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Abstract
Enhanced, Quantitative Analysis of Resist Image Contrast upon Line Edge Roughness (LER)
by
Michael Victor Williamson
Doctor of Philosophy in Electrical Engineering
University of California, Berkeley

Professor Andrew R. Neureuther, Chair

This thesis examines the dependence of photoresist line edge roughness (LER) on litho-
graphic aerial image contrast. A wide range of image contrasts are created using a double
exposure programmed image technique where the total exposure dose and the ratio of fore-
ground to background exposure dose are varied. As contrast is altered, one-dimensional LER
and two-dimensional side edge roughness (SER) are measured on UVII-HS, UV210, SEPR-
463, and Apex-E.

Two-dimensional SER studies of around 20 samples focus upon the shape of photoresist
roughness. Roughness peak to peak spacing has a bimodal distribution, with one mode dis-

tributed around roughly 30 nm and the other mode centered around 160 nm. Roughness cur-

vature is on the order of 1°, much wider than the atomic force microscope (AFM) probe tip
used to accurately measure roughness.

LER is first examined with multiple photoresists at 9 different contrast levels each. Some
unexpected results of this experiment lead to a new experiment and to the creation of a new
form of defining contrast based solely upon the background exposure, the background con-
trast. This contrast is orthogonalized as best as possible to the standard (max - min) contrast
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and the image slope at clear dose, and approximately 200 LER measurements are collected at

8 different contrast levels. Rigorous statistical analysis conclusively proves that LER tracked

background contrast best, with LER « background contrast~! approximately. The statistical
F-ratio fitting LER measurements to a predicted LER model using background contrast was
163.3, whereas the F-ratio fitting data to a predicted LER model using the next best form of

contrast was 56.1.

Finally, an image deblurring algorithm often used in astronomy was applied to scanning
electron microscope (SEM) images using 3 different SEM machines in order to improve
image quality in the high frequency domain and obtain better LER measurements on these
SEMs. The algorithm was rigorously tested. It was able to deblur SEM images in most any
cases and it altered LER measurements roughly 11-15%, however statistical variation in LER
among the samples was so large than any potential improvements in LER measurement accu-
racy were undetectable. Nonetheless, som;e unexpected benefits of the deblurring algorithm

are that it can help troubleshoot SEM machines and create a larger operating specification

Lt LT
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window for the SEM tool.

Professor A.R. Neureuther

Committee Chairman



Acknowledgements

No experience occurs in a vacuum. The completion of a dissertation is perhaps the best
example of this truism. Professor Andy Neureuther, my advisor, provided incalculable guid-
ance, support, and trust in my capabilities. He is a brilliant and extremely well-rounded indi-
vidual and I enjoyed being able to work under his tutelage. Most of all, I enjoyed watching
how his mind worked. He understands optics on an instinctive level, envisioning solutions in
his head during breakfast at least as often as with a pen and paper. I would also like to thank
Professor Jeffrey Bokor. He is an amazing instructor, explaining extremely complicated con-
cepts and mathematics in optics with ease. I only hope I can keep all of that knowledge in my
head. I had some wonderful discussions with Professor Grant Willson at the University of
Texas- Austin. He provided a great deal of insight into the chemistry of photoresists, and the
reaction and diffusion mechanisms after lithographic exposure. 1 had many wonderful
instructors and classes during my graduate studies. I want to quickly thank Professors Chen-
ming Hu, Eugene Haller, Costas Spanos, Nathan Cheung, Tsu-Jae King, Michael Lieberman,
and David ?resti, as well as the professors mentioned earlier, for providing excellent classes
that I thoroughly enjoyed.

Many thanks go to Professor William Oldham, SRC, and DARPA for providing a research
platform that spanned UC- Berkeley, Stanford, UT- Austin, Georgia Tech, and several corpo-
rations. I would specifically like to thank Dr. Houle and Dr. Sanchez at IBM Almaden for
enlightening discussions and ASM Lithography for the stepper tool. This collaboration pro-

vided an opportunity to interact with experts throughout the entire country on a fairly regular
v i



basis. This Lithography Network research, and my paycheck for several years, was supported
in full by SRC program 01-MC-460 and DARPA program MDA972-01-1-0021.

I would also like to thank all my fellow colleagues in the research group for all of their
help. Please don’t be offended by the barrage: Tom Pistor, Kostas Adam, Yunfei Deng, Mike
Lam, Garth Robins, Yashesh Shroff, Mike Shumway, Jacob Poppe, Dan Ceperley, Frank Gen-
nari, Greg Mclntyre, Hideaki Oshima, Sachan Madahar, Yijian Chen, and Scott Hafeman.
Yash, thanks for providing me a daily distraction from work (or was it the other way around?).
I am especially grateful towards Lei Yuan, Ebo Croffie, and Mosong Cheng for the numerous
discussions we had regarding photoresist acid diffusion, reaction and development. Big
thanks go to Jason Cain for helping me through the statistics, making sure I properly knew
what things like “independently, identically, normally distributed” meant. Vivian Kim and
Ruth Gjerde, you helped me muddle through the red tape of academia; I am very grateful. I
also want to send thanks to Kim Chan for all her help with experiments and Xiaofan Meng for
help with the atomic force microscope. I owe Evan Stateler my gratitude for ensuring that the
stepper and the electron microscope were in»such wonderful conditio;l.

Lastly, I would like to thank all those who helped keep me sane through all the tough peri-
ods. Mom, Dad, I obviously owe you everything. Sorry I’ll be leaving you once again as I
head up to Portland. Brian, Rich, I promise not to send any more Fourier-transformed family
photos. Herr Doktor Lau, I already miss our adventures, ranging from Beauty Bar to the
American River. Jeff, Jerry, Tim, Andy, Mark, and Vonnie, thanks for sharing my obsession
with games. Jolese, I’ll miss our meandering talks. Most of all, I want to thank my wife
Diana. You saw me through thick and thin, most of the time even with a smile on your face. 1

am so happy and lucky to have you in my life. I owe my eternal gratitude to Awmawni;
ii



thanks for accepting me into your family. Now if only I can figure out how to spell that with
Latin characters. Finally, I would like to thank San Pedro for spiritual guidance and aware-

ness.

“No puedo mas”

-- El ingenioso hidalgo Don Quijote de la Mancha, part II, Miguel de Cervantes

iii



Table of Contents

CHAPTER 1. INtroduction ...........ccccccccreniinninerccionsenssensenssecssesssseissnsssnesssesssessassssessasssessns 1
CHAPTER 2. Lithographic Imaging and Pattern Transfer ...........ccccocenvvvvnnnneniennnnns 9
2.1 The Aerial Image Profile ..........ccccceeueuene. retressssresas s Rt ras Rt ResRss R s R s e e R 9
2.2 Photoresist Response to Aerial Image Profile ........cccocvrecervecensecnsccnsennsecscscsansesscsesnes 13
2.3 Creating Various Aerial Image Profiles ..........ccccccecreeecenrnnsnscnesncenecsssseesassssossessessesnes 15
2.4 Deprotection Reactions and Kinetics, and Photoresist Development ...........cccceeveuenen. 19
2.5 SUINIMATY .vvierereioriemcrseensasessasasesssassssassssassseesssssssasesssssssessssasessssssssssssssssssnasossssssssasssnssss 28

CHAPTER 3. Side Edge Roughness and Analysis in the Frequency Space Domain . 30

3.1 Side Edge Roughness Experimental SEt-Up ........cccccrersircrcrerseesissssescssessessessesassasseones 30
3.2 Side Edge Roughness RESULLS ........cccovierirnrcenecennuisnreninsnerssnsssossssessssnessssseessssssassessonss 34
3.3 Side Edge Roughness Shape .........ccccccicivnennninrensensnnsesssssssasssscsssssseesssssssssssssessessssnsses 35
3.4 CONCIUSIONS ..cuereviicerrurcnrarennansnenesssssssssssssnsnsssossossssssssssssesssessesessssssesesssesssssossssssssssssaons 38
CHAPTER 4. Line Edge Roughness versus Aerial Image Contrast: Multiple ...............

RESISES .......coeiiieiireietritcticcecctesetsessse e csstssse st e nesse e ssessbesabe s 40
4.1 LER versus Contrast (Multiple Resists) Experimental Set-Up ......ccccccevcvvenvcrcnencnnce. 40
4.2 LER versus Contrast (Multiple Resists) RESULILS ......ccccevrervrsersucsisncnssscsarenssisansneensanenes 44
4.3 LER versus Contrast (Multiple Resists) Conclusion and Discussion ..........ccceeveenenens 48
CHAPTERS. Line Edge Roughness versus Aerial Image Contrast: In-Depth ...............

SEUAY .ooviceriricceeceereecteseerensestsseesasosssssasessessssossssossessessssssnsssssssssssassssssssses 50
5.1 Designing the In-Depth LER versus Contrast Study .........ccccervseessesascsesacesessecsssaorsssesnes 51
5.2 SEM Measurement ISSUES ........ccccceererrercersrorensanssosessansansssossosssosassassessassssssassesssessessasns 55
5.3 In-Depth LER versus Contrast Results using Treatment AVErages ..........c.coereereerenens 57
5.4 LER versus Contrast Study-- Rigorous Statistical Analysis ...........cccucenicreiseseseninnns 60
5.5 LER versus Contrast Study-- Models Based upon Multiple Forms of Contrast .......... 71
5.6 LER versus Contrast (UVII-HS Resist) SUMMArY .......ccccccverierersunssvssancsassassasssssassssons 80
5.7 LER Dependence upon Aerial Image Contrast-- Overall Summary ........cccoceeevesvenrvena 82
CHAPTER 6. SEM Image Capture and the Deblurring Algorithm ............................ 84
6.1 Advantages of LER Measurement via SEM .......ccccecvieienreneecenneneecensersnesersesenseeenes 84
6.2 Image Capture-- Image Blur and NOISE .......cccceeveriesuecinssssienressressosssssssssnssassessasssassases 86
6.3 The Blind Deconvolution AIZOTIthIM .......c.ccceeveeereerrrereeereeereresncereesnnesseeraeesreessesasesens 91
6.4 Deblurring an SEM IMAGE .......cccoovcermieiricecrnecnrnncereseresenesscsssssssessosssssssssssassssnossssssssnsns 93

6.5 Image Capture and Deblurring SUMMATY jy.....cccceeveerercrereseecsercerseesaecresssscessessasssessenns 95



CHAPTER 7. Utilizing the Deblurring Algorithm for LER Collection, and Verifying ...

the Efficacy and Validity of the Algorithm ............ccccccoververvinrruncnrenans 96
7.1 Effect of the Deconvolution Algorithm upon LER .........cccceeeveeveerenveesecrensensoreersssesas 96
7.2 Efficacy of the Deconvolution Algorithm with respect to LER Measurement ............ 98
7.3 Validity of Deconvolution Algorithm-- Low Information Image Recovery .............. 103
7.4 Validity of Algorithm-- Intentional, Repeating Pattern on SEM Image .........cccoceuenee. 105
7.5 Validity of Algorithm-- In-Depth PSF Comparison ...........cccccceeeceernccarccncsaseansnsecsssens 106
7.6 Cases When the Algorithm FailS .......ccccceeevuerenreerernreneenreereeneeseeseecsessessnsessassssassessnas 110
7.7 Utilizing the Deconvolution Algorithm for SEM Troubleshooting ..........cccceeeeeusennene 111
7.8  SUIMIMATY ..cceeereevereerenraeriseecnssssssssesssssssesssssessesassasosserssssesssssessasosssssessssssessssasssossessaos 114
CHAPTER 8. ConCluSions ..........ccccceevernuericerirceniiensennissssosasssssosssssossssessssssssssasssssssases 116
8.1 Summary of LER versus Aerial Image COntrast ...........cccceeerersacsnnscerensesenecsusessessenne 116
8.2 Summary of SEM Deblurring AlIgorithm ..........cccocvvenerirvvnricrenserinscnsnsesecncsescsnsnens 118
8.3 Opportunities for Future Research ........cieviniinninneincnicinnnicinecnnesncnnnnes 120
APPENDIX A. LER versus Aerial Image Contrast Raw Data ..............cccoceevvreinenen. 123
A.1 Raw Data used for Multiple Resist Study ......ccceveereeerrsenennsnrinsinisessesnsessensenes 123
A.2 Raw Data used for In-Depth UVII-HS Study ........cccvvivvinvrncicinneencsnsecsncsnssisneneas 125
APPENDIX B. MatLab Scripts and Code used in Study ..........cccoceveuevrenrcnenncnennnns 130
B.1 Script for the Blind Deconvolution Maximum Likelihood Algorithm ..........ccceueueue. 130
B.2 Code used to Calculate LER from an SEM Image ..........ccccecceuesirenrucnnrenennsecsessennes 139
BIBLIOGRAPHY.........coccctruiiereinnrssssssessoscesessssssossssessssssasasssssssssessssssssssessossssssssossassnsses 147



List of Figures

Figure 1-1 SEM Image with Line Edge RoOughness ..........cocveiveviennnnnnesennnsccnnncnncne, 1
Figure 1-2  Aerial IMage PIOfIIES ........ccccvveererersesenresecnsesseserscesesasessssenssesssssssssssssssssssssesses 5
Figure 1-3 AFM Image with Side Edge ROUghness ........cououveenmreineceneenieneeecsvnncnnen 6
Figure 2-1 Mask Pattern to be Simulated ...........ccovevvevennenineiinnnieenecencsnnceeeneencenencans 10
Figure 2-2 SPLAT Aerial Image Simulations .........c.ccveireieneieninesesnsssssesesssssssssesssnons 11
Figure 2-3 Hurter-Driffield Plot for SEPR-463 ReSiSt ......cccccouvuruininnrnsnererennnsennsnnnensessenes 14
Figure 2-4 Aerial Image Simulations Emphasizing Different Forms of Contrast ............. 16
Figure 2-5 Mask Patterns used in LER Experiment .........cccoveeueninenerennnneennniccenesasasceens 17
Figure 2-6 t-Butoxycarbonyl Protected Polyhydroxystyrene Molecular Formula ............ 20
Figure 2-7 Trisulfonium Salt Photoacid Generator Molecular Formula ............ccccceeenee.e. 20
Figure 2-8 Molecular Formula of Dendritic Polymer ReSIn ......ccccouereereivesnecncscsenncsescnnes 22
Figure 2-9 Cartoon of Dendrimer Molecule .......ccocuvunieenmireerennenieiteerereesescsnncsnnnnnnas 22
Figure 2-10 Lithographic Deprotection Reaction, an Example ........oceoveeenvincnccnnscennnncn. 23
Figure 3-1 Mask Patterns used in SER EXperiment ...........ocovueecveivenneesenncscsccnensnnonacsens 31
Figure 3-2 SEM Image of Mask Patterns used in SER Experiment ..........cceceeevenvecreeennenes 31
Figure 3-3 SEM Image Highlighting Standing Waves in Photoresist ...........cccoeeeeeeenuenennne 32
Figure 3-4 SER Measurement TeChNIQUE ......cccocevvevrivneruenrentinennnieeteneesesssesaseeesacsanensas 33
Figure 3-5 Plot of SER versus Aerial Image Contrast .........ccoceeeeennentiseneseseninnnensscenencens 34
Figure 3-6 Cartoon of Roughness Created by Hard Physical Etching .........cccoceeeennennne. 35
Figure 3-7 Typical AFM Measurement of Side Edge Roughness ........c.coevveciincnnncecne 36
Figure 3-8 Typical AFM Measurement of Top Surface Roughness ........ccccccoveveveencenncee. 36
Figure 3-9 AFM Measurement of TSR in Frequency Space .........ocveeeeinininincrnenennens 37
Figure 3-10 Typical Roughness Peak to Peak Spacing ........cccevvevenneenreniensennesencnnieaenne 37
Figure 4-1 Simulation of Aerial Image Profiles Examined in Experiment ........................ 41
Figure 4-2 SEM Image and Extracted Line Edge Image ........cccceovevemeverninneciecnneennaans 43
Figure 4-3 Plot of LER versus Standard Contrast for SEPR-463 Resist ........c.cccceveveueuenn 46
Figure 4-4 Plot of LER versus Standard Contrast for UVII-HS Resist ........cccceveeeennnnnnne 47
Figure 4-5 Plot of LER versus Standard Contrast for UV210 Resist ......ccccovevererurcnnniannnne 47
Figure 5-1 Plot to Determine Best Orthogonality to Background Contrast ...........cccceueueues 53
Figure 5-2 Plot to Determine Best Orthogonality to Normalized Slope Contrast .............. 53
Figure 5-3 Image of Asymmetric Detector in SEM ToOl .......cuomeiiineneneniiiiiiinnens 56
Figure 5-4 SEM Image Emphasizing Effect of Asymmetric Detector in SEM Tool .......... 57
Figure 5-5 Correlation between Background Contrast and LER ........cc.covevemninneennncnnnen, 57
Figure 5-6 Correlation between Standard Contrast and LER ..........ccooerivvieninnennnennenenns 58
Figure 5-7 Correlation between Normalized Slope Contrast and LER ...............coueeee.eee. 58
Figure 5-8 SEM Image of Trench Receiving Extremely Poor Exposure ............cccoueuenen. 59
Figure 5-9 Output of Results from JMP Statistical SOftware .......ccccoevvereremrrrercsenencereennens 62

V1



Figure 5-10 Plot of In(LER) Predicted by Standard Contrast Model vs actual In(LER) .... 69
Figure 5-11 Plot of In(LER) Predicted by Backgrnd Contrast Model vs actual In(LER) ... 69

Figure 5-12 Plot of Background Contrast Model Residuals ..........ccccevereienvcncrsccnisenscnncnne 70
Figure 5-13 Plot of Standard Contrast Model Residuals ...........cccceeeeverueerenccnecrnsneesacsaesaene 70
Figure 5-14 Example of Non-Linear Fitting, LER versus Background Contrast ............... 73
Figure 6-1 SEM Images with Significant Blur and NOiS€ ........cocerererirrensnsnrsensennsuesressenes 88
Figure 6-2 Deblurred SEM Image and Deblurring Point-Spread Function ..........ccceevuen. 93
Figure 7-1 Plot of Change Relative Change in LER as SEM Image is Deblurred ............. 97
Figure 7-2 Comparison of SEM Images from Different SEM To0IS .......cccoereeesnerae 99-100

Figure 7-3 SEM Images of Unpatterned Photoresist Purposely Blurred and Deblurred .. 104
Figure 7-4 SEM Image and Deblurring PSFs Calculated under Various Conditions ....... 105

Figure 7-5 SEM Images of Rotated Trenches ...........ocovnvveenncensennnsnninenenecsinresnerennens 107
Figure 7-6 PSFs of Normal and Artificially Rotated SEM Images .......ccccccruvcrurnrcrnnacne 108
Figure 7-7 SEM Images and PSFs of cases where the Deblurring Algorithm Fails ......... 110

Figure 7-8 Examples of PSFs that Provide Troubleshooting Information for SEM ......... 112

vii



List of Tables

Table 2-1 Summary of Photoresist RESPONSES ........ccccvvierirrinruirsinsissensressnsssessassnessessessesans 15
Table 3-1 Correlation between SER and Aerial Image Contrast for 4 Resists .................. 35
Table 3-2 _Average Peak to Peak Roughness Spacing ..........cccoceveeerenncrreniensensensesnesnenenas 38
Table 4-1 Summary of all Contrast Levels Studied .........cocovveviererrnnnensnensenvisncsnssnssenaens 44
Table4-2 Summary of Correlations between LER and Different Forms of Contrast ........ 46
Table 5-1 Summary of Contrast Levels Yielding Maximum Orthogonality ............c......... 54
Table 5-2 Least Squares Fit of Parameters for Background Contrast Power Model ......... 63
Table 5-3 ANOVA for Background Contrast Power Model .........ccccvverivererensinsinensersnenene 64
Table 5-4 Summary of Left LER versus Various Contrast Definition Models ................... 66
Table 5-5 Summary of Right LER versus Various Contrast Definition Models ................. 66
Table 5-6 Least Squares Fit of Parameters for Backgrnd Contrast Exponential Model ..... 67
Table 5-7 ANOVA for Background Contrast Exponential Model ...........ccoceevervveereenenens 67
Table 5-8 Non-Linear Least Squares Fit of Parameters for Background Contrast Model .. 73
Table 5-9 Least Squares Fit of Parameters for Background and Slope Contrast Model .... 75
Table 5-10 ANOVA for Background and Slope Contrast Model ..........ccocevvenrevennnsuernennens 76
Table 5-11 Summary of Left LER versus Contrast Combination Models .........cccceveuennenee. 76

Table 5-12 Summary of Right LER versus Contrast Combination Models ........................ 78

viii



1 Introduction

A fundamental problem facing the semiconductor industry at the 65 nm technology node
and below is local line edge roughness (LER). At the 65 nm node, which is expected by the
end of 2003, the budget for the 3 o linewidth variation of critical feature dimensions is 3.7 nm

[1]. This budget goal has no known manufacturable solutions. Roughness is defined as any
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Figure 1-1: Top image (a) is a scanning electron micro-
graph of a trench in photoresist with little roughness.
Bottom image (b) has large roughness.

of two photoresist trenches
created by exposing the photo-
resist to light and developing the exposed regions. Image (a) has little roughness while (b) has
a high level of roughness. The goal of this thesis is twofold: to better understand the root
causes of LER, specifically how the exposure aerial image affects LER, and to more accu-

rately and reproducibly measure LER.



Lithographic photoresists designed for 248 nm wavelength Krypton-Fluoride (KrF) lasers,
which are now well established chemically amplified photoresists (CARs), typically have a
line edge roughness nearly consuming all the critical dimension control tolerance [3]. Photo-
resists designed for 193 nm wavelength (Argon Fluoride) illumination, which are now being
used in the most aggressive fabrication processes, demonstrate even poorer line edge rough-
ness [4). The 157 nm wavelength (Fluorine) photoresists lag further behind both of the others
[5). The International Technology Roadmap for Semiconductors (ITRS), created by the Semi-
conductor Industry Association (SIA), sets a pace the semiconductor industry intends to fol-
low and recognizes the difficulty in reaching certain requirements such as the control of
critical features. As critical feature sizes shrink, the tolerances around those feature sizes
shrink as well, creating increasingly difficult engineering problems. Yet in order to continue
the exponential growth predicted by Moore’s Law [6] and ensure the economic viability of the
semiconductor industry, the ITRS must be followed.

Understanding line edge roughness requires understanding the many aspects of the litho-
graphic process. The lithographic imaging process will be discussed in some detail in chapter
two and has been discussed in greater detail in many handbooks and textbooks [18-21]. To
briefly summarize, one must consider the photoresist exposure, bake, and develop processes
as an amplifier of the original aerial image. This is because, during the lithographic imaging
process, the deprotection of positive tone photoresist (or the cross-linking of negative tone
photoresist) acts to some extent as an amplifier. After lithographic exposure, photoresist-
coated wafers are heated in a post exposure bake (PEB). At this step the essence of chemi-

cally amplified photoresist processing occurs. Photoacid generator (PAG) first releases a pro-



tonic acid (H+) durihg exposure, then that protonic acid diffuses significant lengths and
catalytically deprotect the photoresist resin during the PEB.

Perhaps more important is the development process. Afier the PEB, photoresist that is
sufficiently deprotected is removed when the wafer is sprayed with or dipped into a develop-
ing solution.. The amplifying effect mentioned above lies within this process. A photoresist
resin polymer molecule with a sufficient level of deprotected sites is soluble in the developer
solution. However, a molecule with slightly less deprotection is fully insoluble [33]. Itis this
sharp contrast, from fully soluble to fully insoluble with little change in polymer composition,
which accounts for most of the gain amplifier-like behavior.

There are several factors that contribute to photoresist LER during lithographic process-
ing. LER has been attributed to phase separation, photoresist resin size and structure, acid dif-
fusion, and lithographic imaging. Lithographic imaging includes imaging using EUV, DUV,
and electron beam technologies. In order to be able to reduce LER and better control gate CD,
the effect these factors have upon roughnéss needs to be limited. This thesis focuses upon
how’ lithographic imaging affects LER. The next paragraph will expound upon the other
causes, however all of them will be covered in further detail in chapter two.

Various studies have shown that phase separation [7-8, 10, 12, 70], photoresist resin size
and structure [7, 9, 13, 34], photogenerated acid diffusion [11, 30-32, 48, 73+], and photore-
sist thickness [22] all play a role in LER formation. Phase separation is a natural process
whereby immiscible substances, those with differing polarities, divide into distinct parts. A
classic example is a mixture of water and oil. The lithographic process is based upon convert-
ing a fairly non-polar polymeric species into a polar species which can be aissolved in an

aqueous developer. Therefore, phase separation may occur during lithography and larger col-
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loidal structures of like species may form, causing LER. The photoresist resin size and struc-
ture are also culprits suspected of causing LER. Each polymer resin molecule is quite large
with respect to LER, approximately 5 nm in size. However, the resin cannot arbitrarily be
shrunk; there are many critical physical parameters of the photoresist such as the glass transi-
tion temperature that depend upon the size of the polymeric resin. Photogenerated acid diffu-
sion during the post-exposure bake process, another suspected cause of LER, has perhaps
received the most study. The chemically amplified lithographic process requires acid diffu-
sion. Diffusion is a statistical process: some acids may diffuse further than others. This vari-
ation in acid diffusion lengths leads to a variation in the location of the line edge, or LER.
Finally, the lithographic aerial image obviously plays a role in how a pattern is formed in
the photoresist. Therefore, it must also have some influence upon the roughness of that pat-
tern edge, or line edge roughness. Whether the lithography is extreme ultra-violet (EUV),
DUV, electron beam, or ion beam lithography, the basic principle is the same. An image is
transferred to a resist which is sensitive to that type of lithographic exposure. In the case of
optical lithography (DUV and EUV), light is shone either through or .onto a photomask. This
mask allows some of the light to pass through it (or reflect off of it). By allowing some light
to pass and rejecting the remainder, an image is transferred into the photoresist. Advanced
lithography prints features that are roughly the size of the wavelength of light printing them,
and in the last few years the features are even smaller. This creates aerial images in the photo-
resist with grey regions-- where some light is received, but not the full level. These non-ideal
images create LER in the photoresist. The quality of the aerial image, or the similarity
between it and an ideal image, is referred to as the aerial image contrast, or simply the con-

trast.



As mentioned earlier, the resist development process acts as an amplifier. The photoresist
slope generally appears as an enhanced version of the original image intensity slope. This
also means it enhances any statistical variation due to acid diffusion or PAG distribution.
There is a region near the profile edge where the lithographic exposure intensity slowly varies
from sub-threshold to a level sufficient to allow photoresist deprotection. As the intensity var-
ies more slowly, the effects of the aforementioned statistical variations are enhanced. Several
studies, the first of which were performed by Sanchez et al. at IBM Almaden, have been con-
ducted to determine the affects of aerial image profile upon LER, using optical and electron
beam lithography platforms [14 - 17, 74). Sanchez altered the aerial image via laser interfer-
ometry. In this thesis, the aerial image is altered by placing a background clear field image

upon the foreground image, the proper image. Figure 1-2 displays a cutplane of 8 different

40 Setting up dose levels in order to best separater——o o
background dose from std contrast definition | , 4 packground
: pillny ‘ 20% background
—{ — 30% background
.|~ 40% background
|- 50% background
. |~ 62% background
o * |—— 70% background
clear dose

|

i
i

intensity- mJ/cmA*2

0 0.2 0.4 Ienga’ts(um) 0.8 1 1.2

Figure 1-2: Cutplane of the 8 different aerial image profiles used to create an experimen-
tal design to be used in chapter 5. Profiles such as the 62% background profile are very
poor, while images such as the 0% background and 20% background are very good.
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aerial image profiles created using this technique. The bulk of this thesis addresses how litho-

graphic imaging and aerial image contrast impact line edge roughness.

The remainder of the thesis addresses photoresist roughness metrology. Photoresist
roughness is often defined as either a 1-dimensional phenomenon, commonly referred to as
line edge roughness (LER), or a 2-dimensional phenomenon, referred to in this paper as side
edge roughness (SER). LER is a top-down view of a line or trench; the measurement captures
roughness information along the line, but not throughout the height of the line. No informa-
tion regarding the roughness perpendicular to the substrate surface can be collected. A top-
down SEM image, such as figure 1-1, can be used effectively to collect LER data. Figure 1-3

shows a SER measurement taken using an atomic force microscope (AFM). SER measure-

Figure 1-3: AFM image of trench in photoresist. SER is found by flattening the edge
highlighted in the box onto a plane, as shown. This flattened image yields a roughness
measurement along the line and normal to the substrate.



ments yield roughness information along the printed line pattern and also normal to the sub-
strate.

Non-idealities in the SEM or AFM blur the image so that some of the high frequency data
in the image are lost. A technique is presented here that recovers the high frequency compo-
nent of an SEM image by removing some of the introduced blur. (The technique could be
applied to AFM images as well.) The deblurring technique uses a maximum likelihood algo-
rithm based upon the Richardson-Lucy Blind Deconvolution algorithm, originally developed
for use in image processing fields, especially in astronomy [27-29]). This algorithm has been
used for other imaging sciences as well, such as fluorescence microscopy [69]. Details of
how to adapt this technology for use in measuring LER are given, the ability of this technique
to indeed improve LER measurement accuracy and repeatability is shown, and the validity of
the technique and algorithm in deblurring an SEM image is demonstrated. Further informa-
tion regarding the condition of an SEM machine used to capture deblurred image can be

extracted by analyzing the images recovered from the deblurring technique.

