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Abstract

This report studies a model of computation (MoC) that supports Push-Pull communication
between software components. Push represents message transfer that is initiated by the
producer. On the contrast, Pull represents message transfer that is initiated by the con-

sumer.

Push-Pull messaging mechanisms have been used in various domains, such as the
CORBA Event service, the Click modular router, inter-process communication among
multi-processors, data dissemination in a peer to peer network. Formalizing the computa-
tion and communication in these domains to a MoC facilitates reusability of programming
models and software architectures, and allows user to model and analyze more complex

systems.

This model of computation has been implemented as the Component Interaction (CI)
domain in Ptolemy II, a hierarchical and heterogeneous modeling environment. Composi-

tion of the CI domain with other domains in Ptolemy II is discussed.

This report also connects CI to other data-flow models of computation, such as Process
Networks (PN), Synchronous Data Flow (SDF) and Dynamic Data Flow (DDF), and dis-

cusses the uses of CI in the execution of distributed systems.
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Introduction

The push-pull communication model supports a mixture of data-driven and demand-
driven communications. It addresses problems like which component can initiate an inter-
action, and how the interaction should be propagated to other components. An interaction
is “push” if it is initiated by the data sender; and an interaction is “pull” if it is initiated by
the data receiver. Components in this model can be classified as active components and
passive components. Only active components will start interactions either by sending data
or by sending demand requests. Comparing to pure data-driven or demand driven models,

it offers more flexible communication patterns between components.

This model provides the designer a freedom of control to specify which parts of the model
are data-driven and which parts are demand-driven. It also allows the designer to explic-
itly manage the data storage, such as where the queue is, what size it is, and what queuing
mechanism is used. Data producers and consumers in this model can operate on different
rates. This can be highly essential for applications dealing with network interfaces or dis-
tributed applications that have components executing on heterogeneous platforms with

various processing power and memory capacities.

The report is organized as following: chapter 1 overviews some related work that has the
push-pull communication pattern; chapter 2 describes the semantics of this model; chapter

3 discusses the implementation of it in Ptolemy II; chapter 4 relates this work to some
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other data-flow models and illustrates that this model is easy to distribute, and future work

is pointed out then.
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Chapter 1

Related Work

The push-pull model is very much inspired by observing some novel communication
mechanisms adopted by a variety of fields, including middleware servicés, The Click
modular router, web applications, communication among multi-processors [6], data dis-
semination in a peer to peer network [7]. As an example, the interaction between a web
server and a browser is mostly demand-driven. When the user clicks on a link in the
browser, it pulls the corresponding.page from the web server. A stock-quote service can
use an event-driven style of computation. The server generates events when a stock price
changes. The events drive the clients to update their displayed information. Such push/pull
interaction between a data producer and consumer is common in distributed systems, and
has been included in middleware services, most notably the CORBA event service. These
services motivate the design of the push-pull model. Other applications include database

systems, file systems, and the Click modular router.

This chapter studies hybrid push-pull communication patterns in the specification of the
CORBA Event Service and the Click modular router, as the first one represents interaction
between distributed components and the second one represents interaction in applications

dealing with network interfaces.
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1.1 CORBA

This section gives a brief overview of CORBA and the CORBA Event Service. It then dis-

cusses four representative communication patterns.

1.1.1 Introduction to CORBA

The Common Object Request Broker Architecture (CORBA) is a distributed object com-
puting middleware standard specified by the Object Management Group (OMG). It has
been widely accepted by the distributed computing research and industry, with the notable
exception of Microsoft, which defines a competing object broker called Distributed Com-
ponent Object model (DCOM). Discussion of differences between CORBA ORBs and

DCOM is beyond the scope of this report. Readers can refer to chapter 14 of [1].

CORBA provides a framework where a client objects can send requests to a remote server

object and get the results back (if the operation is successful). Figure 1.1 shows the basic

(T A a N

Client Server
Object O

/..P\roxy Object /

= 7
Stub N Skeleton »
N o obiens L -
\_ ORB - \_ ORB J
Client Application Server Application

FIGURE 1.1 The basic CORBA communication model
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communication between a client object and a server object. The client invokes an opera-
tion on the local proxy of a server object. The invocation usually contains data arguments
that will be marshaled by the stub code. The client's ORB runtime sends a message, which
contains the operation and the marshaled data, to the server's ORB. Once a client sends an
invocation to a server, it is blocked waiting for the reply. The server side ORB runtime
will get the message from the network and pass it to the skeleton code. The skeleton code
un-marshals the data and invokes the operation on the target object. The reply of the oper-
ation will be sent back to the client object. When the client receives the result, it continues

its execution. If the invocation fails, the client will receive an exception.

