Finding User/Kernel Pointer Bugs With Type Inference

Rob Johnson David Wagner

Report No. UCB/CSD-04-1308

/l March 2, 2004

[

\

\

| | Computer Science Division (EECS)
| University of California

\ Berkeley, California 94720

\

\

[

Finding User/Kernel Pointer Bugs With Type Inference

Rob Johnson David Wagner
March 2, 2004

Abstract [Kernel version Bugs found
Linux 2.4.20 11
Linux 2.4.23 9

Today's operating systems struggle with vulnerabil-
ities from careless handling of user space pointers.
User/kernel pointer bugs have serious consequences fdeble 1: User/kernel bugs found by ©@.. Each of
security: a malicious user could exploit a user/kernelth€se bugs represents an exploitable security vulnerabil-
pointer bug to gain elevated privileges, read sensitivdy: Four bugs were common to both 2.4.20 and 2.4.23,
data, or crash the system. We show how to detecfor a total of 16 unique bugs. Eight of the bugs in Linux
user/kernel pointer bugs using type-qualifier inference?-4-23 were also in Linux 2.5.63.

and we apply this method to the Linux kernel using

CQUAL, a type-qualifier inference tool. We extend the machine by corrupting kernel data.

basic type-inference capabilities of ©@L to support

context-sensitivity and greater precision when analyzjser/kernel pointer bugs are unfortunately all too com-
ing structures so that Q@\L requires fewer annota- mon, In an attempt to avoid these bugs, the Linux pro-
tions and generates fewer false positives. With thesgrammers have created several easy-to-use functions for
enhancements, we were able to useu@Qto find 16 accessing user pointers. As long as programmers use
exploitable user/kernel pointer bugs in the Linux kernel.these functions correctly, the kernel is safe. Unfortu-
Several of the bugs we found were missed by carefuhately, aimost every device driver must use these func-
hand audits, other program analysis tools, or both. tjons, creating thousands of opportunities for error, and
as a result, user/kernel pointer bugs are endemic. This
class of bugs is not unique to Linux. Every version of
Unix and Windows must deal with user pointers inside
1 Introduction the OS kernel, so a method for automatically checking
an OS kernel for correct user pointer handling would be
a big step in developing a provably secure and depend-
Security critical programs must handle data from un-able operating system.
trusted sources, and mishandling of this data can lead to
security vulnerabilities. Safe data-managementis partictWe introduce type-based analyses to detect and elim-
ularly crucial in operating systems, where a single bugnate user/kernel pointer bugs. In particular, we aug-
can expose the entire system to attack. One commoment the C type system with type qualifiers to track the
type of untrusted data in OS kernels that has been impliprovenance of all pointers, and then we use type infer-
cated in many security vulnerabilities includes pointersence to automatically find unsafe uses of user pointers.
passed to system calls from user programs. Such useype qualifier inference provides a principled and seman-
pointers occur in many system calls, including, for ex-tically sound way of reasoning about user/kernel pointer
ample,read, write, ioctl, andstatfs. These user bugs.
pointers must be handled very carefully: since the user
program and operating system kernel reside in conceptuAle implemented our analyses by extendingu2Q[7],
ally different address spaces, the kernel must not directlya program verification tool that performs type qualifier
dereference pointers passed from user space, otherwisgference. With our tool, we discovered several pre-
security holes can result. By exploiting a user/kernelviously unknown user/kernel pointer bugs in the Linux
bug, a malicious user could take control of the operatkernel. In our experiments, we discovered 11 user/kernel
ing system by overwriting kernel data structures, readoointer bugs in Linux kernel 2.4.20 and 9 such bugs in
sensitive data out of kernel memory, or simply crash theLinux 2.4.23. Four bugs were common to 2.4.20 and

2.4.23, for a total of 16 different bugs, and eight of these 4GB

16 were still present in the 2.5 development series. We Kernel
have confirmed all but one of the bugs with kernel de- 3GB
velopers. All the bugs were exploitable. User

We needed to make several significant improvements to
CQUAL in order to reduce the number of false positives Unmapped
it reports. First, we added a context-sensitive analysis

to CQUAL, which has reduced the number of false pos-

itives and the number of annotations required from the 0
programmer. Second, we improved GQ.'s handling

of C structures by allowing fields of different instances

of a structure to have different types. Finally, we im- Figure 1: The Linux virtual memory layout on 32-bit
proved CQUAL's analysis of casts between pointers andarchitectures.

integers. Without these improvements, GAQ reported

far too many false positives. These two improvements

reduce the number of warnings 20-fold and make the ~ These improvements are applicable to any data-
task of using CQAL on the Linux kernel manageable. flow oriented program analysis tool.

User

e We develop guidelines that programmers can fol-
low to further reduce the number of false positives
when using program verification tools.

Our principled approach to finding user/kernel pointer
bugs contrasts with the ad-hoc methods used in
MECAJ[15], a prior tool that has also been used to find
user/kernel pointer bugs, because MECA aims for a very

low false positive rate, possibly at the cost of missingwe begin by describing user/kernel pointer bugs in Sec-
bugs; in contrast, CQaL aims to catch all bugs, at the tion 2. We then describe type qualifier inference, and
cost of more false positives. Q@L's semantic anal- our refinements to this technique, in Section 3. Our ex-
ysis provides a solid foundation that may, with further perimental setup and results are presented in Sections 4
research, enable the possibility of formal verification of and 5, respectively. Section 6 discusses our false posi-
the absence of user/kernel pointer bugs in real OS's. tjve analysis and programming guidelines. We consider
other approaches in Section 7. Finally, we summarize

All program analysis tools have false positives, but wegyr results and give several directions for future work in
show that programmers can substantially reduce th&ection 8.

number of false positives in their programs by making
a few small stylistic changes to their coding style. By
following a few simple rules, programmers can write
code that is efficient and easy to read, but can be ab User/kernel Pointer Bugs
tomatically checked for security violations. These rules
reduce the likelihood of getting spurious warnings from

pLogram Iverification or bu.?.—finding tools ”k? O‘Q"'l All Unix and Windows operating systems are suscepti-
These rules are not specific to OQ and almost al- s 14 yser pointer bugs, but we'll explain them in the

ways have the benefit of making programs simpler and,, eyt of Linux. On 32-bit computers, Linux divides

easier for the programmer to understand. the virtual address space seen by user processes into two
sections, as illustrated in Figure 1. The virtual memory
space from 0 to 3GB is available to the user process. The
kernel executable code and data structures are mapped
e We introduce a semantically sound method for an-into the upper 1GB of the process’ address space. In
alyzing user/kernel security bugs. order to protect the integrity and secrecy of the kernel
code and data, the user process is not permitted to read
or write the top 1GB of its virtual memory. When a user
process makes a system call, the kernel doesn’t need to
e We show how to reduce false positives by an orderchange VM mappings, it just needs to enable read and
of magnitude, and thereby make type-based analywrite access to the top 1GB of virtual memory. It dis-
sis of user/kernel bugs practical, by enhancing ex-ables access to the top 1GB before returning control to
isting type inference algorithms in several ways. the user process.

In summary, our main contributions are

e We identify 16 new user/kernel bugs in several dif-
ferent versions of the Linux kernel.

This provides a conceptually clean way to prevent user setint, she can use this to overwrite the kernel
processes from accessing kernel memory directly, but code with any new code of her choice. For exam-
it imposes certain obligations on kernel programmers. ple, she could eliminate permission checking code

We will illustrate this with a toy example: suppose we in order to elevate her privileges.
want to implement two new system calksstint and .
etint: ! P y Istin e The attacker can setuf to point to kernel data
& ' structures that store her user id. By overwriting
these with all0s, the attacker can gain root privi-
int x; leges.
id tint (int * L
‘{701 sys_setint (int +p) e By passing in random values fouf the attacker
memcpy (&%, p, sizeof(x)); // BAD! can cause the kernel to crash.
}
void sys_getint(int *p) The above examples show the importance of validating
{ a buffer pointer passed from user space before copying
memcpy(p, &x, sizeof(x)); // BAD! data into that buffer. If the kernel forgets to perform this
} check, then a malicious user gains control of the sys-

tem. In most cases, an attacker can exploit reads from
Imadine a user proaram which makes the svstem call unchecked pointers, too. Imagine an attacker making
9 prog y the system call

getint (buf); setint (buf);

. . The kernel will copy 4 bytes frormbuf into x. An at-
In a well-behaved program, the pointent, POINES 10 tacker could poinbuf at kernel file buffers, and the ker-
a valid region of memory in the user process’ address,q| \youid copy the contents of those file buffers iato
space and the kernelfills the memory pointed tdhy ¢ this point, the attacker can read the contents of the
with the value of. file buffer out ofx via a legitimate call tgetint. With

. alittle luck, the user can use this attack to learn the con-

However, this toy example is insecure. The problem isg g of/et ¢ /shadow, or even the secret TLS key of the
that a malicious process may try to pass an invalid local web server.

to the kernel. There are two waysf can be invalid.