This thesis will discuss the dependence of side edge roughness and line edge roughness
upon aerial image contrast. The development of a technique to recover the high frequency
components of an SEM image is also discussed, along with tests to demonstrate and verify its
efficacy. Chapter two covers further details and theory of the lithographic imaging process.
The photoresist reaction will be examined more fully, including an introduction into photore-
sist parameters, and interesting questions and strategies to understand photoresist characteris-
tics. It also briefly details the parameters of the photoresists used throughout this study.

Chapter three discusses the side edge roughness (SER) results obtained, examining the SER
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data in frequency space to get an idea of the spatial frequency spectrums of various photore-
sists. Chapter four details the experimental design and results of the first in-depth aerial
image contrast versus LER study conducted. The correlation between contrast and LER is
studied using three commercial DUV photoresists, Shipley’s UV210 and UVII-HS and Shin
Etsu’s SEPR-463, with some unexpected results. Chapter five builds upon the results of chap-
ter four, creating a new definition for aerial image contrast, the background contrast. After
designing a new experiment using UVII-HS, rigorous statistical results are extracted conclud-
ing that this new background contrast is critical to controlling LER. This chapter presents the
most compelling evidence that reducing background flare is critically needed to reduce LER.
Chapter six discusses the difficulty in extracting accurate LER measurements. It relays some
of the basic theory involved in the capture of real images and the concept behind image
deblurring. It also touches upon why the high frequency components of the SEM image are
vital to extract accurate LER data. Chapter seven provides experimental evidence validating
the efficacy of the maximum likelihood algorithm in deblurring images. Furthermore, it
shows that LER measurements are altered significantly before and after deblurring, and dem-
onstrates how the deblurring algorithm can help assess the conditions of the SEM tool.
Finally, chapter 8 summarizes this thesis and provides insight into valuable directions to

explore for future photoresist roughness studies.



2 Lithographic Imaging and Pattern

Transfer

This chapter summarizes the photolithography process, focusing upon the aspects that
most influence LER. It gives a perspective on current work in the literature regarding litho-
graphic principles that influence LER, and provides an overview of the experimental methods
applied in this thesis to study LER. The first few sections describe the aerial image, how the
photoresist reacts to this image, and how this study alters the image. The latter sections dis-
cuss photoresist deprotection and development, and the other i)henomena briefly mentioned in

chapter one such as phase separation.

2.1 The Aerial Image Profile

The shape of the aerial image used to print lithographic patterns is critical. The entire
industry of optical lithography, and in fact semiconductor processing, has been so successful
because it has been able to scale down the lithographic wavelength, thereby scaling the mini-
mum printable feature. Changing technologies to shorter and shorter lithographic wave-
lengths allows ever-smaller features to be printed. As Lord Rayleigh observed roughly 100
years ago, the minimum resolvable distance, 3, between two objects is dependent upon the

wavelength of light [38]:



Equation 2-1:

o = 0.61—
NA

where A is the wavelength of light used to observe the objects, and NA is the numerical aper-

ture of the optical system used to observe the objects. In the case of lithography, the objects

are defined rather than observed. The equation holds true regardless. Transferring to lower

wavelengths, or larger numerical apertures, is exceedingly difficult and costly; photolithogra-

phy is the most expensive processing step in the manufacture of integrated circuits. In order

to avoid escalating costs and engineering difficulties, many creative alternatives to decreasing

the wavelength have been made, such as phase shift masks [21]. Nonetheless, the smallest

feature size is always near
the resolution limit of the
lithographic tool.  This
creates aerial image pro-
files with poor image
intensity slopes.

Equation 2-1 is based
upon the fact that at
shorter wavelengths and
larger numerical apertures,
the slope of the aeral
image profile becomes

much steeper. As an

Figure 2-1: Mask pattern of 5 rectangular trenches (clear
areas) in chrome photomask. Units are in microns. Black is
chrome, blue is 0 phase clear area. The red line represents the

cut plane used for figure 2-2.
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example, figures 2-1 shows a mask pattern with some open areas, forming trenches on posi-
tive tone photoresist. Figure 2-2 is a cutplane of the aerial image profile, or the shape of the
aerial image intensity, along the center of the mask pattern on figure 2-1 at various illumina-
tion conditions. The open areas of the mask are 0.2 um wide with 0.25 um space in between
the open areas. They are 3.2 um long, except for the center line which is 6.4 um long.
SPLAT, an aerial image simulator first developed by Toh at the University of California- Ber-
keley [40], is used to obtain the results shown in figure 2-2. A simple binary mask is used
with illumination conditions as given in the figure. The partial coherence, or o, remains con-
stant at 0.5. As the wavelength drops or the numerical aperture increases, finer features can be

resolved, as predicted in equation 2-1.
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Figure 2-2: SPLAT simulations of the aerial image intensity across the cutplane marked in red
on Figure 2-1. Throughout the 4 simulations only the numerical aperture and illumination
wavelength of the system are altered. Only the case with 248 nm light and 0.8 NA yields a
quality image.
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However, another important feature to notice is that the slope of the acrial image inten-
sity also becomes larger as the wavelength drops or the numerical aperture increases. Upon
consideration, this seems obvious. TQ resolve two neighboring luminescent objects, the space
between them must appear dark. In order for that region to appear dark, the aerial image slope
in changing from high to low intensity must be large, like figure 2-2 (d). It might seem just as
obvious that poor aerial image intensity slope will increase line edge roughness: the aerial
image at an edge is greyer, or has a shallower image slope, therefore there will be more areas
of photoresist along the edge which will partially develop. This may lead to LER. The stan-
dard contrast definition that has been used most often is:

Equation 2-2:

(maximum energy dose — minimum energy dose)

Standard Contrast = - —
(maximum energy dose + minimum energy dose)

This contrast definition does not take the aerial image intensity slope into consideration.
Describing the entire aerial image profile by simply comparing standard contrast definitions,
as in equation 2-2, does not capture the full picture. An aerial image with a poor slope near
the resist edge might still have a low minimum energy dose and a high maximum energy dose,
yielding a standard contrast near unity (good contrast). An aerial image with superior slope
near where the resist edge is defined-- referred to as the clear dose, the development threshold,
or the dose to clear-- but maximum and minimum energy doses comparable to those in the
poor slope case will likely yield better feature resolution and lower aerial-image associated
LER, yet the standard measure of contrast defined in equation 2-2 does not capture the differ-

ence between these two aerial image profiles. Many researchers, notably Levenson and
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Mack, have begun to use the intensity slope, defining a new form of aerial image contrast
called the normalized image log-slope (NILS). NILS is defined as below:

Equation 2-3:

NILS = w@ind)
dx

where I is image intensity, x is the position along the pattern edge, and w is the nominal line-

width of the pattern [41-42].

2.2 Photoresist Response to Aerial Image Profile

Several different photoreéists are used throughout this study to determine the correlation
between aerial image contrast and line edge roughness. Regarding LER, different photoresists
respond differently to aerial image profile changes [15]. LER increases as image contrast
degrades for all photoresists, but with some photoresists LER increases nearly monotonically
with decreasing contrast while with others LER increases almost as a step function.

In (.)rder to further highlight the differences between the various photoresists studied, dis-
solution contrast curves, also called Hurter-Driffield (HD) plots, are established for all of the
photoresists. The dissolution contrast curve is a plot of the relative thickness of photoresist
versus the natural logarithm of the exposure dose [43-44]. A highly non-linear, step function
response to image intensity is desirable for a photoresist, in order to provide desirable gain. In
this fashion, the photoresist profile can be better than the aerial image profile and a mask pat-
tern can be transferred into the photoresist with high fidelity. Generally, the photoresist is

unchanged when it is exposed to light with an intensity significantly below the threshold dose,
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Eq. As the intensity approaches the threshold dose, the photoresist is developed away until at
Eq, where it is completely removed. The resist contrast or response can be described as:

Equation 2-4:

. -dT
= lim ——
" ESE, AM@)]

where T is photoresist thickness normalized to full thickness equal to 1, E is the exposure

dose, and E, is the threshold exposure dose. Figure 2-3 is an HD plot for Shin Etsu’s SEPR-

463 resist. Chapter three fully describes the lithographic processing conditions used for the
side edge roughness experiments, which are the same conditions used in this portion to collect
the photoresist exposure dose response curves for determining the photoresist contrast param-
eter, . In figure 2-3, a line is drawn tangent to the slope of the response curve as the relative
resist thickness approaches 0. From the slope of this line, using equation 2-4, v is calculated
as 3.45. This was done for all four resists studied: UV210 (Shipley), SEPR-463 (Shin Etsu),

UVII-HS (Shipley), and

Apex-E (IBM). In some

cases the experiment is

repeated to ensure that

an accurate contrast o«

B, | SEPR463 rosist Hurter-Driffield plot
parameter is extracted. 0'1 R - —
The results of these cal- 0 - — e '

1 15 2 25 3

Ln{exposure dose)

o Figure 2-3: A Hurter-Driffield plot for Shin Etsu’s SEPR-463
rized in table 2-1. Apex- photoresist. In this case, the contrast parameter, v, is 3.45.

culations are summa-
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E and SEPR-463 have shal- © | SEPR-463 UV210 Apex-E UVII-HS
lower resist responses, or  gamma. 345 167 1.27 5.8

Table 2-1: Summary of resist responses, or resist contrasts,
resist contrast. Inthe case of  of the four different photoresists studied. Higher ¥ means
sharper photoresist response to exposure.

Apex-E, the resist contrast
does not provide sufficient non-linearity, or sufficient gain, to make it a suitable candidate for
some of the experiments designed in chapters four and five. This is discussed further in those

chapters.

2.3 Creating Various Aerial Image Profiles

In order to study how the aerial image profile affects LER, a mechanism for effectively
shaping the aerial image is necessary. The work presented in chapters three, four, and five all
use the technique described here to alter aerial image contrast. In this section, three separate
aspects of aerial image profile degradation are examined, and specific contrast definitions are
used to help quantify these forms of profile degradation. The contrast definitions are standard
contrast, as described in equation 2-2; peak intensity contrast, which is simply the maximum
image intensity; and slope contrast, which is the light intensity slope at the dose needed to
clear the photoresist. Figure 2-4 highlights the different type of aerial image profiles which
these three different forms of contrast discern.

A brief discussion of the phenomena which each form of contrast is expected to empha-
size is presented. The image slope emphasizes a localized phenomenon dominating LER.
Therefore a strong correlation between LER and image slope contrast suggests that forces
which blur the image, such as acid diffusion, are not dominant in that resist. Or, more accu-

rately, those forces are not influencing LER significantly and LER is a very localized phenom-

15



(SR

7707 Aerial Image Intensity for UV210 Contrast Experiments |
Al
£ \ é
;é" ;
A
AN\
L o\

9 \Gieion i (0l cefils, nofion Wil 000y 1

- @

" 207 Aerisl lmege Intensity for UV210 Centrast Experiments
[ R P P pp 2 RS
- 189 - cleardose Py

l—i -* high slope o
| < lows BIQE '. ................ !

]
.

1
g
!
|
t
i

o
o
<

.
-
o’
at®

-

w
y

(3]
"

_. Imoge Intensity (mylcm?2) _
Y Py
“
|
H

-

D¢ _ tocation{iiin) (0.6um ceftby, nominal width 0.4um)

(c)

’ 04 Aerinl image Intensity for LV210 Contrast Experiments

s | /

Bo

g L \\

=7 \—

g'- :mthm -
0 NPV sroe RN I,
02 _ 18ation ity (080m cefls, nofinel widh 04l

®)

i Figure 2-4: These graphs are aerial image
; simulations of an isolated trench, or clear
. area on the mask, with intentionally degraded

images (see figure 2-5). They demonstrate

i the three different phenomena examined with
. respect to aerial image contrast induced LER.

The black line represents the expected low
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' and (c) compares two image slopes at clear
* dose.

enon. The standard resist contrast is the only form that includes the background, or minimum,

exposure dose. This indirectly suggests that if the correlation between LER and standard con-

trast is strongest, then background flare is the chief image profile-related cause for LER.

Since standard contrast includes both the minimum exposure energy (background dose) and

the maximum exposure energy (foreground peak dose), one cannot conclusively prove that a

correlation with standard contrast is solely due

to background flare. This issue will be dis-

cussed further in chapters four and five. The peak image intensity relates to longer range,

high acid concentration areas driving LER.
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The aerial image profile variations required to emphasize
those different forms of contrast are created by two relatively
simple methods. The first is to simply over- or underexpose
the photoresist, thereby making the aerial image intensity
smaller or larger relative to the photoresist clear dose thresh-
old, a physical parameter which cannot be altered without
changing the photoresist chemistry, the wavelength of expo-
sure, or some other physical attribute of the system. The typi-
cal target for good lithographic exposures is to have the
photoresist threshold clear dose equal to 30% of the clear field

exposure dose. For example, UVII-HS, one of the photore-
sists used throughout this work, clears at around 8.1 mJ/cm?.

It’s target exposure dose is around 27 mJ/cm?. This dose leads

to the highest NILS for many lithographic patterns [44].

' 0.4 um trench
"? at wafer

large open

ares

Figure 2-5: mask patterns
used. (a) is the "fore-
ground” image, as
described in the text. (b)
is the "background" pat-
tern.

Overexposing or underexposing will diminish the contrast. Figure 2-4 (a) is an example of

altering the aerial image profile by simply over- or underexposing. It mostly affects the peak

intensity contrast, but also affects the clear dose slope contrast. The second method of altering

the aerial image profile is to apply a background dose, a blanket exposure dose which is seen

throughout all areas of the photoresist, both the unpatterned and the patterned regions. Figure

2-4 (b) is an example of this. Applying a background dose affects mostly the standard con-

trast, but can also affect either the slope contrast, the peak intensity contrast, or both, depend-

ing on how the foreground dose is altered. A background dose can be applied by exposing the

photoresist with the proper foreground dose and then exposing the same area of the photore-
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sist with a blanket clear field dose. Figure 2-5 shows the mask pattern used throughout this
study to form lithographic images with varying levels of background dose. The background
dose mimics flare which may be present in the lithography tool.

Adding a background dose to the image is especially critical because light scattering, or
flare, in lithography tools is expected to be a major concern in extreme ultraviolet (EUV)
lithography [53, 59]. As shown by Krautschik et al., flare in an exposure tool roughly scales
inversely to wavelength squared. This is because nanoscale bumps in the focusing mirrors (or
lenses, in the case of DUV) are two-dimensional and the wavelength of light is one-dimen-
sional. As the wavelength halves, for instance, the number of wavelengths that can “fit” into a
mirror deformity increases fourfold. Or, a jump in exposure wavelength from 193 nm to 13.4
nm would lead to a roughly 200 fold increase in flare, all other considerations being equal.
All things are not kept equal, however. Mirror smoothness has improved greatly and flare at
EUV has already been lowered down to roughly 20%, but at a considerable cost to mirror
manufacturing. (Flare with 193 nm tools is on the order of 1% - 2%.) The effects that flare
will have upon aerial image profile and LER will therefore become more critical as EUV
lithography comes to fruition.

The background exposure method used here mimics flare quite well. There are two signif-
icant differences between the background exposure method used here and flare; they both
concern the fact that exposure flare happens simultaneously with the proper foreground expo-
sure while the background exposure method used here happens after the foreground has been
exposed. (The background dose could also be applied before the foreground; the key issue is
that they cannot happen simultaneously in this experimental set-up.) First, two separate light

sources that are shone onto an object simultaneously will add their electric fields together.
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Two light sources that are shone onto an object at different times will add in the intensity
domain. When adding intensities, the phase can be discounted and there can be no destructive
interference, or subtraction of light int_ensities. In the electric field domain, phase needs to be
considered and destructive interference can occur. However, flare is completely incoherent
with itself and with the foreground exposure dose. The light path of flare is such that one can
assume the light reaching the wafer from flare is completely incoherent. This is especially
true since the ASML stepper, and nearly all other lithography tools, has a diffuser to help cre-

ate nearly full temporal incoherence. The second issue is the photoresist itself: does the pho-
toresist have “memory”? Are two exposures at 10 ml/cm?, for instance, equivalent to one

exposure at 20 mJ/cm?? Yes, two separate exposures are equivalent to one with a dose equal

to the two. This is clear if one thinks of how exposure doses are measured. The exposure
power is never a concern, only the exposure dose. For example, a 10 mJ/cm? exposure dose
that requires 100 ms to expose (0.1 Wicm? power) is equivalent to a 10 mJ/cm? exposure dose

requiring 10 ms to expose (1 W/cm? power). Since this is true, the photoresist does have
memory, only the overall exposure dose is important,’and two separate exposures are equiva-
lent to one exposure equaling the two. This was confirmed with several tests where the clear
dose was found with a single exposure and with a foreground and background double expo-

sure. Throughout the dozens of tests run, the single exposure clear dose was equal to the com-

bined double exposure clear doses to within 0.1 mJ/cmz, which is within experimental error.

2.4 Deprotection Reactions and Kinetics, and Photoresist Development
The actual mechanism in which irradiated photoresist is developed has not been discussed

yet. This section will discuss the post-exposure lithographic processes: post-exposure bake
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and development. As mentioned in chapter one, photogener-
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ated acid diffusion and image amplification due to develop- (T \( )*

ment create a photoresist profile that is often different from / AN
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the original aerial image profile. Molecular model simula- @ O

tions confirm this statement [71]. Since the photoresist pro-
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file does not match the aerial image profile, it is essential to l
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understand the post exposure processes that create the photo-

resist profile in order to understand how the image profile \ s

affects LER. AN

Figure 2-6: A typical photo-
Before moving to the post-exposure processes and the resist resin: polyhydroxysty-
rene with t-butoxycarbonyl
models behind them, a brief introduction to typical DUV protecting groups.
chemically amplified lithography is given. Ito, Willson, and
Frechet first devised chemically amplified resists in the early 1980’s as a means to provide

resists that were highly sensitive to lithogréphic exposure in order to maintain the high pro-

cess throughput the industry had come to expect [37].
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Figure 2-7: A typical PAG:
bly other additives. The resin gives structure, etch trisulfonium arsenic hexafluo-

ride salt. Upon irradiation, the
resistance, and provides the protected groups that will trisulfonium ion breaks apart,

leasing H'.
allow pattern transfer. Figure 2-6 is an example of a typi- releasing
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cal photoresist resin: poly(4-hydroxystyrene) (PHOST) with tert-butoxycarbonyl (tBOC) pro-
tecting groups. It is a polymer with a fairly non-polar portion, the tBOC, and a fairly polar
portion, the hydroxy group. The left-hand monomer is that containing the tBOC. The photo-
acid generator, upon irradiation at the lithographic wavelength of light, generates the initial
protonic acid that provides catalytic deprotection. Figure 2-7 is the chemical structure for a
typical PAG, a trisulfonium salt. The solvent provides low viscosity initially to allow the
resist to be spun onto the wafer. It is evaporated during pre-exposure bake so that the photore-
sist can become solid once on the wafer. Propylene glycol methyl ether acetate (PGMEA) is a
common solvent. The quenching base limits the potential diffusion length of the catalytic
acids by neutralizing them upon contact. Emulsifiers, if present, help to keep the entire mix-
ture well dispersed.

A potential source of LER within the photoresist can already be identified: the photoresist
resin. The photoresist resin consists of linear polymer molecules. The size of such a molecule
is quite large, relative to the desired LER of photoresist. A linear polymer molecule is a long
chain of monomer units. In practice, the size is typically measured in a dilute solution. In
solution the polymer is free to assume the lowest free energy state, one which resembles a
wrapped bail of twine, or more accurately a wrapped ellipsoid of twine. In this state, linear
polymer molecules of the size used for photoresist resins, approximately 2000 g/mole number
averaged molecule weight, are around 5 nm in diameter. Photoresist solutions ready for appli-
cation, however, are concentrated. The polymer resin is further concentrated during pre-expo-
sure bake when the solvent is almost entirely evaporated. At this point it is impossible to
measure the diameter of the photoresist resin polymer; it has been stretched and distorted into

oblong shapes. More importantly, many polymer molecules intertwine within each other to
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Figure 2-8: Chemical structure of a portion of a dendritic poly-

ence [7], showing that mer with 3 active growth sites.

resists with smaller

polymer molecular weights demonstrate less LER.

Tully takes another approach to limit photoresist resin size, creating photoresist resins that

are dendritic in shape [35]. Dendritic polymers are derived from
monomers that have three or more active growth sites instead of
two; see figure 2-8. The extra growth site yields polymers that
are ever-branching, eventually forming spheres with the highest
atomic density at the periphery of the polymer, as shown in fig-
ure 2-9. Due to this structure, the spherical shape is maintained

and polymer entanglement is minimized. LER studies compar-

. [ ]
Dendrimer molecule

Figure 2-9: sketch of a
dendrimer molecule.

ing a dendritic polymer resist to standard linear polymer resists demonstrate that the LER of

the dendritic resist is significantly smoother than that of standard linear resists [9, 34]. Unfor-
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tunately, other problems such as exposure sensitivity and manufacturing difficulties reduce
the potential for dendritic resists to enter the marketplace.
Moving on to the deprotection and development processes, these occur during the post-

exposure bake (PEB). The photoresist profile is define during these steps. During PEB the
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Figure 2-10: The tBOC deprotection reaction. The protonic acid is recovered and the
polymer product is significantly more polar than the polymer reactant.

photogenerated acid diffuses to protected groups, such as the tBOC shown on the left hand
side of figure 2-6. The acid reacts with the tBOC to produce a hydroxyl group-- now a depro-
tected group-- and gaseous products that are removed. Figure 2-10 shows the simplified
chemical reaction. There are two key features of the reaction: it is catalytic, and the polymer
product is significantly more polar than the polymer reactant. The former allows significantly
greater exposure sensitivity, allowing much quicker exposure times and faster throughput.
The latter allows the deprotected product polymer to dissolve in the developer while the pro-
tected polymer remains insoluble.

Photogenerated acid diffusion during the post-exposure bake process has received a great

deal of study. The success of optical lithography at deep ultra-violet (DUV) wavelengths
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owes itself to the chemical amplification (CA) process [37], and at the heart of CA is photoge-
nerated acid diffusion. Chemical amplification is a multi-step, catalytic reaction chain. In the

first step, light shines upon a photo-acid generator (PAG) which then emits a protonic acid

(H™), referred to as a photogenerated acid. Next the H' diffuses to polar protected groups on

the photoresist resin. The acid then reacts with the protected group as shown in figure 2-10,

deprotecting it. This reaction is catalytic: another H' is emitted and can react with another
protected group. This catalytic process allows much greater sensitivity to the original litho-

graphic exposure. Relatively few PAGs need to be exposed in order to allow sufficient depro-

tection. However, the lithographic pattern is largely defined by the ability of the H" to diffuse
towards protected sites. Since protonic acid is the smallest atom possible, it has a fairly high
diffusivity. Postnikov, Croffie, Cheng, and Yuan have all shown that photogenerated acid dif-
fusion needs to be taken into consideration in order to properly predict the true location of the
line edge [30-32, 36].

Acid diffusion and reaction can be mathematically modelled quite readily. Equations 2-5

and 2-6 represent the deprotection reaction rate and the photogenerated acid diffusion rate,

respectively.
Equation 2-5:
%4 = k (Py-A)H
Equation 2-6:
g{ = V(DVH) - k,H
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where A is the concentration of deprotected sites, H is the concentration of acids, D is the dif-

fusivity of acids, Py is the initial concentration of protected sites, k, is reaction rate, and k; is

the acid loss rate. Equation 2-5 is coupled with equation 2-6 since the rate of deprotection is
dependent upon the concentration of photoacids. Equation 2-6 represents the diffusion of
photoacids assuming Fickean diffusion. In the case of Fickean diffusion, the acids are not
affected by neighbors. The acids will follow a random walk pattern in all directions. The
change in acid concentration over time is simply due to concentration gradients: acids in a
high acid concentration area will “move” over to a low acid concentration area simply
because statistically there are more acids following a random walk in the high acid concentra-
tion area than in the low acid concentration area. Fickean diffusion is of course well under-
stood; the author mentions this merely to emphasize that concentration gradient is the only
key parameter in this case.

Photogenerated acids do not move via simple Fickean diffusion, however. Postnikov et al.
use an elegant experimental design to show that photo-generated acids diffuse much more
slowly through a polar species than through a more non-polar species, in their case poly(4-
hydroxystyrene) and poly(t-butyloxycarbonyloxystyrene), respectively [30]. As the polar
species concentration rises, the diffusivity of the H* decreases. The protonic acid is thermo-
dynamically more attracted to a polar environment, hence it cannot diffuse away from that
environment as easily. This type of diffusion is called reduced, non-Fickean diffusion. Yuan
and Croffie, using predictive simulations and fits to experimental data, demonstrate that acids
experience reduced non-Fickean diffusion [31-32]. The diffusivity, D, used in equation 2-5 is

not constant in this case. It is described as follows:
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Equation 2-7:

D = D4

where D is the diffusivity, Dy is the pre-exponential diffusion constant, A is the concentra-
tion of activated or deprotected sites, and w is the non-linearity parameter. Dy is now con-

stant. In the case of reduced non-Fickean diffusion, w is negative so that as the concentration
of deprotected sites increases, the diffusivity of acid decreases. All these studies come to the
same conclusion: diffusion of acid is limited when the medium becomes more polar. Since
acid diffusion helps to determine the line edge, it obviously affects LER as well. Yuan is cur-
rently creating models and simulations to predict how acid diffusion affects LER [75].

After post-exposure bake, the wafer is dipped into developer, or perhaps the developer is
sprayed onto the wafer. Due to the high solubility of deprotected polymer and the low solubil-
ity of protected polymer resin, one generally assumes the development process perfectly dis-
solves all the sufficiently deprotected resin and leaves all the sufficiently protected polymer
intact. The only concern is whether the developer is sufficiently able to reach all the regions
of the photoresist film where deprotected polymer is present, and whether phase separation is
induced during development.

Phase separation can occur during post-exposure processing because the protected non-
polar polymer species and the polar polymer species are in proximity in an aqueous developer.
The non-polar species is referred to as protected-- it is protected from dissolution by the
developer-- and the polar species is deprotected. The thermodynamics of the protected/depro-

tected mixture is similar to that of the oil and water mixture example given in chapter one:
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protected polymers are thermodynamically driven to separate from deprotected polymers.
Research by Lin and Yasin has shown that phase separation does indeed occur during post-
exposure processing and that it lead; to LER [7-8, 12, 39, 70]. Immediately before litho-
graphic exposure, photoresist resin molecules are intertwined within each other. Little solvent
is present, the photoresist consists mostly of polymer molecules intertwined and folded onio
themselves. After exposure and post-exposure processing, some of the polymer molecules
have been sufficiently deprotected so that they are now miscible in the aquedus developer and
immiscible with protected polymers. At the line edge, neighboring protected and deprotected
polymers begin to phase separate, with each of them forming little clumps of like polymers.
When the deprotected polymer is dissolved into the aqueous developer, clumps of protected
polymer along the line edge remain, creating LER. Lin et al. examined the effects of changing
the photoresist solvent, photo-acid generator (PAG), and base additive upon phase separation
z;.nd therefore LER [12]. However, the extent to which phase separation occurs during litho-
graphic processing is minimized due to kinetics. Phase separation is driven by diffusion, and

the diffusion of a polymer molecule within a polymer lattice is quite slow.

How does the aerial image profile tie into all of this; how does it affect LER? A poor
lithographic image profile, such as the upper left graph of Figure 2-2, creates a photogener-
ated acid distribution that is slowly varying. This acid distribution in turn creates a depro-
tected polymer distribution that slowly varies, as predicted by the reaction and diffusion
equations above. However, those equations do not tell the whole story. Those equations
assume a continuous distribution and an initial PAG and photogenerated acid concentration

that is large enough to be considered continuous. This is not true. There is a finite number of
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PAGs yielding a finite number of photogenerated acids. These acids then diffuse following
the models above, but with a quantized distribution. Diffusion and kinetics are statistical pro-
cesses. The models will predict the average deprotected site concentration, but chance will
provide the opportunity for some regions to have larger or smaller deprotected site concentra-
tions than predicted. These differences are negligible when the aerial image profile is good:
the average deprotected site concentration quickly rises or falls as the distance from the line
edge increases. This is not true when the aerial image profile is poor. The statistical nature of
the lithographic process becomes increasingly important, and its effects can be seen in a line

with an edge that deviates significantly from its intended position.

2.5 Summary

A brief synopsis of the lithographic imaging and pattern transfer process was presented. It
demonstrated that supplying a simple aerial image contrast value is not sufficient to fully
describe the entire aerial image profile. Further knowledge of the profile may be needed when
attempting to understand how the aerial image profile affects LER.

