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Abstract

The Flamenco system [7, 6] is a web search interface that allows users
to browse through large data sets using predefined hierarchical faceted
metadata. It is built on top of a conventional relational database and
currently scales to collections of several tens of thousands of items. In the
current implementation, the system translates each user query into multi-
ple SQL group-by commands in order to obtain query preview information
for possible future queries. These group-by’s take up a significant fraction
of the query processing time. In this note, we describe an optimization
that allows us to speed up the group-by computations dramatically. Our
ideas have some similarity to the work of Beyer and Ramakrishnan on
computing iceberg data cubes [4].

1 Introduction

The Flamenco system [7, 6] seeks to provide an innovative search interface
for large collections of data on the web by closely integrating text search and
browsing via hierarchical faceted metadata. By faceted we mean that metadata
consists of several orthogonal attributes and by hierarchical we mean that each
facet’s values can be represented as a rooted tree via a partial ordering relation,
or more generally as a directed acyclic graph or DAG.

As a motivating example of such a data set, we consider Spiro, a collection
of roughly 40,000 architectural images from the architecture department at UC
Berkeley. Each image is annotated with facets like its location, material or
architect. These facets can be hierarchical, as in the case of location (e.g.
NorthAmerica → USA → California → Berkeley) or multi-valued, as in the
case of material (e.g. a building can be made of both wood and brick). The
multi-valued case is an important one and we shall be return to it again in
subsequent sections.

Prior research on web search interfaces has established the importance of
query previews [16] for possible next choices. In other words, a user should
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know ahead of time how many results he or she will obtain if a link is chosen.
This eliminates the frustrating experience of obtaining zero or very few results
one finds in many current search systems. Less research has been done on
providing some form of approximate query previews (which could be as simple
as just providing a binary indicator - “no results” versus “at least one result”),
and it is not clear if such an approach would be either helpful to real users or
significantly more efficient from a computational point of view. For the time
being, we will consider only exact query previews, though we will revisit this
issue later.

In the Flamenco system, providing these query previews involves computing
a separate SELECT and GROUP BY SQL command for each facet in the
metadata schema, each time the user makes a query to the system. In other
words, if we had k facets in the metadata schema, each user query would be
translated into k separate database GROUP BY queries. In practice, our collec-
tions usually have around ten facets, so this represents a slow down of a roughly
a factor of ten over a system that does not provide query previews. In the
current implementation, this computation is a major bottleneck in the running
time for processing a query, severely limiting the scalability of the system.

In this note, we describe an optimization for this operation similar to the
work of Beyer and Ramakrishnan on iceberg data cubes [4]. In section 2, we
give some basic background on data cubes and algorithms for computing them.
In section 3, we describe our techniques, and in section 4 we give experimental
results for how well the techniques do in practice. For all our experiments, we
use the Spiro collection as a test bed. Finally, we conclude in section 5.

2 Background on Data Cubes

The data cube operation was introduced by Gray et al. in 1996 [9] as a general-
ization of the standard SQL GROUP BY command. Given a collection of data
and a set of k dimensions, the CUBE BY operator aggregates the items by
every subset of the k dimensions 1. For example, given a prototypical transac-
tion database with dimensions like customers, stores, and time, a business may
want to view its sales data aggregated by customer and store, time and store,
just store by itself and so on. The CUBE BY operator allows the user to fetch
all these views (in fact, all possible views) with a single simple (and hopefully,
well-optimized) SQL command. The literature on data cubes has grown quite
large over the last few years, and a number of good summaries of existing data
cube work are available (see for example [4]) so here we summarize only the

1In the database and datacube literature, the term “dimension” is usually used synony-
mously with the term “attribute”. In the context of the Flamenco system, we shall reserve
the term “attribute” for the parts of the metadata which are not used by the system for
navigation, but which are nevertheless associated with data items. In the Spiro example, an
example of an attribute is the photo identification number of the image. Furthermore, we will
handle the tree structure of the facets by treating each level of each facet as an independent
dimension, so from now on, we shall eschew use of the terms “attributes” and “facets” and
simply refer to “dimensions”
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main trends and ideas most relevant to our work.
Clearly, for any reasonable data set, it is infeasible either to materialize

(precompute) the entire data cube or to compute the entire cube on the fly in
real time. Instead, the approach taken by virtually all researchers has been to
preselect a portion of the cube to materialize, and using this, to compute the
rest of the cube if necessary.

