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Abstract

A systematic procedure for synthesizing all full-state feedback controllers for a hybrid system
subject to a safety (state-invariance) specification has been proposed in the literature. The
interaction between the controller and a nondeterministic hybrid plant is viewed as a two-person
game. The controller wins if it keeps the state of the closed-loop system within a specified set
of good states; its adversarial environment tries to force the system outside the good set. The
synthesis procedure iteratively augments the set of states from which the environment wins
via either one additional discrete step, or one additional continuous flow. The key difficulty in
carrying out the synthesis procedure lies in the computations for continuous flows. One must
essentially solve a differential game in which the environment is trying to drive the system into
its target set at the same time as avoiding the target set of the controller.

In this paper, we study hybrid systems with lower bounds on the separation between occur-
rence times of consecutive discrete moves. These systems arise when modeling minimal delay
times between events, either in the controller, or in the environment. For such systems, we
provide techniques for solving the differential games in reduced state spaces. The main idea is
to discretize information about whether discrete moves are enabled or not.

We demonstrate our technique by successfully synthesizing the maximal set of controllers
for a hybrid model of a heating system with discrete controls and disturbances, and continuous
controls and disturbances.
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1 Introduction

A systematic procedure for synthesizing all full-state feedback controllers for a hybrid system sub-
ject to a safety specification has been proposed in [TLS98, LTS99]. A safety specification is a
state-invariance property, and specifies a set of good states within which the closed-loop system
must remain. The interaction between the controller and a nondeterministic hybrid plant is viewed
as a two-person zero-sum game. Each player moves by setting both discrete and continuous control
inputs. The controller wins if it keeps the state of the system within a specified set of good states;
its adversarial environment tries to force the system outside the good set.

The synthesis procedure iteratively augments the set of states from which the environment wins
via either one additional discrete step, or one additional continuous flow. At the k-th iteration of
the procedure, we have determined the set Wy, of k-winning states, namely those states from which
the environment wins the game within & discrete steps, interspersed with continuous flows. At the
(k+1)st iteration, one first computes the states W’ from which the environment can win within one
additional discrete step. This computation can be performed using case analysis. Then one must
solve a dynamic differential game to find those states from which the environment can force the
system into WyUW’ via a continuous flow. Thus the environment steers the system toward W, UW’,
while the controller attempts to thwart it by using its continuous input values to either keep the
system trajectories away from Wy U W’ indefinitely, or to steer toward a state from which it can
initiate a discrete jump into the complement of Wy U W’ (i.e., to “escape” from the environment’s
intended trajectory toward Wy U W’).

The key difficulty in carrying out the synthesis procedure lies in the computation for continuous
flows. While the necessary calculations can be performed manually in some cases [TLS98, LTS99),
they quickly become complicated in even low-dimensional linear systems [BBV+*99)]. One approach
to this problem is to solve the dynamic game using numerical computation for solving partial
differential equations [TLS99].

In this paper, we advocate a different approach. We present techniques to exploit the structure
of the closed-loop system while performing the computational step for continuous flows. Our
method applies to systems where there is a lower bound on the delay time between each player’s
discrete moves. Such systems can model communication or computational delays that prevent a
player from making distinct discrete actions in quick succession. Indeed the placement of such
delay constraints is often used to prevent the synthesis of Zeno controllers which satisfy the safety
property only by virtue of enforcing infinitely many events in finite time. The idea we pursue is
to avoid solving a single complicated dynamic game, instead breaking it into a number of simpler
dynamic games played over lower dimensions.

We present methods for each of two different classes of systems. The first class that we
consider—1-bounded systems— are hybrid systems with global lower bounds on event separations.
In these systems, the difference between the occurrence times of all consecutive discrete moves in
the closed-loop system is bounded below by some fixed constant A. Thus if the controller makes a
discrete action at time T', then it cannot make another discrete action until at least time 7 + A.
However, it is also the case that the environment cannot take any discrete action before time T+ A
either. Thus the timing constraint couples the discrete moves of the controller and the environment.
Class A systems occur most naturally when the controller is hybrid with lower-bounded separations
between discrete actions and the plant is purely continuous (in this case, the only discrete actions
originate in the controller). For 1-bounded systems, a single timer variable ¢ is used to enforce the
lower bound on event separation times. Every time a discrete action takes place, the timer is reset
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to —A, and the next discrete event cannot occur until the timer value is greater than or equal to 0.

‘We show how it is not necessary to solve a differential game over a state space that includes the
timer variable, but rather that it suffices to solve games in a reduced state space without the timer
variable. In the reduced state space, we record only discrete information related to the value of the
timer, namely whether it is equal to —A and whether it is greater than or equal to 0. An intuitive
justification follows. Once the timer is positive, its value is irrelevant: we need only note the fact
that the timing delay between discrete events has been met. We need to know which states with
t. = —A are winning or losing, since this information is required to compute states that are winning
via discrete moves. Given the set of states with ¢, > 0 that are winning for the environment, one
can find the states that are winning for the environment with ¢, = —A via a continuous flow by
solving a time-bounded game over the reduced state space.

The second class of systems we consider—2-bounded systems—have lower bounds on the separa-
tion times between consecutive discrete controller actions, and also lower bounds on the separation
times between consecutive discrete environment actions. The two lower bounds are independent,
with the occurrence times of discrete controller actions not placing any restrictions on the occur-
rence times of the discrete environment actions, and vice versa. Thus 2-bounded systems naturally
model the coupling of a hybrid plant with a hybrid controller. A hybrid automaton model for a
2-bounded system would include two timers, one each for enforcing the lower bound properties for
the discrete moves of the controller and of the environment. We show how the differential games
that arise in the synthesis procedure can be solved by considering a set of simpler games over states
spaces that drop one or both of the timer variables. The technique used is a generalization of that
for 1-bounded systems. The extension of the previous technique to systems that require more than
2 timers to enforce event separation—k-bounded systems—is sketched in Sec. 5.

The practicality of our approach is demonstrated on a heating system for a room that is first
studied in [BBV+99]. The controller has at its disposal both discrete and continuous inputs for
operating a stove and a boiler. Its adversarial environment also has both discrete and continuous
inputs, modeling the opening and closing a door and the nondeterministic disturbance of heat
generated by electrical appliances in the room. Controller computations cause a delay of at least a
time delay A between decisions to turn on and off the stove. In the environment, there is a delay
of at least a time delay 2 A between opening and closing of the door. It is a 2-bounded system.
Our initial attempts to synthesize controllers using the procedure as expressed in [TLS98] turned
out to be highly impractical due to the complicated differential games to be solved.

Here, we first apply our approach to a simplified form of the heating system, where only a single
timer appears. This corresponds to a 1-bounded system. Our method enables a simpler controller
derivation for this simplified case than the original synthesis procedure, which, for completeness,
appear in the appendix of this paper. Furthermore, we are also able to complete the synthesis
procedure for the more complicated 2-bounded system, where the original technique presented
in [TLS98] failed, by using our reduction techniques.

2 Background: synthesis of maximal controllers

We briefly review the synthesis procedure outlined by Tomlin, Lygeros, and Sastry [TLS98, LTS99)
as it applies to our variant of the hybrid automaton model [BBV+99].



2.1 Hybrid Automata

A diagram depicting the plant with its input/output terminals appears in Figure 1. We model
the system as a hybrid automaton. Intuitively, the hybrid automaton models a game board. This
modeling formalism merges the game features (explicitly-defined independent moves) of [AMPS98]
into the hybrid automata model (input structure and hybrid dynamics) found in [TLS98, LTS98].

ENVIRONMENT
Oe € X%
deD g€Q
| PI:ANT zeX
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o € X¢ continuous: f
wel =1 discrete: &

Figure 1: Open-loop hybrid automaton H

2.1.1 Syntax

Definition 2.1 A hybrid automaton is a tuple H = ((Q,X),(U,Z.), (M, M%sc), (D, £.),
(M, M=), (f,6)), where

State space

o (Q is the finite set of modes or locations.
o X is the set of (continuous) states.

Control input

o U CIR™ is the domain of continuous control values. U = {u(.) € PC%u(t) € U,Vt € R}
is the class of control functions.

® X is the finite domain of discrete control events. We define =t = .U {€} to be the set
of discrete control moves, with the special € move being the silent move.

o Mdsc:Q x X — 2%¢\ {} is the discrete controller feasible move function.
o M :Q x X — 2V \ {} is the continuous controller feasible move function.

Disturbance input
e D C IRP is the domain of continuous disturbance values. D = {d(.) € PC?|d(t) €
D,Vt € R} is the class of disturbance functions.

o Y. is the finite set of discrete disturbance events. We define ¢ = £, U {e} to be the set
of discrete disturbance moves.



o Mdisc: Q x X — 2% \ {} is the discrete disturbance feasible move function.
o M2 :Qx X — 2P\ {} is the continuous disturbance feasible move function.

Transitions

o f:QxXxUxD — R" models the time-invariant continuous dynamics, which depend
on the mode. We assume that function f is such that, for any control function u € U
and any disturbance function d € D and for any zo € R™, there is a unique solution of
the differential equation z(t) = f(g,z(t), u(t),d(t)) (written also as f,(z(t),u(t),d(t))),
with initial value z(0) = zo, denoted by z(t) = Pg(uljp ), dljo,5)> To,t), ¥t > 0. Such a
dynamical system is said to be nicely complete in [Sus83).

® §:QxXXTEXTE — 29%X\ {} is the transition function modeling the discrete dynamics.
It defines the transitions for the joint moves of the coniroller and the disturbance, subject
to the restriction that for all (¢,z) € Q x X, §(q,z,¢,€) = {(g,7)}-

Both the controller and the environment make their moves simultaneously. At the configuration
(g, ), the controller chooses a pair (g, u) out of M%*¢(q, ) x M?*(q,z). The environment does
likewise, choosing a pair (o¢,d) € M3%¢(q,z) x M5(q,z). If either of the players chooses a non-
silent discrete move, then a non-trivial discrete move takes place, with label (o¢,0e). The discrete
transition function § determines the effect on the system. The resultant configuration is any
configuration in é(g, z,0c,0.). As long as both players choose € as their discrete move, then time
may progress. In this case, the discrete mode remains fixed, and the continuous variables evolve
according to the continuous control u chosen by the controller, the continuous disturbance d chosen
by the environment, and the continuous dynamics specified by the function f. One may think of
the interaction between the players as a continuous game with occasional discrete interruptions.

We denote by Wait the set of configurations in which both players may choose not to play a
discrete move, but instead wait for time to pass. We define Wait by introducing first Wait, ( Wait,)
the set of configurations in which the controller (the environment) may let time pass:

Definition 2.2 Wait. = {(q,z) | ¢ € M%*°(q,z)}.
Definition 2.3 Wait, = {(g,2) | ¢ € M%*(q,z)}.
Definition 2.4 Wait = Wait. N Wait,.

The requirement that for all (g,z) € Q@ x X, 8(q,z,¢,€) = {(¢,z)} means that if both players
agree not to make a non-trivial discrete move, there is no discrete change in configuration.

Different discrete move choices of the players can be modeled as follows. If M%%%(q, z) = {¢},
then there is no “real” discrete move the controller can take; in this case, it can only let time pass.
If M%s¢(g, 2) = {0, €}, then it is possible either to let time pass, or to take the discrete move Oc.
If Mdsc(q, ) = {oc}, then it is possible to make only the discrete move labeled o, but it is not
possible to let time pass (i.e., the move is forced to occur). The use of M%*¢ is similar.

Remark. We enforce a well-posedness condition on when time can flow. We require that for each
mode g, the set {z | ¢ € M3*°(q,z) A e € M3*(q, 1)} is an open set, so that the contradictory
requirement that a flow be integrated for a null interval is never specified. Indeed, by enforcing the
previous assumption the current process of integration terminates just before the time of the next
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jump. Hence the flows are integrated on intervals closed on the left and open on the right. With
this topological hypothesis and the fact that by construction the move functions are never empty
follows that the hybrid automaton is never blocked.

2.1.2 Semantics

Hybrid automata evolve using two different kinds of behaviors: discrete and continuous. There
is a discrete step from configuration (g,z) to configuration (¢’,2’) if there exists a pair (0c,0¢) €
¢ x ZE\ {(e,€)} such that

* 0. € M#5(g,z), 0. € MI*¢(q, 1),

b (qla :L") € 6(q,z, 0, Ue)-

We explicitly exclude discrete steps labeled (e, €).
There is a continuous arc of trajectory from (g,z) to (¢/,z') if ¢ = q and there exist a time
t' > 0, a control function u : [0,#) — U and a disturbance function d : (0,¢') — D, such that

hd x(t,) = d’q(t,a z,u, d) = ml’
¢ (q,z(1)) € Wait Vr e [0,t))

i.e., the trajectory following the dynamics at mode g subject to control u and disturbance d leads
from z to 2/, and throughout the trajectory, both the controller and the environment are willing
to let time pass, (meaning that their discrete move functions include e).

A trajectory of the hybrid automaton is a (finite or infinite) sequence of discrete steps and
continuous arcs of trajectories.

A safety property asserts that nothing bad happens along trajectories. It can be characterized
by the set Good of good configurations that do not violate the property. The hybrid automaton
with initial configurations (Q x X), satisfies the safety property Good if all its trajectories that
start in (Q x X)o remain within Good.

2.2 Synthesis of hybrid feedback memory-less controllers

We review the synthesis methodology introduced in [TLS98]. The design of a controller proceeds in
two steps. In the first part of the procedure, the maximal safe set W is computed. By construction,
from any configuration ¢ € W, the controller has a strategy to keep the system forever in W. In
the second part of the synthesis procedure, the control strategy is explicitly extracted from W.

2.2.1 Controllers

A controller watches the entire state of the system at all times, and decides whether to (1) take
discrete control actions that may cause an instantaneous change in the configuration, or to (2) let
time pass under a continuous input u with the continuous variables evolving according to dynamics
at the current mode.

Definition 2.5 A feedback memory-less controller for a hybrid automaton is a pair C = (Tdisc, Tts),
where T# . Q x X — 2%\ {} and T : Q x X — 2U \ {} model the values allowed by the con-

troller. The controller can only offer values permitted by the move functions, and hence, for all

(g,z) € Q x X, it must hold that T%*¢(q,z) C M¥**(q,z) and T%(q,z) C M(qg, 7).

6



ENVIRONMENT
0. € I
deD g€Q
| Pianr | 229
dynamics .
continuous: f
discrete: ¢
o:. € IS
uel
CONTROLLER

Figure 2: Closed-loop hybrid automaton Hg
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Figure 3: Continuous uncontrollable predecessor g, from which environment can cause flow around
the escape regions to a known winning configuration for the environment

Definition 2.6 The coupling of the hybrid automaton H with the full-state feedback memory-less .
controller C = (T3, T95c) is the closed-loop hybrid automaton

He = ((Q, X), (U, %), (T®*, T%*), (D, =), (M, M) (f,6)).

Hc is obtained from H by replacing the discrete controller move function with T%%¢ and the
continuous controller move function with T¢. The controller is safe with respect to the specification
Good if the closed-loop system H satisfies the specification Good. A diagram depicting the closed-
loop system appears in Figure 2.

A configuration (g, z) is safe for the automaton H and safety specification Good if there exists a
controller such that the closed-loop system with initial configuration (g, z) satisfies the specification.
A set of configurations is a controllable safe set if all its configurations satisfy the specification, and
from all its configurations there exists a controller strategy to remain in the set.

2.2.2 Computing maximal safe sets

The procedure to synthesize the maximal controller first computes the maximal controllable safe
set [LTS98]. This maximal set is obtained by first overapproximating it with all the safe configu-

7



rations. Then one calculates all configurations from which the environment can drive the system
into an unsafe configuration via either one discrete jump, or one continuous flow. These are the
configurations from which the environment can win within one “step”, and should be avoided by the
controller. One iterates this computation, finding successively the configurations from which the
environment can win within ¢ steps. If the procedure terminates, we have determined the maximal
controllable safe set.

Consider when the environment can win within one additional discrete step. Suppose that
from a configuration ¢ no matter what discrete move the controller may make, the environment
has some discrete move such that the system is taken into a known winning configuration for the
environment. Then configuration ¢ is a winning configuration for the environment.

Consider when the environment can win within one additional continuous step. Suppose that
from configuration g no matter what continuous input function v the controller chooses there is a
continuous disturbance function d such that the resulting continuous flow reaches a known winning
configuration for the environment, avoiding along the way all configurations where the controller
could “escape” by causing a discrete move to a non-winning configuration for the environment.
Then ¢ is a winning configuration for the environment. See Figure 3.

We define the necessary predecessor operators required to capture these notions.

2.2.3 Discrete predecessor operators

The discrete uncontrollable predecessors operator Pre, : 2(@%X) _, 2(@%X) i5 defined as follows:

Pree( K, Mgz’sc, MgiBC) -
{(2,2) € @ x X : Vo, € M{***(q,2).30, € M¥*(q, 7). (0c,0¢) # (€,€) A 8(q,,0¢,0¢) € K}

Intuitively, for a given K, Pre.(K, M3, M%sc) is the set of configurations such that, whatever is
the controller’s discrete move, there is a discrete environment move that forces the configuration
into K in one non-trivial discrete step. The uncontrollable action may be empty and may depend
on the controllable action.

The escaping configurations [Won97, LTS98] are characterized by the discrete controllable pre-
decessors operator Pre, : 2(@%X) _, 2(@xX) defined as follows:

Prec( K, Mgisc’ M;iisC) =
{(g;z) €@ x X :3o. € Mg"'”(q, z).Vo. € Mfisc(q, z). (¢, 0¢) # (€,€) A 8(g,z,0c,0¢) C K}.

Intuitively, for a given K, Pre.(K, M%#, M%) is the set of configurations that can be forced into
K in one non-trivial discrete step, regardless of what discrete move the environment chooses to
take. The controllable action may be empty, as long as € ¢ Mdise(q, x).

Notice that we introduced as arguments in Pre. and Pre, the sets M2¢ and M%®¢, because we
will describe formulas in which the operators Pre, and Pre, act contextually on different hybrid
automata and so the move functions will have to be annoted explicitly. When obvious from the
context, the arguments M#*¢ and M%4° may be dropped.