The contrast parameters for the four different photoresists used throughout this thesis
were calculated. The contrast parameter is the response of the photoresist to exposure dose.
An ideal photoresist has a very non-linear response so that it may act as an image amplifier.
The response of Apex-E was insufficiently non-linear to allow it to be used for study in chap-
ters four and five.

The mechanisms for creating the various aerial image profiles used throughout this study
were discussed next. They involved either over- or underexposing the photoresist, and alter-

ing the ratio of foreground to background dose. The background dose mimics flare in the
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lithography tool, expected to be a large concern at EUV lithography. Three different metrics
for quantifying the aerial image profile were discussed: standard contrast, clear dose slope
contrast, and peak intensity contrast. .

The chemistry of the photoresist, the deprotection reaction, and development were dis-
cussed next. The components of a photoresist were enumerated, providing an example of
each and explaining their utility. Due to its potential affect upon LER, the photoresist resin
was discussed in further detail. The deprotection reaction was discussed, noting the key fea-
tures: a catalytic process that converts a non-polar molecule into a polar molecule. The diffu-
sion and reaction equations governing deprotection were presented, noting that protonic acid
diffusion follows reduced, non-Fickean type II diffusion. Photoresist development was men-
tioned, focusing upon phase separation which may occur during development. Finally, the
statistical nature of deprotection was discussed, which elucidates the connection between

aerial image contrast and LER.
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3 Side Edge Roughness and Analysis in the

Frequency Space Domain

Side edge roughness (SER), as discussed in this chapter, is measured with an atomic force
microscope (AFM). SER is measured throughout the photoresist edge in two dimensions, as
shown in Figure 1-3. It is called SER to distinguish it from the top-down one dimensional
roughness data. SER data and LER data correlate with each other quite well [16, 23], how-
ever some elements of roughness can be observed more easily with an AFM. Most of the
effort here is to determine the height and size of side edge roughness and understand the phys-
ical nature of roughness. An initial study of how image contrast affects LER is presented,
along with some discussion of how SER and LER compare with each other.

Roughness data tend to have a large level of noise and many samples need to be measured
over many locations in order to obtain data that is statistically significant enough to be able to
extract confident conclusions. Due to the relative difficulty in obtaining AFM measurements
and the strong correlation between LER and SER, the pool of SER data collected are not of a
sufficient size to be able to reach any solid conclusions regarding how image contrast affects

LER. This is studied in further detail in chapters four and five.

3.1 Side Edge Roughness Experimental Set-Up
An ASM Lithography Pas 5500/90 248 nm wavelength stepper with 5 x demagnification
is used for all exposures. The numerical aperture (NA) is 0.52; the partial coherence, o,

equals 0.62. The mask pattern transferred is shown in Figure 3-1. The pattern labeled "AFM
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analysis" is a square block 40 ym by 40 um and
an 80 um by 80 um block as the background.
After exposing the wafer once, the mask is
shifted so that the background and the fore-

ground exposure areas on the wafer are placed

atop each other, then the wafer is exposed Figure 3-1: Mask pattern used for double
exposure method. White is an open area,

again. Figure 3-2 shows an SEM of a wafer black is chrome. The smaller square is
40 um x 40 um on the wafer, the larger

exposed with the pattern just once, in order to square is 80 um x 80 ym.

view the pattern. After exposing the wafer

twice, it is then post-exposure processed according to resist type as discussed below. More

details of the pattern design are described below.

Image contrast levels are determined using SPLAT [40, 45], a lithographic imaging simu-
lator. This simulator uses the theory of partial coherence imaging in its calculation. The
numerical aperture and sigma used for
all simulator calculations match those
of the stepper tool, 0.52 and 0.62,
respectively. Exposure dose ratios
range from 100% foreground : 0%
background (1:0) to 67% fore-

ground:33% background (2:1) to 50%

Sgnel A= 502 Duiw 25 Fobo 2002
Bnom Mo =610 Term 2050

EHT = 5000/
WD= &mm

I 20um
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Figure 3-2: SEM image of exposed resist showing
the "AFM analysis" mask pattern. The upper
image is the background and the lower image is
the foreground

foreground : 50% background (1:1).
Contrasts of these exposure doses

range from 1.0 to 0.54 to 0.37, respec-
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tively. The exposure doses are chosen such that they would all cross at the same intensity
level, 0.74, at the same location along the cutline.

The four commercial deep ultra-violet (DUV) 248 nm CARs studied are: UV210 (Ship-
ley), SEPR-463 (Shin Etsu), UVII-HS (Shipley), and Apex-E (IBM). The two older resists,
UVII-HS and Apex-E, are spun to around 8500 A thickness. The two newer resists, UV210
and SEPR-463, are spun to around 4000 A thickness. UVII-HS is pre-baked at 140 °C for 60
seconds. It is post-baked at 140 °C for 90 seconds, then developed in 1:1 solution of
water:MF-312. UV210 is pre-baked at 130 °C for 60 seconds. It is post-baked at 130 °C for
60 seconds, then developed in LDD-26W for 45 seconds. Apex-E is pre-baked at 100 °C for
60 seconds. It is post-baked at 90 °C for 60 seconds and developed in 3:2 solution of

water:MF-312. SEPR-463 is pre-baked at 110 °C for 90 seconds. It is post-baked at 100 °C

for 90 seconds,
then developed
in  SSFD-238.
All wafers are
coated with
AR3-600 (Ship-
ley) bottom anti-

reflective  coat-

ing (BARC) Flgure 3-3: SEM image of UV210 photorcsmt exposed w1thout anti-
) reflective coating. This sample was double exposed and overexposed,
before applying explaining the problems in the outer regions. At the edge of the pat-
terned region, like the region circled, it is quite clear that there is a step-

the resist. Apex-  ise “tier” of photoresist. This is due to regions of higher and lower
) ) exposure orthogonal to the surface, characteristic of standing waves
E, due to its envi- within the photoresist.
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ronmental sensitivity, is coated with IBM's RTC top coat after coating the resist. The BARC
coating, aside from preventing reflection and standing waves, acts as an adhesion promoter
similar to hexamethyl disilazane (HMDS). Therefore the wafers were not coated with
HMDS, nor were any of the wafers used throughout this study.

Initial studies not included in this dissertation did not use the BARC coating and instead
simply used HMDS as the adhesion promoter. With the ASML 5500/90 248 nm stepper tool
mentioned earlier, severe standing wave effects were clearly visible. Figure 3-3 is an SEM
image of exposed UV210 photoresist that did not use the BARC coating. Since the same
exposure tool was used, and always under similar lithographic conditions, Shipley’s AR3-600
was adopted into the resist coating procedures early in the studies to prevent standing waves.

The AFM used is a TopoMetrix Explor 2000, slightly modified to help reduce external
noise. A Ther-
moMicro-
scopes
Supertip probe
tip (with less
than 20 nm tip
radius of cur-

vature) is tilted

12° in order to

Figure 3-4: AFM SER measurement technique. A tilted probe tip mea-
sures data to create the image on the right. The highlighted box is then
flattened to give an image analogous to that of top surface roughness
(TSR) imaging.

allow measure-
ment of the

pattern  edge
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without any interference due to the shape of the probe tip itself. The tip is always tilted at the

same angle, in order to avoid systematic noise introduced by trigonometric effects [26]. Fig-

ure 3-4 demonstrates how the sidewall profile measurement data is then flattened, to give a set

of data similar to that of top surface roughness (TSR) imaging.

3.2 Side Edge Roughness Results

The correlation between

root mean square (RMS) SER and image contrast via AFM

metrology is shown in figure 3-5 and table 3-1. The pattern used is the "AFM analysis" pat-

tern shown in figures 3-1 and 3-2. Contrast is varied from 0.37 to 1.0. RMS roughness data is

the 30 deviation, calculated as follows:

Equation 3-1

RMS = 3 x

where z,,. is the calculated point to which the perfectly straight line or flat plane is fit, z; is

the actual point where the edge is found, and n is the number of points being measured. Since

the sampling size is generally so large, it is

RMS Side Edge Roughness vs Contrast

Comna

—e—SEPR4E] insignificant whether n or (n-1) is used in
. CTAC |- ApecC :
S ss —a—UVIHS
.E \ - g - /r . .
S —~—Uv210 th minator to determine RMS.
P N ———a thedeno
&E K] w‘
€5, x4 All AFM images are first flattened,
3 LN e
: 3 < ===
235 S T e, * « e .
g e -~ ===¢__  such that deviations from z,, arise solely
C.3% [IRL uss C b& wie LES K20} 105

- due to roughness. Figure 3-5 and table 3-1

Figure 3-5: Measured correlation between
SER and contrast for varying resists.

both contain the same volume of data. Dif-
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ferent formats are presented sim- SEPR-463 Apex-E  UVI-HS  UV210
Contrast |SER (nm) SER (nm) SER (nm) SER {nm)

ply to different modes of view. In 1 2.25 54 4.74 255

0.54 3.12 3.78 4.14 2.16

all four cases, the roughness does 0.37 4.26 41 5.94 36
overall standard deviation: 041

show a tendency to increase at the

0.37 contrast level, but the results Table 3-1; Measured correlation between SER and
contrast for varying resists. The data herein are iden-

are inconclusive. The overall tical to figure 3-4.

standard deviation given in table

3-1 is determined by collecting TSR measurements on unexposed areas from 28 runs total,
with all four resist types. Due to the cost and difficulty of obtaining SER measurements, these
repeat measurements are obtained using TSR data instead. In general, TSR correlates well
with SER, however TSR is somewhat smoother [26]. Therefore, the overall standard devia-

tion may be slightly larger than 0.41 nm.

3.3 Side Edge Roughness Shape
A benefit to measuring two dimensional SER instead of LER is that it allows a better

opportunity to examine the shape of the roughness. The shape of the

underlying

layer
top

edge roughness is consistently transferred to the underlying layer. In
the case of a relatively “soft” chemical etch with low ion bombard-
ment energy, the underlying layer being etched will have some two

dimensional topography. A “hard” physical etch with higher ion bom-

bardment energy will create an underlying layer with one dimensional Figure 3-6: car-

. toon of pattern
roughness that resembles tall “walls” of roughness [46]. Figure 3-6 transfer during

) hard physical
shows a cartoon of the roughness of an underlying layer after the layer etching process.
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Area Ra:

Area RMS:
Avg. Height: 9.8389 nm
Max. Range: 25.2643 nm

- Whole Image —— 2K

1.5156 nm
1.9790 nm

Area Ra:

- Partial Image

Area RMS:
Avg. Height: 111112 nm
Height. Max 8.5803 nm

1.3058 nm
1.5652 nm

0.55 um [

was
coated
with
photore-
sist and
pat-

"0 m 055
terned

Figure 3-7: A typical AFM measurement for side edge roughness analysis.

with

some level of roughness, then that roughness was transferred one dimensionally via a physical

etch.

A typical AFM side edge roughness measurement is shown in figure 3-7. In this example

the photoresist is UVII-HS. Twelve such roughness measurements were collected for figure

3-5 and table 3-1. Since the measurement can only be collected along the sidewall, the mea-

surement area is relatively small compared to the distance between peaks and valleys of

roughness.

plane or
Fourier
plane.
In
order to
look in the
frequency

domain, a

- Whole Image

Area Ra: 21457 nm
Area RMS5: 27404 nm
Avg. Height: 10.6041 nm
Max. Range: 25.9793 nm

|- Partial Image

Area Ra: 1.8900 nm
Area RMS5: 24143 nm
Avg. Height: 10.5882 nm
Height. Max 17.1606 nm

This prevents accurate analysis of the photoresist roughness in the frequency

5um

Figure 3-8: Typical AFM measurement used for TSR measurement.
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larger measurement area is needed. Therefore, a
top surface roughness (TSR) AFM measurement
is made after partial exposure of the photoresist.
Partial exposure of the photoresist yields a top
surface that mimics the photoresist sidewall prc;-
file [47]. Figure 3-8 is an example of the partially

exposed TSR measurement, with UV210 photore-

) R : SR % sist. This image is next analyzed in the Fourier
Figure 3-9: Typical AFM TSR mea-
surement in frequency plane. White is Plane, or frequency domain, as shown in figure 3-
high density of frequencies, black is

low density.
- Peak Spacing distribution:
9. This plot shows the density of i
202
surface roughness peak to peak pl

distances, where the center of the | 1,

7

plot is peak to peak distance equal e 05 : ' 060 ym

. 033 — &
to 0. As can be seen, there is no AB35gm ' 064 I

peak to peak distance equal to 0, [ Peak Angle distribution:
6

but the majority of peak to peak |,

spacings are randomly distributed |[213

close to the center. This plot can .

1
0.00

0.002° | | 5° I

be more easily examined in a bar

chart separating peak to peak

Peak Spacing: 0.21 pm
Peak Angle: 135 °

spacings into bins and looking at

Figure 3-10: Bar chart listing peak to peak spacing
and peak angle on a typical AFM TSR measurement.
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peak distance.  An example of such 2 ‘TR Average Peak:Peak Spacing

chart with SEPR-463 photoresist is shown

Apex-E |SEPR-463 |UV210 |UVII-HS
(nm) (nm) (hm) | (nm)

the results gathered: the peak to peak 143'3| 160' 130| 93.3

Table 3-2: Average peak to peak roughness
spacing appeared bimodal, with many of spacing.

in figure 3-10. This figure is typical of

the spacings less than 30 - 50 nm, and the other mode distributed around values 5 or 6 times
larger. Five TSR measurements were taken with each of the four photoresists. A summary of

the average peak to peak roughness spacing is shown in table 3-2.

The peak to peak spacing is on the order of 130 nm, the peak angle is typically around 1°,
and the average peak to valley height is around 3 - 4 nm. The average roughness height is
somewhat less than the RMS height given above. The partially developed photoresist top sur-
face roughness has a shape that resembles low, constantly rolling hills with a very mild slope.
There are very few sharp “spikes” in the roughness, nor are there any exceedingly flat areas.
As mentioned above, the partially develope-d TSR shape can be assumed similar to the SER.
3.4 Conclusions

The photoresist roughness peak to peak spacing ranged from 93 nm - 160 nm, however the
distribution was bimodal. One mode occurred below 50 nm and the other around 250 nm.
The spatial frequency spectrum of roughness showed random distribution. This information,
combined with very shallow peak angles, confirms low, rolling hills of roughness. There was
insufficient data collected comparing aerial image contrast to SER in order to make any strong

conclusions, but it was fairly clear that at very poor contrasts SER began to increase rapidly.
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Further studies of aerial image contrast versus roughness were held to chapters four and five,

which utilize LER data collected from SEMs. -
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4 Line Edge Roughness versus Aerial

Image Contrast: Multiple Resists

The work presented in chapters four and five focuses on understanding sow aerial image
contrast affects line edge roughness. Previous studies have already shown that poor aerial
image contrast can increase LER, and that increased LER at the gate layer can increase leak-
age current [2-3]. In this chapter, three separate aspects of aerial image profile degradation
are examined, and contrast definitions are created to help quantify these forms of profile deg-
radation. The contrast definitions are standard contrast, as described in equation 2-2; peak
intensity contrast, which is simply the maximum light intensity; and slope contrast, which is
the light intensity slope at the dose needed to clear the photoresist. Figure 2-4 demonstrates
the different type of aerial image profiles that these three different foms of contrast highlight.

In this section three resists, UVII-HS, SEPR-463, and UV210, are studied in more detail
with 9 contrast levels on each resist and 4 measurements at each treatment. IBM’s Apex-E is
removed from the work because it exhibits a high level of diffusion [32] and the contrast
parameter, vy, is quite low, as calculated in chapter two. It impossible to examine all the
degraded levels of contrast that can be studied for the other photoresists. Unexpected results
lead to some interesting questions regarding the impact of background flare upon LER. The

experiment described in chapter five addresses these questions.

4.1 LER versus Contrast (Multiple Resists) Experimental Set-Up
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The mask patterns used to create the varying levels of contrast in this chapter are shown in
figure 2-5. Pattern (a) in the figure is the foreground pattern. Grey corresponds to an open
area in the mask and white is chrome. The pattern creates a 2.0 um wide and several mm long
trench on the mask, creating a trench nominally 0.4 um wide at the wafer level. Pattern (b) is
the background pattern. It is merely a large open area to simulate background flare, 100 um
wide at the wafer. The wafer is exposed to pattern (a), then immediately afterward exposed to
pattern (b). Then the wafer is post-exposure processed as described earlier. By varying the
overall dose and the ratio of foreground to background dose, the aerial image profile is
changed to highlight varying levels of the three contrast types examined: standard contrast,
slope contrast, and peak intensity contrast.

Image contrast levels are determined using SPLAT [40], a lithographic imaging simulator,
with all optical parameters such as wavelength and partial coherence matching those of the
lithography tool as given in section 3.1. Simulation of the trench with flare pattern shown in

figure 2-5 is performed. Looking

80 71— -Aerial imageintensity for- V210 Contrast Experiments—
back upon figure 2-4, the exam- I SR
50 6 cloardose —
ples generated show image inten- | g P *Am‘;ms .,S;m ;:231
o —-ammn, cdmnem
[ . ;\ 8 'l'lt o 8- Q. o
sities along a cutline of the trench !g - |+-08n10375 = 0.84n0.231
: . . -l e — :
as contrast is varied. Figures (a) i g
. . 150
and (b) show the entire aerial g, ‘
X =10
image along the trench and (c)

0 o o e . . e : o > ) §
| 02 N l&%ﬂon ?tfm) (o.%m cec?tgt, no&rnal wﬁ‘ﬁh 0.48!%) '
clear dose, or the expected trench  Figure 4-1: The 9 different aerial image profiles

examined with UV210. 27 profiles total were exam-
ined, 9 with each resist.

shows a zoom near the photoresist
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edge. Figure 4-1 is a SPLAT simulation of the different image intensities used for the UV210
photoresist experiment correlating aerial image contrast with LER.

UV210, SEPR-463, and UVII-HS are studied. All three resists are spun to 6200 A. Aside
from the change in resist thickness, all resist coating and resist developing procedures are the
same as those described in chapter three. Exactly as in chapter three, all wafers are coated
with AR3-600 bottom anti-reflective coating (BARC) to prevent standing waves forming
within the resist.

Images used to determine LER data are collected using a Leo 1550 SEM, at 2 kV electron
acceleration voltage with a 30 um aperture and pixel noise averaging techniques to reduce
image noise. All SEM images, in this chapter and throughout the study, are collected at
50,000 x magnification unless otherwise noted. This magnification yields a 2.22 nm pixel
size. Therefore, a perfectly straight line caught at a pixel edge can theoretically yield a 3
sigma root mean square (RMS) roughness as large as 3.33 nm. The LER of the trenches in
these images is measured using 3 sigma RMS LER calculations. First, the contrast of the
image is enhanced to determine the most exact line edge. Then a perfect line is fit to the
trench wall and deviations from that perfect line are tabulated as the roughness. To clarify,
LER data is presented here, not line width roughness (LWR). The former measures each wall
of the trench separately, yielding deviations from the idealized perfect wall edge. The latter
measures the width of the trench, or the space between each wall, and looks at deviations from
the perfectly smooth line width. The calculations needed to enhance the contrast and extract
LER are accomplished via MatLab code (version 6.1, The MathWorks, Inc.) created by the

author.
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This method to extract LER from SEM images is the same one used throughout all of this
paper, including the work in chapter seven examining the LER of deblurred SEM images. An
SEM image is captured, like figure 4-2 (a). A threshold contrast limit is set where all pixels
brighter than that level are set to white and all pixels dimmer are set to black. Image 4-2 (b) is
the result of this contrast enhancement. The coordinates at which the contrast switches from
white to black are recorded. Figure 4-2 (c) represents the coordinates. A least squares linear
fit to these coordinates is made. The line edge roughness is then determined by equation 3-1,

where z,,,, is the coordinate calculated via the least squares linear fit. The trenches examined

throughout this entire E”
study are extremely E
long. The trenches are
0.4 ym wide and 6 mm
long.  These patterns
allow simple linear fit-

ting to the line edge. A

Y T T T T T TR P AT

perfectly printed trench
with no LER will print a

perfectly straight trench

e TRy
" A

edge, or line edge, since

the trench is so long rel-

. (@) (b) ©
ative to the wavelength  gjoyre 4.2: Method to calculated LER in this study. The SEM
image, figure (a), is converted to image (b) by setting a thresh-
old contrast level. Image (c) contains the coordinates of image
(b) that transition from white to black. LER is calculated from
image (c).

of exposure light. Thus,
a simple linear fit to a
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perfectly straight line is sufficient and LER is measured as a deviation from this perfectly
straight line. All the measurements made for the aerial image contrast studies are conducted
in this fashion. 4ppendix B contains the Matlab code created to enhance the contrast and cal-

culate the LER.

4.2 LER versus Contrast (Multiple Resists) Results

The correlation between LER and 27 different

' Clear Dose |Peak  “contrast’ _
. ) ) ) __.__Slope _iIntensity i(max-min)/
aerial image profiles is examined. This leads to 27 ;(‘,'nj,cm‘ﬂf);ﬁ,n‘{('@kmfgzj i'(max+min),
1269 0181
different image slopes at clear dose energy level, 27 152, 95 o021
205, 96. 0306
different peak image intensities, and 7 differentstan- 247 105 0347
249 19 037
dard resi t levels. Figure 4-2 showsallofthe , . . 30 . 136 0.4
ard resist contrast levels. Figure shows all of the BT ud T oem
different aerial image profiles examined for UV210 - : 3:: e 17'1;7 o
. . . L M7 -18.8: S
resist. Table 4-1 lists all of the different standard =~ = " 438 = 189
.. 541 208
contrasts, peak intensities, and image slopes exam- , 547 = 236
. %2 246
ined for all three resists. e, .. .859 26t
. 665 262
With the wid ial i files .. ... ...60.1. 268
i e wide range of aerial image profiles ‘ a2 T84T
. . ... . 108 28.6
examined, a wide variation in LER is seen between - 108 318
) L o 1301 327
the vastly different profiles and a statistically signifi- =~ = 1458 =~ 336 =
S 1498 372
cant correlation between LER and aerial image pro- 1498 394
: - 1805 466
file is detected. In the case of UVII-HS, for instance, . 28719 628
399.5 87.2

the worst 3 sigma RMS LER is 24.8 nm and the best Table 4-1: A summary of all of the
different contrasts examined. They

is 3.6 nm. The former occurs at 0.168 standard con- are listed as clear dose slope, peak
intensity, and standard contrast for-

trast, 12.6 (mJ/cmz)/ym slope at clear dose, and 8.7 mats.
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mJ/cm? peak dose. The latter occurs at 0.995 standard contrast, 65.9 (mJ/cm?)/um slope at

clear dose, and 13.2 mJ/cm? peak dose. These contrast values are the poorest studied (similar
to the poorest profile in figure 4-1) and nearly the best studied (similar to the second tallest
low background profile in figure 4-1), respectively. Looking back at figure 1-1, it contains
SEM images of these two experimental samples. For each aerial image profile, at least four
LER measurements are made; the top and bottom edges of two different locations in the
trench are measured.

Correlation between LER and the above-mentioned forms of measuring contrast-- stan-

dard contrast, image slope, and peak intensity-- are extracted. Correlation is measured by fit-

ting curves of LER data versus contrast and comparing the R? fitting parameter. More

rigorous statistics are used in chapter five; the reason for limiting statistical analysis here is

explained at the end of this later in this chapter. R? fitting is found as follows in equation 4-1.

Equation 4-1:

Io? 5 an2
r-zzi=1(yl M)
lZ;; (T4

n

Y; is the expected value of the fitting equation, Y is each specific data point, M is the

overall mean of the data, and n is the total number of data points. R2 equal to unity is a perfect
correlation; zero is no correlation. The sets of data from each resist are treated separately,
since it is possible that different resists have different mechanisms that lead to LER. In all
three different resists, the strongest correlation between LER and image contrast is found

between LER and standard contrast, as defined in equation 2-2. Table 4-2 contains a summary
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RA2 value CRRvaie 0 |R2valve

UVIL-HS Uv210 SEPR-463
LER ve clear dose slope (inear relationship) . _ D45y . 0.1564 0373
iLER vs <best fl> clear dose slope (non-lmea: relauon) 0.721 0.2335 06783
= (best i1 equalion). y-94 052 x~0.6574 |y = 0. oouwz 0.0462x +9.4753 |y = 285.05 x~0.7636 -
iLER vs pesak intensity (inear relationship) " 0.2643 o 0763| 02774
00539 0.3851-

‘LER vs <best fit> pesk intensity (ron-linear relation)
_= (best f1 equation): _

y=107.4 x»09894 y=0w25x"2 -0.2485x + 11.141 y=4384!'~1 1539

LER vs (max-min/(max+min) cont, Qinear ratationship) T T g | T g

:LER vs <best > conl. (nan-iinear selation) — @ 3131 >

* — (best f oqualion). y=4.6173 xr0.795T |y=8.56 o"0.554x |y = 3.6954 xA0.5
Table 4-2: Summary of correlations between line edge roughness and the different forms
of measuring aerial image contrast. With all three resists, LER versus standard contrast
gave the strongest correlation, although UV210 did not yield a strong correlation with any

definition of contrast.

of all the correlations. Correlations between LER and any form of measuring of contrast are
all weak for UV210. Figures 4-3 through 4-5 show typical correlation plots. Figure 4-3 is the

correlation between LER

and the standard definition 30 +—LER-vs-std-contrast{(SEPR-463resist)—
of contrast— | E 22 * 06942

- 1E L, ¢ y=3.6954x"

L J 2 —

(max — min) /(max + min)- | 5 \ . RZ=0.734
- for SEPR-463. Figure 4-4 IE 10 * Y
plots LER versus standard |%& O * ‘\!\GT_‘
contrast for UVII-HS. Fig- 0 0'5 ﬁ1
ure 4-5 is the same for Contrast (unitless, 1 = perfect)

) _ Figure 4-3: Plot of LER versus standard contrast for SEPR-
UV210. A linear correlation 4¢3 regist. Correlation, R2, is 0.734.

of LER versus the specific
form of contrast is included in table 4-2, however a linear fit is never optimal.

Some similarities between the strongest correlations are seen in this set of data. Logarith-
mic, exponential, power, inverse, binomial, and linear relationships between LER and the var-

ious forms of contrast are all examined. With all three resists, a power law relationship of
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LER versus standard con-
trast emerges as the best fit.
In the cases of UVII-HS and
SEPR-463, the two resists
which show a significant
correlation between LER
and standard contrast, the
following approximate rela-
tionship is found:

Equation 4-2:

3 sigma RMS LE'I\!)(IIT;

30 —LER vs_std contrast (UMI-HS resist)

-— e

S o

y =4.6173x 7

:
N, R?=0.8344

0.2 . B .8
contrast (gl;‘ltless.01 = per?ect)

Figure 4-4: Plot of LER vs standard contrast for UVII-HS
resist. Correlation is 0.834.

Line Edge Roughness o« (Standard Contrast)_o'85

It is expected that as contrast degrades, LER increases. Therefore, the negative exponen-

tial relationship is anticipated. Furthermore, LER is not quite inversely related to aerial image

contrast; the relationship is
somewhat milder than that.
In the case of UV210,
there are many data points
where the LER is quite low
even when contrast is poor.
However, there are others
where the LER is significant

when contrast degraded.

14 -

E12
=

3 sigma RMS LER
(en]

oON & O

o

LER vs Std Contrast (UV210)
. y = 8.56¢ 0554
. R? = 0.3131
$
ss
* ’ rS
| | | B
0 1

0.2 0.4 0.6 0.8
contrast (unitless, 1 = perfect)

Figure 4-5: Plot of LER vs standard contrast for UV210
resist. Correlation is very poor, at 0.313.

No strong correlation between LER and contrast can be found in the case of UVZIO.
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A summary of all the raw data collected for this LER versus aerial image contrast experi-

ment is presented in Appendix A.

4.3 LER versus Contrast (Multiple Resists) Conclusion and Discussion
The correlation between various aerial image contrast models and LER was studied with
three different photoresists. LER versus the standard definition of contrast showed the stron-

gest correlation. In the two resists that showed a significant correlation, UVII-HS and SEPR-

’0‘85, approximately.

463, there was a nearly inverse relationship: LER «a (contrast)

The standard contrast definition depends upon the maximum dose and the minimum, or
background, dose. The best fit between standard contrast and LER was an unexpected result.
The experiment was designed either with the expectation that the slope contrast would be
most significant, suggesting that LER was a localized phenomenon; or with the expectation
that peak intensity contrast would be most significant, suggesting that long range effects such
as acids diffusing over relatively large lengths dominate LER. In fact, the author was expect-
ing the former to be true for photoresists with shorter diffusion lengths, such as UV210; and
the latter to be true for older resists with larger diffusion lengths. Standard contrast was
included in the study to provide a control, a method of measuring contrast that has been used
for several years.

