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Abstract

While classical kernel-based classifiers are based on a single kernel, in practice it
is often desirable to base classifiers on combinations of multiple kernels. Lanckriet
et al. (2004) considered conic combinations of kernel matrices for the support vector
machine (SVM), and showed that the optimization of the coefficients of such a combi-
nation reduces to a convex optimization problem known as a quadratically-constrained
quadratic program (QCQP). Unfortunately, current convex optimization toolboxes can
solve this problem only for a small number of kernels and a small number of data
points; moreover, the sequential minimal optimization (SMO) techniques that are es-
sential in large-scale implementations of the SVM cannot be applied because the cost
function is non-differentiable. We propose a novel dual formulation of the QCQP as
a second-order cone programming problem, and show how to exploit the technique of
Moreau-Yosida regularization to yield a formulation to which SMO techniques can be
applied. We present experimental results that show that our SMO-based algorithm is
significantly more efficient than the general-purpose interior point methods available in
current optimization toolboxes.

1 Introduction

One of the major reasons for the rise to prominence of the support vector machine (SVM)
is its ability to cast nonlinear classification as a convex optimization problem, in particular
a quadratic program (QP). Convexity implies that the solution is unique and brings a suite
of standard numerical software to bear in finding the solution. Convexity alone, however,
does not imply that the available algorithms scale well to problems of interest. Indeed,
off-the-shelf algorithms do not suffice in large-scale applications of the SVM, and a second
major reason for the rise to prominence of the SVM is the development of special-purpose
algorithms for solving the QP (Platt, 1998, Joachims, 1998, Keerthi et al., 2001).
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Recent developments in the literature on the SVM and other kernel methods have em-
phasized the need to consider multiple kernels, or parameterizations of kernels, and not a
single fixed kernel. This provides needed flexibility and also reflects the fact that practical
learning problems often involve multiple, heterogeneous data sources. While this so-called
“kernel learning” problem can in principle be solved via cross-validation, several recent
papers have focused on more efficient methods for kernel learning (Chapelle et al., 2002,
Grandvalet and Canu, 2003, Lanckriet et al., 2004, Ong et al., 2003). In this paper we
focus on the framework proposed by Lanckriet et al. (2004), which involves joint optimiza-
tion of the coefficients in a conic combination of kernel matrices and the coefficients of a
discriminative classifier. In the SVM setting, this problem turns out to again be a convex
optimization problem—a quadratically-constrained quadratic program (QCQP). This prob-
lem is more challenging than a QP, but it can also be solved in principle by general-purpose
optimization toolboxes such as Mosek (Andersen and Andersen, 2000). Again, however,
this existing algorithmic solution suffices only for small problems (small numbers of ker-
nels and data points), and improved algorithmic solutions akin to sequential minimization
optimization (SMO) are needed.

While the kernel learning problem is convex, it is also non-smooth—it can be cast as the
minimization of a non-differentiable function subject to linear constraints (see Section 3.1).
Unfortunately, as is well known in the non-smooth optimization literature, this means that
simple local descent algorithms such as SMO may fail to converge or may converge to
incorrect values (Bertsekas, 1995). Indeed, in preliminary attempts to solve the QCQP
using SMO we ran into exactly these convergence problems.

One class of solutions to non-smooth optimization problems involves constructing a
smooth approximate problem out of a non-smooth problem. In particular, Moreau-Yosida
(MY) regularization is an effective general solution methodology that is based on inf-
convolution (Lemarechal and Sagastizabal, 1997). It can be viewed in terms of the dual
problem as simply adding a quadratic regularization term to the dual objective function.
Unfortunately, in our setting, this creates a new difficulty—we lose the sparsity that makes
the SVM amenable to SMO optimization. In particular, the QCQP formulation of Lanck-
riet et al. (2004) does not lead to an MY-regularized problem that can be solved efficiently
by SMO techniques.

In this paper we show how these problems can be resolved by considering a novel dual
formulation of the QCQP as a second-order cone programming (SOCP) problem. This
new formulation is of interest on its own merit, because of various connections to existing
algorithms. In particular, it is closely related to the classical maximum margin formulation
of the SVM, differing only by the choice of the norm of the inverse margin. Moreover, the
KKT conditions arising in the new formulation not only lead to support vectors as in the
classical SVM, but also to a dual notion of “support kernels”—the kernels that are active in
the conic combination. We thus refer to the new formulation as the support kernel machine
(SKM).

As we will show, the conic dual problem of the SKM is exactly the kernel learning
problem of Lanckriet et al. (2004).1 Moreover, given this new formulation, we can design a

1It is worth noting that this dual problem cannot be obtained directly as the Lagrangian dual of the
QCQP problem—Lagrangian duals of QCQPs are semidefinite programming problems.
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Moreau-Yosida regularization which preserves the sparse SVM structure, and therefore we
can apply SMO techniques.

Making this circle of ideas precise requires a number of tools from convex analysis. In
particular, Section 3 defines appropriate approximate optimality conditions for the SKM in
terms of subdifferentials and approximate subdifferentials. These conditions are then used
in Section 4 in the design of an MY regularization for the SKM and a SMO-based algorithm.
We present the results of numerical experiments with the new method in Section 5.

2 Learning the kernel matrix

In this section, we (1) begin with a brief review of the kernel learning problem of Lanckriet
et al. (2004), (2) introduce the support kernel machine (SKM), and (3) show that the dual
of the SKM is equivalent to the kernel learning primal.