While the general CUBE BY operator is defined to handle all the standard
SQL aggregation functions (i.e., sum, mean, median, max, etc.), for our appli-
cation we shall only require the sum aggregation function. This simplifies things
considerably since the sum is an example of an algebraic aggregation function,
meaning that more restrictive aggregates can be used to compute less restrictive
ones. In other words, given an aggregate A on some set of facets, one can derive
the correct aggregate for any subset of those facets directly from A without
having to access the raw data. This property also inspires the definition of the
parent-child aggregate relationship: aggregate A is a child of aggregate B if and
only if it can be derived directly from B without reaccessing the full database.
Using this relationship, we can then define a partial ordering on the 2k possible
aggregates in the data cube, which is called the aggregate lattice.

The first data cube algorithms all pre-computed the aggregate lattice in a
top-down fashion [19, 20, 13, 11, 10, 5, 2]. Clearly, if one precomputes the root of
the lattice, then all subsequent aggregates can be derived from this one directly.
The root aggregate will also be the largest table since it has the most aggregate
dimensions and therefore the most rows. So, assuming that the cost of deriving
a child aggregate from its parent is proportional to (or at least monotonic with)
the number of rows in the parent, it may be advantageous to also precompute
lower level aggregates of the aggregate lattice which have fewer rows than the
root. Therefore, the basic strategy of these algorithms is to start from the root
(top) of the lattice and search down the lattice until a level is found where
the gain in running time ceases to be significant relative to the required space
needed to store the additional aggregates. Various papers also explored other
ideas such as using cost functions other than the number of rows in the table
[3], how to choose indices along with the materialized views [11], how to solve
the problem for non-algebraic aggregation functions [12], and how to implement
the CUBE BY operation efficiently on a computer cluster [15].

Later, Ross and Srivastava [17, 18] pointed out that although in theory the
size of the data cube grows exponentially in the number of dimensions, for real
world datasets, the datacube usually becomes extremely sparse as the number
of dimensions increase. For exmaple, suppose we have k dimensions and the
number of distinct values for each dimension (the cardinality of the dimension)
are n1, ..., nk respectively, then in theory the root aggregate could have Πk

i=1ni

rows, but in practice, many of these rows are empty: there is no item that
satisfies all the criteria exactly. In fact, the larger the number of dimensions,
the more likely the datacube is to be sparse.

In an important paper, Beyer and Ramakrishnan [4] then observed that
by doing data cube computations top-down in the aggregate lattice, the algo-
rithm computes the most restrictive (i.e. the sparsest) aggregates in the lattice,
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whereas in practice, usually what one is most interested in are the densest
aggregates. In many applications, sets with only a handful of items are less
interesting than sets with many items. They introduced a new variant of the
original CUBE BY operation called the ICEBERG CUBE 2 for which the
user specifies some parameter X as the minimum support threshold necessary
for a set to be considered interesting, and only sets containing enough items to
meet this threshold are computed. They then proposed the bottom-up com-
putation of the aggregate lattice for the computation of the iceberg cube. The
rule is to stop the computation whenever the support of the aggregates becomes
lower than the threshold parameter, X .

Although our work is most similar to that of the data cube community, there
are several other lines of work which are related. A number of researchers have
considered the problem of computing approximate group-bys and approximate
data cubes. In particular, Archarya et al. [1] introduced the technique of con-
gressional samples for computing approximate group-bys and Margaritis et al.
[14] used Bayesian networks to approximate the data cube algorithms. However,
these methods suffer from fairly high error rates (roughly 10 to 15%) and are
extremely poor for very small set sizes. Since our application requires accurate
measurements of sets with support as low as one element, approximate methods
are not suitable for our application and we will not consider them further.