One explanation for why standard contrast fits best with LER is that the background dose
had a significant effect upon LER. Standard contrast is the only form examined which defines
itself, at least partially, using the minimum (or background) dose. This possibility seems
counter-intuitive. One explanation how the presence of photo-generated acids in areas that
received little exposure, a level of exposure below that needed to create enough acids to
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deprotect the photoresist enough to be developed, could affect LER is given: The presence of
photo-generated acids in the sub-threshold exposure area, or the background, change the over-
all diffusion of acids into that area. For instance, a higher level of acids in the “unexposed”
region (but still not enough acids to allow it to become exposed) prevents many acids in the
exposed region to diffuse into that unexposed region. In the case of Fickean diffusion,
whether the concentration in the background exposure area changes or whether the concentra-
tion in the peak intensity changes, the only key parameter is the concentration gradient. In
this case, peak intensity contrast or a newly defined minimum intensity contrast should both
fit LER data equally poorly or well. Standard contrast would maybe fit better than either of
these contrasts, and the slope contrast should fit best of all. The results presented above, with
peak intensity contrast not fitting well in any case and standard contrast fitting well in all
cases, do not fit with any of the above expectations. As mentioned in chapter two, however,
photogenerated acids do not move via simple Fickean diffusion.

A new experiment was designed in order to better understand this unexpected result. This

experiment is detailed in chapter five.
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S5 Line Edge Roughness versus Aerial

Image Contrast: In-Depth Study

This chapter describes a more in-depth study using only UVII-HS resist in order to high-
light and carefully quantify the image metrics that correlate best with LER, particularly flare.
The background dose seems to be contributing to LER in some form, otherwise the peak
intensity contrast should have correlated at least as well as the standard contrast in chapter
four. Work up to this point presented no form of contrast that measured solely background
dose, so it is difficult to make any conclusive statements. In this chapter, a new experiment is
run and a new form of contrast, the background contrast, is created.

Equation 5-1:

Backeround Contrast = (clear dose — background dose)
& clear dose

where “clear dose” is the minimum exposure dose needed to clear for that photoresist and
“background dose” is the background (or flare) exposure dose level that the photoresist expe-
rienced. The clear dose is a fixed value for each photoresist and lithography system. It will
depend only upon exposure wavelength, post-exposure bake, and other processing conditions.
Similar to the standard contrast, a background contrast of 1 is perfect-- no flare experienced--
and with a contrast of 0 there is no patterning-- the entire area has been fully exposed, includ-
ing sections meant to be unexposed. Of course, since only information regarding the back-

ground dose is given, it is entirely possible for an image with the background contrast equal to

50



1 to have poor image quality. For example, a photoresist coated wafer that receives no litho-
graphic exposure whatsoever experiences background contrast equal to 1. Such a wafer will,
of course, have poor imaging. Therefore, the background contrast cannot be the sole form of
measurement used to define quality imaging. Instead, it is used as a tool to determine if

indeed the background exposure level is as important as it seemed in chapter four.

5.1 Designing the In-Depth LER versus Contrast Study

In chapter four, several different aerial image profiles were examined. Throughout the
entire experiment, though, only 3 different background exposure doses were studied. Exam-
ining three different levels of the background contrast would not be sufficient to order to find
a statistically significant correlation. Therefore, a new experiment is designed. Eight differ-
ent background contrast levels are studied, and 30 different LER measurements are taken at
each contrast levei, 15 measurements per trench side. With a pool of data this large, the num-
ber of photoresists studied has to be reduced. The author examines UVII-HS because it had
the stfongest correlation with standard contrast. As demonstrated in chapter four and by
Sanchez et al., the LER of each photoresist has a different response as aerial image profile is
altered. This study is not attempting to conclude that all photoresists will act similar to UVII-
HS. However, UVII-HS is a model photoresist that still shares many attributes with the most
modern 248 nm and 193 nm photoresists. The polymer side chains end in t-butyl esters
which, after deprotection, form carboxylic acids [18, 19, 54]. This is still a dominant depro-
tection reaction in modemn photoresist chemistry. Moreover, this work is attempting to

uncover a previously unstudied phenomenon, a relation between flare and LER. Discovering
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this in numerous photoresists would be ideal, but discovering it in one model photoresist is
still quite significant. |

Roughly 200 data points are collgcted, since some of the measurements had to be dis-
carded. It is necessary to collect so many repeated measurements in order to have statistical
confidence in the results. LER measurements are quite noisy, as already mentioned. In this
experiment, as seen in appendix A2, the range between LER measurements at the worst con-
trast level is larger than the difference between the average of the LER measurements at that
worst contrast level and the best contrast level. The range between individual 1 oo LER mea-
surements at the worst level is 6.2 nm, yet the difference between the average of the worst
level and the best level is only 5.3 nm. In order to make confident conclusions and find strong

correlations, a large sample size and rigorous statistical analysis are needed. By taking 15

measurements per trench side per contrast level, the noise in the data is reduced by J15, or
nearly 4.

Three different forms of measuring aerial image contrast are compared, once again. This
time they are slope contrast, standard contrast, and the newly defined background contrast.
The peak intensity contrast was discarded because chapter four demonstrated that this form of
measuring contrast never correlated well with line edge roughness.

In order to extract the most useful data possible, the different forms of aerial image con-
trast must be made as orthogonal to each other as possible. It is impossible to make them fully
orthogonal since they are all measuring portions of the same thing, aerial image profile. The
standard contrast could be relatively high, for instance, while the background contrast is low
by overexposing the photoresist in the exposed regions and allowing a fairly significant level

of exposure in the background. Looking back at figure 1-2, it is a SPLAT simulation of the
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aerial image profiles of the eight
different contrast levels chosen
in this experiment with maxi-
mized orthogonality. The ideal
orthogonality is found by plot-
ting the three different forms of
contrast simultaneously. Figure
5-1is a plot of all three forms of
contrast, with the background
contrast plotted nearly linearly.

A high level of orthogonality

1 . Des lilng olihogonaﬂy_lﬂfbackground.g;ta

—o—std. cont. ‘L
|—=-bg.cont [
norm. slope |-t
1 3 5 7

unitless steps- (inear drop in background contrast

Figure 5-1: Plotting contrast levels from figure 1-4 in
terms of the three different forms of measuring contrast.
In this figure, it was plotted to make the background
contrast fit as linear as possible. The other fits were rel-
atively poor, providing a relatively high degree of
orthogonality.

occurs when the R? fitting parameter-- fit to a linear equation-- for the linearly plotted contrast

is close to 1 and the others are as close to 0 as possible. Figure 5-2 is the same plot except

with the normalized slope plot-
ted linearly. Aerial image pro-
files similar to those in figure 1-
2 are adjusted until all three
forms of measuring contrast
were as orthogonal as possible.
Orthogonality is determined via
plots similar to figures 5-1 and
5-2. In figure 1-2, the aerial

image profiles for the 0% back-

contrast (1=peifect)

1 | Dos!gnlng orthogonality with normalized slope
0.8
0.6 +—sSey
R?=0.1619 N
0.4 A
——std. cont. \-/. \
0.2 —=—b.g. cont. 2' ‘
o nomn.siope] R2=0.9184
I T T
1 3 ] 7
unitless steps-- linear drop in normalize d slope

Figure 5-2: Plotting contrast levels from figure 1-4 in
terms of the three different forms of measuring contrast.
In this figure, it was plotted to make the normalized
slope contrast fit as linear as possible. The other fits
were relatively poor, providing a relatively high degree
of orthogonality.
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ground (0.99 background contrast) and the 62% background (0.38 background contrast) were

fixed. These are two different background levels used in chapter four, therefore their aerial

image profiles were
already decided. In
this way, the same
wafers exposed in
that chapter could be
reused for this one.
This saves time, but
more importantly

keeps some level of

{
)

e

‘standard : background | norm. slope; slope

T
i

b.g. exposure .

contrast:  contrast: i contrast: :contrast: : level (% of clear)

| __ 1/ 093 : 083 100 1430 | 0%
. 2| 0BB ' 08 | 03 8.12 10%
~”3. 091 - 079 ¢ 0.91 ;. 1350 ; 20%
4/ 070 068 018 | 7.03 30%
; 5| 083 0.58 064 : 11.09 : 40%
' B| 085 049 005 | 579 50%
71 0652 - 038 . 000 . 53 ! 62%
8 072 © 028 . 017 . 693 .  70%

A

Table 5-1: Summary of the contrast levels that yielded maximum
possible orthogonality between the different forms of measuring

contrast. The final column, background exposure level, is simply
the percent of clear dose targeted for the background exposure, the

second exposure. Slope contrast units are (mJ/cm?um), all other

measures of contrast are unitless.

continuity between the two studies. Figure 1-2, figure 5-1, and figure 5-2 represent the best

level of orthogonality between contrast forms. Table 5-1 is a summary of the different con-

trast levels in this most orthogonal case. For example, the samples measured from the 7th

level of the experiment have standard contrast equal to 0.52, background contrast equal to

0.38, slope contrast equal to 5.38 mJ/cm2°pm, normalized slope contrast equal to 0.

The normalized slope contrast is a simply a normalized version of the slope contrast used

earlier. It is created to make it easier to examine the orthogonality of the contrasts compared

to each other. The normalized slope contrast is defined as

Equation 5-1:

Normalized Slope Contrast =

slope contrast — minimum slope contrast
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where the slope contrast is the same as the slope contrast value used until this point, the mini-
mum slope contrast is the smallest slope contrast examined in this study, and the maximum
slope contrast is the largest slope contrast examined here. This is done to allow the slope con-

trast to be normalized between 0 and 1.

5.2 SEM Measurement Issues

The SEM tool used to collect data throughout this dissertation, the Leo 1550, has an asym-
metric secondary electron detector, or secondary electron collector. The asymmetry in the
detector leads to LER measurements that are dependent upon the orientation of the sample
with respect to the detector. Figure 5-3 is an image of the inside of the Leo 1550 chamber.
The secondary electron detector lies on one side of the electron gun and sample. For proper
symmetry, the detector should be a ring circumscribing the gun so that the gun is at the center
of the ring, instead of the detector lying just to one side of the gun as shown in the figure. In
order to minimize any error due to the detector asymmetry, for all the measurements done in
this section the trench is oriented so that the top and bottom edges of the trench always receive
exactly the same orientation with respect to the secondary electron collector. The lines are
oriented perpendicular to the direction of the secondary electron collector to create the largest
difference between detection environments that the top and bottom edge experience. In this
manner, any differences due to SEM measurement inaccuracies should become apparent dur-
ing data analysis. Moreover, this will allow one of the two LER measurements to have the
strongest secondary electron signal possible.

The significance of this effect was not considered in chapter four, so the samples were not

necessarily placed in exactly the same position with respect to the secondary electron detector.

55



However, the
effect is evi-
dent once it
is noticed. In
figure 1-1
(a), the top
edge seems

to have

slightly bet-
fer  resoli- Figure 5-3: Image of the Leo 1550 sample chamber used. The secondary
electron detector is not placed symmetrically around the electron column.
Therefore signal detection is dependent upon the position of the sample

relative to the detector.

tion and
some level of
information

in the z-direction can be seen on the top edge. None of this can be seen with the bottom edge.
Yet, the sample was not tilted nor was the profile asymmetric. All samples in this section are
measured with the orientation similar to figure 1-1 (a). Figure 5-4 is a sample image taken in
this new run with this orientation. The SEM images are then artificially rotated counterclock-
wise after capturing the image so that the top side is the left side. This is done to make the
image easier to read with the MatLab code created. The reader should keep in mind that “top”
or “left” side LER values are those captured along the trench edge that looks similar to the top
of figures 1-1 (a) and 5-4, and that the “bottom” or “right” side LER values are those captured

along the trench edge similar to the bottom of figures 1-1 (a) and 5-4.
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Figure 5-4: A sample SEM image from the 0.89 background contrast level. The asymme-
try of the SEM electron detector is evident; the image along the top edge of the trench

looks very dissimilar to the bottom edge of the trench. For this study, all SEM images are
taken with the same orientation of the trench with respect to the secondary electron detec-

tor, and the top edge and bottom edge LER values are examined separately.

5.3 In-Depth LER versus Contrast Results using Treatment Averages

Data is first analyzed using R? fitting of the treatment averages similar to chapter four.

Figures 5-5 through 5-7 are correlations between LER and the three different forms of contrast

studied. The best fit is with

the newly defined back-

ground contrast. R? is 0.76
fitting a power relation of
background contrast versus

LER on the left, or top, side

of the trench. RZ fitting,
again for the power relation,
is 0.79 for the background

contrast versus LER on the

__Correlation between background contrast and

Ll
o
)

B " Line Edge Roughness (LER)
- ¥ =4.2561x™"% [« et side LER
3 R?=0.7562 * right side LER
<5 — Power (left side LER)
§ .\ — Power {right side LER) |
E10 s -
f 5 = 422;‘%;
R®=0.7934 |
0 1 , ,
0.2 0.4 0.6 0.8

Background Contrast (1 = perfact)

Figure 5-5: Correlation between background contrast and
LER. Each data point represents 15 measurements, except
in the case of 0.38 and 0.99 background contrast, which are

4 and 9, respectively.
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right, or bottom, side of the
trench. For both the left
side and right side of the
trench, a power relationship
fit best, with a nearly
inverse relationship.

Two data points in fig-
ure 5-5 significantly deviate
from the fit, while all others

fit quite well. LER values

25 Correlatlon botween standard contrast and I.ho ..,.

20 . leﬁ s:de I.ER
- 1 = rghtsideLER
515 - f,i — Expon. (left side LER)
o o — Expon. |light side LER)
-§1o
% 5
™

o -
0.5 1

0.6 0.7 .8 0.9
standard contrast (g =perfect)

Figure 5-6: Correlation between standard contrast and
LER. Each data point represents 15 measurements, except
in the case of 0.52 and 0.99 background contrast, which are
4 and 9, respectively.

for the 0.69 background contrast are considerably higher than the fit predicts. The following

paragraph proposes a reason why this may have occurred. Also, the LER values for the poor-

est background contrast are very high. This may happen because, as the aerial image profile

degrades, there is a point
where lithographic imaging
is no longer possible. The
resist profile becomes worse
than simply poor, but unrec-
ognizable. Measuring LER
is no longer possible Figure
5-8 is an example of a wafer

exposed with such a poor

aerial image that the trench

Correlation between "slope contrast” and Line
Edge Roughness (LER)
R s left side LER
20 = right side LER

T y=1 6.096909878x | — Expon. (left side LER}
=15 — — — Power {right side LER)
@ R-‘ =0.3273 0.7128
W : y 229.055x™
« . ' : ‘R°=0.4537
E. L ° '
a5 T &
[ ] . .

o L) L] ¥ - L]

L 7 9 1 13 15
clear dose slope (nJ/emA*2 um)

Figure 5-7: Correlation between clear dose slope contrast
and LER. Each data point represents 15 measurements,

except in the case of 5.38 and 14.3 mJ/cm?um background
contrast, which are 4 and 9, respectively.
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did not fully develop. This aerial image profile was initially going to be another level used to
evaluate all the photoresists in chapter four, however measuring LER was impossible and non-
sensical. There is clearly some point at which the aerial image profile is so degraded that the
LER increases very quickly and it deviates from any prior, comparatively mild, relationship
between LER and contrast. Sanchez et al. also observed this region with several of the photo-
resists they studied [15]. With several of the photoresists they studied, there was nearly a step
function where the LER quickly degraded and it was soon impossible to measure sensical
LER data.

As mentioned in the preceding paragraph, the 0.69 background contrast level LER data
also did not fit the trend line as well as the other levels. The slope contrast at this level is

exceedingly low, in order to better orthogonalize the experiment as mentioned earlier. The

Signal A=SE2  Date 22 Oct 2002
PhotoNo.=534  Time :10:42

By - PEEETA S T PUCR 5 oo S T S 4S5

Figure 5-8: SEM image of trench receiving very poor exposure aerial image
profile. It is impossible to measure LER in this case because the trench is not
fully cleared; a large portion of the photoresist still remains in the trench area.
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slope contrast at this level is 7.03 mJ/cm?um. The neighboring background contrast values,

0.58 and 0.79, had slope contrasts equal to 11.09 mJ/cm®um and 13.50 mJ/cm?um, respec-
tively. If the slope contrast is indeed also affecting LER, this would explain the relatively high

LER at this point. However, the 0.38 background contrast level has even poorer slope con-

trast, 5.38 mJ/cm?um, with only slightly worse LER data. It is therefore possible that the dis-

crepancies in LER values are simply due to statistical error or some other phenomenon.

5.4 LER versus Contrast Study-- Rigorous Statistical Analysis

In order to state with confidence that the background contrast fits the experimental data
best, analysis of variance (ANOVA) is needed. ANOVA is a statistically rigorous method for
assessing whether data is fitting a model or following random noise. Further statistical analy-
sis is performed using JMP software version 3.2 (SAS Institute, Inc.) [55-56]. First the best
fitting equations are found. The fits are limjted to a linear fit, logarithmic fit, exponential fit,
and power fit. Polynomial fits are discounted because they are physically non-sensical. There
isno -physical reason w.hy there should be either a maximum LER or minimum LER that does
not occur at the maximum or minimum contrast explored. No local maximum or minimum
should exist. This would mean the LER gets worse as contrast improves or gets better as con-
trast degrades. Both of these conclusions are physically illogical. Fits that involved a combi-
nation of certain equations, for instance the sum of a linear equation and a power equation,
were also ignored. While these fits do make physical sense, especially when considering the
argument made two paragraphs earlier that there might be a region of rapid LER increase,

they are more difficult to model. The models become so complex that it is more difficult for

the equations to converge upon an equation and even more difficult to find reasonable control
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limits. The most important criteria throughout this statistical exercise are to find the form of
contrast that best correlates with LER and to find which forms of contrast correlate enough to
conclude that they contribute sigrﬁﬁcgntly to LER.

Figure 5-9 is the output to an exponential fitting model. The general form of the fitting
equation must be defined by the user. In this case, the author chose the following general
power law equation:

Equation 5-2:
Left Side of Trench LER = ¢, (¢ Background Contrast)

c; and c, are constants that are fit using the JMP statistical software, LER and background

contrast are as defined early. LER values used throughout this section are 1 o~ values instead
of 3 o values. This means that equation 1-2 is used as is, instead of multiplying it by 3. At
some points throughout the analysis, it is necessary to find the variance within the set of LER
data. For these calculations, the 1 o RMS roughness values are needed.

Non-linear model fitting, such as that performed in figure 5-9 and equation 5-2, does not
allow ANOVA. However, it needs to be performed upon all of the fitting equations in order to
determine which best correlates with LER. Detailed descriptions of ANOVA can be found in
several statistics textbooks that focus upon manufacturing or laboratory environments [57]. In
order to use ANOVA, the relationship between the observation, in this case LER, and the
effect, contrast, must be linear. The fitting equations mentioned above must therefore all be
linearized so that analysis of variance can be applied. The following is an example to linear-

ize a general power model fitting the left side of the trench LER to background contrast:
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Figure 5-9: A typical output of statistical data from JMP software. The first line of portion (a)
is the model formula for fitting the data, which is set by the user. In this case, it is an exponen-
tial form with two constants, c1 and c2, that are solved. The subsequent lines are the deriva-
tives with respect to c1 and c2. Highlighted area (b) contains the solution for c1 and ¢2
parameters, as well as the upper and lower confidence limits, the sum of square errors (SSE),
and other statistical information. Area (c) is a plot of the data and the model fit to the data.

Equation 5-3:
Left Side of Trench LER = ¢, (Background Contrast)“2

Simply taking the logarithm of both sides yields:
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Equation 5-4:
In(LER) = In(c,) *+ ¢, - In(Background Contrast)

To properly apply ANOVA, the LER data all need to be converted to In(LER) and the
background contrast values need to be converted to In(bg cont). Then the data is fit using the
standard least squares fit like that described in equation 4-1. Table 5-2 shows fits of the

parameters In(c;) and c, for the model in equation 5-4 using left side of trench LER versus

background contrast. The intercept of the fitting equation is In(c;) and the slope is c,. There-

Term Estimate Std Error Lower 95% Upper 95%
intercept 0.2865402 0.054987 0.1773812 0.3956892
In(BG Contrast) 1113174 0.087112 -1.28609 -0.840257

Table 5-2: Least squares fit for the parameters of the linearized equation 5-4, the
dependence of left LER upon background contrast. “Intercept” is the term In(c;) and

In(BG Contrast) is the term c, as specified in equation 5-4.

fore, in the case of left LER versus background contrast, the optimal fitting equation is:
Equation 5-5:
In(LER) = (0.2865 + 0.0550) — (1.1132 + 0.0871) - In(Background Cont.)

Or, converting it back to the original power equation form:
Equation 5-6:
LER = (1.3318 +~0.0732) - (Background Contrast)—(1.1132£0.0871)

Studying the confidence limits provided in table 5-2 can further explain the model fit.
Table 5-2 contains the 1 o standard error values and the upper and lower 95% confidence

intervals. Since the 95% confidence intervals for the exponential term do not include zero,
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there is already at least 95% confidence that background contrast does influence LER. The
errors given in equations 5-5 and 5-6 are 1 o values. The errors on ¢, in equation 5-6 are not
quite symmetric, however, since the symmetric errors were determined for In(c,). The errors
written in equation 5-6 are approximate. The upper bound of c; is 1.4071 and the lower
bound is 1.2605.

Further analysis of linearized equation 5-5 using ANOVA is shown in table 5-3. There

were 97 data points, yielding 97 total degrees of freedom. There is only 1 level, or degree of

freedom of the model, which is the background contrast. In the model, no other variable

N

accounts for LER varia- tAmiysis of Variance )

tions. The DF for error Source DF Sumof Squares Mean Square  F Ratio
Model 1 17.954209 17.9542 163.2946
Ervor 86 10555183 01089  Prob>F

are found by subtracting

C Total 97 285093392 <,0001 )

the DF of the model Table 5-3: ANOVA for the linearized power relationship
) - model fitting background contrast to left side LER, equation
from the total DF, yield- 5-5. DF are the degrees of freedom.

ing 96, since all other
variations in LER must be accounted for by random error in this case. The sum of squares
(SS) for the model are found as follows:

Equation 5-7:

SS = Z'_‘= l(xi—J-c)

where x; is the model predicted value at that data point. For instance, if the background con-

trast were 0.99 (the highest b.g. contrast tested), then the model predicted value for

In(Left LER), x;, would be 0.298 since 0.2865 —1.1132 - In(0.99) = 0.30. x is the mean



of all the model predicted values. Next the mean square, or mean sum of squares (MSS), is
simply the SS divided by the degrees of freedom:

Equation 5-8:

SS

MSS = degrees of freedom

The terms for the error are calculated almost identically, except the sum of squares due to
error (SSE) is slightly different.

Equation 5-9:

SSE = Z:; NORED

where x; is the same as described for equation 5-7 and y; is the individual data point. The

mean sum of square errors (MSSE) is calculated by dividing the SSE by the DF of the error,
ahalogous to equation 5-8. Finally, the ratio of the MSS over MSSE follows an F-statistical
distribution.

Equation 5-10:

MSS _ &
MSSE DF, model’DFerror

The ratio of MSS over MSSE is then compared to the applicable F-distribution and the proba-
bility that the model is not actually fitting the data and that the data are simply random noise,
at least with respect to the model, is found. The larger the F ratio, in this case it is 163.3, the
lower the probability that the model is not fitting the data. The probability and the F ratio are

shown in table 5-3 above. In this case, the probability that the model is not fitting the data is
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less than 0.0001. Or, there is a greater than 99.99% probability that the model is fitting the
data.

Similar calculations are made with the other forms of contrast, standard contrast and slope
contrast, versus both left LER and right LER. These calculations are done with power, expo-
nential, and logarithmic fitting functions. In all cases, the background contrast has the stx'on;

gest F Ratio. Tables 5-4 and 5-5 are a summary of the left and right LER power function

.. |Leftside of wench LER:
Power function fitling:

; C1_ lowIC1. estim. C1, high|C2. low 2. estim. C2 high|Equation ~ —  "F Ratio
iB.G. Cont. | 0.1774 02865 0.3857] -1.2861  -1.1132 -0.9403|LER=1.332 (b.g. con)*1.1132 = 163.3
Std. Cont. (03621, 0536 07099|-16727  -1.1441 -D.6155|LER=1.709 (sid. cont}r1.1441  18.46
Stope Cont [ 2.0876] 2718 3.3484| -1.1579 = 08688 -0.5798|LER=15.15 (slope cont}»0.8888 _ 35.61
Table 5-4: Summary of the equations best fitting LER on left side of trench to contrast.
Background contrast has the highest F Ratio, next slope contrast, and finally standard con-
trast. All F Ratios are high enough that all forms of contrast show a significant effect
upon LER. The C, estimates are those of In(C,). For example, C, for b.g. contrast is

actually %2865 or 1.3318.

~ Right side of iench LER:
Power function fitting:

[C1. low! €1, estim. C1, high [C2. low €2, estim. C2, high |Equation F Ratio
B.G. Cont. [0.2244, 0.3052 0.3861| -0.9423 -0.8045 -0.6667|LER = 1.357 (b.g. cont)*0.8045 1343
Std. Cont. |0.2883: 03977 05071| -1.408  -1.0719 -0.7349|LER = 1.4884 (std. cont)*1.0719  39.86
Slope Cont| 1.8024; 22139 26254| 08938 0.7065 -0.5192|LER =9.151 (slope cont)*0.7065 56.07
Table 5-5: Summary of the equations best fitting LER on right side of trench to contrast.
Again, background contrast has the highest F Ratio, next slope contrast, and finally stan-
dard contrast. All F Ratios are high enough that all forms of contrast show a significant
effect upon LER. The C, estimates are those of In(C;).

model fits, respectively. The exponential and logarithmic fits are left out of the tables because
their fits were never as strong.
Tables 5-6 and 5-7 contain an example fit and ANOVA for an exponential function, which

was typically the second best fit. These two tables are analogous to tables 5-2 and 5-3 above.
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Term Estimate Std Error Lower 95% Upper 95%
Intercept 1.2039339 0.132355 0.9405884 1.4672794
Background Cont  -0.771421 0.180685 -1.130827 -0.411914

Table 5-6: These are the parameter estimates for the linearized exponential function
described in equation 5-12. “Intercept” is the estimate for In(c,) and “Background Cont”

is the estimate for ¢;. This table is analogous to table 5-2, but with an exponential fit.

In this case, they present the data to fit the left side LER to background contrast. The expo-
nential function first has to be linearized, so that the general exponential function
Equation 5-11:

Left LER = ¢ ecz(Background Contrast)

becomes

Equation 5-12:
In(Left LER) = In(c,) + ¢, - Background Contrast

Parameters are found for the general exponential function 5-12, and it is then fit and analyzed

using ANOVA exactly as ((analysis of Variance )
. Source DF Sum of Squares Mean Square  F Ratio
descrived above for the [\, 40 1 14503777 145038 18.2281
function fit  As i |ETOT 81 6.4450421 007957  Prob>F
power function fit. AS IS | @ yatq) 82 78954197 <0001

evident from table 5-7, the F Table 5-7: anova exponential left vs bg ANOVA for the
linearized exponential model fitting background contrast to

Ratio is nearly one order of left side LER, equation 5-12. This is analogous to table 5-3.

magnitude lower than it was

for the power model fit. There is still a strong fit to the model; the model fits the data well

enough that the variations in LER cannot be considered mere random noise. However, the

power model gives a significantly stronger fit in this case, and all that were examined.
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The statistical F-test is the most statistically rigorous method to prove whether a hypothe-
sis is true or false, however it is difficult to intuitively understand. The next few paragraphs
provide alternate ways to view how much better the background contrast fits compared to the
other two forms of contrast. Only background contrast and standard contrast are explicitly
compared here, although similar conclusions can be seen comparing background contrast to
the slope contrast. First, the confidence ranges of the fitting equations are examined. This
example will compare the best fit equations of standard contrast versus LER and background
contrast versus LER, looking at only the LER of the left side of the trench. The linearized fit-
ting equation for the background contrast, with the 95% confidence limits, is given in equa-
tion 5-5. Equation 5-13 is the linearized fitting equation for the standard contrast, with 95%
confidence limits.

Equation 5-13:

In(LER) = (0.536 £ 0.1739) — (1.1441 £ 0.5286) - In(Standard Contrast)

Calculating LER values predicted from the standard contrast model, equation 5-13, yields
95% confidence interval LER values ranging from 1.45 nm to 2.07 nm for the best standard
contrast level and LER values ranging from 2.15 nm to 6.07 nm for the poorest standard con-
trast level. The background contrast model, equation 5-5, yields a 95% confidence interval
ranging from 1.21 nm to 1.50 nm at the best background contrast level and 3.82 nm to 7.3 nm
at the worst contrast level. The confidence interval of the background contrast is 48% of the
interval of the standard contrast at the best contrast level, and the interval of the background
contrast is 89% of the standard contrast at the worst contrast level. And at every point in
between, the confidence interval of the background contrast model is tighter than that of the

standard contrast model.
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Figures 5-10 and 5-11 also show that the confidence interval for the background contrast

fit is much tighter than that for the standard contrast fit. Figure 5-10 is a plot of the In(LER)

predicted by the standard contrast model versus
the In(LER) of the actual data. The solid red
line is the fitting equation, the dashed red lines
are the 95% confidence limits, and the black
dots are the individual 1 0 RMS LER measure-
ments. The In(LER) is plotted instead of LER
so that the linearized fitting equation can be
shown. Figure 5-11 is a similar plot, but using
the background contrast model instead of the
standard contrast model. It is clear to see that
the confidence limits for the background con-
trast are-much tighter than those for the standard
contra;t, and that the data fit the model better.
As a side point, these figures also help to see
how noisy LER measurements are and why so
many measurements are needed in order to draw
strong conclusions.

