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Abstract

Denial of service (DoS) attacks are a large and increasing
threat to the Internet community. In this paper, we propose
using a distributed approach to DoS defense. Our archi-
tecture leverages the properties of a wide-area overlay net-
work to isolate clusters of attackers while denying access to
a minimal amount of legitimate users. This is done by col-
laborating with other members of a structured peer-to-peer
network, which is inherently collaborative. Our results show
that our approach is effective at both detection and suppres-
sion of a DoS attack.

1 Introduction

Denial of service (DoS) attacks are a large and increasing
threat to the Internet community. A recent study [23] de-
tected 12,805 attacks on over 5,000 distinct Internet hosts
over a three week period. We propose that a distributed ap-
proach to detecting and suppressing a DoS attack is more
effective than a local, centralized approach. The purpose of
this paper is to study some distributed mechanisms and to
compare these mechanisms to more traditional, local, cen-
tralized techniques.

There are two general classes of DoS attacks: logic at-
tacks and flooding attacks. Logic attacks exploit software
flaws to crash remote servers or degrade performance. Many
of these attacks can be prevented by upgrading faulty soft-
ware. Flooding attacks send large numbers of illegitimate
requests which prevent a server from serving the legitimate
requests. In this work we are mainly concerned with DoS
flooding attacks.

Attackers can mount powerful attacks by leveraging the
resources of multiple hosts; these attacks are known as dis-
tributed denial of service (DDoS) attacks. An attacker com-
promises a set of Internet hosts and installs a small at-
tack daemon on each, producing a group of zombie hosts.
A DDoS attack follows a hierarchical model, with one or
more layers of indirection and able to control hordes of
agents [12]. As a result of readily available tools, DoS at-
tacks are easy to mount and hard to trace. An effective DoS
defense must be able to respond quickly.

DDoS attacks have become an increasing problem in the
Internet [23]. They are very hard to defend against because
they do not target specific vulnerabilities of systems, but
rather exploit the fact that the target is connected to the net-
work [15]. DDoS attacks take advantage of the hosts on the
Internet with poor security. The perpetrators break into such
hosts, install slave programs, and at the right time instruct
thousands of these slave programs to attack a particular tar-
get. Since this attack does not exploit a security problem at
the target, no effective mechanism currently exists to defend
against such an attack.

Under normal conditions TCP-like congestion control en-
sures fair use of the available resources. Under a DDoS at-
tack, the arriving packets do not obey end-to-end congestion
control algorithms, and instead bombard the victim, using
the available resources which cause the good flows to back
off and eventually starve. A large scale DDoS attack not
only causes trouble to its intended victim, but also interferes
with bystander traffic that may happen to use a portion of the
network that is being heavily congested [15]. This happens
because as it nears the target, the attacking communication
hits a pinch point and overwhelms part of the network and
the target.

Many previous approaches have focused on IP level meth-
ods to attempt to identify and stop attackers. This has many
drawbacks which stem from a primary cause; IP was de-
signed as a best effort service to send a message to its des-
tination even if many network connections have failed. IP
was never designed to handle such a malicious attack. Even
if IP could be successfully modified, there is still the issue
of deployment and cooperation among ISPs.

In recent years, there has been a trend toward deploying
overlay networks on top of IP. Overlay networks bring in-
creased resilience, distribution of load, and ease of locating
data and services. Also, deployment is not an issue since
communication between overlay nodes is done by standard
IP traffic, making cooperation among ISPs unnecessary.

B. Zhao et al. [39] proposed a route-through overlay that
tunnels traffic between existing legacy applications through
a structured peer-to-peer overlay network. Standard IP traf-
fic can be tunneled through a wide-area overlay efficiently
with Brocade [40]. Once the traffic has been routed inside
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the overlay, we can protect the traffic.
In this paper we present a novel, distributed approach for

isolating DoS attacks. A study by Y Chen et al. found
that a distributed object location service (OLS) is more re-
silient to DoS attacks than a centralized OLS [6]. We pro-
pose using a distributed approach to DoS defense in the gen-
eral case. Our proposed architecture leverages the properties
of a wide-area overlay network to isolate clusters of attack-
ers while denying access to a minimal amount of legitimate
users. This is done by collaborating with other members of
a structured peer-to-peer network, which is inherently col-
laborative. This solution is also helpful with flash crowds,
which are sudden increases of legitimate traffic at a partic-
ular site. Flash crowds result in localized congestive flows
and cause periods of high delay or loss. They carry many of
the same signatures of a DDoS, but are legitimate traffic and
are not handled well by other solutions [15].