2.1 Kernel learning problem

In the kernel learning problem, we assume that we are given n data points (xi, yi), where
xi ∈ X , for some input space X , and where yi ∈ {−1, 1}. We also assume that we are givenm
matrices Kj ∈ R

n×n, which are assumed to be symmetric positive semidefinite (and might
or might not be obtained from evaluating a kernel function). We consider the problem
of learning the best linear combination

∑m
j=1 ηjKj of the kernels Kj with nonnegative

coefficients ηj > 0 and with a trace constraint tr
∑m

j=1 ηjKj =
∑m

j=1 ηj trKj = c, where
c > 0 is fixed. Lanckriet et al. (2004) show that this setup yields the following optimization
problem:

min ζ − 2e>α
(L) w.r.t. ζ ∈ R, α ∈ R

n

s.t. 0 6 α 6 C, α>y = 0
α>D(y)KjD(y)α 6 trKj

c ζ, j ∈ {1, . . . ,m},

where D(y) is the diagonal matrix with diagonal y, e ∈ R
n the vector of all ones, and

C a positive constant. The coefficients ηj are recovered as Lagrange multipliers for the
constraints α>D(y)KjD(y)α 6 trKj

c ζ.

2.2 Support kernel machine

We now introduce a novel classification algorithm that we refer to as the “support kernel
machine (SKM).” It will be motivated as a block-based variant of the SVM and related
margin-based classification algorithms. But our underlying motivation is the fact that the
dual of the SKM is exactly the problem (L). We establish this equivalence in the following
section.
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2.2.1 Linear classification

In this section we let X = R
k. We also assume we are given a decomposition of R

k as a
product of m blocks: R

k = R
k1 × · · · ×R

km , so that each data point xi can be decomposed
into m block components, i.e. xi = (x1i, . . . , xmi), where each xji is in general a vector.

The goal is to find a linear classifier of the form y = sign(w>x + b) where w has the
same block decomposition w = (w1, . . . , wm) ∈ R

k1+···+km . In the spirit of the soft margin
SVM, we achieve this by minimizing a linear combination of the inverse of the margin and
the training error. Various norms can be used to combine the two terms, and indeed many
different algorithms have been explored for various combinations of `1-norms and `2-norms.
In this paper, our goal is to encourage the sparsity of the vector w at the level of blocks; in
particular, we want most of its (multivariate) components wi to be zero. A natural way to
achieve this is to penalize the `1-norm of w. Since w is defined by blocks, we minimize the
square of a weighted block `1-norm, (

∑m
j=1 dj ||wj ||2)2, where within every block, an `2-norm

is used. Note that a standard `2-based SVM is obtained if we minimize the square of a block
`2-norm,

∑m
j=1 ||wj ||22, which corresponds to ||w||22, i.e., ignoring the block structure. On

the other side, if m = k and dj = 1, we minimize the square of the `1-norm of w, which
is very similar to the LP-SVM proposed by Bradley and Mangasarian (1998). The primal
problem for the SKM is thus:

min 1
2(
∑m

j=1 dj ||wj ||2)2 + C
∑n

i=1 ξi

(P ) w.r.t. w ∈ R
k1 × · · · × R

km , ξ ∈ R
n
+, b ∈ R

s.t. yi(
∑

j w
>
j xji + b) > 1− ξi,∀i∈{1, . . . , n}.

2.2.2 Conic duality and optimality conditions

For a given optimization problem there are many ways of deriving a dual problem. In our
particular case, we treat problem (P ) as a second-order cone program (SOCP) (Lobo et al.,
1998), which yields the following dual (see Appendix A for the derivation):

min 1
2γ

2 − α>e
(D) w.r.t. γ ∈ R, α ∈ R

n

s.t. 0 6 α 6 C, α>y = 0
||∑i αiyixji||2 6 djγ, ∀j ∈ {1, . . . ,m}.

In addition, the Karush-Kuhn-Tucker (KKT) optimality conditions give the following com-
plementary slackness equations:

(a) αi(yi(
∑

j w
>
j xji + b)− 1 + ξi) = 0, ∀i

(b) (C − αi)ξi = 0, ∀i
(c)

( wj

||wj ||2
)>(−∑i αiyixji

djγ

)
= 0, ∀j

(d) γ(
∑
djtj − γ) = 0, ∀j.

Equations (a) and (b) are the same as in the classical SVM, where they define the notion
of a “support vector.” That is, at the optimum, we can divide the data points into three
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Figure 1: Orthogonality of elements of the second-order cone K2 = {w = (u, v), u ∈ R
2, v ∈

R, ||u||2 6 v}: two elements w, w′ of K2 are orthogonal and nonzero if and only if they
belong to the boundary and are anti-proportional (see text for details).

disjoint sets: I0 = {i, αi = 0}, IM = {i, αi ∈ (0, C)}, and IC = {i, αi = C}, such that points
belonging to I0 are correctly classified points not on the margin and such that ξi = 0; points
in IM are correctly classified points on the margin such that ξi = 0 and yi(

∑
j w

>
j xji+b) = 1,

and points in IC are points on the “wrong” side of the margin for which ξi > 0 (incorrectly
classified if ξi > 1) and yi(

∑
j w

>
j xji + b) = 1− ξi (the points whose indices i are in IM or

IC are the support vectors).
While the KKT conditions (a) and (b) refer to the index i over data points, the KKT

conditions (c) and (d) refer to the index j over components of the input vector. These
conditions thus imply a form of sparsity not over data points but over “input dimensions.”
Indeed, two non-zero elements (u, v) and (u′, v′) of a second-order cone Kd = {(u, v) ∈
R
d×R, ||u||2 6 v} are orthogonal if and only if they both belong to the boundary, and they

are “anti-proportional” (Lobo et al., 1998), that is ∃η > 0 such that ||u||2 = v, ||u′||2 =
v′, (u, v) = η(−u′, v′) (see Figure 1).