2.2.4 Continuous uncontrollable predecessors

The configurations that the environment can force into a set in one continuous step are characterized
by the continuous uncontrollable predecessor operator Unavoid_Pre : 2(9%X) x 2@xX) _, 2(@xX)

8



W9 := Good
1= —1
repeat {
i:=1i41 _
Witl .= Wi \ [Pre(W*) U Unavoid_Pre(Pre.(W*) U W?, Pre,(W))]
} until (Wi = W)
Safe := W*

Figure 4: Computation of Maximal Safe Set [TLS98].

defined below. The operator takes two arguments. The first is the set of configurations the envi-
ronment is trying to reach, and the second is a set it must avoid.

Unavoid_Pre(B,E) = {(¢,2)€Q@x X |YuelU 3t> 0 3d € D such that
Jor the trajectory (t) = v,(u, d, Z,t)
we have (1

(¢,z(?)) € B}
vr € [0,7) [u(r) € M (g, (7)) Ad(T) € MZ(q,2(7)) A (g,2()) € Wait NER

where Wait is the set of configurations in which both players may choose not to play a discrete
move, but instead wait for time to pass, see definition 2.4.

2.2.5 Main synthesis procedure

Figure 4 shows the fixed-point computation to obtain the maximal safe set. The procedure suc-
cessively prunes away configurations that are found to be losing upon one additional discrete step
(Prec(W?)), or a continuous step to a losing configuration ( Unavoid_Pre (Pree(WH)UW?, Pre (WH)).
It is not guaranteed to stop within a finite number of steps.

2.3 Controller extraction

Extracting the maximal control strategy from the maximal safe set W amounts to determining for
every configuration in W, which control choices will keep the system in W. The available control
choices either (1) force a discrete control action, or (2) allow time to pass. In case (1), the value
of u is irrelevant, since a discrete jump will occur. In case (2), we must ensure that the choice for
the input control vector u is such that, in the event that the environment also lets time pass, the
ensuing continuous flow will keep the configuration in W.

The control strategy (7%, T%*) derived from W is defined by the following three rules:

1. For all s = (¢,7) € Q x X, we set T%%¢(s) = M%s(s) if s ¢ W, and otherwise:

* For all 09 € Yo, we have gp € T%*(s) iff o9 € M34°(s) and for all o; € Mdisc(s),
6(qa$100a01) g w.



o We have € € T%5¢(s) iff there exists a u € M?*(s) such that for all d € MP*(s), the
vector f(g,z,u,d) is tangential to or points into W at (g,z). More formally, for a set
ACQ@xX,let Aj C R be the set {y | (g,y) € A}. Let hy : R* — R be a function that
is 0 precisely on the surface of A; and has normal pointing out of A,. Let the inward

tangent space of A at (g,z) be the set {y € R™ | y.%(m) < 0}. Then we require that

for all disturbances d € M&**(s), the vector f(q,z,u,d) lies in the inward tangent space
of W.

2. For all s = (g,z) € Q X X, we set T%(s) = M(s) if s ¢ W or € & T%5¢(s), and otherwise
for all 4 € U, we have u € T*(s) iff the following two conditions hold:

(a) u € M(s).

(b) For all disturbances d € M**(s), the vector f(q,z,u,d) is in the inward tangent space
of W at (g,z).

The allowable control values u are often easily obtained from the calculations used in computing
the Unavoid_Pre operator. For a configuration (g, z), where the state = is on the interior of Wy,
whenever there is some (€,u’) € gw(g), then (e, u) € gw(g) for all u.

3 Controller synthesis with a lower bound on event separation
enforced by one timer

When designing a hybrid system, we may have to guarantee that there is always a delay of at least
A time units between pairs of consecutive discrete events (e.g., to ensure nonZenoness). This lower
bound can be enforced by introducing a timer t. (a timer is a continuous variable with rate of
increment ¢, = 1). Events are enabled when . > 0 and jumps reset the timer to t. = —A, so that
no discrete event is allowed in the interval —A < t. < 0. We could apply the synthesis procedure of
Fig. 4 to the hybrid system augmented with variable t.. However, our previous experience with a
heating system shows that the addition of a variable can complicate reasoning about the dynamics
of the system substantially [BBV*99]. It would be convenient to apply the synthesis procedure
to the hybrid system without variable .. In this section we develop a revised synthesis procedure
where only the variables in the original state space need to be stored, instead of working in the
extended space X = (X,1.).

The intuitive idea is that since there is only one timer t., information about its value can be
discretized into the two parts: . = —A and t. > 0, and the continuous computations over the
extended (n + 1)-dimensional state space X can be replaced with time-bounded computations over
the reduced n-dimensional space X. In other words, it does not matter what the specific timer
value is, because (1) if ¢, > 0, then it suffices to know that a discrete jump is enabled, whereas
the specific value of t. does not matter; (2) if —A < t. < 0, we should memorize the value of i,
but since t. after a jump is always reset to —A, the value of . can be determined by knowing the
integration time. Thus we can move between the two separated parts for t = —A and . > 0 by
integrating between them for a fixed time A.
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Figure 5: Structure of dependencies for 1-bounded systems

3.1 Extension of hybrid automaton with one timer

Let H = ((Q,X), (U, Zc), (M2, Mdisc), (D, 5,), (M2, M%5<), (f,5)), be the hybrid automaton
obtained extending the hybrid automaton H with one timer ¢,.

State space
e X=XxR

Control input

. i e - ~A<t. <0
o e Qx X = 2%\ (}in defined as M1E(a, 1) = { (b ) 745
c ) -

o Mg :Qx X — 2V \ {} is defined as MZ*(g, (z,t) = MZ(q,a) Ve

Disturbance input

- i ] ’ - € -A<Lt<0
o Mgise: Qx X — 2%\ {} is defined as M*(g, (z,t,)) = { ili““(q, z) 20 °

o M :Q x X — 2P\ {} is defined as M&(q, (z,t.)) = M**(q,z) Vi,
Transitions

) f : Q@ x X x U x D — IR™! are such that at each mode the same flows as in f apply,
together with the flow ¢, = 1.

©5:Qx X xTEx B — 29X \ {} is defined as

) (g,2,tc) -A<t <0
J(q’ (xa tc)’ Oc, O'e) = (Q)x)tC) tc 2 0 A (0’¢, ae) = (61 6)
5(‘1, Z,0c, o'e) X {—A} tc Z 0 A (O'c, O'e) # (G, 6)

o Wait=Q x X x [-A,0) U Wait x [0,00)

3.2 Timer-reduced sets

The basis of our simplified view of the calculations for continuous flows is that the value of the
timer is irrelevant once it has exceeded 0, i.e., the lower bound on the timing delay between discrete
events has been satisfied already, and the value of the timer is no longer needed.

Figure 5 depicts a cross-section of the continuous state space projected onto the timer state
space. The figure indicates the variables that intuitively are relevant at each section of the projec-
tion. For instance, in the right region where ¢, > 0, it suffices to know the value of X in order to
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determine the future evolution of the system: the timer value is not relevant, since the lower bound
on event separations has passed. This diagram motivates the following definition.

A set G C Ilj—) +Y; for domains Y; is independent of the variable y; having domain ¥; if for
all j # 4, y; € Y; implies that for all ¢/,y” € Y;, we have (41,...,%i-1,¥,¥it1,...,4) € G iff
(1,.--,%-1,¥", ¥i+1, .. ., ¥k) € G. In other words, membership of a point in G can be determined
independently of the value of ;.

Definition 3.1 A set G C X is timer-reduced if the set G restricted to the domain where t, > 0
is independent of t..

The set W C Q x X of configurations is timer-reduced if for every mode q¢ € Q, the set
{% € X | (q,%) € W} is timer-reduced. _

We use the values of the timers to partition the state space X into subsets as follows: X =
X_ U X,. The subscript refers to the value of t,, with “—” indicating the range [-A,0) and “+”
indicating the range [0, c0) and the sets are defined explicitly below:

1. X_={zeX|t.€[-A,0)}.

2. Xy ={%eX|te[0,0)}
The set Pre.(W) is disjoint from the region ¢, < 0.
Lemma 3.1 The set Pre.(W) is timer-reduced.

Lemma 3.2 The set Pre,(W) is timer-reduced.

Lemma 3.3 Given timer-reduced sets B and E of configurations, the set Unavoid_Pre(B, E) is
timer-reduced.

Lemma 3.4 If the specification Good is timer-reduced, then the set Safe and also every set W*
computed in the synthesis procedure of Figure 4 is timer-reduced.

The proofs of Lemmas 3.1, 3.2, 3.3, and 3.4 are reported in Appendix.

3.3 Projections of maximal safe set computations

In Sec. 3.2, we proved that the sets Pre., Pre., Unavoid_Pre preserve “strips”, i.e., the independence
from t., when t. > 0. For easier algebra, it is convenient to introduce the following projections
operators, where W C @ x X is a set of configurations:

1. Ri_p): Q x X = Q x X is such that R_p)(W) = {(g,2) € Q x X|(q,z,~A) € W}, and
2. Rig): Q@ x X — Q x X is such that Ro)(W) = {(g,2) € Q x X|(g,2,0) € W}.
Notice that if W is timer-reduced, then
R)(W) x [0,00) =W N[Q x X x [0,00)].

Let us find out how the operators to compute the uncontrollable predecessors evaluate under pro-
jection at ¢, = —A and ¢, > 0. In fact, it will be shown that the computation of the safe set can
be carried out using only the projections of the sets W for tc=—-A and t. > 0.

We study first the operators Pre. and Pre,.
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Lemma 3.5
R(O)(Prec(WMf‘”°,Mf‘°°)) = Pre(R_p)(W), Mdisc, pdise),
Ro)(Pree(W, M, M) = Pree(Ra)(W), Mg, M),
Prec(W, M, M{*) 0 [X x (~00,0)] = 0,
Pree(W, M2, ME*) N [X x (-00,0)] = 0,

From the two latter identities follow the special cases:

R(_p)(Prec(W, M2, pMdiee)) 9,
R(_py(Pree(W, M2, pdiee)) = .

The proof is reported in Appendix. The projections of the set Unavoid_Pre(Pre.(W)UW, Pre.(W))
for . = —A and . > 0 are obtained considering that the effect of Unavoid_Pre for W C Q x X is

accounted for by the contributions of the following cases:
1. the configurations that starting from ¢, > 0 unavoidably lose at t. > 0,
2. the configurations that starting from t, = —A

(a) unavoidably lose at —A < t. < 0,
(b) unavoidably lose at t. = 0 (after a fixed integration time A),
(c) unavoidably lose at t. > 0.

The configurations defined by case 1. are handled by the following

Lemma 3.6

R(0)(Unavoid_Pre(Pre,(W) UW, Pre.(W))) =

Unavoid_Pre(Pree(R(_a)(W)) U R)(W), Prec(R(—a)(W))) .

Proof. The proof is reported in Appendix. O
While, the configurations defined by case 2. are handled by the following

Lemma 3.7 If W is timer-reduced, then

R(_p)(Unavoid_Pre(Pre.(W) UW, Pre,(W))) =
{(6,2) €eQ@x X |VuecU 3T (0,A] 3d € D such that
for the trajectory z(t) = y¥4(u,d, £,t) we have
(g,z(),-A+D)eW AT<A vV

®3)

(,2(A)) € Rig)(W \ (Prec(W) U Unavoid_Pre(Pre,(W) UW, Preg(W)))) A £= A}.

Proof. The proof is reported in Appendix. O

Condition (g, (), —A+t) € W on the right hand side of Eq. 3 collects the configurations defined by
case 2.a, while condition (g, z(A)) € Ro)((Pree(W)U W)U Unavoid_Pre(Pre.(W)UW, Pre.(W)))
collects those defined by case 2.b and case 2.c. In particular the term Pre.(W)UW in R () is
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related to case 2.b, and the term Unavoid_Pre(Pre.(W)UW, Pre,(W)) to case 2.c. Then, according
to Eq. 3, we introduce the following operator

Unavoid_Pre_p0(Bg,B) = {(¢,8) €@ x X |Vuel It€ (0,A] Id € D such that (4)
Jor the trajectory z(t) = Yq(u, d, £,t) we have
(gz(E)eBec At<A vV
(g,z(})) e B A t=A}.

It will be shown that, except for the first step of the procedure, the above operator can be simplified
to the following one which considers only trajectories 14(u, d, %,t) on the time interval [0, A]:

Unavoid.Pre_a(B) = {(¢g,%) € Q@ x X |Vu €U 3d € D such that (5)
for the trajectory z(t) = v,(u, d, £,t) we have
(¢,z(A)) € B} .

Based on the operators previously defined, we are now able to devise a procedure for the
computation of the maximal safe set when a lower bound on event separation is introduced.

Such procedure computes the projections Safe_, C Q x X, for t, = —A, and Safey C Q x X,
for t. = 0, of the maximal safe set Safe C Q x (X x R) for the hybrid automaton H. The proposed
procedure makes use of the definitions of the original hybrid automaton H and proceeds computing
intermediate sets Wj C Q x X, Wi, C @ x X related respectively to ¢, = —A and t. = 0.

Figure 6 shows the fixed-point computation with timer projection to obtain the maximal safe
set.

The correctness of the proposed procedure is proved by the fact that the sets Safe_, and
Safey computed according to the procedure reported in Figure 6 are equal to the projection of the
maximal safe set Safe for the hybrid automaton A computed by the procedure reported in Figure 4.

Theorem 3.1 The sets Wi, Wi A computed .by the procedure in Fig. 6 are the projections, respec-
tively, for tc > 0 and t. = —A of the sets W* computed by the procedure in Fig. 4 initialized with
set of good configurations W° = Good x R, i.e.,

Wia = Ray(W).

In particular, the repeat cycle of the procedure in Fig. 6 converges if and only if the one of the
procedure in Fig. 4 does, and if so

Safeo = R(O)(Safe)a
Safe_p = R(_p)(Safe).

Proof. The two procedures are correctly initialized, namely:

R)(W°) = Rig)(Good x R) = Good = W, (6)
R(_p)(W®) = R(_p)(Good xIR) = Good =W2,, (7)

since W0 = Good x R.
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Good assumed to be independent from ¢,
W := Good
WgA = GOOd
W3 := WE\ [Pree(W?°,) U Unavoid_Pre(Prec(W°,) UWS, Pre.(W2,))]
W1, == W25\ Unavoid_Pre(_a ¢)(Good, W3)
1:=0
repeat {
i=1i+1 ' _—
W(‘!"'1 i= W§ \ [Pree(W:,) U Unavoid_Pre(Pre(W: ) U WS, Pre (Wi ,))]
Wi .= W, \ Unavoid_Pre_a(With)
} until (Wit = Wi and Wil = wi )
Safey := W§
Safe_p = Wi,

Figure 6: Computation of Maximal Safe Set with Projection of 1 Timer.

The proof proceeds by induction on the index of iteration ¢ for i > 2. First, we show that
R(o)(Wl) = W} and R(_a) (W =w1,.
According to the procedure in Fig. 4, it is

Wt = WP\ [Pre.(W°) U Unavoid_Pre(Pre.(W°) UWO, Pre,(W?))]. (8)

Let us show that
Roy(Wh) =W . 9)

By distributivity of the projection Ryg) over the set operations \ and U, from Eq. 8, we have
R)(W') = Rig)(W°) \ [R(g)(Prec(W?)) U Ryq)(Unavoid_Pre(Pre.(W°) UW?, Pre.(W°)))],
and, by Lemmas 3.5 and 3.6,
R)(W') = Rigy(W°) \
[Pree(R(-a)(W®)) U Unavoid_Pre(Pree(R(—a)(W°)) U Rig)(WP), Prec(R—a)(W°)))].
Using the property W = Ryg) (W9), by Eq. 6 and Eq. 7, we have
Ry(W') = Wg \ [Pre.(W2,) U Unavoid_Pre(Prec(W2,) UWQ, Pre.(W2,))) = W3  (10)

according to the procedure in Fig. 6.
We now show that
R(_A)(Wl) = WiA (11)

By distributivity of the projection R(_a) over the set operation \, from Eq. 8 we have
Ra)(W') = R_a)(W°) \ R(_a)(Pre.(W®) U Unavoid_Pre(Pre.(W°®) U WY, Pre,(W?)))
= R_p)(W° \ R(_a)(Unavoid_Pre(Pre.(W?) U WD, Pre,(W°))),
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being, by Lemma, 3.5, R(_a)(Pre.(W?)) = 0. By Lemma 3.7

Ri_a)(W') = R_a)(W?) \ (12)
{(;£) eQ@x X |VueU It e (0,A] 3d € D such that
Jor the trajectory z(t) = yq(u, d, £,t) we have
(g,zE),- A+ eWO Af<A V
(9, 2(A)) € Rigy(W \ (Pre.(W?) U Unavoid_Pre(Pre.(W°) UWY, Prec(W9)))) A = A)}.

By the property R(q)(W) = R)(W), distributivity of R g) over \ and U, Lemmas 3.5 and 3.6 and
Egs. 6 and 7, we have

Rig)(W° \ (Pre.(W9) U Unavoid_Pre(Preo (W) UWY, Pre,(WY)))) = (13)
R0)(W°) \ (Ro)(Pres(W9)) U Ryg)(Unavoid_Pre(Pre,(W°) UW?, Pre,(W9)))) =

R(o)(W°) \ Prec(R(_a)(W°)) U Unavoid_Pre(Prec(R(_a)(W°)) U Rg)(WP), Prec(R_)(W?))) =
W3 \ (Prec(W2,) U Unavoid_Pre(Pre.(W®,) UWE, Pre(W° ,)))

which, according to Eq. 10, is equal to W&. _
Furthermore, from W° = Good x IR, we have (g,z(f), —~A + ) € W° = Good x R = Good x IR
if and only if (g, z(f)) € Good. Hence, Eq. 12 can be rewritten as follows

Ri_a)(W') = R_p)(W°) \
{(2)e@x X |VueU Ite (0,A] 3d € D such that
for the trajectory x(t) = v4(u, d, ,t) we have
(,2(),-A+%)€Good ANE<A vV
(9,2(8)) e W§ A E=A}.