This paper makes the following contributions. First, we
propose an enhancement to Brocade [40] (Section 3.1) to
improve the infrastructure for wide-area overlay routing. We
propose that supernodes publish the identifications of nodes
for which using the secondary overlay would be useful. This
would have the effect of treating the node to be routed to as
an object with the same locality awareness of the overlay
network. Second, we propose some techniques to detect and
suppress a DoS attack. The detection techniques range from
local detection based at the target, to a global analysis, to
a distributed approach. The suppression techniques involve
isolating the attack as close to the source as possible. Third,
we present a simulation environment to model the network
and attackers. Most importantly, we present four DoS attack
scenarios based on real attacks that have occurred in the In-
ternet. Then we seperately analyze the effectiveness of each
technique for detecting and suppressing the attack and ana-
lyze trade-offs such as the overhead of each technique and
the amount of false positives. Finally, we analyze the overall
effectiveness of our full system.

The rest of this paper is organized as follows. In Section 2
we discuss related work. In Section 3 we explain the motiva-
tion for using a structured peer-to-peer overlay network and
how it fits into the world. In Section 4 we provide a detailed
discussion of our DoS defense architecture. We describe our
simulation environment in Section 5. In Section 6 we ana-
lyze the components of our architecture and then evaluate
the performance of our full design. In Sections 7 and 8 we
analyze the trade-offs and discuss future work. Finally, we
conclude in Section 9.

2 Related Work

The need to protect against and mitigate the effects of DoS
attacks has been recognized by both the commercial and re-
search world for some years. There has been much work
done on detecting attackers and isolating attack streams.

Figure 1:Structure of a DDoS attack.One or more attackers
control handlers and each handler controls multiple agents.
Handlers and agents are extra layers introduced to increase
the rate of packet traffic as well as to hide the attackers from
view. Each agent can choose the size and type of packets as
well as the duration of flooding. While the victim may be
able to identify some agents and have them taken off-line,
the attacker can monitor the effects of the attack and create
new agents accordingly.

2.1 DoS Attack Analysis

There has been much work done on analyzing the patterns
and methodology of DoS attacks.

A recent study [23] observed 12,805 attacks on more than
5,000 distinct Internet hosts in more than 2,000 distinct DNS
domains over a three week period. Most attacks are short
with 90% lasting less than an hour. A DoS attack response
must be quick; much quicker than picking up the phone and
calling system administrators in autonomous systems.

Distributed DoS (DDoS) attacks are a flooding attack of
many attacking hosts (agents) with distributed and coordi-
nated control. Figure 1 shows the structure of a DDoS at-
tack; one or more attackers control handlers and each han-
dler controls multiple agents. Handlers and agents are extra
layers introduced to increase the rate of packet traffic as well
as to hide the attackers from view. Each agent can choose
the size and type of packets as well as the duration of flood-
ing. While the victim may be able to identify some agents
and have them taken off-line, the attacker can monitor the
effects of the attack and create new agents accordingly [12].

J. Jung, B. Krishnamurthy, and M. Rabinovich analyzed
some signatures that differentiate flash events (FE) (also
called flash crowds) and DoS [16]. During FE, the aver-
age number of requests per client is fairly constant. On the
contrary, during a DoS attack, attacking clients have a much
higher request rate than normal clients. The main difference
between FE and DoS is that during FE, new clients arrive
disproportionately from existing clusters of nodes. A cluster
is an aggregate of nodes belonging to the same administra-
tive domain, or more loosely defined as group of nodes that
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are local to each other in the Internet. This is not true in the
case of DoS; the surge in traffic occurs because of new clus-
ters joining the attack. FEs do not exhibit any surge in new
cluster arrivals.

On October 21, 2002, all 13 of the DNS root servers
were the target of a DDoS attack. Roughly two-thirds of
the servers were disabled or severely hampered by the at-
tack [27, 22]. Defenders count on having time to respond to
an assault. In this case the attack abruptly ended after about
an hour, so any defense that administrators could have at-
tempted was meaningless. This emphasizes the need for a
DoS attack response to be swift.

2.2 IP Level Solutions

In the past, proposals to defend against DoS attacks focused
on modifying the IP level infrastructure. It is worth review-
ing some of these proposals to see what insights we can be
draw from them.

There are some techniques for tracing anonymous packet
flooding attacks in the Internet back towards their source ad-
dresses. Savage et al. describe a general purpose traceback
mechanism based on probabilistic packet marking in the net-
work. This approach allows a victim to identify the network
path(s) traversed by attack traffic without requiring inter-
active operational support from Internet Service Providers
(ISPs) [31]. Partridge et al. present a hash-based tech-
nique for IP traceback that generates audit trails for traf-
fic within the network, and can trace the origin of a single
IP packet delivered by the network in the recent past [21].
Bellovin, Leech, and Taylor propose a new ICMP message,
emitted randomly by routers along the path and sent to the
destination. When forwarding packets, routers can, with a
low probability, generate a Traceback message that is sent
along to the destination. With enough Traceback messages
from enough routers along the path, the traffic source and
path can be determined [2]. Song and Perrig present the
Advanced Marking Scheme and the Authenticated Marking
Scheme, which allow the victim to trace back the approxi-
mate origin of the spoofed IP packets. In contrast to previous
work, these techniques have significantly higher precision
(lower false positive rate) and lower computation overhead
for the victim to reconstruct the attack paths under large
scale DDoS attacks. Furthermore the Authenticaed Marking
Scheme provides efficient authentication of routers’ mark-
ings such that even a compromised router cannot forge or
tamper markings from other uncompromised routers [33].