. .) The setint andgetint functions shown above may
First, buf may point to unmapped memory in the USer soom contrived, but two of the bugs we found effectively

process’ address space. In this case, the virtual addresg, jlemented these two system calls (albeit not under
buf, has no corresponding physical address. If the kerfhese names).

nel attempts to copy to the location pointed to byuf,
then the processor will generate a page fault. In SOMg, qer to avoid these errors, the Linux kernel con-

kernel_has disabled interrgpts,_then the page fault handevelopers are supposed to use insteadeafcpy or
dler will not run and, at this point, the whole computer dereferencing user pointers directly. The two most
Iock; up. Henc_e the toy Kernel code shown above is SUSsrominent of these functions atepy_from_user and
ceptible to denial-of-service attacks. copy-to_user, which behave likenemcpy but perform

) the required safety checks on their user pointer argu-
Alternatively, an attacker may attemptto passid that o5 Correct implementationsftint andgetint
points into the kernel’s region of memory. The user Pro-ywould look like

cess cannot read or write to this region of memory, but
the kernel can. If the kernel blindly copies databtct,

then several different attacks are possible: int x;
void sys_setint(int *p)

e By settingbuf to point to the kernel executable ¢ copy_from_user (&x, p, sizeof(x));
code, the attacker can make the kernel overwrite 3
its own code with the contents ef Since the user void sys_getint(int *p)
can also set the value af via legitimate calls to {

1In Linux, the system calfoo is implemented in the kernel by a copy_to_user(p, &x, sizeof(x));
functionsys_foo. }

As long as the user pointer access functions likesystem would enforce that user pointers must never be
copy_from user andcopy_to_user are used correctly, dereferenced. This would prevent user/kernel pointer
the kernel is safe. Unfortunately, Linux 2.4.20 has 129bugs in a clean and principled way. The downside of
system calls accepting pointers from user space as asuch an approach is that programmers can no longer do
guments. Making matters worse, the design of someimple, safe operations, like-+, on user pointers.

system calls, likeioctl, require every device driver to

handle user pointers directly, as opposed to having th&ortunately, we can have all the advantages of typed
system call interface sanitize the user pointers as soopointers without the inflexibility if we tweak the con-
as they enter the kernel. Thus the Linux kernel has huneept slightly. All that's really needed is gualifier on
dreds of sources of user pointers and thousands of compointer types to indicate whether they were passed from
sumers, all of which must be checked for correctnessuser space or not. Consider, for example, the following
making manual auditing impossible. code:

This problem is not unique to Linux. For example,

FreeBSD has similar user buffer access functions. Even

though we have presented the problem in the context of

the Linux kernel VM setup, the same problem would

arise in other VM architectures, e.g. if the kernel was 18t copy_from_user(void * kernel to,

direct mapped and processes lived in virtual memory. void * user from,
int len);

The above discussion makes it clear that there are essen- 10t memcpy (void * kernel to,

tially two disjoint kinds of pointers in the kernel: void * kernel from,

int len);
int x;
User pointers: A pointer variable whose value isunder void sys_setint(int * user p)
user control and hence untrustworthy. {

. .) . copy_from_user(&x, p, sizeof(x));
Kernel pointers: A pointer variable whose value is un- }

der kernel_cqntrol and guaranteed by the kernelto .4 sys_getint(int * user p)
always point into the kernel's memory space, and ¢

hence is trustworthy. memcpy (p, &x, sizeof (x));

3

User pointers should always be verified to refer to user-
level memory before being dereferenced. In contrast,
kernel pointers do not need to be verified before being
dereferenced.

i . In this example kernel and user modify the basic
It is easy for programmers to make user pointer errors, ;5 type to make explicit whether the pointer is
because user pointers look just like kernel pointers—, ser or kernel space. Notice that in the function
they're both of type Yoid ". If user pointers had a g o sovint, all the type qualifiers match. For instance,
completely different type from kernel pointers, say the user pointerp is passed into theser argument
from of copy_fromuser. In contrast, the function
sys_getint has a type error, since theser pointerp
is passed tamemcpy, which expects &ernel pointer
instead. In this case, this type error indicates an ex-
ploitable user/kernel bug.

typedef struct {
void *p;
} user_pointer_t;

then it would be much easier for programmers to dis-In this paper, we use Q@.L, which allows program-
tinguish user and kernel pointers. Even better, if thismers to add user-defined qualifiers to the C program-
type were opaque, then the compiler could check thaming language. We creaigser and kernel type quali-
the programmer never accidentally dereferenced a usdiers and we use CQuL to type-check the kernel. We
pointer. We could thus think of user pointers as an abave analyzed several different versions of the Linux
stract data type (ADT) where the only permitted op-kernel for user/kernel bugs, finding a total of 16 different
erations areopy_{to,from}_user, and then the type exploitable user/kernel pointer bugs.

3 Type Qualifier Inference int copy_from user(void user * kernel kto,
void * user ufrom,
int len);

int copy_to_user(void * user uto,

We begin with a review of type qualifier inference. The ‘,’Old * kernel kfrom,
C programming language supports a few basic types, int len);

like int, float, andchar . Programmers can construct & —op-deref(a * kernel p);

types such as pointers, or references, to any type. For ex-

ample, in our notationgef (int) denotes areferenceto Figure 2: Annotations for the two basic user space ac-
a memory location of typént, or, in other words, & cess functions in the Linux kernel. The first argument to
pointer of typeint *. The C language also contains a copy_from_user must be a pointer to kernel space, but
few type qualifiers, likeconst, that can be applied to any after the copy, its contents will be under user control.
of the basic or constructed types. The __op_deref annotation declares that the C derefer-

ence operator*”, takes akernel pointer to any typeg,
CQuAL allows programmers to create new, user-definedand returns a value of type

qualifiers that modify the standard C types, just like

const. In our case, we use AQL to define qualifiers

user andkernel. The intended meaning is as follows: a The type qualifier inference approach to program anal-
user int is anint whose value is possibly under user ysis has several advantages. First, type qualifier infer-
control and hence is untrustworthy;fis any type, a ence requires programmers to add relatively few annota-
user 7 is a value of typer that is possibly under user tions to their programs. Programmers demand tools with
control; and likewise, &ernel T is a value of type- that low overhead, and type qualifier inference tools certainly
is under kernel control. For instanceyser ref (int) meet those demands. Second, type qualifiers enable pro-
is a reference to aimt that is stored in user space; its grammers to find bugs at compile time, before an appli-
value is an address in the mapped portion of user memeation becomes widely distributed and impossible to fix.
ory, and dereferencingityields ant . In C, apointep Third, type qualifiers are sound; if a sound analysis re-
of this type would be declared by the cotdet * user ports no errorsin a source program, then gusranteed
p;,and theint typically would be stored in user space, to be free of the class of bugs being checked. Sound-
while the pointer to theint is stored in kernel space. ness is critical for verifying security-relevant programs;
We refer to a C type, together with its qualifiers, as aa single missed security bug compromises the entire pro-
qualified type gram.

Note that qualifiers can modify each level of a standardLike standard C types and type qualifiers, @Q is

type. The C typeint * user is different fromint flow-insensitive. This means that each program expres-

user *; in the former case, it is the pointer (i.e., ad- sion must have one qualified type that will be valid

dress) whose value is under user control, while in the latthroughout the entire execution of the program. For

ter case, it is the integer whose value is under user corexample, just as C doesn’t allow a local variable to

trol. As another example, the programmer could declaresometimes be used as amt and sometimes as a

avariable of Ctypent * user * kernel,whichcorre- struct, CQUAL does not permit a pointer to some-

sponds in our notation tkernel ref (user ref (int)); times have typeuser ref (int) and sometimes have

this would refer to a pointer, whose value came from thetype kernel ref (int).

kernel, that points to a pointer, whose value originally

came from user space, to an integer. Programmers can use these qualifiers to express spec-
ifications in their programs. As an example, Figure 2

In general, the invariant we maintain is that every pointershows type qualifier annotations febpy_from user

of type kernel ref (- --) has a value referring to an ad- andcopy_to_user. With these annotations in place, if a

dress in kernel space and cannot be controlled by angrogrammer ever calls one of these functions with, say, a

user process. Pointers of typser ref (---) may con- user pointer where &ernel pointer is expected, CQAL

tain any address whatsoever. Normally, when the syswill report an error. Figure 2 also shows ©@L’s syn-

tem is not under attack, user pointers refer to mappetax for annotating built-in C operators. Thep_deref

memory within user space, but in the presence of arannotation prohibits dereferencinger pointers.