3 Our approach

For the following discussion, we shall assume that we have topologically sorted
each facet hierarchy and split it into its constituent levels. We will call these
levels the dimensions of the database and treat each one as independent. In
the case where the facet is flat, the dimension corresponds to the facet itself.
Otherwise in general, a facet has more than one dimension. Usually, the facet
hierarchy is a tree and this simply corresponds to taking each level of the tree
(defined as all the nodes at some distance from the root) to be a dimension.

In it’s most basic form, the Flamenco system allows users to navigate through
a collection of items by choosing, at each step, one facet (e.g. architect) and one
value from that facet (e.g. Gehry) thus narrowing the result set to only those
items whose metadata includes the assignment architect = Gehry. In the next
step, the user repeats this process, thus narrowing the result set further until it
becomes small enough to exhaustively scan through the entire result set.

Now recall that the “cardinality” of a dimension is defined to be the number
of distinct values that dimension can take. Our approach is based on the fol-
lowing intuition: suppose that all dimensions are completely independent from
one another and suppose we can partition the dimensions into those that have
high cardinality (e.g., building name) and those with low cardinality (e.g., pe-
riod). When the user begins by selecting (i.e., aggregating by) a value from a

2The name “iceberg” is a reference to the work on iceberg queries by Fang et al. [8].
An iceberg is a general database query which returns all items with value above a certain
user-specified threshold.
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high cardinality dimension like “building name” to begin with, the working set
size is immediately cut down to a very small number. Therefore, all subsequent
group-by information on this small set can be quickly computed by the trivial
brute-force approach (i.e. computing all the group-by’s individually from the
raw data). On the other hand, when the user picks a value from a low cardi-
nality dimension, the set size is large and so the brute-force approach is very
inefficient. In this case we would like to precompute the answers and store them
in a database table. In general, such precomputation takes up a large amount
of storage space, but since our dimension has low cardinality, the resulting table
has relatively few rows. This simple insight is the crux of our method. To sum-
marize the main idea once again: query preview information can be trivially
computed when the set size is small, otherwise, if the set size is big, it can be
precomputed and stored in a table because the low cardinality implies the table
will be small in size. In the rest of this note, we shall abuse the definition of
the data cube somewhat by referring to this table as a data cube, even though
technically it is not the full cube.

Any time the user picks a high cardinality facet, all subsequent group-bys
are efficient because the initial select command reduces the number of elements
that need to be considered by a huge factor. Also, every combination of low
cardinality facets is precomputed and therefore efficient. The only case which
is still slow is if the user repeatedly selects a chain of low cardinality facets (e.g.
material = brick followed by architect = Frank Lloyd Wright followed by Loca-
tion = N. America etc.) such that the set size remains big after each select. In
this case, only the query previews corresponding to other low cardinality facets
are available from the precomputed cube table, while the other query previews
corresponding to high cardinality facets still need to be manually computed.
Since the precomputed previews can be retrieved virtually instantaneously, and
we can typically precompute about half of all the facets, we can speed up this
query by approximately a factor of two.

Now our problem has now been reduced to choosing the appropriate dimen-
sions to be included in the cube table. Obviously, in general, it will not always
be the case that we can partition the facets into two obvious clusters - those
with high cardinality and those with low cardinality - so it will be necessary to
have an algorithm that in general chooses which dimensions to preaggregate.
We consider this problem in the following sections.

4 Handling Multi-Valued Facets

One feature of our data sets which, to our knowledge, other researchers have
not yet considered and which we have thus far ignored, is the problem of mul-
tiple values. In this case, the sum function is no longer an algebraic aggregate
function. (Recall that the definition of an algebraic aggregate function is one
for which a less restrictive aggregate can be derived directly from a more re-
strictive one.) For example, consider the case where a single item x is assigned
two materials, wood and brick. In this case the cube table would have a count
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Material People Location
Brick Architect N. America
Metal Historical Figure S. America
Glass Agency W. Europe

Table 1: Example of three facets with their facet values. Note that although
in this example each facet has three values, in general each facet can have an
arbitrary number of values.

of one for each of wood and brick. However, if we then tried to aggregate the
counts, this single item, x, would then contribute two to the total count instead
of one.