Thus, if γ > 0, we have:
• if ||∑i αiyixji||2 < djγ, then wj = 0,
• if ||∑i αiyixji||2 =djγ, then ∃ηj > 0, such that wj=ηj

∑
i αiyixji, ||wj ||2 =ηjdjγ.

Sparsity thus emerges from the optimization problem. Let J denote the set of ac-
tive dimensions, i.e., J (α, γ) = {j, ||∑i αiyixji||2 = djγ}. We can rewrite the optimality
conditions as

∀j, wj = ηj
∑

i αiyixji, with ηj = 0 if j /∈ J .
Equation (d) implies that γ =

∑
j dj ||wj ||2 =

∑
j dj(ηjdjγ), which in turn implies

∑
j∈J

d2
jηj = 1.

2.2.3 Kernelization

We now remove the assumption that X is a Euclidean space, and consider embeddings of
the data points xi in a Euclidean space via a mapping φ : X → R

f . In correspondence
with our block-based formulation of the classification problem, we assume that φ(x) has m
distinct block components φ(x) = (φ1(x), . . . , φm(x)). Following the usual recipe for kernel
methods, we assume that this embedding is performed implicitly, by specifying the inner
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product in R
f using a kernel function, which in this case is the sum of individual kernel

functions on each block component:

k(xi, xj) = φ(xi)>φ(xj) =
∑m

s=1 φs(xi)
>φs(xj)

=
∑m

s=1 ks(xi, xj).

We now “kernelize” the problem (P ) using this kernel function. In particular, we consider
the dual of (P ) and substitute the kernel function for the inner products in (D):

min 1
2γ

2 − e>α
(DK) w.r.t. γ ∈ R, α ∈ R

n

s.t. 0 6 α 6 C, α>y = 0
(α>D(y)KjD(y)α)1/2 6 γdj ,∀j,

where Kj is the j-th Gram matrix of the points {xi} corresponding to the j-th kernel.
The sparsity that emerges via the KKT conditions (c) and (d) now refers to the kernels

Kj , and we refer to the kernels with nonzero ηj as “support kernels.” The resulting classifier
has the same form as the SVM classifier, but based on the kernel matrix combination
K =

∑
j ηjKj , which is a sparse combination of “support kernels.”

2.3 Equivalence of the two formulations

By simply taking dj = trKj

c , we see that problem (DK) and (L) are indeed equivalent—thus
the dual of the SKM is the kernel learning primal. Care must be taken here though—the
weights ηj are defined for (L) as Lagrange multipliers and for (DK) through the anti-
proportionality of orthogonal elements of a second-order cone, and a priori they might
not coincide: although (DK) and (L) are equivalent, their dual problems have different
formulations. It is straightforward, however, to write the KKT optimality conditions for
(α, η) for both problems and verify that they are indeed equivalent. One direct consequence
is that for an optimal pair (α, η), α is an optimal solution of the SVM with kernel matrix∑

j ηjKj .

2.4 Related machines

Taking the non-squared block `1-norm leads to a generalization of the LP-SVM (Bradley
and Mangasarian, 1998) to the multi-dimensional case. However, this formulation, although
it can also be written as an SOCP, cannot be cast easily as a non-smooth convex minimiza-
tion with linear constraints, and thus our efficient optimization techniques cannot be used.
Indeed, the dual problem can be shown to be equal to

min. −α>e
w.r.t. α ∈ R

n

s.t. 0 6 α 6 C, α>y = 0
||∑i αiyixji||2 6 dj , ∀j ∈ {1, . . . ,m}
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Another related machine is obtained by generalizing the `2-norm soft margin SVM, i.e.,
replace C

∑
i ξi by C

2

∑
i ξ

2
i . It leads to the following dual:

min.
1
2
γ2 +

1
2C
||α||22 − α>e

w.r.t. α ∈ R
n

s.t. α > 0, α>y = 0
||∑i αiyixji||2 6 dj , ∀j ∈ {1, . . . ,m}

This formulation would enable to learn the constant 1/C together with the linear combina-
tion of kernels, by simply adding the identity matrix as the (m+1)-th kernel matrix (Lanck-
riet et al., 2004).

3 Optimality conditions

In this section, we formulate our problem (in either of its two equivalent forms) as the
minimization of a non-differentiable convex function subject to linear constraints. Exact and
approximate optimality conditions are then readily derived using subdifferentials. In later
sections we will show how these conditions lead to a MY-regularized algorithmic formulation
that will be amenable to SMO techniques.

3.1 Max-function formulation

A rearrangement of the problem (DK) yields an equivalent formulation in which the con-
straints are moved into the objective function:

min max
j

{
1

2d2
j

α>D(y)KjD(y)α− α>e
}

(S) w.r.t. α ∈ R
n

s.t. 0 6 α 6 C, α>y = 0.

We let Jj(α) denote 1
2d2j
α>D(y)KjD(y)α−α>e and J(α) = maxj Jj(α). Problem (S) is the

minimization of the non-differentiable convex function J(α) subject to linear constraints.
Let J (α) be the set of active kernels, i.e., the set of indices j such that Jj(α) = J(α). We
let Fj(α) ∈ R

n denote the gradient of Jj , that is Fj = ∂Jj

∂α = 1
d2j
D(y)KjD(y)α− e.

3.2 Optimality conditions and subdifferential

Given any function J(α), the subdifferential of J at α ∂J(α) is defined as (Bertsekas, 1995):

∂J(α) = {g ∈ R
n, ∀α′, J(α′) > J(α) + g>(α′ − α)}.