adversary, this cannot be relied upon. Thus a pointer

of type kernel ref (- --) is safe to dereference directly; In certain cases, Linux allowsernel pointers to be

user ref (---) types are not. treated as if they wereser pointers. This is analogous

to the standard C rule thatrmnconst ? variable can be qualifier annotations would be redundant, and could be
passed to a function expectinganst argument, and is inferred from a few base annotations, like those in Fig-
an example of qualifier subtyping. The notion of sub-ure 2. Type qualifier inference provides a way to infer
typing should be intuitively familiar from the world of these redundant annotations: it checks whether there is
object-oriented programming. In Java, for instance} if any way to extend the source code annotations to make
is a subclass aoB, then an object of clasd can be used the result type-check. Q@\L implements type quali-
wherever an object of clads is expected, henca can fier inference. For example, this allows ©GL to infer

be thought of as a subtype &f (written A < B). from the code

CQUAL supports subtyping relations on user-defined
gualifiers, so we can declare thigrnel is a subtype
of user, written askernel < user. CQUAL then {
extends qualifier subtyping relationships to qualified-
type subtyping rules as follows. First, we declare that
kernel int < user int, because anynt under kernel
control can be treated asiat possibly under user con- }
trol. The general rule ¥

int bad_ioctl(void * user badp)

char badbuf[8];
void *badq = badp;
copy-to_user (badbuf, badq, 8);

f thatbadq must be auser pointer (from the assignment
Q<@ o . ;
- — badq = badp), but it is used as &ernel pointer (since
Q@ int < @' int . A
badq is passed teopy_from_user). This is a type er-
This notation states that if qualifi@p is a subtype of ror. In this case, the type error indicates a bona fide se-
qualifier @, then@ int is a subtype of’ int, orin curity hole.
other words, any value of typ@ int can be safely used
whereever &)’ int is expected. For example, if a func- Notice that, in this example, the programmer didn’t have
tion expects aonst int, then it may be called with a to write an annotation for the type afadg—instead,
nonconst int becauseonconst < const, and therefore it was inferred from other annotations. Inference can
nonconst int < const int. dramatically reduce the number of annotations required
from the programmer. In our experiments with Linux,
The rule for subtyping of pointers is slightly more com- we needed less than 250 annotations for the whole ker-
plicated. nel; everything else was inferred by ©@L’s type in-
ference algorithm.
QsQ T=1 J

Q ref (1) < Q' ref (7')

Notice that this rule requires that the referent types,
and7’, be equal, not just that < 7. This is a well-
known typing rule that is required for soundness.

3.1 Soundness

As mentioned before, the theoretical underpinnings of

So far, we have described the basis for a type-checkinfyP€ inference are sound, but C contains several con-

analysis. If we were willing to manually insertuser trgcts that can be used n unsound ways. Here we ex-

or kernel qualifier at every level of every type decla- Plain how CQUAL deals with these constructs.

ration in the Linux kernel, we would be able to detect

user/pointer bugs by running standard type-checking al-

gorithms. However, the annotation burden of markingNo memory safety. CQUAL assumes programs are

up the entire Linux kernel in this way would be im- memory safe, i.e. that they contain no buffer overflows.

mense, and so we need some way to reduce the worklodype qualifiers cannot detect buffer overflows, but other

on the programmer. tools, such as BOONJ[14] or CCured[9], do address
memory safety. In conjunction with these tools, GQ

We reduce the annotation burden ustyge inference forms a powerful system for verifying security proper-
The key observation is that the vast majority of typeties.

2In C, thenonconst qualifier is an implicit default.
3This is standard deductive inference notation. The notation))
A Ay - A, Unions. CQUAL assumes programmers use unions

B safely, i.e. that the programmer does not write to one
means that, ifd1, As, ... A, are all true, therB is true. field of a union and read from a different one. Like

memory-safety, type qualifiers cannot detect invalid use$-ield-sensitivity. Field-sensitivity enables C@Q\L to

of unions, but union-safety could plausibly be checkeddistinguish different instances of structures. Without

by another program analysis tool. Programmers couldield-sensitivity, every variable of typetruct foo

use CQIAL together with such a tool if it seems unre- shares one qualified type, so a type constraint on field

alistic to assume that programmers always use unions of one instance flows to field of every other instance.

safely. Without this enhancement, GQAL was effectively un-
able to provide any useful results on the Linux kernel
because the kernel uses structures so heavily.

Separate Compilation. type qualifier inference works
from a few base annotations, but if the annotations are

incomplete or incorrect, then the results may not bewe||-formedness Constraints. Well-formedness con-
sound. In legacy systems like the Linux kernel, eachstraints enable CQaL to enforce special type rules re-
source module provides one interface and makes use @dted to structures and pointers. We used this feature to
many others, but none of these interfaces are annotate@nhcode rules like, “If a structure was copied from user
Thus any analySiS of one source file in isolation will be space (and hence is under user Contro|), then so were
unsound. To get sound results, a whole-program analy| its fields.” Without support for well-formedness con-
sis is required. straints, CQUAL would miss some user/kernel bugs (see,
e.g., Figure 4).

Type casts. C allows programmers to cast values to
arbitrary types. We had to extend ©@L slightly to
handle some obscure cases. With these enhanceme
our experience is that Q@\L just “does the right thing”

in all cases we've encountered. For example, if the proéimultaneously fixes a soundness bug and improves
grammer casts from one type of struct to another, thethUAL,S precision.

CQuAL matches up the corresponding fields and flows
qualifiers appropriately.

Sound and Precise Pointer/Integer Casts. CQUAL
analyzes casts between pointers and integers
soundly. Our improvement to Q@L’s cast handling

Together, these refinements dramatically reduce
CQuaL’s false positive rate. Before we made these
improvements, CQAL reported type errors (almost all
of which were false positives) in almost every kernel
source file. Now CQAL finds type errors in only about
5% of the kernel source files, a 20-fold reduction in the
gumber of false positives.

3.2 Our Analysis Refinements

We made several enhancements toudQ to support
our user/kernel analysis. The challenge was to improv
the analysis’s precision and reduce the number of false
positives without sacrificing scalability or soundness.
One of the contributions of this work is that we have
developed a number of refinements to @Q that meet
this challenge. These refinements may be generally use- -)]

ful in other applications as well, so our techniques may!n addition to developing new refinements to type qual-
be of independent interest. However, because the techfier inference, we also created a heuristic that dramat-
nical details require some programming language backically increases the “signal-to-noise” ratio of type in-
ground to explain precisely, we leave the details to Ap_ference error reports. We implemented this heuristic in

pendix A and we only summarize our improvements CQUAL, but it may be applicable to other program anal-
here. ysis tools as well.

3.3 Error Reporting

Before explaining our heuristic, we first need to explain
how CQUAL detects type errors. When @@L ana-
lyzes a source program, it creates a qualifier constraint
graph representing all the type constraints it discovers.

Context-Sensitivity. Context-sensitivity enables
CQUAL to match up function calls and returns. With-

out context-sensitivity, e constraints at one call . . !
v, P A typing error occurs whenever there is a valid path

site to a functionf will “flow” to other call sites. from lifiero t lifiero’ where th ; ified
Context-sensitivity simultaneously reduces the number om qualifierc) to qualifierq ere the user-specine

of annOtatio'r?S programmers must write and the number 4Although it's not important for this discussion, the definition of a
of false positives CQAL generates. valid path is given in Appendix A.

buf.win_info.handle: $kernel $user

proto-noderef.cq:66 $kernel == _op_deref_argl@660@1208
cs.c:1208 == &win->magic
cs.c:1199 == *yin
ds.c:809 == *pcmcia_get_first_window_argl@809
ds.c:809 == buf.win_info.handle
include/pcmcia/ds.h:76 == buf.win_info
ds.c:716 == buf
ds.c:748 == *cast
ds.c:748 == *__generic_copy_from_user_arglQ@748
ds.c:748 == *__generic_copy_from_user_argl

proto-noderef.cq:27 $user

Figure 3: The C@QAL error report for a bug in the PCMCIA system of Linux 2.4.5 through 2.6.0. We shortened file
names for formatting. By convention, @@L type qualifiers all begin with “$”".