Some techniques have also been developed to suppress at-
tack traffic. Ioannidis and Bellovin present pushback which
adds functionality to each router to detect and preferentially
drop packets that probably belong to an attack. Upstream
routers are also notified to drop such packets in order that
the router’s resources be used to route legitimate traffic [15].
Mahajan et al. discuss mechanisms for detecting and con-
trolling high bandwidth aggregates such as DoS attacks and

FEs. Their approach involves both a local mechanism for
detecting and controlling an aggregate at a single router, and
a cooperative pushback mechanism in which a router can ask
adjacent routers to control an aggregate upstream [20].

2.3 Overlay Solutions

In the last few years, there has been some initial work us-
ing overlay networks to defend against DoS attacks. This
work has, so far, not exploited the true collaborative and dis-
tributed power of peer-to-peer overlay networks.

Paul Mochapetris suggests a more replicated DNS as a
solution to an attack on the directory service [22]. Unfor-
tunately, such an approach is still vulnerable and has other
drawbacks. Y. Chen et al. investigated the resilience of ob-
ject location services (OLS) to DoS attacks [6]. They found
that a distributed OLS was more resilient than a centralized
or even replicated OLS. Also, the locality properties of the
distributed OLS, Tapestry, helped maintain performance un-
der severe attacks.

N. Daswani and H. Garcia-Molina were some of the
first to begin investigating the effects of DoS on P2P net-
works [11]. The P2P network they chose to look at is
Gnutella, which is very vulnerable to attack. In their pa-
per, they proposed some load balancing to help mitigate the
effects on Gnutella. We chose to look at Tapestry, whose
inherent locality properties already mitigate the effects.

Some solutions are geared toward protecting specific
nodes. A. Keromytis, V. Misra, and D. Rubenstein proposed
a Secure Overlay Service (SOS) to protect critical emer-
gency services from DoS attack [17]. The goal of the SOS is
to allow secure communication between a small number of
pre-approved sources and a particular destination. The SOS
protects the destination by allowing only secret servlets to
contact the destination.

B.G. Chun, P. Mehra, and R. Fonseca propose DAM: a
DoS attack mitigation infrastructure [8]. They simply use
a redirection scheme with only one hop on an overlay net-
work. If a server is attacked, the redirection overlay balances
the load by using multiple server replicas. The basic premise
of their approach is that DoS attacks may be viewed as a re-
source competition between attackers and content providers;
the side with greater resources wins the match. Our ap-
proach differs in that we leverage the structure, locality, and
collaborative properties of a peer-to-peer network to isolate
the DoS attack. These properties will be explained in later
sections.

B.Chun, J. Lee, and H. Weatherspoon propose Netbait:
a Distributed Worm Detection Service [7]. Netbait uses a
collective view of a geographically distributed set of ma-
chines to detect Internet worms. Queries in Netbait are
processed in parallel by distributing them over dynamically
constructed query processing trees built over Tapestry. Such
a distributed, global view of the network, where each node
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in the tree is the root of its own tree, would also be useful in
detecting and suppressing DoS attacks.

3 Using an Overlay Network to Pre-
vent DoS

In this section, we explain the motivation for using a struc-
tured peer-to-peer (P2P) overlay network for defense against
DoS attacks. It is difficult to detect and suppress DDoS ef-
fectively with traditional IP networks. First, IP was designed
as a best effort service and not designed to handle such a ma-
licious attack. Second, deployment across the wide-area will
be stifled by lack of cooperation among ISPs. Third, intra-
ISP recovery with BGP takes too long to be useful in stop-
ping a DoS attack near the source in order to alleviate most
legitimate requesters of a service. A wide-area response is
essential.

Any service that desires protection from our DoS defense
techniques must use an overlay network. An overlay net-
work must be deployed over the wide-area. Wide-area de-
ployment is eased because participation from ISPs is not
needed. Nodes can simply be set up troughout the Internet
and used transparently to the ISP because inter-node com-
munication on the overlay is done via standard IP traffic.
An overlay can make the network more resilient because the
overlay can adapt within seconds to an event across the net-
work, as we will demonstrate later.

We assume the majority of nodes in the overlay net-
work can be trusted and that a compromised node cannot
forge or tamper with messages from other uncompromised
nodes [33].