This basic request-reply communication paradigm is essential to the CORBA architecture
and is straightforward to use. However the client and server are very coupled in this
approach: they both need to be present at the time the request is invoked, the client needs
to have the reference of the server object, and the client blocks for the reply. Morover, the
basic model only supports uni-cast communication. In some scenarios more decoupled,

many-to-many communication between clients and servers is desired.

1.1.2 Event Service

The Event Service is one service component in the OMG Common Object Services Spec-
ification (COSS). It defines a communication model that allows event data to be delivered
from suppliers to consumers without requiring these participants to know about each other

explicitly [3].

An event in this context means an occurrence within an object, specified to be of interest

to one or more objects. The object that originates an event is called an event supplier. The

A MoC with push and pull processing 13



Event
- Channel

o]
Event flow

R T A T T S S T S S S T R

FIGURE 1.2 The event service model

object that receives an event is called an event consumer. The supplier and consumer don't
talk directly. Instead, a special object called the event channel is introduced to mediate the
communication. Figure 1.2 illustrates the architecture of this model. Suppliers and con-
sumers connect to the event channel but not directly to each other. Conceptually, the event
channel appears as a single consumer to the supplier and as a single supplier to the event
consumers. However, to avoid name confusion, the term “supplier” is specially saved for
the object that sends events to the channel and the term “consumer” is saved for the object
that receives events from the channel. Suppliers do not need to know how many consum-
ers to talk to or what their identities are, and vise versa for consumers. In this way, the
event channel decouples suppliers and consumers. There is no need for the supplier and
consumer to be both present, as in the reply-response model. An event channel can con-
nect any number of suppliers and consumers. Suppliers or consumers can join or leave the

system dynamically. Suppliers or consumers can also connect to multiple event channels.
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1.1.3 Push -Pull Communication

An interaction between a message sender and receiver is identified as push-style if the
message transfer is initiated by the sender. In contrast, a pull-style communication repre-
sents interactions initiated by the receiver. An event channel may communicate with a
supplier using one style of communication, and communicate with a consumer using a dif-

ferent style of communication.

We discuss four typical communication models that the CORBA event service identifies:
the canonical push model, the canonical pull model, the hybrid push-pull model and the

hybrid pull-push model.

1.1.3.1 The push Model

In the push model as shown in figure 1.3, a supplier generates events and passes them to

an event channel. The channel then transfers the events to registered consumers. In this

V Consumer
Channel v 4 Consumer
Consumer

Event flow

FIGURE 1.3 The push-push model
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model, the interaction is started by the supplier and the consumer only passively waits for

events.

1.1.3.2 The pull Model

In the pull model, a consumer actively sends request to the event channel for some event.
The event channel then propagates the request to a supplier to provide the event. In this
model, the interaction is initiated by the consumer, and the supplier waits for a pull request
to arrive and then generates the event to be returned to the pulling consumer. The con-
sumer may or may not block for the response. This is determined by the implementation of
the supplier, consumer and event channel rather than by specification. Figure 1.4 illus-

trates a Pull model architecture.

Event
- Channel

FIGURE 1.4 The pull-pull model
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1.1.3.3 Hybrid push-pull Model

In this model, the interaction between a supplier and the event channel is push, and
between a consumer and the event channel is pull. A supplier generates an event and
passes it to the event channel. The channel does not transfers the event to registered con-
sumers until consumers pull for the event data. In this model, both suppliers and consum-
ers actively initiate the interaction with the channel and the event channel acts as a queue
component. If suppliers and consumers operate at different rates, the channel may need an
unbounded queue to store the events. If this is not practical, the channel may need to
implement some dropping mechanism or blocking when the queue is full. The model is

shown in figure 1.5.

Pull
Consumer
e
Consumer

Event flow

push()

FIGURE 1.5 The push-pull model
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FIGURE 1.6 The pull - push model

1.1.3.4 Hybrid pull-push Model

Another combination is shown in figure 1.6. The interaction between a supplier and the
event channel is pull, and between a consumer and the event channel is push. In this
model, both suppliers and consumers are passive, but the event channel shall actively

request data from the suppliers and pass them to consumers.

Although this model may be a bit strange, it has some interesting aspects. Conceptually,
the event channel can connect to any number of suppliers and consumers that can execute
at various frequencies. This model gives the channel more control on how to coordinate
these components. Different scheduling algorithms may be implemented in the event

channel to manage the interactions.

1.1.3.5 More mixed model

There are still other combinations of push-pull in a system. An example is shown in figure

1.7. The interaction in these models becomes more complex.
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FIGURE 1.7 An example of a mixed model

1.2 Click

Click is a software architecture for building flexible and configurable routers and other
packet processors, such as firewalls (dropping inappropriate packets), network address
translators (rewrite packet headers) [4]. It presents a modular architecture and software

toolkit for building packet processors at a proper abstract level.

