parallel or serial architecture are
particularly significant to the realization of an LDPC decoder. The decoding algorithm
of the LDPC decoder has inherent parallelism, which promotes the implementation of a
fully-parallel decoder capable of high-throughput with a low clock rate and low power
consumption. In practice, the interconnect properties of LDPC codes exacerbates the
exploitation of this parallelism. Alternate architectures, including fully and partially
serial LDPC decoders are therefore examined.

The exploration of new code construction techniques will produce LDPC codes
that can be efficiently implemented with reasonable amounts of parallel hardware.
These new codes combine properties that enhance the feasibility of the decoder
implementation, as well as good error-correction performance. Reduced complexity
algorithms are also proposed to replace the standard message-passing algorithm that is
commonly used with LDPC codes.

The results will be demonstrated on FPGAs and ASICs. The proposed
architectures are mapped onto Xilinx Virtex-E FPGAs, and successful implementations
of SOVA and LDPC decoders are achieved in 0.18um and 0.13pum CMOS technologies,
respectively. The physical ASIC design includes logical synthesis and back-end
placement, routing, and final verification steps. The silicon chips are fabricated and
tested on custom-designed digital test-boards.

The magnetic recording channel is used as a demonstration platform. Current
trends in magnetic recording demand throughput rates near 1Gb/s. Magnetic read
channels typically employ partial response signaling, which influences the choice of
iterative decoders. As previously alluded, developments in the magnetic storage industry
are centered about improving the storage density. Increased linear densities on magnetic
media lead to degraded SNR. However reliability with very low BER must be

maintained by the error correction mechanisms.

1.4. Development work in error correction codes

During the period from the 1950’s to 1993, the development of code construction
techniques has largely obtained incremental results in terms of coding gain performance.
The historical milestones achieved by various rate-1/2 codes can illustrate this. In
1960’s, a Bose-Chaudhuri-Hocquenghem (BCH) code, [113-114], demonstrated BER
less than 10 with a SNR that is 5.4dB away from the theoretical limit. With the rise in
popularity of the Viterbi decoder [3], these codes were replaced with convolutional codes
in the 70’s, which achieved similar performance at 4.5dB. By the late 80’s, the
combination of convolutional codes with Reed-Solomon decoding in magnetic recording
applications provided less than 10" BER at 3.9dB from the theoretical limit. Table 1-1
shows that the BER performance has progressed at a rate of less than 1dB per decade
between 1960 and 1990.

In 1993, turbo codes demonstrated the ability to achieve 10°BER at only 0.7dB
away from the theoretical limit. The impact was revolutionary. Not only has BER
performance jumped by 3dB, it has also proven that the theoretical limit of a

transmission channel, based on the communication principles pioneered by Shannon in
1948 [97], was within reach of less than 1dB.

The birth of turbo codes renewed interests in the class of low-density parity check
(LDPC) codes. These codes were first proposed in 1962 [56], but were largely ignored
because the size of the code, in tens of thousands bits, made it intractable for practical
applications. The advent of faster microprocessors in the late 90s paved the way to more
effective design and evaluation of both turbo codes and LDPC codes.

In the decade that followed the introduction of turbo codes, iterative decoding has
been a subject of continual interest in the communications community. This is evident in
the number of new communication standards that have been specified of late. Table 1-2
lists some recent communication standards that have adopted iterative decoding for
forward error correction. In addition, iterative decoding is also currently being
considered for high performance storage applications that require above 1Gb/s

throughput, as well as 10Gb/s optical communications.

TABLE 1-1.
HISTORY OF RATE ¥2 CODES

SNR required for
Year Rate Y2 code 5

10” BER
1948 Shannon Lirmnit 0dB
1967 (255,123) BCH 5.4dB
1977 Convolutional Code 4.5dB
1990 Convolutional + Reed-Solomon Codes : 3.9dB
1993 Iterative Turbo Code ' 0.7dB

2001 Iterative LDPC Code 0.00245dB

Noise

u | Outer |V vV'| EPR4 | % y
™ Encoder| "1* Channel
(@)
=» SISO | % _| SISO Outer
Channel —¥ o' P> Decoder

l—’ Decoder
T

Prior

®)

Figure 1-1. Turbo (a) encoder and (b) decoder consisting of serial concatenation of a
convolution code with EPR4 channel.

TABLE 1-2
STANDARD SPECIFICATIONS FOR TURBO DECODING
Standard Application Iterative Code Throughput
DVB-RCS Digital Video Broadcast Parallel conc. of 8-state conv. codes 68Mb/s (rate 7/8)
DVB-S2 Digital Video Broadcast LDPC (block size = 64800 bits) 165Mb/s (rates 1/2,
2/3, 3/4, 4/5, 5/6, 118,
8/9, 9/10)
IEEE 802.16 Wireless Networking Turbo product codes 25Mb/s (rate 5/6)
(MAN)
3GPP Wireless Cellular Parallel conc. of 8-state conv. codes 2Mb/s (rate 1/3)
UMTS
CCSDS Space Telemetry Parallel conc. of 16-state conv. codes 384kb/s (rate 1/2)

Turbo codes are formed using two or more component convolutional encoders,
arranged either in a parallel or serial concatenation, and separated by interleaver§. The
interleavers construct a long code from short memory convolutional codes. Decoding
relies on the iterative passing of posterior-probabilities between two or more soft-input-
soft-output (SISO) decoders separated by interleavers and de-interleavers. An example
of a serially concatenated turbo code is shown in Figure 1-1. The interleaver and
deinterleaver are shown as 7 and 7"’ respectively.

One other class of codes that will be analyzed in detail are LDPC codes. These
codes are constructed from bipartite graphs consisting of variable nodes and constraint
nodes. Each variable node represents a bit, while each constraint node represents a parity
checksum of the subset of variable nodes adjacent to it. A sequence of bits that satisfy all
the parity constraints is a valid codeword. The iterative decoding of LDPC codes
computes messages corresponding alternatively to the variable nodes and the constraint
nodes, and passes these messages along edges defined by the underlying graph.

The bipartite graph of an LDPC decoder defines the network for messages to be
passed between a large number of nodes. Similar to the interleaver, a direct mapping of
the network using hard-wired routes leads to congestion in the interconnect. The
congestion can be circumvented through the use of memory. However, unlike the
interleavers used in turbo codes, which have a one-to-one connectivity, LDPC graphs
have at least a few edges emanating from each variable node. The number of edges is
several times larger than that in an interleaver network, and results in higher cost of

memory requirement and placing the memory access in the critical path of the decoder.

100000
-5
1/21LDPC, N=10, 1100 iterations for BER of 10
o 10000 1 iS/9 Capacity Bound
E 23 Oapacit§ Bound
B 1000 1
S 1/2Capacity Bound 2/3 Turbo, v=4, N=64k 1,2, and 3 iterations
o 8/9 Turbo, v=4, N=4k
>
.‘3 lm N
2 : 2/3 Conv. Code,
1/28Turbo, v=4,N=64k 1/2Conv. Code, v=4, N=64k
10 1i1,2 and3iterations ., _ v=4, N=gdk '
8/9 LDPC, N=4k - 8/9 Conv. Code,
1,3,and5 meraﬁons "“«\ v=3, N=4k
1 L} L} L) "‘"; L] T .
0 2 4 6 8 10 12
SNR (db)

Figure 1-2. Complexity comparisons between various coding schemes.

Although interests have flourished in the development of iterative decoding
techniques based on turbo or low-density parity-check codes, difficulties persists at
incorporating iterative decoding systems into commercial products. Figure 1-2 shows the
relative computational complexity and memory requirement comparisons between
conventional convolutional codes and the iterative codes, based on the number of
additions required. The plotted values are obtained through 64 iterations of decoding.
Both turbo and low-density parity check dec;)ders require soft-input-soft-output decoders,
which are about 3 to 5 times the complexity of a convolutional decoder. Additionally,
the iterative nature of the decoding leads to overall complexities that are at least an order
greater than that of existing convolﬁtional decoders.

The choice of platforms for the implementation of iterative decoding is dictated
primarily by the performance constraints such as throughput, power, area, and latency, as
well as two often understated and intangible considerations: flexibility and scalability.

Flexibility of a platform represents the ease with which an implementation can be

9

updated for changes in the target specification. Scalability captures the ease of using the
same platform for extensions of the applic;ation that may require higher throughputs,
increased code block sizes, higher edge degrees for low density parity check codes, or
increased number of states in the constituent convolutional code of the turbo system.

General-purpose microprocessors and digital signal processors (DSPs) have a
limited number of single-instruction-per-cycle execution units but provide the most
flexibility. These platforms naturally implement the serial architecture for iterative
decoding. Microprocessors and DSPs are used as tools by the majority of researchers in
this field to design, simulate, and perform comparative analysis of iterative codes.
Performing simulations with BER below 10, however, is a lengthy process on such
platforms. Recently, there has been increased momentum in the use of DSPs in wireless
devices built to standards specified by the third generation partnership program (3GPP).
These specifications require turbo decoding at throughputs up to 2Mb/s, which is an
order of magnitude faster than rates that are typically achievable by a handful of
execution units. The advanced DSPs include a “turbo coprocessor” [118], which is
essentially an ASIC accelerator with limited programmability.

FPGAs offer more opportunities for parallelism with. reduced flexibility.
However, fully parallel decoders face mismatch between the routing requirements of the
programmable interconnect fabric and edges in a factor graph. FPGAs are intended for
datapath intensive designs, and thus have an interconnect grid optimized for local
routing. The disorganized nature of an LDPC or interleaver graph, for instance, requires
global and significantly longer routing. Existing implementations of iterative decoders
on FPGA continue to circumvent this problem by using time-shared hardware and
memories in place of interconnect.

Custom ASIC is well suited for direct mapped architectures, offering even higher
performance with further reduction in flexibility. An LDPC decoder [1] implemented in
0.16um CMOS technology achieves a 1Gb/s throughput by fully exploiting the
pérallelism in the LDPC decoding algorithm. The logic density of this implementation is
limited to only 50% to accommodate a large on-chip interconnect. In addition, the
parallel architecture is not easily scalable to codes with larger blog:k sizes. For decoding

10

within 0.1dB of the capacity bound, block sizes with tens of thousands of bits are

required [93]. With at least 10 times more interconnect wires, a parallel implementation

will face imminent routing congestion, and may exceed viable chip areas.

Current ASIC implementations of turbo decoders [98] are serial, targeting

wireless applications.

Decoding throughput is 2Mb/s with 10 iterations of the two

constituent convolutional decoders. A high throughput ASIC turbo decoder, limited by

the interleaver memory access, should be able to decode at throughputs over 500Mb/s.

Table 1-3 provides a summary of related implementations on different computational

platforms.
Table 1-3
SUMMARY OF PLATFORMS FOR ITERATIVE DECODERS
Platform Architecture Example Implementation difficulty
implementations
Microprocessor/ Serial 133kb/s rate-¥4 LDPC Limited number of processing units
DSP decoder on DSP [110] (ALU)
FPGA Parallel None Mismatch of interconnect
requirements and capabilities
FPGA Serial 56Mb/s rate-Y2 LDPC Control for memory access
decoder [109]
6.5Mb/s 8-state MAP
decoder [108] (3 windows)
Custom ASIC Parallel 1Gb/s rate-¥%2 LDPC decoder Routing congestion; Not scalable
[1] 1024-bit code block
Custom ASIC Serial 2Mb/s 8-state MAP decoder Interleaver addresses computed on
[33] the fly. Implementation was
optimized for low power. 500Mb/s
high throughput MAP decoder is
theoretically feasible.
Custom ASIC Parallel Analog MAP decoder in Interleavers not included.
(Analog) BiCMOS technology [111]

Sensitive to process and temperature
variations. Difficult to test in
production. Not scalable with
improvements in process technology

11

L.5. Related Work

Currently, a handful of research implementations of the Maximum A-Posteriori
decoder (used in turbo decoders) [33], [89], [98], soft-output Viterbi decoders [14], [16],
and LDPC decoders [31], [96] are available. = The industry [1], [113], [114] has also
been active in the development of iterative decoders. In general, these efforts are
targeted towards wireless applications. Low rate codes such as rate-1/2, or 2/3 codes, are
considered, and the decoders have throughput requirements in the order of a few Mb/s
and stringent power constraints. In addition, higher throughputs in the neighborhood of
Gb/s have been achieved using analog methods [111] [120]. Although these efforts
differ from the objective of this work (high-throughput digital implementations with high
code rates), they provide valuable data points for comparison of the various architectures.

To date, most efforts in implementations of iterative decoders pay little attention
to the construction of the code. Conversely, notable results from [87], [88], and [93]
have demonstrated very successful methods for code construction techniques, but with
little considerations towards the implementation issues of the decoders. The
discontinuity between code construction and decoder implementations often leads to
conflicts between the requirements of high performance error-correction codes and the
practical constraints that limit the realizations of the decoders. This research is a
deliberate departure from the above methodology by considering both code construction
and its implications on the decoder architectures. We combine properties that lead to
good performing codes with structural designs that permit the practical implementation
of the decoders. In this light, the approach has similar objectives with ongoing efforts in
LDPC implementations by Mansour and Shanbhag [96], though the detailed approaches
are tangential with respect to one another.

Iterative decoding has been considered for use in magnetic recording [37], [66],
[68] [69] applications. The codes considered have high code rates (e.g. 8/9, 16/17), and
decoder throughput requirements are above 500Mb/s. The prevalent use of a partial
response signaling has driven the use of the transmission channel as a rate-1
convolutional encoder. The next chapter will provide details of such a channel model.

The partial response channel is described and evaluated for its suitability towards

12

different types of iterative codes. A number of current channel detection methods are

also introduced.

13

2. TRANSMISSION CHANNELS AND CODING

This chapter defines characteristics of a binary communication channel that will
be used as a demonstration platform for the proposed iterative decoder architectures. The
properties of the channel model are motivated by requirements from magnetic storage
application. ~ Conventional magnetic hard disk channels employ partial response
maximum likelihood detection methods. As areal recording densities rise towards
100Gb/inch®> and beyond, the detection will be required to operate at lower SNRs.
Perfect channel equalization, which used to be the basis of forward error correction,
becomes increasingly difficult to achieve. Hence there is a requirement for advanced
signal processing that will be able to maintain the integrity of the system.

Iterative decoding techniques based on turbo or low-density parity-check codes
promise substantial gains in SNR performance. The main difficulties in incorporating
iterative decoding systems in existing commercial products are the complexity of the
decoder, its size, and implementation of timing recovery, as well as possible byte-error
propagation. The successful implementation of these systems will allow the use of
iterative decoders in magnetic disk drive read channels with data throughputs that
significantly outperform . that of current commercial systems, while maintaining
manufacturability and testability.

As a vehicle for the performance analysis, a common channel model is described
in the following sections. The sector size comprises 4096 user bits, which is a
representative block size for most iterative decoding applications such as high-speed

wireline and optical communications.

14

2.1. Channel capacity

Uk Xk Modulator
—» ———>
Encoder (write) Tx
|
v
Channel .
(medium) H—No:se
|
2
iy Y Demodulator
< Decoder [€¢—— (read) Rx

Figure 2-1. Generic representation of communication systems

The classical communication system can be categorized into a number of broad
areas depicted in Figure 2-1. The user bits, u, are encoded through a pre-determined
coding scheme. The output, x, is passed through the modulator and demodulator, which
perform physical transmission of the encoded information through a non-ideal channel,
" which introduces noise, attenuation, phase delay and other detrimental effects. Forward
error correction commonly assumes additive white Gaussian noise. This affects the
design of the demodulator, which usually includes a channel detector and equalizer.

In 1948, Shannon introduced the general theory of coding. The objectives are
two-fold. First, the number of bits required for representation of a given sequence of user
bits is minimized (source coding). Secondly, the transfer rate achievable with error-free
transmission is maximized (channel coding). The following discussion is restricted to
discrete-time systems with discrete-inputs and continuous outputs. This model is
relevant for the majority of digital communication systems in which the encoders operate
on binary inputs, while the decoders are subject to thermal noise from the channel.

Source coding is based on a statistical model of a generator for the user bits, u.
Assuming the simplified special case that these input samples are drawn from a random

process Uj with independent and identically distributed (i.i.d) samples, the average

15

number of bits required to represent each user bit without distortion is given by the
entropy of U, defined in 2.1, with £ as the alphabet space of U. Sampling ;he source is
at r repetitions per second, the rate of the source, R, is given by 2.2. The theorem then

states the source can be encoded into a bit stream with minimum bit rate of R.

H{U)=- %P(Uk =u)log, p(U, =u) (2.1)
uelly
R=rH({U) (22)

Likewise, the output of the communication system shown in Figure 2-1 can be
considered as a random process U ¢+ The concept of channel coding defines the capacity
per symbol, Cs, of a channel to be the maximum mutual information, 1, between the input

‘random variable U and the output random variable U .

IvD0)=HE)-HU10) (2.3)
c, =p1(13g)1(vﬂ) (24)

Transmitting at a rate of s symbols per second, the capacity of the channel, C, is

given by
(25)

The source coding and channel coding theorems can be combined to form a
general channel capacity theorem. Given a source with rate R, and a channel with
capacity C, there exist encoders that will ensure asymptotically error-free transmission if
R<C

From an implementation perspective, it is often more useful to define the capacity
of a channel in terms of the available SNR. For example, the capacity of a band-
unlimited channel for binary transmission is defined in 2.6 as a function of the signal

power, P, and noise variance, N. A plot of the relationship is shown in Figure 2-2.

R< C=Y%logx(1+P/N) - (2.6)
16

Minimum R vs SNR

9 T L] L T ¥
1 1 1] 1] t] I}
' ' ' 1 1 1 1 1 |
1 i I]]]] ']
8r---- TTTTTATTT i i FTTTTY T T F o
| | ! ' ' ' 1 '
' 1 t ! ' ' 1 0 |
]] 1
O B e e e e
1 ' 1 | 1 1 1
P I U S SN SR S N O i I S
) 1 ' ' 1 ' |
3 I |) I | ! |
T R e e e e S R
) 1 ') ' 1) 1
2 I :) I ') |
S4r---- R AR ol S . C
@ 1 '] [1 1 '
S IS TR SO S S NN NS SR b
1 1 1 ' 1) |
: I . ! i) I
k-4 = __-L-_--_:_-..--..-___I_ __________ : _____ |
: ' ' | | | | , I
1 1 i 1 1 1 | ' |
o G S S SO SO SO SR S S
1 1) ' 1 1 | ' I
| 1 ')) 1 | ' |
0 N RS S S S S S S
0 5 10 15 20 25 30 35 40 45 50

SNR (db)

Figure 2-2. Plot of relationship between minimum rate of code and available SNR for a
band-limited binary transmission.

2.2. Partial response channel

Magnetic read channel systems make use of non-return-to-zero invert (NRZI)
modulation. Each binary bit is stored by magnetizing the medium with one of two
possible magnetic field directions. The read head contains a ferromagnetic material that
hovers less than 20um above the rotating medium. Changes in magnetic fields induce in
a pulse. A positive pulse corresponds to a 0—1 transition and vice-versa. The isolated
pulse shown in Figure 2-3 is modeled as a Lorentzian, with the 50% pdse-widﬁ, PWso,
defined as the interval over which the height of the pulse is greater or equal than 50% of
its maximum value. As data rates increase, consecutive analog pulses may be overlapped
due to the smoothening effect of the bandwidth limitations in the receiver. This

phenomenon causes simple peak detection techniques to fail.

17

B Lorentzian Pulse
()= —

2% Y
14| 2
(75
-»

® Equalization * PWsp

.

1
]
]
' >

(1-D)(1+D) (1-D)(1+D)? (1-D)(1+D)?

oooooooo

PR4 EPR4 E?PR4

Figure 2-3. Various types of partial response channels.

Partial response systems equalize the isolated pulse to preset response targets
shown in Figure 2-3. The sampled sequence of an isolated pulse in a partial response
class 4 (PR4) system is [0 1 1 0]. Likewise, an enhanced partial response class 4 (EPR4)
system is sampled as [0 1 2 1 0], and a double-enhanced partial response class 4 (E*PR4)
" system, as [0 13 10].

These partial response systems correspond to convolutional codes with different
equivalent polynomials. The impulse response of the channel is given by the
superimposition of a pair of positive and negative pulses, separated by a sampling period.
Figure 2-4 and Figure 2-5 illustrate such behavior and provide the equivalent code
polynomials for the two example partial response channels.

18

Stored bits: 000 1 000
Magneticfield: —» =& = « 5 5 >

Generated pulses:

Sampled sequence: 0 0 1 0 -1 0 0 0 O
Polynomial: 1 -D?=(1+D)(1-D)

Figure 2-4. Impulse response for a PR4 system.

Stored bits: 0 0010O0O0
Magnetic field: — — =2 «—> — =
2

Generated pulses:

Sampledsequence: 0 1 1 -1 -1 0 O...
Polynomial: 1+D-D?-D?=(1-D)(1+D)’

Figure 2-5. Impulse response for an EPR4 system.

19

2.3. Partial response maximum likelihood (PRML) systems

X
1k >

X.
+ 2ky,

— - D D"
1+D

Figure 2-6. Rate 2 convolutional encoder; code polynomial is (1, W)'

Since the 1990’s 'Partial Response Maximum Likelihood' (PRML) detectors have
been the choice detectors for uncoded, linear, intersymbol-interference (ISI) magnetic
channels. PRML systems convert the continuous-time signal into discrete-time samples
that are sufficient statistics for decoding. Under this conversion, the ISI channel can be
treated as a convolutional encoder, with coefficients that are extracted from the equalized
pulse shape. This permits the channels to be decoded with the Viterbi algorithm, which
is used with convolutional codes to detect the sequence of input bits. The operation of a
convolutional encoder and the Viterbi decoder is briefly explained.

Convolutional encoders make use of v shift-registers to store a short history of
the input bits. The specific wiring between the shift registers is defined by the code

polynomial. A rate Y2 convolutional encoder with a polynomial of (1, IIT+II))—2) is shown

in Figure 2-6. The code polynomial contains a recursive feedback loop. For applications

that require other code rates, the sequence of x; and x’; can be punctured accordingly.

20

(a) (b)

Figure 2-7. Finite state machine (a) and trellis (b) representation of convolutional
encoder.

The configuration of the registers of a convolutional encoder define a finite state
machine. For a binary convolutional encoder with v registers, there are up to 2" states.
Figure 2-7(a) shows this finite-state-machine with each transition edge labeled with an
input/output pair. The demodulator decodes by recreating the sequence of states
traversed in the encoder. This introduces an additional time dimension, and the encoder
is represented as a time-expanded state-machine, also known as a trellis (Figure 2-7b).

The trellis is a convenient way to represent the evolution of the finite-state
machine. In addition, the function of a Viterbi decoder is very often explained as a
search for the most likely path through a trellis. The nodes found along this path reflect
the sequence of input bits. The binary decisions produced by this decoder are known as
‘hard’ outputs. These differ from ‘soft’ output decoders that provide an additional
numerical value measuring the confidence of each decoded bit. Soft output decoders are
introduced briefly in the next section, and will be elaborated in the context of building
blocks for iterative decoding in the following chapters.

21

In PRML systems, the equivalent code polynomials indicate the number of states
required in the Viterbi decoder. For example, the PR4 and EPR4 systems shown in
Figure 2-4 and Figure 2-5 require 4-state and 8-state decoders respectively. As the
amount of ISI increases with higher recording densities, state-of-the-art detectors evolve
to 16-state and 32-state systems. This causes an exponential growth in the complexity of
the detectors despite improvements in error correction performance that are measured in

less than 0.5dB increments.

2.4. Concatenated codes in partial response channels

Partial response systems are particularly well suited for implementation of serially
concatenated forward error correction codes [68]. Figure 2-8 shows an application of
turbo code with an outer encoder serially concatenated with an inner channel encoder.

An interleaver, T, separates and decorrelates the sequence of bits between the two
encoders. This allows an iterative suboptimum-decoding algorithm based on
uncorrelated information exchange between the two component decoders to be applied.
The interleaver improves the coding gain through constructing a long code from short
memory convolutional codes. Long codes have larger minimum distance and lower
number of low-weight codewords. Interleavers also make the overall code more resilient
against burst errors. The minimum sizes of the interleavers that will result in substantial
improvement in error performance is in the order of a few hundred bits.

Iterative decoders rely on the repetitive exchange of information and cooperation
between two or more soft-input soft-output (SISO) decoders that are matched to the inner
or outer codes. Soft-output decoders for convolutional codes implement the Bahl-Cocke-
Jelinek-Raviv (BCIR) [4] or Soft-Output Viterbi algorithms (SOVA) [5]). Both
algorithms are instances of a larger class of message-passing algorithms, which exploit
the linear structure of convolutional codes. An example configuration is shown in Figure
2-9.

22

Noise

u Outer |V V| EPR4 | * y
™ Encoder Channel |

Figure 2-8. Serially concatenated codes that make use of a partial-response channel as an
inner encoder.

y N
—»| SISO |a X
Channel ») SISO Outer

l-p Decoder Decoder

Prior

Figure 2-9. Iterative decoder system for serially concatenated codes.

The outer code can be replaced with a LDPC code. Systems employing LDPC
encoding do not require explicit interleaver/deinterleavers. By construction, each LDPC
code introduces random ordering of at least a few thousand bits. These codes generally
have less ordered structures, which leads to increased routing-complexity in LDPC
decoders.

In the following chapter, the message-passing algorithm will be discussed in
detail. The decoding algorithms for both turbo codes and LDPC codes will be
elaborated. These will reveal the implementation requirements of the corresponding

decoders.

23

3. MESSAGE PASSING ALGORITHMS

This chapter introduces the concept of constrained coding, which is the basis of
all iterative decoding. Iterative decoders rely on the cooperation between two or more
SISO decoders. Each SISO decoder implements a message-passing algorithm, which is
defined according to the type of coding constraint(s). These concepts are presented in
the context of turbo codes and I.DPC codes.

