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Abstract

In this report, we discuss a strategic planning problem of allocating
resources to groups of tasks organized in successive stages. Each stage
is characterized by a set of survival rates whose value is imprecisely
known. The goal is to allocate the resources to the tasks (i.e. to form
‘teams’) by dynamically re-organizing the teams at each stage, while
minimizing a cost objective over the whole stage horizon. A modelling
framework is proposed, based on linear programming with adjustable
variables. The resulting ‘uncertain linear program’ is subsequently
solved using the sampled scenarios randomized technique.



1 Problem Statement

We start by describing the basic model under study. Consider Figure 1, and
suppose that a total amount C of a single type of resource is available at
an initial stage. These resources should be committed to a series of tasks,
which are organized in successive stages, s = 1,...,N. For instance, at
the initial stage, a team z(1) = [z,(1)---z,n(1)]T is formed, where z;(1)
denotes the amount of resource allocated for the i-th task in the first stage.
In general, we denote with z(s) = [z1(s) - - - Z,(s)]T the composition of the
team that is allocated for the s-th stage, and we assume (basically without
loss of generality) that each stage is composed of a fixed number m of tasks.
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Figure 1: Multi-stage resource allocation model.

The composition of the team z(s + 1) (i.e. the team that should go to
stage s + 1) is decided just after the team z(s) has engaged and completed
the s-th stage. In our basic model, when a team engages a stage, it incurs
some losses, which are described by a matrix R(s) = diag(r(s)) of survival
rates T(s) = [ry(s)---rm(s)]T. If we denote with z(s,) the composition of
the team z(s) just after it completed the engagement with stage s, then we
have

z(s4+) = R(s)z(s).
Based on the outcome of stage s, at ‘time’ s,. we have the opportunity of re-
adjusting the composition of team, i.e. we can decide to re-allocate resources
from one task to another, before attacking stage s + 1. This means that the
composition of the team attacking stage s + 1 is given by

z(s +1) = R(s)z(s) + u(s) (1)
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where u(s) = [u1(s) - - - um(s)]7 is the decision vector of resource re-allocation
at stages s =0,...,N —1, and we set z(0) = 0. Notice that u;(s) > 0 means
that more resources are committed for the i-th task, while u;(s) < 0 means
that the resources are withdrawn from this task.

Our goal is to determine the allocations u(s), s = 0,...,N — 1, such
that a certain cost objective is minimized over the entire stages horizon, and
suitable constraints are satisfied. The problem constraints and objective are
specified in the next section.

1.1 Constraints and optimization objective

Assume first that the stage survival rates r(s), s = 1,..., N are exactly
known in advance, and consider the dynamics of the team composition (1),

z(s + 1) = R(s)z(s) + u(s), z(0)=0 (2)

where u(s) € R™, s = 0,...,N — 1 are the decision variables. We must
impose the following physical constraints on the problem.

1. Total resources constraint.
1Tu(0) < C (3)

where 1 denotes a vector of ones. The initial assignment should not
exceed the total availability of resources, C.

2. Conservation constraints.
1Tu(s)=0, s=1,...,N—-1. (4)

At each stage (except for the initial one s = 0) the net sum of the
exchanged resources must be zero.

3. Team composition constraints.
zr(s) < z(s) <zu(s), s=1,...,N. (5)

At each stage, the resources assigned to each task should remain be-
tween a-priori fixed lower limit z(s) (for instance z.(s) = 0), and up-
per limit zy(s). Notice that (5) are linear constraints on the decision
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variable U = [uT(0),...,uT(N — 1)), that can be explicitly expressed
in the form

z1(s) SO(s)U <zy(s), s=1,...,N (6)
where we defined, for s=1,...,N

B(s) = [R(s-l»l) R-12) (.. Rls-1s-1) I | O - (]m,m] (7)
RG-1L) R(s—1)R(s—2)---R(i), fori=1,...,s—1 (8)

(notice that, when forming ®(s)U, the left part of ®(s) multiplies the
decision variables 4(0),...,u(s — 1), while the zero part of ®(s) multi-
plies u(s),...,u(N = 1)).

Optimization objective. When transferring resources from one task to
another we incur a ‘transition cost,’ that we assume to be proportional to the
amount of the transferred resources, regardless of the sign. The optimization
objective is to minimize the total transition cost accumulated over the stages
horizon.