Click supports both push and pull processing. While push is for responding to packet
arrivals at the input network interface, pull is for requesting data for the output interface
and for scheduling. In the original design, a click router shares Linux's interrupt structure
and device handling. The push processing is triggered to execute when input packets
arrive. On the other hand, an output device generates an interrupt when its transmit queue
has space for packets and triggers the pull processing to execute. When there are packets

with different priority, a click router may use some scheduling control to pull data from
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different priority queues. To overcome interrupt overhead and improve performance, the
current click design uses polling to examine whether there are packets in the input device's
packet queue or whether there is free space in the output device's transmit queue, and it

executes push or pull processing accordingly.

We discuss the software architecture and the semantics in the following sections.

1.2.4 Click Software architecture

Click routers are built from fine-grained packet processing components called elements.
Each element is a C++ class and represents a software component that performs particular
computations, including classifying, qﬁeueing, IP rewriting. An element may have several
input and output ports. Figure 1.8 shows an Identity element with one input port and one
output port, and part of its code is also shown under it. An Element can connect to other
elements via ports. In figure 1.8, the Identity element is connected to a FromDevice ele-

ment and a ToDevice element. The arrow shows the direction of the dataflow.

FromDevice +—H Identity +——u ToDevice

class Identity: public Element { public:
Identity() { add_input(); add_output(): }

void push(int port, Packet *p) { output(0).push{p): }

Packet *pull(int port) { return input(0).pull(): |

1.
[

FIGURE 1.8 An example of a mixed model
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Port defines the interface that an element uses to interact with other elements. A port has a
push method and a pull method. For an input port, its push method can call the element's
push method and pass the packet as an argument; its pull methods can be called by the ele-
ment when the element wants to pull data from its upsteam element. For an output port, its
push method can be called by the element when it wants to pass data to its downsteam ele-

ment; its pull method can call the element's pull method.

An element sets its ports to be push or pull according to the configuration string when the
router is initialized. Elements may also contain agnostic ports, which act as push when
connected to push ports and as pull when connected to pull ports. A connection connects
an output port to an input port. The types of ports at the endpoints of a connection need to
be the same, or at least one must be agnostic. A connection can either be push or pull,
determined by the ports it connects to. On a push connection, packet transfer is initiated by
the source element and is passed downstream to the destination element. On a pull connec-
tion, in contrast, the destination element initiates packet transfer and the source element

provides the packet as the returned result to the request.

In Click, push and pull connections are complementary mechanisms for packet transfer.
Push connections are appropriate for communication triggered by asynchronous events,
for instance, reacting to unsolicited packets arrivals at an input device. On the other hand,
pull connections instruct the source element to send data only when the destination ele-
ments are ready to process the data, for example, to transmit a packet only when the trans-

mitting device is ready.
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1.2.5 Semantics

A Click router is executed by a single thread, and the execution is managed by the sched-
uler. The scheduler maintains a list of elements to be scheduled. An element can be put
into the list by an I/O interrupt handler or a software trigger, such as a timer. The data
structure in the list contains the element's name and a pointer to the function in the element
that will be called when it is scheduled. And the scheduler will loop on this list and sched-
ule elements sequentially according to the scheduling mechanism implemented in the

scheduler. There is currently no preemption mechanism in Click.

When an element is scheduled, the scheduler calls the method that the element specified to
call, which may in turn calls other methods. When the method returns, the scheduler will

try to schedule the next element in the list to run.

To understand the semantics better, let us look at the example shown in Figure (1.9).

Assume that:

* Al is related to a hardware interrupt for receiving data, and when the interrupt hap-
pens, it puts Al to the scheduler's list and a pointer to Al's push method.

* A2, and A3 are related to hardware interrupts that happen when the devices are ready
to send data. When the interrupt for A2 happens, it puts A2 to the list and a pointer to
A2's pull method. Similarly for A3.

» Element B is implemented to work as follows:

if configured as push input push output, then:
when the push method of the in port is called, it calls B's push method, whih calls

outl’s push method, out2’s push method and out3's push method;

A MoC with push and pull processing 22



if configured as pull input pull output, then:
when outl's pull method is called, it calls B's pull method, which calls in's pull
method. And it is similar for out2 and out3.

* D, E and F are implemented similarly to B except that each of them only has one out-
put port.

e C works as follows: when its input’s push method is called, it calls C's push method.

* queuel and queue? are configured as push input pull output and work as follows:

when the push method of queuel’s (queue2’s) input is called, it calls queuel's

(queue2’s) push method;
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FIGURE 1.9 An simple model to illustrate the Click semantics
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when the pull method of queuel’s (queue2’s) output is called, it calls queuel's (queue2’s)

pull method.

Based on these assumptions, the corresponding sequence diagram for a particular order of

interruptions for Al, A2, and A3 are shown in figure 1.9.