type system requires th&} £ @Q’. In the user/kernel the error paths by their causal statement, the ideal al-
example, C@QAL looks for valid paths fronuser to ker- ~ gorithm would select one representive error path from
nel. Since each edge in an error path is derived from aach bucket and display it to the user.
specific line of code, given an error path, GQ can
walk the user through the sequence of source code statémplementing the ideal algorithm is impossible, so we
ments that gave rise to the error, as is shown in Figure 3approximate it as best we can. The goal of our approxi-
This allows at least rudimentary error reporting, and it ismation is to print out a small number of error traces from
what was implemented in QgL prior to our work. each of the ideal buckets. When the approximation suc-
ceeds, each of the untypable statements from the ideal
Unfortunately, though, such a simple approach is totallyalgorithm will be represented, enabling the programmer
inadequate for a system as large as the Linux kernel. Beto address all his mistakes.
cause typing errors tend to “leak out” over the rest of the
program, one programming mistake can lead to thouAnother way to understand our heuristic is that it tries to
sands of error paths. Presenting all these paths to theliminate “derivative” and “redundant” errors, i.e., errors
user, as CQAL used to do, is overwhelming: it is un- caused by one type mismatch leaking out into the rest of
likely that any user will have the patience to sort throughthe program, as well as multiple error paths that only
thousands of redundant warning messages. Our heurigliffer in some minor, inconsequential way.
tic enables CQAL to select a few canonical paths that
capture the fundamental programming errors so the userhe heuristic works as follows. First, Q@@L sorts all
can correct them. the error paths in order of increasing length. It is ob-
viously easier for the programmer to understand shorter
Many program analyses reduce finding errors in the inpaths than longer ones, so those will be printed first. Itis
put program to finding invalid paths through a graph, sonot enough to just print the shortest path, though, since
a scheme for selecting error paths for display to the usethe program may have two or more unrelated errors.
could benefit a variety of program analyses.
Instead, lef be the set of all qualifier variables that trig-
To understand the idea behind our heuristic, imagine ager type errors. To eliminate derivative errors we require
ideal error reporting algorithm. This algorithm would that, for each qualifief € E, CQUAL prints outat most
pick out a small setS, of statements in the original onepath passing through. To see why this rule works,
source code that break the type-correctness of the pramagine a local variable that is used as botisar and
gram. These statements may or may not be bugs, skernel pointer. This variable causes a type error, and the
we refer to them simply as untypable statements. Thesrror may spread to other variables through assignments,
algorithm should select these statements such that, ifeturn statements, etc. When using our heuristic, these
the programmer fixed these lines of code, then the proether, derivative errors will not be printed because they
gram would type-check. The ideal algorithm would thennecessarily will have longer error paths. After printing
look at each error path and decide which statement ithe path of the original error, the qualifier variable with
S is the “cause” of this error path. After bucketing the type error will be marked, suppressing any extrane-

ous error reports. Thus this heuristic has the additionalVe chose to analyze each kernel source file in isolation

benefit of selecting the error path that is most likely tobecause programmers depend on separate compilation,

highlight the actual programming bug that caused the erso this model best approximates how programmers actu-

ror. The heuristic will also clearly eliminate redundant ally use static analysis tools in practice. As described in

errors since if two paths differ only in minor, inconse- Section 3, analyzing one file at a time is not sound. To

guential ways, they will still share some qualifier vari- partially compensate for this, we disabled the subtyp-

able with a type error. In essence, our heuristic approxiing relationkernel < user. In the context of single-file

mates the buckets of the ideal algorithm by using quali-analysis, disabling subtyping enables @Q to detect

fier variables as buckets instead. inconsistent use of pointers, which is likely to represent
a programming error. The following example illustrates

Before we implemented this heuristic, ©&L oftenre- a common coding mistake in the Linux kernel:

ported over 1000 errors per file, in the kernel source files

we analyzed. Now, CQAL usually emits one or two er-

ror paths, and occasionally as many as 20. Furthermore, void dev_ioctl(int cmd, char #*p)

in our experience with CQAL, this error reporting strat- {

egy accomplishes the main goals of the idealized algo- char buf[10];

rithm described above: it reports just enough errors to if (cmd == 0)

cover all the untypable statements in the original pro- copy_from_user (buf, p, 10);
gram. else
*p = 0;
3

4 Experiment Setup

The parameten, is not explicitly annotated as aser

pointer, but it almost certainly is, so dereferencing it
We performed experiments with three separate goaldn the “else” clause is probably a serious, exploitable
First, we wanted to verify that CQ.L is effective at bug. If we allow subtyping, i.e. if we assunternel
finding user/kernel pointer bugs. Second, we wanted t@ointers can be used whewsser pointers are expected,
demonstrate that our advanced type qualifier inferencéen CQIAL will just conclude thatp must be aker-
algorithms scale to huge programs like the Linux kernel.ne/ pointer. Since CQAL doesn’t see the entire kernel

Third, we wanted to construct a Linux kernel provably at once, it can't see thatev_ioctl is called with user
free of user/kernel pointer bugs. pointers, so it can’'t detect the error. With subtyping dis-

abled, CQAL will enforce consistent usage pf either
To begin, we annotated all the user pointer accessodlways as aiser pointer or always as &ernel pointer.
functions and the dereference operator, as shown in Figthedev_ioctl function will therefor fail to typecheck.
ure 2. These annotations are given in Figure 8. We
also annotated the kernel memory management routine¥) addition, we separately performed a whole kernel
xmalloc andkfree, to indicate they return and accept analysis on Linux kernel 2.45. We enabled subtyp-
kernel pointers. This annotation wasn'’t strictly neces- ing for this experiment since, for whole kernel analyses,
sary, but we felt it was a good sanity check on our re-subtyping precisely captures the semantics of user and
sults. Finally, we annotated all the Linux system calls askernel pointers.
acceptinguser arguments. There are 221 system calls
in Linux 2.4.20, so these formed the bulk of our annota-We had two goals with these whole-kernel experiments.

tions. All told, we created 245 annotations. Adding all First, we wanted to verify that C@xL's new type qual-
the annotations took about half a day. ifier inference algorithms scale to large programs, so we

measured the time and memory used while performing
To validate CQAL as a bug-finding tool, we analyzed the analysis. We then used this analysis to take a first
Linux kernels 2.4.20 and 2.4.23 and recorded the numstep towards developing an OS kernel verifiably free
ber of bugs C@AL found. To estimate the programmer Of user/kernel bugs by fixing almost all the warnings
effort required to investigate Q@\L’s error reports, we CQUAL reported. The remaining warnings point out
also recorded the number of files which had false posin€w research directions in automated security analysis.
tives. In our experience, this is the most useful metric

for how Iong it will take the user to evaluate ©@L's 5A minor bug in our tool chain prevented us from performing a
results. whole kernel analysis on 2.4.20 or 2.4.23.

1: int i2cdev_ioctl (struct inode *inode, struct file *file, unsigned int cmd,
2: unsigned long arg)

3: {

4:

5: case I2C_RDWR:

6: if (copy_from_user (&rdwr_arg,

7: (struct i2c_rdwr_ioctl_data *)arg,
8: sizeof (rdwr_arg)))

9: return -EFAULT;

10:

11: for(i=0; i<rdwr_arg.nmsgs; i++)

12: {

13: ...

14: if (copy_from_user(rdwr_pali] .buf,
15: rdwr_arg.msgs[i] .buf,

16: rdwr_pali].len))

17: {

18: res = -EFAULT;

19: break;

20: }

21: X

22:

Figure 4: An example bug we found in Linux 2.4.20. T parameter is aser pointer. The bug is subtle because
the expressiomdwr_arg.msgs [i] . buf on line 15 dereferences thwser pointerrdwr_arg.msgs, but it looks safe
since it is an argument teopy_from user. Kernel developers had recently audited this code for user/kernel bugs
when we found this error.

5 Experimental Results kernel source code to eliminate the causes of the spu-
rious warnings. A discussion of our experience pro-
gramming within the flow-insensitive type constraints

Bug finding with CQuUAL. Our first experiment ana- enforced by CQAL is also presented in Section 6.

lyzed each source file in Linux kernel 2.4.20 separately.

CQUAL generated warnings for 117 of the 2312 source

files in this version of the kernel. Seven warnings corre-

sponded to real bugs, and 110 warnings were false pos-

itives. Figure 4 shows one of the subtler bugs we found

in 2.4.20. Kernel maintainers had fixed all but one ofScalability of Type Qualifier Inference. To verify

these bugs in Linux 2.4.22, and we confirmed the rethe scalability of CQAL’s type inference algorithms,

maining bug with kernel developers. Because of thiswe performed a whole-kernel analysis on Linux kernel

we repeated the experiment when Linux kernel 2.4.23.4.5 with the default configuration. Since the default

became available. configuration includes support for only a subset of the
drivers, this comprises about 700 source files contain-

When we performed the same experiment on Linuxing 300KLOC. We ran the analysis on an 800MHz Ita-

2.4.23, CQuAL generated warnings for 143 files. Five nium computer, and it required 8.1GB of RAM and 80

warnings were real bugs, 138 were false positives. Weninutes to complete. Since @AL’'s data-structures

have confirmed 4 of the five bugs with kernel developersconsist almost entirely of pointers, it uses nearly twice

Figure 5 shows a simple user/kernel bug that an adveras much memory on 64-bit computers as on 32-bit ma-

sary could easily exploit to gain root privileges or crashchines; consequently, on a 32-bit machine, we'd expect

the system. memory usage to be about 4GB of RAM. Also, 800MHz
Itaniums are not very fast. Therefore we expect that

We also did a detailed analysis of the false positives gen€CQUAL can analyze large programs on typical devel-

erated in this experiment and attempted to change theper workstations in use today.

static int
: w9968cf_do_ioctl(struct w9968cf_device* cam, unsigned cmd, void* arg)

{

case VIDIOCGFBUF:
{

struct video_buffer* buffer = (struct video_bufferx)arg;

© 00N O WN -

memset (buffer, 0, sizeof(struct video_buffer));

Figure 5: A bug from Linux 2.4.23. Sincerg is auser pointer, an attacker could easily exploit this bug to gain root
privileges or crash the system.