We assume that W(s) e R™™ >0, s=0,...,N — 1, are given diagonal
matrices that weight the transition costs for the different tasks at the different
stages, and therefore the total cost is expressed as

N-1
J =Y IW(s)uls)ly = WU, (9)

s=0

where W = diag(W(0),...,W(N — 1)), and the above norm is the usual?,;
vector norm, [[z||y = 3 |z4|.

Notice that minimizing J subject to certain constraints is equivalent to
minimizing a slack variable vy subject to the original constraints, plus the
constraint J < v (epigraphic form). In turn, this latter constraint can be
expressed as a set of linear inequalities in the decision variable U, introducing
a vector z € RN™ of additional slack variables:

—z2<WUK< 2
N

Remark 1 In the above approach, transitions are penalized irrespective of
the source-destination task pair, meaning that the cost is sensitive to the net

WUl <y @ { (10)
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resource reallocation to task i, u;(s), but does not take into account from
which of the other tasks these resources are drawn. It could instead be of in-
terest to attribute different transition costs to different source-destination
pairs. This could be taken into account as follows. Denote with d;;(s)
the resource amount (positive or negative) to be transferred from task j
to task 7, ¢ # j = 1,...,m, before engaging stage s. Then, we write

u;(s) = 3 ;.4 dij(8), or in vector notation

u(s) = D(s)1, (11)

where [D(s));; = d;;(s) is a skew-symmetric matrix. Equation (11) represents
a breakdown of the total transferred amounts u(s) into the individual com-
ponents d;;(s). We can therefore add the variables d;;(s) to the problem, and
enforce the equality constraints (11), for s=1,..., N — 1. Subsequently, the
d;j(s) variables are inserted in the cost, by substituting to each term propor-
tional to |u;(s)| in (9), a term proportional to a positive linear combination
of |di1(s)l,-- -, |dim(s)|- O

From the discussion in this section, we conclude that the basic resource
allocation problem is expressed as a standard linear program in the variables
U, &, v which can be solved with great efficiency:

51:27 subject to: (3), (4), (6), (10). (12)

Remark 2 (Integer solutions) Although in some applications it can be
reasonable to allocate fractional resources to tasks (consider for instance
money as a resource, and different assets as the tasks), in some other ap-
plications the resources to be allocated must be integer multiples of a some
type of unit. This is for instance the case when the resources are mobile
agents such as robots, UAVs, ete. In this situation, the correct problem for-
mulation would be in the form of an integer linear program. However, due
to computational difficulties in dealing with integer programs, in this report
we do not use this formulation. Instead, when we know in advance that the
resulting optimal solution will need to be approximated by an integer one,
we introduce an ‘immunization’ technique that guarantees the satisfaction
of constraints against all possible approximation errors. This technique is
discussed in Section 1.3. 0



1.2 Multiple resources allocation

We next briefly describe how the basic allocation model previously discussed
can be extended to deal with multiple types of resources. We hence assume
hereafter that at stage s = 0 we have n different types of resources that should
be allocated to the m tasks at stage s = 1, and subsequently re-organized
dynamically. We denote with Ci, k = 1,...,n the total availability of the
k-th resource at the initial stage, and we let z(s) € R™ be the vector
describing the composition of the team that is sent to stage s, s=1,..., N.
In particular, z(s) is now divided into m blocks

z1(s)
2(s)=|

Zm(S)
where each block z;(s) € R, =1,...,m is of the form
z((s)

zi(s) = :
z{(s)

where zgk)(s) denotes the amount of resource of type k that is allocated to
the i-th task of stage s. The decision vector of resource re-allocations is
partitioned similarly as

- ui(s)
u(s) = :
i Um(s)
where )
u{!(s)
ui(s) = :
| u™(s)

ugk)(s) denoting the amount of resource of type k that we decide (upon
completion of stage s) to add or subtract to the i-th task. With this notation,
the team dynamics retain the structure (1)

z(s + 1) = R(s)z(s) + u(s)
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where the survival rate matrix R(s) € R™ ™" is block-partitioned con-
formably to z(s),u(s). The total resources constraint (3) now writes

(1T @ eT(n, k))u(0) < Cr, k=1,...,n

where eT(n, k) denotes a vector in R™ with all zeros, except for the k-th
component, which is set to one. Similarly, the conservation constraints (4)
are now expressed as

(1T @ e (n, k))u(s) =0, k=1,...,n; s=1,...,N-1.