We follow with an overview of how a route-through over-
lay can be used to allow nodes outside of the overlay to
leverage its properties. This will give a big picture overview
of how our work fits into the world. Then we focus on the
overlay network with a brief discussion of structured P2P
overlay networks and their basic properties. This is followed
by a description of the design of Tapestry, the specific P2P
overlay network that we use in our design. Finally, we fo-
cus in on the properties of structured P2P overlays we use to
defend against DoS attacks.

3.1 Wide-Area Route-Through Overlay

A route-through overlay will allow nodes outside of the
overlay to leverage its properties. This will allow a service
to be on any node in the Internet and still access the over-
lay. ISPs can offer the overlay as a value-added service to
their customers who want to deliver a reliable service. The
average end user does not even need to know that an overlay
is being used. The overlay can even be deployed on an iso-
lated IP network, eliminating vulnerability to an IP attack.
Also, traffic can be tunneled through a wide-area overlay ef-
ficiently with Brocade [40].

Client−end DaemonTunneling TrafficControl Traffic

P2P Overlay Network

Peer Proxy

Peer Proxy

P2

P1

Legacy
Node A

Legacy
Node B

Register: A=P1’

Register: B=P2’
RouteToID(P2’)

RouteToID(P1’)

��

��

Figure 2:Route-through overlay.Node A registers with P1
and node B registers with P2. Messages from A to B are sent
from A to P1 which encapsulates the messages and sends
them to SHA-1(IPB) on the overlay. These messages arrive
at P2 and are forwarded to node B. Messages are sent from
B to A in a similar manner.

3.1.1 Route-Through Overlay

For nodes outside the overlay to leverage the overlay’s prop-
erties, a route-through overlay can be used to tunnel traffic
through the overlay with the use of nearby overlay proxies
(Figure 2). First, a node (A) chooses and registers with a
nearby overlay node as its proxy. Actually, node (A) does
not even have to know about P1. When (A) tries to access
a service at (B), (B) can install a peice of software on (A)
that directs it towards P1, or P1 can be at the edge of an ISP
that provides the overlay service and simply picks up the
messages from (A). The proxy node (P1) assigns node (A) a
proxy identifier in the identifier space of P1, such that P1(A)
is the closest unassigned identifier to P1 inside its range. For
example, a Tapestry proxy would assign identifiers begin-
ning with P1-1. Under Tapestry routing rules, if no exact
match can be found, the message is routed to the node with
the next higher nodeId. In this case, messages to P1-1, P1-2,
etc. would be routed to P1 [39].

This approach treats a node (A) as an object to be located.
Once a node obtains its proxy identifier, the proxy makes
a mapping between a hash of the legacy node’s IP address
and its new proxy identifier (<SHA-1(IPA), P1(A)>) avail-
able to the entire network. The proxy will either use the put
call on a protocol supporting the DHT interface, or store the
local mapping and use the publish (Section 3.3.2) call on
a protocol supporting the DOLR [10]. Node (A) can then
begin to send messages to a destination (B) withIPB by
sending standard IP messages to its overlay proxy P1. Node
(B) has similarly registered with a proxy P2 and has been
published onto the network. Node (B) may even have a ded-
icated connection to proxy P2 if node (B) is in the business
of delivering a reliable service. When P1 receives the mes-
sages from (A) to (B), P1 encapsulates messages toIPB and
sends them to SHA-1(IPB) on the overlay. These messages
arrive at P2 and are forwarded to node (B). Messages are
sent from (B) to (A) in a similar manner (Figure 2).

Such a route-through overlay can be used to isolate all
traffic for a server to the overlay. The client sends the name
resolution request to the proxy which resolves the name in-
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ternally to the overlay. Packet filters can also be used to
only allow the server to communicate with its proxies. A
node (B) using a route-through overlay via a proxy node
(P2) has the added benefit of being abstracted as an object on
the overlay (Section 3.3.2). This allows (B) to be protected
from a direct attack to a node. If a node is under attack,
it can fork off the services it is delivering to another proxy
node. In the example from Section 3.4.1, directly attacking
nodes 4228 and AA93 would make object 4378 unavailable.

3.1.2 Wide-Area Overlay Network

To improve point to point routing performance on an over-
lay across the wide-area Brocade [40] proposes a secondary
overlay on top of the existing infrastructure. The premise
is to find nodes which have high bandwidth and fast access
to the wide-area network, and tunnel messages through an
overlay composed of these supernodes. By using this sec-
ondary overlay, messages would emerge near the local net-
work of the destination node.