Our solution to this problem is to store the counts for all possible subsets
of the cube dimensions rather than just the largest one. Then, rather than
performing group-by operations on the largest aggregate to compute the smaller
ones, we just precompute everything and store them all. Note that this does not
increase the space complexity in an assymptotic sense. Previously the worst-
case space complexity was Πk

i=1nk while now this has increased to Πk
i=1(nk +1).

In practice, we see that it involves an increase by only a modest constant factor
(a factor of three in our experiments).

Now we can see in hindsight that the data structure we have achieved by
this line of thinking is precisely the structure produced by the bottom-up data
cube algorithm of Beyer and Ramakrishnan. In both problems, the crucial ob-
servation is that the small sets need not be precomputed. In their applications,
this was because the small sets were deemed to not be of interest to the user.
In our case, while we are most definitely interested in these small sets, it turns
out that these sets are easy to compute via a brute-force approach.

Although the previous discussion may seem slightly complicated, the final
idea is extremely simple, as can be easily seen from an example. Suppose we
select two facets to be in our datacube table with facet values as shown in Table
1. The resulting data cube table would look something like the example in Table
2.

Then to get the query preview information for any query that consists of a
combination of the facets in the data cube table, one can retrieve the counts by
simply indexing into the table and reading off the count values.

4.1 Choosing the cube dimensions

Beyer and Ramakrishnan [4] noted that the dimension ordering is vital to the
performance of their iceberg cube algorithm, and they gave three criteria for
ranking dimensions:

• Cardinality: The cardinality of a dimension is the number of distinct
values of the dimension. A lower cardinality implies fewer rows in the
cube table, so we prefer to choose low cardinality facets for the cube.
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Material People Location Count
Brick Architect N. America 2780
Brick Architect S. America 8
Brick Architect W. Europe 3420
Brick Historical Figure W. Europe 6
Brick Agency N. America 4
Metal Architect N. America 1152
Metal Architect S. America 6
Metal Architect W. Europe 1644
Metal Agency N. America 22
Glass Architect N. America 1247
Glass Architect S. America 86
Glass Architect W. Europe 1934
Glass Agency N. America 22

Table 2: Example of a data cube table using the facet values in table 1 and
actual count values from the Spiro dataset

• Skew: In the database literature the skew is defined as the square of the `2

norm of the facet interpreted as a vector. Intuitively, the higher the skew,
the farther away the facet is from the uniform distribution. The effective
cardinality of the facet is lower if the skew is high because it is likely that
subsequent facets will not appear at all in some of the small sets.

• Correlation: Two facets are highly correlated if their values are highly
correlated (for e.g. in table 1, if Agency is highly correlated with Brick
and Architect with Glass, we would say People and Material are highly
correlated.) Again, the effective cardinality is lower if a facet is highly
correlated with a previous facet.

There are a few rules of thumb we can assume about our data sets. In
practice, we can generally assume that the dimensions of different facets are
essentially independent. For example, a building in North America is equally
likely to be made of brick or steel. It should not be the case that all the buildings
in the database that are in North American are also made of steel, because
then having separate facets at all is meaningless for searching. Therefore, we
can assume that the metadata is well constructed and that dimensions from
different facets look independent.

Similarly, since some dimensions come from the same facet (i.e. one is an
ancestor of the other in a single facet tree or DAG), these facets are very well
correlated. For example, it is always the case that a building with second level
location “USA” also has first level location “N. America”. Similarly, there are no
items in the collection assigned with the metadata “W. Europe” and “USA”.
This means that this cell in the datacube table will be empty and therefore
not stored at all. Thus, in practice, it is probably best to concentrate only on
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dimensions corresponding to the top levels in the facet trees, and not to worry at
all about levels lower in the tree. Not only does including these lower levels not
affect the performance much (since they are well-correlated with their ancestor
levels) but also, because of the way the Flamenco browsing system works, a user
usually selects all the ancestor levels on some path down the facet tree to get
to a particular level 3, and therefore we are almost certain to see more queries
to the system consisting of high level queries as opposed to lower ones.

In our experiments we used the heuristic of considering only top level di-
mensions, ordering them by their cardinality, and greedily selecting facets until
the datacube table become too large. Other heuristics are possible, but as we
have already discussed above, for real world data sets, it seems unlikely that
anything will significantly outperform the trivial heuristic we have chosen.