Software Verification. Finally, we took a first step to- to developing a verifiable kernel are false positives due
wards developing an OS kernel that is provably free ofto field unification and field updates, which are described
user/kernel pointer bugs. By making minor modifica-in Appendix B. A sound method for analyzing these
tions to the kernel source code, we eliminated all butprogramming idioms would open the door to verifiably
136 warnings from our whole-kernel analysis of Linux secure operating systems.

2.4.5. Based on this work, auditors could verify this ker-

nel free of user/kernel bugs by manually checking theFinally, we discovered a significant amount of bug
136 remaining warnings. This is not yet entirely satis-turnover. Between Linux kernels 2.4.20 and 2.4.23, 7
factory, but it is an order of magnitude reduction in ef- user/kernel security bugs were fixed and 5 more intro-
fort compared to manually checking the 129 system callgluced. This suggests that even stable, mature, slowly
and thousands of device drivers that handle user pointehanging software systems may have large numbers of
ers in Linux. Our analysis of the false positives from undiscovered security holes waiting to be exploited.
Linux 2.4.23 also suggest research directions for fur-

ther reducing the false positive rate of tools like GAQ .

With another order of magnitude reduction in false posi-

tives, operating systems that are provably secure again& False Positives

user/kernel attacks will be within reach.

We analyzed the false positives from our experiment
with Linux kernel 2.4.23. This investigation serves two
jpurposes.

Observations. We can draw several conclusions from
these experiments. First, type qualifier inference is a
effective way of finding bugs in large software systems.
All total, we found 16 different user/kernel bugs, several
of which were present in many different versions of the
Linux kernel and had presumably gone undiscovered fo
years.

First, since it is impossible to build a program verifi-
cation tool that is simultaneously sound and complete,
gny system for developing provably secure software
must depend on both program analysis tools and pro-
grammer discipline. We propose two simple rules, based

Second, soundness matters. For example, Yang, et el our false positive analysis, that will help software de-
used their unsound bug-finding tool, MECA, to searchveIOperS write verifiably secure code.

for user/kernel bugs in Linux 2.5.63. We can't make a
direct comparison between @AL and MECA since we
didn't analyze 2.5.63. However, of the 9 bugs we foun

Second, our false positive analysis can guide future
dreasearch in program verification tools. Our detailed
classification shows tool developers the programming

in Linux 2.4.23, 8 were still present in 2.5.63, so we can” X) ,
compare MECA and CQaL on these 8 bugs. MECA idioms that they will encounter in real code, and which
' ones are crucial for a precise and useful analysis.

missed 6 of these bugs, so while MECA is a valuable
bug-finding tool, it cannot be trusted by security soft-

ware developers to find all bugs. Our methodology was as follows. To determine the

cause of each warning, we attempted to modify the ker-

Our attempt to create a verified version of Linux 2.4.5"€! source code to eliminate the waming while pre-

suggests future research directions. The main obstacles 6This is a corollary of Rice’s Theorem.

Source Frequency Useful Fix |

User flag 48 Maybe Pass two pointers insteafltafn_user flag
Address of array 24 Yes Don'ttake address of arrays

C type misuse 17 Yes Declare explicit, detailed types

Field unification 16 No None

Field update 15 No None

Non-subtyping 15 No Enable subtyping

Open structure 5 Yes Use C99 open structure support
Temporary variable 4 Yes Don't re-use temporary variables
User-kernel assignment 3 Yes Sekr pointersto NULL instead
Device buffer access 2 Maybe None

Table 2: The types of false positives ©O&L generated and the number of times each false positive occurred. We
consider a false positive useful if it tends to indicate source code that could be simplified, clarified, or otherwise
improved. Where possible, we list a simple rule for preventing each kind of false positive.

serving the functionality of the code. We kept careful As an example of the second rule, if a variable is concep-

notes on the nature of our changes, and their effect otually a pointer, then declare it as a pointer, ndloag

CQUAL's output. Table 2 shows the different false posi- or unsigned int. We actually saw code that declared

tive sources we identified, the frequency with which theya local variable as annsigned long, but cast it to a

occurred, and whether each type of false positives tendegointerevery time the variable was usethis is an ex-

to indicate code that could be simplified or made moretreme example, but subtler applications of these rules are

robust. The total number of false positives here is morgresented in Appendix B.

than 138 because some files had more than one false pos-

itive. Appendix B explains each type of false positive, Following these rules is easy and has almost no impact

and how to avoid it, in detail. on performance, but can dramatically reduce the num-
ber of false positives that program analysis tools like

Based on our experiences analyzing these false positive§QUAL generate. From Table 2, kernel programmers

we have developed two simple rules that can help futureould eliminate all but 33 of the false positives we saw (a

programmers write verifiably secure code. These ruledactor of4.5 reduction) by making a few simple changes

are not specific to CQaL. Following these rules should to their code.

reduce the false positive rate of any data-flow oriented

program analysis tool.

7 Related Work
Rule 1 Give separate names to separate logical entities.

CQUAL has been used to check security properties in
Rule 2 Declare objects with C types that closely reflect programs before. Shankar, et al., usedu@Q to find
their conceptual types. format string bugs in security critical programs[11], and
Zhang, et al., used C@xL to verify the placement of
authorization hooks in the Linux kernel[16]. Broadwell,
As an example of Rule 1, if a temporary variable some-etal. used CQAL in their Scrash system for eliminating
times holds auser pointer and sometimes holdsrne/ ~ Sensitive private data from crash reports[2]. Elsman, et
pointer, then replace it with two temporary variables, al. used CQAL to check many other non-security appli-
one for each logical use of the original variable. This cations, such as Y2K bugs[4] and Foster, et al. checked
will make the code clearer to other programmers andgcorrect use of garbage collected fnit” data in the
with a recent compiler, will not use any additional mem- Linux kernel[6].
ory. ’ Reusing temporary variables may have improved
performance in the past, but now it just makes code moréinus Torvalds’ program checker, Sparse, also uses

confusing and harder to verify automatically. type qualifiers to find user/kernel pointer bugs[12].
Sparse doesn’t support polymorphism or type inference,

"The variables can share the same stack slot. though, so programmers have to write hundreds or even

thousands of annotations. Since Sparse requires prglesinclude RATS[10], ITS4[13], and LCLint[5]. These
grammers to write so many annotations before yieldingools are unsound, since they don’t deal with pointer
any payoff, it has seen little use in the Linux kernel. aliasing or any other deep structure of the program.
As of kernel 2.6.0-test6, only 181 files contain SparseAlso, they tend to produce many false positives, since
user/kernel pointer annotations. Sparse also requires exhey don’t support polymorphism, flow-sensitivity, or
tensive use of type qualifier casts that render its resultether advanced program analysis features.
completely unsound. Before Sparse, programmers had
to be careful to ensure their code was correct. After
Sparse, programmers have to be careful that their casts
are also correct. This is an improvement, but as we saw
in Section 5, bugs can easily slip through.

8 Conclusion
Yang, et al. developed MECA[15], a program check-
ing tool carefully designed to have a low false positive
rate. They showed how to use MECA to find dozens of
user-kernel pointer bugs in the Linux kernel. The essen-

tial difference between MECA and GQL is their per- We have shown that type qualifier inference is an effec-

spective on false positives: MECA aims for a very loW e tachnique for finding user/kernel bugs, but it has the
false positive, even at the cost of missing bugs, while,tonia| to do much more. Because type qualifier in-
CQUAL aims to detect all bugs, even at the cost of in-¢grence is sound, it may lead to techniques for formally
creasing the false positive rate. Thus, the designers Qfgriing the security properties of security critical soft-
MECA ignored any C features they felt cause too many_ware. We have also described several refinements to the
false kposmves, and cor;sec:ue.nrt]Iy MECA :S u_nsounc:jbasic type inference methodology. These refinements
it makes no attempt to deal with pointer aliasing, andgy,mnagically reduce the number of false positives gen-
completely ignores multlply-|nd|rected'pomters. MECA 4rated by our type inference engine, GAQ, enabling
uses many advanced program analysis features, such s, anajyze complex software systems like the Linux
flow-sensitivity and a limited form 9f pred|cated_ YPES. yernel. We have also described a heuristic that improves
MECA can also be used for other kinds of security anal-error reports from CQAL. All of our enhancements
ys<|as and is not restpcte.d to uTer/ kernel bugs. This r€zap, he applied to other data-flow oriented program anal-
sul_ts ina greatfpug— |Irlld|ng tool, but MECA can not be y iq 15015, We have shown that formal software analysis
relied upon to find a b_UQS' In comparison, (_DQ methods can scale to large software systems. Finally, we
uses principled, semantic-based _anaIyS|stechn|ques thﬁﬁve analyzed the false positives generated byQQ

are sound and that may prove a first step towards formablmd developed simple rules programmers can follow to

v?rification' of the entilr ehke:]nel, though ©AL's false \\rite verifiable code. These rules also apply to other
alarm rate is noticeably higher. orogram analysis tools.