The computational complexities and message-passing network requirements
associated with realization of message passing algorithms are introduced. These
algorithms are analyzed in terms of their VLSI requirements and limitations, and the
~ impact of complexity-reduction techniques on BER performance. = For example, the
messages are represented in log-likelihood form for the benefit of reduced hardware
complexity. These issues will be examined within a unified graphical framework that

consists of an interconnected network of variable nodes and constraint nodes [7].

3.1. Constrained coding and SISO decoders

Constrained coding is loosely defined as the conversion of a block of user bits
into a codeword comprising intersecting subsets of coded bits. The elements in each
subset are bounded by a constraint, such as an even parity or a valid codeword under
BCH encoding. For instance, consider the two convolutional encoders used in the
serially concatenated turbo scheme, which was presented in the last chapter. Each output
bit of a convolutional encoder is constrained by an even parity with respect to a small
number of bits in the input sequence. As the parity results from the outer encoder feed
through the interleaver and into the inner encoder implemented by the EPR4 channel, the

sequence of neighboring bits is further constrained.

i

1 ! | Sl

O]

.
® "
Ny

S?J SB
®
D—

S4 54

L

Figure 3-1 Bi-partite graph representation of a 4-state trellis code.

SISO decoders operate with respect to one or more of these constraints specified
by the construction of the code. This explains the intuitive use of the two SISO decoders
matched to the convolutional codes. In general, the relationship between the variables in
the code and the constraints that bind them together can be represented by a bi-partite
graph. This graph consists of two classes of nodes: variable nodes and constraint nodes.

Each variable node is connected to a group of check nodes, and vice-versa.
Variable nodes symbolize the outcome of either individual bits, or groups of bits. Each
constraint node represents a particular rule that is applied on the adjacent variable nodes.
An example bi-partite graph representation of a turbo convolutional code is shown in
Figure 3-1. It has the form of a trellis, which characterizes the time-indexed finite state
machine within a convolutional encoder. The circles correspond to variable nodes. Dark
circles (S;.4) represent the states in the trellis, which are formed by stored input values in
the encoder, while the light circles (Xi.g) represent the output values of the encoder.
Each constraint node (white squares) binds two adjacent states with the output of the
encoder. In other words, by observing the starting and ending states, the corresponding

transmitted output of the encoder can also be determined.

25

Figure 3-2. Bi-partite graph representation of LDPC codes.

The linear structure of the trellis provides an implementation advantage, which is
exploited by SISO decoders implementing either the MAP algorithm or the SOVA. The
trellis is partitioned into cascading sections of identical slices. Each slice is
representative of a sample period. The decoders employ recursive algorithms to
implement the decoding operations in a serial fashion. Over time, a number of possible
paths through the trellis of the code are reconstructed, and the most-likely outcome will
provide a decoded decision. The soft values, or confidence measures relating to each
decoded bit, are based on the differences between the aggregate weights associated with
these paths.

Another bipartite graph representation, which is used for representing LDPC
codes, is shown in Figure 3-2. The variable nodes (dark circles) represent the coded bits
(including both user and parity bits) while the constraint ncdes (squares) represent even-
parity checksum constraints. In general, LDPC codes are described by sparse graphs
with far less structure than the previous trellis example. .

SISO decoders used with LDPC codes have a finer granularity, and are organized
as check node or variable node processing elements (PE) according to the bipartite graph.
The edges in the graph correspond to interconnect between the PEs. In the above
example, a check node PE, C,, inputs a list of messages from the adjacent variable node
PEs, Vi, V3, V4, and Ve. The computation evaluates a list of posterior probabilities, which
are returned to the same set of adjacent variable nodes. Likewise, an example variable

node PE, V, will be evaluating messages that are passed between V, and the adjacent

26

check node PEs, C; and Cs. These PEs implement the message-passing algorithm, which
will be described in Section 3.2.3.

In both turbo codes and LDPC codes, the decoding process begins by initializing
each variable node with a prior probability. The prior probabilities are based on some
initial assessment provided by the demodulator, such as the sampled signal obtained at
the receiver, or any a-priori information of the probability distribution of the set of
information bits. The iterative nature is reflected by the repeated evaluation and relay of
messages between the two classes of nodes. The process of decoding with respect to
distinct constraints and information exchange effectively propagates information
throughout the entire graph. It eventually results in a solution based on the weighted

inter-dependencies between all variables in the block code.

3.2. SISO algorithms
Three particular SISO algorithms are discussed: The MAP decoder and a SOVA
decoder, which are used in turbo codes, and the message-passing algorithm used with
decoding LDPC codes and block product codes.

3.2.1. Maxnmum a-posteriori decoder

A MAP decoder implements the BCJR algorithm [45]. It is used to obtain the a-
posteriori information for partial response channel decoding, as well as outer decoding
when a convolutional code is employed as the outer code. A MAP decoder provides the
log-likelihood of each bit received from a convolution encoder. Convolutional encoders
are typically described by a discrete, causal, linear, time-invariant transfer function, such
as the 14+ D - D%D? encoder shown in Figure 3-3. D" represents an input delayed by n
sample periods.

The encoder implements each delay with a single-bit register. A finite state
machine, whose states are given by the contents in the registers, can model the entire
encoder. An L-delay encoder with binary inputs will therefore have 2 states. An
example of a radix-2 trellis for a binary input system is shown in Figure 34.

27

—» D D D

So
i: \N

& &
.)/

Figure 3-4. Trellis of an 8-state convolutional code

Noise
Ui |Convolutional| ** Yk -
Encoder MAP [P, 15)
Decoder
Plu,) — P(x, | 5)

Figure 3-5. Convolutional encoder with MAP decoder.

The operation of the MAP decoder is explained in the context of a single
convolutional encoder/decoder system, as shown in Figure 3-5. In general, the MAP
decoder is a two-input, two-output discrete-time system that is applied to a block of N
bits. The inputs are the received symbols y,, and prior probabilities, p(ux), of the encoder
inputs, u, € {0,1}. The time indices are represented by k € {l,---,N}.

28

Define the set of received symbols as 5 ={y,,¥,,¥s.....yy}. Based on the
observations, ¥ , the decoder outputs the conditional probabilities of x; and uy, expressed
as p(x, 15) and p(u, | 7) respectively. Recall the trellis representation of the encoder

finite state machine. The sequence of x; can be deterministically derived from a given
sequence of u;. Therefore, this discussion will focus on the evaluation of probability
measures for uy.

In particular, for binary inputs, p(x, | ¥) comprises two components:
plu, =017) and p(u, =115). The evaluation of these values is simplified using a
combination of Bayes’ theorem and a different representation of the probabilities, known

as the likelihood ratio. Bayes’ theorem defines that

pl =115)= 2l =L)
p(3)
= plu, =0,5)
p(3)
In many cases, the only inputs available to the decoder are the observations, ¥ .

3.1
P(uk =0l y)

Without any a-priori knowledge of the source of user bits, u;, it is impossible to

determine the denominator, p(3), in 3.1. The likelihood ratio removes the necessity to

compute this value by defining
Likelihood ratio = 2% =L1%)
plw, =015)
_ 3.2)
= P(uk =LYy)
p (uk = O’ 5")

Hence the decoder is required to evaluate the joint probabilities, p(u, =1,5) and
plu, =0,5). These values are expressed as the sum of transition probabilities in 3.3. A

transition between each pair of states, (sx-1=S;, 5;=S;), is possible only when there is a

corresponding connection in the trellis. Each valid transition uniquely defines u; and x;.

29

plu, =l,§)=szs,p(uk =1s,_,=8,8= s,.,y)
i j

P(u;‘ =07y)= zp(uk =0’Sk—l =Sl"sk =S"’3;) (3-3)

5.5,

5.5, €15,.5,.5;...5,. }

Given a particular state, s;, subsequent outputs of the encoder, Xi.1, X2, ..., are
independent of internal state of the encoder prior to step k. This observation provides the
following expansion of the individual terms in (3.3). The symbol yi is defined as the set
of received symbols between step k and step I, {y,, Yyu1» Yiszoeeos Vi }-

p(uk’sk-l =8,85 = Sj’i;)
= p(sk—l =S J’lH)‘ p(uk’sk =S,)’kN I8y = Si)
= p(sk-l =S, ylH)' p(uk’sk = Sj’yk IS = Sr)' P(ymN I's, = Sj’) (34
= ak-l(Si)'V(uk’si’)’k’sj)‘ﬂk(sj)

where a; B, and yare defined as:

ak(St)=p(sk =S:’ylk)
=2]‘,ak-l(sj)'7(“1:-1’31’}’1:-1’5:)

B.(5,)=plrin" 15, =5,) (3.5)
= ;ﬁkﬂ (Si) 7(uk+l’sj s Yeers S)

7(uk,5,,}’k.sg)=1’(upsk =Si’yk Isk-l =Sj)
=P[“k =f(snsj)]'1’(3’k 1x, =8(Si'sj»

Each term is expanded as the product of three terms, o, ,(S;), f, (S j), and
7(uk 3855 VS,), which are explicitly defined in (3.5).The messages a;_(S;),and 5, (S j)
are computed through forward and backward iteration, and are commonly known as the

forward and backward state metrics respectively. ;.S j,yk,S,-) is a probability

30

measure associated with the transition from state S; to state S; and the received symbol as
a result of the tmnsition, Y& It is commonly known as the branch metric in relation to a
branch in the trellis representation.

The above equations are computationally intensive due to the requirement to
evaluate multiplicative terms. The algorithm is rearranged in the log-domain in order to
ease the computational load. Details of these operations can be found in [102], but in
general, the computations defined by BCJR algorithm fall into three categories: branch

metric computation, forward/backward iteration, and combination of state metrics.

3.2.1.1.Branch metric computation

For each edge in the trellis connecting si.; with si, define a branch metric based
on the a-priori information of % and the observed symbol, y;. The values of u; and x; can
be inferred from the starting and ending states, and are therefore expressed as functions, f
and g respectively. The value of y; is a sample of x; in the presence of additive noise. As

such, P[y, 1x,)] depends on the probability distribution of the noise source.

Vk(Sk—vsk)z ln{P(uk = f(sk—l’sk)}

3.6
(P, 13, = g(sp00500] G0

3.2.1.2.Forward/backward iteration

For each node in the trellis, define a pair of forward/backward iterating state
metrics as shown in (3.7) and (3.8). Each state metric is dependent on the values of the

preceding/succeeding state metrics that are adjacent to the node.

CXP[ak—l (Sk-l)"' 1£° (s"" %) +}
. : 3.7
% (Sk) {exp[ag.n (s -)"’ Ve (s k-12 5k)] .
exp[ﬂkﬂ (S0)+ Vina (542550) +} | A
o : 3.8
Ails.) {exp[ﬂm CARES C ’)] >

31

3.2.1.3.Combination of state metrics

Working in log-likelihood domain, this last step involves the combination of

appropriate forward and backward state metrics to evaluate the log-likelihood of the

. Plu, =11y) P(x, =11y)
——=—r1, and ts, In| —/———%1.
encoder inputs m[P (4, =01) and outputs, In Pz, =01)
In P(u,c=1|5'i)
P(uk =017)

=ln{ ZCXP[ak-l(si)'*'y(uk =f(Si’Sj)-Si’yk'sj)'*'ﬂk(sj)]} (3.9)

S,.SI 3 u,=f(S,4.Sl)=l

—lﬂ{ zexp[ak-l (Si)+7(uk = f(Si'Sj)'si’ y,,,Sj)+ By (Sj)]}

51.8;3 uy=£(5;.5,)=0

lnl:P(xk =1|§)]

P(x, =015)

=ln{ ZCXP[ak-l(Si)"‘?'(xk =8(S."Sj)’sss)’k’sj)+ ﬂk(sj)]} (3.10)

5,53 x=g(5;.5))=1

—ln{ Ze#p[ak_,(si)+ 7("1: = g(Sij)vSi’yk%'Sj)"‘ B (Sj)]}

S,~.S, 3 xk=g(S;.Sl)=0

In summary, the MAP decoder calculates the conditional probabilities of the
transmitted bits by observing a long sequence of received symbols. The memory effect
of convolutional codes is reproduced by propagating the state metrics in both forward
and backward directions through the trellis. The algorithm is simplified by the use of
log-probability and defining a log-likelihood representation. Despite this, the MAP
decoder remains significantly more complex than the Viterbi algorithm [3], which has
been the choice decoder for non-concatenated convolutional codes in the past. However,
the significance of the MAP decoder is brought to light in the context of turbo decoders,

32

which require soft outputs. In the next section, the Viterbi algorithm is adapted to

provide such soft outputs for use with turbo decoders.

3.2.2. Soft-output Viterbi algorithm (SOVA)

The Viterbi algorithm searches for the maximum-likelihood decision, X, by
finding the most-likely (ML) path through a trellis representation. In a binary channel, an
error in the decoding implies that the correct output is the complementary decision %.

Based on this observation, the soft-output Viterbi algorithm (SOVA) searches for
the two most-likely (ML) paths that trace back to complementary bit decisions, % and %.
The difference in path metric between these two paths is representative of the confidence
of the decoded bit.

The path metrics are determined by an iterative process that is used in all Viterbi
decoders. The derivation of the procedure is very similar to that described for MAP
decoders in Section 3.2.1. Branch metrics are computed in the same manner as in (3.6). -

The state metric corresponding to state s at instance k is represented by smf(s,). There

is no backward iteration, and the forward iteration is based on the following recursion.

sm(s,) = Max{exp[sm(s,._)+ 7i (se-1-5:)b explsm(s;)+ 7 (sz-1-5)} (3.11)

Similarities between (3.7) and (3.11) can be observed. The log-of-sum function
in (3.7) is approximated with a maximization function, Max(-). The maximum selection
also determines a particular branch at the corresponding node in the trellis. After some

latency, these decisions are read back recursively in a process known as a traceback to

determine the most-likely path, o

33

=

x
kM n
- -
M-step traceback Viterbi algorithm with L-step traceback
determines next ML path.

Figure 3-6. Two-stage traceback in a SOVA decoder to determine the two ML paths, o
and .

With high probability, the next most-likely traceback path, £, will coincide with &
for some number of steps before a branch occurs. In order to determine S, each node
along &ris evaluated for possible branching. Only branches that lead to a complementary
bit decision are considered valid candidates for S. The difference in path metric between
each valid branch and a, observed at the node where branching occurs, is compared. The
next most-likely path is determined by the branch which corresponds to the minimum
difference. .

It is further assumed that the absolute values of the path metrics, SMyand SMp,
dominate over that of other paths. The probability of selecting B over & (i.e. the wrong
decision) is given by (3.12). The log-likelihood of a correct output by the SOVA decoder
is then given by (3.13).

P = exp(— M P)
T exp(-M,)+ exp(— Mg)
- 1
1+exp(A)

(3.12)
; A=My-M,

34

Io CorrectDecision —lo 1-P,,
g WrongDecision) (3.13)

=A=Mg-M,

Figure 3-6 shows that the ML path, @, is determined using the Viterbi algorithm
with an L-step traceback. This is followed by another M-step traceback that resolves the
next ML path, 5, based on maximal probability of a deviation from o

3.2.3. Message passing algorithm used in LDPC decoder

As briefly introduced, LDPC decoders implement the message-passing algorithm
by associating each node and edge in the underlying bipartite graph (Figure 3-2) with a
PE and interconnect, respectively. The outputs from each PE are sent as messages to
other adjacent PEs. An iteration of LDPC decoding consists of a round of message
computation at all variable node PEs, followed another round of message computation at
all check node PEs.

An alternative mathematical definition of an LDPC code uses a parity check

matrix, H. Each valid codeword 5c'=[x,,x2,...,xN]T satisfies the definition in (3.14)

under GF(2) computations.

H-%=0 (3.14)

An NxM parity check matrix defines a code with N bits (variable nodes) and M

parity checks (check nodes). Hence, each LDPC code comprises M different parity check
constraints. Each column in the matrix represents a particular bit, while each row
represents a parity checksum. The entries in the matrix are binary; a non-zero (i.e. ‘1°)
entry at row i and column j of the matrix indicates that the j* bit is a member of the i
parity checksum. In most LDPC codes, each bit is a member of four or five parity

checksums, thus forming the intersecting constraints discussed in Chapter 1.

35

For the same reasons as discussed in earlier sections, the LDPC decoder of
interest operates in the log-probability domain. The inputs to an N-bit LDPC decoder are
the log-likelihood ratios of x,, as defined in (3.15).

=1n [P’il—l)-] n=1,2,..,N (3.15)
Prx. = 0)

a

Let W (m) = {n: H,,= 1} be the set of variable nodes that are connected to check
node m, and t(n) = {m: Hy,, = 1)} be the set of check nodes that are connected to
variable node n. Qnn and Ry, refer to the messages that are passed between variable n
and check m as defined in (3.16) and (3.17) respectively.

Message from variable n to check m:

Om=0,+ 2 R, (3.16)

mn
meg(n)\m

Message from check m to variable n:

Rm=d>"(Yy @0, }{ I1 senl m] ()" (3.17)

neN(m)\n nev(m)\n
@(x)=-log (lanh(—%x)): ®'(x} x20 (3.18)
®(x) =—log (tanh(% x)) ’ (3.19)

&~ (x) = 2tanh* [exp(~ x)] |
The decoder begins by initializing the first round of variable-to-check messages
with the input log-likelihood ratios of the corresponding variable nodes. The operation at
each bit node is conceptually straightforward. The output messages are obtained by

summing all input messages together with the prior information.

36

25r

D(x) 15

0S5

LO
b
b

)

Figure 3-7. Plot of ®(x) against x.

Each check node, m, receives a number of messages, R,n», from a pre-determined
set of variable nodes. The calculations shown in (3.17) can be partitioned into three

*segments. Most codes are constructed on the basis of even parity, which implies that

(=1)** =1. The checksum is obtained by evaluating the product of the signum of input

messages, || sgn(Q,,). Finally, the absolute value of the output is determined by
nEv(m)\n

summing the results of applying the ®(-) function on the input messages, followed by the
inverse function, ®7'(-).

Figure 3-7 shows a plot of ®(x) against. x. The inverse function, ®7'(-), can be
easily verified to be equal to ®(-). The function has a reciprocal effect on its operands.

A detailed derivation of the function is beyond the scope of this text. However, an

intuitive explanation is offered as follows.

37

In evaluating the parity checksum of a group of bits, the confidence of the output
is strongly affected by the input bit with the least confidence. This is because flipping
the outcome of a single bit changes the checksum value. Consider a log-likelihood ratio

with a minimum absolute value amongst a group of messages, Onm. Applying ®(-) on

this input results in a large output value, which dominates the sum, 2 ®(0,,.).
nEN(m)\n

Finally, the inverse function is applied to this sum, and the message from the check node
PE shows a weak confidence, which reflects the small value of the input message.

In the rest of this chapter, an overall view of the operational requirements of the
SISO decoders is presented.

3.3. Requirements of iterative decoders

The requiremeﬁts of SISO decoders can be mostly classified into two categories,
computational and message passing requirements. This final section distinguishes
several SISO decoder algorithms in \terms of these requirements. This will permit the
next two chapters, which describe specific architectures for implementations of the SISO

decoders, to describe the work in the context of targeted requirements.

3.3.1. Computational requirements

The key arithmetic computation in any iterative decoder is the evaluation of
marginal posterior functions. Each node in the graph is associated with a processing
element that evaluates the marginal function of its input messages. Let X and Y be two

random variables jointly defined such that

Y p(X =xY=y)=1 | (3.20)
x y
The marginalized functions are described by
P(X=x)=) p(X =x,Y =y) : (3.21)
¥y
PY=y)=Y p(X=xy=y) (3.22)

38

The joint probabilities summed on the right-hand side of (3.21) and (3.22) are
evaluated by the product of probabilities of independent events. Such computations are
sometimes referred to as the sum-product algorithm. Although the decoding of iterative
codes is derived from the sum-product algorithm, expressing the equations as sum of log-
probabilities or log-likelihood ratios is preferred in implementation because it replaces
the required multipliers with adders. However, the sum of probabilities is transformed
into a complex combination of exponentials and logarithmic functions. To simplify the
hardware, the computation is approximated with the maximum value of the input
operands, followed by an additive correction factor, which is determined through a table
lookup.

An example of the sum-product algorithm processed in log-probability domain is
the Add-Compare-Select-Add (ACSA) recursion in a maximum a-posteriori (MAP)
decoder (Figure 3-8a). The “add” operation simplifies what would otherwise be two
product terms if the decoder was implemented in the probability domain. The “compare”
and “select” operations approximate the logarithm of a sum of exponentials. This
approximation leads to an implementation loss of about 0.5dB in a turbo system.
However, adding a correction factor to the output of the ACS can bring the performance
back within 0.1dB of the performance with a MAP decoder [55]. This correction factor
. is based on the weights of the difference of the two sums. The throughputs of MAP
decoders are limited by the implementation of the add-compare-select (ACS) structure
due to the single-step recursion that prevents pipelining. This is similar to the more
commonly used Viterbi decoders.

Another example of the sum-product computation in log-probability domain can
be found in LDPC decoders (Figure 3-8b). The check-to-variable message computation
needs to evaluates [J(1-2p,), where p, represents the probability that a bit x, equals to

n
1. Performing the same computations in the log-probability domain simplifies the
evaluation of the product, but also requires the implementation of

PD(x)=-log (tanh(%)] This non-linear, monotonic complex function is not easily

39

implemented with full precision, requiring the use of CORDIC functions [113] that can

be significantly more costly than the adders used in summation. Fortunately, iterative

decoders require low fixed-point precisions, frequently just three to five bits. This

implies that ®(x) can be evaluated using lookup tables that are efficiently implemented

with simple combinatorial logic functions or small ROM-based lookups.

State M Mo — DT Lut 1@-——<SM’
" " 04
e.g. "010 sv22M2 ()
Add | Comp |Select/ Add
Table lookup | (Correction Term)
@
» Delay
» Delay
hd & 3
'in‘ml'— < | S. 1 D =<> g J \‘ > 'Rm.nl’
LUT LUT
LUT + LUT
uir! | \: - %) ,Z|LJ > R,]
LUT LUT
Dela
Delay
(@ 1 I . —) >— se®,,)
Sg(Qy2) +—) >— Sm(R,,,)
hY
Sgn (inn(m)ldn) _—i> ;§>_» Sgn(Rm.nln(m)l)

(®)

Figure 3-8. Arithmetic computation associated with nodes in factor graphs of (a) a
convolutional code, and (b) an LDPC code.

40

3.3.2. Message-passing requirements for iterative codes

The edges shown in the bipartite graph representations (Figure 3-1 or Figure 3-2)
of iterative decoders correspond to a network of interconnects. These wires implement a
message-passing network by facilitating the exchange of messages between nodes in a
factor graph.

The properties of these connections affect both the performance of the code as
well as the practical implementation of the message-passing network. In general, good
codes exhibit codewords with large minimum distance and a small number of low-weight
codewords. These characteristics are found in graphs with large expansibility, girth, and
absence of short cycles. These graphs tend to have a disorganized. structure, which
complicates the implementation of the message-passing network by requiring long global

interconnects or memories accessed through an unstructured pattern.

3.3.2.1. Interleavers

Although the SISO decoders used with turbo codes take advantage of the well-
structured linear construction of convolutional codes, the required interleavers, which
separate the SISO decoders, will destroy the organized structure. Good interleavers are
known to break low weight input sequences and increase free Hamming distance of the
code or reduce number of codewords with small distances in the code distance spectrum.
Much of this depends on the ability of the interleaver output to appear random with
respect to the input sequence.

Although a high throughput interleaver can be realized through a direct-mapped
network of interconnects, this will potentially result in routing congestion due to the
sparseness of the interleaving network. In practice, the interleaving function is executed
by writing the relayed messages sequentially into random access memory, and output by
reading through a permuted sequence. The order of addresses used in the read-access can
be stored in a separate read-only memory (ROM). However, storing the output sequence
in a ROM results in overhead that can be greater than the actual amount of memory
actually required for the soft outputs only. For example, a block code of 4096 bits will
require 12-bit addresses. This contrasts with the 5 to 7 bits that are typical of the soft

41

outputs permuted by the interleaver. The choice of interleaver is essentially a search
space of N!. In the past, a number of different algorithms performing this search have
been proposed. These algorithms lead to interleavers that are either deterministic or non-
deterministic.

Non-deterministic interleavers require the output sequence to be stored in a
ROM. Common examples of such interleavers are the random interleaver and the S-
random interleaver [105]. The latter is often used as a benchmark for interleaver designs.
S-random interleavers employ an iterative process that randomly selects numbers and
compares them to ensure a minimum spreading effect. In general, indices that are less
than s, apart in an input sequence must be mapped to indices that are further than s, apart
in the output sequence.

Deterministic interleavers are of more interest to the implementation of turbo
decoder hardware. This class of interleavers include pseudo-random interleavers realized
with shift registers, congruential interleavers [98] [107] and golden interleavers [106].
An example of a psendo-random interleaver based on three single-bit registers or flip-
flops is shown in Figure 3-9. Given a non-zero initial value, the binary contents in the
registers will form a 3-bit address, whose value will cycle between 1 and 7. Such
interleavers are always limited to a period of (2-1) cycles, and are often not applicable

for turbo codes with arbitrary block sizes.

' Congruential interleavers, by far, are the most commonly implemented. They can
be realized using simple shifting or modulo division [98]. The output sequence 7(i) is
defined by

7(i)=(ip+ s)mod N (3.23)
where the value of p is relatively prime with respect to N, and s represents an integer
chosen by heuristics. The basic example of a congruential block interleaver writes the
inputs row-wise into a memory array, and reads the outputs column-wise. The sequential
write/read pattern along rows/columns allows the memory access operations of this
interleaver to make use of cycle counters to activate both word (row) lines and bit

(column) lines, thereby eliminating the necessity to perform memory-address decoding.

42

More complex interleavers are often derived from congruential interleavers. The PIL
interleaver that is currently adopted for the UMTS-3GPP channel-coding standard is
defined with a two-dimensional interleaving table containing the output addresses. The
entries in the table are accessed through a pre-determined row permutation sequence, and

a column permutation based on a modulo function.