Basically, all the rest of the problem model and solution goes through in the
same way as described for the basic problem with a single resource.

1.3 Dealing with integer approximations

As discussed in Remark 2, in some applications we need to deal with integer
quantities in problem (12). In this situation, both the team composition z(s)
and the re-allocations u(s) must be integers. This, however, is in contrast
with the dynamic model (2), since R(s) is real (its elements are in fact
probabilities of survival), and therefore z(s + 1) will result to be real, even
if z(s), u(s) are integer vectors. One idea is to take into account into the
dynamic model the presence of integer approximation errors. In particular,
we assume that a first error ((s) is introduced when R(s)z(s) is replaced
by its integer approximation, and a second error g(s) is due to the integer
approximation of u(s). The dynamic model now becomes

z(s+1) = R(s)z(s) + C(s) + (u(s) + e(s)) (13)

where [[{(s)|lcc < 0.5, ||o(s)]|oo < 0.5. We now review the problem con-

straints, considering the presence of these errors.
The constraint (3) should now be ‘immunized’ against approximation
errors, i.e. it becomes

17u(0) +17(0) £ C,  Vp(0) : [lo(0) ]| < 0.5
which, since p(0) € R™, simply writes

17u(0) + -7;— <C. (14)
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The conservation constraints (4) are equality constraints, and therefore im-
pose a restriction on the allowable approximation errors o(s), s=1,...,N —
1, which must hence be assumed to belong to the set = = {2 € R™ : ||2||o0 <
0.5, 17z = 0}. With this position, (4) remain unchanged.

For the team composition constraints (5), notice that setting o = [o7(0),...

1)]T and ¢ = [0y m,¢T(1),...,¢T(N = 1))T, we have
z(s) = @(s) (U +o0+¢)
and hence the constraints

z1(s) S O(s) (U+po+¢) S zuy(s), VoeZM ¢cez®™, fors=1,...,N
(15)

=) <

ZM = {[0ym, 2], zva]" 1 2 € R™, ||zi]l0 < 0.5,4=1,...,N — 1},

where
{[], 21" : |l21lloo < 05,22 € {EX E x --- x E}

In turn, the constraints (15) are equivalent to

25U+  sup  B(s)(e+() < zuy(s)
ee=W) (eZ(M)

e()U+ _nf  B(s)e+() = zL(s).

e€EWN) (ez(M)

The values of g,( attaining the previous sup (say 5(s), {(s)), and inf (say

0(s),¢(s)) are determined solving two linear programs, and therefore the

composition constraints finally write
B(s)(U + a(s) + {(s))
(s)(U + g(s) +¢(s))

< zy(s) (16)
2 zr(s), (17)
fors=1,...,N.

Finally, we notice that the constraints related to the objective can be
treated similarly to the previous case. Specifically, the inequalities (10) now

write ~ .
WU+ sup  W(e+(¢) <z

g€EN) cezZ(N)

WU+ _dnl, Wie+0)> -
+ees(1"l),(ezm) (9+C)_ z (18)

Nm
Zzi S Y,
=1

where the values of g, { attaining the extrema can again be computed solving
two linear programs.



2 Resource Allocation under Uncertainty

The formulation introduced in the previous section hinges on the very un-
realistic hypothesis that the values of the survival rates r(s) at the various
stages are exactly known. In the following, we relax this assumption and
consider the problem of resource allocation under uncertainty. Specifically,
we assume that the survival rate vectors r(s) are of the form

r(s) =7(s) +4d(s), s=1,...,N—-1

where 7(s) is the known nominal value of the rate, and é(s) € A(s) repre-
sent unknown ‘fluctuations’ or uncertainties around the nominal value, with
A(s) C R™ representing the allowable range of variation of the uncertainties.