Then, by the definition given in Eq. 4, we have
Ri_p(Wh) =W2, \ Unavoid_Pre(_A,o](Good,Wol)

which, according to the procedure in Fig. 6, is equal to W A

Suppose by induction hypothesis that Rgy(W?) = W§ and R_p) (W) = Wi ,. We want to
show that Rg)(Wit1) = Wi*! and R_p) (W) = Wi for i > 1.

According to the procedure in Fig. 4 it is

W = Wi\ [Pre (W) U Unavoid_Pre(Pre.(W*) U Wi, Pre,(W?))). (14)

Let us show that . .
R(O)(Wt+l) - W01+1 .

By distributivity of the projection R(o) and by Lemmas 3.5 and 3.6, from Eq. 14 we obtain
Ri)(W*t) = R(g)(W?) \
[Pree(R(_A)(W')) U Unavoid.Pre(Pree(R(_A)(Wi)) U Rq)(W?), Prec(R(_A)(W")))].
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Hence, using the property R(o)(W?) = Ry, (W), by the induction hypothesis we have
Ro) (W) = W5 \ [Prec(W:,) U Unavoid_Pre(Preo(W? ) UWg, Pre(Wi,))] = Wit (15)

according to the procedure in Fig. 6.
Let us show that . .
Rpy(WH) = Wiy
By distributivity of the projection R(_a) over \, the induction hypothesis, Lemmas 3.5 and 3.7,

and Eq. 13 (which applies also to W* and justifies the last clause (g, z(A)) € Wit?), from Eq. 14
we obtain

Ri_py(WH) = Wi, \
{(9,2) €e @ x X |Vu € U 3d € D such that
Jor the trajectory x(t) = v¥,(u, d, £,t) we have (16)
(¢,2(f), —A + ) € W' for some £ € (0,A) V
(9,2(4)) € W5t}
with W§*! as in the procedure in Fig. 6.
Since, for any mode g € Q, the continuous time dynamics (t) = fo(z(2), u(t),d(t)) is causal,
that is, for any 7 > 0, z(7) = 9,(u,d,£,7) does not depend on u(t) and d(¢) for t > 7, then the

classes U and D on the right hand side of Eq. 16 can be replaced by the classes 4 C U and D° C D,
respectively, defined as follows:

U° = {u(t) € U, defined on the interval [0,A]}, D° = {d(t) € D,defined on the interval [0, A)} .
Namely, the set in Eq. 16 contains configurations (g, %) € Q x X, such that
Vu e U. 3d € 1. (g,2(}),~A +1) € W for some T € (0,A) V (q,z(A)) € W+ . (17)

Let us show that, given a configuration (g,2) € Q x X, the trajectory z(t) = ¥, (u, d, &, t) satisfies
Eq. 17 if and only if

VueU®. 3d € T°. (¢,2(A)) € Wit . (18)

Condition Eq. 17 is trivially implied by 18. To show that also Eq. 17 implies Eq. 18, consider the
set W*. According to the procedure in Fig. 4 and Eq. 1, we have

Wi = Wil \ [Preg(Wi-1) U Unavoid_Pre(Pre.(Wi-1) U Wi-1, Pre,(Wi-1))]
W1 U Pre (W) U Unavoid_Pre(Pre,(W*~1) U W1, Pre (Wi™1))
B U Unavoid_Pre(B, E) ’
= BU{(g,%,t.)€eQx X xR |VuelU® I >0 3d € D° such that

vr € [0,F) (g,2(7),tc + 7) € Wait NE A

(q,z(t),t.+1) € B}
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where B = Wi=1 U Pre,(W*~!) and E = Pre,(W*"!). As already observed, set W? is the playable
set for the continuous dynamic game between the disturbance and the controller with target set B

and state constraint WaitN E. .

In particular, let us consider the set W* in the region ¢, € [-A,0). Being t_c_ = 1, any con-
figuration (g,2’,%.), with ¢, € [-A,0), which belongs to the boundary 8W?* of W7, is steered in
time —t., by the inputs u*(t), d*(t) solutions of the dynamic game, to a point on the surfaces
oW N Q@ x X x {0}. The set WiNQ x X x {0} corresponds to R(0)(0W?) in the Q x X reduced
configuration space, which, by the induction hypothesis, is equal to W,

Hence, consider a configuration (g, £, —A) € Q X X x IR, which, under the action of some control
u(t) and disturbance d(t), reaches the boundary dW? at some time < A, i.e. (g,z(),-A+1) e
OW? . The signals

gy — | ult) for t € [0,%) () for t € [0,%)
u(t)_{:*(t+f) forteEf,A—E] d(t)_{d*(t+tc) fortcfa—f (19

steer, in time A, the configuration (g, £, —~A) € @xX xR . to 6@Qx){ x{0}; that is, u'(t) and d'(t)
steer, in time A, (¢,£) € @ x X to (g, z(A)) € OWS. If WS C W, then (g, z(F), —A+f) € W' and
(¢,z(A)) € W;. Otherwise, changing in the definition of u/(t), Eq. 19, the switching point between
u(t) and u*(t) from  to £ + ¢, with € > 0 small enough, we obtain (g, z(f+ €), A +  + €) € W*
and (g, z(A)) € W5. In both cases, being, by Eq. 15, W§ C W3+, we have (g,z(A)) € 74
Then, we conclude that, given a configuration (¢,%) € Q x X,
Yu e U°. vd € D°. (g, ¥q(u,d, £,8),—A + 1) € W' for some f € 0,A) =
' e U. 3d' € D°. (q,9(v', d', 3,A)) € Wit . (20)
Further, given a configuration (g, %) € Q x X, consider the classes 4’ C 4° and 7’ C D° of signals
u(t) and d(t) such that: if z(f) € 9W* for some £ € [0, A), then u(t) = v'(¢) and d(t) = d’ (t), with
¥/(t) and d'(t) as in Eq. 19. Eq. 20 is written as follows '
Yuel'.Vde D [(g,9,(u,d,2,8),-A +1) € W for sometc 0,4) =
(q) "l’q(’u: d1 f'.: A)) € W(§+1] . (21)
In fact, since, given a configuration (g, %) € Q x X, Eq. 17 is verified if and only if
Vuel'. 3de D' (g,2(f),~A +%) € W' for some € (0,A) V (g,z(A)) € WiH! (22)

one can restrict the class of trajectories 1,(u, d, £, t) to be analized only to those generated by input
signals in the classes U/’ and 7’. The equivalence of Eq. 22 and Eq. 17 is given by the fact that the
restriction on the input signals given by classes I’ and 7’

® due to causality, has no effect on the clause “(g, (%), —A + ) € Wifor some £ € (0,A)”,
* does not apply on signals which make true the clause “(g,z(A)) € Wytt»,
Introducing

Au,d) = (q,2(),—A+1) € Wi for some € (0,4),
B(u,d) = (q,2(A)) e W3',
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]}i}q. 21 is rewritten as Yu € U’. Vd € D'. [A(u,d) => B(u,d)]. Hence, assuming Eq. 17 to hold, we
ave
{VueU’. 3d e D°. [A(u,d) V B(u,d)]} A {Vucll.Vde D' [A(v,d) = B(u,d)]} <=
{fuel'.3deD. [A(u,d)V B(u,d)]} A {(Vuell.VdeD. [A(u,d) = B(u,d)]} <
Vuel'. {(3d e D'. [A(y,d) V B(u,d)]) A (Vd € D'. [A(u,d) = B(u,d)))}
Vuel. 3deD. {{A(y,d)V B(u,d)] A [A(u,d) = B(u,d)]}
Yuel' 3d € D. {[A(u,d) V B(u,d)] A [A(u,d)V B(u,d)]}
Yuel' Id e D'. {[A(u,d) A A(x,d)) V [A(u,d) A B(u, d)]
V[B(u,d) A A(,d)] V [B(u,d) A B(u,d)]}
VYuelU'.3d € D'. {[B(u,d) A (A(u,d) V Ay, d))] V B(u, d)}
Vuel'.3d e D. B(u,d)
Vu € U0. 3d € T°. B(u,d)

11y 11

that is Eq. (18). .
In conclusion, since Eq. 17 is equivalent to Eq. 18, the clause “(g, z(£), —A+%) € W for some t € (0,A)”
can be removed from Eq. 16. Then, by the definition given in Eq. 5, Eq. 16 can be rewritten as

R_py (W) =W:, \ Unavoid_Pre_a(W3tt) = Witl
according to the procedure in Fig. 6. O

To reconstruct the set Safe, the knowledge of the segments Safey and Safe_, is not sufficient; instead
one has to obtain also the boundary curves that join them, by means of backward integration from
®:he extremes of the segments.

4 Controller synthesis with lower bounds on event separation en-
forced by two timers

In this section, we consider 2-bounded systems, which have lower bounds on the separation times
between consecutive discrete controller actions, and also lower bounds on the separation times
between consecutive discrete environment actions. The two lower bounds are independent, with
the occurrence times of discrete controller actions not placing any restrictions on the occurrence
times of the discrete environment actions, and vice versa. Thus 2-bounded systems naturally model
the coupling of a plant having discrete actions at its disposal with a hybrid controller that also has
discrete actions at its disposal. A hybrid automaton model for a 2-bounded system includes two
timers, one each for enforcing the lower bound properties for the discrete moves of the controller
and of the environment. Whenever the controller makes a non-trivial discrete move, the timer
for the controller is reset to —A,, where the lower bound on event separation for the controller
is A.. The lower bounding restriction is enforced by disallowing non-trivial discrete moves in the
controller until the timer has reached at least 0. The timer for the environment acts similarly.

4.1 Extension of hybrid automaton with two timers

We formalize the definition of 2-bounded systems described intuitively above. Given a hybrid
automaton H, the 2-bounded H derived from H with constants A, and A, is the automaton
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H=(Q,X),(U,Xc), (M2, Mdisc), (D, S,), (M2, Mdsc), (f,8)), where the entities not yet defined
are:

State space

e X = X x R?, where the n + 1-th coordinate represents the value of the timer ¢, and the
n + 2-th coordinate represents the value of the timer %,.

Control input

e oo o “A <t <0
o I3 QxX — 2%\(} is defined as Nrdiec(q, (x,tc,te))={ e

A Mgts . Q X X - 2U \ {} iS deﬁned as Mfs(q) (ZD, tc, te)) = Mcds(q7 :L‘) Vtcy te

Disturbance input

. -~ . . ~ di A, <t.<0
d Medwc Q%X — 28‘\{} EdeﬁnedaSMg (g, (z,te, te)) = { 1{‘2““(% z) te Zeo ¢

o Mgt :Qx X — 2P\ {} is defined as MZ(g, (z,c,tc) = M3*(q,2) Victe
Transitions

o f:Qx X xUx D — R"™? are such that at each mode the same flows as in f apply,
together with the flows {, = 1 and ¢, = 1.

© 5:Qx X x I¢ x T — 29%X \ {} is defined as

J(Q) z, O'c,O’e) X {(tC7 te)} (O.C’ O’e) = (61 6)
z _ ) 6(q,z,0, Oe) X {(—Ac;te)} Oc#€ENTe=¢
6(% (31 tc,te);a'c, O'e) = 6(q, z, 0%, o'e) x {(tc, —Ae)} Oc=€NT, 7& €
é(q, z, o'cyae) X {(_Ac, _Ae)} OcF€ENTeF €

o Wait=Q x X x [—Ac¢, 0) x [~A¢,0) U Wait x [0, 00) x [0, c0)
U Wait, x [-A,0) x [0,00) U Wait, x [0, 00) x [—Ae,0)

4.2 Timer-reduced sets

The basis of our simplified view of the calculations for continuous flows is that the value of each
timer is irrelevant once it has exceeded 0, i.e., the lower bound on the timing delay between discrete
events has been satisfied already, and the value of the timer is no longer needed.

Figure 7 depicts a cross-section of the continuous state space projected onto the timer state
space for the variables ¢, and ¢.. The figure indicates the variables that intuitively are relevant at
each section of the projection. For instance, in the upper right region where t, > 0At, > 0, it
suffices to know the value of X in order to determine the future evolution of the system: neither
of the timer values are relevant, since both the lower bounds on event separations have passed. In
the region —A < t, < 0At. > 0, it suffices to know the values for X and te, since ¢, is irrelevant
because the lower bound on event separations in the controller has passed. This diagram motivates
the following definition.
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Figure 7: Structure of dependencies for 2-bounded systems.

A set G C IIj=; +Y; for domains Y; is independent of the variable y; having domain Y; if for
all j # 4, y; € Y; implies that for all 3,3” € Y;, we have (y1,...,%i-1,¥¥i+1,-.-, %) € G iff
(W1, -- > ¥i-1,¥", Y41, ..., ¥k) € G. In other words, membership of a point in G can be determined
independently of the value of y;.

Definition 4.1 A set G C X is timer-reduced if
o the set G restricted to the domain where t. > 0 is independent of t., and
o the set G restricted to the domain where t. > 0 is independent of t,.

Clearly, for any set G, the set G restricted to the domain z = k, for a variable z and constant
k is independent of the variable 2. Further facts about variable independence can be inferred for
timer-reduced sets when one of its variables is fixed: for instance, for a timer-reduced set G, the
set G restricted to the domain ¢, = 0 is independent of ¢,. ’

The set W C Q x X of configurations is timer-reduced if for every mode q € Q, the set
{% € X | (¢,%) € W} is timer-reduced.

We use the values of the timers to partition the state space X into subsets as follows: X =
X_a,-U X_a.+U X_ AU X_-u X_+UXy AU X4,—UX, .. The first subscript refers to
the value of ¢, with “—” indicating the range [—A,,0) and “+” indicating the range [0,00). The
second subscript refers to the range of t. in a similar way. The sets appear in Figure 8 and are
defined explicitly below:

L X_p,-={F€X |te=—Dc At € (=A,0)}.
 Xoper ={F € X |te=—AcAte € [0,00)}.

X A ={F€X |t €[-As0) Ate = —A,}.
X _={feX|te(~Ac0) At € (—A.,0)}.
X ={eX|t.€(-A0) At € [0,00)}.

S I N X
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Figure 8: Partition of continuous state space.

6. Xy -a, ={Z€X|t.€[0,00)Ate=—A.}.
7. Xy = {2 € X |t. €[0,00) Ate € (—A,,0)}.
8. Xy+={Z€X|t.€[0,00)Ate €[0,0)}.

The sets Prec(W) and Pre.(W) are disjoint from the region t. < 0 At. < 0. Figure 9 captures
intuitively the dependencies of the sets Pre. and Pre. over various regions of the projected state
space.

Lemma 4.1 Given a timer-reduced set W of configurations, the set Pre (W) is timer-reduced.

Lemma 4.2 Given a timer-reduced set W of configurations, the set Pre (W) is timer-reduced.

Lemma 4.3 Given timer-reduced sets B and E of configurations, the set Unavoid_Pre(B, E) is
timer-reduced.

Lemma 4.4 If the specification Good is timer-reduced, then the set Safe and also every set W*
computed in the synthesis procedure of Figure 4 is timer-reduced.

The proofs of lemmas 4.1, 4.2, 4.3, and 4.4 are reported in Appendix.
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Figure 9: Structure of sets resulting from applying Pre. and Pre, to a timer-reduced set.

4.3 Projections of maximal safe set computations

We now present a revised formulation of the synthesis procedure, taking into account the fact
that the winning sets at each iteration are timer-reduced. The basic idea is to use the reduced
dependencies to reexpress the differential game as a number of differential games over a reduced
state space. For example, for computing Unavoid_Pre in the upper right region where t. > 0At, > 0,
we need only solve a game over the reduced state space X instead of X.

In Sec. 4.2, we proved that the sets Pre;, Pre., Unavoid_Pre preserve independence from ¢,
when ¢; > 0, and from t,, when ¢, > 0. For easier algebra, it is convenient to introduce the following
operators, where W C @ x X is a set of configurations:

1. R(o,o):Qx)?quXissuchthat
R(O,O)(W) = {(qa x) EQx Xl(qs z,0, 0) € W}

2. Rp—): Q@ x X - Q x X x [-A,0) is such that
R(O,—)(W) = {(g,2,te) € Q@ x X x [-A,0)|(q, z, 0,t) € WAL, € [-A,,0)}

3. R—0): Q@ x X = Q x X x [-A,,0) is such that
R(—,O)(W) = {(g,2,tc) € Q x X x [-A,0)|(q, z, L, 0) €e WAt € [-A,,0)}

4, R('-A,_.,-) QxX— Q x X x [-A,,0) is such that
R(-Ac,—)(W) ={(g,z,te) €Q x X x [—Ae,0)] (g,, -4, te) EW AL € [—Ae,O)}

5. R_—a) Q@ x X > Q x X x [-A,,0) is such that
A R(_’_Ac)(W) = {(q, .’B, tc) S Q X X X [—AC) O)I (q, z,tc, _'Ae) € W A tc c [—Ac, 0)}.

Furthermore, we denote by W(a) the following projection operator:

(r)eW(@)C@xX iff (g,7,0)e WCQxX xR,
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and we introduce the short notations: R _)(W)(a) = R(o,0)(W), R_0)(W)(a) = R0 (W),
Ri_a,—)(W)(e) = R_a.q)(W) and Ri_ _a)(W)(e) = R,-a.)(W). Notice that if W is timer-
reduced, then
Ri0,0)(W) x [0,00) x [0,00) = WN[Q x X x [0,00) x [0, 00)].
Let us find out how the operators to compute the uncontrollable predecessors evaluate under
projection.
Lemma 4.5 Given W C Q x X,
R(O,O) (P rec(W)) = P mc(R(O,—Ae)(W))
U [Prec(R(—a,,0)(W)) N Prec(R(—a.,—a.)(W))]
Ro0)(Pree(W)) = Pre.(R(,-a,)(W))
N [Pree(R(—a.0)(W)) U Pree(R(_a,,-a,)(W))]

R(o,a,)(P mc(W)) = P mc(R(—Ac,ae)(W))
R(O,a,)(P ree(W)) = P me(R(—Ac.ae)(W))
Ra.0)(Prec(W)) = Prec(Ra,,-a.)(W))
R, 0)(Pree(W)) = Pree(R(s,—a.)(W))
R(_ppae)(Prec(W)) = 0
R(—Ac,ae)(P ree(W)) 0
Ria,—n.)(Prec(W)) = 0
Rg.,—a.)(Prec(W)) = 0

The proof is reported in Appendix.