Elements of the subdifferential ∂J(α) are called subgradients. When J is convex and differ-
entiable at α, then the subdifferential is a singleton and reduces to the gradient. The notion
of subdifferential is especially useful for characterizing optimality conditions of non-smooth
problems (Bertsekas, 1995).
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The function J(α) defined in the earlier section is a pointwise maximum of convex differ-
entiable functions, and using subgradient calculus, we can easily see that the subdifferential
∂J(α) of J at α is equal to the convex hull of the gradients Fj of Jj for the active kernels,
that is:

∂J(α) = convex hull{Fj(α), j ∈ J (α)}.
The Lagrangian for (S) is equal to L(α) = J(α)− δ>α+ ξ>(α−Ce) + bα>y, where b ∈ R,
ξ, δ ∈ R

n
+, and the global minimum of L(α, δ, ξ, b) with respect to α is characterized by the

equation
0 ∈ ∂L(α)⇔ δ − ξ − by ∈ ∂J(α).

The optimality conditions are thus the following: α, (b, δ, ξ) is a pair of optimal primal/dual
variables if and only if:

δ − ξ − by ∈ ∂J(α)
(OPT0) ∀i, δiαi = 0, ξi(C − αi) = 0

α>y = 0, 0 6 α 6 C.

As before, we define IM (α) = {i, 0 < αi < C}, I0(α) = {i, αi = 0}, IC(α) = {i, αi = C}.
We also define, following (Keerthi et al., 2001), I0+ = I0∩{i, yi = 1} and I0− = I0∩{i, yi =
−1}, IC+ = IC ∩ {i, yi = 1}, IC− = IC ∩ {i, yi = −1}. We can then rewrite the optimality
conditions as

ν − be = D(y)
∑

j∈J (α) d
2
jηjFj(α)

η > 0,
∑

j d
2
jηj = 1

(OPT1) ∀i ∈ IM ∪ I0+ ∪ IC−, νi > 0
∀i ∈ IM ∪ I0+ ∪ IC−, νi 6 0.

3.3 Approximate optimality conditions

Exact optimality conditions such as (OPT0) or (OPT1) are generally not suitable for nu-
merical optimization. In non-smooth optimization theory, one instead formulates optimality
criteria in terms of the ε-subdifferential (Hiriart-Urruty and Lemaréchal, 1993), which is
defined as

∂εJ(α) = {g ∈ R
n,∀α′, J(α′) > J(α)− ε+ g>(α′ − α)}.

When J(α) = maxj Jj(α), then the ε-subdifferential contains (potentially strictly) the
convex hull of the gradients Fj(α), for all ε-active functions, i.e., for all j such that
maxi Ji(α) − ε 6 Jj(α). We let Jε(α) denote the set of all such kernels. So, we have
Cε(α) = convex hull{Fj(α), j ∈ Jε(α)} ⊆ ∂εJ(α).

Our stopping criterion, referred to as (ε1, ε2)-optimality, requires that the ε1-subdifferential
is within ε2 of zero, and that the usual KKT conditions are met. That is, we stop whenever
there exist ν, b, g such that

g ∈ ∂ε1J(α)
(OPT2) ∀i ∈ IM ∪ I0+ ∪ IC−, νi > 0

∀i ∈ IM ∪ I0+ ∪ IC−, νi 6 0
||ν − be−D(y)g||∞ 6 ε2.
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Note that for one kernel, i.e., when the SKM reduces to the SVM, this corresponds
to the approximate KKT conditions usually employed for the standard SVM (Platt, 1998,
Keerthi et al., 2001, Joachims, 1998). For a given α, checking optimality is hard, since even
computing ∂ε1J(α) is hard in closed form. However, a sufficient condition for optimality
can be obtained by using the inner approximation Cε1(α) of this ε1-subdifferential, i.e., the
convex hull of gradients of ε1-active kernels. Checking this sufficient condition is a linear
programming (LP) existence problem, i.e., find η, ν, b such that:

η > 0, ηj = 0 if j /∈ Jε1(α),
∑

j d
2
jηj = 1

(OPT3) g =
∑

j∈Jε1 (α) d
2
j
∂Jj

∂α =
∑

j∈Jε1 (α) ηjD(y)KjD(y)α− e
∀i ∈ IM ∪ I0+ ∪ IC−, νi > 0
∀i ∈ IM ∪ I0+ ∪ IC−, νi 6 0
||ν − be−D(y)g||∞ 6 ε2,

which is equivalent, following the same classical arguments as for the SVM (Keerthi et al.,
2001), to find η such that:

η > 0, ηj = 0 if j /∈ Jε1(α),
∑

j d
2
jηj = 1

(OPT4) max
i∈IM∪I0−∪IC+

{(K(η)D(y)α)i − yi} 6 min
i∈IM∪I0+∪IC−

{(K(η)D(y)α)i − yi}+ 2ε2,

where K(η) =
∑

j∈Jε1 (α) ηjKj . Given α, we can determine whether it is (ε1, ε2)-optimal by
solving the potentially large LP (OPT3). If in addition to having α, we know a potential
candidate for η, then a sufficient condition for optimality is that this η verifies (OPT3),
which doesn’t require solving the LP. Indeed, the iterative algorithm that we present in
Section 4 outputs a pair (α, η) and only these sufficient optimality conditions need to be
checked.

3.4 Improving sparsity

Once we have an approximate solution, i.e., values α and η that satisfy (OPT3), we can
ask whether η can be made sparser. Indeed, if some of the kernels are close to identical,
then some of the η’s can be potentially removed—for a general SVM, the optimal α is not
unique if data points coincide, and for a general SKM, the optimal α and η are not unique if
data points or kernels coincide. When searching for the minimum `0-norm η which satisfies
the constraints (OPT3), we can thus consider a simple heuristic approach where we loop
through all the nonzero ηj and check whether each such component can be removed. That
is, for all j ∈ Jε1(α), we force ηj to zero and solve the LP. If it is feasible, then the j-th
kernel can be removed.