From the sequence diagram, we can see that when Al is scheduled, the execution starts
from Al's push method, and propagates to call other corresponding push methods. It won't
return until it reaches a queue element or a push sink element, such as the C element. Sim-
ilarly, when A2 is scheduled, it starts from A2's pull method and propagates to call other
corresponding pull methods and returns the data or null until it reaches a queue element (it

could also return when it reaches a pull source element).

Let us define a push island to be a set of elements connected by push connections. For
example, the island that Al belongs to (shown by a gray box around it in figure 1.9) is a
push island. Correspondingly, a pull island is a set of elements connected by pull connec-
tions. For example, the island that A2 belongs to, which is shown by another gray box
around it in figure 1.9, is a pull island. Any Click model can be divided into push and pull
islands. The execution in each island is synchronous method calls, but the execution
between islands is asynchronous. The queue element forms the boundary between islands.
From this point of view, it is quite similar to the globally asynchronous locally synchro-

nous (GALS) execution in TinyGALS [5].

Since the queue actors affect the partitioning of a model, where to put a queue element can
have important influence on the behavior of the whole model. Consider a chain of ele-

ments as shown in figure 1.10. If the throughput of the FromDevice element varies with
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a bursty period and an idle period, but the ToDevice element sends data with a constant
rate that is much lower than the bursty rate of the data source, where should the queue ele-
ment be? In this case, putting the queue closer to the data source is preferred, since packets
that have to be dropped should be dropped early. What if the ToDevice has 2 higher
throughput? In this case, some pull requests for data may return null; we then may prefer
to put the queue closer to the data sink so that it does not need to pull through several ele-
ments to determine that there is no data to send at all. So there are trade offs for different

situations.

FromDevice § pus |—>{J |—>% |-—>% l_pu.ll{ ToDevice

FIGURE 1.10 Example illustrating the question of where to put a queue element
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Chapter 2

Push-Pull Model

In this section, we define a model of computation (MoC) for design and analyzing systems

using push and pull communications.

A model of computation describes how components in a concurrent system can communi-
cate and compute data. Different systems may desire different MoCs and some complex
systems need more than one MoC. For example, dataflow MoCs (such as process network,
synchronous dataflow) are suitable for signal processing systems, discrete event models
are suitable for event driven systems, finite state machine models are appropriate for con-

trol systems, and hybrid systems often demand multiple MoCs.

Most of MoCs defined to date describes constraints on communication protocols between
components (ex. by rendezvous or FIFO queue) and ordering of component execution.
The execution in these MoCs usually starts from the data source or event source and prop-
agates to downstream components. From the discussion in Chapter 1, we see that there is a
set of systems, including distributed systems, packet processors, database systems, proces-
sor networks and peer-to-peer systems, that demand a MoC that supports both data driven

and demand driven interaction and provides the abstraction to specify which component in
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the system can initiate the computation and how related components will be invoked. We

study these issues in the Push-Pull model.

In the following sections, we first introduce the actor component model used in the
Ptolemy project [8]. Then we define a set of concepts and classify different component

types used in the Push-Pull model. Finally we discuss the operational semantics.

2.1 Component model

Actor-oriented design is a component methodology that is particularly effective for sys-
tem-level design [10]. The term actor was first introduced by Carl Hewitt in the 1970's to
describe the concept of autonomous reasoning agents [11], and it evolved through the
work of Agha and others to describe a formalized model of concurrency [12]. Agha's
actors each have an independent thread of control and communicate via asynchronous
message passing. The term is further developed by Edward Lee and the Ptolemy group to
embrace a larger family of models of concurrency that are often more constrained than
general message passing. The Ptolemy actors are still conceptually concurrent, but they

need not have their own thread of control.

Figure 2.1 shows a simple Ptolemy model. An actor encapsulates its computation and
internal state. It interacts with its environment and other actors via a well-defined inter-
face, which includes ports and parameters. Ports represent the points of communication.
Parameters are used to configure the computation of an actor. And the channel of commu-

nication between actors is implemented by a receiver object contained by ports. A receiver

A MoC with push and pull processing 28



defines the communication protocol between actors. The director defines the ordering of

actors execution. A MoC is implemented by a particular director and receiver.

director

parameters

Actorl Actor2

receiver

FIGURE 2.1 Components in a Ptolemy model

2.2 Basic Concepts

Now we define a set of concepts that are used in the push-pull model.

2.2.1 Push port vs. pull port

Each port contains a attribute named push/pull, which can be configured with three possi-
ble values: push, pull and agnostic. A port is a push port if the attribute is set to

push, and is a pull port if the attribute is set to pull. An agnostic port can be either push
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or pull. The exact type is resolved according to its connected ports with the assumption

that connected ports have to be the same type.

2.2.2 Push connection vs. pull connection

The type of a connection is defined by the two ports at its endpoints. A connection is push

type if it connects two push ports; a connection is pull type if it connects two pull ports.