A first idea in this respect would be to apply a ‘robust optimization’
methodology (see e.g. [2, 4]), and solve a version of problem (12) where the
constraints are enforced for all admissible values of the uncertainty. This
approach is however likely to be very conservative, since it neglects an im-
portant feature of the problem at hand, that is, there exist a stage schedule
according to which the decisions have to be taken. To clarify the concept, we
observe that not all the adjustments u(s) need to be computed in advance
(i.e. at the initial stage s = 0). Instead, only the decision u(0) need to be
taken at s = 0 (here-and-now decision), while before deciding for u(1), we
can wait and see what happens to the teams as they complete stage s = 1.
In other words, the decision at u(1) can benefit from the knowledge of the
realization of the ‘uncertainty’ at s = 1. More generally, we observe that
each decision u(s), s =1,..., N — 1 cax benefit from a ‘basis of knowledge’
of what happened from the initial stage up to s.

To exploit this information in a manageable way, we here assume that
each decision vector u(s) can be adjusted in function of the realization of
r(s), and we explicitly set up an affine dependence of the form

u(s) = a(s) + H(s)d(s) (19)

where now %(s) € R™ and H(s) € R™™,s=0,...,N-1 (with H(0) = 05, )
are the new optimization variables. In more compact matrix form, we have
that

U=U+H§
where U = [a7(0)---aT(N — 1)]T and H = diag(Omm, H(1),...,H(s — 1))
contain optimization variables, and § = [01,,67(1) --- 6T(N = 1)]T € D
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contains the uncertainty terms, where D = {[0;.q] : ¢ € A(1) x --- X
A(N -1)}.

With these positions, we now write the ‘adjustable robust’ version (see
e.g. [1]) of our optimal allocation problem as

m(i7n ~ subject to: (20)
’Y!z’ ¥
1Tg(0) < C (21)
1Ta(s)=0; s=1,...,.N—1 (22)

1TH(s) =0y pm; s=1,...,N-1 (23)
z1(s) < &(s,08) (U + HS) < zy(s), (24)

V6eD;, s=1,...,N (25)
-2<WU+HS) <z Y5€D (26)
Nm
Zzi <7 (27)
i=1

In the above problem, we used the notation &(s,d) to underline the fact
that the matrix ®(s) defined in (7) depends on the survival rates R(s) =
diag(r(s)), s=1,..., N — 1, and hence on the uncertainty 4.

Problem (20)~(27) is a robust linear program, i.e. a linear program having
a continuous infinity of constraints, see (1, 2]. In the mentioned papers, the
authors show that in several ‘tractable’ cases the robust linear program can
be converted ezactly into a standard convex program having a finite num-
ber of constraints, and hence solved efficiently via interior point methods.
Problem (20)-(27), however, does not fall among the tractable cases, since
the uncertainty is affecting the problem data in a non-linear way, and the
‘recourse matrix’ (i.e. the matrix ®(s) that multiplies the adjustable vari-
ables, see [1]) is itself dependent on the uncertainty. Besides this technical
difficulty, another motivation for not pursuing the worst-case approach is
that this approach places evenly the importance among the possible uncer-
tainty outcomes. In practical applications, one instead typically knows that
some outcomes are ‘more likely’ than others, and may wish to exploit this
knowledge when computing a solution.

We next describe a recently developed methodology for solving a proba-
bilistic relaxation of problem (20)-(27).
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3 Scenario-based Optimization

The idea behind scenario-based solutions of robust linear programs is very
simple: instead of considering the whole infinity of constraints of the prob-
lem, we consider only a finite number M of these constraints, selected at
random according to a given probability distribution. Specifically, the con-
straints in (20)-(27) are parameterized by § € D. Therefore, assuming a
probability measure II over D, we first extract M (we shall discuss later
‘how large’ M should be) independent and identically distributed samples of
6: 6, ... 8™ which constitute our uncertainty scenarios upon which we
base our design. We remark that the choice of the probability measure IT now
reflects our additional knowledge on which outcomes of the uncertainty are
more likely than others. Subsequently, we solve the ‘scenario counterpart’ of
the robust problem (20)—(27), which is defined below.