4 Regularized support kernel machine

The function J(α) is convex but not differentiable. It is well known that in this situation,
steepest descent and coordinate descent methods do not necessarily converge to the global
optimum (Bertsekas, 1995). SMO unfortunately falls into this class of methods. Therefore,
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in order to develop an SMO-like algorithm for the SKM, we make use of Moreau-Yosida
regularization. In our specific case, this simply involves adding a second regularization term
to the objective function of the SKM, as follows:

min 1
2(
∑

j dj ||wj ||2)2 + 1
2

∑
j a

2
j ||wj ||22 + C

∑
i ξi

(R) w.r.t. w ∈ R
k1 × · · · × R

km , ξ ∈ R
n
+, b ∈ R

s.t. yi(
∑

j w
>
j xji + b) > 1− ξi, ∀i ∈ {1, . . . , n},

where (aj) are the MY-regularization parameters.

4.1 Dual problem

The conic dual is readily computed as (see Appendix B for proof):

min
1
2
γ2 +

1
2

∑
j

(µj − γdj)2
a2
j

−
∑
i

αi

w.r.t. γ ∈ R+, µ ∈ R
m, α ∈ R

n

s.t. 0 6 αi 6 C, α>y = 0
||∑i αiyixji||2 6 µj , ∀j.

If we define the function G(α) as

G(α) = min
γ∈R+,µ∈Rm


1

2
γ2 +

1
2

∑
j

(µj − γdj)2
a2
j

−
∑
i

αi, ||
∑

i αiyixji||2 6 µj ,∀j

 ,

then the dual problem is equivalent to minimizing G(α) subject to 0 6 α 6 C and α>y = 0.
We prove in Appendix B that G(α) is differentiable and we show how to compute G(α) and
its derivative in time O(m logm).

4.2 Solving the MY-regularized SKM using SMO

Since the objective function G(α) is differentiable, we can now safely envisage an SMO-like
approach, which consists in a sequence of local optimizations over only two components of
α. The ε-optimality conditions for the MY-regularized SKM are exactly the same as for the
SVM, but with a different objective function (Platt, 1998, Keerthi et al., 2001), i.e., there
exists ν, b such that:

(OPT5) ∀i ∈ IM ∪ I0+ ∪ IC−, νi > 0
∀i ∈ IM ∪ I0+ ∪ IC−, νi 6 0
||ν − be−D(y)∇G(α)||∞ 6 ε,

which is equivalent to:

(OPT6) max
i∈IM∪I0−∪IC+

{yi∇G(α)i} 6 min
i∈IM∪I0+∪IC−

{yi∇G(α)i}+ 2ε,

10



Thus, choosing the pair of indices can be done in a similar way as proposed for the SVM,
by using the fast heuristics of Platt (1998) and Keerthi et al. (2001). In addition, caching
and shrinking techniques (Joachims, 1998) that prevent redundant computations of kernel
matrix values can also be extended.

The only difference between our setting and the SVM setting is the line search, which
cannot be performed in closed form for the MY-regularized SKM. However, since each line
search is the minimization of a convex function, we can use efficient one-dimensional root
finding, such as Brent’s method (Brent, 1973).

4.3 Solving the SKM with the MY-regularized SKM. Theoretical bounds.

In order to be able to check efficiently the approximate optimality condition (OPT3) of
Section 3.3, we need estimates for α and η from the solution of the MY-regularized SKM
obtained by SMO. It turns out that the KKT conditions for the MY-regularized SKM also
lead to support kernels, i.e., there is a sparse nonnegative weight vector η such that α is a
solution of the SVM with the kernel K =

∑
j ηjKj . However, in the regularized case, those

weights η can be obtained directly from α as a byproduct of the computation of G(α) and
its derivative. Those weights η(α) do not satisfy

∑
j d

2
jηj = 1, but can be used to define

weights η̃(α) that do (we give expressions for η(α) and η̃(α) in Appendix C).
Let ε1, ε2 be the two tolerances for the approximate optimality conditions for the SKM.

In this section, we show that if (aj) are small enough, then an ε2/2-optimal solution of the
MY-regularized SKM α, together with η̃(α), is an (ε1, ε2)-optimal solution of the SKM, and
an a priori bound on (aj) is obtained, that does not depend on the solution α (for a proof,
see Appendix D).

Theorem 1 Let 0 < ε < 1. Let y ∈ {−1, 1}n and Kj, j = 1, . . . ,m be m positive semidef-
inite kernel matrices. Let dj and aj, j = 1, . . . ,m, be 2m strictly positive numbers. If α
is an ε-optimal solution of the MY-regularized SKM, then (α, η̃(α)) is an (ε1, ε2)-optimal
solution of the SKM, with

ε1 = nCmax
j

a2
j

d2
j

(2 + max
j

a2
j

d2
j

) and ε2 = ε+ Cmax
j

a2
jMj

d4
j

,

where Mj = max
u

∑
v

|(Kj)uv|.

Note that the bound on ε1 is independent of the kernel matrices.

Corollary 2 With the same assumptions and

||a||2∞6min
{

min
j
d2
j

ε1
nC

1 + (1 + ε1
nC )1/2

,
ε2/2

maxj
MjC

d4j

}
,

if α is an ε2/2-optimal solution of the MY-regularized SKM, then (α, η̃(α)) is an (ε1, ε2)-
optimal solution of the SKM.