Differences between actual measurements
and values predicted by a model are entirely due
to random noise when the model is perfect.

This noise may be due to measurement error or
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Figure 5-10: Plot of In(LER) predicted
by the standard contrast fitting model
versus actual In(LER) data. The solid
red line is the fitting equation, the red
dashed lines are the confidence limits,

and the black dots are actual data.
25 ~
- ! rs
2 1’ .7
2.0- S
- } 4
1',. /‘
~ 15+ ,E
§ b ; /,/"
&= a TR 74
310 ... B8 7
£ 4R
05- N 2
_’-/l
“ e ’ :
/AR
004 7/ .
| v | ' 1 v 1 v ] '
0 5 10 15 20 25
In(Left LER) Predicted

Figure 5-11: Plot similar to figure 5-10,
but x-axis is In(LER) predicted by the
background contrast model instead of
the standard contrast model. Again, the
solid red line is the fitting equation, the
dashed lines are the 95% confidence
limits, and the dots are the actual data.



real variation in the data, but it will be independently and normally distributed, or in other

words fully random. As the model fit degrades, the differences between actual measurements

and predicted values become less random. Looking at residuals is a common practice to

detect this lack of randomness. A residual is the difference between the actual measurement

and the value predicted by the model. For instance, at 0.49 background contrast one of the 1

o LER measurements is 2.27 nm and the model
predicts 1 o LER equal to 2.95 nm. The resid-
ual is (2.27 nm - 2.95 nm), or -0.68 nm. Fig-
ure 5-12 is a plot of all the residuals between
the actual data-- LER on the left side of the

trench-- and the background contrast model. In
this plot the residuals are actually In(LER)

measured minus In(LER) predicted; In(LER)

must be used since the linearized equation is

examined. A perfect model would have the

data normally and independently distributed

around 0 at each predicted In(LER) level.

Studying figure 5-12, at the predicted In(LER)
equal to 0.70, which is 2.01 nm predicted LER
and occurs at 0.69 background contrast, all of
the residuals are above 0. The model does not
fit the data perfectly. Comparing figure 5-12 to

5-13, however, it is immediately obvious that
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Figure 5-12: Plot of In(LER) predicted
by the background contrast fitting model
versus residuals using that model. A per-
fect fit would have residuals that are
independently and normally distributed
around 0.
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the background contrast model fits the data better than the standard contrast model. The larg-

est residual for the standard contrast model is nearly 1.5, over double that of the background
contrast model. Also, there are two predicted In(LER) levels where all of the residuals are
either above O or below 0. The level with residuals farthest off center, at 0.91 predicted
In(LER) and 0.72 standard contrast, is the same level with the poorest background contrast.

This is further proof that the background contrast model fits LER better than the standard con-

trast model.

5.5 LER versus Contrast Study-- Models Based upon Multiple Forms of Contrast

With both the left side LER and the right side LER, the background contrast model pro-
vides the best fit, then the slope contrast model, then finally the standard contrast model.
However all three contrasts showed a strong fit. This is due to two reasons mentioned earlier.
First, these three definitions of contrast are not orthogonal to each other. As background con-
trast degrades, for instance, it is difficult if not impossible to keep the standard contrast from
degrading as well. This can be prevented to some degree by increasing the maximum expo-
sure dose, but the standard contrast cannot be kept entirely constant as background contrast
changes. The second explanation is that several of the components of the contrast are impor-
tant. Stepping back a little and thinking of the overall picture, it is obvious that background
contrast alone cannot explain the correlation between line edge roughness and aerial image
contrast. The background contrast does not consider the actual exposure dose, only the
unwanted background dose, or flare. Therefore, it would be desirable to find an equation with
the combination of all or two of the different forms of contrast that best describes the relation-

ship between the aerial image profile and LER.
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The simplest combination of forms of contrast would be a linear combination of two
forms, say background contrast and slope contrast. It is clear from the data and the analysis
up to this point that the dependence of LER upon contrast will not be linear. Assuming the
trends presented above hold true for linear combinations-- and the power model still fits best
for each individual contrast-- the general fitting equation would look like:

Equation 5-13:

LER = c,(b.g. cont.)c2 + ¢4 (slope cont.)c4

The fitting parameters, ¢, - ¢4, are not the same fitting parameters as those found in tables 5-4

and 5-5. In fact, they cannot be the same or else the LER will be significantly overestimated.

They are also not necessarily some linear combination of the previous equations. That is, ¢,
and ¢, are not necessarily identical to their previous values. Equation 5-13 cannot be linear-

ized in any fashion similar to equations 5-4 and 5-12, though. This would be possible if some
relationship between the background contrast and slope contrast existed, then one form of
contrast could be described in terms of the other. The only relationship the two have with

each other is the relationship forced by the experiment. For example, when the background

contrast is 0.58, the slope contrast is 11.09 mJ/cm®um. Using this forced, or false, relation-

ship will not lead to clear conclusions. There is no reason why the slope contrast has to be

11.09 mJ/cm?um when the background contrast is 0.58. This is simply how the experiment
was run. Therefore a non-linear fit needs to be made in order to solve for the fitting parame-
ters.

The non-linear least squares fit used to find the optimal constants, ¢, - ¢4, is significantly

more complex than for the linear least squares fit. The JMP software uses the Gauss-Newton
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iterative technique with step-halving. This iterative technique is described in detail in statisti-

cal textbooks, such as reference [58]. The results of this more complex method must be inter-

preted more carefully, as well. Iterations of the parameters to be solved continue until a least

squares minimum is found. This can lead to a 1
10-
local minimum, or a false minimum. It is also 9~
8-
possible that this method will not be able to . 74
w 67
-
find the proper global minimum after testing | § 59
4-
several different starting points. Critically 2:
1 =
important, there is no well defined R? statistic, 0+
2 3 4 5 6 7 8 8 10
ANOVA cannot be performed, and errors of the Background Contrast

estimates are approximate, unlike in the linear
case above.

First the accuracy of the non-linear least

Figure 5-14: Fitting left side LER versus
background contrast directly with a
power model, equation 5-3, using non-
linear least squares fitting. Table 5-8
contains the fitting parameters.

squares fitting is tested by solving equation 5-3 directly instead of linearizing it to equation 5-

4 as done above. Figure 5-14 is a plot of the fit and table 5-8 contains the fitting parameters,

¢; and c,, which are now calculated directly. The parameter estimations are significantly dif-

ferent from those

ear least squares fitting. SSE, DFE, MSE, and RMSE are the same as
defined earlier: sum of squares error, degrees of freedom for error,
means square error, and root mean square error. The parameter estima-
tions do not match those of the linear least squares fitting.
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SSE DFE MSE RMSE
108.44860245 g6 1.1401 1.0677547 calculated in the
Parameter Estimate ApproxStdErr  Lower CL Upper CL )
more  rigorous
c1 1.0806678735 0.10588966 0.87635157 1.3211745
c2 1464723156  0.09363554 -16717188 -1.2734569 | linear least
Table 5-8: Fitting parameters, ¢, and c,, solved directly using non-lin- squares fit. In

the linear least

squares fit, c; is



1.332 and ¢, is -1.113. With the non-linear fit, ¢, is 1.091 and c; is -1.465. The non-linear

parameters do not even fall within the 95% confidence interval of the linear fits, and vice-
versa.

Although the non-linear least squares fit does not seem as accurate, this model was
attempted nonetheless. Examining linear combinations of background and slope contrast, of
background and standard contrast, of slope and standard contrast, and of all three yielded no
successful results. As mentioned above, the parameter estimates found in table 5-8 were cal-
culated iteratively. After many iterations and testing several starting points for the initial iter-

ation, the final parameter estimates, ¢, and c,, were found. In all the cases using combinations

of multiple contrasts, either the estimates were not converging onto a single value, or the value
of the parameter estimate depended upon the initial starting value for the iteration. Regard-
less, the non-linear least squares model fitting method would not work for this task, and even
if it did work, the results would be questionable.

As mentioned above, the parameters ¢, and ¢, used in equation 5-13 are not necessarily

the same as those found individually as the exponential terms for the background contrast and
slope contrast, respectively. However, one could logically hypothesize that the values should
not change much. In other words, the shape of the curve representing the influence of each
respective contrast upon LER should be similar. The author prefers to avoid making such an
assumption, but must make it to allow for linear least squares fitting and analysis of variance.
In this case, the equation fitting left side LER to background contrast and slope contrast is

now.
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Equation 5-14:

Left LER = 4,+4 21 (b.g. cont.)‘c2 + A3c3(slope cont.)c4

where, ¢, - ¢4, are the same as those calculated when looking at solely background or slope
contrast: 1.332,-1.1132, 15.15, and -0.8688, respectively. Parameters 4, and 45 are solved to
find a ratio of which contrast dominates the LER estimation. Note that ¢; and c; are not actu-
ally held constant since 4,c, is a new variable to replace ¢, from earlier, as is 43c3. Any linear
equation contains an intercept, which is 4. 4; should ideally be 0 since the two models com-

bined should entirely predict LER, as they did in the previous linearized power models. Since

¢, and ¢, are kept constant, the values ¢, (b.g. cont.)c2 and c;(slope cont.)c‘ can be calculated

for each contrast level, thereby making equation 5-14 linear. Tables 5-9 and 5-10 contain the

estimates for parameters 4, - A3 and the analysis of variance, respectively. Parameter 4, the

contribution due to slope contrast, has a negative estimate. This suggests that as the slope
contrast gets worse, the LER improves. However, the 95% confidence interval includes 0. A
better interpretation is that the effect of slope contrast is relatively insignificant -compared to
background contrast. The same is true of the intercept: while it is not 0, it is quite close to

zero and the 95% confidence interval includes 0. Therefore the background contrast is almost

rTenn Estimate Std Error Lower 95% Upper 95% )
intercept -0.256248 0.436046 1121914 0.6094173
BG Eqn. 1.3971807 0.104438 1.1898534 1.6045279

| Slope Eqn.  -0.235607 0.204969 -0.642524 0.1713108 |

Table 5-9: Least squares fit for parameters 4, - 43 of equation 5-14, the depen-

dence of left LER upon background contrast and slope contrast combined. “Inter-
cept” is parameter 4;, “BG Eqn.” is 45, and “Slope Eqn.” is 43.
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entirely accounting for
LER. Table 5-10 summa-
rizes the analysis of vari-
ance. The F Ratio is
exceedingly high and the

model is most certainly fit-

(Bnalysis of Veriance )
Source  DF SumofSquares Mean Square  F Ratio

Model 2 27517447 137.587 113.2060
Ervor g5 115.46018 1215 Prob=F
C Total . 87  390.63467 <.0001 |

Table 5-10: ANOVA for the model fitting background con-
trast and slope contrast to left side LER, equation 2-25.
There are now 2 degrees of freedom in the model, corre-
sponding to the two forms of contrast.

ting data. One must keep in mind that the assumption made earlier that ¢, and c, are the same

as they were in the linear case is not necessarily true. The main conclusion that the back-

ground contrast accounts for almost all of the LER when compared to slope contrast can be

stated with confidence, however the exact relationship is probably not that estimated in table

5-9 above.

All the possible linear combinations of LER versus contrast power are fit similar to equa-

tion 5-14. Table 5-11 (a) contains the fitting parameters and F ratio for left side LER versus

Left side of trench LER:

Linear Combination of contrasts (power function fitting):

__A2term __ A3term

.

Intercept| A2 A2 | A3 A3 |overall
estimate | A2 estim. F Ratio | A3 estim. F Ratio|F Ratio:

“background + slope cont. | -0.2662 | 1.3972 179 | -0.2356 1.321 | 113.2 |

_background + std. cont.

___slope + std. cont.

08219 | 1.4989 2487 | 0.8011 13.48 | 1335
09822 | 2.7686 19.69 | -2.069 7.962 | 12.89 .

(a) -

intercept
estimate

B.G. B.G. |Slope Slope [Std  Std o_verallf
estim. F Ratio|estim. F Ratio |estim. F Ratio |F Ratio

A3 contrasts| 091

14039 235.6| 1.3861 _ 15.97| -2.1408 29.85| 108.3
(b)

Table 5-11: Least squares fitting parameters and ANOVA to fit left side of trench LER
with all linear combinations of contrast models. The intercept (A;), A,, and A terms are

those described in equation 5-14. Figure (a) shows all linear combinations of two forms of
contrast, figure (b) has the linear combination of all three forms of contrast.
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linear combinations of two forms of contrast; table 5-11 (b) contains the same information for

a linear combination of all three forms of contrast. A, and A, terms are those described in

equation 5-14. For example, the full equation for the linear combination of background and
standard contrast, using the parameters estimated in table 5-11 (and the parameters estimated
for the powel: fitting in table 5-4), the following relationship is found:

Equation 5-15:

Left LER = 0.82+ 1.50 - 0.29 - (bg) "!!

~0.80-0.54 - (std)~1-14

or:
Equation 5-16:
Left side LER = 0.82 +0.43 - (bg cont.)~1-11 - 0.43 - (std cont.)~1-14

In order to simplify the presentation of data somewhat, an F ratio is given with each parameter
instead of a 1 o range of parameter values. This ratio is to test whether the effect is zero. A
high F ratio means that the effect is significant and that parameter is not just fitting random
noise. The parameter F ratio, or effect F ratio, is the ratio of the mean square for the effect
divided by the mean square for error, similar to how the other F ratios are calculated. The F
ratios for the intercepts are not given because they are not effects. Table 5-12 contains the
parameters and F ratios fitting combinations of contrast with the right side of the trench LER.

It is more difficult to draw definitive conclusions from the fits made with the linear combi-
nation of contrast terms than it is with one contrast definition. Since the individual power
relationships were fixed, the parameters given in tables 5-11 and 5-12 are not fully optimized.

Nevertheless, some powerful deductions can be made. First the intercepts, the A, parameters,

are examined to give some degree of confidence that the fitting equations are reasonable. The
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IRight side of trench LER: B B

}Linear Comblnation of contrasts (power functuon fttmg]; T S S
|intercept| A2 A2 A3 - A3 overall

: A2term . A3term |estimate |A2 estim. F Ratio|A3 estim. . F Ratio |F Ratiol

. background +islope cont. | -0.4731 | 1.0145  129.8 | 0.2504 . 3.559 | 110.5 |

. background + std. cont. | 0. 0453 - 1.1354 1664 | 0. 0846 0.374 | 105.4 .

slope +:std. cont. | 0. 0969 1.4888 16 68 0.4879 | 1.715 | 20.36

(2)

| |mtercept|B.G. B.G. [Slope Slope [Std _ Std__|overall
estimate |estim. F Ratio|estim. -F Ratio [estim. :F Ratio |F Ratio .
All 3 contrasts| -0.2366] 1.0766  168.8| 1.0641 22.76| 0.9866_ 18.98] 94.09.
(b)

Table 5-12: Least squares fitting parameters and ANOVA to fit right side of trench LER
with all linear combinations of contrast models. The intercept (A;), A,, and A; terms are
those described in equation 5-14. Figure (a) shows all linear combinations of two forms of
contrast, figure (b) has the linear combination of all three forms of contrast.

)

IA.,

1 o range for the estimates includes zero in nearly all cases. These ranges are not given in
tables 5-11 and 5-12. The only fits where fhe intercepts do not include zero within 1 o are:
(1) Fitting left side LER versus the combination of all three contrast definitions, and (2) fitting
right side LER with the combination of background contrast and slope contrast. In the former
case, the zero is at 1.05 o below the estimate and in the latter case the zero is 1.02 1 o above
the estimate. It is expected for the intercept to be zero in all the linear combination fits since
each fit on its own, with a pre-factor equal to one, fully accounts for the LER. If the intercepts
do not approximate zero, one can concluded that the linear combination fitting is unsuccess-
ful. However, having all the intercepts approximately equal to zero does not prove that the
model is successful.

Next, the linear combination parameters A,, A;, and sometimes A4 are examined. The

parameter F ratios are large enough that the probability of type I error-- where the null hypoth-

esis is mistakenly rejected-- is less than 0.01%. There are a few parameters in some of the
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equations with lower F ratios. The F ratio for the slope contrast parameter in the equation fit-
ting background and slope contrast versus left side LER is only 1.32, yielding a 25% chance
of type I error. The ratio for the standard contrast in the fit of background and standard con-
trast versus right side LER is 0.3736, yielding a 54% chance of error. For the standard con-
trast in the fit of slope and standard contrast versus right side LER the F ratio is 1.72, a 19%
chance of error. For the slope contrast parameter in the fit of background and slope contrast
versus right side LER it is 3.56, yielding a 6.2% chance of error. In all cases, the fit for the
background contrast parameter is strong enough that the F ratio never drops below 129.8, the
F ratio for the standard contrast parameter is never above 29.8, and the best F ratio for the
slope contrast parameter is 22.8.

Finally, the entire equations as a whole are examined statistically. The overall F ratio fit-
ting slope and standard contrast to left side LER is 12.9 and the overall F ratio fitting slope
and standard contrast to the right side LER is 20.4. The lowest overall F ratio that fit back-
ground contrast and any other combination of contrast is 94.1. All of the overall F ratios are
high enough that the probability of type I error for the entire model overall is far less than
0.01%.

There are some significant deductions that can be made from the infbrmation summarized
above. Foremost is that all the fits above are statistically significant. None of the overall F
ratios are low enough to question this. Next is that the background contrast parameter is by
far the most statistically significant of the three forms of contrast analyzed. This is seen on
two levels: (a) the overall F ratios are always drastically higher when background contrast is
included in the fit, and (b) the background contrast parameter F ratio is always appreciably

higher than the F ratios of either slope or standard contrast. Finally, the background contrast

79



fits the data best alone, next best with one other parameter added, and worst with all three
parameters. As mentioned initially, background contrast cannot solely be used to analyze the
effects of a poor aerial image profile upon LER because it does not take the foreground con-
trast into consideration at all. This analysis suggests that perhaps neither the aerial image
slope nor the standard contrast are the best methods to measure the contribution due to the
foreground image. Another possibility is that the linear combination of fixed power law fits is
not sophisticated enough to capture the effect of the slope contrast or standard contrast upon
LER while also capturing the effect of the background contrast upon LER. The data does not
allow for any further insight in this respect, however the author believes the latter to be a more
accurate assessment.

It is difficult to determine whether the slope contrast or standard contrast provide the sec-
ond best fit after background contrast. Some form of measuring the foreground image profile
is necessary, but the data and analysis above do not provide any further insight.

A summary of all the raw data collected for this LER versus aerial image contrast experi-

ment is presented in Appendix A2.

5.6 LER versus Contrast (UVII-HS Resist) Summary

The correlation between aerial image contrast models and LER are further studied, specif-
ically focusing upon the correlation with a newly defined contrast definition, background con-
trast. In order to allow larger statistical sample sizing within the resist study, the experiment is
limited to one photoresist, UVII-HS. The three forms of contrast examined-- standard con-
trast, slope contrast, and the new background contrast-- are orthogonalized as best as possible.

Because of asymmetry in the SEM electron collector, the LER measured on the left (top) side
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of the trench is analyzed separately from the LER measured on the right (bottom) side of the
trench. Rigorous statistical testing, including analysis of variance, is performed upon the cor-
relations found. Correlations of each contrast definition versus LER are executed, as well as
correlations of combinations of contrasts versus LER.

The background contrast fits best with LER, in both the left side and right side LER cases.
The relationship is approximately inverse, with left side LER o background contrast=!-1! and

right side LER o background contrast-0-80. There are some difficulties with the statistical
analysis of correlations involving combinations of contrast definitions. The analysis is not as
rigorous as that for one form of contrast alone, however it shows that correlations which
involved background contrast as one of the forms of contrast fit the data significantly better
than combinations with only slope and standard contrast. Moreover, the correlation with
solely background contrast fits better than any combination of contrasts.

The significance of these results in semiconductor processing is obvious, however the
physical insight is much more elusive. Previous studies regarding LER, such as those men-
tioned in chapter 1 and earlier in this chapter, did not consider background flare to be a source
of LER in and of itself. Background flare was only a concern with regards to LER in that it
degraded the normalized image log slope or the standard contrast, or whatever other definition
of contrast that was used which incorporated the foreground contrast as well.

The possible physical mechanism driving this strong correlation with the background dose
was briefly touched upon in chapter 4. The mechanism is not much better understood after
this analysis. Since the background contrast fits with LER far better than slope contrast or
standard contrast, it seems possible that another phenomenon beyond diffusion accounts for

the superb fit with background contrast. The author cannot confidently provide any physical
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insight explaining this previously unobserved phenomenon. As mentioned earlier, Postnikov
claimed that photogenerated acid diffusion is essentially halted when that acid is in a polar
region, and Yuan claimed that diﬁ'usipn in DUV photoresists is reduced, non-fickean diffu-
sion. This explains how acids can easily move through unexposed regions of the photoresist,
or the background. However, this still does not explain why levels of acid concentration
beyond those needed to cause the photoresist to develop (unexposed background) would

affect the roughness of the trench or line edge.

5.7 LER Dependence upon Aerial Image Contrast—- Overall Summary

A new definition for aerial image contrast was created, background contrast. The back-
ground contrast is a measure solely of the intensity of light reaching areas meant to be unex-
posed. In order to allow further statistical study, several measurements were repeated at each
contrast level and 8 separate contrast levels were set. These levels were designed such that the
three forms of contrast examined were as orthogonal to each other as possible. The three
forms were background contrast, standard contrast, and image slope cc;ntrast. The peak inten-
sity contrast was discarded since it was not fitting any of the data well in the previous experi-
ment. This more rigorous experiment was designed with only UVII-HS photoresist.

Background contrast correlated with LER far better than either of the other forms of con-
trast. Linear combinations of the different forms of contrast, including combinations of back-
ground contrast and another form of contrast, did not correlate with LER as well as
background contrast alone. This is an unexpected and somewhat counter-intuitive results.
One would expect the foreground image to be most important in determining LER, however

this experiment quite conclusively proved that it is the background dose, or flare, that most
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strongly affects LER, at least for UVII-HS photoresist. As mentioned earlier and in several of
the references, such as [15], photoresists all react differently with regards to how degraded
aerial image contrast affects LER. However, they all show similar trends. It is therefore at
least feasible, if not expected, that the background contrast will greatly affect LER for other
photoresists as well.

This discovery is also significant because flare is becoming an increasingly critical issue
as the exposure wavelength shrinks. The mechanics are discussed briefly above and in further
detail in [53, 59]. The essence is that flare scales approximately inversely with the wave-
length squared. Flare will become a much greater issue as the step towards EUV lithography
is made. Many of the poorer contrast levels examined above that were made artificially might
become actual levels of background contrast at EUV. For instance, the best reported EUV
flare levels in 2001 were 20% [59]. Assuming the level can be brought down to roughly 10%
and the exposure dose is still at 3.3 times the minimum dose to clear, the background contrast
would be 0.67. At this level of flare, the expected contribution to LER from the poor aerial
image would be 1.89 nm 3 o LER, yielding total LER 5.93 nm 3 o LER. (This calculation
took the best fits to LER, those using just background contrast, and used the average of the left
and right LER values.) Thus, the background flare contributes to 32% of the photoresist LER
in this case. These numbers will be vastly different once EUV lithography is possible for
semiconductor processing, but it is clear that background flare will have a strong impact upon

LER.
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6 SEM Image Capture and the Deblurring

Algorithm

This chapter first discusses scanning electron microscope imaging, particularly as it
applies to LER measurement. Then theory behind imaging and image capture is discussed,
with special application to SEM images. Next, deconvolution algorithms used to deblur
imperfect images are described. The Richardson-Lucy algorithm is first described, a precur-
sor to the maximum likelihood algorithm used throughout this study. Then the maximum
likelihood algorithm is discussed. Some time is devoted to ;explaining why this algorithm,
which is able to recover image data in the high frequency domain, is particularly useful for

measuring the LER seen on SEMs (or any other tool imaging LER, for that matter).

6.1 Advantages of LER Measurement via SEM

Line edge roughness is a relatively new concern in the semiconductor industry. Measure-
ment techniques are still being developed, and no formal, standardized definition of LER has
been determined [50]. Generally, LER from SEMs is most common method of roughness
determination, however researchers also use SER, line width roughness (LWR), spatial fre-
quency domain analysis and correlation lengths [72], and other methods. Other metrology
tools such as optical scatterometry [24] and small-angle neutron scattering (SANS) [25] have
been used to measure photoresist roughness, however SEMs have been the workhorse in the

field.
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With regards to LER measured from SEMs, there has been no formal decision throughout
the industry as to which method of threshold detection is preferred to determine the line edge.
Studies have shown that while different threshold detection algorithms yield different LER
values, it is difficult to determine which algorithm is best [17, 23, 26]. Nelson compared sev-
eral different methods of line edge detection, all of which computed somewhat different val-
ues for LER. None of them were found to be significantly superior to others using standard
metrics, such as improved measurement repeatability. Yet the most difficult task in measuring
photoresist roughness may be capturing the data. In order to measure roughness on the order
of 2 nm RMS roughness accurately, the measurement capabilities need to be significantly bet-
ter than that, on the order of 1 nm, using measurement tools such as the AFM and SEM.

LER measured by an SEM became the dominant means to measure photoresist roughness
for several reasons. First, the scanning electron microscope is a relatively cost-effective tool
already present in most semiconductor research laboratories and semiconductor manufactur-
ing cleanrooms. The SEM also has a long and successful history, giving it excellent credibil-
ity within the metrology community. Max Knoll collected the first scanning electron image in
1935, and the first scanning electron microscope recognizable in today’s form was designed
by Sir Charles Oatley in 1952 [60]. Next, images can be collected very quickly, usually
within a few seconds, depending upon the length of time averaging used to collect the image.
Finally, the ultimate resolution of the SEM is quite fine. With the advancements that have
been made over the years, the resolution achieved in practice has improved to around 1 nm or
better. Finally, the operation of a scanning electron microscope, at least in principle, is rela-
tively straightforward since it is quite similar to an optical microscope. This conceptual simi-

larity between photon and electron beam microscopes has allowed relatively rapid advances
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in SEM engineering and has simplified SEM use for operators already familiar with standard
optical microscopes.

There are noteworthy disadvantages to the SEM as well. Most significantly, the tool can
charge the photoresist during image capture. Without a means to discharge the insulating pho-
toresist, it can heat up and become damaged [51]. In fact, energy deposition into the photore-
sist from bombarding electrons is so significant that electron beam lithography uses the same
basic principles as SEM imaging. Ocola discusses how various electron acceleration voltages
and energies affect energy deposition into the photoresist [74]. Proper precautions such as
lower electron acceleration voltages can avoid such damage, however this is becoming more

difficult more fragile resists designed for ArF and F, lasers.

6.2 Image Capture-- Image Blur and Noise

Since scanning electron microscopes function similar to optical microscopes, the methods
used to manipulate and improve images created using optical tools should also improve
images created using the electron microscope. Image manipulation is a growing field with a
great deal of research being conducted. This chapter utilizes an image processing algorithm
originally developed for use in astronomy and other optical image processing fields in order to
improve the quality of the SEM images collected in the high frequency domain. This algo-
rithm is the maximum likelihood algorithm. It recovers some of the high resolution detail, or
the high frequency components, of the image by deblurring it. Before discussing the deblur-
ring algorithm, SEM image capture and image blur must be understood.

SEM images are captured by focusing stream of electrons impinge upon a particular loca-
tion in the sample. The location is raster scanned across the sample analogous to a television
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set. The secondary electron collector measures the signal intensity of electrons that are
ejected from the sample by electrons from the incident beam. It can pinpoint the location of
the ejected secondary or backscattered electrons measured by comparing the time that the sec-
ondary electron arrived on the sample with the location of the raster scanning electron beam at
that moment in time. The electron collector has no means to measure the location of origin of
the electrons collected except by correlating the time to the location of the raster scanning
electron gun. Typically the signal to noise ratio of SEM tools is quite low, since this process
of emitting electrons from a sample is not very efficient. Some form of time averaging is cal-
culated when the image is captured to improve the signal to noise ratio. Further discussions
on the nature of secondary electron emission and backscattering electrons can be found in ref-
erences [64-66].
The captured image, or any image, can be modeled as follows:

Equation 6.1:
g=h®f+n

where f'is a perfect image of the object, g is the blurred and noisy image,  is the point-spread
function (PSF) of the system, and n is the (Poisson) noise. This model of an image is ideal for
SEM image capture. A represents the blur caused by the SEM stage or optics. Yoshizawa [49]
and Pfeiffer [52] discuss some of the sources of blur occurring in electron optics, most espe-
cially blur due to the dispersion of similarly charged electrons travelling in close proximity to
one another. Image noise is represented by n. As mentioned above, SEM images are typically
quite noisy. Figure 6.1 (a) is an SEM image with a significant level of image blur, and figure
6.1 (b) contains a high level of image noise. With blur, it is difficult to determine the exact

shape of a sharp feature like a line edge. In the case of image noise, there is a large variation
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(b)
Figure 6.1: Examples of SEM image blur (a) and SEM image noise (b).
Image (a) is a single trench. Image (b) is a tight pitch line:space pattern.
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affects the measurement depends upon the type of measurement algorithm used. The maxi-
mum likelihood algorithm can compensate for image blur when noise is present, however it
cannot compensate for the noise itself. SEM image noise is most often compensated by some
sort of time averaging technique.