>
N

A

|

Y Y v
Address[0] Address[1] Address[2]

Figure 3-9. Pseudo random interleaver realized with three single-bit registers.

4.7k
Word
SRAM

r
47k /

Word R
SRAM

Figure 3-10. Interleavers and deinterleavers implemented using alternating read/write
buffers.

43

Finally, golden interleavers are based on the golden section value g=0.618 that

satisfies

1—
—£- 4 3.24)
g

This algorithm has good distance properties, but requires multiplicative and sorting
operations, which are computationally much more intensive compared to the congruential
interleavers. Hence they have not been very widely used.

The practice of writing the messages into an array of SRAM, and reading them
out through a permuted sequence usually requires two banks of buffers alternating
between read/write for consecutive blocks of data (Figure 3-10). This is due to the
randomness of the interleaver output sequence, which makes it difficult to realize in-
place storage. Although a multitude of interleaver designs exists, practical
considerations are likely to determine the type of interleaver selected for implementation
with a turbo decoder.

3.3.2.2. LDPC interconnect

Likewise, an LDPC decoder is required to provide a network for connectivity
between a large number of variable nodes and check nodes. A direct mapping of the
network using hard-wired routes can lead to congestion in the interconnect fabric because
the LDPC graphs typically have unstructured factor graphs. As in the turbo decoder, the
congestion can be circumvented through the use of memory at the cost of large memory
requirement and placing the memory access in the critical path of the decoder.

More recently however, LDPC codes employing graphs with structured patterns
have emerged, and they impose a reduced set of constraints on the implementation of the
decoders. A few examples of these codes and the implementation advantages that they
provide will also be described in the description of architectures for LDPC decoders.

3.4. Summary

The chapter has described the message passing algorithms implemented by BCJR,
SOVA and LDPC decoders. It has also highlighted some of the difficulties associated

44

with implementation of the computational and message passing requirements. In the

next two chapters, suitable architectures will be presented for each of these decoders.

45

4. ARCHITECTURES OF SISO DECODERS FOR TURBO CODES

The efficient mapping of algorithms into architectures is presented. The system
level implications of a turbo decoder are discussed in this chapter. This is followed by
detailed analysis of the SISO decoders and interleavers that realize the building blocks.
The successful implementation of a decoder is dependent on application constraints that
determine the target throughputs, power, and area of implementation. The choice of
direct-mapped architectures for iterative decoding algorithms affects both computational

and message-passing requirements as described in the previous chapter.

4.1, System level considerations

In general, communication systems break their processing into a sequence of
operations. An example is a generic receiver, shown in Figure 4-1. The signal received
at the antenna is passed through a low-pass filter (LPF) and immediately digitized by an
analog-digital converter (ADC). Beyond this, equalization, error correction and detection
are performed in the digital domain.

Traditional receivers implement different operations at line rates to ensure a
constant flow of data. However, the implementation of block-based iterative codes will
depart from this practice. At the output of the channel equalizer, sufficient memory will
have to be allocated to store several frames of received symbols. This allows the block-
based symbol interleaving/deinterleaving in turbo codes, or message passing in LDPC
codes to be carried out.

Increased memory requirement, iterative decoders translates into large latencies.
The minimum latency is the delay required to transmit one block of data. With block
sizes that start from a few hundred bits and multiple decoding iterations, the resulting

latencies are a few orders of magnitude longer than that of traditional decoders.

46

Channel ; Error s .
LFF > ADC Equalizer Correction) Sticer

Figure 4-1. Pipelined blocks in a generic communications receiver.

Current technology permits systems with throughputs at up to a few Mb/s to be
clocked at a multiple of the symbol frequency. For example, a 2Mb/s MAP decoder is
clocked at 88MHz such that more than ten decoding iterations can be completed within
an additional latency equivalent to one block period [98]. On the other hand,
applications such as magnetic storage require throughputs close to 1Gb/s. This high
throughput, coupled with the bottlenecks imposed by the ACS recursions in MAP and
SOVA decoders implies that the turbo decoders will need to operate at line rates. SISO
decoders operated at line rates result in additional latencies of one block delay per
decoding iteration.

The extended latencies are also intolerable for traditional decision-directed timing
recovery techniques. These methods employ adaptive channel equalization filter, which
relies on the decisions from the detector. In order be effective, the latency through the
receiver chain must be kept to a minimum. This issue has not been widely researched,
and remains a potential barrier to the successful shift towards use of iterative codes.
Nonetheless, timing recovery is beyond the scope of this work, and perfect timing

recovery has been assumed where necessary.

4.2. MAP decoder
The MAP algorithm defines the operations corresponding to a vertical slice of the

trellis, as shown in Figure 4-2. The architectures for implementation of these recursive
structures are discussed. This will provide estimates of the sustainable throughputs that
will eventually affect the decision towards realization of other non-timing-critical

elements, such as the memory and the branch metric generator blocks.

47

¢ 9
o 99

*ee92®

Slice for forward recursion Slice for forward recursion

Figure 4-2. MAP algorithm defines operations on a vertical slice of trellis.

4.2.1. Forward and backward recursion

Both forward (3.7) and backward (3.8) recursions make use of similar structures.
At time-instance k, the current branch metrics (%) are added to the corresponding state

metrics (o) from the previous iteration at (k-1):

Ay =0y (55)+ 72 (55215 5%)

, , 4.1)
Ay =0 (85)+ Vi (55 5¢)
The logarithm of the sum of exponentials is evaluated with a ‘¥-operator:
W(Ag, 4)) = Infe + ¢4)
4.2)

= max{Ao A+ lnﬁ + e'|A°'A‘|}

48

The second term in (4.2) can be approximated with a lookup table [55]. The
lookup table function is strictly monotonic. A 32-entry table can be efficiently
implemented as combinatorial logic in less than 0.05mm?’ in 0.13pum CMOS process.
Figure 4-3 depicts a structure that evaluates this sequence of operations. The comparison
is implemented through subtraction and the most-significant bit (MSB) of the difference,
which is the sign bit, selects the maximum value. The recursion elements used in MAP
decoders are named as add-compare-select-add (ACSA) units after the sequence of
operations required in each iteration or symbol period. This term is intentionally similar
to the .use of add-compare-select (ACS) in Viterbi decoders and reflects the similarity in
path recursion as applied towards trellis-based convolutional codes, as well as the
throughput bottleneck it poses towards decoder implementations.

Most of the delay penalty of the final add in the ACSA can be removed by
retiming. Figure 4-4 shows an add-add-compare-select (AACS), which has shifted the
final addition in Figure 4-3 to the head of the recursion. The AACS structure naturally
favors ripple-carry adders because the carry profile of each adder follows that of the
preceding adder. Assuming B-bit fixed-point representations of the recurring state

metrics,

Total delay of all additions = (B+1+1) X Delayrun adder 4.3)

The delay penalty of the additive LUT term is reduced to the delay of a single-bit
full-adder. In 0.13 um CMOS technology, this delay corresponds to approximately
100ps. With 9-bit representations, the delay overhead is 10%.

Further arithmetic optimization of the AACS structure yields small gains.
Accelerating the additions by using, for instance, a carry-select makes it difficult for each
adder to follow the carry profile, resulting in little performance improvement at the

expense of large area penalties.

49

%(S k-19 sk)

+ A0 Abs() LUT

041 (Sk1)

0(sx)
0-1(5"1) —>

¥ Operator Implementing:
In(e* +¢*") = max (A0 AD+ In(+e)

Figure 4-3. Add-Compare-Select-Add unit for either forward or backward recursions
using the W(.) operator as indicated within the box.

H(5%1, Sx)

A(Sid As)
&)
—)\t = Absol [T F—
O41(Sk1)
() ,@ﬁ‘ﬁ*’

¥ Operator Implementing:
(%1, 51) n(e* +¢*) = max (40 AD+ In(1+e 1)

Figure 4-4. Retimed ACSA that hides penalty of final addition.

The implementation of the AACS can take advantage of previously published
Viterbi decoder add-compare-select structures. The state metrics (either ¢ or fy) are
represented with sm, while the branch metrics (j) are represented with bm. The change
of notation helps to highlight the parallels between an ACS used in a Viterbi decoder,
and the AACS used in a MAP decoder.

Previous high throughput implementations of the Viterbi decoder, [6] [51] [53],
unrolled the ACS loop in order to perform two-step iterations of the trellis recursions
within a single clock period. These lookahead methods replace the original radix-2 trellis
(Figure 4-5) with a radix-4 trellis (Figure 4-6) at the cost of increased interconnect and

computational complexity.

50

[@ LUT |—o AfmD

sm(n+l)

£
®

Figure 4-5. Radix-2 trellis and AACS structure.

Comp,

A + Max Index
bt
smyln) 0=
by ofn) o
sm(n) O

0 smn+2)

Afn)

et) o
anfn) o~

® ®

bmg, ofn) o
m(n) o

An)

HOQ| |0

o I

Figure 4-6. Radix-4 trellis and AACS structure.

A radix-4 AACS computes four sums in parallel followed by a four-way
comparison. In order to minimize the critical-path delay, the comparison is realized
using six paralle]l pair-wise subtractions of the four output sums. In addition, the
comparator has to output the minimum difference that separates any pair of inputs. This
value is used as input to the lookup table, which provides the correction term.
Furthermore, the two-level addition is replaced with faster 3-input adders. In general, the
overall critical-path delay increases. However, due to the doubled symbol rate, the

effective throughput is improved if this increase is less than two-fold.

51

+ ! LUT 0 Ag(n+1)

Ayn) o—
:

0

o smy(n+1)

bm g(n)o +
sm(n) ©

A‘(n) O

Add/ Comp Sel

Figure 4-7. Radix-2 concurrent AACS structure.

An alternative approach with a lower area overhead is the concurrent ACS [65]
that was proposed for a Viterbi decoder. The concept maintains the use of a radix-2
trellis, but performs the addition and comparison operations in parallel. It requires the
comparison to be realized with a four-input adder using carry-lookahead structures [103].
A sub-8ns four-input adder was implemented in 0.6pum CMOS using two layers of three-
to-two carry-save adders, followed by a final carry-lookahead adder. However, when
applied to MAP ;iecoding, a concurrent AACS (Figure 4-7) will require the parallel
execution one 6-input adder and two 3-input adders. The critical path through the six-
input adder and a multiplexer determines the throughput of the concurrent AACS.

Finally, an architecture, obtained through further retiming and transformation of
the AACS unit, [34] [80], has a critical path comprising a 3-input adder and a multiplexer.
The sequence of operations are reordered as a comparison between the two sums,
followed by selection of the appropriate maximum value, and finally, addition of the two
pairs of corresponding branch metrics and lookup table outputs. The resulting structure
has been labeled as a Compare-Select-Add-Add (CSAA) unit. The reordering yields no
performance gain: the subtraction no longer follows the addition and the carry profile is
flattened by the multiplexer. The complete delays of the additions and subtraction appear
in the critical path.

52

LUT

b b 1
Smg(n)+ cmoo(n) _ \\‘ my(n+1) " j"'"o("*‘ Iytbmont A1)
0 /
sm(n)+bm,(n) @_@_ _.g.%(n+l)+bmo,(n+l)+1\o(n+l)
o
by, (n+1)
Comp Sel Add

Figure 4-8. Radix-2 compare-select-add-add (CSAA) structure

smy(n)+bm(n)
pivan) —(OH— LUT | A
(O
bmy(n+1) ©

b+ o l 43_5 | (n+1)+bmy, (n+1)
i I + _/ sm°n+ ﬂlm n+

smy(n+1)y+bmy(n+1)

g

sm(n)+bm,(n) 2:0
A +

Add Comp/Add Sel

Figure 4-9. Transformed add-compare-select-add (ACSA) structure.

This delay can be hidden by moving the add operations before the select
operation, as shown in Figure 4-9. The resulting structure executes both the compare and
adds in parallel. This modification decreases the critical path delay at the cost of doubled

33

number of adders and multiplexers. This structure is labeled as a transformed add-
compare-select-add (ACSA). Compared with the concurrent AACS, the transformed
ACSA enjoys lower overall complexity and a shorter critical path, which consists of a 3-
input adder and a multiplexer.

The use of redundant numbering system with MSB-first computations has also
been previously explored as an option to enhance the throughput of Viterbi decoders [6].
These methods achieve improvement in performance at the expense of large area due to
the cost of carry-save representation. In section 4.3.2, further comparative analysis of

the various ACS structures under varying delay constraints will be described.

4.2.2. Combining forward / backward state metrics

In the previous chapter, the final step in obtaining the confidence measures from a
MAP decoder is evaluated in a § block. The path metrics obtained from both forward
and backward recursions are combined. The definition in (3.9) is rearranged to make use
of the W-operators described by (4.2)..

exp[ak—l(si)"' 7("k = f(Si’Sj)’si’yk’Sj)"'ﬂk (Sj)]}_

In
S",S}' E] xk=g(S,-,Sj)=l

ln{)Y exp[ak_, (S;)+ 7(u,‘ = f(S.-,Sj)vSn)’k,Sj)+ B (Sj)]}

Si.Sj E) xk=g(s,~,s}-)w

4.4

=m{ s oglmls, A6,)]}-m{ Zeaslo(5)+ 4,5

Sj3 x=g(Sj)=1 S; 3 xp=g(S;)=1

Let
j=[.8]st.8;3 x =g(S5) =1

i=[9..16]s.t.5;3 x, = g(S;)) =1

54

a,(s) Buls) ouls) Bylsy) og(sy) Bilsy) oxlsy) PBulsy

Wy | ()
N X N ¥
k(%) | Yo l
i Wi i
Y
A(z,)

Figﬁre 4-10. & block makes use of a binary tree of ¥(.) operators.
ln{j%.a]exl)[ak (s j)+ B, (s J)]}

= m{exp[ln{j%ﬂexp[ak (S j)+ By (S j)]}] exp [ln {j%.zs}exp[ak (Sj)+ < (sj)]}]}
= ‘P{]n{j=E4}exp[ak (s;)+B:(s;)]}m{ P]exP[ak (5;)+ 85,)]H |

j=15..8

]

j=3.4

.‘P {m {jizle"p[a" (S,-)+ B, (s j)]} ln{ 4\:]exp[ak (s j)+ B (Sj)]}}

\p{m{j 3, ool el)]},m{j%.slexp[a,‘ (5,)+ (5,)]}}.

L

4.5)

The nested W-operations derived in (4.4) can be realized with a tree of ‘¥’ blocks.
Figure 4-10 shows this structure. There absence of feedback loops makes this structure
suitable for pipelined processing. Inserting registers or flip-flops between each level of

35

the tree will ensure that the critical-path delay of the € block is less than that of the AACS

block or any one of its derivative structures.

4.2.3. Memory requirements

A direct implementation of the BCJR algorithm initiates the two recursions from
opposite ends of the underlying trellis representation. This will require the memory
storage of at least one full set of path metrics corresponding to all nodes in the entire
length of the trellis of a block code, which is illustrated in Figure 4-11 for a block length
of N bits. The forward recursion tracks the rate and direction of the arriving symbols,
and completes immediately after the decoder has received the entire block of symbols at
time N. The backward recursion follows next. Intermediate o values are stored in the
memory until the corresponding S values are available to be combined in the § block.

For an example code with constraint length 3, block size of 4096, and 5-bit
representation for the state metrics, the memory requirement will be 2°x4096x5 = 164
kb. Although this requirement can be implemented in SRAM, the critical path of the
MAP decoder will invariantly be affected. Memory access is approximately 2ns
(general-purpose single-ported 32kb memories in 0.13 um CMOS technology),
significantly more than the 1ns required to add two pairs of short-wordlength numbers
and select the maximum result in the ACS decoding logic (0.13um CMOS ASIC design).
Decreasing average memory access time by increasing the number of /O ports is
unsuitable because it leads to geometric growth in memory area. In addition to
difficulties associated with memory requirements, a direct implementation of the BCJR
algorithm also leads to extended latencies through each round of decoding. As
previously noted, the decoder only initiates the backward recursions after receiving all
symbols in a block. In principle, the prolonged latency is insignificant compared to the
total latency required to coalesce the outputs of the SISO decoders for interleaving and
deinterleaving through a few rounds of iterative decoding. However, a shortened latency
through the first round of decoding may be advantageous towards decision-directed

equalization and timing recovery efforts.

56

0 N
o >
Trellis Position

2N

Time

Figure 4-11. Direct implementation of BCJR requires memory storage of path metrics
corresponding to each node in the trellis for the entire length of the block code.

The MAP decoder can avoid the pitfalls of large memory requirements and
lengthy latencies by adopting windowing methods. Windowed BCJR algorithms address
the difficulties of implementing backward recursions. Instead of initiating the backward
recursions from the end of the trellis, these approximate algorithms take advantage of the
observation that the backward recursion can begin from any arbitrary position along the
trellis with uniform initial values. After a number of startup steps, defined as L, the path
metrics converge with high certainty towards their asymptotic values, hence defined as
the values obtained through a full backward recursion. This property is commonly

exploited with the use of a finite traceback window length in Viterbi decoders. The value

57

of L is historically set at five times the constraint length of the underlying convolutional
code [3].

An implementation of windowed BCJR with asymptotically equivalent
performance can be achieved using two overlapping windows for the backward
recursion, shown in Figure 4-12 [4]. Each window spans a length of 2L and processes in
two distinct modes. In the first mode, a startup sequence consisting of the initial L cycles
performs the backward recursions. The values of fs obtained in this mode are unreliable
and are not processed in the & block. The second mode comprises the next L cycles,
which produces S outputs that are considered to have insignificant difference from the
asymptotic values. Path metrics obtained from the second mode are processed in the
ensuing £ block together with the appropriate ;s. The use of two overlapping windows
ensures that an overall recursion rate of 1 symbol per period is maintained. One of the
windows always produces reliable state metrics, while the other is processing the startup
sequence. This method hides the overhead delay incurred in computing the startup
sequence. It results in lower memory requirement and decoding latency at the expense of
additional computational hardware.

Figure 4-13 shows a state-slice of the MAP decoder that is able to maintain a
throughput equal to the symbol arrival rate. The y-memory stores the branch metrics. An
0-ACSA performs the forward recursion and stores its outputs in the o-Memory. Two 5
ACSAs perform the backward recursion in accordance with the overlapping window
method. |

As previously noted, high throughput implementation of a MAP decoder requires
a high-speed memory access that is faster than the typical SRAM-based memories.
Memories using flip-flop based registers are fast (100ps delay in 0.13um CMOS ASIC
design) but each register costs about 5 times the area of a comparable SRAM cell. As
such, it is necessary to schedule the memory access pattern in order to minimize both the

memory requirement and the amount of overhead in control logic.

58

Trellis Position
0 L 2L 3L 4L

2L AXT - h

6L
v
Time

Figure 4-12. Backward iteration using 2 overlapping windows, Wy and W, for BCJR
algorithm. The shaded outputs are not used in the ensuing & block.

Figure 4-13. State-slice of a MAP decoder structure.

59

Memory Address Memory Address

L 2L 3L L 2L 3L
L.
0 B , B o F &
Fae = I
LE LE
215 211
1 311 I 3
M —t— M
E E 4
5LE ' § sLE o
6L L =
I—_ g P
7L TLE
T - i
v Y =3 «-ACSA
1% B-ACSA
2 B-ACSA
Memory Write Access Memory Read Access

Figure 4-14. Memory read and write access of branch metrics ¥.

The timing diagram of a scheme that would limit the interval between the
production and three consumption cycles to 3L is shown in Figure 4-14. The
implementation partitions each y-memory block into 3 sections of length L (3 sections of
L columns in Figure 4-14) and deliberately delays the first forward iteration by 2L. New
data is cyclically written into each of the partitions while the write/read access pattern
within each partition is continuously alternated between left-to-right and right-to-left
directions every L periods. Each branch metric entry, %, in memory is read once by each
of the three ACSA’s. After the third and final read access, the memory location is
immediately replaced with new data. The repetitive nature of the memory access within
each partition promotes reduction in control logic, compared to random access memory,
and is implemented as a bi-directional shift register.

Similarly, observations on the production and consumption patterns of the o

values will indicate that each o--Memory block can be implemented with a bi-directional

L-word shift register. The o4 and [values are summed in a tree structure (Figure 4-10)

60

that evaluates (4). Although the maximum latency through each MAP decoder is 4L (80

cycles for L = 20), it remains insignificant compared to that of the interleaver.

4.3. Soft output Viterbi decoder

As noted in the previous chapter, the complexity of MAP decoders can be traded
for marginally degraded BEﬁ performance by replacing them with decoders applying the
soft-output Viterbi algorithm (SOVA), [26] [38] [39]. Section 3.2.2 described the
process as a two-stage algorithm. The first stage (right half) determines the most-likely
path, o, through the trellis using the Viterbi algorithm. The second stage evaluates all

possible branches originating from this path in order to determine f, the next-most-likely
path that leads to a complimentary decision.

An early VLSI implementation of a SOVA decoder [51] achieved 40Mb/s
throughput in a 1lum CMOS standard cell technology. In order to reduce the power and
area of the implementation, RAM macros were used. The path selections were done with
the register-exchange technique to reduce the overall latency. A low power
implementation of the SOVA decoder [16] uses DRAM blocks for path selection. The
DRAMs need to be clocked at a multiple frequency of the decoding symbol rate. This
places the memory as the limiting factor in the decoding throughput of the design.

The architecture of a high throughput SOVA decoder will be discussed in the
next section, followed by the micro-architectural analysis of various add-compare-select
structures in power, area, and delay space. A detailed description of the deeply pipelined
mechanisms for the traceback, equivalence detection, and comparison of competing path

metrics will also be provided.

4.3.1. SOVA decoder architecture

The architecture of an eight-state high throughput SOVA decoder is shown in
Figure 4-15. The choice of eight states is synonymous with the application of EPR4
channels in the magnetic recording industry. The branch metric generator, eight ACS
units, and the L-step survivor memory unit (SMU) form the building blocks of a
conventional Viterbi decoder. Eight parallel ACSs compute the pairs of cumulative path

61

metrics and select the winning paths in the underlying trellis representation of the
convolutional code.

Each ACS also outputs the difference in path metrics between the two competing
paths. The path decisions are stored into an array of L-step flip-flop-based FIFO buffers.
The choice of flip-flops, in contrast to the use of RAM blocks in [16], permits a high
throughput implementation that is independent of the delay of SRAM modules. The
delayed signals are used in the M-step pathjequivalence detector (PED) to determine the
equivalence between each pair of competing decisions obtained through a j-step
tracebaék, je{l2,...M}.

The path metric differences from the eight ACSs are stored in FIFOs registers of
depth L. Using the output decision from the SMU as a multiplexer select signal, the
delayed metric difference at the most-likely state is input to a reliability measure unit
(RMU). The SMU output is also used to select the results of the equivalence tests
performed on competing traceback paths that start to deviate from the most-likely state.
The selected equivalence results are evaluated in the RMU in order to output the
minimum path metric difference reflecting competing traceback paths that result in
complementary bit decisions, £and % .

Architectural and implementation details of the blocks in a SOVA decoder will
be discussed in the following sections. The ACS structures are analyzed in Section 4.3.2,

and several options for survivor path decoding are presented in Section 4.3.3.

43.2. Add-Compare-Select structures

The implementation of a high throughput SOVA decoder is dependent upon the
realization of the ACS blocks under practical power and area constraints. Prior to this
work, the only form of comparison amongst the various competing structures was the
assessment of area penalty for ACS structures optimized strictly for minimum delay [82]
[54]. The surveyed structures were derived from prior publications spanning a 20-year
history in research of high throughput Viterbi decoders.

62

€9

"IOPO23P VA QS 9181s-8 JO 2Injoayore wajsks S1-y om3ng

IojeIsuan
MBI
youerg

O:d1 do1s-7 _A||||
adad
1030933 ——— J{[;suosioap
asuaeamby ped 1| f vsoxs
dais-w t—]]
Ol da1s7 =
“0d WE] !
vos nns =
¢ |- up) AIOWIN - 'S 199198
} = JOAIAING ’ A -aredwoD
daig-7 PPV
*- —e o x8
\\ . 04l dois-7 _AL||
UM amsespy LfIqeray v ; seotalgIa
dais-mw 0L dos-7 ik oo a1e1s

.vo... X w

In contrast, this work performed an exploration to examine the area-throughput
and power-throughput tradeoffs across a range of permissible critical path delay
constraints. Using the radix-2 baseline, the different ACS structures were synthesized
using low-threshold cells with high supply at best-case conditions. The test was
conducted through architectural synthesis of a block of eight ACSs using general-purpose
standard-cell 0.18um CMOS technology. A network resembling the underlying trellis
structure interconnected the ACSs. The decision outputs of the ACS structures were
loaded with 200fF to simulate the large capacitive load in the register-exchange and FIFO
memories.

Besides the baseline, structures tested include the concurrent ACS, the
transformed and retimed CSA, as well as the radix-4 ACS. These structures are
respectively analogous to the concurrent AACS, transformed ACSA, and radix-4 AACS.
Since the SOVA does not require an additive correction term, the associated set of adders
can be removed.

Results of the synthesis experiment are plotted in Figure 4-16 and Figure 4-17.
The synthesis algorithm [104] trades a higher area for delay reduction through sizing and
logic transformations. Each curve tracks the same behavior. As the decreasing critical
path constraint approaches a minimum value, the area and power consumption of the
synthesized structure increases asymptotically due to the use of increased gate sizes. The
kinks in the curves correspond to optimization boundary conditions where logic
transformations are preferred over increased sizing.

Table 4-1 shows a comparison of the power, area and delay of the test structures.
The absolute numbers are dependent on the setup of the experiment such as the exact
drive strengths of the inputs and capacitive output loads. However, the relative numbers
are applicable for a wide range of operating conditions. As expected, the radix-4 ACS,
which has been accounted for the doubled symbol rate, has the least critical path delay.
The throughput is faster than the next-fastest structure by a margin of 17%, but requires
almost three times the area and two times the power. The radix-4 ACS is consistently

larger, and consumes more power than any of the other structures.