11



4.4 Solving the SKM with the MY-regularized SKM: a minimization
algorithm.

We solve the SKM by solving the MY-regularized SKM with decreasing values of the regu-
larization parameters (aj). In our simulations, the kernel matrices are all normalized, i.e.,
have unit diagonal, so we can choose all dj equal. We use aj(κ) = κ and dj(κ) = (1 − κ),
where κ is a constant in [0, 1]. When κ = 1, the MY-regularized SKM is exactly the SVM
based on the sum of the kernels, while when κ = 0, it is the non-MY-regularized SKM.

The algorithm is as follows: given the data and precision parameters ε1, ε2, we start
with κ = 1, which solves the SVM up to precision ε2/2 using standard SMO, and then
update κ to µκ (where µ < 1) and solve the MY-regularized SKM with constant κ using
the adjusted SMO up to precision ε2/2, and so on. At the end of every SMO optimization,
we can extract weights η̃j(α) from the α solution, as shown in Appendix C, and check
the (ε1, ε2)-optimality conditions (OPT3) of the original problem (without solving the LP).
Once they are satisfied, the algorithm stops.

Since each SMO optimization is being performed on a differentiable function with Lips-
chitz gradient and SMO is equivalent to steepest descent for the `1-norm (Joachims, 1998),
classical optimization results show that each of those SMO optimizations is finitely conver-
gent (Bertsekas, 1995). Corollary 1 directly implies there are only a finite number of such
optimizations; thus, the overall algorithm is finitely convergent.

Additional speed-ups can be easily achieved here. For example, if for successive values
of κ, some kernels have a zero weight, we might as well remove them from the algorithm and
check after convergence if they can be safely kept out. In simulations, we use the following
values for the free parameters: µ = 0.5, ε1/n = 0.0005, ε2 = 0.0001, where the value for
ε1/n corresponds to the average value this quantity attains when solving the QCQP (L)
directly using Mosek.

5 Simulations

We compare the algorithm presented in Section 4.4 with solving the QCQP (L) using
Mosek for two datasets, ionosphere and breast cancer, from the UCI repository, and nested
subsets of the adult dataset from Platt (1998). The basis kernels are Gaussian kernels on
random subsets of features, with varying widths. We vary the number of kernels m for fixed
number of data points n, and vice versa. We report running time results (Athlon MP 2000+
processor, 2.5G RAM) in Figure 2. Empirically, we obtain an average scaling of m1.1 and
n1.4 for the SMO-based approach and m1.6 and n4.1 for Mosek. The algorithm presented
in this paper scales empirically better than Mosek, both in the number of kernels and data
points.

6 Conclusion

We have presented an algorithm for efficient learning of kernels for the support vector
machine. Our algorithm is based on applying sequential minimization techniques to a
smoothed version of a convex non-smooth optimization problem. The good scaling with
respect to the number of data points makes it possible to learn kernels for large scale

12



Ionosphere, n = 351
m SMO Mosek
6 2 4
12 3 8
24 54 20
48 56 51
96 88 162
192 166 548

Breast cancer, n = 683
m SMO Mosek
3 11 11
6 20 17
12 54 45
24 141 120
48 149 492
96 267 764

Adult, n = 1605
m SMO Mosek
3 20 92
6 23 205
12 36 1313
24 119 *
48 618 *
96 957 *

Adult, m = 4
n SMO Mosek
450 17 4
750 29 17
1100 44 52
1605 72 114
2265 121 5455
3185 202 8625
4781 410 *
6212 670 *

Figure 2: Running times in seconds for Mosek and SMO. (Top) Ionosphere and breast cancer
data, with fixed number of data points n and varying number of kernels m. (Bottom) Adult
dataset: (left) with fixed n and varying m, (right) with fixed m and varying n (∗ means
Mosek ran out of memory).
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problems, while the good scaling with respect to the number of basis kernels opens up the
possibility of using this algorithm to perform feature selection for high dimensional domains
by letting it select kernels that define non-linear mappings on subsets of input features.

Appendix A. Dual of the SKM

The primal problem (P) can be put in the following equivalent form, where Kk = {(u, v) ∈
R
k+1, ||u||2 6 v} is the second-order cone of order k (we now omit the summation intervals,

with the convention that index i goes from 1 to n and index j goes from 1 to m):

min 1
2u

2 + C
∑

i ξi

w.r.t. u ∈ R, t ∈ R
m, b ∈ R, ξ ∈ R

n
+, (wj , tj) ∈ Kkj , ∀j

s.t. yi(
∑

j w
>
j xji + b) > 1− ξi, ∀i∑

j djtj 6 u.

The cone Kk is self-dual so the conic Lagrangian corresponding to the problem is

L = 1
2u

2+C
∑

i ξi−
∑

iαi(yi(
∑

j w
>
j xji+b)−1+ξi)

−
∑
i

βiξi+γ(
∑
j

djtj−u)−
∑
j

(λ>j wj+µjtj),

with the following domain for α, β, γ, λ, µ:

αi ∈ R+, βi ∈ R+, γ ∈ R+, (λj , µj) ∈ (Kkj )
∗ = Kkj .

We have the following derivatives:

∂uL = u− γ ∂tjL = djγ − µj
∂wjL = −∑i αiyixji − λj ∂bL = −∑i αiyi
∂ξiL = C − αi − βi

Setting them to zero and recomputing L, we get the dual function: g(α, β, γ, λ, µ) = −1
2γ

2+∑
i αi defined on the domain defined by αi > 0, βi > 0, γ > 0, ||λj ||2 6 µj , djγ − µj =

0,
∑

i αiyixji + λj = 0,
∑

i αiyi = 0, C − αi − βi = 0. After elimination of dummy variables,
we get problem (D):

min 1
2γ

2 − α>e
(D) w.r.t. γ ∈ R, α ∈ R

n

s.t. 0 6 α 6 C, α>y = 0
||∑i αiyixji||2 6 djγ, ∀j ∈ {1, . . . ,m}.