Every timer-reduced set can be represented as a collection of subsets of reduced state spaces.
The reduced dependencies have been shown in Fig. 7. To solve the synthesis game, instead of
applying directly the procedure in Fig. 6 on the extended state space, one can play a collection
of games in the regions X, 4, X1 _, X_,, X_ _. In the latter region, which is the only one to
depend on all variables (X, 1), it is convenient to distinguish the following subregions and define
a synthesis game for each of them:

X-NTy = X__n{ZeX|te>t}
XD = X__N{ZeX|tetAe>te+Al)
X.-NnT X_-n{zeX|t.=t}
Xo-nNTy = X__n{ZeX|te<te<tet+Ae—Ac).
In the sequel, we assume also A, > A..
More precisely, one can repeat until convergence (if achievable) the following cycle of synthesis
games, applied initially to the set Good, to remove incrementally the unsafe configurations (see

Fig. 11 for a pictorial display of the sets mentioned in the maximal safe set computation, where
W(a) stands for a parametrization of the set W with respect to a parameter a):

1.

W) \ [Prec(Wi _y(=Ae)) N [Prec(W{_ g, (~Ac)) U Prec(Wi_ _a.)(—A0))]
U Una,void_Pre(Pree(W("ol_)(—Ae)) N [Pree(W("_,o)(—Ac)) U Pree(W(‘_,_ al(—Ac))
U W(io,o)v P "'ec(R(D,—)(W)(—Ae)) ul[P WC(R(—,O)(W)(_Ac)) NP, "'ec(R(—.—Ac)(W)(—Ac))]]
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Good C Q x X independent from #¢.,t., A > A,
ae € [-A,,0), ac € [— Ac, 0) are parameters mdexmg the sets W
Wiog = Wio () = WP g(ac) = Wiy, —>(°‘e) =W -a,)(0c) = Good
P"'ee(oo) = Pree(W(o )( Ae)UW( 0)( A)UW? —A, )( Ac))
Pre, g0 = Prec(W{ _y(-=Ae)U W) (=Ac)u W(_ —A.,)( -A.))
W(o 0) = W(% o\ [Pre? (0,0) Y Unavoid_Pre(Prel 0.0) Y W(0 o Pre? 0.0))]
W(—A,; _)( )= {W(O_Ac -) (ﬁe)}ﬂ,e[—A,.O)r W?_ _A,)( )= {W(_ _Ae)(ﬂc)}ﬂce[—Ac,o)
W(o _)(ae) = W(o _)(ae) \ [P 7""’3("1’(0_,3c _)(ae)) U
Unavoid_Pre( _)(Pre. (W} Ay (NUW, (o 0y Prec(W(o_ Ay () )]
W(l_,o) (ac) == W(_ 0)(Otc) \ [P Tee(W(o_ -A )(O‘c)) U
Unavoid_Pre(_, .,.)(Pree( Ac)( Nu W(o 0)’ Pnec( Ac)( ))s ac)]
WL _ay(ee) = WF_ —ag(@) \ Umwozd_PreTl (Good, W(o )( ~Ac - ag),ac)
W(_Ac lae) = ("Ac lae) \ Unavoid_Preg, (Good, W( 0)( =A; — ag), ), ae € (—A,0)
W(_ ey (0e) = W(°_ A, _)(ae) \ Unavozd_PreTa (Good, W(o 0)) if ae = —A,
W(_ A,y () =W? (— e,y (@e) \ Unavoid_Pre, (Good, W(o,_)(ae + Ap),a.) if ae € [~A, —A,)
i:=0
repeat {
t:=i4+1
Pret 100) = Pree( _)( AN [Pree(W'_ 0)(—8¢c)) U Prec(W{_ _ a0(=A0))]
Pre| ,(0,0) = P"ec(W(o _)("Ae)) U [Pre.(W, ( Ac))N Pree(W('_ "Ae)( Ac))]
W(‘0 00y = Wiy \ [Pred o) U Unavozd.Pre(Pree 00 Y W0y, Pre;, o.0))]
W(_Ac,_)( ) ={W; _Ac,_)(ﬁe)}ﬁge[-A, ,0)3 W(_ —Ae)( )= {W(_ _A,)(ﬁc)}ﬁce[-A,,,o)
W+l)(ae) = W(o () \ [P ree(W(_Ac olee))u
Unavoid_Pre(_(Prec(W{_5__y(:)U W(‘g'g), Prec(W{_,, (), ae)]
WZ_ 0) (ac) = W(.. 0) () \ [Pme(w(_ _Ae)(ac)) U
Unavoid_Pre(_.)(Prec(W{_ _5 y(-))U W(‘J' (}), Prec(Wi_ _a (), ec)]
W(‘L"l_ aglae) =Wi_ _4 (ac) \ Unavozd.PreTl( )( -Ae — ag), o)
W(‘_ic,_)(ae) = W(_ Ao—y(ae) \ Unavozd_PreT,(W""l)( =Ac — ag), ae), if ae € (A, 0)
W("'*':\c ylae) = W("_ a.,—)(@e) \ Unavoid_Prer, (W, ©, 0)), if ae = —A,
W‘fic ) (ae) =Wi_a,, _)(ae) \ Unavoid_Prer, W’+1)(ae + Ac), @), if ae € [-Ag, —A,)
} until (W(0 0y’ (0 o lee), W( o lee); W(—Ac —(ae), W(_ —a.)(ac) do not change)
Sa.fe(o 0) = W(o 0)
Safeo,-y () = Wiy _(ac)
Safe_)(ac) := W("_,o) (ac)
Safe(—Ac,—)(ae) = W(‘..Ac,_)(ae)
Safe(-,-Ae) (ac) = W(i_,_Ac) (ac)
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Figure 11: Sets involved in the maximal set computations.

removes from the set W(iO,O) the configurations that unavoidably loose either with a discrete

step (Pree(W("o,_)(—Ae))r‘l [Pree(W{_ 5)(—Ac))U Pree( (- —a(=Ac))]) or with a continuous
flow according to the standard operator Unavoid_Pre defined by Eq. 1. Lemma 4.5 accounts
for the algebraic form of the sets Pre. and Pre,.

W(io,-) (ae) \ [P me(W(i—A.,,—)(ae)) U
Unavoid_Pre . .y (Pree(W{_a,,—y(8)) U Witay Prec(Wi_a, -y (Be)), ce)]

removes from the set W(io,-) (0re) (whose support is parametrized by ae € [—Ag,0)) the con-

figurations that unavoidably loose either with a discrete step Pr'ee(W(‘_ Ac,__)(oz.,)) ! or with a
continuous flow according to the operator Unavoid_Pre(, _y defined by Eq. 23:

Unavoid_Pre(y _y(B(.),E(),a) = {(¢,2)€Q@xX |Yueld I0<i< —a 3de D such that
for the trajectory z(t) = y4(u, d, %, 1)
we have (23)
vr € [0,1] (g,z(7)) € Wait, NE(a+T) A
(¢,2(%)) € B(a+1) }

Notice that Unavoid_Pre(, _) is invoked with the “bad” set VV(‘(;" (}).

It can only be 0. # €, 0c = € so that ¢ is reset to —A. and Wio,-)(ae) is mapped to W{__,_)(ce).
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Wi_oy(ae) \ [Prec(W{_ _4,(ec)) U
Unavoid_Pre(_.1)(Pree(W(_ _a,)(B:) U W3, ([-Ac, 0)), Prec(Wi_ _ 1(8:)), o))

removes from the set W("_,o)(ac) (whose support is parametrized by a, € [-A,,0)) the con-

figurations that unavoidably loose either with a discrete step Pre, (W("_'_ an(c) 2 or with a
continuous flow according to the operator Unavoid_Pre(_ .y defined by Eq. 24:

Unavoid_Pre_ 4\(B(.),E(),a) = {(¢,£)€Qx X |VuelU I0<I< —a 3de D such that
Jor the trajectory z(t) = y(u,d, ,t)
we have (24)
vr € [0,1] (g,2(7)) € Waite NE(a+7) A
(¢,2(f)) € Bl +1) }

Notice that Unavoid_Pre_ 4, is invoked with the “bad” set W'(‘a" ‘}).

W(‘_,_ Ae)(ac) \ Unavoid_Prer, (W(‘(;" i)(—Ae - ag),ac)

removes from the set W"_,_ Ae)(uc) (whose support is parametrized by c, € [—A¢, 0)) the con-
figurations that unavoidably loose with a continuous flow according to the operator Unavoid_Prer,
defined by Eqs. 25 and 26 (the former is invoked the first time, then the latter is applied):

Unavoid_Pre, (B, B(—A. ~— a),e) = {(g,8)€Qx X |YueU I0<i< —a 3d e D such that
Jor the trajectory z(t) = P,4(u,d, £,t)
we have (25)
(9,z(f)) € B¢ V (g,2(~a)) € B(~A.—a) }

Unavoid_Prer,(B(—A. —a),a) = {(9,%) € Q x X |Vu €4 Id € D such that
for the trajectory x(t) = 1q(u, d, &,1t)
we have (26)
(9,2(-0a)) € B(-Ac.-a) }

Notice that in this region the sets Pre, and Pre. are empty and that Unavoid_Prer, is invoked
with the “bad” set W/(‘g:l)(—Ae — ay).

W(i_ Aem) (ce) \ Unavoid.Pr'eT,(W("_"’}))(—Ac — Qg), )

%It can only be o = €, 0. # ¢ so that %, is reset to —A, and W oy(ac) is mapped to W{_ _ aglee).
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removes from the set W(" —y(ae) (whose support is parametrized by a, € (—Ac,0)) the con-
figurations that unavmda.bly loose with a continuous flow according to the operator Unavoid_Prer,
defined by Egs. 27 and 28 (the former is invoked the first time, then the latter is applied):

Unavoid_Pre},(Bg, B(~A.—a),a) = {(g,£) €@ x X |VueUI0<I< —a 3d € D such that
for the trajectory z(t) = ¥4(u,d, Z,t)
we have (27)
(0,2()) € B¢ V (¢,z(-0a)) € B(-Ac.— ) }

Unavoid_Prer,(B(-A:— a),a) = {(¢,%) € @ x X |Vu €U Id € D such that
Jor the trajectory z(t) = ¥q(u,d, £,t)
we have (28)
(¢,2(-a)) € B(-Ac—a) }

Notice that in this reglon the sets Pre. and Pre. are empty and that Unavoid_Prer, is invoked
Wlth the “bad” Set W )(- - ae)

W(‘ Ae—){(0e) \ Unavoid_Preq( ‘6"&))

removes from the set W(‘ (ae) (whose support is parametrized by ae = —A,) the configu-
rations that unavoidably loose with a continuous flow according to the operator Unavoid_Prer,
defined by Egs. 29 and 30 (the former is invoked the first time, then the latter is applied):

Unavoid_Pre}, (Bg,B) = {(¢,2)€QxX|VueU30<E< A, 3deD such that
for the trajectory (t) = ¥4(u, d, %, 1)
we have (29)
(qa x(f)) € Bg V (qyx(Ac)) €B }

Unavoid_Prer;(B) = {(¢,%) € Q x X |Vu € U 3d € D such that
for the trajectory z(t) = v,(u, d, £, t)
we have (30)
(¢,z(Ac)) € B}

Notice that in this region the sets Pre. and Pre. are empty and that Unavoid_Prer, is invoked
with the “bad” set W(‘0 0)°

W(_ Ae—)(ae) \ Unavoid_Prer, (W"" )(ae + Ac), )

removes from the set W () (whose support is parametrized by ae € [-Ae, —Ac))
the configurations that unavouiably loose with a continuous flow according to the operator
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Unavoid_Pret, defined by Egs. 31 and 32 (the former is invoked the first time, then the latter

is applied):

Unavoid_Pre},(Bg, B+ Ac),0) = {(¢,2)€Qx X |YuelU 30<i< A, 3deD such that
for the trajectory z(t) = Py(u,d, £,t)
we have (31)

(9,2(t)) € Bg V (g,z(Ac)) € Bla+ Ac) }

Unavoid_Prer,(B(a+ Ac),a) = {(¢q,2) € Q x X |VYu €U 3d € D such that
Jor the trajectory z(t) = Yq(u,d, &,t)
we have (32)
(2,z(Ac)) € Ba+A) }

Notice that in this region the sets Pre. and Pre. are empty and that Unavoid_Prer, is invoked

with the “bad” set W("J: 1 (e + Ac).

The previous sequence of games can be computed by the procedure given in Fig. 10 Then one
can prove that the following is true:

Theorem 4.1 The sets W(io,o): W("o’_)(ae), W("_,o) (ae), W("_ Ae—)(Ce) and W("_’_ a.){cc) computed
by the procedure in Fig. 10 are the projections, respectively, under R(0,0); R(0,0.)(W*), Ria.0) (W),
R(_pc0)(W*) and Ry, —a,), of the sets W computed by the procedure in Fig. 4, i.e.,

Rpo(W?) = Wy,

Roe)(W') = W _(ce)

Ra.0)(W') = Wi g (ac)
R(—Ac,ae)(Wi) = W(i—Ac,-)(ae)

R(a«:,—Ae)(Wi) = W("—,-—Ag) (QC)'

5 Controller synthesis with lower bounds on event separation en-
forced by k timers

It is conceivable to extend the notion of 1-bounded and 2-bounded systems to k-bounded systems,
k > 2, i.e., systems with independent lower bounds on event separation enforced by k timers,
k > 2. The case k > 2 is needed when, for a given system, different disturbance events in %,
and/or different control events in ¥, may be associated to different time separations, e.g., it may
be the case that a delay of A s separates the occurrence of event 0 € T=13,UX, and that of any
successive event, whereas between the occurrence of ¢ € £ = e U X and that of any successive
event there is a separation of A » # A . So one might partition the events in £ = X, U I, into
k classes such that the same delay separation is associated to the events in the same class and
then introduce k related timers to keep track of these separations. Notice that the case k = 3 is
especially useful when there are transitions forced by the fact that guards are hit as an effect of the
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continuous dynamics. In our formulation forced transitions can be modelled adding some special
events to .. Since the timer associated to these special events would model some internal inertia
of the plant, it should be different from the timers associated to external disturbance events and
to control events. So a third timer should be added besides the two introduced for a 2-bounded
system.

The theory developed in Sec. 4 can be generalized to the case of k timers, with k¥ > 2. Even
though the concrete details become more complicated, the proposed steps and theorems carry
through the general case. In particular one extends first the definition of the hybrid automaton H
to H over X = X x R, adding k timers ¢;,7 = 1,...,k. and modifying accordingly the move
and transition functions: once timer ¢; is reset to —A; then no transition guarded by ¢; is allowed
before the timer reaches 0. Then one generalizes the theory of timer-reduced sets, that are sets
independent of #;,% = 1,...,k when restricted to the domain where ¢; > 0. Again one can show
that- the operators Pre., Pre. and Unavoid_Pre preserve timer-reduced sets. This results allow to
find the projections of the maximal safe set computations.

Given k timers ¢;,i = 1,...,k in the extended space, one can define 2% regions with respect to
the subsets of timers that are enabled. In particular, in one such region no timer is enabled (call
it the timer cube, —A; <t; < 0,i=1,...,k), in another such region all timers are enabled, and in
the remaining 2* — 2 regions some timers are disabled and some are enabled. For each of the 2% —1
regions where at least one timer is enabled, specialized versions of Pre,, Pre, and Unavoid_Pre are
defined in order to compute the currently safe points on the k inner faces of the closed timer cube
(a cube of dimension k has 2 k subcubes - faces - of dimension & — 1; at an inner face exactly one
timer has value 0). Finally one has to specialize the Unavoid_Pre computation within the timer
cube to compute the current safe sets on the k outer faces of the timer cube (at an outer face
exactly one timer, say ¢;, has value —A;), partitioning some of the outer faces into subfaces along
parallels to the diagonal flows {; =1,i=1,...,k.

These specialized operators allow to set up the procedure to compute the maximal safe set with
projection of k timers, similarly as in Fig. 10 for 2-bounded systems. Notice that the computations
in each of the 2F —1 regions (timer cube excepted) exhibit reduced dependency on timers, more pre-
cisely they do not depend on the value of timers enabled in a given region. Finally a generalization
of Th. 4.1 can be stated for k-bounded systems.

6 Case Study of a Heating System

6.1 A thermic model of a room

Our heating system has discrete and continuous components in its state, its control input, and its
disturbance. The control objective is to maintain the temperature 7, of the air in a room within
the range [T7™", T/"%%|, whatever the disturbances happen to be. The controller has at its disposal
a boiler and a stove. It operates under full state feedback. The boiler can be viewed as a heating
element that admits continuous settings: it receives a continuous input control variable up € [0, Up)
and outputs this power value instantaneously. The stove has only discrete settings. It is switched
on or off by a two-valued input control variable u; € {0,1}. When switched on, the stove delivers
heat w, = w%*; when switched off, it delivers heat w, = 0.

The room is subject to non-deterministic disturbances that affect the temperature. First, the
room contains electrical appliances whose operation generates heat as a side effect—modeled by a
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continuous input disturbance variable d. € [0, D). Second, the room has a door that may be either
closed or open. Its state is set by a two-valued input disturbance variable dg € {0,1}. When the
door is opened the air temperature of the room suddenly decreases. Its difference from the external
temperature 7, is multiplied by a ratio r < 1, i.e., T, is updated to T, + r(T, — T.). For physical
reasons, we rule out the possibility of the door opening and closing infinitely often in zero time by
assuming that at least A time passes between changes in the status of the door.