Typically two types of time averaging techniques are used to limit noise: pixel averaging
and continuous averaging. Both techniques rely upon the same basic principle. The collec-
tion of secondary or backscattered electrons is a statistical phenomenon. As the sample is
exposed for longer periods of time, the average signal recorded by the collector approaches
the true mean of the signal. Anomalies affect the measured average less as the sample size
increases. In the case of pixel averaging, a set number of measurements are collected for an
individual pixel and, once collected, the average of the measurements is reported as a grey-
scale pixel value on the SEM image. This process is repeated, where another sample set is
collected and it is not reported until the full number of measurements are collected. This is
done for all the pixels being imaged. With continuous averaging, there is also a set number of
measurements being collected before the average pixel value is reported. Once a full set of
measurements have been collected, though, the next measurement is added to the average
value while the oldest measurement collected is discarded. In this manner the averaging is
continuous, similar to a weighted moving average.

Both forms of averaging try to increase the signal to noise ratio by averaging the data col-
lected over time. This yields an image with less visible Poisson noise, however it accentuates
any errors introduced over time. Some examples of such error are electron beam drift and
stage drift. In the former case, the electron beam does not return to exactly the same location

when it retraces over pixels during the raster scan. In the latter case, either the sample or the
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sample stage mechanically move over time. These time-dependent errors appear as blur on
the image. In other words, these errors can be described as a convolution of the ideal image, f
in equation 6.1, and the time-dependent variation 4. Therefore, to a certain extent, Poisson
noise can be lowered by increasing blur, or vice-versa.

Blur can be introduced by several mechanisms other than the drift mentioned above. Any
optical aberrations, such as defocus, astigmatism, or aperture alignment, occur in electron
optics as well. All non-idealities during image capture that affect all pixels equally can be
lumped together as blur and represented as a convolution of the non-ideality’s point-spread
function (PSF) and the image. Moreover, these blurring mechanisms will generally take
information stored in one pixel and spread that information through several neighboring pix-
els. For example, defocus aberrations will affect all pixels throughout the image equally, and
the information stored in each pixel of the idealized image will instead be represented by that
pixel and several of its neighbors. It is the former-- this uniform effect throughout the image,
this linear phenomenon-- that the Richardson-Lucy (RL) algorithm and the maximum likeli-
hood algorithm utilize to remove blur and recover the image. It is the latter-- the representa-
tion of one pixel in the ideal image by several pixels in the blurred image-- which causes the
actual blurred image to lose the high frequency components of the image. The quality of the
image is degraded greatly when the high frequency components of the image are lost. This is
especially true when extracting LER values from SEM images. In most of the images col-
lected throughout chapter seven, images taken at 50,000 x magnification, a pixel represents
slightly more than 2 nm. If a line edge that should occur at one pixel location is instead
blurred such that the transition through the line edge consumes 5 pixels, the line edge calcu-

lated from the blurred image could be off by 9 nm with respect to the idealized image. These
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are the essential concepts that drive the desire for deblurring: (a) the ability to recover the
image by utilizing the linear effects of blurring, and (b) the need for the high frequency com-

ponents of the spectrum to create quality images that can be used for quantitative analysis.

6.3 The Blind Deconvolution Algorithm

An actual image may be represented as g in equation 6-1, with blur and noise reducing the
image quality. As mentioned above, blur is uniform throughout the image, or linear. It can be
represented as a single function, or in this study a single matrix, that is not dependent upon
pixel location. This same function is applied to each pixel, unlike image noise, which is not
uniform throughout the image. The iterative Richardson-Lucy algorithm removes some of the
blur and recovers the image in the following manner [63, 27]:

Equation 6-2:

Jee1 = 7k(h*—g'7) =y(f)
h® fx

where f; is the estimate of f after k iterations, * is the correlation operator, and ¥ is defined as
the Richardson-Lucy function. The quantity 4 ® f} is the reblurred image. As the estimate of

the deblurred image, f;, approaches the perfect or ideal image of the object, £, the quantity

g/h ® f; approaches unity. This is because 4 ® f is in fact g.

The algorithm used in this study is the maximum likelihood algorithm, an alteration of the
Richardson-Lucy algorithm created by Biggs and Andrews [62, 63, 27], with the alterations
made to help accelerate it. It is a blind deconvolution algorithm. The blurring PSF, A, need

not be known. It is solved simultaneously with the deblurred image.
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The maximum likelihood algorithm accelerates the estimation of the next iteration by
magnifying the amplitude of the vector used to determine the value of the next iteration, as
well as calculating a new direction for that vector, taking into account the magnified ampli-

tude. The following examines the iteration of a single pixel. Let x; be the iterated point, y; be

the predicted point, & be the direction vector, and ¢, be the acceleration parameter. Then:

Equation 6-3:

Vi = Xptoyhy

where
Equation 6-4:
hy=xp =X _q

Equation 6-5:

Xkv1 = Vit 8k
Equation 6-6:

8 =) -y,

This method uses vector extrapolation, adjusting the direction of the vector by taking into
account the vector magnification, or the acceleration parameter, ;. Biggs and Andrews delve
into further detail in reference [27-29]. The Matlab script used to perform the maximum like-
lihood deconvolution is copied in appendix B1.

The essence of the blind deconvolution algorithm can be described in the following man-
ner. Any level of blur in the image forces some loss of high frequency data. In other words,
the blur makes neighboring pixels correlate more closely with one another. Therefore, in

order to deblur the image and restore the high frequency components of the image, neighbor-
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ing pixels in the deblurred image should be as uncorrelated with each other as possible. When

examining a pixel location, the next iteration of the PSF should be calculated such that the

neighboring pixels look as dissimilar to the specified pixel as possible. This is iteratively cal-

culated throughout all pixel locations in the image. The final “deconvolving” PSF is therefore

the closest estimate to the PSF which created the blur in the original image. The final “decon-

volved” image is the closest estimate to the perfect image. The assumption that there should

not be any correlation between neighboring pixels can be false in some instances, but this will

be addressed in chapter seven.

6.4 Deblurring an SEM Image

By recovering the higher frequency components
of the image, more accurate LER measurements are
exiJected. LER of deblurred images is measured
identically to that of chapters four and five, except
that the original SEM image is first deblurred using
the maximum likelihood algorithm described above.
Before applying the algorithm, several SEM images
were first magnified and studied to determine the
average size of the blur seen in most cases. The
maximum likelihood algorithm can blindly calculate
the PSF shape and the deblurred image, but it must
first be given a PSF size. Portions of SEM images

with high frequency data were analyzed in order to
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Figure 6-2: (a) is the PSF and (b) is
the deblurred image from the SEM
image in figure 3-2 (a). The deblur-
ring algorithm was iterated nine
times to obtain the PSF and image
shown here.



determine the typical size of the image blur. In all cases, the blur was never larger than 8 pix-
els, and typically on the order of around 4-5 pixels. At 50,000 x magnification; each pixel is
2.22 nm for the Leo SEM tool used. An 8 pixel PSF size is chosen in order to capture all of
the blur seen, thus the PSF is 17.8 nm x 17.8 nm. Afier the SEM image is captured, the image
is deblurred off-line using Matlab with the maximum likelihood blind deconvolution algo;
rithm. An SEM image similar to figure 4-3 (a) is read into Matlab. The initial PSF shape esti-
mate is not important since it is solved; an 8 x 8 pixel matrix of ones is set as the initial PSF.
The blind deconvolution is solved iteratively. The blurring PSF is solved simultaneously with
the deblurred image. After several iterations, the shape of the PSF converges upon a value
and the deblurred image is stable. Figure 6-2 (a) is the PSF solution and figure 6-2 (b) is the
deblurred image solution after 9 iterations. Figure 6-2 is the deblurred solution to figure 4-3
(a). The deblurred image is then fed into the Matlab code to extract the LER data and images
sﬁnilar to figure 4-3 (b) and 4-3 (c) are extracted, as always.

Simply comparing the trench edges of figure 6-2 (b) to those of figure 4-3 (a) by visual
examination, there are a few noteworthy changes. First, it is evident that the deblurred image
has recovered the higher frequency components of the image to some degree. Next, the
deblurred image has obtained some level of undesirable lower frequency error introduced. In
some locations there are discontinuities on the order of the PSF, spots roughly 18 nm in size.
These spots should not appear in the ideal image, but they are inevitably created via the
reblurring process. A low level, systematic error is introduced in the low frequency spectrum
of an image in order to recover data in the high frequency spectrum [62, 63, 67]. Both of these

issues, as well as several others, will be covered in more detail in chapter seven.

94



6.5 Image Capture and Deblurring Summary

Several reasons were listed explaining why LER measurement via SEM image analysis is
an excellent choice for measurement photoresist roughness. The fundamentals of SEM image
capture were then described. SEM images require some form of time averaging, which can
increase image blur. The Richardson-Lucy and the maximum likelihood algorithms were
illustrated; the maximum likelihood algorithm is used in chapter seven. They provide a means
to recapture the high frequency components of an image by removing the image blur, thereby
providing enhanced LER values. Finally, an SEM image deblurring example was presented,

enumerating the simple steps required to deblur an image.
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7 Utilizing the Deblurring Algorithm for
LER Collection, and Verifying the

Efficacy and Validity of the Algorithm

The maximum likelihood deconvolution algorithm described in chapter six is used to
deblur SEM images. LER is measured on these deblurred images to determine the effect the
deblurring algorithm has upon LER. First the LER values of the deblurred images are com-
pared to those of the original images, and any trend is observed. Next the LER values of sev-
eral measurements of a sample on several different SEMs are collected to determine whether
the LER variation amongst individual measurements and machines is tighter after deblurring.

The validity of the deblurring technique is verified. Several verification methods are
applied. First, images with little information are deblurred, to verify whether the technique
can deblur such images. Then images with repeating patterns are deblurred, for similar rea-
sons. Next, the PSFs of artificially rotated, deblurred images are compared to normal
deblurred images. Finally, extreme cases where the algorithm will fail are demonstrated,
highlighting how one can tell when the algorithm fails.

A few other useful applications for the deblurring algorithm finish this chapter.

7.1 Effect of the Deconvolution Algorithm upon LER
The maximum likelihood algorithm has not been used previously to extract finer LER

measurements from SEM images; the effect upon LER is unknown. The utility of the maxi-
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mum likelihood algorithm has been proven in the fields of image processing and astronomy
by the authors such as Boden [61]. In order for this algorithm to prove useful in LER metrol-
ogy, however, a few requirements must be met. First, the algorithm must in fact change the
LER measurements. Secondly, the new LER measurements must somehow be proven more
accurate. Finally, the algorithm itself must be robust and trustworthy. This section will
address the first issue, showing that LER values are in fact changed significantly.

Figure 7-1 shows the variation of LER for a set of measurements of 12 different samples
over several deblurring iterations. LER values in the original sample are all normalized to
one, so that variations in LER due to deblurring can be measured as deviations from unity.
Deblurring iteration 0 is the original SEM image, hence the normalized LER equal to 1 at iter-
ation 0 for all cases. In this case, there were 10 deblurring iterations. As mentioned above,
the PSF for the initial iteration is simple an 8 x 8 pixel matrix of ones-- a grey plane. There-

fore, there were only 9 solved PSF iterations and 10 solved deblurred image iterations. (A

calculation is made
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tions, he is referring Figure 7-1: Variation of LER measurement as image is deblurred.
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to the number of image LER.
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solved PSF iterations. In this case, there were 9 solved PSF iterations (iteration 0 on figure 7-
1 is the original image and iteration 1 is the iteration with the grey plane PSF). Two key
results can be seen from this test. First, the LER changes drastically in the first two deblurring
iterations, then holds roughly constant throughout the remaining iterations. Second, the
change in LER can be quite drastic. The average normalized ILER value for all samples for
the last iteration is 1.152, or 15.2% average increase in LER. The maximum LER increase for
the last iteration is 51.6% increase, and the minimum LER for the last iteration is 0.643, or a
35.7% decrease. Taking the average of iterations 2 - 9 (3 - 10 on figure 3-4), the average nor-
malized LER for all samplesis 1.112, or 11.2% avérage increase in LER. The maximum LER
increase for iterations 2 - 9 is 40.2%, and the largest LER decrease for these iterations is
34.5%. Typically, larger changes in LER are seen when the measured LER is low in the orig-
inal image. This is intuitive; a trench with large LER does not need a high resolution SEM
image to detect it. However, when LER is already so smooth that it is barely detectable under
ideal SEM conditions, any further blurring of the image due to SEM imaging non-idealities
more easily distorts the calculated LER. Assuming that this technique does indeed improve

LER measurement accuracy, it can provide significantly improved LER measurement data.

7.2 Efficacy of the Deconvolution Algorithm with respect to LER Measurement
Assuming the effect of image deblur upon LER is significant, the distribution of several
LER measurements of a single sample should be tighter after deblurring than before. A blurry
image adds more noise to LER measurements than an image that is nearly perfect. An exper-
iment is designed to determine whether repeated LER values measured on the same sample

using various SEM machines are more tightly distributed after deblurring the images than
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those same measurements before deblurring the images. Three different field-emission SEM

100nm EHT = 2.00kV Signal A= SE2 Date :7 May 2003
Mag = 49.96 K X '_l WD= 6mm PhotoNo.=506  Time 2066

(b)
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Figure 7-2: SEM images of the same sample trench, taken on different machines. Image
(a) was captured on the Leo 1550 that has been used throughout this study, (b) was cap-
tured on the JEOL 6340 and (c) on the Hitachi S5000.

machines are used: The Leo 1550 that has been used throughout this study, a JEOL JSM-
6340F at Lawrence Berkeley Laboratories (LBL), and a Hitachi S5000 run by the biology
department of the University of California- Berkeley. Figure 7-2 contains SEM images of the
same trench line taken using the three different SEM tools. Images (a) - (c) correspond to the
Leo, the JEOL, and the Hitachi, respectively. Two samples coated with UVII-HS and exposed
using the ASM Lithography stepper are studied. One received the best exposure level from
the study in chapter four and the other received the worst exposure level from that study.
Many LER measurements are taken with each sample and each SEM machine to allow statis-
tical study.

LER measurements follow a chi-squared distribution, similar to the distribution of vari-

ances of normally distributed random variables. The variance between different LER mea-
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surements taken does not quite follow the chi-squared distribution, but can be approximated
as'such. An often used statistical hypothesis test to compare whether two variances-- follow-
ing a chi-squared distribution-- significantly unequal is the following:
Equation 7-1:
S
F =

a,n—-1,n-1" 2
53/

where S,? is the estimate of the variance and 0,2 is the true variance. If the two variances

are equal to each other, they follow the F distribution. If not, they will not follow the F distri-
bution. Targeting 95% confidence that the ratio of the variances is not unity, equation 7-1 can
be rearranged as follows:

Equation 7-2:

Sg G2
?FO.OZS,n,—l,nz—l £
1 |

A

<2

F0.975,n,-l,n2—-1

A

and for the variances to indeed be different and the ratio not be equal to one, the range given in
equation 7-2 cannot be equal to one. That is:

Equation 7-3 (a):

S
?FO.OZS,n,—l,nz—l 21
1

or:
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Equation 7-3 (b):

5

?F0.975,n,—1,n2-1 <1
1

in order for the two variances to be statistically different.

Four different pairs of variances are compared: the LER measurements of the left side of
the trench of the sample with good aerial image contrast before and after deblurring the image,
those before and after deblurring the right side on the sample with good contrast, those before
and after deblurring the left side on the sample with poor contrast, and those before and after
deblurring the right side on the on the poor contrast sample. Approximately 25 - 30 SEM
images are captured on each machine. A total of 82 different SEM images are captured, creat-
ing 164 different images (original and deblurred) and 164 LER measurements. The deblurred
images all pass through 9 iterations of deblurring before the final deblurred image is extracted.
In none of these four cases are the variances significantly different. The strongest level of sig-
nificance is the left side of the trench of the good image. In this case, there is a 39% confi-
dence that the variances are different. This is an unacceptably low confidence in statistical
testing. The poor level of confidence that the variances are different does not disclude the
possibility that image deblurring improves the repeatability of LER measurements. Instead,
this suggests that the variation between LER measurements along a trench or line is so large
that any potential improvement (or deterioration) of LER accuracy and repeatability is over-
shadowed by the statistical variation in LER measurements.

Returning to the focus of section 7.1, the LER measurements before and after deblurring
the sample with good contrast are compared. There are 46 SEM images taken with the good

contrast sample; the remaining 36 images are the poor contrast sample. The average LER of
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the good contrast sample before deblurring is 1.91 nm, 1 o. The average LER of the same
sample after deblurring is 2.05 nm, 1 o. This is a 14.0% increase in LER measurements after

deblurring. Earlier in this section an 11.2% increase in LER measurements after deblurring

was reported.

7.3 Validity of Deconvolution Algorithm-- Low Information Image Recovery

Section 7.1 mentions that the algorithm must be robust and trustworthy when applied to
SEM images. The maximum likelihood deconvolution algorithm requires an image that has a
significant amount of information and contains no intentionally repeating pattern on the order
of the size ;)f the PSF.  With regards to the former, the algorithm could not, for example,
recover the blurring PSF of an entirely grey image. There is no variation in intensity between
pixels. A grey image that is perfectly captured is identical to a grey image with blur. Such an
iniage is meaningless. Yet, many SEM images used to calculate LER contain very little infor-
mation aside from the line edge itself. The remainder of the image is grey, or nearly so. With
regards to intentionally repeating patterns, the line edge does contain an intentionally repeat-
ing pattern on the order of the PSF. Assuming an image similar to any of those in figure 7-2,
any point at the top edge of the trench has neighbors above it that are brighter, and neighbors
below it that are darker. This is true all along the top edge. For these reasons, it is possible
that the deconvolution algorithm may have difficulties properly deblurring SEM images.

To address the concern that SEM images of LER may not contain enough information, an
image that does not contain much information, and certainly contains less than an image of a
line or trench, is analyzed. An SEM image of an unpatterned area of photoresist is used as a

low information image. First the image is taken with the best focus, astigmation, aperture
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alignment, etc. Then the SEM electron
optics are purposely unoptimized, to
create a blurred image at exactly the
same location on the sample. This
blurred image is then deblurred off line
using the deconvolution algorithm.
Figure 7-3 is an example. Figure 7-3
(a) 1s an SEM image of a sample of
unexposed SEPR-463 photoresist with
proper focus, astigmatism, etc. Figure
7-3 (b) is an SEM image captured in
exactly the same location on the sam-
ple, but with the electron gun pur-
posely astigmated. This SEM image is
deblurred off line. Figure 7-3 (c) is the
deblurred image. Figures 7-3 (a) and
7-3 (b) are separate images, whereas
figure 7-3 (c) is a reconstruction of fig-
ure 7-3 (b). It is evident from examin-
ing the images that the deblurred image
looks significantly closer to the image
with no astigmatism than the astig-

mated image does. The focus, aperture

(b)

(c)
Figure 7-3: Unpatterned photoresist. (a) optimal
SEM image, (b) blurred SEM image, (c) SEM
irl%%ge (b) deblurred using algorithm.



alignment, and astigmation are varied in several directions. The magnitude of the induced

defocus, aperture misalignment, and astigmatism is also varied. As the magnitude of the aber-

ration increases, the size of the PSF used to deblur has to be enlarged as well. With unpat-

terned photoresist like figure 7-3, the original image cannot be sufficiently recovered when

the blur is large enough to require PSFs larger than 16 x 16 pixels (35.6 nm x 35.6 nm).

Beyond that level, there is insufficient information within the image to allow the deblurring

algorithm to function. As mentioned earlier, however, the magnitude of blur seen with images

that are properly focused is typically on the order of 15 nm or less.

7.4 Validity of Algorithm-- Intentional, Repeating
Pattern on SEM Image

The next hurdle to prove the efficacy of this algo-
rithm with SEM images is to examine how inten-
tional, regularly repeating patterns on the image
affect the deblur. The PSF of an SEM image with a
trench is compared to that of an image with no pat-
tern. An intentional, regular pattern detectable within
the size of the PSF, such as a line edge, may falsely be
interpreted as blur. Figure 7-4 is an SEM image of a
trench in photoresist, with 4 different PSFs calculated
from that image. Figure 7-4 (a) is the PSF calculated
from the entire SEM image as shown in the figure.

PSF (b) is also calculated from the entire SEM image,
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Figure 7-4: (a) and (b) are PSFs
calculated using the entire SEM
image. (a) is calculated from the
image as shown, (b) is calculated
from the image rotated clockwise

90°. (c) and (d) are PSFs calcu-
lated from the boxed area where
no pattern is present. (c) is calcu-
lated from the rotated image, (d) is
found from the image as shown.



but the image is first rotated 90° clockwise before deblurring. PSF (d) is calculated from just

a portion of the SEM image, a portion with no pattern, only photoresist. PSF (c) is calculated

from the same portion, rotated 90°. PSFs (b) and (c) are rotated 90° counterclockwise and
compared to PSFs (a) and (d). The greyscale level of each of the pixels of PSFs (a) and
rotated (b) agree with each other almost exactly, to greater than 99% overall. The same is true
of PSF (d) and rotated PSF (c). Comparing PSF (a) with (d) and PSF (b) with (c), these PSFs
agree with each other to greater than 95%. All the PSFs are calculated from the same image,
simply different portions or rotations of the image. Therefore, all the PSF should agree identi-
cally with each other. With the image rotation, the difference between PSFs is negligible.
When analyzing different portions of the image, the calculated PSF does change slightly. For
cases where the only regular pattern is the line edge, as in ﬁgl-zre 7-4, the change in the calcu-

lated PSF introduced by the regular pattern is small, but noticeable.

7.5 Validity of Algorithm-- In-Depth PSF Comparison

The PSF of the deblurring algorithm captures the blur within the imaginé system, the
SEM. PSFs of images that look significantly different, but were taken on the same SEM at the
same time, should all have similar final deblurring PSF solution. A test is designed to allow
statistical analysis. The PSFs of various SEM images of the same sample at 4 different stage
rotations are compared. Figure 7-5 contains four SEM images captured at the four different
sample rotations. The sample is first centered on the SEM stage, then it is rotated but not
translated. Best focus, stigmation, etc. are found prior to image capture. At each rotation, 3 -
6 images are captured to allow for statistical significance. The images are captured in random

order to avoid any time-dependent effects such as a slow gun misalignment over time. After
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© s @
Figure 7-5: (a) - (d) are SEM images of the same trench area, taken with the trench hori-
zontal, at 30°, at 45°, and vertical, respectively. In all cases, the sample is rotated while
inside the SEM, then an image is taken. The sample is rotated, not the image.

image collection, the samples that are not horizontal are artificially rotated back to horizontal
with Paint Shop Pro (by Jasc Software [68]). The images as collected and the rotated images
are then deblurred. Figure 7-6 gives an example of this process. Figure 7-6 (a) and (b) are
different images whereas (c) is simply (b) rotated 90°. Using analysis of variance statistics, a
confidence level is found to determine how different the PSFs of the artificially rotated images
are from those of the original images, and how similar rotated images are to other rotated
images or original images to other original images. The similarity is compared quantitatively;

the grey level of each pixel is examined numerically. When comparing PSFs, the pixel coor-
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Figure 7-6: (a) and (b) are deblurred images and deblurring PSFs for the trench image
taken at 0° and at 90°, respectively. (c) is the deblurred image and PSF taken after rotating
the image from (b) back to a horizontal orientation.

dinate of one image is compared to the same pixel coordinate of the other image. Equation 7-
4 summarizes the statistical comparison.

Equation 7-4:
a n B a B B 2 a
Z Z y =nz(yi._y..) +Z Z(yy yl
{=ilfi= i=1 j=1j=

where y;; is each individual measurement, yi. is the average measurement within a group, y

1s the overall average of the measurements, a is the number of different groups, and » is the
number of observations at each group. In this case there are 7 different group, or factors: one
at 0°, 30°, 45°, and 90°, as well as one at 30°, 45°, and 90° after rotating back to 0°, horizon-
tal. All the PSFs in the groups of original images are expected to be similar to each other, the
PSFs of the images rotated back are expected to be similar to each other, and the two are

expected to be different from each other. Therefore, these 7 factors can actually be thought of
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as simply two different factors: the images as captured and the images rotated back to hori-
zontal. The left hand portion of equation 7-4 is the total sum of squares, the next portion is the
sum of squares for the factors, and the last portion is the sum of squares for the error. Simpli-
fying equation 7-4 using this terminology yields the following.
Equation 7-5:
SSTotal = SSFactor + SSError

The mean square is found by normalizing, and the f test statistic, Fy, is calculated as the ratio
of the mean square of the factor divided by the mean square of error. Fy, equals 7.89.

Equation 7-6:

In this case, with 2 factor levels and at least 48 measurements within each factor, the factor
has 1 degree of freedom and the error has 94 degrees of freedom. With these degrees of free-
dom, the probability of falsely rejecting the null hypothesis is 0.6%. There is indeed a signif-
icant difference between the PSFs that are rotated back to horizontal and the PSFs from the
original images.

Similar analysis of variance testing is conducted upon all 7 levels to confirm that there is
no significant difference between the PSFs of all the original images, and to confirm that there
is none between the PSFs of all the images rotated back to horizontal. The probability of
rejecting the null hypothesis is far greater than 50% in all these cases. Therefore, there is no
measurable or significant difference between these PSFs. All the original images that have
not been rotated are similar to each other, and all the images that have been rotated back to

horizontal are similar to each other.
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7.6 Cases When the Algorithm Fails

In what cases, if any, will the maximum likelihood deconvolution algorithm fail? Can one
detect a failed deblurred image? The deblurring technique is able to deblur successfully for
cases where the image is mostly grey, cases where there is some level of intentionally repeat-
ing pattern on the order of the PSF, and cases where there are both. An entirely grey image is
meaningless, as mentioned, but what happens when there is a significant amount of repeating

patterns on the order of the PSF? Figure 7-7 (a) is an SEM image of a dense line:space pat-

“(a)

I

(¢) (d)

Figure 7-7: SEM image deblurring limitations. (a) is an SEM image without deblurring.
(b) is the image deblurred fairly successfully with an 8 x 8 pixel PSF. (c) is the image
deblurred with a 350 x 350 pixel PSF. (d) is the solved 350 x 350 pixel PSF. The PSF is
shown to scale with the other images.
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tern. Figure 7-7 (b) is a deblurred image using the typical 8 x 8 pixel PSF. Dimples are seen,
but image fidelity is retained. Also, the PSF (not shown) has a roughly gaussian shape. Fig-
ure 7-7 (c) is a deblurred image using a 350 x 350 pixel PSF size. At this size, the PSF cer-
tainly encompasses several of the lines and spaces. During the iterative calculation of the PSF
and deblurred image, the regular line:space pattern is mistakenly interpreted as some sort of
image blur and the algorithm attempts to compensate for it. The final deblurred image is
greatly distorted and the deblurring PSF, figure 7-7 (d), clearly contains the regular line:space
pattern seen in the original image.

There are cases where the image deblurring algorithm cannot be applied. The final PSF
after deblurring is completed readily provides information that can resolve whether the
deblurring algorithm is mistakenly incorporating deliberate, repeating patterns as blur. Sim-
ple analysis of this PSF can determine the cases where the deblurring algorithm cannot be
used. These cases are rare, however, since the PSF has to encompass a fairly large degree of
repeatability. When the PSF is not large enough to capture both trench edges, the deblurring

algorithm functions properly.

7.7 Utilizing the Deconvolution Algorithm for SEM Troubleshooting

The deblurring PSF contains information that can be used to help troubleshoot any prob-
lems with the SEM and it can be used to set process control limits upon the machine and rec-
ognize when it is operating out of spec. Also, the deblurring technique can provide wider
tolerances for machine operation.

The maximum likelihood deblurring algorithm iteratively solves for the blurring point-

spread function experienced in the electron optics hardware. Analysis of the PSF can yield
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some information regarding any
significant optical problems the
SEM machine is experiencing.
This portion of the study provides

some initial examples empirically

determined through the extensive (a) (b)

Figure 7-8: 8 x 8 pixel deblurring PSFs. Both PSFs
use of this algorithm for SEM were captured off of the Leo 1550, but during differ-

ent days. (a) was captured on a day when the stage
deblurring. was drifting only in the x-plane, (b) was captured

when it was drifting in both the x- and y-plane.
Figures 7-8 (a) and (b) are

deblurring PSFs solved from SEM images that were collected using the same SEM machine,
the Leo 1550, on different days. The author noticed, during SEM image capture of the origi-
nal image, that the image corresponding to the PSF in figure 7-8 (a) was collected on a day
when the SEM machine stage was drifting significantly in the x-plane. In figure 7-8 (b) the
stage was also drifting, but it was drifting in both the x- and y-plane.