'r,IfI.lllfI.lf?’Y subject to: (28)
1Tg(0) < C (29)
1Ta(s)=0; s=1,...,N-1 (30)
1TH(s) =0y;m; s=1,...,N—1 (31)

z(s) < 8(s,69) (U + HSY) < zy(s), (32)
i=1,....M; s=1,...,N (33)
—¢<WO+HM)<E i=1,...,M (34)

Nm
Y a<n. (35)

- i=1

A first immediate consideration about (28)—(35) is that it is a standard linear
program (with a possibly large, but finite number of constraints), which is
easily solvable by LP numerical codes. A fundamental question is however
related to what kind of guarantees of robustness can be provided by a solution
that a-priori satisfies only a finite number M of selected constraints. A
good news in this respect is that, if we sample a sufficiently large number
of constraints, then the scenario solution will be ‘approximately feasible’
for the robust problem (20)-(27), i.e. the probability measure of the set of
uncertainties such that the corresponding constraints are violated by the
scenario solution goes to zero rapidly as M increases. This result has been
recently derived in [3], and it is next contextualized to the problem at hand.
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3.1 Approximate feasibility of scenario solutions

Consider a generic robust LP in the form

min ¢’z subject to A(§)z <b, VEe X (36)

where £ € R™ and X C R’ is a closed set, and no restrictions are imposed on
the dependence of the data matrix A on £. Assume that (36) is feasible, and
suppose that a probability measure II is imposed on X. Then, the scenario
counterpart of (36) is the linear program

min ¢’z subject to A((M)z <b, i=1,...,.M (37)

where £, i =1..., M are iid samples of ¢ € X, extracted according to prob-
ability II. Assume further that (37) has a unique optimal solution z* (this
uniqueness assumption is technical and could be removed, see [3]). Clearly,
the scenario solution z* depends on the random sample ¢¥, i = 1..., M,
and it is hence a random variable. The following theorem highlights the
‘approximate feasibility’ property of this solution.

Theorem 1 Fiz a probabilistic risk level ¢ € (0,1) and a confidence level
B € (0,1), and let z* be the optimal solution of the scenario problem (87),
computed with

n
>
M> e 1. (38)
Then, it holds with probability at least 1 — 3 that
Prob{¢ € X' : A(¢)z* £ b} <e. (39)

In other words, this theorem states that the measure of the set of uncer-
tainties that could possibly violate the inequality A(¢)z* < b can be made
arbitrarily small by sampling a sufficient number of scenarios, and therefore
we say that the scenario solution is (with high probability 1 — 3) approxi-
mately feasible for the robust problem (36), i.e. it satisfies all but a small set
of the original constraints.

3.2 A-posteriori analysis

It is worth noticing that a distinction should be made between the a-priori
and a-posteriori assessments that one can make regarding the probability
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of constraint violation for the scenario solution. Indeed, before running the
optimization, it is guaranteed by Theorem 1 that if M > n/e — 1 samples
are considered, the solution of the scenario problem will be e-approximately
feasible, with probability no smaller than 1— 8. However, the a-priori param-
eters ¢, 3 are generally chosen not too small, due to technological limitations
on the number of constraints that one specific optimization software can deal
with.

On the other hand, once a scenario solution has been computed (and
hence z = z* is fixed), one can make an a-posteriori assessment of the level
of feasibility using Monte-Carlo techniques. In this case, a new batch of
M independent random samples of £ € X is generated, and the empirical
probability of constraint violation, say V; ir(z*), is computed according to the

formula Vi (z* M 1(A(E™)z* < b), where 1(-) is the indicator func-
tion. If V(z*) grob{& € & : A(§)z* £ b} denotes the true violation
probability, then the classical Hoeffding’s inequality, [5], states that

Prob{|Vj;(z*) — V(z*)| < &} > 1 — 2exp (—282M),

from which it follows that IVM (z*)—V(z*)| £ € holds with confidence greater
than 1 — 3, provided that

log 2/
N> o (40)

test samples are drawn. This latter a-posteriori test can be easily performed
using a very large sample size N because no optimization problem is involved
in such an evaluation.

Returning to our resource allocation problem, the solution procedure that
we propose is the following one.

1. Select the a-priori probabilistic risk level e and confidence 3, and com-
pute the number of necessary scenarios according to (38). We remark
that experimental numerical experience showed that the actual proba-
bilistic levels achieved by the scenario solution are usually much better
than the ones established a-priory by means of Theorem 1. This fact
suggest in practice not to insist on too small a~-priori levels.

2. Solve the scenario LP (28)—(35), obtaining the optimal variables v*, 2*, U*, H*.

3. Test a-posteriori the obtained solution via Monte-Carlo, using a large
sample size, so to determine a very reliable estimate of the actual prob-
ability of violation of the scenario solution. If this level of probability
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is acceptable for the application at hand, we are finished, otherwise we
may try another scenario design step, taking into account a larger set
of sampled scenarios, and iterate the procedure.