350000 -
A
300000 \

218,000pm?

250000

8
8

Area (um2)
a
(=]
8

g
8

8
8

o

0 05 1 15 2 25 3 35 4
Symbol Period (ns)

(@)

120000 4

100000

80000

60000

Area (um2)

-
0.16ns 0.3ns

40000

20000 -

Symbo! Perled {ns)

* ACS ® Concurrent ACS A CSA ® R4 ACS |

®)

Figure 4-16. Area comparisons of (a) various ACS structures and (b) a detailed
magnification of the ACS, concurrent ACS, CSA comparison.

65

250 -

200

Power (mW)

Synbol Reriod (ns)

(a)

120 -

1amw 4 ¢

Power (mW)
g
=
<

40 it
0.16ns 0.3ns
20 -
0 T T - T T r — v
0 05 1 15 2 25 3 35 4
Symbol Period {ns)
* ACS m Concurrent ACS A CSA ® R4ACS]

®)

Figure 4-17. Power comparisons of (a) various ACS structures and (b) a detailed
magnification of the ACS, concurrent ACS, CSA comparison.

66

Both transformed CSA and concurrent ACS are able to achieve improvement in
throughput with significantly less area and power penalty. The choice of ACS structure is
dependent on the required critical path delay, and can be inferred from Figure 4-16 and
Figure 4-17. The FO4 delay in this implementation technology is 50ps. At this particular
set of operating conditions, the transformed CSA structure is suitable for applications
with critical path delays specified between 26 to 29 FO4 delays. The concurrent ACS
becomes the choice structure for delays between 29 to 35 FO4 delays. For low
throughput rates with critical path delays above 35 FO4 delays, the ACS structure is the

best choice in terms of both area and power consumption.

4.3.3. Survivor path decoding

The two ML paths are determined by a two-stage traceback. A survivor memory
unit (SMU) is cascaded with a combination of path-equivalence detector (PED) and
reliability measure unit (RMU). The SMU and PED have similar functions. Both
essentially examine a list of competing paths by retracing a history of decisions and path
metric differences. Previous implementations of the SOVA used either the register-
exchange method [51] or memory traceback [83] methods.

TABLE 4-1.
MAXIMUM THROUGHPUT EFFICIENCY OF VARIOUS ACS ARCHITECTURES
Relative Relative Relative Critical Path
Symbol Area Power
Throughput
Radix-2 ACS 1 1.00 1.00 (2 x 2-input Adders) +
(1x Multiplexer)
Radix-2 Concurrent 1.2 1.46 1.63 (1 x 4-input Adder) +
ACS (1 x Multiplexer)
Radix-2 CSA 14 1.99 1.89 (1 x 2-input Adder) +
(1 x Multiplexer)
Radix-4 ACS 1.6 5.86 3.94 (1 x 2-input Adder) +

(1 x 4-way comparator) +
(1 x Multiplexer)

67

A. Register-exchange and memory-traceback methods

A register-exchange consists of a two-dimensional array of one-bit registers and
multiplexers as shown in Figure 4-18. The registers in successive stages are
interconnected to resemble the trellis structure of the convolutional code. A global clock
signal controls the registers. The frequency of the clock determines the throughput of the
Viterbi decoder. The path decision from each of the eight ACSs is input to the register-
exchange pipeline, and also selects the outputs of a corresponding row of multiplexers.
At each clock cycle, a multiplexer located at row i and column k {ie[l,2,...,8],
ke[1,2,...,L]} outputs a bit decision corresponding to a traceback of length k, originating
from state i. This bit is stored in a register, and will be input to a multiplexer at column
k+1 in the following clock cycle.

The memory traceback method has commonly been used in low-throughput,
low-power applications. It simply writes a vector of path decisions from the ACS
recursions into RAM in each iteration of the Viterbi algorithm. After an initial startup
delay, the decisions are retraced by reading the stored decisions in the reverse direction.
Previous solutions have generally employed some variation of the k-pointer traceback
architecture [83). They used k-1 parallel read pointers that accessed as many independent
banks of memory, while a write pointe;' simultaneously stored the decisions from the
ACS recursions into a k% memory bank. An alternative [16] is to use a single bank of
multi-ported DRAM.

The memory traceback method permits the design of very compact RAM that
provides significant area advantages. In 0.18um CMOS technology, the area of a typical
SRAM cell is about 2.4um?, in contrast with the 50pm? area required for a flip-flop used

in the register-exchange method.

68

Figure 4-18. Example 8-state register-exchange survivor memory unit used in VA-SMU.

The memory traceback method stores the intermediate bit decisions in static
locations in memory. Since SRAM blocks typically operate by reading or writing
multiple bits per cycle, a vector of decisions output by the parallel ACSs can be written
into memory simultaneously. = The traceback operation only needs to recall those bit
decisions that constitute pért of a traceback path. This contrasts with the register--
exchange method, which constantly moves an array of bit decisions through a pipeline of
flip-flops. In principle, this gives the memory traceback method inherent power benefits.
As the number of states rises, the register exchange is required to shift an increasing

number of bits through its pipeline. However, for decoders with small number of states,

69

the use of standard SRAM modules offers little power or area advantage over register-
exchange because of the overhead of peripheral circuitry and standard word addressing
[52]. Register-exchange achieves high throughputs easily because its critical path
consists only of a multiplexer and a register. On the other hand, standard SRAM macros
in 0.18um techr;ology have much longer cycle times than the synthesized CSA recursion.
Therefore, with the small number of states in our decoder, the register-exchange is the
appropriate structure for high throughput implementations.

B. Path equivalence detector (PED) and reliability measure unit (RMU)

With the emphasis on high throughput implementation, this section examines the
use of register-exchange and the modifications necessary to implement the path
equivalence detector (PED) and reliability measure unit (RMU). The register-exchange
method used in the SMU provides a convenient way to determine if competing traceback
paths lead to equivalent bit decisions. The two inputs to each multiplexer reflect the
competing bit decisions, and a test for their equivalence can be realized by the addition of
an XOR gate at each multiplexer location (Figure 4-19). The ensuing Boolean outputs

E‘E,-j (n) indicate the equivalence between the two competing decisions obtained through
a j-step traceback from state i.

From ACS;, the difference between the two path metrics, 4;(n), arriving at time n,
state i, is retained in FIFO buffers; i€ {1,2,...,8}. The output from the SMU selects A{n)
and EQ;j(n), which correspond to the values along the ML path, as inputs to the RMU
(Figure 4-20).

The RMU consists of comparators and multiplexers in a pipeline that selects the
minimum A(n) along the ML path. It is initialized with the maximum binary
representation of the reliability measure, “111111”. Based on the EQ inputs, each
pipelined section outputs one of the following:

EQ=0: Reliability measure from the previous step

EQ = 1: Min{4, Reliability measure from the previous step }

70

Delayed
CSA,;
Decisions

a<r rj+|

55,

Y
o

Figure 4-20. Pipelined section of reliability measure unit (RMU).

Compared with a Viterbi decoder implementation, the total size of the SMU and
PED is approximately doubled (L = M). The RMU overhead includes M pipeline stages,
each of which consists of a 2-input comparator with its Boolean output logically AND’d

with the EQ j input, a multiplexer and a 6-bit register. The overall latency through the

SOVA decoder is L + M. The additional latency remains insignificant compared to the
overall latency in the Turbo-SOVA system, which is dominated by the latency through
the interleavers.

Based on the discussion provided in this section, a 500Mb/s 8-state SOVA

decoder has been implemented in 0.18um CMOS technology. The decoder occupies a

core area of 0.5mm?, and dissipates 400mW power with random input data.

4.4. Summary

The chapter has described architectures suitable for high throughput
implementations of the MAP and SOVA decoders. The memory requirements were
realized using fast shift registers. The throughput bottleneck is found at the AACS or

ACS recursions, and a number of micro-architectures have been discussed and evaluated.

71

In particular, the SOVA architecture has been implemented on an ASIC platform with the
CSA structure. The details will be presented in Chapter 7. The next two chapters will
look at architectural issues that are relavant to the design of an LDPC decoder.

72

5. LDPC DECODER ARCHITECTURES

Two types of LDPC decoder implementations, the parallel and serial architectures,
are introduced. These belong to opposite ends in the spectrum of possible architectures,
and affects the manner in which PEs in an LDPC decoder communicate with one another,
either through an interconnect fabric or memory elements. The benefits and difficulties
of each of these structures are investigated, and implementation issues such as area,
power, and throughput are discussed. |

The building blocks of an LDPC decoder are presented first. The fixed-point
implementation of PEs associated with each class of nodes, and their implications on the
overall decoder architecture are elaborated.

In addition, the final section in this chapter introduces some aspects of specific
classes of LDPC codes based on finite field geometries [77] and rectangular lattices
[114]. These codes have demonstrated properties that are highly advantageous towards

the implementation perspective.

5.1. Parallel architectures

The message-passing algorithm used in LDPC decoders is inherently parallel. A
hardware implementation of an LDPC decoder can exploit maximum amount of
parallelism by associating each node in the underlying bipartite graph (Figure 5-1) with a
processing element, and each edge with wire interconnect. A fully parallel architecture
provides potentially the fastest decoding throughput and lowest power dissipation.

In order to demonstrate the effects of scalability, a decoder for an example rate-
8/9 LDPC code, with a block size of 4608 is examined. The variable nodes and check
nodes have edge degrees of 3 and 27 respectively. The fully parallel decoder requires 512
check node processing elements and 4608 bit node processing elements. Based on the
computational requirements of the processing elements, the approximate complexity of
the decoder implementation is obtained through synthesis in 0.13um CMOS technology.
The estimates are listed in Table 5-1

73

Variable-to-Check Processing Element

Check-to-Variable Processing Element

Figure 5-1. Parallel architecture.

Assuming perfect timing recovery and ignoring the issue of decoding latency, a
fully parallel LDPC decoder can maintain a high throughput even when operated at low
clock frequency and power supply. This results in a low power implementation. Figure
5-2 shows an example structure that takes advantage of the serial nature of a channel
decoder. The extrinsic information is input through a shift-register chain. The soft inputs
at the variable-to-check PEs are only valid once every N cycles, for a block size of N.

Therefore, the parallel LDPC decoder is required to complete the decoding iterations in N

cycles.
TABLE 5-1
COMPLEXITY ESTIMATES FOR OUTER DECODER WITH LDPC APPLICATION
512x4608 decoder 512x4608 decoder
(Speed opt.) (Power opt.)

Number Gates* 3,152,896 1,560,576

Delay (ns) (per iteration) 6.7 10.1

Area (um®) 55,698,944 36,611,072

74

LDPC decoder outputs ... V * > e V oy

Extrinsic information
from channel decoder

Variable-to-Check Processing Element

Check-to-Variable Processing Element

Figure 5-2. Parallel LDPC decoder with serial input stream from channel decoder.

An example implementation of a rate-}2, 1024-bit LDPC decoder [1] in 0.16um
technology with 5 metal layers succeeded in demonstrating such a parallel architecture..
The log-likelihood inputs enter the decoder via 16 shift-register chains, which also
operate as serial to parallel converters. The outputs feed directly into a fabric of
interconnect that links 1024 variable node PEs with 512 check node PEs. This effectively
maps the entire bipartite graph onto silicon. The massive parallelism permits a high
throughput implementation of 1Gb/s with a relatively low-frequency clock at 64MHz.
The decoder completes 64 iterations of decoding within one block-delay (1024ns) and
dissipates less than 700mW.

Such throughput and power efficiency comes at the cost of area, which is not
revealed by Table 5-1 either. Due to a high level of routing congestion, the decoder
occupies an area of 7mmx7mm, where logic density is only 50% in order to
accommodate the complexity of the interconnect fabric.c Compared with the
implementation in [1], a silicon realization of a 4608-bit decoder will have at least 4
times more interconnect wires that are also prohibitively long. Increased number of
routing layers will help, but the logic density is unlikely to fall below 50%. In general,
the random connectivity defined in LDPC codes leads to long interconnect lengths that

75

are of the order of the core dimensions. As the size of the code grows, the floorplan
utilization is also expected to deteriorate.

A usual solution to address congestion in a design is partitioning. The number of
long global interconnects are reduced at the expense of increased number of short local
interconnects; the target is to achieve a net reduction in average length of interconnects.
However, due to the interlaced data dependencies in LDPC codes, partitioning is difficult,
although a notable effort is based on simulated annealing to minimize the total length of

interconnect [112].

5.2. Serial architectures

A serial architecture removes the problem of routing congestion by replacing the
physical interconnect with SRAM. Using a limited number of processing elements [31]
as shown in Figure 5-3. Serial architectures require significantly less gates and area of
implementation. An LDPC decoder with a targeted clock of more than S00MHz will
require direct-mapped hardware of the processing elements that compute both variable-
to-check and check-to-variable messages, Onm and Rn, respectively. These messages are
stored temporarily in memory between their generation and consumption cycles. This
structure results in less area and much less routing, but dramatically increases memory
requirements.

A direct implementation of the architecture shown in Figure 5-4 will face
imminént stalls as each stage of decoding waits for the previous stage to fill the data
dependencies. The solution to this alternates the two sets of processing elements between
consecutive blocks of codewords. Each memory block in the LDPC decoder is
implemented as a pair of buffers that are alternatively accessed (Figure 5-4). This ensures
that the input data is always available in memory. The outputs of each processing
elements overwrite the memory locations of its inputs. Under such a scheme, full
utilization of hardware is assured if both sets of hardware evaluate and compute messages

at the same throughput rate.

76

@ —» PEy. —>
Soft

Inputs —» Memory @ Memory (—»{ PE, |—» ---
@ — PE,. —>

Figure 5-3. Serial architecture.

e S

«——>»| Memory [«—»
@ . ; Q: <« PE,.
\\
Memory
P <«

N e

Figure 5-4. Serial decoding by alternating between two memory buffers containing
consecutive blocks of data

77

The memory implementation of serial architectures has to address the random
network of edges in the bipartite graph and interlaced data dependencies in the message
computations. The example in Figure 5-5 shows that dependencies from the variable
node B fan out to four other variable nodes A, D, E, and F in the one iteration. The
dependencies from nodes A and F, in turn, fan out to the remaining node, C. In LDPC
codes with good asymptotic performance, the trace of dependencies fans out rapidly
through each iteration. This behavior is related to the girth of the graph [84] and implies
that the two classes of computations over a single block of inputs, variable-to-check and
check-to-variable processing, cannot be overlapped.

Hence, the size of the memory required is dependent on the total number of edges
in the particular code design. The example 4608-bit LDPC code used in previous
sections comprises a total of 13824 (4608 x 3) edges in the graph. Each edge corresponds
to a message that has to be stored in memory. The lack of spatial locality between any
subset of bit nodes connected to the same check node (and vice versa) makes it
impossible to update the messages for the next round of decoding until a majority of the
messages in a particular direction are received. Therefore, the size of the memory
requirement is dependent on the total number of edges in the particular code design. A
serialized rate 8/9 4608-bit LDPC In 0.13pm CMOS technology, the density of an SRAM
is approximately 15um?bit. Using 4-bit fixed-point messaging, the area of memory
required is 0.8mm?® This is equivalent to the size of one hundred bit-node processing
elements.

Serial architectures that use more than one processing element require memory
devices with operating frequencies that are faster than the datapath, or multiple I/O ports.
With a memory access time of approximately 2ns in 0.13 um for 1024 32kB, the
increased frequency approach is not suitable for high throughput decoder implementation.
Memories with multiple I/O ports have significantly larger areas due to the requirement
for additional address decoders, word and bit lines. The access time for multiported
SRAM is also slower to account for the increased loading effect of the bit lines. The next
section discusses architectures comprising several processing element that communicate

with a bank of memories via a common bus interface.

78

Bipartite
Representation

1st Iteration

2nd Iteration

Figure 5-5. Tracing dependencies through a bipartite graph.

5.3. Shared memory architectures and partitioned matrix

In order to improve the speed of multiple-memory access, a solution [31] divides
the memory into a bank of P independent SRAMs, and uses a crossbar switch to enable
communication between P processing elements. Each processing element selects an
input from one of the SRAMs in each period of the memory cycle. However, inadvertent
memory access collisions will cause the processing elements to stall. An ad-hoc
scheduling method is used to minimize the number of such conflicts. Once determined,
this schedule has to be stored as ROM data. This requirement is similar with the case of

interleavers that cannot reproduce the interleaving sequence on the fly.

79

N
/

[mmmm——=) bt 5 Sttt 2 et i Anlasiabated e 1
I 0001 0000 | 0000 0000 1000 |
I 0100 0000 | 0000 0000 0010 |
0010 0000 | 0000 0000 0010 |
I 1000 0000 0000 0000 0001 | \
| 1
10000 0000 1000 0000 0000 |
i 0000 0000 0010 0000 0000 |
! 0000 0000 0010 0000 0000 |
| 0000 0000 0001 0000 0000 |
] i
0000 0001 0000 0000 0000 |
I 0000 0100 0000 0000 0000 |
! 0000 0010 ! 0000 0000 | 0000
I 0000 1000 0000 0000 | 0000 !
I IR I B IR N I
N\ /

Figure 5-6. MXN parity check matrix partitioned into jxk subblocks.

More generally, the scheduling problem is analogous to shuffling the rows and
columns of the parity check matrix in order to obtain a well-partitioned design. A well-
partitioned design permits the parity check matrix to be divided into groups of jxk sub-
blocks, with each of the jxk partitions being either a zero matrix or some permutation of
the identity matrix. The latter has a maximum of one non-zero entry in each column and
each row. Recently, a number of deterministic algebraic method, [96] and [114], have
produced LDPC codes that exhibit this nature. The corresponding LDPC parity check
matrix can be arranged in the manner shown Figure 5-6. Such partitioning permits
messages, variable nodes, and check nodes to be grouped according to the dividing
perforations. Grouped messages can be stored in a common bank of memory. The
partitioning divides the matrix into groups of rows and columns. Each of these grouped
columns represents a collection of variable nodes that share a single processing element
for variable node processing. Likewise, the grouped rows represent a collection of parity
checks and share a single PE designed for check node processing. Each non-zero sub-
block in the partitioned matrix represents a custom interconnect between a pair of shared
PEs. Although these codes have properties that benefit the decoder hardware
implementations, they tend to display higher error floors [101], which is a result of low

weight ccdewords.

80

Contrary fo the common practice of defining implementation architecture after a
particular code has been defined; it is possible to design a pseudo-random code such that
the implementation benefits of the shared memory architecture are intrinsic. One could
start with the definition of the size, column weight, and row weight of a parity check
matrix. The column weight determines the number of parallel ports that the shared
memories need to support. Both column weight and row weight define the fan-in and
fan-out of the corresponding PEs, which affects the area, power consumption and
throughput of the implementation. Depending on practical constraints, the maximum
numbers of realizable variable-node and check-node PEs are determined as "/; and ¥/,
respectively. Finally, the parity check matrix is assembled by concatenating blocks
obtained from a list that comprises the jxk zero matrix and all permutations of binary
matrixes containing a non-zero entry in each column and each row. The column weight
and row weight specifications are observed by stacking as many jxk sub-blocks in each
column or row, respectively. During the process of block assembly, one should be aware
that short cycles in the graph should be avoided. For example, cycles of length four can
be prevented by specifying that the bit-wise XOR between any two columns in the parity
check matrix will not have more than one non-zero entry in the resulting vector.

Partitioning of an LDPC decoder does not decrease the overall size of memory
requirement, but can result in smaller and faster memory implementations. All messages
corresponding to variable nodes in the same group are stored on a single bank of memory,
local to the shared computational logic implementing the variable node processing. Since
each sub-block has at most one non-zero entry in each row, each parity check will
read/write from at most one location within the shared bank of memory. Without further
constraint on the property of the parity check matrix, the edge degree on a variable node
determines the number of ports required in the bank of memory. LDPC codes with small
edge degrees will therefore benefit most from this architecture. Figure 5-7 shows an
example of shared memory architecture of an LDPC decoder for a code described with a
column weight of 3 (variable nodes have edge degree of 3).

81

SRAM SRAM

Shared
variable node
computational
logic

Shared
variable node
computational
logic

r . l

Shared check node Shared check node Shared check node
computational logic computational logic computational logic

Figure 5-7. Shared memory architectures with shared computational logic, and
interconnect. :

5.4. Computation blocks
The arithmetic requirements of an LDPC decoder were presented in the Chapter 3.

Onm was defined as the message computed at variable node n, and passed to check node
m. Conversely, R, represents the message computed at check node m, and passed to
variable node n. The description of the variable node processing in (3.16) shows a large
number of common terms in the summation. The equation can be reformulated as (5.1)
to reduce the overall number of required additions. Likewise, (5.2) shows a

reformulation of (3.17) that exploits common summation and sign-product terms.

Qnm =a, + z Rm'n
mEu(n)\m

(5.1)
=a, +(YR,]— R,

mEu(n)

82

neN(m\n nev(m)\n

R, ar'[s ‘I’(Q,.-...))X(I sgn(Q,.-,,.))'(-l)'"""'

]

q)_l{("g‘"? o)]—(D(Q"") } (5.2)
x(sgn(Q,.,,.) TIsgn(Qnm)]. (1

nlv(m)

An example structure for computation of O, is shown in Figure 5-8. Introducing
pipeline registers within the tree structure can increase the throughput of the computation.
If the edge degree of the variable node is high, the tree structure will require a large
number of messages to be simultaneously available at the inputs of the processing
elements. This is feasible if each input message is routed through a custom wire
interconnect. However, architectures that make use of SRAM memory will face
difficulties in providing a large set of parallel messages due to limited /O bandwidth
associated with SRAMs.

Conversely, a processing element for R,,, messages may make use of a recursive
strucfure, as shown in Figure 5-9. This is preferred over a tree structure because of the
typically larger edge degrees of check nodes. Using signed-magnitude representation, the
most-significant bits (MSB) of the input messages, which are the signed bits, are
recursively XOR’d in the lower half of the structure to evaluate []sgn(Q,,). The

nkv(m)
magnitude bits are fed into a lookup table (LUT) that implements the ®(-) function.

Outputs of the lookup table are also recursively summed to evaluate Y, ®(Q,,).
nkv(m)

The outputs of both recursions are sampled at ﬁ of the overall clock period.
uin

The divided clock is also used to reset the feedback registers. Two ly(n)l-cycle FIFO are
used to delay the values of sgn(Q,,) and ®(Q,,). This allows their individual

contributions to []sgn(@,,) and > ®(0,,) to be removed respectively after the

nkv(m) nev(m)

recursions such that marginalization is implemented. Finally, an output lookup table

implements @~ {}- (-1)"™.

83

CLK CLK CLK h ()|

MSB-
li(n)l-Cycle FIFO | HSgn(]Qi',j)
in'e Rowl;\i
;; \u(n)-Cycle FIFO | !
!
CLK CLK CLK [y ymy)

Figure 5-9. Recursive pipelined implementation to compute R,,, messages.

With the exception of the lookup tables implementing @() or ®7'(), the
computational elements in a LDPC decoder are fairly straightforward. Unlike the ACS or
AACS used in SOVA and MAP decoders, the recursions described in the LDPC decoder
can be easily pipelined for higher throughputs without a quadratic growth in complexity.

84

In the following sections, the fixed-point implementations of the decoder building blocks

are presented.

5.4.1. Fixed-point implementation of lookup table

The output of the lookup table implementing &(-) function rapidly increases as
the value of the input approaches zero. In order to mitigate the quantization effects
compounded by the nonlinear behavior, the usual approach would be to increase the
wordlength of the outputs of the ®(-) lookup tables. This results in increased arithmetic
complexity since the adders, ®~'() lookup tables, and shift registers will have to operate
with larger input wordlengths.

An empirical approach is used to scale the ®(-) and ®~'(-) functions such that
both inputs and outputs continue to span the dynamic range provided by the four-bit
fixed-point representation. The choice set of scaled functions shown in (5.3) and (5.4)
maximizes the effectiveness of a limited dynamic range while ensuring that the

transformation is nearly constant under its own inverse. The scaling factors employ

powers of 2 such that the multiplications and divisions are realized with simple binary

shifts.
®(x)= —log(abs(tanh[-l% D] | (5.3)

ot fofef)]

Since the arithmetic datapath comprises both ®(-) and ®~'(-) functions, the

quantized output of the nested function, @~ -®, is used to reflect the amount of
nonlinear error introduced by the fixed-point implementations. The rounding, truncation,
and non-linear effects are apparent in Figure 5-10, which compares the theoretical
floating-point results with simulated fixed-point results with four-bit integer
representations. Both (5.3) and (5.4) are plotted against the original function (3.18) in
Figure 5-11. Both scaled functions show a higher utilization of the output range between
0 and 16, which corresponds to a 4-bit representation.

85

y = ®'[®(x)]

16
14
12
10
8
6

4
2
0

20 15 10 5 0 5 10 15

Figure 5-10. Comparison of floating point results (solid) and fixed point results (dotted)
under the ®~! - ® mapping.

16

14

12 H

10

Phi function and its scaled derivatives

O(x)=-log [-lz-x)]

otpe-sefa{())
ot {-infe{ (3]

6 8 10 12 14

16

Figure 5-11. The original ®(-) function, and its scaled derivatives.

The scaled ®(-) and ®~'(-) functions perform adequately when the average edge

degree of the check nodes in an LDPC code is small (less than five). As the average edge

degree of check nodes increases, the check-to-variable processing is required to evaluate

86

the sum of a large number of ®() outputs. This leads to potential saturation of the adder

outputs. The non-linear effect introduced by the saturation makes the subsequent
marginalization operation (subtraction with the delayed inputs) irrelevant.

In previous reduced-complexity solutions, [85] [86], the computational
requirements represented by (3.13) were replaced with simpler minimization operations.
This removed the requirement for a lookup table implementation and the system is not
subjected to truncation errors. The tradeoff in error performance, however, could be as
high as 1dB [85].