We restrict the push-pull model to not allow mixed port type combinations for a connec-
tion, such as connecting a push output port to a pull input port, and a pull output port to a
push input port. Intuitively, a connection that connects a push output port to a pull input
port imports an implicit queue on this connection. This is not allowed since this model is
intended to let the designer to model and manage the storage property explicitly due to the
asynchronous interaction between push processing and pull processing. If a designer does
want to link a component with a push output to a component with a pull input, he/she can
use a queue actor (with push input and pull output) as a mediator. The other kind of con-
nection, connecting a pull output port to a push input port, is not allowed because it is a
lifeless connection, i.e. no data can pass through it. In case one needs to link a component
with pull output to a component with push input, a mediating actor with a pull input and a
push output can be used, and such an actor is called a schedule actor. Details about the

queue actor and the schedule actor are discussed in section 2.3.

2.2.3 Passive vs. active actors

The push-pull model classifies actors as two kinds, passive actors and active actors, as

shown in figure 2.2, according to their ports’ configuration.
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Passive actors include:

* Source actors (actors with no input) with pull outputs. As an example, this can be used
to model a server that only responds to pull requests from clients.

* Sink actors (actors with no output) with push inputs. As an example, this can be used
for a data consumer that only reacts to input events.

* Actors with pull inputs and pull outputs. This kind of actor reacts to pull requests from
its downstream actors and propagates the requests to its upstream actor if it dose not
have the required data to satisfy the request.

» Actors with push inputs and push outputs. This kind of actor reacts to data received at
its input port, processing the data and outputing the processed data to its downstream
actors.

» Actors with push inputs and pull outputs (we call them queue actors).

passive actors , sctive actors

|l mE»m . |l

‘pﬁah il_—:_ pugh {—;—’ push ot E
push E’ pull putt 'i:_’ push

{queus actor) (schedute actor)

FIGURE 2.2 Passive actors and active actors in the CI domain
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Active actors include those that can either initiate production of data or can pull requests:

» Source actors with push outputs, such as an interrupt source.
» Sink actors with pull inputs, such as an output interface of a router that pulls the next
packet to send.

» Actors with pull inputs and push outputs (we call them schedule actors)

2.3 Queue actor and schedule actor

2.3.4 Queue actor

A queue actor has a push input port and a pull output port. It responds to a pushed token at
its input by enqueueing it, and to a pulled request at its output port by dequeueing a token
from it and returning the token. This is to say that a queue actor only reacts to events or

requests from other actors, i.e., it never passes tokens or requests actively to other actors.

A queue actor can act as a mediator between an actor with a push output port and an actor

with a pull input port.

We can implement different queue actors using different storage policies. For example,
besides simple FIFO queue actor, one can implement a queue actor that drops token from
its head (FrontDropQueue) or a queue actor that drops token from its tail (BackDrop-
Queue) when the queue is full. User can decide where to use a queue actor or which
queueing mechanism to use. Such a decision may have important effects on a system’s

properties.
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2.3.5 Schedule actor

An actor with pull input ports and push output ports is also called a schedul actor. Such an
actor is active; it actively pulls data from its upstream actors according to its local sched-
ule, processes the data if necessary and pushes the data to its downstream actors. A sched-
uler actor models some component that can control the timing of requesting and

distributing data. It is for this reason that we call it a schedule actor.

A schedule actor can act as a mediator between an actor with a pull output port and an

actor with a push input port.

Schedule actors can implement different scheduling algorithms, such as round-robin
scheduling, priority scheduling. And the designer may compose different schedule actors

and queue actors for more complex operations.

2.4 Operational Semantics

The execution of the push-pull model is multi-threaded. However, unlike the process net-
work models, CSP models or DDE models, not every actor has its own thread. In this
model, only active actors possesses their own thread of execution. All the passive actors
share a single thread managed by the director which schedules them to execute. From this
perspective, we say that the execution of the push-pull model uses both a process-based

approach and scheduler-based approach.

The execution of each active actor is controlled by a separate thread. The semantics for the

three kinds of active actors are described as follows:
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An active source actor may fire with some frequency or according to some interrupt or
event arrivals that it listens to. When it fires, it pushes data to its connected down-
streamn actor, which in turn causes the downstream actor to be enqueued into the direc-
tor’s AsynchronousPushedActors queue. The term asynchronous here simply means
that the downstream passive actor can be added to the director’s queue at any time.
An active sink actor may fire when it is ready to process the data. When fire, it issues a
pull request to its connected upstream actor, which in turn causes the upstream actor
be enqueued to the director’s AsynchronousPulledActors queue. It waits until the
request is satisfied and then continues to process it.

A schedule actor with pull inputs and push outputs models a component that can con-
trol when and where to request and distribute data. When a schedule actor fire, it
requests data from some of its connected upstream actors and wait until the data is
ready, and then pushes the token to its connected downstream actors. The first step
causes the upstream actors be added to the director’s AsynchronousPulledActors
queue, and the second step causes the downstream actors be added to the Asynchro-

nousPushedActors queue.