Qualitative examination of the correlation between the PSF and the stage drift continued.
The shape of the PSF always matched the direction of stage drift. It was clear that stage drift
was dominating the blur experienced. This was true of the other SEM machines studied as
well, except the Hitachi. The stage of the Hitachi SEM was fixed after placing the sample and
could not move. On days when little or no stage drift was seen, the shape of the deblurring
PSF was more symmetric, suggesting that a radially symmetric blurring function, such as
defocus, was typically the next highest cause of image blur.

All the images of PSFs shown in this paper have been scaled so that the shape of the PSF

can be more easily seen. In most cases, the variation in intensity between the brightest pixel
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and the darkest pixel is only a few percent, typically around 1% or 2%. If there were abso-
lutely no blur in the original image, the deblurring PSF would be absolutely grey; all pixels in
the solved PSF would have the exactly same value (1764 since there are 64 pixels). Images
that had more severe blur had a larger variation between the darkest and brightest pixels.

This information can be used for two critical purposes: improving SEM machine mainte-
nance and loosening SEM machine tolerances. Quantitative analysis of the deblurring PSF
can determine the state of the SEM machine blur and flag the machine when it needs servic-
ing. Specific process control (SPC) limits can be established regarding the shape of the PSF.
For instance, when the average of the innermost 16 pixels (4 x 4) varies appreciably from the
average of the outermost 48 pixels, a flag can be sent that the machine is not in control.

One can loosen SEM tolerances since the deblurring algorithm is able to compensate for a
siéniﬁcant level of the blur. For instance, pixel noise can be reduced by integrating the image
over a longer period of time. As stated above, stage drift is already typically the largest com-
ponent of blur detected from the deblurring algorithm. The tolerance for the SEM signal to
noise ratio can be loosened somewhat since the deblurring algorithm can allow image integra-
tion over longer periods of time. The same could apply to whatever mechanism for image
blur the SEM is experiencing, as long as the level of blur seen is not so high that it is impossi-
ble to recapture the image. As experienced throughout this study, that level has typically been
around 12 - 16 pixels. Allowing looser tolerances on the SEM tool will make tool operation
significantly cheaper. The tool will not be down for maintenance as often, and it will not
require new parts and servicing as often. Both of these benefits result in cheaper LER data
collection, and cheaper SEM operation in general.
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7.8 Summary

The maximum likelihood deconvqlution algorithm described in chapter six was used to
deblur SEM images, measure LER, and verify the algorithm. LER values changed after
deblurring. The amount of change depended in part upon the smoothness of the original
roughness, yet LER values were around 11% to 14% larger on average after deblurring. There
was no firm conclusion that the distribution of LER values after deblurring was tighter than
before deblurring. However, this could be explained by the large deviation in LER measure-
ments due to the statistical nature of LER.

The algorithm passed several tests to determine its ability to deblur SEM images. It func-
tioned well when attempting to deblur images with little information or with a moderate level
of repeating patterns on the order of the deblurring point-spread function. Also, the PSFs of
several different artificially rotated deblurred images were compared to those of several un-
rotated deblurred images. The two were statistically different beyond 99% confidence, while
simultaneously showing beyond 99% confidence that the PSFs of all the like images were
alike. Some images with highly repeating patterns were deblurred with very large PSFs in
order to force the algorithm to fail. It is clear, by examining the failed PSF, that the deblur
failed. This is desirable, so that one can ensure that the deblurring algorithm is working prop-
erly.

Finally, other useful applications for the deblurring algorithm were listed. Analysis of the
deblurring PSF can help troubleshoot an SEM machine. Also, a PSF that is far from its origi-
nal grey matrix means that the image is experiencing a high degree of blur. Control limits

placed upon the variation of the PSF can help control the stability of the SEM. Finally,

114



because the deblurring algorithm can recover some level of blur, original SEM images can tol-
erate further blur. This allows an SEM to function with looser tolerances, making LER data

collection significantly cheaper and easier.
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8 Conclusions

The previous chapters highlighted the critical need to further understand and minimize
line edge roughness (LER). Improved critical dimension (CD) control is essential for the next
generation of semiconductor devices, and LER degrades CD control. Earlier chapters proved
that sub-threshold lithographic exposure in the background regions of the pattern have a
strong influence upon LER. The last two chapters discussed LER metrology in further detail,
focusing upon methods to improve the quality of an SEM image by deblurring the image.
This deblurring technique was rigorously tested to ensure that it was properly and successfully
enhancing the image quality.

Using the results provided in this work, some opportunitie.s for future studies in LER and
SEM image enhancement can be seen. This chapter will outline suggestions of some of the
m;)st promising directions such studies should take, as well as summarize the key data pre-

sented throughout the previous chapters.

8.1 Summary of LER versus Aerial Image Contrast

The most significant results and most in-depth study provided in this work were in chapter
five and, to a lesser extent, chapter four. In these chapters the notion that background flare
was greatly responsible, albeit not solely responsible, for aerial image-induced LER was first
brought to light. Background flare has never before directly been considered a source of LER.
Flare leads to a degraded aerial image profile, therefore degrading those aspects of the aerial
image previously considered most responsible for LER such as the image slope. Others con-
sidered background flare as a concern only in this fashion, as a degradation of aerial image
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quality. However this Study proved that sub-threshold exposure in unpatterned areas, or back-
~ ground exposure, detrimentally affects LER in its own right. Moreover, the background expo-
sure is probably more responsible fqr lithographic image-induced LER as those aspects of
image contrast previously considered most important, such as image slope or standard con-
trast.

A model of the background contrast, defined in chapter five and dependent solely upon the
exposure dose in areas meant to remain unexposed, versus LER fit better than any other form
of contrast tested. The F ratio of the background contrast versus the left side of the trench
LER was 163, compared to an F ratio equal to 18 for the standard contrast versus LER and 36
for the slope contrast versus LER. A power equation, with background contrast roughly
inversely proportional to LER, fit best:

Equation 5-6:

1 o LER = 1.332 - (background contrast)~1-1132

Fitting background contrast to the right side of the trench LER, the F ratio was 134. The F
ratios for standard contrast and slope contrast were 40 and 56, respectively.
Equation 8-1:

1 6 LER = 1.357 - (background contrast)~0-8045

In all cases, the F ratio is certainly large enough to prove without a doubt that there is a corre-
lation between all form of contrast and LER. It is impossible to fully orthogonalize each form
of contrast to the others, so the strong fits to standard contrast and slope contrast might par-
tially be due to their similarity to background contrast. Nonetheless, these strong fits sug-

gested that perhaps a combination of the forms of contrast might fit best. Attempts to find fits

117



with many combinations of these forms of contrast versus LER did not find any fits superior
to the fits versus background contrast alone. However, it was difficult to model combinations
of resist contrast forms because the equations could not be properly linearized. Statistical F
numbers can only be calculated from linear equations, therefore these non-linear equations

had to be somewhat falsely linearized in order to allow full statistical analysis.

8.2 Summary of SEM Deblurring Algorithm

The maximum likelihood image deblurring algorithm, based on the Richardson-Lucy
algorithm and chiefly used in the capture of astronomical images, was used to remove blur
from images captured from SEMs and recover the high frequency components of those
images. LER values were then calculated from the deblurred images. LER measurements
after deblurring were around 11% - 15% higher than they were before deblurring. However
one measurement was as large as 40.2% higher than before deblurring, while another was as
low as 34.5%. This variation was greatly dependent upon the condition of the original image.
If the original image already contained little blur, or if the LER of the original image was quite
large, then the percent change before and after deblurring was less. Regardless, the change in
LER measurement before and after deblurring was notable.

SEM images of photoresist lines and trenches contain little information, compared to a
typical photograph or other image. They also often contain many repeating patterns. The
maximum likelihood algorithm requires non-repeating information in the ideal image in order
to be able to deblur properly. Therefore, it was possible that the algorithm may not deblur
SEM images properly or sufficiently. Many tests were performed to ensure that enough infor-

mation is present in SEM images, and that this information is not overly repeating. With
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regards to the former, an image without any pattern was deblurred successfully. With regards
to the latter, as long as reasonable limits were chosen for the PSF size-- it must be smaller than
the smallest intentionally repeating pattern in the image-- the image was deblurred properly.

Finally, the accuracy of the SEM deblurring technique was tested. Are SEM measure-
ments taken from deblurred images more accurate than SEM measurements from the original
images? This was tested by collecting SEM measurements along a long trench of a sample
using multiple SEM machines. Statistical testing of the measurements before and after
deblurring showed little difference. It was impossible to conclude that the SEM measure-
ments after deblurring were more approaching a more consistent or accurate “true” value.
The suspected cause for this unexpected result is the high level of LER measurement variabil-
ity. Taking several measurements of the trench at several different locations yields signifi-
cantly different LER measurements. LER is a statistical phenomenon. The variability of LER
measurements is larger than additional variability incurred by blurred images. In short, it is
still possible, if not likely, that the deblurring technique still improves SEM image quality and
provides more accurate LER measurements. However, the improved' accuracy is slight com-
pared to the inherent variability of LER measurements.

Some additional, unexpected benefits of the deblurring algorithm were noted; they are
related to maintaining proper SEM operating conditions. First, blur experienced throughout
the study was mostly due to SEM stage drift since some form of time averaging was needed
during image capture. Therefore, the deblurring algorithm could be used in tandem with time
averaging to lower image pixel noise while maintaining a relatively blur-free image. This
would allow looser SEM tolerances without sacrificing image quality. Next, the symmetry of

blur could be monitored, and one could easily determine whether blur is mostly in the x- or y-
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direction, or whether it was fairly symmetric. The degree of blur could also be monitored,
since the extent of blur in the original image was easily determined upon examination of the
deblurring PSF. This information could be collected and monitored to keep track of how far
the SEM machine is from optimal operating conditions. This is discussed further in section

8.3.

8.3 Opportunities for Future Research

With the newfound knowledge that background flare critically affects LER and EUV
lithography struggling to control flare [53, 59], further research studying background contrast
versus LER would provide obvious benefit to the field. This study proved conclusively that
undesirable, sub-threshold exposure in unpatterned areas affects LER. Yet, it was unable to
determine the physical theory behind why this background exposure affects LER so signifi-
cantly, nor was it able to determine how other forms of contrast play a combined role with the
background contrast. It is intuitively obvious that background contrast alone cannot deter-
mine LER, so it must be a combination of background contrast and some form of defining
foreground contrast. Fuller understanding of this interdependence would highlight which
aspects of lithographic tool design are most critical to improve CD control.

In order to determine how the different forms of contrast interact and better understand the
physical processes that drive background contrast to be so important, one must attempt to
orthogonalize the different forms of contrast-- and the different exposure and post-exposure
mechanisms-- as best as possible. One possible method, which is unfortunately quite time-
and material-consuming, is to hold one form of contrast as still as possible while adjusting the

others. For instance, the clear dose image slope can be held constant while the background
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exposure dose is altered, or vice-versa. Another approach that is more risky but may provide
more insight is to hold one suspected physical phenomenon constant while altering others.
For instance, if background contrast is important because it affects the acid distribution pro-
file, and therefore acid diffusion pathways, it would be best to alter the background exposure
dose (altering background contrast) while maintaining an acid distribution gradient that is
roughly constant. This is risky because there may be several competing physical mechanisms

to explain the same experimental results.

Platforms for future research with the deblurring algorithm are more numerous and easily
applicable, however they may not be as useful to the industry overall. Two seen as most use-
ful are presented here. The most useful research, perhaps, would involve experiments
designed to use the deblurring PSF as an SEM tool process control. After deblurring, the fur-
ther the PSF is from its original grey plane, the more the deblurring algorithm is compensating
for blur within the machine. Specific process control (SPC) limits could be determined for
SEMs where an upper limit for the deviations of the PSF from a grey plane could be set. Then
one could track what elements of the machine typically account for the blur. For example,
when the PSF deviation exceeds the SPC limits, the machine could be fully inspected to deter-
mine what caused the high level of blur. Eventually, analysis of the deblurring PSF could pro-
vide a simple and non-invasive means of SEM tool control.

Another useful study could be designed to determine how much larger the SEM operating
window is when using the deblurring algorithm. Time averaging removes pixel noise but
increases image blur. Therefore, when using the deblurring algorithm, SEM signal-to-noise

ratio (SNR) does not need to be as high as it normally would. Time averaging could continue
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for longer times, thus minimizing noise and increasing blur. The experiment could, for
instance, purposely decrease the SNR of SEM tools and measure the image pixel noise after
deblurring. This pixel noise could be compared to that of an SEM tool with a good SNR and

no deblurring.
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Appendix A

RAW DATA CORRELATING AERIAL IMAGE PROFILE TO L.E.R.

UVII-HS Data:

. nhorm. clear
dose slope

- 1.78665863
'+ 2.152600759

2800419854
- 3.494481 751

4764423013
| 7.734452943
' 7.734452943

'9.318618004
2062520785
" 1.78665863
2.152600758°
2.900419854
3.494481751

4.764423013

7.734452943
7.734452943

9.318618004.

20.62520785

1.78665863
2.152600759
2.800419854
3.494481751
4.764423013

7.734452943

7.734452943
9.318618004
20.62520785
1.78665863
2.152600759

2.900419854°
3.494481751

"4.764423013

| 7.734452943

7.734452943;
. 9.318618004

2062520785

'ﬁbﬁn.peak
_ intensity

1.108952213
1.179441702
1.177201563
1.290267726
 1.6770523
1.4723375
2.0974125
1.773900602
'3.926233333
1.108952213
1.179441702
1.177201563
1.290287726
1.6770523
1.4723375
2.0974125
1.773300602
3.926233333
1.108952213
1.179441702
1.177201563
1.290287726
16770523
1.4723375
2.0974125
1.773900502
3.926233333
1.108952213
1.179441702
1.177201563
1.2902687726
1.6770523
1.4723375
' 2.0974125
1.773900802
3.926233333

(max -min)/

(max+min)
contrast
0.18079014
0.20983396
0.306572874

0.346578
0.36983176
0.98630099
0.53951388
0.99690099
0.99690099
0.18079014
0.20983996
0.30572874

0.346578
0.36983176
0.99690099
0.53951388
0.99690099
0.99690099
0.18079014
0.209839%6
0.30572874

0.346578
0.36983176
0.95690099
0.53851388
0.99680099
0.99690099
0.18079014
0.20983996
0.30572874

0.346578
0.36983176
0.99690099
0.53951388
0.99650039
0.99690099

clear dose
slope

(md/em*2)/um

14.4719349
17.43606615
23.49340081
28.30530219
38.59182641

62.64906884

62.64906884
75.48080583
167.0641836
14.4719349
17.43608615
23.49340081
28.30530219
38.59182641
62.64906884
62.64906884
75.48080583
167.0641836
14.4719349
17.43606615
23.49340081
28.30530219
38.59182641
62.64906884
62.64906884
75.43080583
167.0641836
14.4719349
17.43606615
23.49340081
28.30530219
38.59182641
62.64906884
62.64306884

75.48080583

167.0641836
123

overall average I,.ER
- 10.50434

peak

' intensity

(md/em?2)
8.982512921
9.553477785

9.535332656

10.45133058
13.58412363
11.92693375

16.98904125

14.36859488

31.80249

8.982512921
9553477785
9.535332656
10.45133058
13.58412363
11.92593375
16.98804125
14.36859488

31.80249

8.982512921

9553477785

9.535332656
10.45133058
13.58412363
11.92593375
16.98904125
14.36859488

31.80249
8.982512921
9.653477785
9.535332656
10.45133058
13.58412363
11.92593375
16.98904125

14.36859488

31.80249

A.1 Raw Data used for Multiple Resist Study presented in Section 2.3.

LER

3sigma

22.99608

11.92392

10.75464
12.22533

10.47027

6.89367
10.63407
4.71102

398253

24.76071 _

16.20474
12.96045

11.97138
14.96586
4.28838
8.36088

372039

4.38399

2359041

13.14258
6.35556

10.88958

15.54162
5.68356
8.20905
4.96395
4.14894

18.13116_

15.66993
8.79849
9.43734

15.86307
4.70964
9.63204,

3.58503

3.59598

LER

1 sigma
7.66536
3.97464
3.58488
407511
3.43009
229789
3.54469
1.57034
1.32751
8.25357
5.40158
4.32015
3.99046

4.98862

1.42946
2.76696
1.24013
1.46133
7.86347
4.38086
2.11852
3.62986
5.18054
1,89452
273635
1.65465
1.38298
6.04372
5.22331

1293283

3.14578
5.28769
1.56988
3.21088
1.19501

1.19866



UV210 Data:

p norm. clear

dose slope

norm Wpeak
intensity

"2.152600758
. 2.900419854;
3.494481751

4764423013

1.177201563
1 290287726

7734452943
. 7.734452943

9.318618004
20.625207865.
" 1.76665863
" 2.152600759.
2800419854
3494481751
4764423013
7.734452943
(7.734452943
9.318618004
2062520785
' "1.78665863
"2.152600759
2.900419854
. 3.494481751

| 4.764423013
7734452943

7.734452943
'9.318618004
2062520785
' 1.78665863
. 2.152600759
2.900419854
. 3.494481751

4764423013
7734452943

7.734452943
£ 9.318618004
~ 20.62520785

14723375

2.0974125
71773300602
3.996233333.
1.108952213
1.179441702
1.177201563

1.290287726

1.6770523

1.4723375.
20974125
1.773900602
3.926233333
1.108952213
1179441702
1.177201563
1.290287726
16770523
1.4723375
2.0974125
1.773900602
3.926233333
1.108952213
1.179441702
1.177201563
1.290267726
" 1.6770523
14723375
20974125
1.773800602
3.926233333

16770523

 (max-miny/

_(max+min) .

_ _Contrast
1 78655883 1. 108952213 0 180790138 28.58653808-
1. 179441702 0. 209839984 34 44181214 18 87108723. 7 01271_ 2.3 33757,

0.305726742

__roverall average LER:

clear dose . peak . B. 746983 L

N slnpe o mtensny . _LER LER
(mJ/cm“2)/um_ . LmJ/cm'Q) 3 sigma 1 sigma_
17.7432354: 9.3378: 3.1126,

46.40671766, 18, 835225 10.03191"

3.34397,

0.3465768001 5591170802 20.64460361, 4.83528 1.61176,

0.36983176

0.996900386
0539513885
0.996900986
0.96300986
0.180790136
0.209833954
0.305728742
0.346576001

0.36983176
0.936900965
0539513885
0.995900986
0.396900986
0.180790136
0.209839964
0.305726742
0.346578001

0.36983176

0.998900386
0.539513885
0.996900966
0.996900986
0.180790136
0.209839964
0.305728742
0.346578001

0.36983176
0.996300986
0.539513885
0.996900986
0.996900986

76.23076821  26. 83283. 7.52559

2 50853

1237512471, 23.5574; 4.17483
5.71947.

123.7512471 335586

1.39161
1.90649

149.0978881 28.38240964. 6.47214.

330 0033256 62.81973333 6.23586

2.15738
207662

2858653808 17.7432354 6.80625.

2.26875

34.44161214 18.87106723
46.40671766  18.835205
5591170802 20.64460361
76.23076621 _25.8328368.
123.7512471

235574
123.7512471  33.5586;

12.78555:

3.85917.

5.9934

149.0978881 28.38240964 3. 8?171':'

11.9079

13.1661_ 4.
486225 1.6

4.26185.
3.9693:
1.28639

' 330.0033256 62.81 973333 4.60545
28.58653808

34.44161214 18.87106723 5.31249 1.7,
18.835225' 10.62489 3.

46.40671766
55.91170802 20.54460361
76.23076821 26.8328368
123.7512471 235574
123.7512471 33.5586
149.0976881 26.38240954
330.0033256 62.81973333;
28.58653808 17.7432354
34.44161214 18.87106723.
46.40671766
5591170802 2064460361 4.57707
'76.23076821 26.8328368 9.95B49
123.7512471. 235574 539217
1237512471 335586, 5.08659
149.0978881 28.38240964° 5.09322
3300033256 62.81973333 4.43595

4.92606

501216
5.71647
' 6.28686

1654039

124

17.7432354, 7.73361, 2.

780795 2
44379
6.62625

18.835225. 8.10948

2.20875:
1.67072

1.90549

2.09562
2.16013
270316
1.52569
3.32283
179739
1.69553
169774
1.47665



SEPR-463 Data:

o . L (max mm)f
' norm. clear P norm peak (max+min)
,_dose slope : intensity contrast

 cleardose  peak .
_slope  intensity : LER _ LER
(mJIcm'Q)/um (mchm‘Q) '3 sigma_1 S|g_ma

1.78665863; 1.108952213 0. 180790136 39.66382158, 24. 61873912

| 2.152600759. 1.179441702. 0.203833964 47. 787?35_85 26.1 13380578 11 8098 3.86992

. 2.900419854  1.177201563: 0.305728742. 64.38932075 26. 13387469 j 13. 4959 4. 49864

3.494481751 1 290287726
- 4.764423013
7. 734452943,
7.734452943|

9,318618004. 1_ 773900602 0.998900986  206. 8733197 39. 38059337! 4. 0248

. 1.76665863 1.108952213 0.180790136  39.66382158. 24.61873912,

0.346578001 -

1.6770523. 0.36983176 105. 7701909 37.23056106; 22.1319 737732

_20.62520765: 3.926233333 0.996900986 457.6796142

77.57743488,

28.64438752] 8.61345, 2.6871 15

2152600759 1.179441702' 0.209839964  47.76773685
2.900419854° 1.177201563; 0.305726742 64.38932075'

- 3.494481751: 1.290287726

4, 764423013 1.6770523
7. 73445_2943 1.4723375
- 7.734452943° 2. 0974125

19318618004, 1.773900802,
2062520785 3.926233333
~ 1.78665863. 1.108352213.
2152600759 1.179441702
2900419854 1.177201563:
3.494481751 1.290287726

(4764423013 16770523
| 7.734452943 14723375
7.734452943  2.0974125

£ 9.318618004 1 773900802
20.62520785 3. 926233333,
1.78665863: 1.108952213,
2.152600759 1. 179441702
2.900419854 1. 177201563
3.494481751 1.2902687726

4764423013 1.6770523
7734452943 1.4723375°
- 7.734452943°  2.0974125

. 9.318518004 1.773300802
2062520785 3.926233333

0.346578001

0.36983176.
'0.936900986
10.539513885

0.996900986

'0.996900986

'0.180790136
0.209839964;

0.305728742

0.346578001 -
0.36983176

0.996300386

0.539513885

0.996900986

0.996800986
0.180790136
0.209839964
'0.305726742

'0.346578001
0.36983176,

0.996300986

0.539513885

0.996900986

0.996900986

" 77 57749488
105.7701309
171.7048553
171.7048553
206.6733197
4578796142
139.66362158,
47 78773685
64.38932075
77 57749488
105.7701909
171.7048553.
171.7048553
206.8733197
457 8796142
39.66382158
47.78773685
64.38932075
77 57749488
105.7701309
171.7048553
171.7048553
206.8733197

457 8796142

- 1.4723375 0.996300%86 171 7048553 32 6858925 4. 93533 1.64511,

2, 0974125 0539513885 171 7048553  46. 5625575[ 3.66978, 1 223_28'

40248 13416
87 18238& 3.74061: 124587

'26.18360578 5.90298! 1.96766.

26.13367469' 16,4697, 5.48991
'28.64438752; 9.67572, 3.20524
37.23056106] 19.6059° 6.5353

32.6856925; 4.89084; 1.63028'

- 4B. 5625575 4.46079 1 48693’

39. 38059337; 3. 39405 1 13135,
87.16238' 4.17162 1. 39054;

24.61873912] 24.7607. 8.25357.

26. 18380578 13 8609, 4.6203;

26. 13337459 12 9805 4.32015:

28 54438752' i

'37.23056106:
32.6858925! 4.28838:
46.5625575 4. 58259

3938059337 3. 077682°

87.16238: 3.29537

124.61873912! 24.7607.

26. 18380578 13.8609

26.13387469: 12! 9605,

28.64438752;

7. 23056106' 10.239° _§ 41301
326858925 4. 28838 1. 42946
465625575 4. 58259 1.52753

39. 38059337 3.07782: 1.02594°

87.16238 3.29637 1. 09879

"10.239. 3.41301
1.42946
152753
1.02594
1.09879
B.25357.
46203
432015

A.2 Raw Data used for In-Depth UVII-HS Study presented in Section 2.4.

All LER values are given as 1 o RMS values.
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,std cont ;bg contrast norm slope slope cont

0 994696189 0990454831 1_‘_14_3~0§1952
‘measurement leflLER nghtER -
B N 1M o 10753» 1 85214 L
2208428 150396

3 1.74596 1.55236
4 188466 212244

5 144999 217732

6 1.7004 1.14589
7 134185 136812
8 182687 166565

9 162215 1.10288

-average. 164041 1.62008444
'stddev.. 0. 299140006 0 38404338 _‘
-std cont: b. g. contrast: norm. slope slope cont
. 0.884666959 0.894403109 0.52721764 8. 12085049'
:measurement lefflLER rlghtLER
: 1 168418 1.82626
2 2.10017 2.09833
3 1.15523 1.22392
4 1.11675 1.48271
5 177154 2168
6 - 1.84769 1.42649
7 1.94198 1.91853
8 1.85321 1.28201
8 1.64675  1.16177

10 1.77138 1.64202
M 155424 146067
12 1.78851 1.53494
13 1.48716 1.41468
14 1.738396 1.78616
15 1.26654
‘average: 1.675625 1.57983533
‘std dev.: 0.274841019 0.31638558
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istd cont: _ 'b.g. contrast: norm. slope_slope cont.
| 0.909499879 0.785975331 0.93884374 13.5034846
imeasurement leftLER . rghttER
Yo 257191  0.98952
2 1.15469 - 1.39024
3 2.40476 1.16501
L4 147892 1.12073
5 1.98647 1.01201
6
7
8

1.34645 1.13732
091157 1.26308
, 131227 133507
9 1.12149 1.80221
.10 000008 11653
I ... _loeae8
12 146345 1.44531
13 184885  1.56676 3
14 144085 1.67202
_ 15 1.22048 1.7297 :
iaverage: 1.5612945714  1.32383067°
std dev.: 0.51435973. 0.26717548

istd cont:  b.g. contrast: norm. siope ‘slope cont. -
|0.699077204 0.692355267 0.44415226 7.03464497
‘measurement lef ER  rightLER

1 3.03233 2.02369
2 2.85195 2.48539
3 397199 26418
4 2.74979 1.96897
5 2.68999 - 2.3363
6 2.57696 2.54521
7 2.79457 2.65197
8 3.52472 177683
9 274283 24663
10 3.27875 2.74787
oo 284343 351422
12 2.25859 2.24526 i
13 2.24343 3.03046
14 240129 1.87299
15 222603  2.26322
average: 2.812443333 2438032 ~
‘std dev.: 0.488671304 0.45772728
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;A&dﬁééﬁt” b g “contrast: - norm slope «slope cont.
0826060634;_ 0.68436301 0.754190999 11.08887056:

imeasurement lettLER nghtl_ER

1 1. 95116” 1 84332
.. 2 237826 160374 )
o 3. 200706 156015
4 4.21037 1.7127
.5 21388 142063
6 214115 202258
7 1.2629 1.93064
YYYYYY 8 186172 207567 .
9 198266 142672
1o 227962 177196 )
i 1, 242697 180464
12 1. 44423 2 35257
13 1. 52865» 1. 791178_
i 14 161852  1.70777
15 1.75438  2.26432
.average: 2.071164667 1.81924.
stddev..  0.684840071 0.274665574
stdcont:  b.g. contrast: .norm. slope slope cont. -
0.661269762 0490271132 0348913344_ 5.789251988
:measurement leftLER nightLER o
1 1 65926 1 8903 A
2 2. 03699, 2.1684 ,
o 3 256008 1. 73696_ o
4 29484 A_4231119
5 2.44966 1.78623
6 2.87311 2.16344
7 1.88888 2. 95603
8 1.71148 1.97471
9 - 1.76138 1.85624
10 2.00021 2.55682
11 1.97789 2.09868
12 227271 1.95823
13 202189 223449
14 2.53059 2.77011
- 15 1.95999 249459
:average: 2.176894667 2.197094667
std dev.: 0.408636127  0.36308624
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L R o

istd cont pg contrast norm slope slope cont.