CQUAL only considers the data-flow in the program o, research suggests many directions for future re-
being analyzed, completely ignoring the Cor‘tml'ﬂo""search. First, our false positive analysis highlights
e:}spects of the progralm._ There arleﬂ many other t00lge g shortcomings in current program analysis tech-
that are good at analyzing control-flow, but because,iqes Advances in structure-handling would have a
the user/kernel property is primarily about data-flow, 4. matic effect on the usability of current program anal-
control-flow oriented tools are not a good match for yqis 14015 and could enable the development of veri-
f_mdlng user/kernel bugs. For instance, model ?heCkerﬁed security software. Alternatively, researchers could
like MOPSI3], SLAM[1], and BLAST[8] look primar- investigate alternative programming idioms that enable

ily at the control-flow structure of the program being programmers to write clear code that is easy to verify
analyzed and thus are excellent tools for verifying that

: " . , X correct. Our results on Linux 2.4.20 and 2.4.23 sug-
security critical operations are performed in the right or-

der. but th . ble of) bout d Eest that widely deployed, mature systems may have
er, but they are incapable of reasoning about data val, e more [atent security holes than previously believed.

ues in the program. Conversely, it would be impossibléyyi, so,nd tools like CQAL, researchers have a tool to
It'c|)< check ordering properties IW'th QQL'hThES t00ls measure the number of bugs in software. Statistics on
ke CQUAL and MOPS complement each other. bug counts in different software projects could identify

development habits that produce exceptionally buggy or

There are several other ad-hoc bug-finding tools that usg, .o ytionally secure software, and could help users eval-
simple lexical and/or local analysis techniques. Exam+,ate the risks of deploying software

Availability

CQUAL is open source software hosted on SourceForge,[8]

and is available from
http://www.cs.umnd.edu/~ jfoster/cqual/

Acknowledgements

We thank Jeff Foster for creating @@L and helping us

use and improve it. We thank John Kodumal for imple-

menting an early version of polymorphism in O&L

9]

and for helping us with the theory behind many of the[10]

improvements we made to GQAL.

References

[1] Thomas Ball and Sriram K. Rajamani. The SLAM
Debugging System Software via Static
In Proceedings of the 29th Annual
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languagepages 1-3, Portland,

Project:
Analysis.

Oregon, January 2002.

[11]

[12]

Pete Broadwell, Matt Harren, and Naveen Sastry[13]

Scrash: A System for Generating Secure Crash In-

formation. InProceedings of the 12th Usenix Se-
curity SymposiumWashington, DC, August 2003.

(3]

Hao Chen and David Wagner. MOPS: an infras-

tructure for examining security properties of soft- [14]

ware.

In Proceedings of the 9th ACM Confer-
ence on Computer and Communications Security

pages 235-244, Washington, DC, November 18—

22,2002.
[4] Martin Elsman, Jeffrey S. Foster, and Alexander
Aiken. Carillon—A System to Find Y2K Prob-

lems in C Programs, 1999http://bane.cs.
berkeley.edu/carillon.

[5] David Evans. LCLint User's Guide February

1996.

[6] Jeff Foster, Rob Johnson, John Kodumal, and Alex

Aiken. Flow-Insensitive Type Qualifiers ACM

Transactions on Programming Languages and Sys

tems Submitted for publication.

[7] Jeffrey Scott FosterType Qualifiers: Lightweight
Specifications to Improve Software QualitiPhD

15]

[16]

thesis, University of California, Berkeley, Decem-
ber 2002.

Thomas A. Henzinger, Ranjit Jhala, Rupak Ma-
jumdar, and Gregoire Sutre. Lazy abstraction. In
Symposium on Principles of Programming Lan-
guagespages 58-70, 2002.

George Necula, Scott McPeak, and Westley
Weimer. CCured: Type-Safe Retrofitting of
Legacy Code. IrProceedings of the 29th Annual
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languagepages 128-139, Port-
land, Oregon, January 2002.

Inc. Secure Software. Rats download page.
http://www.securesw.com/auditing\
_tools_download.htm.

Umesh Shankar, Kunal Talwar, Jeffrey S. Foster,
and David Wagner. Detecting Format String Vul-
nerabilities with Type Qualifiers. IRroceedings of
the 10th Usenix Security Symposiivashington,
D.C., August 2001.

Linus Torvalds. Managing ker-
nel development, November 2003.
http://www.linuxjournal.com/article.php?sid=7272.

John Viega, J.T. Bloch, Tadayoshi Kohno, and
Gary McGraw. ITS4: A Static Vulnerability Scan-
ner for C and C++ Code. Ida6th Annual Com-
puter Security Applications Conferen@ecember
2000.http://www.acsac.org.

David Wagner, Jeffrey S. Foster, Eric A. Brewer,
and Alexander Aiken. A First Step Towards Au-
tomated Detection of Buffer Overrun Vulnerabil-
ities. In Networking and Distributed System Se-
curity Symposium 2000San Diego, California,
February 2000.

Junfeng Yang, Ted Kremenek, Yichen Xie, and
Dawson Engler. Meca: an extensible, expressive
system and language for statically checking secu-
rity properties. InProceedings of the 10th ACM
conference on Computer and communication secu-
rity, pages 321-334. ACM Press, 2003.

Xiaolan Zhang, Antony Edwards, and Trent Jaeger.
Using CQUAL for Static Analysis of Authoriza-
tion Hook Placement. liProceedings of the 11th
Usenix Security SymposiurBan Francisco, CA,
August 2002.

void * helper(void *h) @
{

assert (h != NULL);

1

2:

3:

4. return h;

5)
6:

7.

8

int good_ioctl(void * user goodp) 2/l

{

9: char goodbuf [8];

10: void *q = helper(goodp);
11: void *b = helper (goodbuf);
12:

13: copy_from user(b, q, 8);
14: }

Figure 6:good_ioctl doesn’thave a user/kernel pointer
bug, but a monomorphic analysis would report that it
does.

A CQUAL Improvements

A.1 Context-Sensitivity

Previously, C@AL’s handling of function calls could = ¢jq e 7: The constraint graph generated from the code

introduce a large number of false positives, and users hag, Figure 6. CQUAL prevents bad flow through the
to add numerous annotations to the source program tﬂelper function by ignoring paths with mismatched

squglch these warnings. We ha_/(_a _improvedL(AQ by_ parentheses. Note that not all the qualifier variables and
adding support for context-sensitivity, completely elim- . «traints are shown.

inating this source of false-positives and hence the need
for extra annotations.

line 10 induces a constraint on the return type of the un-
To understand the importance of context-sensitivity,related call tchelper on line 11.
consider the code in Figure 6. When the old, monomor-
phic version of CQAL analyzes this code, it generates To fix this, we add labels to the edges in the type qualifier
the type qualifier constraint graph shown in Figure 7 (ig-constraint graph as shown in Figure 7. These labels re-
nore the labels on the edges for the moment). In thestrict the set of valid paths though the graph by matching
constraint graph, each node represents one type qualifiep function calls and returns, because we don’t consider
variable, and an edg@; — @2 means tha®); < Q-. paths through the graph with mismatched parentheses.
The nodegto andu from are from the first and second Formally, we require paths to satisfy the following rule:
arguments tacopy_from user in Figure 2. Any path
through the graph corresponds to a transitive sequence of

typing constraints. For example, the graph clearly show&Ule 3 A path in the constraint graph is valid if the
the sequence of constraints string of parentheses along the path is a substring of

some string of matched parentheses.
user < goodp < h < helper_ret < b < to < kernel

which imply a typing error, bugood_ioctl doesn't In other words, the path may not haweismatched
contain any user/kernel pointer bugs. The confusiorparentheses, but it may havematched parentheses. We
arises because thelper function processes botlser say that a qualifier nod€), in the graph has a type error
and kernel pointers, but a monomorphic type inference if there exist qualifiers); and @, such that the user-
engine cannot distinguish different calls to the samedefined type qualifier system specifies tliat £ Q-
function. Thus, passing aser pointer intohelper on and there exists a valid path fro@y to @ and a valid

path from@ to Q.. require memory exponential in the size of the input pro-
gram, as the following example illustrates

So we have reduced the type inference problem to the

problem of checking if there exists a path, subject to

Rule 3, from qualifier; to Q2 where the user-defined

type qualifier system specifies th@f £ @Q». This is an struct a { int x; int VAR

instance of the more general CFL reachability problem. struct b { struct a x; struct a y; };

In this case, the reachability query can be answered in struct ¢ { struct b x; struct b y; };

time linear in the size of the graph. A discussion of CFL ~ struct ¢ s;

reachability algorithms is outside the scope of this paper.