The work in Brocade lacked an adequate method for lo-
cating a supernode to tunnel the messages on the secondary
overlay. We propose a solution that would approximate the
effectiveness of the directed method used in Brocade, but
without the drawbacks of state maintenance and supernode
failure susceptibility. Our approach has the simplicity of
the naive approach in Brocade, but has much better perfor-
mance. We propose that supernodes publish the identifica-
tions of nodes for which using the secondary overlay would
be useful. This would have the effect of treating the node
to be routed to as an object with the same locality aware-
ness (Section 3.3.2 Figure 5). The closer a client is to an
object, the sooner its message will likely cross paths with
the object’s publish path. The client’s message is therefore
likely to go to the local supernode, which is publishing the
destination node as an object. Even if the message does not
arrive at the local supernode, it will likely cross multiple au-
tonomous systems and is likely to arrive at a supernode that
is helpful.

If an isolated IP network is not feasible for the entire over-
lay network, it can be used for the secondary overlay only.
This would be more practical since the secondary overlay
has less redundancy and a greater need for high bandwidth
and fast access to the wide-area.

3.2 Structured P2P Overlays

A structured peer-to-peer (P2P) network is necessary for our
P2P overlay network (Figure 2). Structured overlays con-
form to a specific graph structure that allows them to locate
objects by exchanging O(log N) messages, where N is the
number of nodes on the overlay [38].

A node represents an instance of a participant in the over-
lay (one or more nodes may be hosted by a single physical
IP host). Participating nodes are assigned uniform random

nodeIdsfrom a large identifier space. Application specific
objects are assigned unique identifiers called keys, selected
from the same ID space. For example, Tapestry [41], Pas-
try [30], and Chord [34] use a circular identifier space of n-
bit integers modulo2n (e.g. n=160 for Chord and Tapestry,
n=128 for Pastry).

Overlays dynamically map each object key to a unique
live node, called its root. These overlays support routing of
messages with a given key to its root node [10], called Key-
Based Routing (KBR). To deliver messages efficiently, each
node maintains a routing table consisting of the nodeIds and
IP addresses of the nodes to which the local node maintains
overlay links. Messages are forwarded across overlay links
to nodes whose nodeIds are progressively closer to the key
in the identifier space. Each system defines a function that
maps keys to nodes. For example, Tapestry maps a key to
the live node whose nodeId has the longest prefix match. If
a digit cannot be matched exactly, the node with the next
higher nodeId is chosen.

Existing protocols all support KBR, but differ signifi-
cantly in performance. These protocols carry an overhead
associated with the fact that one logical hop on the overlay
network can have multiple IP hops. The ratio of IP hops to
logical hops is known as stretch. These multiple IP hops can
add significant delay, especially if they transit the wide-area.
Such protocols must have some awareness of the structure
of the underlying network to minimize the overhead. Proto-
cols such as Pastry and Tapestry minimize latency between
nodes when constructing routing tables [5]. With each hop,
a message is routed to the node with the lowest network la-
tency from all nodes that satisfy the routing constraint. Such
proximity neighbor selection results in low stretch (about 2
to 5 depending on the topology) and good local route con-
vergence. The effect is reduced latency and bandwidth con-
sumption in the wide-area.

3.3 Tapestry Overview

We chose to use Tapestry [14, 41] as our structured P2P
overlay because we have an implementation available and
are familiar with it. Tapestry is one of several recent projects
exploring the value of wide-area Decentralized Object Lo-
cation and Routing (DOLR) services [30, 34, 25]. It en-
ables messages to locate objects and route to them across an
arbitrarily-sized network, while using a routing table with
size logarithmic to the network size at each node. As a lo-
cation service, Tapestry provides network applications with
efficient routing of messages to locations of named objects.
Such functionality in Tapestry and related projects has given
rise to a new class of wide-area applications [19, 29, 3, 42].

The key distinction between Tapestry and other DOLR
infrastructures is its support for point-to-point routing be-
tween named nodes. Tapestry uses similar mechanisms to
the hashed-suffix mesh introduced by Plaxton, Rajaraman
and Richa in [24]. Tapestry routes messages between named
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Figure 3:Tapestry Routing Example.Here we see the path
taken by a message originating from node 5230 destined for
node 8954 in a Tapestry network using 4 hexadecimal digit
names (65536 nodes in namespace).

nodes across an arbitrarily-sized network using a routing
map with size logarithmic to the network size. In practice,
Tapestry provides a delivery time within a small factor of
the optimal delivery time [41]. Previous work has lever-
aged Tapestry routing for application-level multicast [42]
and suggested performance enhancements for wide-area op-
eration [40].

Each Tapestry node or machine can take on the roles
of server (where objects are stored), router (which forward
messages), and client (origins of requests). We assume that
Tapestry nodes, especially routers and servers, are well-
connected over high bandwidth links. Nodes in Tapestry
have names, Globally Unique IDentifiers (GUIDs), indepen-
dent of their location and semantic properties, in the form
of random fixed-length bit-sequences represented by a com-
mon base (e.g., 40 Hex digits representing 160 bits). The
system assumes entries are roughly evenly distributed in the
node ID namespace, which can be achieved by using the
output of secure one-way hashing algorithms, such as SHA-
1 [28].