Appendix B. Dual of the MY-regularized SKM

The primal problem for the MY-regularized SKM is given by (R):

min 1
2(
∑

j dj ||wj ||2)2 + 1
2

∑
j a

2
j ||wj ||22 + C

∑
i ξi

w.r.t. w ∈ R
k1 × · · · × R

km , ξ ∈ R
n
+, b ∈ R

s.t. yi(
∑

j w
>
j xji + b) > 1− ξi, ∀i ∈ {1, . . . , n}.

14



The conic Lagrangian for this problem is equal to

L = 1
2u

2 + 1
2v + C

∑
i ξi −

∑
i αi(yi(

∑
j w

>
j xji + b)− 1 + ξi)

−
∑
i

βiξi + γ(
∑
j

djtj − u)−
∑
j

(λ>j wj + µjtj) + ρ(
∑
j

a2
j t

2
j − v)

with the following domain for α, β, γ, λ, µ, ρ:

αi ∈ R+, βi ∈ R+, γ ∈ R+, ρ ∈ R+, (λj , µj) ∈ (Kdj )
∗ = Kdj

We have the following derivatives:

∂uL = u− γ ∂tjL = djγ − µj + 2ρa2
j tj

∂wjL = −∑i αiyixji − λj ∂bL = −∑i αiyi
∂ξiL = C − αi − βi ∂vL = 1

2 − ρ
The dual is thus the following:

minimize
1
2
γ2 +

1
2

∑
j

(µj − γdj)2
a2
j

−
∑
i

αi

with respect to γ ∈ R+, µj ∈ R
m, α ∈ R

n

such that 0 6 αi 6 C

||∑i αiyixji||2 6 µj∑
i

yiαi = 0.

KKT conditions The KKT slackness conditions are

(a) ∀i, αi(yi(
∑

j w
>
j xji + b)− 1 + ξi) = 0 (c) ∀j, (wj

tj

)>(−∑i αiyixji
µj

)
= 0

(b) ∀i, (C − αi)ξi = 0 (d) γ(
∑

j djtj − γ) = 0

Thus, as in the classical SKM case, if ||∑i αiyixji||2 < µj , then wj = 0 and tj = 0,
and if ||∑i αiyixji||2 = µj , then there exists ηj > 0, such that wj = ηj

∑
i αiyixji and

tj = ||wj ||2 = ηjµj . There are thus still support kernels (and support vectors). The
difference is that more kernels are selected than in the classical SKM. We can also define
ηj to be zero for the non-support kernels, which implies that for all j, wj = ηj

∑
i αiyixji

and tj = ||wj ||2 = ηjµj .
In addition we have: djγ − µj + a2

j tj = 0 from the zero derivative of the Lagrangian.

Thus at optimum, we have tj = ηjdjγ

1−ηja2
j
, which in turn implies that

∑
j d

2
j

ηj

1−ηja2
j

= 1. Let

η̃j = ηj

1−ηja2
j
; we have

∑
j d

2
j η̃j = 1 and we have:

|ηj − η̃j | =
η2
ja

2
j

1− ηja2
j

= a2
jηj η̃j 6

a2
j η̃j

d2
j

. (1)

In the plain SKM case, solving an LP is necessary to compute η from the optimum α.
In the case of the MY-regularized SKM, however, it is possible to associate with any α (not
necessarily optimum), η(α) and η̃(α) such that if α is optimum, then η(α) and η̃(α) are
the values derived from the KKT conditions. We show how to compute η(α) and η̃(α) in
Appendix C.
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Input: Kj ∈ R
n×n, Kj � 0, j = 1, . . . ,m. y ∈ {−1, 1}n. d, a ∈ R

m
+ . α ∈ R

n.

Algorithm:
1. γj = 1

dj
(α>D(y)KjD(y)α)1/2, j = 1, . . . ,m.

1. Sort the γj : γj1 6 · · · 6 γjm . Set γj0 = 0.
2. Set k = m+ 1, u = 0, v = 0

2. Do k ← k− 1, u← u+
d2
jk

a2
jk

and v ← v +
d2
jk
γjk

a2
jk

, until −(u+ 1)γjk−1
+ v is positive.

Output: γ(α) = v/(u+ 1), µj(α) = djγj if γj > γ, 0 otherwise

Figure 3: Computation of G(α): minimization with respect to (γ, µ).

Appendix C. Computation of G(α)

In this appendix, we show how to compute G(α) defined as:

G(α) = minγ∈R+,µ∈Rm{1
2γ

2 + 1
2

∑
j

(µj−γdj)
2

a2
j

−∑i αi, ||
∑

i αiyixji||2 6 µj ,∀j},

Let γj(α) = 1
dj
||∑i αiyixji||2. We can first maximize over each µj ; a short calculation

reveals:
min

µj>||∑i αiyixji||2
(µj − γdj)2 = d2

j max(0, γj − γ)2,

which implies that

G(α) = min
γ
{1
2
γ2 +

1
2

∑
j

d2
j

a2
j

ψ(γ2
j , γ)−

∑
i

αi},

where ψ(x, y) = max(0,
√
x−y)2. The function ψ is continuously differentiable, with partial

derivatives equal to
(
∂ψ
∂x ,

∂ψ
∂y

)
= (1− y/√x, 2y− 2

√
x) if y 6 √x, and zero otherwise. Also,

for given x, it is a piecewise quadratic differentiable function of y. We thus need to minimize
a piecewise quadratic differentiable strictly convex function of γ, which can be done easily
by inspecting all points of discontinuity of the second derivative, which requires sorting the
sequence (γj). The complexity of the algorithm presented in Figure 3 is O(m logm).