A2 Structures We now have to create qualifiers for

Prior versions of CQAL were also field-insensitive,
which created false positives when analyzing programs
that use structures intensively. OS kernels are heavy
users of structures, so it is critical that OQL be able

to distinguish fields of different structures if it is to give
good results on problems like user/kernel pointer bugs.

s.a.a.a s.a.a.b s.a.b.a s.a.b.b
s.b.a.a s.b.a.b s.b.b.a s.b.b.Db

This wouldn’t be a problem if real programs didn’t de-
clare deeply nested structures like the above, but they do.
OS kernels contain hundreds of large, complex, inter-
Early experiments showed that full field-sensitivity re- connected data structu_res that get pa,s sed .to. hundreds, if
. . not thousands, of functions. They don't exhibit the expo-
guires too much memory to be practical. Thus we chose

. nential worst case described above, but they are complex
a hybrid approach that preserves soundness, guarantees

linear memory usage, and significantly decreases thgnough to make the naive approach completely imprac-
”) ical.

false positive rate. CQ@AL treats structures and unions

identically, so all these improvements apply to unions, a

well, but for simplicity we only discuss structures below.

A small example illustrates the problem.

IWe enhanced C@uL’s structure handling in two ways.

First, the fields of different instances of a structure are
given separate qualified types. This eliminates many of
the false positives, as above. To control memory usage,

void sys_foo (char * user p) we create the qualifiers for each field on demand the first

{ time that field is referenced. Since the number of fields
struct foo x; referenced by a program must be linear in the size of the
struct foo y; program, this ensures that the number of qualifiers cre-
x.a = p; ated by CQUAL is linear in the size of the input program.
x(y.a) = 0;

} Seocnd, upon analyzing an assignment statemenklike

= y, wherex andy are structures, we unify the types of
x andy, including all their fields. From then on, refer-
'encing a field ofk is equivalent to referencing the cor-
responding field ofy. This approach is sound, and it
guarantees at worst linear space-complexity.

In a field-insensitive type qualifier inference analysis
one qualified type is assigned to all th&'‘fields of all
instances oktruct foo. Thus the type qualifier con-
straint graph contains the path

Because of this trade-off, our approach currently pro-
vides no subtyping or polymorphism on structure fields.
The type qualifier node applies to bothx.a andy.a, In our experience, the lack of subtyping on structure
creating the false positive. To eliminate this false pos-ields is of little consequence because most structures
itive, we need to disambiguate the fields of differentare accessed through pointers. Thus, as we saw in Sec-
structure instances. tion 3, the type system would require equating the types
of structure fields anyway. The lack of polymorphism

A naive solution to this problem is to simply create sep-for structure fields is also relatively benign, but as de-
arate qualifier variables for the fields of each structurescribed in Section 6, when it does cause a false positive,
instance. This certainly solves the problem, but it canit can be quite difficult to work around.

user — p — a — kernel.

A.3 Well-formedness Constraints well-formedness constraint
Vi Q < Qz Fwf T;

Fwt Q struct (Q171,...,QnTn)
Old versions of CQAL only supported one set of) ,)
semantics for their type qualifier systems, but the! NS rule states that, i < @; and if the typesr;
user/kernel application requires some non-standard typ2r€ all well-formed, then the structure with field types
ing rules. These non-standard rules center around thE?1 7t - - -» @n 7o) @nd qualifier() is well-formed. In
typing relations between structures and their fields andn€ implementation, this rule results in the addition of
pointers and their referents. A type, that satisfies ©d9€s from the type qualifier on every structure instance
these requirements is calleall-formed written -, . t© the qualifiers on each of its fields.
We added support to Q@@L for optionally enforcing o)
well-formedness constraints. Although this feature af- Similar issue arises with pointers. When a pointer is
fects CQUAL’s structure typing rules, it is independent passed from user space, the value it points to Is also un-
of the enhanced structure handling described in the preder user control. The well-formedness constraint
vious section. Q<Q FwT

/
The following code illustrates the need for well-formed Fu @ ref (Q'7)
types: captures this rule. Again, the implementation of this rule
simply requires adding type qualifier constraint edges
from the qualifier on every pointer to the qualifier of its
referent.

void ioctl(void * user arg)

{

In our implementation, the application of these rules
copy_from_user (&c, arg, sizeof(c)); can be controll_ed very preci_sely by the user Of@Q.
c.datap[0] = 0; For example, in our experiments with the Linux ker-

} nel, the two rules given here were enabled only for the

the user/kernel analysis. No other qualifiers, including
const, were affected by these rules. This flexibility is
implemented by storing a bit-mask with each constraint

The annotation forcopy from-user in Figure 2 im- oqge indicating the qualifiers to which it applies.
plies thatc receives a type of the formser struct

cmd, which makes intuitive sense since the structure’s

contents are copied from user space. In the standarg 4 Integer/Pointer Casts
type qualifier semantics, though, the type qualifier on

the structure is completely unrelated to the type qualifier

on a field field, such as.datap. Thus the dangerous Tne C code

user pointer dereference,datap [0], doesn’t create a

typing error. This means that our basic type system fails

to capture a certain class of user/pointer bugs, an obvi- char **xp = ...;
ous shortcoming. To repair this shortcoming, the typing int x = (int)p;
rules need to take into account the relationship between

a structure and its contents.

struct cmd { char* datap; } c;

induces the qualified type constraint

To fix this, we allow qualifiers both on the structure
itself as well as on all the fields, and then we intro-
ducedwell-formedness constraintisat relate these qual- From this, we know thap < z, but what aboup’ and
ifiers. For instance, in the above example, the variable ;2 previous versions of Q@ “collapsed” the type

might receive the typeser struct { char * kemel of p by adding the constraint’ = p’ = p. This caused
datap; }, and this violates the intuitive constraint that many false positives, and it isn’t even sound.

if the contents of the structure are under user control,
then the value of all of its fields are also under user congoth these problems can be solved by treating evety
trol. as animplicitrtoid *. Then the type constraint becomes

p ref (p' ref (p” char)) <z int

More formally, this relationship may be expressed by the p ref (p’ ref (p” char)) < z ref (2’ void)

This reduces to the qualifier constraipts. 2 andp” = calling context. CQAL supports context-sensitivity, so
p’ = 2’. This approach still requires collapsing part of we just need to find a way to exploit it. The solution is to
the type ofp, but it is obviously more precise and, as a encode the accessestn the argumentstety write:
bonus, sound.

typedef int (*copyfunc) (void *to,
void *from,

B False Positive Details _ _ _ int len);
void tty_write(void *p, copyfunc cp)
{
User Flag. Several subsystems in the Linux ker- char buf [8];
cp(buf, p, 8);

nel pass around pointers along with a flag indicating
whether the pointer is a user pointer or a kernel pointer.
These functions typically look something like

Programmers can now call either

void tty_write(void *p,

. tty_write(user_pointer, copy_-from_ user);
int from_user)

tty_write(kernel pointer, memcpy) ;.