3.3.1 Prefix-based Routing

Tapestry uses local routing maps at each node,
called neighbor maps, to incrementally route overlay
messages to the destination ID digit by digit (e.g.,
8***= >89**=>895*=>8954 where *’s represent wild-
cards, as shown in Figure 3). This approach is similar to
longest prefix routing in the CIDR IP address allocation
architecture [26]. A node has a neighbor map with multiple
levels, where each level represents a matching prefix up
to a digit position in the ID. Level-1 edges from a given
node connect to the 15 nodes closest (in network latency)
with different values in the lowest digit of their addresses.
Level-2 edges connect to the 15 closest nodes that match in
the lowest digit and have different second digits, etc.

When routing, thenth hop shares a prefix of at least
length n with the destination ID. To find the next router,
we look at its(n + 1)th level map, and look up the entry
matching the value of the next digit in the destination ID.
Assuming consistent neighbor maps, this routing method
guarantees that any existing unique node in the system will
be found within at mostLogbN logical hops, in a system
with N nodes using IDs of base b. Because every single
neighbor map at a node assumes that the preceding digits
all match the current node’s prefix, it only needs to keep a
small constant size, b, entries at each route level, yielding a
neighbor map of fixed constant sizebLogbN .

3.3.2 Object Location

A server (with GUID, S) storing an object periodically ad-
vertises (publishes) this object by routing a publish message
to the objects root (Figure 4) [41]. The object’s root (with
GUID, OR) is the node that would be routed to when routing
to the objects GUID (OG). Each node along the publication
path stores a pointer mapping,<OG, S>, instead of a copy
of the object itself. When there are replicas (copies) of an
object on separate servers, each server publishes its copy.
Tapestry nodes store location mappings for object replicas
sorted in order of network latency from themselves. A client
locates an object (O) by routing a message toOR (Figure 5).
Each node on the path checks whether it has a location map-
ping for O and, if so, it redirects the messages to S. Oth-
erwise, it forwards the message onwards toOR which is
guaranteed to have a location mapping if the object exists.

Locality AwarenessThe closer in network distance a client
is to an object, the sooner its queries will likely cross paths
with the objects publish path, and the faster they will reach
the object. Since nodes sort object pointers by distance to
themselves, queries are routed to nearby object replicas.

3.4 How the Overlay is Used

We now discuss how we use the properties of a structured
peer-to-peer overlay network to defend against DoS attacks.
We leverage the locality, structure, and collaborative prop-
erties to isolate DoS attacks.

3.4.1 Locality

If the attack can be traced back to a region of the network,
a replica (copy) can be placed nearby to isolate the attack
and protect the rest of the network. Therefore, it is im-
portant to know if an attack will stay local to a particular
replica (Section 3.3.2). Figure 5 shows that the attack to ob-
ject 4378 coming from node 4664 would go to node 4228’s
replica. Nodes 4B4F and 57EC would not be affected since
their requests never use the affected region; however, nodes
would still be vulnerable to direct attacks. The solution to
this problem is presented in Section 3.1.1.
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Figure 4:Publication in Tapestry.To publish object4378 ,
server39AA sends publication request towards root, leaving
a pointer at each hop. Server4228 publishes its replica
similarly. Since no4378 node exists, object4378 is rooted
at node4377 .
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Figure 5: Routing in Tapestry:Three different location re-
quests. For instance, to locate GUID4378 , query source
197E routes towards the root, checking for a pointer at each
step. At node4361 , it encounters a pointer to server39AA.

Replicas in the NetworkIn Tapestry, replicas are dispersed
throughout the network. Locality properties keep DoS at-
tack isolated to a certain region, far away from unaffected
nodes. There are pointers to replicas on every node along the
path from the replicas to the root. It would be very difficult
to knock out all of those nodes to prevent the location of the
replica [6]. In Pastry [30], Chord [34], and CAN [25] repli-
cas are stored on neighboring nodes and are still vulnerable.
The attack will just overwhelm the backup node(s) once the
root node is overwhelmed. Also, replication of all data on
nodes near the root is very expensive. In contrast, Tapestry
arrives at data in a distributed way, as mentioned previously.
Future research should develop replication schemes to pre-
vent correlated failures.

3.4.2 Structure

The protocols used have an awareness of the structure of the
underlying network to minimize the overhead. Pastry and
Tapestry minimize latency between nodes when construct-
ing routing tables [5]. With each hop, a message is routed
to the node with the lowest network latency from all nodes
that satisfy the routing constraint. Such proximity neighbor
selection results in low stretch (about 2 to 5 depending on
the topology) and good local route convergence. The effect
is reduced latency and bandwidth consumption in the wide-
area. Another effect is that the overlay structure will mimic
the structure of the underlying network.