The continuous dynamics of the system are captured by two first-order differential equations
whose unknowns are the room air temperature Ty (t), and the door timer t4(t), with f4(t) = 1.
For convenience, we translate the temperature variable to T}, = Ty — T,. We derive the following
equation for Tg,: )

Tae(t) = _cl(ﬂ'ae + pd(da))Tae(t) +
Z(“b(t) + de(t) + ws(us))

where p4(da) = pao if dg = 1 and py(dg) = pac if dg = 0, and wy(us) = W™ if u, = 1 and
ws(us) = 0 if u; = 0, for the thermic conductance parameters pge, (resp. pige, tdo) for the walls
between the room and the environment (resp. the closed door, the open door), and ¢, the air
thermic capacitance. ‘

(33)

6.2 Hybrid automaton model of the heating system

Say that we are going to model the room first as a 1-bounded system, then as a 2-bounded system.
For a 1-bounded system (one timer) we synthesize the maximal controller both with the standard
procedure on the extended space and with the modified procedure on the original space. For a
2-bounded system (two timers) we synthesize the maximal controller with the modified procedure.

6.2.1 The heating system with event separation enforced by one timer

The system described in Section 6.1 can be modeled by a hybrid automaton. It is depicted in
Figure 12, and characterized as follows:

State space

o The set Q of modes consists of g = (off, closed), g2 = (on, closed), g3 = (on, open), and
g4 = (off, open). The first component of each tuple refers to the status of the stove, and
the second to the door.

o X ={(teyTue) | (tes Tue) € R? }.

Controller input

¢ The domain of continuous input values is U = {us | up € [0, Up]}.

o The set of control events is . = {stove.on, stove_off}, (modeling the input discrete
control variable of values u, of Sec 6.1).

o We have e € M%5¢(q, ) for all (¢, z), i.e., the controller is never forced to make a discrete
action. The event stove_off appears in the discrete controller move function whenever
the mode is (on, open) or (on, closed), and t; > 0. In addition, stove_on is allowed
whenever the mode is (off, open) or (off, closed), and t4 > 0.
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e For all (g,z), M&*(g,z) = U, i.e., there are no restrictions on the continuous controller
input values.

Environment input

¢ The domain of continuous disturbance values is D = {d, | d. € [0, D¢]}.
¢ The set of disturbance events is X, = {door_close, door_open}, (modeling the input
discrete disturbance variable of values dg of Sec 6.1).

o We have € € MZ*°(q,z) for all (g,z), i.e., the environment is never forced to make a
discrete action. The event door_open appears in the discrete environment move function
whenever the mode is (off, closed) or (on, closed), and tq > 0. In addition, door_close is
allowed whenever the mode is (off, open) or (on, open), and t4 > 0.

e For all (qaz): Mgta(q’x) =D

Transitions

e We specify the continuous dynamics f by defining functions fe: X xUxD — X for
each g € Q. The functions f, specify the following dynamics for Tj,:

o i Taelt) = -%(#ae + de)Tae(t) + 2 (up(t) + de(t))

far: 7:'ae(t) = _'cl‘a'( ae + tde)Tae(t) + 2 (up(t) + de(t) + w5 (34)
o : Tae(t) = _EI‘T(I‘ae + Hdo) Tae(t) + - (us(t) + de(t) + w(e®)

fq4 : Tae (t) = (Auae + I-‘do)Tae (t) + (Ub(t) + de (t) )

In all modes, the dynamics of the door timer are specified as £4(t) = 1.
e The ¢ discrete transition function is depicted in Figure 12.

Moreover, to avoid nonZeno controllers (which appear to enforce safety properties but only by
virtue of causing time to stop), we model the delay between controller actions by introducing a new
timer variable ¢, with £.(t) = 1. The presence of two timers (¢; and t) complicates enormously
the subsequent task of computing the maximal safe set if our procedure presented in the previous
section is not used.

6.3 Parameter settings

The ensuing explanations of the computations required to synthesize a controller are largely inde-
pendent of the specific parameters chosen. However, for illustrative purposes, we explicitly perform
the computations over particular parametrizations in order to demonstrate the procedure in prac-
tice.

The parameters are specified for the hybrid automaton model that appears in Figure 12. The
safety requirement for the system is to maintain the temperature between a lower threshold value
of T™i" = 18 and an upper threshold value of T3e%* = 20. The only parameter affecting the discrete
dynamics is the reset ratio, which is set to r = 0.95.

The continuous dynamics is expressed via a normalized value of ¢; = 1. The domain of con-
tinuous controller input values is U = [0, U, = 0.5]. The domain of continuous disturbance input
values is D = [0, D, = 0.01]. The maximum power of the stove is w™* = 0.2. The conductances
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Figure 12: Hybrid model of the room.

(¢ cp) = (¢,¢)

are such that prge + pge = 0.001 and pge + pgo = 0.002. Thus the dynamics at mode g in (34) can

be reexpressed as

Tue(t) = —() Tue(t) + w(g) + u(t) + d(t)

where

ulg) =

w(q) = {

{

0.002 if g € {(on, open), (off, open)}

(35)

0.001 if g € {(on, closed), (off, closed)}

0.2 if g € {(on, open), (on, closed)}
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7 Controller Synthesis of Heater + 1 Timer with Standard Pro-
cedure

7.1 Computation of discrete controllable predecessors

We show how to compute Pre.(W) mode by mode. Consider g;. The controller has two choices
of actions (stove.on and €) to force a discrete move to the set W. Consider first the stove_on
action. It is only enabled when t. > 0. In the hybrid automaton, there may be a discrete jump
to either g2 or g3, depending on the discrete move of the environment. Suppose the environment
chooses 0. = ¢, thereby causing a jump to go. Then since the timer is reset to tc = —A and
the temperature unchanged, the states (t, Ts.) land in Wlg, iff (—A,T,e) € Wy, and ¢, > 0 iff
(te, Tae) € Wl,;zA NT>o. Suppose the environment chooses o = door.open, thereby causing a jump
to g3. Then since the timer is reset to t, = —A and the temperature 7}, is reset to 1T5,¢, the states
(tes Tae) land in Wy, iff (—A,r Ty.) € Wlgs and t. > 0 iff (¢, Tpe) € WI;aA" N T>¢. Thus the
discrete action stove.on witnesses the inclusion of (g1,z) in Pre.(W) iff z = (%, Tae) meets both
the conditions above for the choice of environment action iff (t, Ty.) € Wl‘;zA N Wlaﬁ’ N Txo.

Consider next the case of the ¢ action. The action is always enabled in the controller. Further-
* more, the € move is always enabled in the environment, i.e., for all (g, z) € C, ¢ € M%%°(q,z). Thus
the condition (o, o¢) # (€, €) A 6((g, ), (0c,0¢)) € W inside the quantifications in the definition of
Pre. is FALSE because of the first conjunct. Therefore o, = € cannot be an existential witness for
any (g,z).

Analogous reasoning for the other modes yields the set Pre.(W) given by:

Prec(W)lgy = WIZANW|ZA"N T

Pre.(W)le, = WIGAnW|ZA" N T30 (36)
Preg(W)lss = WIZANW|;AN T3

Prec(W)Itu = qu—zA N qu_aA NTxo

7.2 Computation of discrete uncontrollable predecessors

The set Pre.(W) of discrete uncontrollable predecessors can also be computed mode by mode.
Consider, for example, g;. The enabled controller events for this mode are stove_on and €. We need
to evaluate for each choice the sets of configurations satisfying the inner existential quantification
appearing in Definition 2.2.3, and take their intersection. Consider the stove_on action. It is in the
M set iff t, > 0. If it is enabled, then there exists a witnessing o, iff the jump to either g or
g3 lands outside W. The jump to g, resets the timer to t, = —A, and so the states (te, Tae) land
outside of Wy, iff (—A,Tye) & Wlg, and t, > 0 iff (¢, Toe) € W|2 N T>p. The jump to g3 resets
the timer to ¢, = —A and changes the temperature T, to 7T}, so the states (te, Tae) land outside
of Wy iff (A, 7 Toe) & Wl and te > 0 iff (b, Toe) & W27 N To. So if the controller chooses

stove.on, then the environment can force the system out of W iff (t,, Tye) € (WIZRUW|zAT) NT>o.
For the € controller action, the existential formula is satisfied iff (g, z) € WIZA™ N T>o, cor-
responding to the door_open environmental discrete action. Finally, observe that for te < 0, no
non-trivial pairs of discrete actions are enabled. Thus putting it all together, we get that the
configurations at g; in the Pre. set have (t;, Tae) € (W2 UW|ZA) N WA N T>o0
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The set Pre.(W) is computed mode by mode as:

Pre(W)lgy = (W™ UWI|E2) 0 (WIZA™ N Txo)

Prec(W)lee = (Wigl" UWIE®) 0 (WZA™ N Tao) (37)
Prec(W)lg, = (Wl UWIE®) N (W52 N Too)

Pre.(W)lee = (Wl UWIZ2) N (W52 NTao)

7.3 Computation of continuous uncontrollable predecessors

In a continuous-time step of the procedure reported in Figure 4, the set Unavoid_Pre(Pre,(W') U
W, Prec(W*)) C Q x X is computed as the union of the sets

(g, Unavoid_Pre(Pre.(W*) U W7, Pre (W) for g € {q1,92,93,04} ,
where, introducing B = Pre,(W!) UW?* and E = Pre.(W*) and according to (1),

Unavoid_Pre(B, E)|q = {% € X | Vuy € Uy 3t € Ry03d. € D, such that for the trajectory
z:Ryo — X defined by z(t) = ¥q(us, de, Z,t) for all t > 0, we have:
V7 € [0,%) z(1) € WaitlyNE|; A z(f) € B|,}.
(38)
We restrict the analysis to X = [-A, c0) x IR, since ¢, is always reset to —A and {. = 1> 0.
In the computation of Unavoid_Pre(B, E)|, both the state g and the sets B|,, E|, are fixed.
Hence, we rewrite the continuous-time dynamics as

. = 1 (39)
Toe = aToe+b(up+de) + bo (40)

with a,b and by chosen according to (34). ‘

Since in (38) the objective is to find the states that can be steered to B|y without passing
through E|4, and then to remove them from W]y, the region to be investigated can be limited to
the set '

R|y= Wg\ (Elq UBlg) . (41)

The boundary OR|, of R], is made by arcs of dE|, and arcs of OBl|,, boundaries of E|, and B,
respectively, and segments that lie on ¢, = —A. Since ¢, = 1, trajectories starting inside R|, cannot
exit R|y through the boundary of R, that lies on ¢, = —A. That is, for any £ € R|y, under any
up € Uy and d, € D, either 1, (up, de, £,t) remains in R|q for all t > 0 or intersects, at some time
t =1, either 8E|; N AR, or 8B|, N IR,

By definition (38), the set Unavoid_Pre(B, E)|, corresponds to the playable set for the distur-
bance de in a two-player differential game defined as follows (see [Isa67]).

Problem 7.1 Given an initial state To € R|y, the disturbance d. wants to steer zo to 0B|,NOR|,,
while the control u, opposes it (u, wants to steer zo to HE|, N OR|,).

Definition 7.1 The playable set for d, in the two—player differential game 7.1 is given by the points

of R|y from which the player d, can guarantee to drive the initial state to the target set OB|;NOR),,
no matter what control actions are taken by uy to the contrary.
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7.3.1 Candidate boundary curves from the solution of a Min—-Max Problem.

In the sequel it is shown how a family of curves sufficient for the description of the boundary of the
playable set for d. can be derived from the solution of a min-max problem (see [VG97)).
Introduce the adjoint variables A1, A2 and the Hamiltonian associated to the dynamics (39),(40)

H(tc, Taea /\1, /\2a de’ ub) = )\lic + '\2Tae = /\1 + /\2(aTae + b(ub + de) + bo) . (42)

If d;(t), uj () generate a trajectory [t%(t), T (¢)]7 on the boundary of the playable set, then there
exists a nonzero continuous trajectory [A1(t), A2(2)]7, satisfying

: 6H : o0H
)\1——%—0 and A'_)——aTae——aAz, (43)
such that [A;(t), A2(t)]7 is an outward normal to the boundary of the playable set and
min max H(t;, T3, A1, A2, de, up) = H(t3, T, A1y Aoy dX,uf) =0 . (44)

de GDg up Gub

By (42), the signals d;(t), uj(t) that satisfy the min-max condition (44) are such that d*(t) =
arg ming ep, {A2(t)b de} and uj(t) = arg maxy, ey, {A2(£)b up}, that is

[0, ifbr(t)>0 wrer _ | Usy ifbAa(t)>0
‘ig(t)‘{ D., if bXy(t) <0 and w;(t) = 0, ifbA(t)<0 °

Since by (43) A2(t) = e~%)gq, where Ao = A2(0), then if Agg # 0, d. and uy are constant along the
boundary of the playable set, because bAz(t) never changes in sign. Moreover, by (43), ), is also
constant, say A1 (t) = Ajo.

If A20 = 0 then Az(t) = 0 for all ¢ and a singular control may occur. However, singular controls
cannot take place; in fact, by (44),(42) A1 () has to be zero if A3(t) = 0, which is against the request
of [A1(t), A2(t)]T being nonzero.

Then, a trajectory

te(t) _ tc(O) +1
[ Toe(t) ] N [ €**Toe(0) + (1 — €**) [~a™b (up + de) — a~bo) ] ' (46)

solution to (39),(40) with constant inputs u; = u} and d. = d* chosen according to (45) satisfies
the min-max necessary condition to belong to the boundary of the playable set.

One can easily check that along a trajectory of type (46), Ty, is monotonic with respect to .
Hence, if an arc of trajectory (46) lies on the boundary of the playable set then the playable set is
either below or above it, and an outward normal [A1(2), A2(t)]7 of the playable set has either A, > 0
in the former case (the arc is an upper boundary) or A2 < 0 in the latter case (the arc is a lower
boundary). According to (45), if such trajectory defines an upper boundary, then (since Ay > 0)
necessarily de = 0 and up = Up; else if it defines a lower boundary, then (since Ay < 0) d. = D, and
up = 0.

In conclusion, a family of curves whose arcs can be part of the boundary of the playable set for
the disturbance d, in the two-player differential game 7.1 is given by

upper __ tc tc _ i\c +.ﬁ . _h a
‘P(fcj‘uc) - {[ Tae ] I [ Tae ] - [ eaﬁTae + (1 — eaﬂ) [_a—lb Ub _ a_lbo] with ﬁ > te A
(47)

(45)
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for an upper boundary of the playable set and

lower __ 2 te | _ £C+ﬁ i > -, —A}
So(i‘cj‘ue) - {[ Tae ] I [ Tae ] - [ CaBTae + (1 - e“ﬂ) [—a,—lbDe - a_lbo] ] with ‘B - tc

(48)

for a lower boundary of the playable set. Curves 'PP% | lower in (47),(48) are parametrized by

. (FeiTac)’ PlieiTac)
the point (£, Tye) through which they pass.

7.3.2 Geometric properties of B|; and E|,.

By induction, it will be shown that at any step of the procedure the sets B|y = (Pre(W?) UW?)|,
and E|, = Pre,(W?)|, satisfy the following properties:

P1 There erist T, T such that
Ely = {(tesTae)lte 2 0, T < Toe < T} (49)
P2 For anyt. > —A the set of points (tc,Tye) that lie on the line t, = I, and do not belong to
B|, is connected, i.c., either it is the empty set or it is a segment.

Introduce B®|y, B4, such that B|, = B*|, U BY|, and, for any . > —A, B*|, contains the upper
part of Bl while B, contains the lower part of B|,.

P3 There exist T, T4 such that

Bulq n {(tC1TGe)|tC Z 0} = {(tC1 TM)ItC 2 0’ TGG Z Tt:zl: (50)
BN {(te; Tae)te 2 0} = {(te,Tue)lte > 0, Toe < TM (51)

P4 OE|,N(8B*|,udBY|,) # 0.

Lemma 7.1 By property P4, in (49), (50) and (51), either T2 = T (if OE|,NOB*|, #0 ) or
T =T, (if E|,N 8B, # 0 ), or both.

It is easy to verify that properties P1-4 hold at the initial step where W° = Good. According
to (36) and (37), E|,, B|, evaluate to (see Figure 13)

Bl = {(te,Tae)ltc 2 —A, Toe 2 Ige } . for g =¢1,02,93,%
By = {(tcTue)lte = —A, Toe < T if te < 0,Tue < (1/r)T" if t, > 0} for g= g1, 02
By = {(tesTac)lte > —A, Toe < Trwin} for g =g3,04
Elg = {(te,Tae)lte >0, (l/r)mm < Toe < T2} for g=q1,¢2
Elg = {(tesTee)lte 2 0, T < T, < T20%} forg=gs5,0

(52)

Hence, choosing in (50),(51),(49)
lu _ 70u _ pmaz 1 _qpod _ [ /)T forg=q,q
Tae_Tao:_ ae Tae—m_{min forq=q3,q4 (53)

properties P1-4 are verified.
The induction proof will be_ completed by showing that, assuming P1-4 to hold at step i for
(Pree(W*) UW?)|, and Pre.(W?)|,, the continuous step produces a set W+1) such that P1-4 will

be also verified by (Pre.(W*+!) U Witl)|, and Pre.(Wit!)|,, computed as in Sections 7.2 and 7.1
respectively.
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7.3.3 Boundary curves of Unavoid_Pre'|, = Unavoid_Pre(Pre.(W*) U W2, Pre (W¥))),.

As a consequence of P2, namely that B|, consists of two disconnected sets B*|, and Bd|,, if follows
that the playable set for d,, i.e., the set Unavoid.Pre"lq, is also the union of two sets. Let the curves

:’,m,, and II:",, denote, respectively, the lower boundary of the upper part and the upper boundary
of the lower part of Unavoid_Pre'|,.