In contrast to active actors, the execution of passive actors is controlled by the director. A

passive actor that has push inputs push outputs will be fired by the director if it receives

tokens at its input ports, and this may trigger its downstream actors with push inputs to

fire; a passive actor that has pull inputs pull outputs will be fired if it receives a pull

request at its output ports and will propagate the request to its upstream actors if it does

not have the data pulled. In particular, when fired, a passive source actor will provide the
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data (when it is available) and deliver it through the path that the pull request takes. A
queue passive actor will fire when it receives a token, but it just saves the token in its local
queue and does not trigger its downstream actors to fire; it is also fired when it receives a
pull request at its output port, which returns a token in the queue but does not propagate

the pull request any more.

Another possible approach of executing passive actors is to execute them in the calling
thread of the active actor. But the calling thread can be blocked when executes the passive
actors, and not be able to response to event arrivals or interrupts. We would like to explore

this approach further by allowing preemptions in the execution of the passive actors.

Let’s look at an example to understand the semantics. Figure 2.3 shows a simple router
model that contains a FromDevice actor that listens to the input network interface and out-
puts the received data. The classifier actor identifies the data and puts them to three differ-
ent queues, for example. The RoundRoubinSelector select data from the three queues
according to the round-roubin algorithm when the ToDevice actor request data. The ToDe-

vice actor requests data when it is notified to fill the output network interface.

According to the semantics we discussed before, FromDevice and ToDevice are the active

actors in this model, and all others are passive actors.

At the beginning, assume FromDevice has no data to output and waits for input, and

ToDevice requests data.

The RoundRoubinSelector is added to the AsynchronousPulledActors queue, and the

director then wakes up to handle the request.
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FIGURE 2.3 A simple router model

The RoundRoubinSelector first requires data from its first input. Since no data are avail-
able at this time, it then propagates to Queuel. No data are available at Queuel. Since
Queuel is a queue actor with push input, the propagation stops. And the director waits for

firable actors.

Assume now the FromDevice receives packets and fires. This then adds the Classifier to

the AsynchronousPushedActors queue.

The director wakes up and fires the Classifier actor. Let’s simply assume that the data are
sent to Queuel. This in turn triggers Queuel to fire. It first enqueue the data, then, realiz-
ing that there is a request waiting for its output, also calls the director to fire it again to sat-

isfy the request. (If the data are not sent to Queuel, then the director waits again.)
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Now the RoundRobinSelector is enabled to fire and outputs the data to the ToDevice actor.
The thread that manages the execution of this active actor then wake up to process the

data.

The execution continues with new data arrivals and request issues.
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Chapter 3

Implementation

The push-pull model is implemented as the Component Interaction (CI) domain. The ker-
nel of the CI domain is realized in package ptolemy.domains.ci.kernel. The
static structure diagram of the package is shown in figure 3.1. The important classes are

CIDirector, CIReceiver, and ActiveActorManager.

===
| Director
1
P
| AbstractRaceiver |
I—
o
= PolamyThread : Cibirsctor
L actoraToFir - LinkedList
-_ssyncPultedActars © LinkediList
-_aiyncPushedActors : LinkedList
1.1 LCiDiroctor{container : CampositeEntity, namo : St 1.1
[+CiDisoctor(workapace : Workapace)
XY hodActoractor : Actor)
|_requestAsyncPuli{actor : Actor)
X : Acion)
0.n
0.n
[o——————
0.1 —o Astor | CiRscaiver
_octor : Actor 1.1 |
-_diroctor ; CiDirects -_ciisector : CiDiectr
[+ ActiveActo Marages (actor ; Acter, droetor : ClDiractor) [“CiReceivor(dircotor ; cimmani

FIGURE 3.1 The class diagram of the CI domain kernel.
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3.1 CIDirector

As mentioned above, there are passive and active actors in this domain. The CIDirector
identifies whether there are active actors in its initialize () method. For each active
actor, it creates a separate thread as an instance of ActiveActorManager. The execution of
each active actor is managed by its own thread. The CIDirector is responsible for manag-
ing all the execution of passive actors. In the CIDirector, there is an _actorsToFire
list, which saves actors that should be executed in one iteration. There is an
_asyncPushedActors list, which saves actors that are triggered by some active actor
while putting tokens in their receivers. Also there is an _asyncPulledActors list,

which saves actors that are pulled by some active actor while issuing a pull request.

In each iteration, if the _asyncPushedActors list is not empty, The director will
move an actor from the _asyncPushedActors list to the _actorsToFire list and
fire the actor and other passive actors triggered by firing this actor. If the
_asyncPulledActors list is not empty, then it moves an actor from the list and check
whether it is ready to fire. If yes, it adds the actor to the _actorsToFire list and fire
the actor and other passive actors triggered by firing this actor; otherwise it propagates the
pull request to other passive actors by calling the _requestSyncPull () method: if
some of those actors are ready to fire, the director adds them to the _actorsToFire
list, or calls _requestSyncPull () recursively to propagate the request further. If all

of these lists are empty, then the director waits.