Path ConvergenceThe convergence properties of the al-
gorithms are important in regard to their effects on a DoS
attack. In Pastry [4] and Tapestry [41], when the distance
between source nodes is small, the paths are likely to con-

verge quickly. The closer two nodes are, they share a greater
percentage of the distance to the destination. The proxim-
ity of the nodes is important because it can be exploited
by an attacker. An attack will affect any legitimate traffic
from nearby nodes to the target (or otherwise sharing the
path). However, since nearby source nodes will converge
paths quickly, DoS attacks are easier to trace and shut down
in a more aggregate method.

3.4.3 Collaborative

P2P networks are inherently collaborative for the purpose
of locating other users and locating data. This collaboration
can be extended for other goals, such as suppressing DoS
attacks. This lifts the impossible burden from a centralized
location and distributes the duty to all members of the net-
work. Participants are responsible for their local area. P2P
networks use local discovery algorithms to discover their
local nodes [14]. P2P networks can collaborate to defend
against DoS attacks in a similar manner.

4 DoS Defense Architectures

In this section, we describe our techniques to detect and sup-
press a DoS attack. These techniques range from traditional
techniques proposed as IP level solutions to some new pro-
posals that leverage the properties of structured peer-to-peer
(P2P) networks. We explain some trade-offs such as the
overhead of each technique.
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4.1 Detecting the Attack

The first step in suppressing a DoS attack is detecting who
the attackers are and/or detecting the region(s) the attack is
originating from. These detection techniques range from lo-
cal detection based at the target, to a global analysis, to a
distributed approach.

4.1.1 Local Detection

We have implemented a mechanism that has successfully
identified the attackers by keeping running average of the
request rate. During flash events (FE), the average number
of requests per client is fairly constant. But during a DoS at-
tack, attacking clients have a much higher request rate than
the average [16]. Our local detection mechanism keeps a
record for each requester. Each requester record keeps the
time of the last request and the request rate, stored as delay
with an initial value of 1000ms. When a new request from a
requester arrives, the delay from the last request is calculated
from the request record and the request rate is updated via
a low pass filter (D0=0.9D−1+0.1Dnew). The average re-
quest rate is periodically updated from the requester records.
If a requester has a major deviation from the average request
rate, we mark that requester as an attacker.

A draw back to local detection is that an attacker could
simulate a flash event by having many attacking hosts at-
tack at a normal rate. So we need a solution that can obtain
information from nodes on the request paths to determine
what region(s) of the network the attack is originating from.
Another serious drawback is that the target may be over-
whelmed and cannot initiate the suppression. We therefore
need a solution that pushes out the detection to nodes before
the target that are not overwhelmed.

4.1.2 Clustering Analysis

To address the problems of many attacking hosts and an
overwhelmed target, one requires a detection architecture
with global knowledge and a distributed ability to suppress
an attack.

Due to how attacking hosts are selected, DoS attacks have
certain properties that can be exploited to detect and sup-
press the attacks. During FE, new clients come dispropor-
tionately from existing clusters of nodes. This is not true in
the case of DoS; the surge in traffic occurs because of new
clusters joining the attack. FEs do not exhibit any surge in
new cluster arrivals (Section 2.1) [16].

An intruder finds one or more systems on the Internet that
can be compromised and exploited. This is generally ac-
complished using a stolen account on a system with a large
number of users and/or inattentive administrators, prefer-
ably with a high-bandwidth connection to the Internet (many
such systems can be found on college and university cam-
puses) [18]. It would be much more difficult to mount a

DDoS attack with many attacking hosts from diverse areas.
An attacker would have to compromise multiples more sys-
tems to make up for not using multiple machines on each
system.

The routing process can be viewed as a tree, with mes-
sages from leaf nodes traversing intermediate nodes en route
to the root (Figures 4 and 5). By observing an attack from
a global vantage point, we can identify machines and clus-
ters of machines, branches of the tree, that would otherwise
have been difficult to detect, while maintaining service to as
many legitimate requesters as possible. This is illustrated
in Figures 6 and 7. S is the server which requesters(R) are
trying to access. The request traffic is shown by a dashed
line. A is the attacker which tries to prevent access to S by
flooding it with request traffic. The attack traffic is shown
by a bold line. With no defense (Figures 6), the attack traffic
will overwhelm the server(S) as well as any link along the
path from the attacker(A). With our defense scheme, we can
analyze that the attack is coming from N1 and N3 but not
N4. The attack can be isolated at N3 with minimal effect on
legitimate requesters and most of the network (Figures 7).
In this case, R1 is isolated along with A, but R2-R6 are no
longer being inhibited by A’s attack.