Boundary curves of Unavoid.Preolq. Let us consider the step 0 of the procedure and let us
evaluate the boundaries I3, and 119, of Unavoid_Pre(Pre.(W%) UW?0, Pre.(W?))|, with W° =
Good. Bl = (Pre.(W°) U WD), and E|, = Pre.(W?))|, as in (52) are reported in Figure 13.
From (41), the sets R|y of interest in the continuous part of the procedure are

Rlg = {(tesTae)| = A <t < 0, T2 < Tpe < T5e™} for ¢ = q1, 92, g3, g4-

Note that in this case all the sets R|, are defined for ¢, < 0.
In Section 7.3.1 it has been shown that arcs on the curves tp’(‘i””;" y pi‘t"";}' ) of type (47),(48)

are candidates to be pieces of the boundary l'I?,p and I'Iodmn, respectively, under a proper choice of
(£C) Tae)-

Consider first the computation of the upper boundary Hﬂp of the lower part of Unavoid.Pre°|q
and refer to Step 0 in Figure 13. By (45), the min-max control is de(t) = d* = D, and u(t) =
uy = 0, whose corresponding equilibrium temperature evaluates to —% D, -2,

o If TM%* js lower than —% D, - %ﬁ then, along any arc goi‘t"”;' )anq, Tee versus . is increasing.
Then, for any choice of the control u(t) € Us, the disturbance d,(t) = d* = D, can force a
state £ € R, in a neighborhood of Ty, = T;2%* to enter B¥|,. Further, the boundary of the
set of points £ € R|, that can be steered by de to B*|, without intersecting first E|, is given
by ‘P‘(ﬁ?’ﬁu) NR|,. Note that the e?ld point (£, TL) of (ng‘,vf?ﬁ”) NR|, d.i.fferent from (0, T72e)
has either t. = —A and T}, € [T™", T™a2), or t{ > —A and T}, = Tmin,

Hence, according to (38), ITJ, is made by: the arc ‘pig‘,”'-’i"';é“) N R|q, the half 1ige [0, 00) x Tz
obtained choosing in (38) =0, and, if £ > —A, the segment [-A, t}] x Tmin,

e Otherwise, if T72%* > —% D, - %0-, then there exists some control u, € U, such that for any
disturbance d., T, decreases. Hence, d. cannot force a state £ € R|q in a neighborhood of
Toe = Tge™ to enter B*|y. In this case, the boundary ITS, is obtained choosing £ = 0 in (38)
and coincides with the boundary [-A,00) x T73%* of BY|,.

Summarizing
P meey N Rlg U [0, 00) x Tmes ift = -A
. fTme<-tp, &
n?;p = 901(8',%%2‘«3) n qu U [Oa °°) x 77.'..3“ u [—A’tf:] X ngm if tf: >-A (54)
(-4, 00) x Tzzes if T > ~4 D, -t

Consider now the computation of the lower boundary Homn of the upper part of Unavoid_Preolq
and refer again to Step 0 in Figure 13. The evaluation of I1%,,,,, for the modes g3 and g4, where
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Tl = T = Tmin s completely analogous to the development above and is reported first. A little
more involved is the evaluation of IT% . for g; and go, where T2¢ = T = (1/r)Tn > Timin,

Consider first g3 and gy.

e If TMi" is greater than —% Uy — l"f, i.e., the equilibrium temperature under the min-max
control de(t) = df = 0 and u;(t) = w} = Up (see (45)), then along any arc tp'(‘t‘:p;: Y N R|q, given
by (47), Te versus t. is decreasing. Hence, for any choice of up(t) € Up, de(t) = d* = 0 can
force a state £ € R|; in a neighborhood of T,e = T" to enter Bdlq. Further, the boundary of
the set of points in R|; that can be steered by d. to B¢|, without intersecting first E|, is given
by w'(‘(%‘,,) N R|,. Note that the eI‘ld point (£, T%) of (pz‘%‘-,,) N R|, different from (0, T77")
has either t7 = —A and T, € (T, Tma%), or t¥ > —A and T = T/, According to (38),
Fomn is made by: the arc tp’(‘gj’;?é,,.) NR|q, the half line [0, 0o) x T3 obtained choosing in (38)
t =0, and, if t > —A, the segment [-A, %) x Tme=,

e Otherwise, if T/%" < by, - %ﬁ, the disturbance d. cannot force a state in a neighborhood of
Toe = T™ to enter BY,, and the boundary 119, coincides with the boundary [-A, 00) x

Tmén of BY,.
Hence,
Plomimy N Rlg U [0,00) x Trgin if 1% = A
. ifmin>—%Ub—%1
MWhoum = 4 | ©1FEuny N Rlg U [0,00) x TR U [-A, 8] x Tme= if ¢ > —A (5)
[—A)Oo)xmin ifmins_%ub_%n

Let us now evaluate the boundary I3, . for the modes g and go, where T4 = T% =
(/r)T5e™ > Tozn.

e Since by (39) t. always increases, no matter whether or not the temperature T, increases,

states in a neighborhood of the boundary of B9, along the line ¢, = 0 reach B9|, under any
de and up. Again, the boundary of the set of points £ € R|, that can be steered by d to BY|q,
without intersecting first E|,, is given by an arc on a curve of type (47) passing through the
point (0, 73d) = (0,T24), i.e., the arc belonging to IS, is w’(‘%) N R,
The end point (t¢, T%) of zp}‘%) NR|g has any of t# = —A and T, € [T, Tme=], ¢ > —A
and Tg, = T72°%, or tf > —A and Ty, = T;*". Hence, according to (38), I, is made
by: the arc w}‘ﬁ?{d) N Ry, the half line [0,00) x T}¢ obtained choosing in (38) ¢ = 0, and if
Tae = T52*" the segment [—A, %] x Tpeo® else if T2 = Tm*™ the segment [—A, t¥] x T,

That is:

oy N Rl U [0,00) x T if £ = —A
Mown = Ploisy N RlgU[0,00) x Tod U [-A, 82] x Tmin if T2 = T (56)

Oiotia) N RlgU[0,00) x T U[-A, %) x TRe= if TY = Tos
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Finally, note that the boundaries l'Iﬂp and I19,, of the two sets that define Unavoid_Pre°|,
may actually intersect, in which case the set is connected.

Boundary curves of Unavoid_Pre’|, for i > 0. The computation of IL, and IT, . for i > 0
makes use of arguments similar to those presented in the computation of Homn for ¢ = q1,q
reported above, but with the further complication that the sets R|, are defined also for ¢, > 0.
The main point here is to establish which points in R, N {(tc, Toe)|te > 0} can be driven by the
disturbance to B, = (Pre.(W*) U W?)|, without intersecting first E|; = Pre.(W?)),.
By properties P1, P3 and Lemma 7.1,

{(te; Tae)lte > 0, T3 < Tpe < T2} if T4 = 7%
qu n {(tc: Tae)ltc > 0} =
{(te) Tae)lte > 0, T2 < Tpe < i if T1% = T

for ¢ = q1,92,43,94. Namely, for decreasing values of Tte, sets R|q,B|, and E|, for t. > 0 can be
in the two following sequences: either (1) BREB = B*|y — R|y — E|y — BYg, if T4 = T9,; or (2)
BERB = B*|; — E|;— R|g - Bdlq’ if Too = Tge.

1. In the case BREB the critical boundary of R|, is the upper one. In fact, if the disturbance
can force Ty, to increase, then the trajectories will reach B*|, with no escape path through
E|q and R|y N {(tc, Tae)|te > 0} will be unsafe.

2. In the case BERB the critical boundary of R|, is the lower one. In fact, if the disturbance
can force Tj, to decrease, then the trajectories will reach Bdlq with no escape path through
E|q and R|, N {(tc, Tae)|tc > 0} will be unsafe.

In the sequel we illustrate under what conditions the disturbance can force the state to reach B lg-
For the upper boundary IL,p:

o IfTIx < -% D.— %‘1, the controller, even setting u;, = 0, cannot prevent the temperature from
increasing and reaching B"|,. In the case BREB (i.e., Tod = T9%), R|o N {(te, Tae)lte > 0} is
unsafe. Hence ¢{7%%,) N Ry C IL;

o IfTIu > —% D,— %Q, then the disturbance cannot force T}, to increase and in the case BREB

(ie., T =T%), Rly N {(te, Tae)|tc > 0} is safe. We have: ‘Pé%) NR|, C IL,,.

Summarizing, the upper boundary I'If,p of Unavoid_Pre‘|q for ¢ > 0 is obtained as follows:

([ P84 N Rl U[0,00) x TS U[-A, 8] x Tmin i ¢l > —A
fTr<-tp, b
_ PG au) N Rlg U [0, 00) x TS ifth = —A
T =) | (57)
PGy NRIgU[0,00) x T U[-A,th] x Tmin if ¢l > —A
lfTal: 2 _gDe - %"
P Gauy N Rlg U [0,00) x T2 - if = —A

For the lower boundary ITf,  :
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o If T,}g > —% Upy— %ﬁ, the controller, even setting u; = Uj, cannot prevent the temperature from
decreasing and reaching BY|,. In the case BERB (i.e., T2 = T%), Rlg N {(te, Tue)lte > 0} is
unsafe. Hence «pz‘:”;:d) NR|, C Iy,

o If ng < —-2- Uy— %‘}, then the disturbance cannot force T, to decrease and in 13he case BERB
(ie., T =T, Ry N {(te, Tae)|te > 0} is safe. We have: p}‘%) NR|,cI, ..

Hence, the lower boundary IT} , .. of Unavoid_Pre'|, for i > 0 is:

(Pi(‘%g)anqU[o,Oo)XﬁgU[—A,tg]XT:emz 1ft:>—A

HTY> -y, -2
, ‘p?(ingg)nRhU[O:OO) x T ift2=—A
Pty N Fly U [0,00) X TH U -, 2] x T if 2 > —A
¥ 1d . if Tpd < -2 U — %
s N Rlg U [0,00) x T if 80 = —A

Notice that, also for i > 0, it can occur that the boundaries IT;,, and ITi,,,. of the two sets that
define Unavoid_Pre'|, intersect each other, in which case the set becomes connected.

Further, since by (53) To¥ = T3 = T7** and T4 = T, expressions (57),(58) actually apply
also for i = 0.

Proof of geometric properties of B|; and E|,. It is easy to prove by induction that, as
assumed in P1-4, at any step of the procedure, for ¢, > 0, B¥|y, B, and E|, are strips parallel
to the . axis of the form (50),(51),(49), respectively. In fact, in (53) this is shown to hold for
i = 0 and the induction step is as follows. Suppose (50),(51),(49) hold for the i-th step of the
procedure, then by (57),(58) the boundary IT,,IT5 . of Unavoid_Pre'|; is made by half lines
parallel to the ¢, axis for t. > 0 and, according to Figure 4, so is the boundary of Wit!|, =
Wig \ (Pree(W*) U Unavoid_Pre|;). Hence, from (36) and (37), (Pree(Wi+) U Wi+1)|, and
Pre (W**1)|, are strips parallel to the t. axis for ¢, > 0.

The iterations of the synthesis procedure for the parameters given in Sec. 6.3 appear in Figure 13.
We also consider the system with parameter settings as above, except that the controller input is
restricted to the range [0, 0.2] instead of [0,0.5). In this case, there is no valid controller. The initial
iterations of the synthesis procedure for this latter system appear in Figure 14.

7.4 Controller extraction

The controller derived from the maximal safe set computed in Figure 13 is depicted in Figure 15.
The stove_on and stove.off actions are permitted only in the indicated regions. The watching
strategy of playing (e, u) for all u is permitted everywhere, except where otherwise indicated. For
instance, no (¢, u) event is permitted in modes (on, open) and (on, open) along T,e = 20 where
tc 2 0. In particular, this implies that the stove_off action must be played by the controller at
these configurations.

The values of T%2¢ and T may be set arbitrarily over W, since the controller does not operate
in that region. Over the set W, the function 7% is defined according to the following rules:
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Legend. At each step of the procedure the in-
teresting sets are depicted by means of their
projection in the continuous space X for all
modes g1, gz, g3, 1. The sets W7, (Preo(W*)n
W)|q and (Pre,(W') N W?)|, are represented
respectively in dark gray, light green and light
violet. The set (Pre;(W*) UW?)|, used in the
procedure is given by the union of the light
violet and dark gray regions. Arcs of trajecto-
ries (. candidate to be pieces of the bound-
ary of Unavoid_Pre(B‘, E')|; are reported for
te € [—A,0].

Step 2

Figure 13: The procedure converges in three steps and returns the safe set: the set of initial
configurations Safe C @ x X from which there is a control strategy u,(t), 05 guaranteed to maintain
the state trajectory inside Good, no matter what actions are taken by the disturbances d.(t), og.
The control actions of the heater u,(t) (continuous-time) and of the stove o, (discrete event) are
powerful enough to counteract the disturbances produced by the appliance d,(t) (continuous-time)
and the door o4 (discrete event).
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Figure 14: The procedure converges but the safe set is empty. From the third step the procedure
evolves in a periodic fashion, repeating alternatively patterns similar to those of Step 2 and Step 3,
until W* becomes empty.

Turning on the stove: stove_on € T%5°(q, z) iff either of the following two conditions hold:

1. ¢ = (off, closed) and Nejosed < Toe < Qcloseq and t > 0, or

2. q= (Oﬁ‘l open) and ﬁcm < Tae < Qopen and ¢ > 0.

Turning off the stove: stove_off € T%5°(q, z) iff either of the following two conditions hold:
l.g= (on'l dosed) and Telosed < Tge < 20 and t > 0, or
2. ¢ = (on, open) and ﬁoﬁ' <Tae <20 and t > 0.

Letting time pass: Time may pass in the interior of the safe set, and also at the boundaries,
unless there is insufficient control required to counteract the disturbance from making the
temperature rise beyond 20 while the stove is on.

e For all (g,z) € W, we have € € T%*(q,z) unless ¢ € {(on, closed), (on, open)} and
z satisfies T, = 20 At > 0. The excluded configurations are those for which the
stove_off event must be taken by the controller to remain within the safe set W. In this
configurations, setting the continuous control u to its minimal value of 0 will result in
the temperature rising above 20, regardless of the continuous disturbance d.

The function T is defined over W as follows:

Time passing on the interior of W: For all (g,z) € int(W), we have T3 (s) = M (s) = U.

Dummy values when time is not allowed to pass: For all configurations s = (g, z) for which
q € {(on, closed), (on, open)} and z satisfies Tye = 20 At > 0, we set T(s) = MCt3(s) = U.
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20

Felosed

94 = (off , open) q3 = (on, open)

Figure 15: Controller

Time passing on the boundary of W: On the rest of the boundary of W, time is allowed to
pass, and we now specify the u values allowed by T,

1

For s on the exponential curves that provide lower bounds on W, we set T(s) =
{Umaz} = {0.5}, i.e., along the curves passing through (Yon, 18) to (0, Bsm) in mode
(om, open), passing through (70]?" 18) to (0,8,n) in mode (off, open), passing through
(=1, Bon) t0 (0, Netosed) in mode (on, closed), and passing through (-1, ﬁo_ﬁr) to (0, Nelosed)
in mode (off, closed).

For s on the exponential curves that provide upper bounds on W, we set T%(s) =
{Unin} = {0}, ie., along the curves passing through (—1,agpen) to (0,20) in mode
(on, open) and passing through (—1, alesea) to (0, 20) in mode (on, closed).

For s along the T, = 20 line in mode (off, closed), we have set T(s) = [0, 0.01]. The
u values are precisely those for which the controller can guarantee the flow remains
in W, and are derived from T,, = —0.001T,, + u + d < 0 for all d € [0,0.01] iff
Toe = —0.001T4e 4+ u + 0.01 < 0 iff u < 0.01.

- For 5 along the Tpe = 20 line in mode (off, open), we set T(s) = [0,0.03], since

The = —0.002T e + u + 0.01 < 0 whenever u < 0.03.

For s along the The = Neipsed A t > 0 segment in mode (off, closed), we set T(s) =
[@,0.5], where @ = 0.0189, since Tpe = —0.0017,e + % > 0 whenever u > 0.0017005ed =
0.0189.

For s along the Tye = 7cipsea/At > 0 segment in mode (on, closed), we set T*(s) = [0,0.5],
since T,e = —0.0017e + 0.2 +u > 0 for all u > 0.

. For s along the Ty = 18 and Tpe = (o segments in mode (on, open), we set T(s) =

[0,0.5], since Tpe = —0.002T,, + 0.2 +u > 0 for all u > 0.

. For s along the Tp, = 18 segment in mode (off, open), we set T<(s) = [0.036, 0.5], since

Toe = —0.002T ¢ + u > 0 for all u > 0.036.
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9. For s along the Ty = Bon segment in mode (off, open), we set T2(s) = [0.0028,n,0.5],
since T, = —0.002T,, + u > 0 for all u > 0.0028,, = 0.036522.

7.5 Sample trajectories of the controlled system

We provide sample trajectories of the controlled system in order to further highlight the operation
of the controller. From any configuration in the maximal safe set W, the controller can act in such
a way as to maintain the system configuration in W indefinitely, no matter what the adversarial
environment does in its attempts to drive the configuration out of W. Once the configuration is
outside W, the specification is not necessarily violated. However, the environment does have a
strategy to drive the system into a configuration that violates the specification.

7.5.1 Following a winning controller strategy

We demonstrate the controller’s strategy at the lower end of the good interval [18,20]. Let the
environment try its best to drive the temperature below 18. The environment can be using either
discrete actions (opening and closing the door), or continuous means (varying the disturbance term
d) to lower the temperature. Intuitively, as far as discrete actions, the environment’s best strategy
is to open the door as often as possible, since each instance of opening the door results in a large
instantaneous temperature drop. As for its strategy over continuous variables, it should set d to
be the minimal value of 0 in order to keep the temperature low.

Suppose the configuration is in mode (on, open) with continuous state (¢, Tpe) = (—1,18). Now,
suppose the controller sets u = 0.25, and the environment sets d = 0. See Figure 16. After 1 second,
the continuous state is at A; = (—225 + 18)e~0902 4 225 = 18.414. The configuration is still in W
since A\; > Bon. If the environment closes the door now while the controller stands by watching,
then the mode changes to (on, closed), and the continuous state to (—1,);). The controller can
maintain the u value of 0.25 until the configuration hits the boundary of W, along the flow from
(-1, Bon) to (0,7ciosed)- When the boundary is hit, the controller must set u to its maximal value
of 0.5 to stay in the safe set. If the environment causes the door to open as soon as it can, i.e.,
at continuous state (0, 7cioseq), then the configuration moves to mode (on,open) with continuous
state (—1,18), and the trajectory segment can repeat.