The use of the minimization approximation is a good estimate for (5.2) when the

difference between the two smallest input values is large. The value of Y ®(q,,) is

dominated by Max,{®(g,,)}, which is the output ®(Min, {g,,}). This derivation is
similar to the use of the maximum approximation, (5.3), commonly used in Viterbi
decoders [4]. The approximation provides a good estimate when the difference between

the input values is large.

R, = @"{(“ %mﬁ(gn.m))} =@ {(ngggg\nb(gn-m)])}

=oof i, 0.) ©9

= Min

neN(m\n "

In ? expx; =~ max(x;) 5.6)

Drawing from the above observation, the error introduced by the minimization
function can be reduced by adding a correction term based on the difference between
pairs of input values. This has the same connotation as the correction term used in the
MAP decoders discussed previously. Let a particular check node m be adjacent to
variable nodes n, n=1,2,...,N+1. The sum can be decomposed into a number of recurring

pair-wise representations:

87

> 2(0,,)

n'=1.2,..5(m)
=[@(0,,)+ (0., 1+ [@(0s,)+ ©(Qu N+ - Qa1+ Dt)
= (I’{‘I> - [d’(le)+ (I’(sz)]}"' ot d){d) - [‘D(an(m)-llm)"‘ <I’(Q[rl(m)]m)H 5.7

=ofo"[olg,,)+ @(g,,]I+ + <I>{<I> . [0(‘?..@-:]* q{qh@]]}
=ofo"[0g,,)+ @la,.)I}*‘---*“’{"’" qu-@' }q{q’@ J]}

where the intermediate variables Q; are defined as

9ox =Om
Qi = ¢{¢-1 [‘D(‘Io.ak-t)"‘ q’(%,zk)]}

Qo = ¢{¢—1 [q)(‘11.2k—1)+ (I)(qw‘)]} (5.8)

qje = (I){(I)" [d)(q j-1,2k1)+ (I)(q 1.2k)]}

The above equations are evaluated in a recursive structure of 2-input © operators

(5.5) defined and approximated as follows.

O(x,y) = @7'[@(x)+ @(y)] = Min{x, y}+ f(x,) (5.9)

The final right-hand term in (5.9), f(x,y), is a correction term that alleviates the
effects of fixed-point implementations. The implementation of f(x,y) uses a look-up

table with values derived using exhaustive search of the finite number of distinct pairs of
fixed-point inputs. Figure 5-13 shows the correction terms plotted against the minimum
of the two input integer values. Each plot corresponds to a set of (x, y) values with

constant absolute difference, x-yl.

88

:6—"'9
T

o L
:"Lef
T N
"@_L.@ rfe*
T
:e—L,e_re
-'6—'*

Figure 5-12. Tree structure of 2-input © operators evaluate check-to-variable messages.

0.7 Y :
i —+-— Difference =0
—e— Difference=1
06t —~— Difference=2 |4
~&- Difference=3
-8~ Difference =4
05 g
g
=
é 04} -
g
I
> 02} 4
o1 * * #* * * !
< =4 < © ©— D
S—=a 2 = & i
3 4 5 6 7 8
Min(x,y)

Figure 5-13. Correction terms f(x, y) plotted against 3-bit integer inputs x and y.

89

o
o

—— Difference=0 ||
—e— Difference =1
—+— Difference =2
—&- Difference =3
-2~ Difference=4 |

©
Q2

0.6
E
& o5t K
5
g 04 / i
3
k-]
8 03+t b
g . » + » > +
0.2 / B
0.1 4
= B & o 5 = 'a)
1 2 3 2 3 6 7]
Min(x,y)

Figure 5-14. Evaluation of correction terms rounded to 0.25 levels.

The correction term is equal to zero when either of the inputs is zero. As the
minimum of the two inputs is increased, the value of the correction terms increase
rapidly, and then flattens out for the entire range of inputs. This behavior echoes the
intentions of using a correction term based on the difference between pairs of inputs.

The correction terms are quantized to two fractional bits as shown in Figure 5-14.
The exact quantization effect of the © approximation will vary between different LDPC
codes. The discrepancy, though, is likely to be small since the estimates are derived from
a precise evaluation of the ® function. The behavior of the © approximation is simulated
on a rate %, 4095-bit LDPC code based on finite field geometry [77]. Details of this
particular code will be discussed in Chapter 6. The simulation results, shown in Figure
5-15, were obtained using the indicated number of bits for representation of messages,
and with 2 additional binary bits that are only visible to the internal operation during the
computation of messages, and truncated as the messages exit the computational block. It
shows that the performance with 5-bit representations is comparable to the floating-point

performance.

90

' New LDPC Simulation Results

—&- 4-bit
~8- 5-bit
—©- 6-bit
—e— 7-bit
— Fltpt
—— Flt pt with concurrent decoding

BER

lo Il i 1 Il Il] 1 1

Figure 5-15. Simulation results with a rate 3/4 4095-bit LDPC code based on finite-field
construction, with the © approximation.

5.4.2. Fixed-point LDPC decoder building blocks

‘The check node and variable node processing elements are the primary building
blocks of an LDPC decoder. The delay, area, and power consumption of a processing
element is dependent on the edge degree of the associated node. Assume an LDPC code
with degree-3 variable nodes and degree-27 check nodes. Table 5-2 shows the
implementation estimates of the processing elements implemented with 4-bit fixed-point
messages. These values are obtained from synthesis of the described architectures using
0.13um standard cell low-leakage general-purpose CMOS library, and are optimized for
either high throughput or low power.

TABLE 5-2
COMPLEXITY ESTIMATES OF PES FOR LDPC APPLICATION
Bitnode3 Checknode27 Bitnode3 Checknode27
(Speed opt.) (Speed opt.) (Power opt.) (Power opt.)

Gate Count 466 1964 240 888
Delay (ns) 3 37 44 5.7
Area (um®) 8517 32134 5972 17758
Number of FFs 0 108 0 108

91

5.5. Effects of code construction on implementation

In terms of implementation-related issues, recent development in LDPC code
construction techniques can be differentiated along the lines of whether the code has a
structured graph, whether the code has a uniform edge degree (regular codes), and the
maximum edge degrees of both check and variable nodes

The method of LDPC construction based on density evolution [88] [93] has one of
the best performances at only 0.0045dB away from the theoretical bound. An example of
this construction method yields a rate-'/, irregular code with a maximum variable degree
of 100 and block size of 107 bits. It also requires an average of more than 1000 iterations
to achieve the above decoding results. Practical implementations of decoders, however,
desire a regular code with a small maximum edge degree in order to avoid detrimental
arithmetic precision effects, and the complexity of collating a large number of inputs and
outputs at the processing elements. A parallel decoder implementation with 10
processing elements will exceed realistic area constraints. A serial implementation is
possible, but will suffer from extended decoding delays. |

More recently, some structured and regular codes have been proposed. These
include construction techniques based on properties of finite fields [77], mutually
orthogonal Latin rectangles [114], improved Ramanujan graphs [96], and turbo product
codes (TPC) [116]). The properties of these codes that lead to the implementation benefits

are presented.

5.5.1. Finite field constructions

LDPC codes based on finite geometries avoid short cycles of length four in the
underlying graph [77]. Short cycles are known to degrade the performance of the code
[95]. An example 1023x1023 LDPC matrix was constructed from a 2-dimensional
(Euclidean geometry) Galois Field, GF(2%). Consecutive rows in this parity check matrix
are cyclic shifts. In order to reduce its density, each column in the matrix was further
expaﬁded into four consecutive columns. This process is known as column splitting. The
non-zero entries in each column in the initial matrix are rotated amongst four columns in
the new matrix. This resulting 1023x4092 parity-check matrix is illustrated in Figure

5-16 with dots representing ones.

92

Figure 5-16. Rendition of 1023x4092 parity check matrix used in codes based on finite
fields. Black dots represent non-zero entries.

The code comprises 3070 user bits and 1022 parity bits; a code rate of 3/4. The
cyclic nature of the parity check matrix permits a serial decoder implementation where
the messages are stored in shift registers, instead of memory. The use of shift registers

has speed advantages, at the cost of higher area and power.

5.5.2. Latin rectangles and improved Ramanujan graphs

Two independent groups of researchers have introduced structured LDPC codes
based on mutually orthogonal Latin rectangles [116], and modified Ramanujan graphs
[96]. Both classes of constructions lead to parity check matrices that exhibit the natural
partition lines that lead to smaller sub-blocks that enhance the ability to implement shared
memory architectures. The example parity check matrix shown in Figure 5-17 shows
these partition lines. The sub-blocks have square dimensions, and are either the zero-
matrix, or some permutation of the identity matrix. The partitioning allows messages
corresponding to a non-zero sub-block to share a memory element. Codes based on Latin
rectangles also have additional benefit derived from the fact that consecutive rows within
the sub-blocks are cyclic. This permits the memory to be implemented with high-speed
shift registers.

93

.....

e ..\':_:' .,] i
Vi ", A= CHECK NOD
_.‘10000'0]0[)0 9 01 00
Fo1000 £001 00 006010 i
001 00 00010 00001 \ \ B
‘,_.DDDRO..ODOOI 1 00 00 H
9,0 00 151 00 00f 01000 i
o
010 00 00100 00 0 10 12
06100 00010; 00001 '
00010 0000 1i 1 000G CHECK
00001 {10000 01000
10000 io1000f 00100]]

\ 1

Figure 5-17. Shared memory decoder architecture for LDPC codes based on Latin
rectangles.

SOVA
4
Y
\ SECTOR MUX/DEMUX /
1) I J §

\ Y Y
16x16 16x16 16x16
Memory Memory Memory
I 4 I |
Y Y \
Single PE Single PE Single PE
TPC decoder TPC decoder TPC decoder
16 x

528 cycles to complete each iteration of TPC decoding.

For single block-latency,
TPC decoder cycle period = 8 x SOVA cycle period

Figure 5-18. Architecture of TPC decoder partitions the code into 16x16 blocks.

94

5.5.3. Turbo product codes

The benefit of partitioned decoder implementation also applies to turbo product
codes. This class of codes is based on 2-dimensional single parity checks. An example
TPC [117] comprises a 4096-bit block that is divided into eighteen 16x16 matrices.
Coded bits of the TPC were randomly permuted (interleaved) before being precoded and
sent to the channel.

An efficient decoder implementation can be built to the dimensions of the smaller
matrices without encountering the routing congestion that is common with large LDPC
codes. The message-passing algorithm described in Chapter 3 can be implemented for
each of these blocks using a single processing element (Figure 5-18). This allows the use
of several double-ported memories in the interleavers, with a combined size of about
0.48mm?. The parallel TPC decoder logic takes only about 0.2mm? and dissipates about
150mW at 1GHz, with 4 iterations. However, it is noted that the performance of TPC
codes is only acceptable if global iterations are performed between the channel decoder
and the outer TPC decoder; iterations within the TPC decoder provide insufficient BER

performance.

5.6. Summary

This chapter has described the architectures for implementation of a LDPC
decoder. Parallel structures were compared against serial structures. The properties of
LDPC codes that favor shared memory architectures were also discussed. A number of
complexity-reducing methods, including an approximation of the ® function based on the
difference between pairs of inputs were introduced. These methods do not
fundamentally change the definition [56] of an LDPC decoding algorithm. In contrast,
the next chapter will discuss the VLSI and performance implications of altering the
decoding schedule, and propose further complexity-reducing techniques, which will
change the underlying message-passing algorithm.

95

6. PROCESSING SCHEDULES OF LDPC DECODERS

Considerations for the processing schedules of an LDPC decoder are only
applicable to serial structures. These architectures comprise one or more processing
elements in a uni-memory or shared-memory environment. In these implementations, a
large number of computations need to be scheduled onto a limited number of processing
elements. To address the difficulty with the large memory requirement of serial decoders,
this chapter presents a new decoding method, which uses a different schedule and
modified decoding computations. These ideas are applied to LDPC codes based on
random construction as well as finite-field constructions [77].

This chapter frequently uses the notations, () and S(k), to denote the set of
check nodes adjacent to variable node n, and the subset of check nodes that are processed
at time step k, respectively. Indeed, a decoding schedule can be defined as a sequence of
S(k), and this sequence should at least cover the entire set of check nodes within a finite

number of cycles.

6.1. Original concurrent schedule

The original concurrent decoding schedule is illustrated in Figure 6-1. The
underlying graph of the example code comprises 10 variable nodes (labeled as circles)
and 3 check nodes (labeled as squares). In each iteration, the decoding process evaluates
messages corresponding to all edges in the graph. These messages are passed
concurrently between the two classes of nodes.

Serial decoders have a limited number of processing elements that can only
process a subset of the check nodes or variable nodes at a time. This results in decoding
latencies ranging from several hundred cycles to thousands of cycles. In the meantime,
the intermediate values are stored in memory. Due to the unstructured nature of most
LDPC codes, the decoding must complete the computations in the current iteration before

proceeding to the next iteration. This causes a large memory requirement in the decoder.

96

>

Time

Figure 6-1. Concurrent decoding schedule of the message passing algorithm; circles
represent variable nodes; boxes represent check nodes.

6.2. New staggered schedule
A new, staggered, schedule processes only a limited subset of the check nodes.
Similar to the original algorithm, check node m computes messages Rmq, B € Wm),
according to (3.17). However, variable node n computes messages Qnm With (6.1). This
approximates the update equation defined previously in (5.1) by omitting the rightmost

term, Rns,. The effect of this simplification is minimal when the ratio R,/ X R, is
me u(n)

small. This occurs with high probability when the average edge degree of the variable
nodes is high.

~1In P"—(l)] R. - 6.1
Qm [p,(o) * mlszy(n)m” ()

Each variable node, n, is therefore, associated only with a single message Q’(k),
which is broadcasted to the subset of active check nodes, S(k), at step k. Each message,
Q’x(0) for n=1, 2, ..., N is initialized with the input LLR of the corresponding variable »,
and updated according to 5.7 at the end of each step. |

97

0.(k)=Qk-1)+ I R, (6.2)

me{s()ru(n)}

An implementation of the staggered schedule only needs to store one message,
Qn(k), for each variable n. This compares favorably with the concurrent schedule where a
list of messages Qnua, me (n), need to be stored for each variable node n. For typical
LDPC codes where the number of edges in the graph ranges between 4 to 8 times the
number of variables in the code-block, this schedule provides more than 75% savings in
memory requirement.

Each iteration of the staggered LDPC decoding is defined as one complete cycle
through all the sequential parity checks in the graph. This ensures that the number of
messages processed in an iteration of decoding is the same in both types of schedules. As
such, the decoding arithmetic complexity is similar.

Figure 6-2 shows the staggered decoding schedule with only one check-to-
variable processing element active per step, while Figure 6-3 illustrates the use of one
sector of memory and one constraint check arithmetic unit, per code block processed. A
full thronghput, K-iteration LDPC decoder, demultiplexes each input block of data into
one of the K copies of memory and computation unit pair. This removes the need to
move large amounts of data through memory, at a slight cost of control mechanisms to
perform the multiplex operations.

The empirical results of comparisons performed between the concurrent and
staggered decoding schedules with IS(#)| = 1 are presented. Two LDPC codes with parity
check matrices based on random construction and finite-field construction are evaluated.
The random code comprises a 512x4608 parity check matrix, which is obtained by
appending 4 random 128x4608 matrices with column weight of 1 and average row weight
of 36. Each block of data comprises 4096 user bits and 512 parity bits; a code rate of 8.

For a fair comparison, an LDPC code was generated from a 2-dimensional finite-
field of GF(2°). This code underwent a process of column-splitting to obtain a block size
of approximately 4000 bits. The various column splitting factor that were considered are
listed in Table 6-1. It shows that the 2DXGF(2°) construction results in the only feasible

parity check matrix, which does not have a column weight of one.

98

>

@@O@@@G{“{é)g

@]

6@0@@@6&?}9
@@O(i‘(?f S é/(»g S
é/(‘@\be)@@%(? S

gﬁﬁyégb@@®~

\/

Figure 6-2. Staggered decoding schedule of the modified message passing algorithm with
| S¢) I=1.

K Copies
_A
-~)
Message Message Message
Computetion Computation Computation
M M M
E E E
M M M
(o] 0 o]
Soft X 3 R
Inputs |,

v

L4

Figure 6-3. Architecture for random LDPC decoder with K iterations of staggered
schedule.

LDPC CODES CONSIDERED Fon Maghesiic RECORDNG APPLICATIONS
Finite Field Matrix Column Split PC Matrix Row Wt. X
Construction Dimension Factor Dimension. Col Wt.
2Dx GF(2°) 1023 x 1023 4 1023 x 4092 32x8
2Dx GF(2*) 255 x 255 16 255 x 4080 16x1
3Dx GF(2) 511 x 511 8 511 x 4088 8x1

99

6.3. Simulation analysis

BER experiments are performed with a binary antipodal Gaussian channel and
LLR inputs. The performance is evaluated through 1, 3, and 5 iterations of message
passing decoding. These iteration counts represent the expected number of iterations that
are realizable in serial decoder implementations, with considerations given to logic
density and overall memory requirement. The empirical results of comparisons
performed between the concurrent and staggered decoding schedules with IS(#)I = 1 are
presented.

In order to determine the BER at a given SNR, the simulation model adds
Gaussian noise to a maximum of 30,000 blocks of data. The BER figure is continuously
evaluated over the total number of decoded message bits until it has converged within 1%
of the eventual value. The SNR definition in (5.9) represents the user and code bit

energies with Ep and Ec respectively, and the noise variance with a.

_ Num.ofUserBits . E.=R-E, 6.3)
Num.ofCodeBits
SNR =10-1lo E, =10-10g(E, 2) 6.4)
N, 2Ro

The results of performing 1, 3, and 5 iterations with the concurrent decoding
schedule and the staggered decoding schedule, for both the random and finite-field-based
codes are plotted in Figure 6-4. With either code, the concurrent decoding schedule
yields a steady improvement in error performance -with each increase in number of
iterations.

Figure 6-4a shows that using the random code with 3 iterations, the staggered
decoding schedule achieves 0.4dB improvement over the concurrent decoding schedule,
measured at BER=10°. With 5 iterations, it results in less than 0.2dB degradation.
Likewise, Figure 6-4b shows that using the code based on finite-fields, the staggered
decoding schedule achieves 0.3dB improvement with 3 iterations, and has less than 0.1dB
degradation with 5 iterations, both measured at BER=107,

100

LDPC Codes based on Random Construction
l ' l ' 1 it, ConE:urlem

0
) o 3it, Concumrent
ol o S, Concurrent
107 v 1it, Staggered |
o 3 i, Staggered
* 5 it, Staggered
107} 5
BER
107}
10°}
8 " 1 " '
10 3 3.5 4 45 5 55 6 6.5
SNR
(@)
\ LDPC Codes based on Galols Fleld Construction
10 T r r .
¢ 1 H, Concurrent
o 3ii, Concurrent
o & §it, Concurrent
10°F v 110t Staggered |;
o 31, Staggered
+ 5il, Sta
BER 10°} -
107}
10°F
10~ -
35 4 45 5 55
SNR
(b)

Figure 6-4. Simulation results from random codes (a), and GF codes (b) with concurrent
vs. staggered decoding schedule.

In the concurrent decoding schedule, messages from each bit node are relayed to
the closest neighbors in a single iteration. Figure 6-1 shows that the path for a message
from bit node 4 to bit node 10 would require 2 iterations (4;—A1—1;—>C>—102). On the
other hand, the staggered decoding schedule has the capacity for messages to be relayed
to more distant nodes; in the example given in Figure 6-2, a path exists from bit node 4 to
bit node 10 within a single iteration (4—>A—1-B—1—C—10). The further reaching

101

schedule is expected to converge faster, thus the better performance with low number of
iterations.

The staggered decoding schedule is an approximation of the belief propagation
algorithm [40], as noted earlier. The use of a running sum Q’s(k) creates cycles in the
underlying graph. The effects are noticeable with increased number of decoding
iterations. Figure 6-2 shows a cycle, which starts and ends at check node A
(A->1—B—1—C—1-A). These cycles limit the performance of the code, as is evident
in Figure 6-4. The staggered schedule has no BER performance advantage over the
concurrent decoding schedule if the decoding is performed with more than 5 iterations.
However, in applications such as high-throughput magnetic recording, practical
constraints will limit the number of iterations, and staggered decoding provides a key to

significant reduction in implementation complexity for the serial decoder architecture.

6.4. Pipelined processing elements

Using the original concurrent decoding schedule with both parallel and serial
architectures, pipelining increases the effective throughput without causing any difference
in the decoding algorithm. A parallel LDPC decoder flip-flops constantly between two
sets of processing elements. At a macroscopic level, this implies that half the processors
are idle at any instance. This waste of resources can be eliminated by introducing an N-
stage pipeline that fills the collective delay through the two sets of processing elements.
This will also allow a decoder to operate on N independent blocks of bits simultaneously.
In a serial LDPC decoder, each processing element typically calculates hundreds of
messages through each iteration of decoding. This implies a delay of a few hundred
cycles. The cycle time is determined by the delay of the processing element. Using
pipelined processing, the delay is reduced to a fraction of its original value. Although the
added latency increases the total number of cycles, the total delay is significantly reduced.

102

ot 6@0@@@%@?
Je00Qgpe0gs

Figure 6-5. Staggered decoding schedule using one processing element with a 3-stage
pipeline.

As a numerical example, let each processing element calculate 200 messages
through each iteration of decoding. Furthermore, assume that the critical-path delay,
which determines the cycle time, is Sns. Thus, the total delay is 1pus. Suppose that a 6-
stage pipeline is introduced such that the critical path delay is reduced to lmns after
accounting for overhead in additional register-setup time. The entire processing will now
complete in 206ns.

Using the previously proposed staggered decoding schedule, which is only
applicable for serial architectures, the pipelining of the processing elements will result in
deviation of the algorithm. Figure 6-5 shows the decoding schedule using a single
processing element with a pipeline of 3 cycles. A, B, and C represent three check nodes.
A; refers to the i stage of the pipeline in the check node processing corresponding to
check node A. The ten numerical nodes represent the variable nodes. Each node, k,
1<k<10, is associated with a message Q’;, . Note that the value of Q’; is not updated until
time 37. Hence, the same message is sent from node 1 to A;, B;, and C; in the first three
cycles.

In practice, such occurrences are rare with LDPC codes with large girth and

random connectivity. The effects of a pipelined processing with the staggered schedule is

103

evaluated on both LDPC codes previously mentioned, with parity check matrices based
on random and 2-dimensional GF(2°) constructions. The depth of the pipeline is varied
between 1 and 50. In all cases, there was no indication that pipelined processors cause

any difference in the BER performance.

6.5. Summary

The arithmetic computational complexity of the LDPC decoder is misleadingly
low, when compared against existing Turbo decoders. Both serial and parallel
implementations of the LDPC decoder have to address the issue of large memory
requirement and interconnect congestion respectively. This arises from the random and
often sparse structure of LDPC codes, in general. These two factors are mutually
exclusive, and choices between serial or parallel implementation is tied with tradeoff
between memory or interconnect concerns.

The proposed staggered decoding schedule decouples the memory requirement
from its dependency on the number of edges in the graph. It is recognized that the
staggered decoding schedule will not achieve the same results as LDPC decoding under
belief propagation. However, it results in significant reduction in implementation
- complexity. In consideration that practical power and area constraints are likely to limit
the number of iterations to three, the staggered decoding schedule performs
systematically better than the concurrent decoding schedule.

104

7. PHYSICAL IMPLEMENTATIONS
This work has implemented the high throughput decoder architectures described

in the previous chapters on a number of platforms. Details of the design flow for the
successful implementations on FPGAs and ASIC hardware are presented, as well as the
tests conducted to verify the designs. The physical design methodologies are derived
from automated design flow projects conducted at the Berkeley Wireless Research
Center. These are the Simulink to Silicon Hierarchical Automated Flow Tool (SSHAFT)
[74] and its successor, the Berkeley Emulation Engine (BEE) FPGA-ASIC design flow
[99].

The results shown here demonstrate that the performance achieved on the various
platforms can differ by orders of magnitude. ASIC implementations of the SOVA and
LDPC decoders were able to achieve line rates between 500Mb/s and 1Gb/s with 0.18um

and 0.13um standard CMOS processes respectively. A MAP decoder mapped onto an
FPGA demonstrated a throughput of 10Mb/s; while the same LDPC decoder
implemented on FPGA has a maximum operating throughput of 50Mb/s. Nevertheless,
these rates remain significantly higher than the tens of kb/s simulation throughputs that
were obtained on general-purpose microprocessors platforms.

Each physical implementation was realized with the help of design automation
that provided rapid capability for comparing several architectures along the lines of
hardware specific considerations. A large amount of scripting automata ensures the
synergy of a suite of commercial tools that supply a preliminary layout, from which
comparison statistics in speed, area, and throughputs of implementation can be obtained.
The initial design parameters were centered on a pool of heuristically well-accepted
values, which ensure that the tools have a high probability of success. For example, the
default core utilization density, defined as the ratio of area of active transistors to the area
of the ASIC core, is set to 50% to avoid routing congestion. In general, these values lead
to implementations that are sub-optimal. However, the designer maintains the ability to
modify the scripts at all levels. This permits experimentation with key design parameters.
As the design matures, the focus is shifted towards the optimization of each descending
hierarchy in this mostly top-down methodology.

105

Sections 7.1 and 7.2 will discuss the turbo decoder implementations based on the
MAP algorithm and SOVA, respectively. The MAP decoder was realized on an FPGA,
while the SOVA decoder was realized on an ASIC. Likewise, the FPGA and ASIC
implementations of a 4092-bit LDPC decocder will be elaborated in Section 7.3.