At the very beginning, these three lists are all empty. The director will wait in its fire ()

method. At some point, some active actor pushes a token to its downstream actor, and this
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in turn adds the downstream actor to the _asyncPushedActors list, and notifies the
director; alternatively, some active actor pulls its upstream actor, adds that actor to the
—asyncPulledActors list, and notifies the director. The director then wakes up and

executes all the enabled actors.

3.2 CIReceiver

The CIReceiver class extends the AbstractReceiver class. Upon receiving a token, the
receiver will check whether the port that contains it is push or pull, and whether the cur-
rent thread that put the token to it is the director thread. (If the upstream actor is active, it
has its own thread as an instance of ActiveActorManager). We refer to the port receiving
the token as portX, and the actor containing portX as actorX. Possible cases are listed

below:

 portX is a push input port. This requires that the upstream actor that sends token to it
has a push output. The upstream actor can be active (with a pull input or no input) or
passive (with push input) but actorX is always passive.
If the upstream actor is active, then add actorX to the _asyncPushedActors
queue in the CIDirector, and notify the director, which may be waiting for actors to
fire.
If the upstream actor is passive, then add actorX to the _actorsToFire queue in
the CIDirector and don’t notify.

» portX is a pull input port. This requires that the upstream actor that sends the token to

it has a pull output. The upstream actor cannot be active, but actorX can be passive
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(with a pull output) or active (with a push output or without an output). Also notice
that actorX must have issued a pull request to its upstream actor before it can receive
the token.

If actorX is passive, and its prefire () method returns true, then ask the director to
fire it by adding it to the _actorsToFire queue.

If actorX is passive, and its prefire () method returns false, which means it doesn’t
have all the data required, then ask the director to pull its upstream actor.

If actorX is active, do nothing to the director, but notify the thread managing it, which

may be waiting for the data.

3.3 ActiveActorManager

The ActiveActorManager class extends the PtolemyThread class. It iterates the active
actor through the execution cycle until stop is requested. If the active actor is ready to fire,
then fire it. Otherwise, if the active actor has pull input ports, then try to pull data from the
upstream actors by calling the _requestASyncPull () method of the CIDirector, and
wait for the data; if the active actor is a source actor (like the DatagramReader), then keep

on polling.

3.4 Domain Specific Actors

Queue actors are domain specific since they require the knowledge of whether there is
demand on their output. The ClIActor class provides the required information. The domain

specific actors are implemented in package ptolemy.domains.ci.lib by subclass-
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ing CIActor. Currently, three kinds of queue actors have been implemented: an basic

queue actor the has an infinite FIFO queue, a FrontDropQueue and a BackDropQueue.

3.5 Example

This section discusses a model built in the CI domain to study storage management in dis-

tributed systems.

The Distributor actor as shown in figure 3.2 distributes its input data to different outputs.

Its first and third output ports is connected to two queue actors. The lengthes of the two

Monitorvalue -1 length
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push

DataReceived Distributor

dropped

This model illustrates queue management
using push and pull style communication
in distributed systems. The "Distributor”
actor will route packets to the two queues.
It monitors the sizes of the gueues to
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FIGURE 3.2 Distributed storage management demo
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queue are fed back to the first and third input ports of the Distributor. The Distributor has
two parameters: minMark and maxMark, that specify two thresholds for determining
whether to drop a package. The input token at the second input port is distributed to its

output ports according to the following policy:

» If the total length of Queuel and Queue?2 is less than the thresholdl specified by the
minMark parameter, the input token is sent to the queue with the shorter length.

* If the total length of Queuel and Queue2 is greater than thresholdl but less than
threshold2 specified by the maxMark Parameter, the input token may be dropped ran-
domly (with a probability proportional to the amount larger than threshold1) or send to
the queue with shorter length.

* If the total length is greater than threshold2, then drop the input token.

If the input token is dropped, it is send to the second output so that it can be caught or

monitored when necessary.

The Interface-Fast and Interface-Slow models two components that can transmit or pro-
cess data with different speed. The numbers in figure 3.2 show a snapshot of the system
where the data source has a production rate 5/s, the fast interface has a processing rate of
4/s, the slow interface has a production of 1/s, and the Distributor has minMark as 10 and

maxMark as 20.
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Chapter 4

Discussion

4.1 Relation to DDF and PN

An often asked question for the CI domain is what are the differences relative to Process

Network (PN) models or Dynamic Data Flow (DDF) models? We discuss them here:

In a PN model, each component has its own thread, but in a dataflow model (DDF, BDF,
SDF, etc.) a single thread is used to manage the execution of the entire model. CI only
allows some components (active actors) to possesses a separate thread, and other compo-

nents share a thread of execution.