{
char buf[8]; A type inference engine like C@AL can verify that the
if (from_user) arguments are never confused or misused.
copy_from_user(buf, p, 8);
else
memcpy (buf, p, 8); Address of Array. In C, the following two code frag-
¥ ments accomplish the same thing:
Sincep is used inconsistently, C@AL cannot assign a
type top, and hence generates a typing error. The type char AL10];)
of p depends on the value dfrom_user. This idiom, memcpy (A, .-.);
where the value of one variable indicates the type of an- char A[10]:
other, appears in all kinds of code, not just OS kernels, memcpy (&A ’ s

and programmers can easily avoid it. One way to make
this code type-safe is to recognize tpaterves two dif-
ferent logical roles, so we can convert the program toThese two code fragments give the same result because
have two pointers as follows: &A is the same a4, i.e. these expressions have the
same value. The two expressions have different types,
void tty_write(void *kp, void *up, tho'ugh, and CQAL is careful'tp distingu.ish the types,
int from user) which can generate false positives whgnis used. The
f expressioA has typeQ ref (Q1 array (Qf1 char)).
When this gets coerced &, ref (Q char) inthe call
to memcpy, there’'s an extra level in the type. ©@AL
applies the standard type collapsing rule, identifyihg
and@’. This can easily lead to false positives.

char buf[8];

if (from_user)
copy_from_user(buf, up, 8);

else

buf, kp, 8); . . .
mencpy (bu P, &) We could easy modify CQaL to avoid this source of

false positives, but after some thought, we decided that

using&A makes code unnecessarily brittle, so program-
Now from_user does not indicate the type of another mers just shouldn't use it. This code works because, for
argument to the function. Instead it indicates which ar-arrays,&A=A. If the developer ever changes the decla-
gument to use. Note that tfieom_user flag could be ration of A to “char *A” (so she can dynamically allo-
eliminated by testing fotip != NULL instead. catea, for example), theA andA will differ, and thus

memcpy (&4, . . .) will break. Similarly, if the program-
Programmers can also fix this problem by viewing it as amer decides to pagsas a parameter thunc, thena will
lack of context-sensitivity: the type @fdepends on the behave as a pointer, also breaking usessiof

Because taking the address of an array is so brittle and int type;
completely unnecessary, we recommend just not doing void *body;

it. }
void msg_from_user(struct msg *m)
{

C type misuse. Examples of this source of false pos- struct msg km;

itives take one of two forms: variables declared with void *t;

a type that doesn't reflect how they are actually used copy_from_user (&km, m, ...);

and variables declared with very little type structure at ~ t = km.body;

all. Thelong vs. pointer example given above demon- km.body = kmalloc(100);

strates the first form of type misuse, but sometimes pro- ~ copy_from_user (km.body, t, ...);

grammers provide almost no type information at all. For

example, several kernel device drivers would assemble

command messages on the stack. These messages l@m the initial copy_from_user, CQUAL infers that

a well-defined format, but there was no corresponding.y, js under user control, and henke. body is a user

message data structure in the source code. Instead, th@inter. Whenkm.body is updated with a pointer re-

messages were assembled in simpler arrays: turned bykmalloc, it becomes aernel pointer, but a
flow-insensitive type-system can only assign one type to

void makemsg(char *buf) km.body. Thus there is a type error.

{
char msg[10];
msg[0] = READ_REGISTER;
msgl1] = 5;
msg[2] buf;

We don’t have a good way to program around this source
of false positives. This problem can occur whenever one
structure instance has a field that serves two conceptual
roles. For existing code, fixing this false positive can be
achallenge. The approach we used is to copy all the non-
updated fields to a new structure instance, and initialize
the updated field in the new structure instance instead of
The following code is not only easier to typecheck, it's updating the field in the original instance. This doesn’t

much easier to understarfti: produce easily maintained code, since every time a field
is added to the structure, the code must be updated to
void makemsg(char *buf) match:
{
struct msg m; struct msg {
m.command = READ_REGISTER; int type;
m.register = 5; void *body;
m.resultbuf = buf; }
void msg_from_user(struct msg *m)
{
. . . struct msg tm, km;
Declaring program variables with complete and cor- void ¥t;
rect types helps both programmers and program analysis copy_from_user (&tm, m, ...);
tools. km.type = tm.type;
// If struct msg had more fields
// copy those, too.
Field Update. Since CQAL is flow-insensitive, km.body = kmalloc(100);
structure fields cannot be updated with values of two dif- copy_from_user (km.body, tm.body, ...);
ferent types. The problem occurs most often with code 3}
like this:

For new programs, if there is only one field that is used
struct msg { for two different logical purposes, then the code main-
8The developer must declasgruct msg as “packed” to ensure tainance prgblem_ above car_1 be avplded by packagmg_ the

equivalent behavior. Both gcc and Microsoft Visual C++ support re;t of the fields in one easily copied sub-structure, like
packed structures. this:

struct msg { Such structures are often used for network messages

struct { with a header and some variable number of bytes fol-
int type; lowing it. Before the C99 standargdcc had a custom
} md; extension to the C language to support this feature:
void *body;
}
void msg_from_user (struct msg *m) struct msg {
{ int len;
struct msg km; char buf[0];
void *t; s
copy_from_user (&km.md, m, ...); void func(void)
copy_from_user(&t, &m->body, ...); {
km.body = kmalloc(100); struct msg *m;
copy_from_user (km.body, t, ...);) m = kmalloc(sizeof (*msg) + 10);
}

Neither of these solutions is completely satisfactory. WeThe C99 standard now includes this extension with a

leave it as an open prob|em to deve'op Simple Cod|n§||ght|y different SyntaX. Desplte the relative matunty of

conventions that avoid this type of false positive. this C extension, several kernel programmers have cre-
ated their own open structures as follows:

Field Unification. As described in Section A2, _i uct nsg {
CQuAL uses unification for fields of structures in or- int len;

der to ensure that memory usage is linear. The down- }.; x4ata;
side of the this decision is that unification can generate };

false positives. This is the only source of false positives 434 func(void)

that we feel is both specific to QQL and not useful to {
the programmer. We hope to find some way t0 improve gtryct msg *m;
CQuAL’s handling of structures in the future. m = kmalloc(sizeof (*msg) + 10);
m->data = (charx) (m+1);
b

Non-subtyping. CQUAL supports subtyping, but we

decided not to use it in our experiments so that we could

detect inconsistent uses of pointers without performingSince this method for creating an open structure doesn't
a whole-kernel analysis. Since we were checking for @Provide a separate name for the buffer following the

stricter policy than is actually required, this caused a fewheader, a type inference engine must assign the same
false positives. type to the structure head as to the data that follows. By

giving it a separate name, this problem can be avoided.

For program properties that genuinely don’t need subPeclaring open structures properly also has the advan-
typing, this source of false positives will not exist. If tage of being simpler and easier to understand.

an application does require subtyping, we can suggest

two alternatives. For small to medium programs, simply

turn on subtyping and perform a whole-program analy-Temporary Variables. Programmers can fix false
sis. For large programs, thoroughly annotating the inpositives caused by reuse of temporary variables by us-
terfaces between different program modules will enabléng two temporary variables instead.

a sound analysis in the presence of subtyping without

having to perform a whole-program analysis. These an-

notations will also provide additional documentation to

X . User-kernel Assignment. Several kernel drivers used
new programmers using those interfaces.

the following idiom:

Open Structures. An open structure is a structure copy_from_user(kp, up, ...);
with a variable-sized array immediately following it. up = kp;

Sometimesyp is later used as a temporary variable, but
most of the time the assignment is just a safety net to
make future accidental referencesuip safe. In either
case, it's easy to eliminate the assignment, or change it
toup = NULL, to eliminate the false positive.

Device Buffer Access. A few device drivers read and
write volatile device buffers. These buffers may have
a high level structure, but the drivers treat them as flat
buffers, reading and writing to device specific offsets.
Thus the problem is similar to the C type misuse exam-
ple above, where drivers construct control messages in
unstructured buffers. Here, we have the added complex-
ity of device-specific semantics for these buffers. Since
these drivers depend on the behaviour of the device in
guestion, it is impossible for any program analysis tool
to verify that these are correct without knowledge of the
devices being controlled.

unsigned long copy_from_user(void $user * $kernel to, const void * $user from,
unsigned long n);
unsigned long __copy_from_user(void $user * $kernel to, const void * $user from,
unsigned long n);
unsigned long __copy_from_user_l1l(void $user * $kernel to, const void * $user from,
unsigned long n);

long __copy_to_user_11(void * $user to, const void * $kernel from,
unsigned long n);
unsigned long __copy_to_user(void * $user to, const void * $kernel from,
unsigned long n);
unsigned long copy_to_user(void * $user to, const void * $kernel from,
unsigned long n);

unsigned long __generic_copy_from_user_nocheck(void $user * $kernel to,
const void *$user from,
unsigned long n);
unsigned long __generic_copy_to_user_nocheck(void *$user to,
const void *$kernel from,
unsigned long n);
unsigned long __generic_copy_to_user(void *$user to,
const void *$kernel from,
unsigned long);
unsigned long __generic_copy_from_user(void $user * $kernel to,
const void *$user from,
unsigned long);

unsigned long __constant_copy_to_user(void *$user to, const void *$kernel from,
unsigned long n);
unsigned long __constant_copy_from_user(void $user * $kernel to,
const void *$user from,
unsigned long n);
unsigned long __constant_copy_to_user_nocheck(void *$user to,
const void *$kernel from,
unsigned long n);
unsigned long __constant_copy_from_user_nocheck(void $user * $kernel to,
const void *$user from,
unsigned long n);

long strncpy_from_user (char $user * $kernel dst, const char *$user src,
long count);
long __strncpy_from_user(char $user * $kernel dst, const char *$user src,
long count);
long strnlen_user(const char * $user str, long n);

unsigned long clear_user(void *$user mem, unsigned long len);
unsigned long __clear_user(void *$user mem, unsigned long len);

$$a _op_deref ($%a * $_1 $kernel x) $_1_2;

Figure 8: Annotations for the user space access functions apdieref.