7.1. FPGA implementation of a MAP decoder

A pair of MAP decoders applying the BCJR algorithm was implemented on the
Berkeley Emulation Engine (BEE). The BEE is a real-time hardware comprising 20
high-density Xilinx Virtex-E FPGAs operating on a backbone of interconnect fabric. The
collective processing power is capable of executing over 600 Giga-operations per second
and emulating a 10 Million ASIC gate equivalent system. The system design tool is a
combination of Simulink from Mathworks and Xilinx System Generator toolbox [100].
The latter is a library of hardware-like components that model the cycle-accurate and bit-
true behavior of the hardware. It comprises low-level components, such as adders and
multipliers, that also accept hardware specific parameters such wordlengths, binary-point
positions and latencies.

The objective of the BEE design flow is to enable algorithm designers to use
system-level design tools to create hardware designs that can be both implemented on a
BEE system and as an ASIC. The system design tool is a combination of Simulink from
Mathworks and the Xilinx System Generator toolbox. The designer is provided with a set
of hardware-like components that model the cycle-accurate and bit-true behavior of the
bardware. The block library comprises low-level components, such as adders and
multipliers. Hardware specific parameters, such as word-lengths, rounding/truncation
methods, and latencies, are provided as design parameters to these building blocks. The
Xilinx System Generator compiles the Simulink description into a VHDL structural
netlist. The same netlist is used for both FPGA and ASIC implementations.

A 16-state windowed MAP decoder with the architecture described in Section 4.3
was implemented together with a E?PR4 channel. The decoder was matched to the
E2PR4 target. The memories were realized using shift-registers, and control signals were
obtained from a number of linear counters. The design occupied 6000 slices, or 31% of a

106

single FPGA chip. The minimum period was 95ns, corresponding to a decoding

throughput of 10.5Mb/s.

7.2. ASIC implementation of a SOVA decoder
Two 8-state, 7-bit soft output Viterbi decoders matched to an enhanced partial

response class-4 (EPR4) channel and a rate-8/9 convolutional code has been implemented
in a 0.18um CMOS technology. The throughput of the decoders is increased through
architectural transformation of the add-compare-select recursion, with a small area
overhead. The survivor-path decoding logic of a conventional Viterbi decoder register-
exchange is adapted to detect the two most-likely paths. The 4mm’ chip has been
verified to decode at 500Mb/s with 1.8V supply. These decoders can be used as
constituent decoders for Turbo codes in high performance applications requiring
information rates that are very close to the Shannon limit.

Both decoders have the same architecture, but are matched to different generator

polynomials; the SOVA_EPR4 decoder is matched to an EPR4 channel with a (1 D)™
precoder while the SOVA_I3 decoder is matched to an Octal(13) generator. The

equivalent generator polynomials are ﬁ(l+D—D2 -D* and @1®&D?®D?
respectively.

7.2.1. Design flow

The implementation of the SOVA decoders employed the SSHAFT design flow
that performs direct mapping of signal processing algorithms into integrated circuits. The
design entry uses a dataflow graph editor, Simulink from Mathworks because of its
familiarity to algorithm designers. Figure 7-1 shows a screen capture of part of the
dataflow graph. Floating-point primitives are swapped with fixed-point primitives to
explore finite word-length effects. These fixed-point types express the signal decisions -
for the automated flow and are needed in order for the simulation to be bit-true. The
discrete-time model was used because it can be made cycle-accurate with respect to the
hardware, which is necessary to verify that hardware generated by the flow faithfully
represents the functional description.

107

) P ...I\ (3)
Constent3 FudPt FuPt fome P
us 8um3 Convorsion ’—FEPTE PMd
s uto Switch

@1, R
oo : Ot
&, H
BMo FixPt

Sume

uto <= I —\\ o 1
'j [+ »— o SW_roow
ey Reutina! doth
@ I 8u q=.c.r‘n:r
aw "
;1] 8&:1

Figure 7-1. Dataflow graph of the ACS of a SOVA decoder design in Matlab Simulink™,

The data-path logic is constructed with the help of a commercial data-path
generator, Synopsys Module Compiler™. The description language for this generator has
a highly-restrictive set of operators that is very similar to the set of primitives used by the
dataflow simulator, which minimizes the effort involved in creating new library elements.
This approach does result in a second functional specification for a block that must be
made equivalent to its corresponding dataflow graph model. This is accomplished with
cross-check simulations between the dataflow graph and RTL code created by the data-
path generator.

A floorplan is required in addition to the above functional description in order to
capture the use directives such as pin placement and relative placement of hierarchical
macros. The initial skeleton floorplan is generated by the automated flow, and designers,
using commercial physical design tools, are allowed to edit the floorplan, placing
instances and boundary pins using simplified commands. Once the floorplan is

completed, the design can be routed and characterized by the automated flow.

108

Data-path Dataflow graph
description

E elaborate ;

netlist floorplan

é merge ;

autoLayout

(route)

layout

extract

SPICE
netiist
test vectors

EPIC Sim

Crit. Path &
" Power Est.

Figure 7-2. High-level dependency graph for the automated design flow [74].

Estimates are obtained after the flow has synthesized, routed, performed parasitic
extraction and run EPIC PathMill and PowerMill simulations on each macro using test
vectors generated from the dataflow graph. This information is stored in order to provide
fast estimates of performance and required resources and ultimately should be available
from within the dataflow graph editor to provide information for reuse. Figure 7-2 shows
a summary of the automated design flow.

7.2.2. Design parameters

The required wordlength of each SOVA decoder was determined by comparing
the performance difference between floating-point computation and several fixed-point
types. 7-bit sign-magnitude signals were necessary to provide less than 0.1dB
degradation of required signal-to-noise ratio at a BER of 10 after 5 iterations.

109

7.2.3. Physical Tests

Figure 7-3. Printed circuit board used for testing of SOVA decoders.

The silicon die was mounted and wire-bonded to an 84-pin windowed ceramic J-
lead chip carrier (JLCC) package. The package fitted into a socket, which was surface-
mounted onto a custom-built test board. Figure 7-3 is a photograph of the four-layer
printed circuit board with 75 discrete components. The board design made use of
surface-mounted decoupling capacitors on the bottom plane such that operating
frequencies up to 100MHz are sustainable. The 20-pin connectors on the four outer
corners permit communication with a networked logic analyzer. This section describes

the physical tests that were performed with these apparatus.

7.2.3.1.Logical verification
The logical verification of the SOVA chip used the setup depicted in Figure 7-4.

Using a workstation, a range of test vectors was generated by running random numbers
through the Simulink description of the SOVA design. These vectors were then
downloaded onto the logic analyzer, which presented the input pattern to the test board.
A pattern generator supplied the global clock. Outputs from the test board were sampled
and compared with the test vectors. This test was performed at SOMHz and achieved

logical verification of the test chip.

110

Figure 7-4. Setup for logical verification of SOVA decoders

7.2.3.2.Speed test

The decoder is fully synchronous with respect to a single global clock. The
architectural evaluation of the SOVA decoder identifies the ACS recursion as the
throughput bottleneck of the decoder design. Therefore the critical path delay through the
ACS recursion determines the minimum cock period.

In order to prevent false deterioration of the timing results, the on-chip critical-
path delay was evaluated with minimal intrusion provided by the triple clocking scheme
shown in Figure 7-5. A global clock signal, CLK_GLOBAL, is delivered throughout the
chip, and drives all sequential elements during normal operation. Two additional signals,
CLK2 and CLK3, can be selected to sample the inputs and outputs of the ACS,
respectively. These secondary signals are only delivered to the ACS block as the rest of
the decoder continues to be synchronized to CLK_GLOBAL. The three clocks are
distributed with separate networks as shown in Figure 7-6. This minimizes any parasitic
effects on the primary clock tree for distribution of CLK_GLOBAL.

111

BM1—» ,
1 -SM2°

SMO
-BMO” L ,
BMO-» ——SMO
CSA | l

4
CLK_GLOBAL A / N
/ \ / \
CLK2 o
4 Atp \ / \
CLK3 <

Figure 7-5. Test structure around CSA for critical path analysis.

Offchip CLK input

Variable Delay [— vdd2

alin
00 e B

CLK2

—
v

CLK_GLOBAL

[]

CLK3

Figure 7-6. Separate clock trees reduce parasitic effects of additional speed test
requirements

The minimum skew between CLK2 and CLK3 must be greater than the critical-
path delay in order to maintain correct operation. The error margin for this design is
specified at 10%. At the targeted 500Mb/s operation, the speed test requires clock edges
that can be reproduced with 200ps resolution. A variable-delay line introduced deliberate
skew between CLK2 and CLK3. The delay was controlled by the voltage of the power -
supply, shown as Vdd2 in Figure 7-7. In order to account for the parasitic effects of
wiring delays and clock switches, an RC-layout extraction of the three clock trees
(CLK_GLOBAL, CLK2 and CLK3) followed by transistor-level Spice simulations
provided the expected delay values across a range of Vdd2 values. This is shown in
Table 7-1.

112

Vdd2

CLK in M 4&* CLK_out

Figure 7-7. Variable delay controlled by Vdd2

140 T L})] 1 i ¥

o] 1 f I i

Cr

0 1 N 1 1 — 2 1
0 20 40 80 80 100 120 140 160

Figure 7-8. Plot of correct output vectors (blue) and actual vectors output by chip (red)
at skew delay of 1.6ns.

TABLE 7-1.
VARIABLE DELAY INTRODUCED BY VDD2
Vdd2 Skew (ns)
1.2 2.0
1.4 1.8
1.6 1.6
1.8 1.5
2.0 1.5

113

[x100MHz]

1.2 1.3 14 15

vdd (v)

17

Figure 7-10. Performance of EPR4 SOVA decoder.

TABLE 7-2
SUMMARY OF SOV A CHIP IMPLEMENTATION
Decoder Type SOVA_EPR4 SOVA_13
Number of States 8 8
Transistor Count 164K 174K

Core Area
Speed

Avg. Power @ 500MHz

imm x 0.5mm
500Mb/s

395mw

1mm x 0.5mm
500Mb/s

400mw

114

The speed tests were performed at a global clock frequency of 20MHz, using the
same setup as the verification test previously described. The output vectors from the chip
were compared against the simulated vectors. The value of Vdd2 was increased from
1.4V t0 2.0V. As the delay constraint tightened, the number of errors started to increase.
Figure 7-8 depicts the actual output vector superimposed on a simulated vector at Vdd2 =
1.6V. It shows errors occurring at a rate of approximately 9%.

The chip (Figure 7-9) has been verified to decode data with 1.8V supply at 25°C.
Throughput rates above 500 Mb/s were achieved and power dissipation was 400mW.
The speed and power performance of the EPR4 SOVA decoder is plotted in Figure 7-10.
The power measurements were performed at the highest frequencies permitted by the
supply voltage. Table 6-2 summarizes the characteristics of the decoders. The above-
average power dissipation can be attributed to the increased parallel CSA activities and
the continuous movement of data through rows of shift registers and FIFO buffers. The
latter is especially significant as the simulated clock power was 50% of the measured
power consumed by the overall decoder.

7.3. Implementation of an LDPC decoder

| The 4092-bit LDPC decoder with a single Message Computation Block (MCB),
as described in Section 6.2.2 is implemented on FPGA and ASIC platforms. The LDPC
code is based on two-dimensional projections in finite field geometries. The rate % code
comprises 3070 user bits and 1022 parity bits. The exhibited cyclic property is attractive
for shift-register-based high throughput implementation. Soft messages in the decoder
are represented as 5-bit fixed-point types. ‘

7.3.1. LDPC decoder based on finite field construction

A decoder for an LDPC code based on finite field geometries [77] has been
implemented on FPGA as well as in 0.13um CMOS technology. Due to the high (32)
edge degree of the variable nodes, the staggered decoding schedule becomes a suitable
option. Aside from the use of the ©-operators presented in Section 5.4.1, this effort has
also exploited a number of interesting structural properties that are specific to codes
constructed using this technique.

115

The cyclic property of the rows in the 1023x1023 matrix (before column splitting)
is exploited by replacing random access memory with fast shift registers. Using
staggered decoding, the running Q,(f) messages can be moved through the shift registers.
The replacement with shift registers lifts the bottleneck associated with memory
throughputs. Shift register delays are typically less than 100ps in 0.13um CMOS
technology.

The 1:4 column-splitting (Figure 7-11) performed on the 1023x1023 matrix also
provided advantages that are similar to the effects of memory partitioning. Since each
non-zero value in the original matrix is transformed into some permutation of the
[t 0 0 0]vector, a check node will not be connected to more than one out of four
consecutive variable nodes. Hence, the variable-to-check messages from four
consecutive variable nodes, Q’, for n=4k, 4k+1, 4k+2, 4k+3, can be distributed amongst
the four parallel shift register chains. At 32 different positions along the shift register
chains, the appropriate register contents are multiplexed into the MCB, which evaluates
the corresponding check-to-variable messages. The 32 locations can be determined from
the non-zero locations of the first row in the original 1023x1023 matrix. The outputs
from the MCB are, likewise, updated to the register contents via another 32 input de-
multiplexers.

Signed-magnitude representation is a natural choice for implementation of the
Check-to-Bit computation block because the lookup table functions are sign-invariant,
while the XOR operators are magnitude invariant. Figure 7-12 shows the overall
architecture. For simplicity, the example shows the check-to-variable message
computation with a pipeline latency of two cycles. In the actual implementation, the
latency is 22 cycles.

116

010010
1001 11
001101
Original 1:4 Column New Matrix
Matrix Splitting
Figure 7-11. Example of 1:4 column splitting.
Il_- Q Q H o -0 Q. ﬂl
Q —> Q 1 *) o Qs
Q; i Qa | Qm_ _? eve QNQ
Q; bt Q'] 1 Qn —’? QN-!
[Chbeck-to-Bit Message Computtion Block]

Figure 7-12. Shift register-based implementation of LDPC code generated from 2D
GF(2M) with 1:4 column splitting and a message computation latency of 2.

Figure 7-13. Horizontal partitioning of the 1023x4092 parity check matrix.

117

It is noted that the throughput of the above serial LDPC decoder can be further
increased at the expense of linear increase in implementation complexity of the MSBs.
For example, the 1023x4092 parity check matrix can be partitioned into four horizontal
regions, shown as striped bands in Figure 7-13. The LDPC decoder is implemented with
four MCBs. These blocks obtain their inputs from four sets of thirty-two 4:1
multiplexers. The locations of the first set of multiplexers along the register chain are
determined from the top row of the matrix. The next three sets of multiplexer locations
are cyclically displaced by approximately M/4. The displacement is approximate because
placing more than one multiplexer at a separation in the register chain should be avoided.
This prevents the necessity to add more than two inputs as the check-to-variable messages
are updated into the register chain. This design can be viewed as four paralle]l MCBs that
begin the check node processing in the four separate horizontal partitions. Over time, the
data in the registers are shifted out, and likewise, the processing in the computation
blocks move into neighboring partitions. The added parallelism allows the circuit to be
operated at a quarter of the frequency while maintaining the same throughput.

7.3.2. Design input

The design entry for both FPGA and ASIC implementations follows a common
path through the BEE design flow described in Section 7.1. Hardware directives such as
word-lengths, rounding/truncation methods, and latencies are captured at the granularity
of an adder, a multiplier, or memories. The Simulink description is parsed and translated
into a VHDL structural netlist. From here the design flows deviate.

The design description of the LDPC decoder used a hierarchical approach. The
top-level design, shown in Figure 7-14, captures the test vectors (“From Workspace” and
“To Workspace” blocks) used during the design phase and contains the decoder beneath
the level of abstraction described by the block S.

The decoder description is shown as a screen capture in Figure 7-15. The shift
register chains, each of length 1023, were described as sub-blocks found at the top of the
figure. Each sub-block has 32 input and 32 output ports that communicate with the MCB
through multiplexers and demultiplexers. The 1:4 and 4:1 multiplexers and

118

demultiplexers, which are visible in the middle section, obtain their control signals from a
ROM block located in the left-middle section.

The values stored in the ROM were determined by examining the parity check
matrix. The matrix was divided into non-overlapping vertical sections each consisting of
four consecutive columns (corresponding to the 1:4 column splitting process). The
intersection of each row with a vertical section produced a selection vector of four
elements. The selection vector was either the zero-vector, or contained at most one non-
zero entry. This “one-hot” signal is used to control the multiplexers. However, a binary
representation provides more efficient use of ROM area. Finally, the index numbers of
the non-zero sections within the top row of the matrix were identified. These
corresponded to locations in the shift-register chains where messages were read. The
locations where messages are updated to the shift-register chains were calculated by
adding the 22-cycle latency of the MCB.

SeBAln |Suble P selBitin cun jduble of g4q

mf’:;n“ ims |Suble im Quta|double ® p oue
s ‘—“‘E@%1 pirz cuis|duble gl oug oV
F

wom:;mz es |oube gtin QuiajSuble o p ous
iMs m;;':ua {ind cLiomfeate gl ¢ ko o onepaost
F

m'&% CLK Gale [SuBe _glei k cale BISTOU | Sube Towomwsb BISTOW!

Wo:;':eas s To Workspaoal

Figure 7-14. Top level design entry view in Mathworks Simulink

Even though Simulink is widely considered as a tool intended for graphical design
entry, the large number of sub-blocks and the connections between the ports in this design

119

makes this non-feasible. Instead, a script was used to place and route the sub-blocks
together.

The Xilinx System Generator (XSG) was applied to create a behavioral VHDL
description of the hierarchical macro blocks. Core blocks such as multiplexer, adder, or
logical functions were mapped into Module Compiler Language (MCL) descriptions. The
MCL syntax permits entry of design directives such as latencies and type of fixed-point
representations. More significantly, it permitted experimentation with different micro-
architectures that take advantage of, for instance, the bit profile of the computations or
retiming of pipelined elements. Synopsys Module Compiler (MC) was used to generate
the gate-level netlist for each module, as well as initial estimates of the critical delay,

power, and area of implementation.

120

i
|

1 [T] | '
- 1 — Bl'sS - == = = o
= . SmmCRE S ﬁ
s e A A R
1
o3

-

Figure 7-15. Screen capture of top-level LDPC decoder design in Simulink

121

7.3.3. FPGA iniplementation

From the VHDL netlist, compiling a bit file to upload into the FPGA was
straightforward. The design occupied 16,000 slices, or 82% of a single FPGA chip. The
minimum period was 38ns, imposed by the critical path through the MCB. This
corresponds to a decoding throughput of 26Mb/s.

7.3.4. ASIC implementation

The physical design of the LDPC decoder was loosely based on the automated
Insecta design flow [115]. The details of the custom modifications to the original flow
are discussed. The final ASIC occupies an area 3.1mm X 2.6mm and contains 1.8 million
transistors or approximately 256,000 gates. The chip is estimated to dissipate 3W at a
clock frequency of 1GHz. The area of implementation was pad limited by the 23 inputs,
22 output pins, and 29 pairs of supply pads delivering dedicated power/ground to the
core. Logical verification is provided through VHDL simulation at the gate level. The
layout of the design is shown in Figure 7-16.

The Insecta flow provided a basic skeletal structure, complete with default scripts
for most of the tools employed in the physical design. These scripts are generated using a
top-down approach and in general, required very little design directives from the system
architect. However, in order to achieve a successful chip tapeout, it was necessary to
perform a number of modifications to the flow. For example, as the functionality of a
design grows, a top-down approach will lead to longer run-times and larger server-
memory requirement. A methodology for manual partitioning was thus developed. In the
process, the structural properties of the LDPC code were studied and provided a natural
way to set up boundaries between the partitioned blocks. The details of this and other
modifications are documented in Appendix C. Much of this required customized
solutions. Some of the key modifications include:

1. Synthesis scripts require a mixture of bottom-up and top-down
compilation strategies in order to keep the memory usage of the
synthesis software below a threshold.

2. Manual placement of /O pads to found a contiguous ring around the

decoder core.

122

3 Custom power routing to ensure minimum I-R drop across supply lines
and avoid slot metal DRC errors associated with connection between
supply I/O pads and supply rings.

4. Custom clock tree generation for < 50ps clock skew and < 60ps
transition times.

5 Modification of LEF definitions in order to allow detailed router to
handle antenna violation rules.

6.

The final design methodology is shown in Figure 7-17. The shaded boxes

indicate the steps modified from the original automated flow.

Figure 7-16. Layout of LDPC decoder in 0.13um CMOS, occupying 3.2mm X 2.7mm.

123

Simulink Model Test Vector

Behavioral VHDL

Gate VHDL
Modelsim |

Gate Verilog

First Encounter
(Placement +
CLK tree)

A
Tr-level Verif,
(STA, Func, Check, Power)

Figure 7-17. Design methodology. Shaded symbols indicate steps modified from the
standard Insecta flow.

7.4. Other state of the art implementations

At the time of this publication, a number of implementations of iterative decoder

hardware have surfaced. These works have been mentioned in previous chapters as the

124

earlier discussions sought to point out the differences in details. This following is a

sample of significant ASIC contributions. With the exception of the first entry, all

implementations are digital.

1. 320Mb/s analog MAP decoder in 0.25um CMOS by Moerz, et. al.
[120]

2. 2Mb/s turbo decoder in 0.25um CMOS by G. Masera, et. al. [33].

3. 2.5Mb/s low power SOVA decoder in 0.3um CMOS by Garrett and
Stan [16].

4, 24Mb/s turbo decoder in 0.18um CMOS by Bickerstaff, et. al. [98].
75.6 Mb/s turbo decoder in 0.18pum CMOS by Bougard, et. al. [121].

6. 1Gb/s LDPC decoder in 0.15um CMOS by Blanksby and Howland,
[1].

7.5. Summary

This chapter has provided the implementation details of iterative decoders on both
FPGA and ASIC platforms. These designs successfully demonstratéd the architectural
innovations presented in the Chapters 4 and 5. The SOVA ASIC combined high
throughput techniques in the ACS and survivor memory blocks to realize the fastest
published design to date. At the same time, the LDPC ASIC is the first silicon
implementation of a serial LDPC decoder. These accomplishments benefited from the
availability of semi-automated design flows, which allowed rapid prototyping and
evaluation of several competing micro-architectures. Eventually, each ASIC circuit
required a fair amount of custom steps in order to achieve a working silicon

implementation.

125

8. CONCLUSIONS

This research has addressed the algorithms and implementations of iterative
decoders for forward error control in high throughput communication applications. The
architectures of iterative codes based on various concatenated schemes of convolutional
codes, and low-density parity check (LDPC) codes were presented and analyzed.

The message passing algorithms implemented by BCJR, SOVA and LDPC
decoders were discussed. The difficulties associated with implementation of the
computational and méssage-passing requirements were highlighted in Chapter 3.

Architectures that are suitable for high throughput implementations of the MAP
and SOVA decoders were presented in Chapter 4. The memory requirements were
realized using fast shift registers. The throughput bottleneck is found at the AACS or
ACS recursions. These structures were categorically discussed and evaluated.

Architectures for implementation of LDPC decoders were introduced in Chapter
5. Parallel structures were compared against serial structures. The properties of LDPC
codes that favor shared memory architectures were also discussed. A number of
complexity-reducing methods were introduced. The arithmetic computational complexity
of the LDPC decoder is low, when compared against existing Turbo decoders. However,
both serial and parallel implementations of the LDPC decoder have to address the issue of
large memory requirement and interconnect congestion respectively. This arises from the
random and often sparse structure of general LDPC codes. These two factors are
mutually exclusive, and choices between serial or parallel implementation is tied with
tradeoff between memory or interconnect concerns.

Finally, the implementation details of iterative decoders on both FPGA and ASIC
platforms were discussed in Chapter 7. These designs successfully demonstrated the
architectural innovations in this work. These accomplishments benefited from the
availability of semi-automated design flows, which allowed rapid prototyping and
evaluation of several competing micro-architectures, but also required a significant of
manual tooling in order to achieve a successful and working silicon implementation.

In particular, the key contributions of this work are summarized below:

126

8.1. Future

In evaluating the throughput bottleneck of turbo decoders, a number
of micro-architectures for implementation of the ACS or ACSA
were categorically discussed, synthesized and evaluated.

Efficient scheduling of the MAP decoder permits the memory to be
implemented with fast shift registers, with minimal control logic.
Discovery that column splitting in LDPC codes based on finite field
geometries permits a natural partitioning of the decoder design.
Approximation of the @ function based on the difference between
pairs of check-node input messages in the LDPC decoder.

Proposed staggered decoding schedule for the LDPC decoder
successfully achieved significant reduction of memory requirement
and improved performance (with low number of iterations) at the
same time.

Successful implementation of a SOVA ASIC, which combined high
throughput techniques in the ACS and survivor memory blocks to
realize the fastest published design to date.

Successful implementation of a LDPC ASIC. This is the first

silicon implementation of a serial LDPC decoder.

As communications systems ‘continue to demand higher throughputs in

environments with decreasing SNR, iterative decoding can provide the necessary coding

gain to ensure sustained progress. Already, this class of codes has been specified as part

of standards in wireless MAN (IEEE 802.16), wireless cellular communications
(CDMA2000 and UMTS 3GPP), wireline communications (HiperLAN2), and digital
video broadcast from satellite (DVBS-2). Without doubt, the deployment of these codes
will become more widespread as the requirements of end-users grow and the technology

advances to make the implementation of the decoders feasible. Although the examples

presented in this work have shown that iterative decoders are at least four to five times

the complexity of current non-iterative methods, each silicon process technology

generation will allow the integration of more complex signal processing schemes. The

127

same implementations in 90nm CMOS technology would lower the area and power
requirements by a factor of two, while improving the throughput by 40% [119].

As researchers in coding techniques continue the search for better bit-error
performance, there will be increased awareness of the implications on the VLSI aspects of
the decoders. For example, parallel decoder architectures for the general class of LDPC
codes will have to address the potential problem of routing congestion. By limiting the
search space to structured LDPC codes, a large message-passing graph can be suitably
partitioned into several smaller graphs, thereby increasing the possibility of fully parallel
implementations that are also scalable to larger code sizes. To a certain extent,
architectural manipulations and transformations alone can affect the throughput
bottleneck, required number of processing elements, logic density, etc. However, the
successful implementation of a decoder is also dependent on simple considerations such
as the number of bits required to represent the messages, or resolution of the required
lookup tables. These details directly affect the performance of the code, but their effects
are not easily determined. Currently, the most common approach is to evaluate the bit-
error performance via empirical methods involving long hours of simulation in Matlab or
C programs. It will be interesting to see an emergence of studies providing theoretical
bounds on the performance improvement or degradation as a function of these
implementation parameters.