3.3 Interaction models

In this section, we propose an iterative heuristic for the solution of a modi-
fied allocation problem. Consider the generic robust LP problem formulated
in (36). In deriving the scenario counterpart of this problem, we assumed
that a fized probability distribution was assigned on the uncertain parame-
ter £&. In terms of the actual resource allocation problem, this assumption
means that the survival rates are random variables, and that we know a-
priori their probability distributions. However, a more realistic model of the
problem should be able to take into account interaction effects between the
decision variables and the uncertainties. By interaction we here mean that
the probability distribution of the survival rates of a certain stage could be
itself dependent on the amount of resources that we commit for that stage.
For instance, the overall chance of surviving a given stage may increase if we
send more resources to that stage.

A way of modelling this interaction in our generic framework (36) is to
assume that the probability distribution on ¢ € X depends on z, that is,
we assign a conditional distribution II(¢|z) on £. Clearly, if interaction is
present, we can no longer apply directly the scenario approach, since the
correct distribution according to which we need to sample the scenarios is
unknown. We hence propose the following iterative heuristic to solve the
problem in presence of interaction.

1. Let an initial solution %), k = 0 be available;

2. Draw random scenarios £V, ..., £ according to probability II(¢]z®),
and solve the resulting scenario problem. Let k «— k& + 1, and denote
with z*) the optimal scenario solution;

3. Repeat 2., until some suitable convergence condition is reached.

The effectiveness of this heuristic needs to be tested on numerical examples.
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4 Numerical Examples

In this section, we address the problem of allocating UAVs (Unmanned Aerial
Vehicles) optimally and dynamically in order to perform various sequential
tasks where risk is present due to hostile opponents. In practice, it is often
required to allocate UAVs in teams in order to perform various sequential
tasks in a hostile environment where their survival rates are uncertain. This
makes this particular application a good illustration of our method.

4.1 The nominal problem

In this problem, we consider that our opponent has 5 different types of equip-
ments, namely small SAM (surface to air missile), medium SAM, large SAM
and the Early Warning Radars (EWRs). All kinds of SAMs have destructive
capability. However, the EWRs and the Long SAM-fes(fire control sensor)
work as tracking and sensing tools and don’t have any destructive capabil-
ity. Their destructive ranges are given in Table 1. The enemy equipments
with higher destructive ranges are riskier to destroy than that with lower
destructive ranges.

Small SAM | Medium SAM | Large SAM | Long Sam-fcs | EWR

Range (km) 25 50 100 0 0

Table 1: Ranges of opponent’s equipments

The controller needs to assign UAVs to teams in order to perform six
main tasks, which are destroying 6 enemy EWRs, namely EWR1, EWR2,
EWR3, EWR4, EWRS5 and EWR6. However, due to the presence of other
enemy SAMs, it is not possible to destroy all the 6 targets with an acceptable
risk level, unless some other enemy SAMs are destroyed. As a result, in
order to perform the main tasks under an acceptable risk level, we need to
destroy other targets first. We define primary targets as the targets which
are originally assigned to be destroyed and secondary targets as the targets
that need to be destroyed in order to reduce the risk inherent to the mission
to the primary targets. Hence, the assignment problem becomes a sequential
and a dynamic one. We perform the assignment in ‘waves’ (stages): we start
the assignment process by forming teams in the first wave in a way that they
destroy some assigned targets that are under a threshold risk level. Once
the targets are destroyed at the first stage, the risk for the targets to be
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destroyed in the second wave is reduced under the threshold level. At the
end of the first wave, we reassign the team composition among the survived
UAVs in order to destroy the targets assigned for the second wave. We keep
reassigning till we destroy all the assigned targets in all the stages. In this
experiment, the targets to be destroyed in various stages are input data, as
described in Table 2. '