CI allows the designer to specify which components use demand driven interaction and
which components use data driven interaction. This can be viewed as some side control
information provided to the model and can be used by the scheduler to decide the ordering
of actors execution. Of course, the concepts of data driven and demand driven are not new,
and algorithms using both data-driven and demand driven have been proved to be more
promising than those only using data driven or demand driven [9]. But these algorithms
require the scheduler to analyze the model to figure out whether an actor’s firing will pro-

duce necessary data or not. In order to do so, the scheduler needs to have some informa-
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tion about the model’s state. By providing the control information in CI, the scheduler
needs no such information. From this perspective, we argue that a CI model is easier to

distribute over the network. A distributed example is discussed later.

Besides the above differences, the connections between them are also worth of exploring:

A CI model can contain composite actors which uses other dataflow MoCs, such as DDF
or SDF. Currently, A CI model can’t be embedded in other dataflow models due to the dif-

ficulty of defining an iteration.

A CI model can be partitioned according to its active sources and sinks. Each partition

cluster may use an appropriate dataflow scheduling algorithm to improve efficiency.

4.2 Distributed CI models

As we discussed in last section, a CI model is more feasible for distributed execution than
other dataflow models. Figure 4.1 shows a distributed system that was developed for the

Mobies Ethereal String project.

We consider a distributed signal processing system that contains a group of users, a task
manager and a set of computing resources. It works as follows: a user may ask the task
manager to analyze a specific signal that is detected at his/her place, the task manager
checks whether there are free computing resources and sends a model that should be used
for signal analysis to the computing resource. Each computing resource runs a platform

that allows the model to be dynamically constructed. When the computing resource is
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FIGURE 4.1 A distributed signal processing system

ready to receive data to analyze, it connects to the user model remotely and requests data
to send. The bold arrows in the figure show the interactions for one user and one comput-
ing resource: the computing model requests data and the user sends data back upon
request. After finishing executing the task, the computing model sends the result back to

the task manager for further processing if neccessary.

Figure 4.2 shows the model that runs at the user terminal, the task manager and the com-
puting resource after the model has been constructed. A set of CORBA actors have been
developed for distributed message passing. The PushSupplier transfers received data to its
connected PushConsumer. This pair of actors is domain polymorphic. The PullSupplier
waits for a request from its connected PullConsumer and asks for data from the model it

belongs to. So it is a CI specific actor. The PullConsumer is designed to be domain poly-
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morphic also rather than specific to CI. It encapsulates the pull interaction inside itself,

and works as common Ptolemy actors from the outside perspective. This allows the use of

an SDF Director in the computing model for efficiency. The unpaired PushSupplier in the

TaskManager model is used to interact with the dynamic constructing platform running on

each computing resource, which doesn’t show here.
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FIGURE 4.2 A distributed signal processing system
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The whole model works as following:

* A user sends a signal detection message to the TaskManager via the PushSupplier and
PushConsumer pair.

e The TaskManager chooses one free computing resource to analyze the signal, and
sends an algorithm to the dynamic loading platform on the computing resource via
another PushSupplier and PushConsumer pair.

* The algorithm is dynamically set up and uses the PushConsumer to contact the User’s
PullSupplier and asks for the signal data.

 The PullSupplier propagates the request to get the required data and sends them back
to the PullConsumer.

« The signal is then analyzed on the computing resource.

This example is used to explain how can we use CI for distributed models with demand
driven interaction over the network. Details about our work for the Ethereal String project

‘can be found in the Ptolemy II package pt IT.ptolemy.apps.etherealSting.
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Future Work

This report describes a model of computation with both push and pull processing and dis-
cusses its preliminary implementation in Ptolemy II. The current implementation doesn’t
support an actor with mixed push - pull input ports, i.e. some of which are push and some
of which are pull. It does allow some domain-specific actors to have mixed push-pull out-
put ports, like the Queue actor used in Figure 3.2. We would like to study the demand for
actors with mixed push-pull input ports or output ports and the execution semantics, such
as whether such an actor should be active or passive. It would be interesting to use CAL
[13] (an actor design language developed by Joern Janneck, et al. in the Ptolemy group)
for these domain specific actors. The action concept in CAL may also be helpful for spec-

ifying and understanding the behavior of a actor with mixed input and output port types.

We also want to consider performance optimization for a push - pull model. A push - pull
model can be partitioned according to the active threads, and it is possible to use different

scheduling strategies that are appropriate for each cluster to improve efficiency.

Further exploration of the relation between this model and other dataflow models is also
interesting. As we discussed before, this model can benefit from SDF for efficient sched-
uling in some clusters. We would also like to study whether the side control information

provided explicitly can help the scheduling of other dataflow models.
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