Speaking of simulations, it should be pointed out that one of the primary
difficulties with the evaluation of BER performance was the long simulation times that
are required by iterative decoders. Since iterative codes routinely decode down to BER of
108, the performance simulations are often conducted with up to 10" samples or more in
order to obtain results that are statistically significant. The situation is exacerbated by the
need to evaluate fixed-point effects, which can lower the simulation throughputs on
general-microprocessor platforms to hundreds of kb/s. The FPGA design flow described
in Chapter 7 offers a viable option for the performance analysis of iterative codes. With
minimal user intervention, the designs implemented on the FPGAs operate at throughputs
between 10Mb/s and 25Mb/s. However, this requires a major paradigm shift from
general microprocessor-based evaluation techniques to FPGA-based simulations.

In short, the need for improved coding gains in all forms of communications

128

applications will drive the adoption of iterative decoding. The exploration for practical
solutions will combine studies between code design and VLSI considerations. Existing
evaluation methods based on simulations are too slow. As the research gathers pace,
there is a requirement for formal assessment of the relationship between implementation
parameters and the bit-error performance. The alternative is to carry out the simulations
on reconfigurable hardware such as FPGA, which can provide a speed improvement of at

least an order of magnitude.

129

APPENDIX A: PIN LIST FOR SOVA DECODER

9. APPENDIX A: PIN LIST FOR SOVA DECODER

9.1. Pad Frame

55

9.2. Pin List

See above for pin number description

130

APPENDIX A: PIN LIST FOR SOVA DECODER

19 SoPar[1] OUTPUT
20 SoPar[0] OUTPUT
21 SoSys|6] OUTPUT
22 SoSys|5] OUTPUT
23 SoSys[4] OUTPUT
24 SoSys[3] OUTPUT
25 SoSys[2] OUTPUT
26 SoSys[1] OUTPUT
27 SoSys[0] OUTPUT
28 gnd I/0 Gnd
29 vdd 1/0 Supply
30 SoftOut[6] OQUTPUT
31 SoftOut[5] OUTPUT
32 SoftOut[4] OUTPUT
33 SoftOut[3] OUTPUT
34 SoftOut[2] -~ |OUTPUT
35 SoftOut[1] OUTPUT
OUTPUT

__|SoftOut

131

APPENDIX A: PIN LIST FOR SOVA DECODER

56 nd 1/0 Supply
57 SoftIn[5] INPUT

58 Softin[4] INPUT

59 Softin[3] INPUT

60 Softin[2] INPUT

61 Softin[1] INPUT

62 Softin[0] INPUT

63 CLk INPUT

64 vdd2 VARIABLE CLOCK SUPPLY
65 SysIn[0] INPUT

66 Sysin[1] INPUT

67 SysIn[2] INPUT

68 SysIn[3] INPUT

69 Sysin[4] INPUT

70 SysIn[5] INPUT

71 gnd IO Gnd
72 vdd 1/0O Supply

132

APPENDIX B: PIN LIST FOR LDPC DECODER

10.APPENDIX B: PIN LIST FOR LDPC DECODER

10.1.

136 dec_s_ind[0]
dec_s_ind[1]
dec_s_ind[2]
dac_s_in4(3]
dec_s_{nd[4]

dec_s_bistout_gate[0]

gnde
vddelv2

3]

gnd

g
RIS ERF IS T

§
i

dec_s_in3[1]

g

dec_s_in3[3]
107 dec_s_in3[4]

10.2.

Pad Frame
; 38
e a2 0aEEa0 e A AR A ADEEE e A0 aEaa e
T = o I ILEES vy
$%§§§§:§§3EEQ§E§E§E:§E§ § §u:.§: %%EE‘%??%: ; t:_l_‘_mll
untRRRFEL $4Y g o
ED .§'§ | B | dec_s_ound4]
= S
Ve |] e
% % vf:;vz
= i oo o
.—-vEu YDDCO_40 x 29 % '::l
a2 [GC| vssco_sox (Ve | vad
E VDDIOCO_40x 8 [GC | gnd
[oc | [Gi| vssioco_soxs | ve | wid
% VDDIO_40 x 8 N —3(:(':_ ﬂ:
e [GE | vsslo_sox8 [GC | gnd
i 3T 4 gl
e (VI | wvdd
R [GE | gnde
% [VE | :iduvz
BRI b P B 2 g TP
SR F TR LR L LR E RS EE R R RE IR PRTET nn Porprni
|ol=ll=llEel [l el e e e e el el e] el s IEI | FFLEE |
106
Pin List

See above for pin number description

133

APPENDIX B: PIN LIST FOR LDPC DECODER

39 dec_s_out4[0] OUTPUT
40 dec_s_out4[1] OUTPUT
41 dec_s_out4[2] OUTPUT
42 dec_s_out4[3] OUTPUT
43 dec_s_out4[4] OUTPUT
jgnd I/O Gnd

134

APPENDIX B: PIN LIST FOR LDPC DECODER

45 vdd I/O Power
46 nde I/O Gnd2

47 vddelv2 I/O Supply2
48 gnd Core Gnd
49 vdd Core Supply
50 gnd Core Gnd

51 vdd Core Supply
52 |gnd Core Gnd
53 vdd Core Supply
54 gnd Core Gnd
55 vdd Core Supply
56 gnd Core Gnd
57 vdd Core Supply
58 gnd Core Gnd
59 vdd Core Supply
60 nd /0 Gnd

61 vdd /O Power
62 IIgnde /O Gnd2

63 vdde1v2 /O Supply2
64 dec_s_out3[0] OUTPUT

65 dec_s_out3[1] OUTPUT
66 dec_s_out3[2] QUTPUT

67 dec_s_out3[3] OUTPUT
dec OUTPUT

135

APPENDIX B: PIN LIST FOR LDPC DECODER

107 idec_s_in3[4] INPUT
108 dec_s_in3[3] }INPUT
109 dec_s_in3[2] IINPUT
110 dec_s_in3[1] |INPUT
111 dec_s_in3[0] INPUT
112 lgnd /O Gnd

136

APPENDIX B: PIN LIST FOR LDPC DECODER

113 vdd I/O Power
114 nde /O Gnd2
115 vdde1v2 /0 Supply2
116 gnd Core Gnd
117 vdd Core Supply
118 nd Core Gnd
119 vdd Core Supply
120 Lgnd Core Gnd
121 vdd Core Supply
122 jgnd Core Gnd
123 vdd Core Supply
124 ignd Core Gnd
125 vdd Core Supply
126 iand Core Gnd
127 vdd /O Power
128 gnd [IIO Gnd

129 vddeiv2 II/O Supply?2
130 __ignde ll/O Gnd2
131 dec_s_bistout_gate[0] |[OUTPUT
132 dec_s_in4[4] INPUT

133 dec_s_in4[3] IINPUT

134 dec_s_in4[2] lINPUT

135 dec_s_in4[1] INPUT

136 dec_s_in4[0] [INPUT

137

APPENDIX C: MODIFICATIONS TO ASIC DESIGN FLOW |

11.APPENDIX C: MODIFICATIONS TO ASIC DESIGN FLOW

This appendix documents the modifications performed on the different stages in
the physical design process of the LDPC decoder. The Insecta flow provided a default
design methodology, in which these modifications were applied.

11.1. Design Synthesis

Using Synopsys Design Compiler (DC), the process of synthesis reads the
behavioral VHDL and the MC-created gate-level modules, and produces a netlist of gates
obtained from a high-speed standard-cell library in 0.13pm 6-metal layer CMOS
technology. The design was inserted with Schmitt-triggered input pads to capture the
effect of input drive strengths. Likewise, buffered output pads are inserted to emulate the
effects of output loading. The global clock is constrained to a 1ns period. Clock buffer
cells and some datapath library cells that have pass gate inputs are excluded from the
usable cell list by applying “set_dont_use” commands to these cells.

In a hierarchical design, multiple references of a sub-hierarchy may occur. The
default Insecta flow resolves these multiple instances by creating a uniquely named copy
of the sub-design for each instance. The synthesis process then performs a flat
compilation, which optimizes each design copy based on the unique environment of its
cell instance. However, as the size of the design exceeds a hundred thousand gates, this
process can easily take up to a few days on a gigahertz-Xeon processor. In addition, the
Linux-based binaries operating on a 32-bit architecture are unable to access memory
addresses above a 4GB limit. These factors made the flat synthesis approach unsuitable
for a design of the size of the LDPC decoder. In résponse, the synthesis is performed
with a mix of top-down and bottom-up methods. Taking advantage of the knowledge of
system partitioning that is already evident in the design input process (e.g. Figure 7-15),
the key blocks such as the shift-register chains (instantiated four times), are compiled
once. The set_dont_touch command is then used to preserve the sub-design during the
remaining optimization. This permitted a successful synthesis in about 2 hours of
processor time.

DC outputs both VHDL and Verilog gate-level netlists. The VHDL output is used
for logical verification in Mentor Modelsim. This uses the test vectors created by XSG

138

APPENDIX C: MODIFICATIONS TO ASIC DESIGN FLOW

when it parsed the initial design in the Simulink description. The Verilog output is the
primary design interface with Cadence First Encounter (FE), which performs

power/ground routing and standard cell placement.

11.2. Placement

The scripts generated by the Insecta flow provides global power and ground
routing, location-constrained cell placement, and clock tree generation. However, there
were issues with the automated flow that caused unacceptable results. The default
input/output pad placement distributed the I/O pads evenly around the chip area, but
failed to maintain gaps between I/O pads that were divisible by the width of the smallest
I/O filler pad. Consequently, the pads failed to form a continuous ring around the chip.
Moreover, the global power and ground routing relied on long rails in metall that span
the width of the core. It also used long and wide metal2 for the power and ground rings,
which led to slot metal DRC violations.

11.3. /O pad placement

By default, FE distributes the I/O pads evenly around the perimeter of the chip
area. This leads to gaps with widths that are not divisible by that of the smallest I/O filler
pad. The I/O filler pads available in the I/O library have widths that are multiples of
0.41pm. The naming convention of the I/O filler pads, IOFILLERXX_40, reflects this
property; XX represents the multiplicative factor. It is necessary to provide a file
specifying customized I/O placements that also controls the widths of any remaining
gaps. This file should include definitions of corner /O cells preceded by the “Orient:
RO” statement. With the exception of the dedicated core power (VDDCO_40) and
ground (VSSCO_40) supply pads, all pad cells have widths of 39.77 pm (97x0.41um).
Since this chip is intended to be fabricated with an IO pitch of 65.19um (159x0.41m),
an IOFILLER62_40 (25.42um) cell is placed next to every I/O pad. An example excerpt
from the I/O placement file is also provided below.

Orient: RO
Pad: NE_CORNER NE RTCORNER_40ISV
Skip: 319.8

Pad: IoFill62 N4 N IOFILLER62_40

139

APPENDIX C: MODIFICATIONS TO ASIC DESIGN FLOW

Skip: 0

Pad: dec_s_inl_gatex4x PAD N
Skip: 0

Pad: IoFill6e2 N_.6 N IOFILLER62_40
Skip: 0

Pad: dec_s_inl_gatex3x_PAD N
Skip: 0

Pad: vddx_padx3x N
Skip: 0

Pad: gndx_padx5x N
Skip: 0

Pad: vddx_padx2x N
Skip: 0

In addition, the customized I/O placement plan made it possible to determine any
gaps along the perimeter that could accommodate additional power and ground pads.
These additional pads have to be annotated in the FE input Verilog file in order to
generate an accurate netlist that is used for LVS comparison. The following lines, written
in Verilog syntax, represent an example of a pair of power and ground pads.

VDDCO_40 vddx_padx102x (.VDDCORE(\vdd!));

VSSCO_40 gndx_padx103x (.VSSCORE(\gnd!));

Each pair of power and ground pads is current-limited to SOmA. The final design
contains 29 pairs of pads, and is capable of delivering 1.74W to the core at nominal
voltage of 1.2V.

The I/O library documentation also specified that additional I/O supply pads are
necessary to provide the power and ground supplies to the Schmitt-triggered input pads,
buffered output pads, and ESD protection circuits. Eight sets of pads are added to the
design; each set comprised the four VO pads “VDDIOCO_40”, “VSSIOCO_40",
“VDDIO_40”, and “VSSIO_40”. Each pair of /O supply pads (“VDDIO_40” and
“VSSIO_40”) can drive a maximum of 12 output buffers (“B2CR_40"); there are only 22
output pins in the design. As is true previously, the input Verilog file is annotated with
these additional cells. An example is provided below.

140

APPENDIX C: MODIFICATIONS TO ASIC DESIGN FLOW

VDDIOCO_40 vddioco_pad4 ();
VSSIOCO_40 vssioco_pad4 ();
VDDIO_40 vddio_pad4 ();
VSSIO_40 vssio_pad4 ();

The final configuration includes two sets of I/O supply pads on each side of the
chip. It satisfies all maximum distance rules for ESD protection. (1.6mm separation
between “VDDIO_40” or “VSSIO_40” pads, 4.5mm between “VDDIOCO_40”, and
2.5mm between “VSSIOCO_40” pads.

The Insecta flow reads the Verilog design input and a custom file describing the
I/0O placement, before building an initial floorplan. Using information on both standard
cells and IO pads in the design, FE automatically determines a guides/regions/fences
drawing density. An initial floorplan based on this density value is created. However, the
peculiarities of the placement constraints on the I/O pads causes the drawing density to be
significantly lower than the core density, defined as the ratio of area of standard cells to
the core area. As a result, core densities in the neighborhood of 30% are not uncommon.
Changing the sequence of operations in FE increases the drawing density. The input of
the /O placement plan is delayed until an initial floorplan is created. Such a floorplan is
based strictly on the standard cell information. A core density of 56% prior to clock tree
insertion is observed. The final arrangement of the I/O pad is shown in Figure 11-1.

114. Power routing

The custom power routing of the chip is the most significant deviation from the
automated design flow. It is based on the design application notes provided by
STMicroelectronics. The power structure, shown in Figure 11-2, is made up of a grid of
7.14pm metal6 horizontal stripes, 6.28um metalS vertical stripes, and metall horizontal
rails. The metall rails correspond to standard cell rails. The stripes alternate between
power and ground supplies with a pitch of 19.68um. A 6.28um X 7.14um array of viaS
connects between the horizontal and vertical stripes. The vertical stripes are connected to
the horizontal rails using a 3x5 array of stacked vias that connect between metall and
metal5.

141

(44!

yuowoSuerre ped O/ "1-11 omS1g

o= |s|ol=| w2l <| 83| 8]5]|8]5|815]|815| 8518|581 5| 815|852l 5|18 5| =l = | =|»|= |~
_ B0 B8 0a®% < ®<on < oe € 00 <om chh S E® Th S WemsOoOQQD S [vleu™s™o0p
odied KN RS F R RS T E NS R R ES ES R R NSNS T T 3 N povnliling
@ o by R “Roo o oo -
flemosoop [@ o2 2 2 .m) Sebe _w_m_m s | lelewrsoop
Memosoop [@ IRERB RS 2223360 {1}surs™oep
folgmos>ep | @ [£ EZEEZEyg S [oleui™s™oep
ZA1opps | 3A D | s
pud 1 HE0 IA| PPa
e 1A g | pud
ms [HA | ZaIappa
pra DA a " xovny [V] 20 | pus
pu 100 gxov oISsA [@D JA | PPa
PPt | OA N 8xorolqaA | A 20 | puf
pus 29 JA | PP
pra [OA 8x0p"000IsSA | ID 30| pus
pud | 2o 8x09"00010aA | 1A A1 pra
ppe | OA 6zxoy00ssA | 29 oo | pus
pu3 13D stxe"00aas | oA oA | PP
PPA OA 20 | pud
pus a0 Tz x (sagguq ndino) op™MIZA g A | ppa
pra [oA €T x (2gng ndoy o OLINEDS | S 30 | pud
pus8 |20 IA | PPa
zaropps [aa o] s
apus3 | @p A | earappa
opA IA a0 | apud
pus [5) o g | [olsiednoisig s oep
{plpno~sToep | & 13 s Ee_.._.amse
lelnosoop [@ |2 S 8 8 8 . .m. "...m .m W _m _m 5 | (elursToep
[Zlynosoop [@ Jo @ T ® "e m“ . W _m.. bkl b “ww..:_nonooo
Moo soep | 8 |p AR PR oL ¥ S5 <o co0 o <o S0 <% <% 068 < 3 <) Mmewm s Hpuie"o0p
lolino"s00p [@ REBESruciananananenengnaneiafnneydiags 5| loursoep
olol<=||s||s|e[s]=]s|a]s|e5]a]s|=lx{al5|al5]alzl]s| - [el5]>| o ||| -

MOTH NOISFd DISV OL SNOLLVOIHIAON D XIANHddV

APPENDIX C: MODIFICATIONS TO ASIC DESIGN FLOW

Figure 11-2. Power and ground supply grid.

A dedicated power ring is placed around the core, using metal5 vertical sides, and
metal4 horizontal sides. FE connects the supply pads to the supply ring by routing a
continuous vertical stripe of metal2 from each pin of an I/O pad to the ring location, and
placing arrays of stacked vias that connect metal2 up to metal6. The widths of the metal2
interconnect and the stacks of via arrays matches the width of the pin on the I/O pad,
which is 59.26pum wide.

Slot metal DRC rules mandated the insertion of slots in metal connectors that are
wider than 12pum and longer than 30um. Slot metal rules prevent the occurrence of long
wide metal interconnects that increase the risks of oxide erosion or copper dishing during
the fabrication process of chemical-mechanical polishing (CMP). In the power routing
scheme described above, a metal interconnect from a power pad pin, which measures
59.26um-wide, to an inner core ring is likely to lead to slot-metal violations. The
solution is to modify the cdump library definitions of the power and ground supplies. A
single 59.26pum pin is split into three separate pins, each measuring 11.9um in width.
This causes FE to route three separate stripes instead of a single, wide interconnect
between each power or ground supply pad and the corresponding supply ring. This is

shown in Figure 11-3.

143

APPENDIX C: MODIFICATIONS TO ASIC DESIGN FLOW

I/0 Pa_d

o
<
O
&)
Ed
0
>

M2 pin connection to VDDCore

Figure 11-3. Connection between supply I/O pads and metal4 supply rings

Inside the core area, the large number of highly stacked vias between metall
horizontal rails and metal5 vertical stripes pose potential routing congestion. The
standard cells should therefore avoid being placed near the vertical stripe locations. This
can be simply implemented if the cell placement is performed after power-grid routing,
since the placement optimization attempts to minimize the amount of congestion. On the
other hand, the power-grid routing requires knowledge of the size of the core, and
locations of standard cell rails. This implies performing cell placement prior to power
routing. Taking into account of these opposing requirements, the following sequence of

operations are performed in FE. An initial raw placement of the standard cell is
144

APPENDIX C: MODIFICATIONS TO ASIC DESIGN FLOW

performed with limited optimization. The gaps between the standard cells are filled with
filler cells, thus forming a continuous power and ground rail in metall. The metal5-
metal6 power grid is created, and routed to the rails through stacked vias at every junction
between corresponding rail and vertical-stripe locations. With the power grid connected,
all filler cells are removed, and all standard cells are “unplaced”. A second placement of
standard cell is then performed with stringent placement optimization constraints. A
clock tree is then inserted. Finally, the gaps between the standard cells are filled once

again with filler cells.

11.5. Clock tree generation

The clock tree generation is specified for minimal clock skews and transition
delays at the 34,000 sink nodes. The phase delay and maximum buffer transition times
are relaxed to provide more flexibility for the tool in meeting stringent skew and
transition delays at the sink nodes. The final skew at the sink nodes is estimated to be
less than 42ps, with a maximum transition time of 59ps.

FE outputs a final Design Exchange Format (DEF) file that captures placement
information of the standard cells, I/O pads, clock tree, filler cells, and power and ground
supply grid. A final Verilog output is also available, but it excludes the filler cell
information since each filler cell contains only two horizontal metall rails for power and
ground supplies. In subsequent post-routing steps, some of these filler cells are swapped
with new filler cells that include decoupling capacitors (Figure 11-4) formed by the
polysilicon gates of transistors with non-minimal feature size.

11.6. Detailed routing
Nanoroute (NR) reads the DEF output from FE and completes the detailed
routing. The standard cells libraries and routing rules, which include metal and via layer
descriptions, are defined in Library Exchange Format (LEF). The LEF file used by NR is
created manually by referring to a design manual provided by the foundry. Every attempt
has been made to ensure that the definitions in the LEF file correspond with the

manufacturing rules, although updates remain a continual process. Designs with fewer

145

APPENDIX C: MODIFICATIONS TO ASIC DESIGN FLOW

than 200,000 transistors, or 33,000 gates and less than 50% core densities can generally
complete the detailed route without incurring any DRC violations.

<schematic> <cell line-up>

FILLERCELL1CAP
FILLERCELL2CAP
FILLERCELL3CAP
FILLERCELL4ACAP Wi/o capacitors {same as original filler cells)

FILLERCELLSCAP W/ capacitors
FILLERCELLECAP
FILLERCELL7CAP
FILLERCELLBCAP
FILLERCELLSCAP
FILLERCELL10CAP
FILLERCELL11CAP
FILLERCELL12CAP
FILLERCELL13CAP
FILLERCELL14CAP
FILLERCELL15CAP
FILLERCELL16CAP
FILLERCELL32CAP
FILLERCELLBACAP

<layout : same footprint as original filler cell>

RGN BAM . | ReeAl
s Py W (it 1A Sy Gvren sy Tyt S Toiok

Figure 11-4. Filler cells with decoupling capacitors.

One of the pitfalls of building a larger design is that lengths of interconnects tend
to increase with the dimensions of the overall design. Long metal routing can cause an
electrical charge accumulation during the fabrication etching process. The build-up
charge can potentially damage a gate oxide that is connected directly to the metal route.
Inserting reverse-biased diodes between long interconnects and a ground node can avoid
this process antenna effect. If the charge build-up during etching process is greater than a
few volts, the diodes will become reverse-biased junctions and provide a path for the
charges to the substrate. During normal operation at 1.8V supply, the diodes do not cause
any effect. Alternatively, the routing is divided into shorter sections, which are connected

through higher metal layers.
146

APPENDIX C: MODIFICATIONS TO ASIC DESIGN FLOW

The DRC rles require that the cumulative area of any single metal layer of
interconnect over field oxide divided by the area of the transistor gate (thin oxide area)
must be less than 100. This ratio is known as the cumulative antenna ratio. NR calculates
this based on an ANTENNAGATEAREA parameter that it expects for each input pin in the
LEF file definitions of the standard cell libraries. It turned out that the LEF definitions
for the standard cell libraries did not include the gate area parameter. Nonetheless, this
information is available in the Cadence database in the formats of either CDL or dfll
descriptions. In order to make NR address the antenna process violations, a perl script is
written to compare the provided LEF and CDL databases. The CDL database included
dimensions of the transistors in each standard cell. The gate area of each transistor is
calculated from the product of the width and length of the gate. The aggregate gate area
is then written into the LEF file as the missing parameter. Using the updated LEF files,
all subsequent designs are routed without any process antenna violations.

NR places a higher priority on correcting DRC errors over fixing the antenna
violation problems. The tool will automatically shuffle between metal layers, or replace a
filler cell with an antenna protection diode cell (ANTPROTS). These steps are performed
only if they do not cause additional DRC errors.

Upon completion, NR outputs a GDS file. Conceptually, this GDS output should
be directly input to Mentor Calibre for DRC and LVS verifications. However, a few
problems persist with this output, and require the conversion of the design into Opus dfit

format, as described in the next section.

11.7. Cadence Opus dfll
The GDS output from NR is converted to Opus dfIl format. This permits custom
edits (using Virtuoso) on the layout for DRC and LVS error corrections, which may not

be completely removed by NR.
Taking. advantage of the Opus dfIl format, a Skill script has been written to

convert the I/O cell views from “layout” to “layout_65u” in accordance to the 65.19um
pitch specifications. The “layout_65u” view has a coarser pitch, and is typically used in

pre-production, research, or experimental circuits.

147

APPENDIX C: MODIFICATIONS TO ASIC DESIGN FLOW

VDD
z i—
GND
Pullup Cell Pulldown Cell

Figure 11-5. Pullup and pulldown cells inserted during synthesis.

11.8. Pullup and Pulldown Cells

The synthesis this design flow introduces a large number of pullup and pulldown
cells. These cells are necessary to represent tied-high or tied-low signals (e.g. control
signals, synthesized ROMs and constants) in the synthesis environment, which does not
have explicit references to the power and ground supplies. The pullup and pulldown cells
are simply minimum-sized PMOS and NMOS transistors with gates permanently tied to
ground and the power supply respectively, as shown in Figure 11-5.

When left in the circuit description, the physical implementation tools will handle
these pullup/pulldown cells as standard cells. The router connects the outputs of these
cells as local signals, which is a waste of resources. Both power and ground supplies are
traditionally designed to be easily assessed through the top and bottom rails of each
standard cell. Moreover, as the design gets larger, a single pullup/pulldown cell may be
required to drive a large number of gates, spaced far apart from each other. This
increases the potential of antenna process violations due to the substantial length of
interconnects. Overloading of the minimal sized transistors, though, is not an issue. The
pullup/pulldown cells drive the gates of other devices with a constant voltage, and are not
subjected to high currents.

The obvious solution to the above problem is to remove the pullup/pulldown
cells, and connect the driven gates directly to the nearest available power or ground
supply. The power and ground grid is resilient against antenna process violations due to
the wide presence of substrate contacts, which act as antenna protection diodes. The

Verilog output from the synthesis stage is parsed to delete most pullup/pulldown cells and
148

APPENDIX C: MODIFICATIONS TO ASIC DESIGN FLOW

have their previous ouiputs declared with supplyl and supply0 constructs. These
declarations define a signal either as a tied-high or tied-low respectively. In a few rare
cases, the original outputs of the pullup/pulldown cells are defined as references to a
signal array (e.g. dout[4]). Since the Verilog format does not permit use of supplyl and
supply0 declarations with an array reference, these occurrences are left unaltered.