' 0. 519237852 0. 376079357 0.317920687 6.384092482

.measurement leflER ~  rghltER
L 1, o 354469 27827
2 2.71441 316607
4
5
6
7
8
~ g -
11.
12 i
- - 13 - - — - — - -
14
15 S
average 3. 12955 ) 2974385
-std dev.: 0587096618 0271Q8§§_27____ e
.std cont: bg contrast: norm. slope slope cont.
- 0.717211316  0.294168766 0.43621249 6.930820414
:measurement lefflER . rightt ER
1 4.59164
2 4.39309
3 9.55582 4.51653
4  10.07664 = 4.72795
5 6.52077  3.94778
6 7.56734
7 5.65531 4.49964
8 5.78282 4.02245
8 1805214  3.42541
10 590971 ~  4.49881
1 8.34105 3.32087
12 4.21954
13 - 10.35647 4.70929
14 6.19517 4.21356
) 15 6.18602  3.39398
‘average: 6.893568667 4.116024545
‘std dev.: 2.011871137 0.534569913
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Appendix B

MATLAB SCRIPTS AND CODE USED THROUGHOUT THE STUDY

B.1 Matlab script for the Blind Deconvolution Maximum Likelihcod Algorithm.
This script is packaged with the Matlab software, the imaging package. This was not cre-

ated by the author.

function [J,P] = deconvblind(varargin),
%DECONVBLIND Image restoration using blind deconvolution algorithm.
% [J,PSF] = DECONVBLIND(I,INITPSF) deconvolves image I using maximum
% likelihood algorithm, returning both deblurred image J and a restored
% point-spread function PSF. The resulting PSF is a positive array of
% the same size as the INITPSF, normalized so its sum adds to 1. The
% PSF restoration is affected strongly by the size of its initial
% guess, INITPSF, and less by its values (an array of ones is a safer
% guess).
% .
% To improve the restoration, additional parameters can be passed in
% (use [] as a place holder if an intermediate parameter is unknown):
% [J,PSF] = DECONVBLIND(LINITPSF,NUMIT)
% [J,PSF] = DECONVBLIND(LINITPSFNUMIT,DAMPAR)
% [J,PSF] = DECONVBLIND(LINITPSENUMIT,DAMPAR,WEIGHT)
% [J,PSF] = DECONVBLIND(LINITPSFNUMIT,DAMPAR,WEIGHT,READOUT).
% .
% Additional constraints on PSF can be provided via a user supplied
% function:
% [J,PSF] = DECONVBLIND(...,FUN,P1,P2.....PN)
%
% FUN (optional) is a function describing additional constraints on the
% PSF. There are four ways to specify FUN: as a function-handle, @, as
% an inline object, or as a string containing either a function name or
% aMATLAB expression. FUN is called at the end of each iteration. FUN
% must accept the PSF as its first argument and may accept additional
% parameters, P1, P2, ..., PN. FUN should return one argument, PSF,
% that is the same size as the INITPSF, and satisfies the positivity
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%
%
- %
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

%.

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

and normalization constraints.
NUMIT - (optional) is the number of iterations (default is 10).

DAMPAR (optional) is an array that specifies the threshold deviation
of the resulting image from the image I (in terms of the standard
deviation of Poisson noise) below which the damping occurs. The
iterations are suppressed for the pixels that deviate within the
DAMPAR value from their original value. This suppresses the noise
generation in such pixels, preserving necessary image details
elsewhere. Default is 0 (no damping).

WEIGHT (optional) is assigned to each pixel to reflect its recording
quality in the camera. A bad pixel is excluded from the solution by
assigning it zero weight value. Instead of giving a weight of one for
good pixels, you can adjust their weight according to the amount of
flat-field correction. Default is a unit array of the same size as

input image L.

READOUT (optional) is an array (or a value) corresponding to the
additive noise (e.g., background, foreground noise) and the variance
of the read-out camera noise. READOUT has to be in the units of the
image. Default is 0.

Note that the output image J could exhibit ringing introduced by the
discrete Fourier transform used in the algorithm. To reduce the
ringing use I = EDGETAPER(I,PSF) prior to calling DECONVBLIND.

Note also that DECONVBLIND allows you to resume deconvolution
starting from the results of an earlier DECONVBLIND run. To initiate
this syntax, the input I and INITPSF have to be passed in as cell

arrays, {I} and {INITPSF}. Then the output J and PSF become cell

arrays and can be passed as the input arrays into the next
DECONVBLIND call. The input cell array can contain one numeric array
(on initial call), or four numeric arrays (when it is the output from

a previous run of DECONVBLIND). The output J contains four elements,
where J{1}=I, J{2} is the image resulted from the last iteration,

J{3} is the image from one before last iteration, J {4} is an array

used internally by the iterative algorithm.

Class Support

I and INITPSF can be of class uint8, uint16, or double. DAMPAR and
READOUT have to be of the same class as the input image. Other inputs
have to be of class double. Output image J (or the first array of the
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% output cell) is of the same class as the input image I. Output PSF is
% of class double.

%

% Example

D —

%

%  I=checkerboard(8);

%  PSF = fspecial(‘gaussian',7,10);

% V=.0001;

%  BlurredNoisy = imnoise(imfilter(I,PSF),'gaussian',0,V);

%  WT = zeros(size(I)); WT(5:end-4,5:end-4) = 1;

%  INITPSF = ones(size(PSF));

%  FUN =inline('PSF + P1','PSF','P1");

%  [J P] = deconvblind(BlurredNoisy,INITPSF,20,10*sqrt(V),WT,FUN,0);
%  subplot(221);imshow(BlurredNoisy);

% title('A = Blurred and Noisy');
%  subplot(222);imshow(PSF,[]);

% title('True PSF');

%  subplot(223);imshow(J);

% title('Deblured Image');

%  subplot(224);imshow(P,[]);

% title('Recovered PSF");

%

% See also DECONVWNR, DECONVREG DECONVLUCY, EDGETAPER, PADARRAY,
% PSF20TF, OTF2PSF.

% Copyright 1993-2002 The MathWorks, Inc.
% S$Revision: 1.4 $
%

% References

% —cmmmememe

% "Acceleration of iterative image restoration algorithms, by D.S.C. Biggs
% and M. Andrews, Applied Optics, Vol. 36, No. 8, 1997.

% "Deconvolutions of Hubble Space Telescope Images and Spectra”,

% R.J. Hanisch, R.L. White, and R.L. Gilliland. in "Deconvolution of Images
% and Spectra", Ed. P.A. Jansson, 2nd ed., Academic Press, CA, 1997.

% "Light Microscopic Images Reconstructed by Maximum Likelihood

% Deconvolution", Timothy J. Holmes et al. in "Handbook of

% Biological Confocal Microscopy", Ed. James B. Pawley, Plenum

% Press, New York, 1995

% Parse inputs to verify valid function calling syntaxes and arguments
[J,ANUMIT,DAMPAR,READOUT,WEIGHT,sizel,classl,sizePSF,FunFcn,FunArg] = ...
parse_inputs(varargin{:});
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% 1. Prepare parameters for iterations

%

% Create indexes for image according to the samphing rate
idx = repmat({':'},[1 length(sizel)]);

wl = max(WEIGHT.*(READOUT + J{1}),0);% at this point - positivity constraint
fw = fin(WEIGHT);
DAMPAR22 = (DAMPAR."2)/2;

% 2. L_R Iterations
%

lambda = 2*any(J {4} (:)~=0);
for k = lambda + [1:NUMIT],

% 2.a Make an image and PSF predictions for the next iteration
ifk > 2,% image
lambda = (J{4}(:,1)."J{4}(:,2))/(J {4} (:,2)."*J {4}(:,2) + eps);
lambda = max(min(lambda, 1),0);% stability enforcement
end
Y = max(J{2} + lambda*(J{2} - J{3}),0);% image positivity constraint

ifk > 2,% PSF
lambda = (P{4}(:,1).*P{4}(:,2))/(P{4}(:,2)."*P{4}(:,2) + eps);
lambda = max(min(lambda, 1),0);% stability enforcement
end
B =max(P{2} + lambda*(P{2} - P{3}),0);% PSF positivity constraint
sumPSF = sum(B(:));
B = B/(sum(B(:)) + (sumPSF==0)*eps);% normalization is a necessary constraint,
% because given only input image, the algorithm cannot even know how much
% power is in the image vs PSF. Therefore, we force PSF to satisfy this
% type of normalization: sum to one.

% 2.b Make core for the LR estimation
CC = corelucy(Y,psf2otf(B,sizel), DAMPAR22,wIL,READOUT, 1,idx,[},[]);

% 2.c Determine next iteration image & apply positivity constraint
J{3} =J{2};H = psf2otf{P {2} ,sizel);

scale = real(iffin(conj(H).*fw)) + sqrt(eps);

J{2} = max(Y.*real(iffin(conj(H).*CC))./scale,0);

J{4} =[J{2}C)-Y() {4}, D)

% 2.d Determine next iteration PSF & apply positivity constraint + normalization
P{3} =P{2};H = fin(J {3}); ’
scale = otf2psf{conj(H).*fw,sizePSF) + sqrt(eps);
P{2} = max(B.*otf2psf(conj(H).*CC,sizePSF)./scale,0);
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sumPSF = sum(P {2}(:));
P{2} = P{2}/(sumPSF + (sumPSF==0)*eps);

if ~isempty(FunFcn),

FunArg{l} =P{2};

P{2} = feval(FunFcn,FunArg{:});
end;
P{4} = [P{2}(:)-B(:) P{4}(;,)];

end

% 3. Convert the right array (for cell it is first array, for notcell it is
% second array) to the original image class & output the whole thing
num = 1 + strcmp(classI{1},'notcell');
if ~strcmp(classI{2},'double’),

J{num} = changeclass(classI{2},J {num});
end

if num = 2,% the input & output is NOT a cell

P=P{2};
I=J{2};
end;

%% % %% % % % %% %% %% % % % %% % % % % % % %% %% % %% %% % % % % % % %% % % % %%
%%% %% %% % %% %% %% %% %% % %% %%

%

% Function: parse_inputs

function [J,P,NUMIT,DAMPAR,READOUT,WEIGHT,sizel,classl,sizePSF,FunFcn,FunArg]

parse_inputs(varargin),
%
% Outputs:
% I=J{1} the input array (could be any numeric class, 2D, 3D)
% P=P{1} the operator that distorts the ideal image

%

% Defaults:

%

NUMIT = [J;NUMIT _d = 10;% Number of iterations, usually produces good

% result by 10.

DAMPAR =[];DAMPAR_d = 0;% No damping is default
WEIGHT =[);WEIGHT _d = 1;% All pixels are of equal quality, flat-field is one
READOUT=[];READOUT _d= 0;% Zero readout noise or any other

% back/fore/ground noise associated with CCD camera.

% Or the Image is corrected already for this noise by user.
FunFcn =";FunFcn_d =";
FunArg = {};FunArg d = {};
funnum = [];funnum_d = nargin+1;
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checknargin(2,inf,nargin,mfilename);% no constraint on max number because of FUN args

% First, assign the inputs starting with the cell/not cell image & PSF
%
switch iscell(varargin{1}) + iscell(varargin{2}),
case 0, % no-cell array is used to do a single set of iterations
classI{1} = 'notcell’;
J{1} = varargin{1};% create a cell array in order to do the iterations
P{1} = varargin{2};
case 1,
msg = sprintf('In function %s, I and INITPSF must either both be cell arrays or both be
numeric arrays.',...
mfilename);
eid = sprintf{'Images:%s:IandInitpsfMustBeOfSameType',mfilename);
error(eid,msg);
case 2,% input cell is used to resume the interrupted iterations or
classI{1} = 'cell';% to interrupt the iteration to resume them later
J = varargin{1};
P = varargin{2};
if length(J)~=length(P),
msg = sprintf('In function %s, I and INITPSF cell arrays must be of the same size.',mfile-
name);
eid = sprintf('Tmages:%s:landInitpstMustBeOfSameSize',mfilename);
error(eid,msg);
end
end;

% check the Image, which is the first array of the J-cell
[sizel, sizePSF] = padlength(size(J{1}), size(P{1}));
classI{2} = class(J{1});

checkinput(J{1},{'uint8' 'uint16' 'double'},{'real' 'nonempty’ 'finite'},mfilename,'T',1);

if prod(sizel)<2,
msg = sprintf('In function %s, input image must have at least two elements.',mfilename);
eid = sprintf('Images:%s:inputimageMustHaveAtLeast2Elements',mfilename);
error(eid,msg);

elseif ~isa(J {1},'double"),
J{1} = im2double(J{1});

end

% check the PSF, which is the first array of the P-cell

checkinput(P{1},{'uint8' 'uint16' 'double'}, {'real’ ‘nonempty' 'finite' ‘nonzero'} ,mfile-
name,'INITPSF',1);
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if prod(sizePSF)<2,
msg = sprintf('In function %s, initial PSF must have at least two elements.',mfilename);
eid = sprintf{'Images:%s:initPSFMustHaveAtLeast2Elements',mfilename);
error(eid,msg);

elseif ~isa(P{1},'double’),
P{1} = double(P{1});

end

% now since the image&PSF are OK&double, we assign the rest of the J & P cells
len = length(J);
if len = 1,% J = {I} will be reassigned to J = {1,1,0,0}
{2} =J{1};
J{3} =0;
J{4}(prod(sizel),2) = 0;
P{2} =P{1};
P{3}=0;
P{4}(prod(sizePSF),2) = 0;
elseif len ~=4,% J = {I,J,Jm1,gk} has to have 4 or 1 arrays
msg = sprintf('In function %s, the input cells must consist of 1 or 4 numerical arrays.',mfile-
name);
eid = sprintf{'Images:%s:inputCellsMustBelor4ElementNumArrays',mfilename);
error(eid,msg);
else % check if J,Jm1,gk are double in the input cell
if ~all([isa(J{2},'double’),isa(J {3},'double’),isa(J {4} ,'double')]),
msg = sprintf{['In function %s, second, third, and forth array of the input image cell' ...
' have to be of class double.'],mfilename);
eid = sprintf('Images:%s:ImageCellElementsMustBeDouble',mfilename);
error(eid,msg);
elseif ~all([isa(P{2},'double’),isa(P {3},'double’),isa(P {4} ,'double")]),
msg = sprintf(['In function %s, second, third, and forth array of the input PSF cell' ...
' have to be of class double.'],mfilename); ,
eid = sprintf('Images:%s:psfCellElementsMustBeDouble',mfilename);
error(eid,msg);
end
end;

% Second, Find out if we have a function to put additional constraints on the PSF
%

function_classes = {'inline','function_handle','char'};
idx =[J;
for n = 3:nargin,
idx = strmatch(class(varargin{n}),function_classes);
if ~isempty(idx), '
[FunFcn,msg] = fenchk(varargin{n}); %only works on char, making it inline
if ~isempty(msg),
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eid = sprintf{'Images:%s:fcnchkError', mfilename);
error(eid,msg); )
end
FunArg = [{0},varargin(n+1:nargin)];
try % how this function works, just in case.
feval(FunFcn,FunArg{:});
catch
Ftype = {'inline object','function_handle','expression =>'};
Ffenstr = {'',' ",varargin{n}};
msg = sprintf('DECONVBLIND cannot continue because user supplied' ...
' %s %s\n failed with the error below.\n\n%s '], ...
Ftype{idx},Ffenstr{idx} lasterr);
eid=sprintf('Images:%s:userSuppliedFcnFailed',mfilename);
error(eid,msg)
end
funnum =n;
break
end
end

if isempty(idx),
FunFcn = FunFcn_d;
FunArg = FunArg_d;
funnum = funnum_d;

end

%

% Third, Assign the inputs for general deconvolution:

%

checknargin(3,7,funnum,mfilename);

switch funnum,

case 4,% deconvblind(I,PSFNUMIT, fun,...)
NUMIT = varargin{3};

case 5,% deconvblind(I,PSENUMIT,DAMPAR,fun,...)

NUMIT = varargin{3};
DAMPAR = varargin {4};
case 6,% deconvblind(I,PSFENUMIT,DAMPAR,WEIGHT, fun,...)
NUMIT = varargin{3};
DAMPAR = varargin {4},
WEIGHT = varargin{5};
case 7,% deconvblind(I,PSENUMIT,DAMPAR,WEIGHT,READOUT, fun,...)
NUMIT = varargin{3};
DAMPAR = varargin{4};
WEIGHT = varargin{5};
READOUT = varargin{6};
end
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% Forth, Check validity of the gen.conv. input parameters:
%
% NUMIT check number of iterations
if isempty(NUMIT),

NUMIT = NUMIT _d;
else %verify validity

checkinput(NUMIT, {'double'}, {'scalar’ 'positive' ‘integer' 'finite'} ,mfilename, NUMIT",3);

end |

% DAMPAR check damping parameter

if isempty(DAMPAR),
DAMPAR = DAMPAR_d;

elseif (prod(size(DAMPAR))~=1)&~isequal(size(DAMPAR),sizel),
eid=sprintf('Images:%s:damparMustBeSizeOfInputimage',mfilename);
error(eid,'If not a scalar, DAMPAR has to be size of the input image.");

elseif ~isa(DAMPAR,classI{2}),
eid=sprintf('Images:%s:damparMustBeSameClass AsInputImage',mfilename);
error(eid, DAMPAR has to be of the same class as the input image.');

elseif ~strcmp(classI{2},'double’),
DAMPAR = im2double(DAMPAR);

end

if ~isfinite(DAMPAR),
eid=sprintf('Images:%s:damparMustBeFinite',mfilename);
error(eid, DAMPAR has to be finite.");

end

% WEIGHT check weighting
if isempty(WEIGHT),
WEIGHT = repmat(WEIGHT _d,sizel);
else
checkinput{ WEIGHT, {'double'}, {'finite'} ,mfilename,"WEIGHT",5);
if (prod(size(WEIGHT))~=1)&~isequal(size(WEIGHT),sizel),
eid=sprintf{'Images:%s:weightMustBeSizeOflnputlmage',mfilename);
error(eid,'If not a scalar, WEIGHT has to have size of the input image.");
elseif prod(size( WEIGHT))= 1,
WEIGHT = repmat(WEIGHT,sizel);
end;
end

% READOUT check read-out noise
if isempty(READOUT),
READOUT = READOUT _d;
elseif (prod(size(READOUT))~=1)&~isequal(size(READOUT),sizel),
eid=sprintf{'Images:%s:readoutMustBeSizeOfInputlmage',mfilename);
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error(eid,'If not a scalar, READOUT has to be size of the input image.');
elseif ~isa(READOUT,classI{2}),
eid=sprintf('Images:%s:readoutMustBeSameClass AsInputimage',mfilename);
error(eid, READOUT has to be of the same class as the input image.');
elseif ~strcmp(classI{2},'double"),
READOUT = im2double(READOUT);
end
if ~isfinite(READOUT),
eid=sprintf('Images:%s:readoutMustBeFinite',mfilename);
error(eid, READOUT has to be finite.');
end;

B.2 Matlab Code Written to Calculate LER from an SEM Image.

The Matlab code reproduced below was written by the author and Lei Yuan jointly.

% This function trys to detect LER from SEM pictures

pack;
stringbase = strtok(stringfile, '.");

if (edge_detect = 'deblur')
% this if statement below is used for the 9th deblurred image:
stringfilenew = strcat(stringbase, '_deblur8_9.jpg");
stringfull = strcat(stringdir, stringfilenew);

else
% this if statement below is used for the original (not deblurred) image:
stringfilenew = stringfile;
stringfull = strcat(stringdir, stringfilenew);

end

% PP below is the image as read in to matlab:
PP = imread(stringfull);

figure(1)
imshow(PP);

stringfullshort = strtok(stringfull,'.");

image_size = size (PP);
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d = image_size (1);

¢ =image_size (2);

% c is the x-coordinate "length", d is the y-coordinate "length", *after* flipping the image 90
degrees

for i=1:c
for j=1:d

% locl is the y-coordinate beginning, loc2 is the x-coordinate beginning, *after* flipping
the image 90 degrees

locl =0;

loc2 =0;

MM(,j) = PP(loc2+j,loc1+i);

SS(i,j) = double(MM(i,)));

end

end

% MM above is the image once shifted so the lines are vertical. SS is the same thing
% but with "operatable" numbers-- you cannot do mathematical functions on MM:
figure(2);

imshow(MM);

%

% The following is to enhance the contrast.
%

WW = zeros(c,d);

for i=2:c-1
for j=2:d-1
WW(,j)= ((SS(»1,j)+SS(i-1,j)+SS(i-1,j+1)+SS(i-1,j-1)+SS(i,j-1)...
+SS(1,j+1)+SS(i+1,j-1)+SS(i+1,j)+SS(i+1,j+1))/9.0);
end
end

% This loop is to find the best threshold value for the contrast
% ickstart is the first contrast value and ickend is the last
ickstart = 1;
ickend = 81;
coffset = 0.09;
for ick = ickstart:ickend

% used to find the optimum threshold contrast value, th

MM = uint8(WW);
JJ=MM;

%
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% The following converts the image into black and white.
% th is adjusted semi-manually.

% . ® . .

A =min(MM);

B = max(MM),

min_MM = double(min(A));
max_MM = double(max(B));

% this program, "edge_find h_exact.m", has the contrast improve by 0.01 steps
% with an offset given by coffset
th = coffset + (ick/100);

fori=1:c
forj=1:d
TT = double(MM(i,j));
if TT > (min_MM-+(max_MM-min_MM)*th);
MM(,j) = 255;
else
MM(i,j) = 0;
end
end
end

%
% Extract the line ---- matrix: edge
%
edge = zeros(c,d);
fori=l:c
=1
while j<d
if MM(i,j+1) > 100
if MM(1,j+2) >100
if MM(i,j+3) < 100
edge(i,j) = 255;
break;
end
end
end
i ¥
end

j=d;
while j>1
if MM(ij-1) > 100
if MM(i,j-2) >100
if MM(i,j-3) < 100
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edge(i,j) = 255;
break;
end
end
end
=1
end
end

% the following few lines of code output the data file

if (SEMmachine == 'dav')
Ix = 2.124689826;

end

if (SEMmachine = 'gia')
Ix = 1.769911504;

end

if (SEMmachine == "Isi")
Ix = 3.06122449,

end

if (SEMmachine == 'lbl")
Ix =3;

end

if (SEMmachine = 'leo")
Ix = 2.22222; :

end

ly = Ix;

% Ix/ly are the nm/pixel (this is 2.2222nm for 50 kX magnification and 1024 x 768 image

size)

inc=1;
right =0,

iternum = (th*100),
iter = num2str(iternum);

imwrite(edge, strcat(stringfullshort,’_extracted_line ',iter,'.jpg"));

file = fopen(strcat(stringfulishort, ' _edge ',iter,".txt"),'w");

fori=1:c
forj=1.d
if edge(i,j)==255
ifright=1

edge3(3,inc) = j*ly;
% third row in edge3 is x-location of right line
fprintf(file,'%12.5e \n',edge3(3,inc));

142



inc=inc+1;
right =0;

else
edge3(1,inc) =i*lx;
% first row in edge3 is y-location of both lines
edge3(2,inc) =j*ly; ‘
% second row in edge3 is x-location of left line
% note that the whole file gets "rotated 90 degrees" compared to the original SEM
fprintf{file,'%12.5e %12.5¢ ',edge3(1,inc),edge3(2,inc));
right=1;

end

end
end
end

fclose(file);
inc=inc- 1;

% calculating regression line fitting the LER

% I am removing the top 45 & bottom 45 pixels (100nm) because the top & bottom of the
image

% are not as "quality" as the middle portion

leftfit = polyfit(edge3(1,46:(inc-45)), edge3(2,46:(inc-45)), 1);

leftfittrue = polyfit(edge3(1,:), edge3(2,:), 1);

% leftfit(1,1) is the slope of the left line fit, leftfit(1,2) is the intercept

rightfittrue = polyfit(edge3(l,:), edge3(3,:), 1);

rightfit = polyfit(edge3(1,46:(inc-45)), edge3(3,46:(inc-45)), 1);

% calculating RMS roughness with only middle portion

leftsum = 0;

rightsum = 0;

for i = 46:(inc-45)
leftsum = leftsum + (leftfit(1,1)*edge3(1,i) + lefifit(1,2) - edge3(2,i))*2;
rightsum = rightsum + (rightfit(1,1)*edge3(1,i) + rightfit(1,2) - edge3(3,i))"2;

end

1eftRM = leftsum / (inc - 91);

leffRMS(ick) = 1eftRM*0.5;

rightRM = rightsum / (inc - 91);

rightRMS(ick) = rightRM”0.5;

% the following few lines of code are to ensure that improper minima (like when the
% contrast is so high that the whole thing is seen to be white) are ignored. A "real"
% LER value cannot realistically be below around 1 since the detection limit is: 1.112 nm
if leftRMS(ick) < 0.7
leffRMS(ick) = 20;
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end

if rightRMS(ick) < 0.7
rightRMS(ick) = 20;
end

LERsum(ick) = leffRMS(ick) + rightRMS(ick);

% calculating RMS roughness

leftsum = 0;

rightsum = 0;

fori=1:inc
leftsum = leftsum + (leftfittrue(1,1)*edge3(1,i) + lefifittrue(1,2) - edge3(2,i))*2;
rightsum = rightsum + (rightfittrue(1,1)*edge3(1,1) + rightfittrue(1,2) - edge3(3,i))"2;

end

leftRMtrue = leftsum / (inc - 1);

leftRMStrue(ick) = leftRMtrue™0.5;

rightRMtrue = rightsum / (inc - 1);

rightRMStrue(ick) = rightRMtrue”0.5;

end

stringdirnew = 'final_results\’;
stringfullnew = strcat(stringdir, stringdirnew, stringfilenew);
stringfullnewshort = strtok(stringfullnew,'.);

minLERsum = min(LERsum);
minick = find(LERsum == minLERsum);
mincont = (coffset*100) + minick;

leffRMSmin = min(leftRMS);
minickleft = find(lefiRMS == lefiRMSmin);
mincontleft = (coffset*100) + minickleft;

rightRMSmin = min(rightRMS);
minickright = find(rightRMS = rightRMSmin);
mincontright = (coffset*100) + minickright;

file = fopen(strcat(stringfullnewshort, ' _edge_summary.txt'),'w");
fprintf{file,'%s\n',strcat('The SEM file named-- ',stringfilenew, '-- has the following LER val-
ues using ',SEMmachine,' SEM machine:'));

fprintf(file,'%s\n",' *);

fprintf(file,'%s\n",'Below is the contrast value which gave the minimum LER of left side of
trench');

fprintf(file,'%2.0f \n',mincontleft);

fprintf{file,'%s\n','(And the minimum contrast using the alternative method-- which should not
be saved-- would have been:)");
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fprintf{file,'%2.0f \n',mincont);

fprintf(file,'%s\n',' '); -
fprintf(file,'%s\n',' Below is the minimum RMS LER for the left side of the trench');
fprintf{file,'%6.5f \n',leRRMSmin);

fprintf{file,'%s\n’,' ');

fprintf{file,'%s\n', Below is the alternative LER for the left side of the trench (do not use)');
fprintf{file,'%6.5f \n',leARMS(minick));

fprintf(file,'%s\n',' ');

fprintf{file,'%s\n’,' *);

fprintf(file,'%s\n’, Below is the contrast value which gave the minimum LER of right side of
trench’);

fprintf{file,'%2.0f \n',mincontright);

fprintf{file,'%s\n','Below is the minimum RMS LER for the right side of the trench');
fprintf{file,'%6.5f \n',rightRMSmin);

fprintf(file,'%s\n",' ');

fprintf{file,'%s\n’, Below is the alternative LER for the right side of the trench (do not use)');
fprintf(file,'%6.5f \n',rightRMS(minick));

fprintf{file,'%s\n'," ');

fprintf{(file,'%s\n','Below is the minimum "true" RMS LER for the left side of the trench’);
fprintf(file,'%s\n','(This value does not disclude the 100nm on each edge which are assumed to
be poor)');

fprintf{file,'%s\n', This is not the value to be used. It is just for completeness" sake');
fprintf(file,'%6.5f \n',leRRMStrue(minick));

fprintf{(file,'%s\n’,' ');

fprintf{file,'%s\n', Below is the minimum "true” RMS LER for the right side of the trench');
fprintf(file,'%s\n",'(This value does not disclude the 100nm on each edge which are assumed to
be poor)');

fprintf(file,'%s\n’, This is not the value to be used. It is just for completeness" sake');
fprintf(file,'%6.5f \n',rightRMStrue(minick));

fprintf{file,'%s\n’",' ');

fprintf{file,'%s\n’, The contrast values checked ranged from:");

fprintf(file,'%2.0f \n',((coffset*100) + ickstart));

fprintf{file,'%s\n','To:");

fprintf{file,'%2.0f \n',((coffset*100) + ickend));

fclose(file);

copyfile(strcat(stringfullshort, '_edge_',num2str(min(mincontleft)),".txt'),strcat(stringfullnew-
short, ' left_data.txt"));

copyfile(strcat(stringfullshort, *_edge_',num2str(min(mincontright)),".txt"),strcat(stringfull-
newshort, '_right_data.txt'));
copyfile(strcat(stringfullshort,’_extracted_line_',num2str(min(mincontleft)),".jpg"), str-
cat(stringfullnewshort, '_extracted left_line.jpg");
copyfile(strcat(stringfullshort,’_extracted_line_',num2str(min(mincontright)),".jpg"), str-
cat(stringfullnewshort, '_extracted_right_line.jpg"));

for ick = ickstart:ickend
th = coffset + (ick/100);
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iternum = (th*100);

iter = num2str(iternum);

delete(strcat(stringfullshort, '_edge ',iter,".txt"));

delete(streat(stringfullshort,'_extracted_line_iter,'.jpg");
end .

pack;
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