Threat Name Objective Classification | wave
Medium SAM 27 Secondary 1
EWR3 Primary 1
EWR 1 Primary 1
Long SAM-fcs 3 Secondary 1
Medium SAM 5 Secondary 1
Medium SAM 3 Secondary 1
Medium SAM 28 Secondary 1
Long SAM 14 Secondary 2
EWR 2 Primary | 2
Long SAM 2 Secondary 2
Medium SAM 9 Secondary 2
Medium SAM 2 Secondary 2
Medium SAM 30 Secondary 2
Long SAM-fecs 4 Secondary 2
Medium SAM 10 Secondary 3
Long SAM 8 Secondary 3
EWR 4 Primary 3
Medium SAM 12 Secondary 3
Long SAM 5 Secondary 4
Medium SAM 13 Secondary 4
Long SAM 7 Secondary 4
Medium SAM 14 Secondary 4
EWR 5 Primary 4
EWR 6 Primary 4

Table 2: Tasks

According to the input data, we define m, = [7 6 4 6]T € RY, where N
denotes the total number of stages, and m,(s) denotes the number of tasks at
the stage s. In order to be consistent with notations described earlier in the
paper, we define m := max;(my(z)) and therefore we assign m = 7 tasks at
each stage. However, if the number of tasks is [ < m in stage s, we add extra
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slack (m — I) tasks in that stage, such that 0 < z;(s) < Oforalll < i < m.
We also assume that the cost for UAV allocation at the first wave is 1 unit
and the transaction cost in the later waves is T'C' units,
where C is an experimental variable. Total number of available UAV is
40. The nominal survival rate of an UAV when assigned to destroy medium
SAM, long SAM, and EWRs are 0.65, 0.5, and 1 respectively. Moreover,
there is an additional constraint imposed in this resource allocation problem:
at any stage, at least one UAV is required to be assigned to each target.

We ran the experiment with different transition costs TC = 0,0.9, 1, 100, 000
and the resulting team constitutions are as shown in Table 3-6. In the later
part of the paper, when we mention 7C = oo, we actually mean that the
experimental run was performed with ¢c = 100,000. Total cost and the to-
tal number of UAVs required for the various assignments are summarized in

Table 7.

Stage 1 Stage 2 Stage 3 Stage 4
Team 1 | Medium SAM27 (1) [ Long SAM14 (1) | Medium SAM10 (1) Long SAM5(1)
Team 2 EWR3 (3) EWR2 (4) Long SAMS (1) Medium SAM13(1)
Team 3 EWRI (3) Long SAM?2 (1) WEWR4(4) Long SAM7(1)
-Team 4 | Long SAM-fcs3 (1) | Medium SAM9(1) | Medium SAM12 (1) | Medium SAM14(1)
Team 5 | Medium SAMS5 (1) | Medium SAM30(1) (0) EWRS5(1)
Team 6 | Medium SAM3 (1) | Long SAM-fcs4(1) (0) EWRS6(1)
Team 7 | Medium SAM29 (1) (0) (0) (0)

Table 3: Task Assignment with T7C = 0

Stage 1 Stage 2 Stage 3 Stage 4
Team 1 | Medium SAM27 (1) | Long SAM14 (1) | Medium SAM10 (1) Long SAM5(1)
Team 2 EWR3 (5) EWR2 (5) Long SAMS (1) Medium SAM13(1)
Team 3 EWRI1 (2) Long SAM2 (1) WEWRA4(4) Long SAM7(1)
Team 4 | Long SAM-fcs3 (1) | Medium SAM9(1) | Medium SAM12 (1) | Medium SAM14(1)
Team 5 | Medium SAMS5 (1) | Medium SAM30(1) (0) EWR5(1)
Team 6 | Medium SAM3 (1) | Long SAM-fesd(1) 0) EWRS6(1)
Team 7 | Medium SAM29 (1) (0) (0) 0)

Table 4: Task Assignment with TC = 0.2

It is clear from Table 7 that the total cost and the total number of UAVs
required increase with the increase of transition cost. When T'C = oo, the

17




Stage 1 Stage 2 Stage 3 Stage 4

Team 1 | Medium SAM27 (2) [ Long SAM14 (1) | Medium SAM10 (1) Long SAM5(1)

Team 2 EWR3 (4) EWR2 (4) Long SAMS (4) Medium SAM13(1)
Team 3 EWR1 (5) Long SAM2 (5) ~ EWRA4(3) Long SAM7(1)
Team 4 | Long SAM-fcs3 (1) | Medium SAM9(1) | Medium SAM12 (1) | Medium SAM14(1) |
Team 5 | Medium SAMS5 (2) | Medium SAM30(1) 0) EWR5(1)