Consider the slightly different scenario where the environment does not cause the door to open
as aggressively. See Figure 16. From mode (on, open) and continuous state (—1,18), suppose
the environment performs no discrete action for 2 seconds. Then the continuous state evolves to
A2 = (—225 + 18)e~0-004 4 225 = 18.826. The configuration is now in the Preg region of W. It is
safe for the controller to close the stove. Suppose that the environment shuts the door at the same
time. Then the resultant configuration has mode (off, closed) and continuous state (—1, Az). With
u = 0.5, after 1 second, the system arrives at (0, A3), where A3 = (=500+ Az)e~%%1 1 500 = 19.307.
The controller now turns on the stove, with the environment potentially also opening the door.
These joint actions lead the configuration to the mode (on, open) with continuous state (—1, \4),
where Ay = 0.95\3 = 18.342. The trajectory can safely continue with similar controller decisions
to those above.

7.5.2 Deviating from a winning controller strategy

We demonstrate example trajectories where a fictitious controller fails to maintain the configuration
within W. These trajectories are not allowed by the controller we synthesize. They are merely
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q1 = (off, closed)

-1
g2 = (on, closed)

74 = (off, open) 98 = on0pen)

93 = (on, open)

94 = (off, open)

Figure 16: Admissible trajectories: continuous flows are depicted with a dashed line, discrete jumps
with dotted line

included to demonstrate what can go wrong if the control strategy drifts from the synthesized one.

If the controller does not maintain sufficiently high u values, the system is in danger of exiting
W. We again start at mode (on, open) and continuous state (—1,18). See Figure 17. For example,
with u = 0.1, after some time less than 1 second, the system reaches the boundary of W. The
controller should then increase u to its maximum value of 0.5. Suppose it fails to do so. Then when
tc = 0, the continuous state is at (0, A\s) ¢ W where A5 = (—150 + 18)e=0002 4 150 = 18.264 < f,,.
Although the configuration still satisfies the specification, the fact that it is outside W implies
that the controller can no longer guarantee that the configuration remains safe indefinitely. An
environment action to close the door changes the continuous state to (=1, As). The optimal strategy
for the controller is to keep the stove on, leading to the mode (on, closed). With maximal control
u = (.5, after 1 second the temperature will reach no higher than A\g = (—350 + \5)e0902 4 350 =
18.927 < Netosed- Thus if the door opens then, the temperature will drop to 0.95\¢ = 17.98, and
the safety property is violated.

Finally, we provide a trajectory where a fictitious controller makes a discrete action it should
not make. See Figure 17. We start from the same initial configuration as above. This time, the
controller sets u = 0.25. After 1 second, the temperature hits A7 = (—225 + 18)e0002 4 995 —
18.414. This temperature lies between f,, and ﬁojf’ and thus the configuration is not in Preg(W).
If the controller unwisely decides to turn off the stove, disaster can occur, although not immediately.
Suppose the door closes at the same time. Then the new configuration is in mode (off , closed) with
continuous state (—1, A7), which is outside W. Now consider the controller’s best strategy to keep
the temperature from falling below 18. The controller can try to raise the temperature as much
as possible by setting u = 0.5. After 1 second the temperature is at least, but possibly no more
than, Ag = (—500 + A7)e~000% 4 500 = 18.895. If the door opens now, the new temperature will be
0.95)As = 17.950, thereby violating the specification, regardless of whether the controller turns on
the stove to help increase the temperature or not.
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44 = (off , open) 93.= (on, open) 94 = (off  open) g =i (o, anen)

Figure 17: Unadmissible trajectories: controller fails to maintain high enough u value (on the left),
controller chooses unwise control action (on the right).

8 Controller Synthesis of Heater + 1 Timer with Timer Projection

We demonstrate the synthesis procedure for hybrid controllers on our heating system. We show how
to compute the Pre., Pre., and Unavoid_Pre operators at each iteration for the hybrid automaton
shown in Fig. 12. The next subsection describes the parameters in the particular systems we con-
sider. The following subsection examines the discrete controllable and uncontrollable predecessor
operators, and the final one the continuous uncontrollable predecessor operator.

8.1 Computation of discrete controllable and uncontrollable predecessors

We first define three useful auxiliary operators. Let W C C be a set of configurations, and ¢ € Q
be a mode.

1. Let W|g = {z € X | (¢,z) € W} denote the projection of elements of W onto the continuous
state only. The operator |, distributes with respect to N and U.

2. Let W|;2 = {(tc, Tae) | (A, Tue) € W/|,} denote the set of points for which resetting t. to
—A results in a point in W|,.

3. Let W|;A™ = {(te, Tue) | (—A, 7 Tae) € W]y} denote the set of points for which resetting £,
to —A and multiplying T, by 7 results in a point in W|,.

In addition, we also define the sets 759 = {(t¢, Tye) | te € [0,00)} and Ti—a0) = {(te, Tae) | tc €
Restricting W to be W_a and W, the computations of Pre.(W) and Pre.(W) can be refor-
mulated as Prec>o(W_a, W>g) and Pree >o(W_a, W>0) 2, that are equivalent to projecting away

3The sets Prec,—a(W-a,W>o) and Pre.,_a(W-a, Ws0) do not make sense because no jump is enabled when
te =—=A.
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variable ¢, from Pre.(W) and Pre.,(W). Actually Prec>o and Pre.>o depend only from W_p
because every jump resets ¢, to —A, so we write them as Prec>0(W_a) and Pre. >o(W_a).
The set Prec>o(W_-a) is computed mode by mode as:

Prec>o(W_a)ly = W_alg N W—Alza
Prec>o(W_a)lge, = Woalgn W-AI;.,
Prec>o(W_n)lgs = Woalg NW_alg
P "‘ec,QO(W—A)lm = W—Altn n W-AIQ3

The set Pree>0(W_-a) is computed mode by mode ss:

Preexo(W-a)lg = (W-alg, UW_alg,) NW_AL,
Pree>o(W-a)ley = (W-aly, UW_aly) "W,
Prec>0(W_n)lgs = (W-alg UW_aly) N\W_alg,
Pree>0(W-a)law = (W_alg UW_alg,) N W_ala

8.2 Computation of continuous uncontrollable predecessors

In Fig. 18 the set computations for the heater example reported in Fig. 13 are shown again after
elimination of the timer ¢.. Instead of bi-dimensional sets in (tc; Tae), here we obtain vertical
segments in Ty.. Notice that in this example it holds:

Unavoid_Prexo(Pree,>0(W2a) U W, Prec>o(W2n)) = Preso(Wi,a) U,

9 Controller Synthesis of Heater + 2 Timers with Timers Projec-
tion

In Fig. 19 the set computations for the heater example reported in Fig. 13 are shown again after -
elimination of timers ¢, and ¢,. Instead of three-dimensional sets in (teytey Tue), here we obtain
vertical segments in T,,.

10 Conclusions

We considered hybrid systems with lower bounds on the separation between occurrence times of
consecutive discrete moves. These systems arise when modeling minimal delay times between
events, either in the controller, or in the environment. Indeed the placement of such delay con-
straints is often used to prevent the synthesis of Zeno controllers which satisfy the safety property
only by virtue of enforcing infinitely many events in finite time. Our initial attempts to synthesize
controllers using the procedure as expressed in [TLS98] for a heating system with lower bounds
between occurrence times of consecutive discrete moves, first studied in [BBV*99), failed due to
the complexity of the differential games. Motivated by our experience trying to solve this problem,
we provided techniques for solving the differential games in reduced state spaces. The main idea is
to discretize information about whether discrete moves are enabled or not.
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Figure 18: Set computations for heater example in Fig. 13 revisited after elimination of timer 2.
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Step 1

Legend. At each step of the procedure
the interesting sets are projected in the con-
tinuous space T, for all modes g, g2,gs,04-
We portray the segments over Ty, as verti-
cal thick bars; the ¢, grid only shows where
the segments lie in the original space X =
(tc, Tac)- For each state there are 2 bars on
the left (- = —A) and 2 bars on the right
(tc > 0). The first left bar represents the
set WTA-L, (dark gray) and the second left
bar represents Unavoid_Pm_A(m,—P@)lq
(red). The first right bar represent; the
sets Wigle (dark grey), (Prec>o(Wia) N
Wéo)k (light green) and (Pﬂ?e,zo(WiA) n
Wio)le (light violet). The second right
bar represents Unavoid_Preso(Pre.,>o(W:,)U
Wi, Prec,20(W24))lq (orange).
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The practicality of our approach was demonstrated on the heating system [BBV*99] by suc-
cessfully synthesizing the maximal set of controllers with discrete controls and disturbances, and
continuous controls and disturbances and with lower bounds on the separation between occurrence
times of consecutive discrete moves.

Appendix to Section 3

Proof of Lemma 3.1. By definition, a configuration (g, Z) cannot lie in Pre.(W) unless there is
a non-trivial discrete jump enabled at (g, ). Thus we conclude that all configurations in Pre (W)
satisfy ¢, > 0, and we need not consider the sets X_, which has empty intersection with Pre.(W).

In the remaining region, X, we claim that Pre (W) satisfies the required independence prop-
erty for timer-reducibility, and therefore Pre (W) is timer-reduced. Suppose that (g, %) € Pre,(W)
with witness o, i.e., for alls € Mdise(q. 5) (if o # € then it may be s = ¢), we have (g, %, (e, s)) €
W, and so UaeMg“c(q,ﬁ) o(q,%,0.8) CW.

Consider a configuration (g, %) € X, that differs from (g, %) only in the value of the timer. We
will show that it is also contained in Pre.(W) with witness oc._We consider (g, %, 0, s) for each
s € Md5°(q, %) (if 0. # € then it may be s = €). Observe that §(g, £, 0., s) is a subset of W since
the definition of the automaton H implies that the & successor sets for (g, %) and (g, %) match over
the variables in X and the value of t. (being reset to —A). Thus Use Mgisc(q,2)0(0, £,0¢,8) C W,
and so (g, %) € Pre,(W).

We conclude then that the restriction of Pre.(W) to the set X, satisfies the independence
property for timer ¢.. O

Proof of Lemma 3.2. Analogous to the proof of Lemma 3.1. O

Proof of Lemma 38.3. Clearly, it suffices to consider a fixed mode g. The key idea is that
once a configuration is in a region which is independent of a timer variable, then all trajectories
will flow in regions independent of that timer variable.

Consider f(+. By hypothesis, the sets B and E are both independent of the timer. Suppose
that (¢, z,t.) is in Unavoid_Pre(B, E) N X,.. We will show that for all £, such that (g, z,t.) € X,
the configuration (g, z,t,) is also in Unavoid_Pre(B, E).

Since (g, z,t.) is in Unavoid_Pre(B, E), it follows that for all u € U, there exists a d € D such
that the trajectory Z(-) = v,(u, d, (z,t.), ) starting from (z, tc) at time ¢ = 0 enters B at some time
t and is in WaitNE for all 0 < ¢ < . Now consider (g,z,t.). For every control input u € U, choose
the same d € D as for (g,z,t:). The resulting trajectory #(-) matches Z(-) over the domain X by
the definition of the continuous dynamics in A and the fact that f is time-invariant. Then since B
and E are independent of t., Z'(-) is a trajectory for (g,z,t.), i.e., it passes through Wait N E on
its way to B. O

Proof of Lemma 3.4. The set W9 is equal to Good and therefore timer-reduced. Each suc-
cessive W* is calculated using complements and unions (which preserve timer-reduced sets) and the

operators Pre., Pre., and Unavoid_Pre (which also preserve timer-reduced sets, by Lemmas 3.1, 3.2,
and 3.3). O
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Proof of Lemma 3.5. Given W C Q x X, applying the definition of Pre, from Sec. 2.2.3 it is

Prec(W) = {(g,(z,tc)) € @ x X : Jo. € MF*(g, (z,1c)).Vo. € MF*(q, (,1c)). (0c,0¢) # (€ €)
A 8(q, (z,t0), 00, oe) C W}
If t, > 0, then M¥*(q,(z,t:)) = M¥(q,z), Mde(q,(z,t.)) = Mg#e(q, z); moreover, since
(0c; 0e) # (€, €) then (g, (z,tc), 0c, 0c) = (g, T, 0¢,0e) X {~A}, i.e., if §(q, (z,tc), oc, oe) C W then
6(q, %, 0¢,0e) € R(_a)(W). Therefore
Ro)(Prec(W)) = {(¢,7) € @ x X : (g,(x,0)) € Pre.(W)}
= {(g,7) € Q@ x X : Jo. € M¥*°(q, (2,0)).Vo, € M%(q, (z,0)).

(0¢y0¢) # (e,€) A 5(q, (z,0),0c,0.) C W}
= {(¢r)e@xX:3o. € M“f"“(q, z).Vo. € Mgiac(q, z).

(0c,0e) # (€,€) A 6(g,7, 00, oe) C R(—A)(W)}
= Pre(Ra)(W)).

If . < 0, then MZ*%(g, (z,t.)) = MF*(q, (z,t.)) = {€}, and so
R(_n)(Pre.(W)) =0.
Similar equalities hold for the projections of Pre.(W). In conclusion,
Ro)(Prec(W, Mg, M*%)) = Preo(R_a)(W, MZ*¢, M),
Ro)(Pree(W, M, M) = Pre(Ri_p)(W, M, M3+)),

R(_a)(Prec(W, Mo, dise)) = ¢,
R(_p)(Pree(W, Mdiee, i) = 9.

Regarding the two latter equalities, notice that on the left-hand side the argument of R(g) takes

values in Q x X, while on the right-hand side the argument of Pre. (Pre.) takes values in Q x X.
So using the standard Pre operators introduced in Sec. 2.2.3 we have shown how to project Pre,
and Pre. from the extended X space to the original X space. O

Proof of Lemma 3.6. If ¢, > 0, it is true that
1. the arguments of Unavoid_Pre depend only on ¢, > 0 because time flows only ahead,

2. the regions of interest are strips, i.e., rectangles of the type R)(W) x [0,00] by the lemmas
of Sec. 3.2 on preservation of the timer-reduced property.

So we can write

Unavoid_Pre(Pre(W) UW, Pre,(W)))} =
Unavoid_Pre([R(q)(Pree(W)) x [0, 00)] U [R(q)(W) x [0, o0)], R(g)(Prec(W)) x [0, 00)),
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since Pre.(W) = R(g)(Prec(W)) x [0,00) by Lemma 3.2, Pre.(W) = R(g)(Pre.(W)) x [0,00) by
Lemma 3.1 and W = Rg)(W) x [0, 00) by Lemma 3.4. It follows that

R(o)(Unavoid_Pre(Pre.(W) UW, Pre(W))) =
{(g,z) € Q x X|(q, (z,0)) € Unavoid_Pre(Pre(W)UW, Pre,(W)))} =
{(g,2) € @ x X|(q,(2,0)) €
Unavoid_Pre([R o) (Pree(W)) x [0,00)] U [R(g)(W) X [0,00)], Rig)(Prec(W)) x [0,00))} =
{(g,2) € Q x X|(g,z) € Unavoid_Pre(Rg)(Prec(W)) U R()(W), R(o)(Prec.(W))} =
{(a) € @ x X|(q,) € Unavoid_Pre(Prec(R(_a)(W)) U Ry(W), Prec(Ri—ny(W))} =
Unavoid_Pre(Pree(R(_a)(W)) U Rig)(W), Prec(R(—a)(W))),
where the next-to-last identity is established by Lemma 3.5. Notice that on the left-hand side the
argument of R(g) takes values in Q x X, while on the right-hand side the argument of Unavoid_Pre

takes values in @ x X. So, if ¢, > 0, using the standard Unavoid_Pre operator defined in Sec. 2.2.4,
we have shown how to project Unavoid_Pre from the extended X space to the original X space. [

Proof of Lemma 3.7. Let us consider the set Prec(W)U Unavoid_Pre(Pre(W)UW, Pre.(W))
which appears in the repeat cycle of the procedure reported in Fig. 4. Since ¢, € [-A, 00) (because
(g, z,t;) & Wait when t, < —A), then such set can be partitioned as follows

Pree(W) U Unavoid_Pre(Pree(W) U W, Pre,(W)) = UP(p,00) U UP|_a,0) (59)
with UPg ;) and UP|_a o) defined as follows

UPjpo) = [Pree(W)U Unavoid_Pre(Pre.(W)UW, Pre.(W))|N[Q x X x [0,00)], (60)
UP_a0) = [Pre.(W)U Unavoid_Pre(Pre.(W)UW, Pre,(W))|N[Q x X x [-A,0)]. (61)
Since, by Lemma 3.5, Pre.(W)N[Q x X x (—00,0)] = 0, then Pre.(W)N[Qx X X [0,00)] = Pre.(W).
Furthermore, since, by Lemma 3.2, the set Pre.(W) is timer-reduced, under the hypothesis that
W is timer-reduced, Pre.(W)UW is also timer-reduced. Hence, since by Lemma 3.1 Pre.(W) is
timer-reduced, by Lemma 3.3 Unavoid_Pre(Pre.(W)UW, Pre.(W)) is timer-reduced. Then, Eq. 60
gives

UPjo,0) = Pree(W) U [Ro)(Unavoid_Pre(Pre.(W) UW, Pre.(W))) x [0, 00)]. (62)

By Eq. 1, rewrite Eq. 61 as follows

UP_a0) = {(g,2,t) €Q xX x[-A,0) |Vu el 3> 03d €D such that (63)
V7 € [0,%) (g,2(7), tc + 7) € Waitn Pre (W) A
(g,z(),tc+1T) € Prec(W)UW }.
Introduce
UPEpp) ={(9:8,t) €@ x X x [-A,0) | VueU T € (0,~t;] 3d € D such that (64)

(g z{),tc+D)eW A< —t, V
(g,z(—tc)) € R(oy(Pre(W) UW U Unavoid_Pre(Pree(W) UW, Pre,(W))) A = —tc}.
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‘We now show that
UP|_a0) = UPAy) - (65)

e UPl_a0) € UP[f_A_o). Assume (g, £,t;) € UP|_a ) By Eq. 63, for all o' € U, there exists a
time £ > 0 and a disturbance d’ € D such that

vr € [0,f) (q,7'(T),tc+7) € Waitn Prec(W) A (g,2'(E),tc+%) € Prec(W)UW  (66)

where z/(t) denotes the trajectory ¥q(v',d', ,t) for [0,7).