5 Experiments

We implemented our ideas in the Flamenco system for the Spiro collection of
architectural photographs. The resulting datacube table contains a total of
21373 rows. Note that the items table that stores the items in the collection
plus their attributes by itself has over 36000 rows, so our table does not represent
a huge overhead. In addition, we require a full index on the table. The time
for building the table is not trivial but since this is a preprocessing step, we
feel this is quite reasonable. In all, six facets were chosen for the cube - role,
location, object type, material, style and concept.

5.1 Queries from the Logs

The Flamenco system has been in use by UI researchers and art or architecture
professionals for some time now and we have now accumulated a large log of
their searches. Even when we exclude non-standard Flamenco searches such as
search box queries and queries from within UC Berkeley and from the Google
web crawler, we are left with over 80000 queries, of which more some 26000 are
unique. Since our system caches most result pages, we assume that a query is
slow only the first time it is sent to the server and so we restricted our attention
only to the unique queries 4. In other words, we assumed that all subsequent
trials of the same query would hit the cache and thus take negligible time. (Note
that this is not always true since not all queries are cached - however, this only
gives the old brute-force implementation an advantage.)

We sampled around 1000 unique queries and issued them to our database
5 times and took the median time. We used the median because we saw a
fairly high variance in processing time (most likely due to the presence of other

3In some cases, the user may jump directly to some level of a facet hierarchy without first
visiting its ancestors via a free text search or by expanding the search from the endgame.

4In fact, our method can be seen as complentary to the existing system cache. The existing
cache stores the small item sets because these are efficient to store. Our method takes care of
the large item sets.
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Implementation Previous New
Average time 2.42 seconds 0.883 seconds

Max time 49.2 seconds 24.79 seconds
num queries over 10 sec 48 9
num queries over 5 sec 148 28
num queries over 1 sec 442 223

Table 3: Experimental Results

high priority processes running on the same server) and the median removes the
effect of such outliers. In some cases, a server or network error stops the query
from running, in which case we throw out the query. After this, we were left
with 1017 queries for which we have reliable timing information.

Two primary measures were used to measure the effectiveness of our im-
plementation versus the existing implementation: the average time taken per
query and the maximum time taken per query. Recall that our methods are
expected to perform roughly the same as the old implementation for low car-
dinality result sets and beat the old implementation by a factor of roughly 2
or more for the high cardinality result sets. Furthermore, only the database
group-by processing was timed. In the real system, the system also has to fetch
the images (in our case over the network) and send them again over the network
to the browser. Due to the high variance in network congestion, we exclude this
portion of the query from our timing experiments.

In addition, we analyzed how many of the queries in each implementation
were “slow” - defined as taking more than 1, 5 or 10 seconds. We summarize
the results of the experiments in table 3

Finally we sorted the queries in order of slowest to fastest and plotted the
time they took both on a regular scale and with the x-axis on a log scale in figures
5.1 and 5.1. From these figures it is quite apparent that our implementation
works much better than the old implementation. However, from these two
figures it looks as if the plots might be Zipf distributed which would indicate
that most of the weight in the distribution occurred in the tail, thus implying
that almost all the queries were short queries to begin with anyway.

6 Discussion

The Flamenco interface is only one possible web search interface, suitable for
particular types of data collections and users. For certain applications, it is
possible that a checkbox-style interface may be more desirable. For example, in
such an interface it would be simpler to select a large number of facet terms and
to provide functionality for boolean ANDs and ORs in a way the user can easily
understand. Examples of such interfaces can be easily found on the World Wide
Web.
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The Achilles’ heel of checkbox interfaces is that the user usually checks
too many boxes and is then left with the frustrating experience of very few
results or worse, no results at all. Therefore an interesting question is whether
query previews can be generated on the fly for these interfaces. In such an
implementation, as each box is checked, the count of the implied result set
would be updated.

A trivial way to implement this would be to take our techniques and transfer
them over to the other interface. However, our methods are still too slow for
checkbox interfaces. The slow down from having to compute query previews for
each click would defeat the purpose of having this interface in the first place.
One possibility, however, is that an approximate solution might be given if it
can be implemented significantly more efficiently than an exact method.
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