Nevertheless, the removal of pullup/pulldown cells creates a resolution problem
during LVS verification. This is also an artifact of the Insecta front end, which needs to
be addressed eventually. The generation of the VHDL files using XSG creates a large
number of redundant control signals. These are usually in the form of input or output
valid bits, reset and enable signals. In a datapath-oriented design with limited amount of
data/clock gating, these control signals are almost always uniformly set to constant
values. The constants are provided from the outputs of pullup/pulldown cells. In many
cases, a global enable bit may be logically AND’d with a control reset signal to provide a
local enable bit. In many cases, the output is left unconnected by the synthesis step.

With the presence of pullup/pulldown cells, NR routes these constant signals as
local interconnects, and attaches a name property that reflects the hierarchical connection.
The removal of pullup/pulldown cells causes these constants to be simply renamed as
either “Vdd” or “Gnd”. The subsequent gds format describes a substantial number of
cells sharing identical logical functions, with ports connected to the same “Vdd” or
“Gnd” signals. As a consequence, a flat LVS check is likely to face ambiguities, where
parts of the circuit can be interchanged without affecting the connectivity. It certain
designs, Calibre LVS will examine the device properties in order to resolve these
ambiguities. This is only applied to groups of ambiguous elements up to a maximum
number, specified in the rule file with the “LVS Property Resolution Maximum”
parameter. In this design, the clearest sign of failure to resolve ambiguities was when
Calibre LVS reported a 100% connectivity correspondence, but found mismatch of
properties (primarily gate widths) in a list of devices. These devices are found to be
contained within standard cells that have inputs connected to either “Vdd” or “Gnd”, and
unconnected outputs. Setting the “LVS Property Resolution Maximum” to 1000 rectifies
this problem.

149

References

1.

10.

11.

12.

13.

14.

15.

16.

A. Blanksby and C. J. Howland, “A 690-mW 1-Gbit/s 1024-bit rate-1/2 low density
parity check code decoder,” IEEE J. Solid-Stage Circuits, vol. 37, no. 3, Mar 2002,
pp. 404-412.

A. Dholakia, E. Eleftheriou, and T. Mittelholzer, “On iterative decoding for
magnetic recording channels,” in Proc. of the 2nd International Symposium on
Turbo Codes and Related Topics, 2000, pp. 219-226.

A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm,” IEEE Trans. Inform. Theory, vol. IT-13, pp. 260-269, Apr.
1967.

A. Viterbi, “An intuitive justification and a simplified implementation of the MAP
decoder for convolutional codes,” IEEE Journal on Selected Areas in
Communications, vol. 16, no. 2, pp. 260-264, Feb. 1998.

A. Worm, H. Lamm, N. Wehn, “A high-speed MAP archltecture with optimized
memory size and power consumption,” in Proc. IEEE SiPS, 2000, pp. 265-274.

A. Yeung, and J. M. Rabaey, “A 210 Mb/s radix-4 bit-level pipelined viterbi
decoder,” in Proc. IEEE ISSCC, 1995, pp. 88—-89, 344, 440.

B. Frey and F. Kschischang, “Early detection and trellis splicing: Reduced-
complexity iterative decoding,” IEEE Journal on Selected Areas in
Communications, vol. 16, no. 2, pp. 153-159, Feb. 1998.

B. Lee, S. Bae, S. Kang, and E. Joo, “Design of swap interleaver for turbo codes,”
Electronics Letters, vol. 35, no. 22, IEE, pp. 1939-1940, Oct. 1999.

B. Sklar, “A primer on turbo code concepts,” IEEE Communications Magazine,
Dec. 1997.

C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding:
Turbo-codes,” IEEE Trans Comms., vol. 44, no. 10, pp.1261-1271, Oct. 1996.

C. Berrouy, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-
correcting coding and decoding: Turbo codes,” in Proc. IEEE ICC, 1993, vol. 2,
May 1993, pp.1064—-1070.

C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-
correcting coding and decoding: Turbo codes,” in Proc. IEEE Int. Conf.
Communications, 1993.

C. Berrou, A. Glavieux, and P. Thitmajshima, “Near Shanon limit error-correcting
coding and decoding: Turbo codes,” in Proc. IEEE Int. Conf. on Communication,
pp- 947-951, Jun. 1998.

C. Berrou, P. Adde, E. Angui, and S. Faudeil, “A low complexity soft-output viterbi
decoder architecture,” IEEE International Conference on Communications, 1993,
pp. 737-740.

C. Heegard and S. Wicker, “Turbo coding,” Kluwer Academic Publishers, pp.
71-73, 1999.

D. Garrett and M. Stan, “Low power architecture of the soft-output viterbi
algorithm,” ACM ISLPED98, pp. 262-267, 1998.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.
30.

31.

32.

33.

34,

3S5.

D. Garrett and M. Stan, “A 2.5 Mb/s, 23 mW SOVA traceback chip for turbo
decoding applications,” in Proc. IEEE ISCAS, 2001, pp. 61-64.

D. Heidel, S Dhong, P. Hofstee, M. Immediato, K. Nowka, J. Silberman, and K.
Stawiasz, “High speed serializing/de-serializing design-for-test method for
evaluating a 1 GHz microprocessor,” in Proc. IEEE VLSI Test Symposium, 1998,
PP- 234-238. '

D. J. C. Mackay and M. C. Davey, “Evaluation of Gallager codes for short block
length and high rate applications,” in Proc. of IMA workshop on Codes, Systems
and Graphical Models, 1999.

D. J. C. Mackay and R. M. Neal, “Near Shannon limit performance of low density
parity check codes,” IEE Electronics Letters, vol. 33, no. 6, pp. 457-458, Mar.
1997.

D. Mackay, “Good error-correcting codes based on very sparse matrices,” JEEE
Trans. on Information Theory, vol. 45, no. 2, Mar. 1999.

E. Casseau and E. Luthi, “Architecture of a high-rate VLSI viterbi decoder,” in
Proc. IEEE ICECS, 1996, pp. 21-24.

E. Yeo, B. Nikolic, and V. Anantharam, “Architectures and implementations of
low-density parity check decoding algorithms,” JEEE MWSCAS, Aug. 2002.

E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam, “High throughput low-density
parity-check architectures,” in Proc. IEEE Globecom, 2001, pp.3019-3024.

E. Yeo, P. Pakzad, B. Nikoli¢, and V. Anantharam, “High throughput low-density
parity check decoder architectures,” in Proc. IEEE Globecom, 2001, pp.

E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam, “VLSI architectures for iterative
decoders in magnetic recording channels,” IEEE Trans. Magnetics, vol. 37, no. 2,
pp. 748-755, Mar. 2001.

E. Yeo, P. Pakzad, B. Nikoli¢, and V. Anantharam, “VLSI architectures for iterative
decoders in magnetic recording channels,” IEEE TMRC, 2000.

E. Yeo, P. Pakzad, B. Nikolic, V. Anantharam, “VLSI architectures for iterative
decoders in magnetic recording channels,” in Digests of The Magnetic Recording
Conference, TMRC 2000, on Magnetic Recording Systems, 2000, pp. E6.

E. Yeo, S. Augsburger, W. R. Davis, and B. Nikolic, “500 Mb/s soft output viterbi
decoder,” IEEE ESSCIRC, Sep. 2002.

E. Yeo, S. Augsburger, W. R. Davis, and B. Nikolic, “Implementation of high
throughput soft output viterbi decoders,” IEEE SIPS, Oct. 2002.

G. Al-Rawi; J. Cioffi, and M. Horowitz, “Optimizing the mapping of low-density
parity check codes on parallel decoding architectures,” in Proc. IEEE ITCC, 2001,
pp. 578-586.

G. Fettwies, “Algebraic survivor memory management design for viterbi detectors,”
IEEE Trans. on Communications, vol. 43, no. 9, pp. 2458-2463, Sep. 1995.

G. Masera, G. Piccinini, M. Roch, and M. Zamboni, “VLSI architectures for turbo
codes,” IEEE Trans. on VLSI Systems, vol. 7, no. 3, pp. 369-379, Sep. 1999.

I. Lee and J. L. Sonntag, “A new architecture for the fast viterbi algorithm,” in
Proc. IEEE Globecom, 2000, pp. 1664—1668.

J. Boutros, O. Pothier, and G. Zemor, “Generalized low density (Tanner) codes,” in
Proc. IEEE ICC, 1999, pp. 441-445.

36.

37.

38.

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

J. Fan and J. Cioffi, “Constrained coding techniques for soft iterative decoders,”
GLOBECOM, 1999, vol. 16, pp. 723-7217.

J. Fan, “Constrained coding and soft iterative decoding for storage,” Dissertation
for PhD, Stanford University, Dec. 1999.

J. Hagenauer and P. Hoeher, “A viterbi algorithm with soft-decision outputs and its
applications,” in Proc. IEEE GLOBECOM, 1989, pp. 47.11-47.17.

J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and
convolutional codes,” IEEE Trans. on Information Theory, pp. IT 42:429-42:445,
1996.

J. Pearl, “Probabilistic reasoning in intelligent systems: Networks of plausible
inference,” San Mateo, CA, Morgan Kaufmann, 1988.

K. Abend and B. D. Fritchman, “Statistical detection for communication channels
with intersymbol interference,” in Proc. IEEE, 1970, vol. 58, no. 5.

K. Andrews, C. Heegard, and D. Kozen, “Interleaver design methods for turbo
codes,” IEEE International Symposium on Information Theory, 1998, pp. 420.

K. Tzou and J. Dunham, “Sliding block decoding of convolutional codes,” IEEE
Trans. on Communications, vol. COM-29, no. 9, pp.1401-1403, Sep. 1981.

K. Tsukano, T. Nishiya, T. Hirai, and T. Nara, “Simplified EEPR viterbi detector
based on a transformed radix-4 trellis for a disk drive,” IEEE Trans Magnetics, vol.
35, no. 5, pt. 3, pp. 4387—-4401, Sep. 1999.

L. Bahl, J. Cocke, F. Jelinek, and R. Raviv, “Optimal decoding of linear codes for
minimizing symbol error rate,” IEEE Trans. on Inform. Theory, pp. 284-287, Mar.
1974.

L. Ping, W.K. Leung, and N. Phamdo, “Low density parity check codes with semi-
random parity check matrix,” Electronic Letters, vol. 35, no. 1, Jan. 1999.

M. Davey and D. Mackay, “Low-density parity check codes over GF(q),” IEEE
Communications Letters, vol. 2, no. 6, pp. 165-167, Jun. 1998.

M. Fossorier, F. Burkert, S. Lin, and J. Hagenauer, “On the equivalence between
SOVA and max-log MAP decodings,” IEEE Communications Letters, vol. 2, no. 5,
pp. 137-139, May 1998.

M. Lentmaier and Z. S. Ziganfirov, “Iterative decoding of generalized low-density
parity-check codes,” in Proc IEEE ISIT, 1998, pp. 149.

M. Oberg and P. Siegel, “Parity check codes for partial response channels,” in Proc.
IEEE Global Telecommunications Conference, pp. 717-722, 1999.

0. J. Joeressen and H. Meyr, “A 40 Mb/s soft-output viterbi decoder,” IEEE JSSC,
vol. 30, no.7, pp. 812-818, Jul. 1995.

P. Black and T. Meng, “A 1 Gb/s, 4-state, sliding block viterbi decoder,” IEEE
Journal of Solid-State Circuits, vol. 32, no. 6, pp.797-805, Jun. 1997.

P. Black and T. Meng, “A 140 Mb/s 32-state radix-4 viterbi decoder,” IEEE
Journal of Solid-State Circuits, vol. 27, no. 12, pp.1877-1885, Dec. 1992.

P. Black, “Algorithms and architectures for high speed viterbi decoding,”
Dissertation for PhD, Stanford University, Mar. 1993.

P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-
optimal MAP decoding algorithms operating in the log domain,” in Proc. IEEE
ICC, 1995, pp. 1009-1013.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

R. G. Gallager, “Low density parity check codes,” IRE Trans. Inform. Theory, vol.
IT-8, pp. 21-28, Jan. 1962.

R. Lucas, “Iterative decoding of one-step majority logic decodable codes based on
belief propagation,” IEEE Trans. On Comm., vol. 48, no. 6, Jun. 2000.

R. V. Joshi and W. Hwang, “Design considerations and implementations of a high
performance dynamic register file,” IEEE 12th Int. Conf. on VLSI Design, 1999, pp.
526-531.

R.M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. on
Information Theory, vol. IT-27, no. 5, pp. 533547, Sep. 1981.

S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft-output decoding
algorithms in iterative decoding of turbo codes,” TDA Progress Report, pp. 42—124,
Feb. 1996. _
S. Dolinar and D. Divsalar, “Weight distributions for turbo codes using random an
non-random interleaving,” TDA Progress Report, vol. 42-122, pp. 56—65, Aug.
1995.

S. Lin and D. J. Costello Jr., “Emor control coding: Fundamentals and
applications,” Prentice-Hall, Inc., 1983, pp. 388—426.

S. Lin, T. Kasami, T. Fujiwara, and M. Fossorier, “Trellises and trellis-based
decoding algorithms for linear block codes,” Kiuwer Academic Publishers.

S. M. Aji and R. J. McEliece, “The generalized distributive law,” IEEE Trans.
Inform. Theory, vol. 46, no. 2, pp. 325-343, Mar. 2000.

S. Sridharan and L. R. Carley, “A 110 MHz 350mW 0.6mm CMOS 16-state
generalized-target Viterbi detector for disk drive read channels,” JEEE Journal
Solid-State Circuits, vol.35, no.3, pp.362-370, Mar 2000.

T. Mittelholzer, A. Dholakia, E. Eleftheriou, “Reduced-complexity decoding of low
density parity check codes for generalized partial response channels,” JEEE Trans.
on Magnetics, vol. 37, no. 2, Mar. 2001, pp. 721-728.

T. Ngo and I. Verbauwhede, “Turbo codes on the fixed point DSP TMS320C55%,”
in Proc. IEEE SiPS, 2000, pp. 255-264.

T. Souvignier, A. Friedmann, M. Oberg, P. Siegel, R. Swanson, and J. Wolf,
“Turbo decoding for PR4: Parallel vs. serial concatenation,” in Proc. IEEE Int.
Conf. Communication, pp. 1638-1642, Jun. 1999.

T. Souvignier, M. Oberg, P. Siegel and R. Swanson, and J. Wolf, “Turbo decoding
for partial response channels”, IEEE Trans. Of Comm., vol. 48, no. 8, Aug. 2000.

V. Franz and J. Anderson, “Concatenated decoding with a reduced-search BCJR
algorithm,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 2, pp.
186-195, Feb. 1998.

Viterbi, “An intuitive justification and a simplified implementation of the MAP
decoder for convolutional codes,” IEEE Journ. Sel. Areas in Communications, vol.
16, no. 2, pp. 260264, Feb. 1998.

W. Hwang and W. Henkels, “A 500MHz, 32-word x 64-bit, eight-port self-resetting
CMOS register file,” IEEE Journal of Solid-State Circuits, vol. 34, no. 1, pp.
56—67, Jan. 1999.

W. K. Taek, D. W. Kim, W. T. Kim, E. K. Joo, J. R. Choi, P. Choi, J. J. Kong, S. H.
Choi, W. H. Chung, and K. W. Lee, “A modified two-step SOVA-based turbo

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84,

8s.

86.

87.

88.

decoder for low power and high performance,” in Proc IEEE TENCON, 1999, pp.
297-300.

W. R. Davis, N. Zhang, K. Camera, D. Markovic, T. Smilkstein, M. J. Ammer, E.
Yeo, S. Augsburger, B. Nikolic, and R. W. Brodersen, “An automated design flow
for high-throughput low-power dedicated signal processing systems,” IEEE Journ.
Solid-State Circuits, vol. 37, no. 3, pp. 420-431, Mar. 2002.

W. R. Davis, N. Zhang, K. Camera, D. Markovic, T. Smilkstein, M. J. Ammer, E.
Yeo, S. Augsburger, B. Nikolic, and R. W. Brodersen, “An automated design flow
for low-power, high-throughput dedicated signal processing systems,” in Proc. of
the Asilomar Conf. on Signals, Systems and Computers, 2001.

W. R. Davis, N. Zhang, K. Camera, F. Chen, D. Markovi¢, N. Chan, B. Nikoli¢,
and R. W. Brodersen, “A design environment for high throughput, low power
dedicated signal processing systems,” in Proc IEEE CICC, 2001, pp. 545-548.

Y. Kou, S. Lin and M. Fossorier, “Low density parity check codes based on finite
geometries: A rediscovery and more,” IEEE Trans. on Information Theory, Oct.
1999.

Y. Kou, S. Lin, and M. P.C. Fossorier, “Low density parity check codes based on
finite geometries: A rediscovery,” IEEE International Symposium on Information
Theory, 2000, pp. 200.

Y. Li, B. Vuvetic, and Y. Sato, “Optimum soft-output detection for channels with
intersymbol interference,” IEEE Trans. Inform. Theory, vol. 41, no. 3, May 1995.

G Fettweis, R. Karabed, P.H. Siegel, and HK. Thapar, “Reduced-complexity
Viterbi detector architectures for partial response signaling,” in Proc. IEEE Global
Telecommunications Conference, Singapore, Nov 13-17, 1995, pp.559-563.

T. Gemmeke, M. Gansen, and T. Noll, “Implementation of scalable power and area
efficient high-throughput Viterbi decoders,” IEEE Journal Solid-State Circuits,
vol.37, no.7, pp 941-948, Jul 2002.

T. Conway, “Implementation of high speed Viterbi detectors,” IEE Electronics
Letters, vol.35, no.24, Nov 25 1999, pp.2089-2090.

G. Feygin and P. Gulak, “Architectural tradeoffs for survivor sequence memory
management in Viterbi decoders,” IEEE Trans. Communications, vol.41, no.3,
pp.425-429, Mar 1993.

M. Sipser and D. A. Spielman, “Expander codes,” IEEE Trans. Information Theory,
vol.42, pp.1710-1722, Nov 1996.

J. Chen, M. P. C. Fossorier, “Near optimum universal belief propagation based
decoding of low-density parity check codes,” IEEE Trans. Communications, vol.50,
no.3, March 2002, pp.406-414.

T. Mittelholzer, A. Dholakia E. Eleftheriou, “Reduced-complexity decoding of low
density parity check codes for generalized partial response channels,” IEEE
Transactions on Magnetics, vol.37, no.2, pt.1, March 2001, pp.721-8.

J. Rosenthal and P. O. Vontobel, “Constructions of regular and irregular LDPC
codes using Ramanujan graphs and ideas from Margulis,” Proc. IEEE ISIT,
Washington, DC, USA, Jun. 24-29, 2001, p.5.

T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” JEEE Trans. Information
Theory, vol.47, pp.619-637, Feb. 2001.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.
105.

106.

107.

F. Berens, A. Worm, H. Michel, and N. Wehn, "Implementation Aspects of Turbo-
Decoders for Future Radio Applications,” in Proc. VTC '99 Fall, Amsterdam, The
Netherlands, Sept. 1999, pp. 2601--2605.

D. Raphaeli and Y. Zarai, “Combined turbo equalization and turbo decoding,” JEEE
Communication Letters, vol. 2, pp. 107-109, Apr. 1998.

S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Parallel concatenated trellis
coded modulation,” Proc. IEEE Int. Conf. Communications, Dallas, Tx, pp. 974-
978, Jun 1996.

“Universal mobile telecommunication system (UMTS). Multiplexing and channel
coding (TDD)”, ETSI 3GTS 25.222 document, ver. 3.1.1, Release 1999.

S. Chung; G.D. Forney, T.J. Richardson, and R. Urbanke, “On the design of low-
density parity-check codes within 0.0045 dB of the Shannon limit,” IEEE Comm.
Letters, vol.5, pp.58-60, Feb. 2001.

R. J. McEliece, D. J. Mackay, and J. Cheng, “Turbo decoding as an instance of
Pearl’s “belief propagation” algorithm,” IEEE Journ. on Selected Areas in
Communications, vol. 16, no. 2, Feb. 1998, pp. 140-152.

D. J. C. Mackay and R. M. Neal, “Near Shannon limit performance of low density
parity check codes,” JEE Electronics Letters, vol.33, no.6, pp.457-8, March 1997.
M. M. Mansour and N. R. Shanbhag, “Memory-efficient turbo decoder
architectures for LDPC codes,” Proc. IEEE SIPS 2002, San Diego, CA, Oct 2002.
C. Shannon, CE, "A Mathematical Theory of Communication," The bell system
technical journal, vol. 27, pp. 379-423, 623-656, 1948.

M. Bickerstaff, et. al., “A unified turbo/Viterbi channel decoder for 3GPP mobile
wireless in 0.18 um CMOS,” IEEE Journ. Solid-State Circuits, vol.37 no.l11,
pp1555-1564, Nov 2002,

C. Chang, K. Kuusilinna, B. Richards, and R.W. Brodersen, “Implementation of
BEE: a Real-time Large-scale Hardware Emulation Engine,” Proc. FPGA 2003, pp.
91-99, Feb 2003.

Xilinx System Generator version 3.1 for Simulink user guide, Xilinx Inc.,
http://www.xilinx.com/ipcenter/dsp/ref_guide.pdf

D. J. C. Mackay and M. S. Postol, “Weakness of Margulis and Ramanujan-
Margulis low-density parity-check codes,” Electronic Notes in Theoretical
Computer Science, vol. 74, 2003.

B. Vucetic and J. Yuan, “Turbo Codes: Principles & Applications,” Kluwer
Academic Publishers, May 2000.

J.M. Rabaey, A. Chandrakasan, B. Nikolic, "Digital Integrated Circuits: A Design
Perspective,” 2nd edition, Prentice-Hall 2002.

“Design Compiler User Guide,” Synopsys Inc., Mountain View, CA, 2003.

D. Divsalar and F. Pollara, “Multiple turbo codes for deep-space communications,”
JPL TDA Progress Report, pp. 42-121, May 1995.

S. Crozier, J. Lodge, P. Guinand and A. Hunt, "Performance of Turbo Codes with
Relative Prime and Golden Interleaving Strategies", Proceedings of the 6th
International Mobile Satellite Conference (IMSC '99), Ottawa, Ontario, Canada, pp.
268-275, June 16-18, 1999,

O. Y. Takeshita and D. J. Costello, “New deterministic interleaver designs for turbo
codes,” IEEE Trans. Inform. Theory, vol. 46, no. 6, Sep 2000, pp. 1988-2006.

108

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

J. Steensma, and C. Dick, “FPGA implementation of a 3GPP turbo codec,” Proc
IEEE Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, Pacific
Grove, CA, USA, 4-7 Nov 2001, pp.61-65.

Zhang and K. Parhi, “A 56Mbps (3,6)-Regular FPGA LDPC Decoder,” Proc. IEEE
SIPS 2002, San Diego, CA, USA, Oct 16-18, 2002, pp.127-132.

T. Bhatt, K. Narayanan, and N. Kehtarnavaz, “Fixed Point DSP Implementation of
Low-Density Parity Check Codes,” Proc IEEE DSP2000, Hunt, TX, USA, Oct 15-
18, 2000.

H. A. Loeliger, F. Lustenberger, M. Helfenstein, and F. Tarkoy, ‘Probability
propagation and decoding in analog VLSL” IEEE Trans Inform. Theory, vol.47,
pp.837-843, Feb 2001.

J. Thorpe, “Design of LDPC graphs for hardware implementation,” Proc. I[EEE
ISIT, Lausanne, Switzerland, Jun 30 — Jul 5, 2002, p.483.

J. E. Volder, “The CORDIC Trigonometric computing technique,” IRE
Transactions EC-8, pp 330-334. 1959.

B. Vasic, E. M. Kurtas, and A. V. Kuznetsov, “LDPC codes based on mutually
orthogonal Latin rectangles and their application in perpendicular magnetic
recording, “ IEEE Trans Magnetics, vol. 38, No. 5, Sep 2002, pp. 2346-2348.

K. Kuusilinna, C. Chang, etc, " Winning the SoC Revolution: Real-time System-
on-Chip Emulation," Kluwer Academic Publishers, Chap10, p. 229-253, 2003.

J. Li, K. R. Narayanan, E. Kurtas, and AC. N. Georghiades, “On the performance of
the high-rate TPC/SPC and LDPC codes over partial response channels,” JEEE
Trans. Comms, vol 50, no. 5, pp. 723-735, May 2002.

R. Lynch, E. Kurtas, A. Kuznetsov, E. Yeo, and B. Nikolic, “The search for a
practical iterative detector for magnetic recording,” Proc. IEEE The Magnetic
Recording Conference, Aug 2003.

Texas Instruments, “TMS320C6000 ™ Platform : Application Notes Abstract
Turbo Decoder Coprocessor User's Guide,” Aug 2001.

S. Borkar, “Design challenges of technology scaling,” IEEE Micro, vol.19, no.4,
pp-23-29, July-Aug. 1999.

M. Moerz, T. Gabara, R. Yan, J. Hagenauer, “An analog 0.25um BiCMOS
Tailbiting MAP Decoder,” 2000. IEEE International Solid-State Circuits
Conference, ISSCC 2000, Digest of Technical Papers, pp. 356-357, San Francisco,
CA, February 7-9, 2000.

B. Bougard, A. Giulietti, V. Derudder, J-W. Weijers, S. Dupont, L. Hoolevoet, F.
Catthoor, L. Van der Perre, H. De Man, R. Lauwereins, “A scalable 8.7nJ/bit
75.6Mb/s parallel concatenated convolutional (turbo) CODEC,” Proc. IEEE
ISSCC, 2003, pp. 88—89, 344, 440.