Before detailing a case analysis, we list the following identities that are a direct consequence
of Lemma 3.5 and the definition of Wait:

Pre,(W)N[Q x X x [-A,0)] = Pre(W)N[Qx X x [-A,0)] =0, (67)
Weitn [@ x NX x [-4,0)] = Qx X x [-A,0),
and so
[Pre(W)UW|N[Q x X x [-A,0)] =W N[Q x X x [-4,0)], (68)
Wait N Pre W) N [Q x X x [-A,0)] = Q x X x [-4,0), (69)

— Consider the case when, for a given v/, f < —t.. From 7 € [0,f) C [0,—tc), it is
r<it< —t,and 7+t <0, and from t, > —A and 7 > 0, it is T+ 1. = —A, ie,
—A < 7+t < 0. Therefore Eq. 66 is defined only in the interval [—A,0). Applying
Egs. 68 and 69, Eq. 66 reduces to

(0, 2'(E),tc+E) eW. (70)

— Consider the case when, for a given ¥/, f = —t.. From 7 € [0,f) = [0,-t.), it is
7 < { = —t, and finally —A < 7+ t. < 0. Then, by Eq. 66, the configuration (g, Z,.) is
such that under the control signal 4/ and the disturbance ¢’ as in Eq. 66 at time £ = —t,
it holds

Vr € [0, ~te) (g, 2 (1), tc + 7) € WaitN Prec(W) A
(¢,2'(~tc),0) € Pre,(W)UW,

that is, by Eq. 69, _
(g,2'(—tc)) € Rio)(Pre.(W)UW). (71)

— Consider the case when, for a given v/, £ > —t.. From 7 € [0,—t¢), it is 7 < —¢. and
finally —A < 7+ t. < 0. The configuration (g,%”,0) = (g,z'(—t.),0) is reached by the
hybrid system under inputs ', d’ at time —t.. For any control signal v" € U which steers
such configuration, there exists a signal «' (as in Eq. 66) such that «/(t) = 4" (¢ +£.) for
t > —t,.. Hence, the disturbance d” € D defined by d"(t) = d'(t — t.) for t > 0, with d’
as in Eq. 66, is such that

Vr € [0,tc+1t) (g, 2'(—tc+7),7) € Waitn Prec(W) A
(0,2'(F),tc +1) € Pree(W)UW,
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that is

V7 € [0,t.+%) (g,2"(r),7) € Waitn Prec(W) A
(g,z"(te+%),tc+1) € Pre(W)UW,

where z”(t) = (", d",2",t) for [0,t.+%). Then, by Eq. 1, (g,2",0) = (g,2'(=tc),0) €
Unavoid_Pre(Pre(W) UW, Pre,(W)) and

(¢,2") € Ryo)(Unavoid_Pre(Pre(W) U W, Pre,(W))).

Then, by Eq. 66, the configuration (g, ,¢.) € UP(_a ) is such that for all v’ € U, with
t > —t., under the disturbance d’ as in Eq. 66 we have

V7 € [0, —t) (g, Z'(7), tec + 7) € Wait N Pre (W) A
(¢, 2'(~tc)) € R(o)(Unavoid_Pre(Pre.(W) UW, Pre,(W)))

which, by Eq. 69, is equivalent to
(g,2'(—tc)) € R o)(Unavoid_Pre(Pre.(W) U W, Pre,(W))) (72)

In conclusion, by Eq. 70, Eq. 71 and Eq. 72, given (g,%,t.) € UP[_a ), for all «' € U, the
disturbance d’ as in Eq. 66 is such that

(g, 2@E)te+D) eW AE< =t V
(9:z(~tc)) € Ryg)(Prec(W) UW U Unavoid_Pre(Pre.(W)UW, Pre,(W))) A T=—t.

and, by Eq. 64 (q,%,%;) € UP[’f_A 0)"

. UP[_A 0 2 UP[ La0) Assume (g, %,t;) € UP[ A0 By Eq. 64, for all 4’ € U, there exists a
time £ > 0 and a disturbance d’ € D such that

(g, 2'E)te+DEeW AT< —t, V
(¢,2'(~tc)) € Ryo)(Pree(W) UW U Unavoid_Pre(Pree(W) UW, Pre(W))) A = —t.(73)

where z'(t) denotes the trajectory y4(u',d', £,t) for ¢ € [0, —t.).
— Consider the case when, for a given v/, f < —t.. By Eq. 68 and Eq. 69 condition
(g, 2'@)te+0) eW (74)
in Eq. 73 is equivalent to
T €(0,%) (¢,2"(7),tc + 7) € Wait N Pre(W) A (g, (), t.+ 1) € Pre,(W)UW. (75)

— Consider the case when, for a given u/, { = —t, and (g, z'(~t.)) € Rg)(Pre.(W) U w).
For the configuration (g, &, ¢.) we have that, for all u € U, there exists a time { = —¢, and
a disturbance d = d' € D (with d’ as in Eq. 73 for w’' = u), such that (g, z(f),t.+ %) €
Pre.(W)UW. Moreover, by Eq. 69,

vr € [0,%) (g,2"(7), te + ) € Wait N Pre(W). (76)
In summary,

T € [0,F) (¢,2"(7),tc + 7) € Wait N Pre (W) A (g, 2(8),t. + ) € Pre,(W)UuW. (77)
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— Consider the case when, for a given v, = —t; and (g, '(—t.)) € R(g)(Unavoid_Pre(Pre.(W)U
W, Pre.(W))). For the conﬁguratlon (¢,2",0) = (g,7'(—t.),0), by Eq. 1, for all v’ € U,
there exists a time > 0 and a disturbance d” € D such that

Vr € [0,%) (¢,2"(7),7) € WaitnPrec(W) A (g,2"(),D) € Preo(W)UW  (78)

where z”(t) denotes the trajectory ¢q(u" d",2",t) for t € [0,7). Given any u € U, one
can always associate to u a ' and a u” such that ¥/(t) = u(t) for t € [0,—¢.), and
u"(t) = u(t — t.) for t € [0,%). Hence, the disturbance d € D defined by

[ d@) for t € [0,—2;)
d(t) = { d't+t:) for ¢ € [~t,, —t. + i)

with d’ as in Eq. 73 corresponding to ¢/, and d” as in Eq. 78 corresponding to u”, is such
that the trajectory

z'(t) fort € [0,—-¢.)

:l:(t) = 'll)q(u, d’ j) t) = { Z"(t + tc) for t € [—-tc’ -—tc +i)

satisfies

V1 € [0, ~t.+3) (g, 2(r), tc+7) € Waitn Pref(W) A (g,3(—tc+1),) € Pre(W)UW.
(79)
Indeed, by Eq. 69 condition (g, z(7),7) € Waitn Pre (W) holds also for all 7 € [0, —¢.).

Hence, from Eq. 75, Eq. 77 and Eq. 79 (g, %,t.) € UP_a ).
Substituting Eq. 62 and Eq. 65 in Eq. 59, we have

Pree(W) U Unavoid_Pre(Pre(W) UW, Pre,(W)) = (80)
Pree(W) U [Ryg)(Unavoid_Pre(Pre.(W) UW, Pre.(W))) x [0, 00)] U UPA) -

Since, by Lemma 3.5, R(_a)(Pre.(W)) = 0 and
R(—p)(R(0)(Unavoid_Pre(Prec(W) UW, Pre(W))) x [0, 0))) = 0,
then, by Eq. 80, we have
R(_a)(Unavoid_Pre(Pre,(W) UW, Pre,(W))) = R_a)(UPp ))-
Finally, noticing that in Eq. 64

Pree(W) UW U Unavoid_Pre(Pre.(W) UW, Pre,(W)) =
W U (Prec(W) U Unavoid_Pre(Pree(W) UW, Pre(W))) =
W \ (Prec(W) U Unavoid_Pre(Pre.(W) UW, Pre,(W)))
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and replacing in Eq. 64 ¢, with —A, we obtain

R(_p)(Unavoid_Pre(Pre(W) U W, Pre,(W))) =
{(,2) e Q@ x X |VuelU It € (0,A) 3d € D such that
Jor the trajectory z(t) = v,4(u, d, £,t) we have
(,2(¢),-A+D)eW Af<A vV
(9,2(A)) € Rig)(W \ (Pre(W) U Unavoid_Pre(Pre.(W) UW, Pre.(W)))) A t = A}.

Appendix to Section 4

Proof of Lemma 4.1. By definition, a configuration (g, %) cannot lie in Pre.(W) unless there is
a non-trivial discrete jump enabled at (g, Z). Thus we conclude that all configurations in Pre.(W)
satisfy t. > 0 Vt. > 0, and we need not consider the sets X_ - X_Ac,_, and X_ ,~A., Which all
have empty intersection with Pre.(W).

In each of the five remaining regions, we claim that Pre.(W) satisfies the required independence
properties for timer-reducibility, and therefore Pre.(W) is timer-reduced. Suppose that (g,%) €
Pre (W) with witness g, i.e., for all o, € M%2¢(q, %), we have (o, 0.) # (¢, €)A8(q, &, (0c, 0c)) C W.

o Consider X’.;.,.,.. ‘We examine two cases for the witnessing move o,.

1. Case 1: Suppose o, € T, corresponding to a non-trivial discrete controller move. The
resulting successors states (J,¢ Mdise(g,5) (g, &, o, s) must be contained in W.

Consider the configuration (g, #) € X, that differs from (g, %) only in the value of the
timers. We will show that it is also contained in Pre.(W) with witness ac. We consider
é(g, %, 0c, s) for each s € M disc(g %). First, suppose s = €. Observe that (g, %,0c,€) is a
subset of W since the definition of the automaton H implies that the & successor sets for
(g, %) and (q, £) match over the variables in X and the value of ¢, (being —A.), and the §
successor sets are in the region X —A,+, Which is independent of the value of ¢, since W
is timer-reduced. Second, suppose s € L. In this case, the successors have both timers
reset with {. = —A. and t, = —A,, and &(g, £, 0¢, 0) = 8(q, F, oc, oe), by definition of H,
and this set is contained in W since (g, Z) € Pre.(W). Thus |, Figise(q,2) (g, %,0¢,8) C
W, and so (g, £) € Pre.(W).

2. Case 2: Suppose witnessing discrete move is e, corresponding to a empty discrete con-
troller move. Then by definition of Pre., we have e ¢ Md¢(q, F), and Use Mgioc(g,) 5(q, %€, )
must be contained in W.

Consider the configuration (g,%) € 5(.,.,.*. that differs from (g,Z) only in the value of
the timers. We will show that it is also contained in Pre (W) with witness e. By
definition of H, we know that e ¢ M3*¢(q, £), since it is not in M disc(g. ). We consider
&(q,%,¢,s) for each (non-e) s € M%2¢(g,z). In all elements of &(g, £, €, ), the timer .
has the same value as in %, and t, = —Ae¢, by definition of H. Since J(q, Z,¢,8) lies in
the timer-reduced set W, in the region X+,-A¢ where t. is not relevant, it follows that
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5(q,.'i:,e, s), which matches S(q, Z,¢,s) except for the value of t., is contained in W as
required.

We conclude then that the restriction of Pre.(W) to the set )~(+,+ satisfies the independence
property for both timers ¢, and ¢..

o Consider )2.,.,_. As before we examine two cases for the discrete controller move o, that
witnesses existence in Pre.(W).

— Case 1: Suppose o, € Y, i.e., that it corresponds to a non-trivial discrete controller
move. Then the resulting successors states U“,E Mdise(g,) 0(q, %, o, 8) are a subset of W.

Consider the configuration (g, %) € X — that differs from (g,%) only in the value of the
timer ¢.. We will show that it also lies in Pre.(W) with witness 0., by showing that
Us,e Fgioc(g,z) 0(: £, 0¢, 5) is a subset of W.

First, observe that s € Mg*'“(q, Z) implies s = ¢, by construction of A (it is impossible
for the environment to make a non-silent move when ¢, < 0). Similarly, s € M%#¢(q, £)
implies s = e. Thus it suffices to establish that &(q, #, o, eCwW.
For the silent discrete environment move €, we have that the § successors sets for (g,%)
and (g, £) match over the variables in X X7, and the value of ¢ (being —A.), by definition
of H, ie., §(q, &, 00, €) = d(g, %, 0¢,€), and so 6(g, £, 0., €) C W since &(q, %, 0c,€) C W.
— Case 2: Suppose 0. = e. Then, by definition of Pre,, it must be impossible for the
environment to make a silent move at (g, %). By definition of H, it is also impossible for
the environment to make a non-silent move, since t, < 0. However, since a move must
always be possible, we obtain a contradiction, and thus o, cannot be €.

We conclude that the restriction of Pre.(W) to the set X. +,— satisfies the independence prop-
erty for the timer ..

o The arguments for the remaining three cases (X4 -a,, X_a,+, and X_,+) are similar.

O
Proofof Lemma 4.2. Analogous to the proof of Lemma 4.1. O

Proof of Lemma 4.3. Clearly, it suffices to consider a fixed mode g. The proof considers the
intersection of the set Unavoid_Pre(B, E) with each of the partitioning regions Xa’p in turn. The
key idea is that once a configuration is in a region which is independent of a timer variable, then
all trajectories will flow in regions independent of that timer variable.

e Consider X +,+- By hypothesis, the sets B and E are both independent of each timer. Suppose
that (g, ,c,t.) is in Unavoid_Pre(B, E)NX.. 4. We will show that for all ¢/ and ¢/ such that
(9,2, e te) € X4 4, the configuration (g, z,t.,t.) is also in Unavoid_Pre(B, E).

Since (g, ,tc,te) is in Unavoid_Pre(B, E), it follows that for all u € U, there exists a d € D
such that the trajectory Z(-) = wq(u_,_c.i, (z,tc, te), ) starting from (z, ¢, te) at time ¢ = 0 enters
B at some time f and is in Wait N E for all 0 < ¢ < . Now consider (g,z,t.,t.). For every
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control input u € U, choose the same d € D as for (g, z,t,t). The resulting trajectory &'(-)
matches Z(-) over the domain X by the definition of the continuous dynamics in H. Then
since B and E' are independent of ¢, and t., &/(-) is a trajectory for (g, z,t.,t.), i.e., it passes
through Wait N E on its way to B.

e Consider X, _. The sets B and E are independent of ¢, in X,._. Suppose (g,z, te,te) is in

Unavoid_Pre(B,E) N X, _. We will show that for all ¢, such that (g,z,%,,t) € X4, the
configuration (g, z, ., t.) is also in Unavoid_Pre(B, E).
Since (g, ,1c,t.) is in Unavoid_Pre(B, E), it follows that for all u € U, there exists a d € D
such that the witnessing trajectory (-) = v,(u, d, (z,,1t.),-) enters B at some time  and
isin Wait NE for all 0 < ¢/ < Z. We claim that the same witnesses d € D as for (g, 7, &, te)
suffice for (g,z,1;,te). This is because the resulting trajectories '(-) = Yo(u, d, (z,tl,te),)
remain in X, _UX, 4, both of which are independent of t,, and since Z(-) matches Z'(-) over
variables other than t..

e The remaining cases are similar.

O

Proof of Lemma 4.4. The set W? is equal to Good and therefore timer-reduced. Each suc-
cessive W is calculated using complements and unions (which preserve timer-reduced sets) and the
operators Pre., Pre., and Unavoid_Pre (which also preserve timer-reduced sets, by Lemmas 4.1,4.2,
and 4.3). O

Proof of Lemma 4.5. Let us prove the first equality. Given W C Q x X , applying the
definition of Pre. from Sec. 2.2.3 it is

Pre.(W) = {(g,(z,tc,te)) € (@ x X): 30, € Mf""(q, (z,te,te)).Vo. € Mg"“(q, (z,tc, te)).
(UC)UG) # (6, 6) A g(qy (:c,tc,te),ac, Ue) g W}

If t. > 0 and t, > 0, then MZ*°(q, (z,tc, t.)) = M%=(q, z), Mdi*(q, (2, terte)) = M2, moreover,
since (o¢, 0¢) # (€, €), then

- 6(q,,0¢,0¢) X {(te, —Ae)} Oc=€Noe#¢
(g, (z,tc,te), 0c,0e) = { 8(q,2,0¢,0e) X {(=Acyte)} et eAge=ce
6(q,2,0c,0¢) X {(=Ac, —Ae)} oc#eNdeF €

i.e., if 8(q, (z, teste), 0c, 0e) € W and (oc,0e) # (€, €), then, either 8(g, z, ¢, oe) € R,-a,)(W), or
6(q,z,0¢,€) C R_a.0)(W), or 6(q,z,0¢,0¢) C R_a.,-a.)(W). Therefore

{(g,2) € (@ x X) : (q,(x,0,0)) € Pre (W)}
= {(g,2) € (@ x X) : Jo. € MZ*(q, (z,0,0)).
Vo, € Mfi’c(q, (2,0,0)). (0c,0¢) # (6,€) A S(q, (z,0,0),0.,0.) C W}
= {(g,2) € (Q x X) : Vo € M¥*(g,z) \ {e}.
8(g,7,€,0¢) € Wio_)(—Ac) V Joc € MF*(q,z) \ {€}.

Ro,0)(Prec(W))
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[6(q,2,0c,€) C W(-,O)("Ac) A Yo € Mg isc(q, z) \ {e}.
(g, z,0,, o.) C W(-,-Ae)(-Ac)]}
= {(2,2) € (@ x X) : Vo € M**(q,z) \ {e}.
6(q,z,¢6,0e) C Wio_y(—A¢) V [Foc € M&ee(q, z) \ {e}.
6(q,7,0c,6) S W_g)(—A) A Jo. € Mdee(q,z) \ {e}.
Voo € ME5(g,2)\ {e}. 6(a,,06,02) € Wi_ -y (~Ad)]}
= Prec(Ro,)(W)(—Ae)) U [Prec(R(—0)(W)(—Ac)) N Prec(R— —a,)(W)(=A0))].

Similar considerations prove the other identities. O
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