Because of strict convexity the minimum with respect to γ is unique and denoted γ(α).
In addition, this uniqueness implies that G(α) is differentiable and that its derivative is
equal to:

∇G(α) =
1
2

∑
j

d2
j

a2
j

∂ψ

∂x
(γ2
j (α), γ(α))∇γ2

j (α)− e

=
∑

j∈J ′(α)

1
a2
j

(
1− γ(α)

γj(α)

)
D(y)KjD(y)α− e,

16



with J ′(α) the set of indices for which γj(α) > γ(α) (and thus also µj(α) = djγj(α)).

We define ηj(α) = 1
a2

j

(
1− γ(α)

γj(α)

)
if γj(α) > γ(α), and zero otherwise, so that ∇G(α) =∑

j ηj(α)D(y)KjD(y)α− e. We also define η̃j(α) = ηj(α)/(1− a2
jηj(α)), which is equal to

1
a2

j

(
γj(α)
γ(α) − 1

)
if γj(α) > γ(α), and zero otherwise.

The optimality condition for γ(α) is that the derivative of 1
2γ

2+ 1
2

∑
j

d2j
a2

j
ψ(γ2

j , γ) is equal

to zero (if the minimum is attained at the border zero, then we can prove that the derivative
is also zero). We thus have:

γ(α) +
∑

j∈J ′(α)

d2
j

a2
j

(γ(α)− γj(α)) = 0 (2)

This immediately implies that
∑

j d
2
j η̃j(α) = 1. Writing down the full KKT conditions for

the MY-regularized SKM shows that if α is optimum, then the weights ηj(α) are exactly
the weights of the linear combination of kernels.

The weights η̃j(α) provide an estimate of the weights for the SKM, and can be used to
check optimality. Corollary 1 shows that if (aj) is small enough, then if α is approximately
optimal for the MY-regularized SKM, the pair (α, η̃(α)) is approximately optimal for the
SKM.

Appendix D. Proof of Theorem 1

In this proof, since α is fixed, all notations omit α. The proof goes in two steps: we first show
that H =

∑
j d

2
j η̃j

∂Jj

∂α is an ε1-subgradient of J(α), and then show that this approximate
subgradient verifies the approximate optimality conditions (OPT2) for the SKM, for the
given ε2.

Since H is a convex combination of the gradients ∂Jj

∂α (because
∑

j d
2
j η̃j = 1), a sufficient

condition for H to be an ε1-subgradient of J(α) is that all indices j such that η̃j > 0 are
ε1-active, i.e., if we let J ′ denote the set of indices j such that η̃j > 0, then the sufficent
condition is J ′ ⊂ Jε1 or minj∈J ′ Jj > maxj∈{1,...,m} Jj−ε1. Using the notations of Appendix
C, this is equivalent to minj∈J ′ γ2

j > maxj∈{1,...,m} γ2
j − 2ε1.

By construction of γ and η̃, J ′ contains the index with maximal γj , and minj∈J ′ γ2
j > γ2.

It is thus sufficient to upper bound maxj∈J ′ γ2
j − γ2.

From Eq. (2), we get γ =
∑

j∈J ′
d2j
a2

j
(γj − γ) > d2j0

a2
j0

(γj0 − γ), where j0 = argmaxj∈J ′ γj .

This implies:

max
j∈J ′ γ

2
j − γ2 = (γj0 − γ)(γj0 + γ)

6
a2
j0

d2
j0

γ(γj0 + γ) 6
a2
j0

d2
j0

γ((1 +
a2
j0

d2
j0

)γ + γ)

6
a2
j0

d2
j0

(
2 +

a2
j0

d2
j0

)
γ2
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If ε < 1, then α = 0 cannot be ε-optimal for the MY-regularized SKM (because ∇G(0) =
−e), so the value G(α) must be smaller than the value G(0) = 0, which implies 1

2γ
2 6

∑
i αi.

Since 0 6 α 6 C, this implies γ2 6 2nC. Thus we have:

max
j∈J ′ γ

2
j − γ2 6 2nC max

j∈{1,...,m}
a2
j

d2
j

(
2 +

a2
j

d2
j

)
,

which implies that H is an ε1-subgradient of J(α) for ε1 = nCmaxj∈{1,...,m}
a2

j

d2j
(2 +

a2
j

d2j
).

We now prove that the approximate optimality conditions (OPT2) for the SKM are
verified. Let ν and b be the variables associated with the approximate optimality conditions
(OPT5) of the MY-regularized SKM. We simply have to prove that ||ν−be−D(y)H||∞ 6 ε2.
By the triangular inequality, we have

||ν − be−D(y)H||∞ 6 ||ν − be−D(y)∇G||∞ + ||D(y)(H −∇G)||∞ 6 ε+ ||H −∇G||∞
We have:

||H −∇G||∞ =

∥∥∥∥∥∥
∑
j

d2
j η̃j

∂Jj
∂α
−

∑

j

d2
jηj(

∂Jj
∂α

+ e)− e


∥∥∥∥∥∥
∞

6
∑
j

d2
j |η̃j − ηj | ×

∥∥∥∥∂Jj∂α
+ e

∥∥∥∥
∞

6
∑
j

d2
j

a2
j η̃j

d2
j

×
∥∥∥∥∥ 1
d2
j

D(y)KjD(y)α

∥∥∥∥∥
∞

by Eq. (1)

6
∑
j

a2
j η̃jMjC

d2
j

6 C max
j∈{1,...,m}

a2
jMj

d4
j

because
∑
j

d2
j η̃j = 1

where Mj = max
u

∑
v

|(Kj)uv|. This proves that (OPT2) holds.
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