Team 6 | Medium SAM3 (2) | Long SAM-fcs4(1) (0) EWR6(1)

Team 7 | Medium SAM29 (1) 0) (0) (0)

Table 5: Task Assignment with 7C = 1

Stage 1 Stage 2 Stage 3 Stage 4
Team 1 | Medium SAM27 (8) | Long SAM14 (5) | Medium SAM10 (2) Long SAMS5(1)
Team 2 EWR3 (2) EWR2 (2) Long SAMS (2) | Medium SAM13(1)
Team 3 EWR1 (2) Long SAM2 (2) WEWR4(2) Long SAM7(1)
Team 4 | Long SAM-fes3 (8) | Medium SAM9(4) | Medium SAM12 (2) | Medium SAM14(1)
Team 5 | Medium SAMS5 (4) | Medium SAM30(2) (1) EWRS5(1)
Team 6 | Medium SAM3 (4) | Long SAM-fcs4(2) (1) EWR6(1)
Team 7 | Medium SAM29 (2) (1) () (1)

Table 6: Task Assignment with TC = oo

team assignment becomes static and produces higher total cost.

If the survival rates are certain and accurate, the assignments obtained by
using our algorithms produce the minimum cost, while using the minimum
number of UAVs.

4.2 The Robust Counterpart

In the experiment, we assume that the survival rates of UAVs while en-
countering SAMs are not certain. Instead, the survival rates are stochastic.
We suppose for the purpose of this example that the survival rates while
encountering medium SAMs and long SAMs follow uniform distributions
U[0.45 ,0.55] and U[0.6 ,0.7] respectively. Using the algorithm discussed in
Section 3, we ran the experiment with varying T'C. In each case, we randomly
picked 15 sample points. Though the algorithm doesn’t always guarantee a
team assignment that satisfies all the constraints, it does in most of the tested
cases. We ran each of the experiment 20 times . In each of the experiment
with a fixed TC, our algorithms produce assignments that yield a total cost
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Total Cost | Total Number of UAVs
TC=0 11 11
TC=10.2 15.02 13
TC =1 23.98 17
i TC = 30 30

Table 7: Total cost incurred and total number of UAVs required

and the total number of UAVs required to complete all the tasks. We com-
pute the averages of these two quantities over all the runs. The summary is
shown in Table 8.

Average Total Cost | Average Total Number of UAVs | % Successful run
TC=0 12.06 12 85%
TC =10.2 15.56 13 90%
TC=1 26.20 17 80%
TC =00 37 36.96 85%

Table 8: Total cost incurred and total number of UAVs required

We observe that even with the presence of uncertainty in the survival rate,
our algorithm performs well. In most of the runs, the stochastic algorithm
is able to satisfy all the constraints.

Moreover, we ran an experiment where the survival rate is stochastic but
the nominal team assignments are used. We record the percentage of time the
nominal assignment produces successful run (satisfies all the constraints) and
compare the results with the robust counterpart. The comparison is shown in
Figure 2. We observe that robust algorithm provides successful assignment
significantly more often than the nominal counterpart under uncertainty.

We conclude that the robust assignment algorithm based on robust linear
program performs very well even if the survival rate is uncertain.

5 Conclusion

We have proposed a strategic planning scheme that allocates resources to
groups of tasks organized in successive stages. Our algorithms allocate the
resources to the tasks (i.e. form ‘teams’) by dynamically re-organizing the
teams at each stage, while minimizing a cost objective over the whole stages
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Figure 2: Percentage of the runs when all the constraints are satisfied.

horizon. Furthermore, we have proposed an algorithm based on ‘linear pro-
gramming with adjustable variables,” that can solve uncertain linear program
by means of the sampled scenarios randomized technique. We have applied
our algorithm to a problem of UAVs allocation in an uncertain and risky
environment. We have shown that our model provides an optimal solution
to the problem while satisfying all the constraints in most of the runs.

In the specific context of UAV allocation, many further issues remain open
for numerical investigation. First, we have here considered a fixed statistical
model for the survival rates. However, a model that takes into account
‘interactions’ (see Section 3.3) or at least a saturation on the survival rates
seems better suited for the application at hand. Also, we would like to add
origin-destination dependent transaction costs at each stage in our model, as
discussed in Remark 1, as well as different types of UAVs.
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