Global Clustering Analysis (GCA)
The goal is to know everything all the time. Each inter-

mediate node (N) along the path from the source (S) to the
destination (D) will keep track of any S-D pair (Figure 8
SendHBdestList). Each node N will send periodic heart beat
(HB) messages to each destination to ensure that it has not
been overwhelmed by an attack (line 9). If there is a missed
HB from a destination (line 2), the numMissedHB for that
destination is incremented (line 3). If there are too many
missed sequential HBs to a particular destination (line 4) in
a node’s list, then the node will see if it can detect an attack
and try to suppress it (line 5). If a HB from a destination is
received the node marks the HB as received (line 7) and the
total number of missed HBs for that destination is reset.

When D receives a HB, D adds N to a cluster list/graph
(G) with sublists of Ss that each N has (this can be assembled
into a graph). D periodically goes through G and checks
each N’s list of Ss to see if they are attackers (Figure 8
CheckClusterGraph). We check for attackers by checking
attack rate, as in local detection, and whether the nodes in a
particular cluster began sending at the same time [16]. Each
N in G keeps the percentage of its Ss that are attackers (at
each node in the graph) (line 2). If N’s percentage of attack-
ers is too high (line 3), N is notified to suppress the attack
(line 4). Although this solution maintains a global view of
the network, it does not scale well because of the number of
states and HB messages [35].

Distributed Clustering Analysis (DCA)
We attempt to approximate GCA using a distributed ap-

proach with local knowledge (Figure 9).
Every node (N) continually checks traffic on each incom-
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N1
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N3
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R5 N5

A

Figure 6:DoS attack with no defense.S is the server which
requesters(R) are trying to access. The request traffic is
shown by a dashed line. A is the attacker which tries to
prevent access to S by flooding it with request traffic. The
attack traffic is shown by a bold line. With no defense, the
attack traffic will overwhelm the server(S) as well as any
link along the path from the attacker(A).

N1

N4

N2

S

N3

R1 R2 R3 R4 R6

R5 N5

A

Figure 7:DoS attack with clustering analysis defense.With
our defense scheme, we can analyze that the attack is com-
ing from N1 and N3 but not N4. The attack can be isolated
at N3 with minimal effect on legitimate requesters and most
of the network. In this case, R1 is isolated along with A, but
R2-R6 are no longer being inhibited by A’s attack.

method SENDHBDESTLIST (destlist)
1 for dest ∈ destlist
2 if ! dest.gotHBresponse
3 dest.numMissedHB++
4 if dest.gotHBresponse> 3
5 DETECTSUPPRESSATTACK(dest)
6 else
7 dest.resetGotHB
8 dest.resetNumMissedHB
9 SENDHB(dest, SourcesToDest)

end SENDHBDESTLIST

method CHECKCLUSTERGRAPH (clustergraph)
1 for c ∈ clustergraph
2 cAttackers← CHECKPERCENTOFATTACKERS(N )
3 if cAttackers> AttackerThreshold
4 SUPPRESS(N )

end CHECKCLUSTERGRAPH

Figure 8: Pseudo-code forGlobal Clustering Analy-
sis(GCA).

ing link to see if it passes a certain threshold (CheckTraffi-
cOnIncomingLink). When N notices a great deal of traffic
on an incoming link (line 2), it checks if requesters are go-
ing disproportionately to a particular destination(s) (line 3).
N uses the back-pointer on the congested link to contact the
previous node to see if it has any congested incoming links
(line 4), and also checks the congested destination(s). In
case the heavy incoming link does not handle the problem,
either because the node misbehaves or simply does not de-
tect the problem, we set a timer with an appropriate delay
(10000ms) (line 5).

That previous node (N ′) performs as N (Check-
ForHeavyInLinkMsg) did except with a lower threshold
(c<1), sinceN ′ has been notified that it is a problem (line

3). The timer in this case is scaled down by a small factor
(line 5). This concept is the same as described in trace-back
as described in Section 4.2.1.

When the timer expires (CheckForHeavyInLinkTimer)
and the problematic heavy incoming link is still a problem,
the node will suppress the attack on its own (line 3). If a
node suppresses the attack, then it must notify the node that
notified it (line 4). For example, ifN ′ suppresses the attack,
N ′ must notify N so that N will not try to suppress again.

The notifying node (N) will watch for such a message
(CheckForHeavyInLinkResponse). Using this method, N
builds a map of congested links, with the percent of traf-
fic that the congested destination(s) uses (line 3). Each node
that is part of this map, checks what percent of the requesters
to congested destinations are attackers. If the map on a node
shows that the congested incoming links divide in previous
nodes, meaning that heavy traffic is coming in from multiple
incoming nodes, then that node is considered a convergence
point. The convergence point then suppresses the traffic to
the particular destination GUID.

This approach minimizes the number of states main-
tained, while it keeps false positives at a minimum. The
logic behind this approach is to suppress the attack as far
back as it causes a problem.

4.2 Notification of Suppression

Once an attacker or group of attackers has been detected, the
attacker(s) must be suppressed. This can be accomplished
by notifying a node on the attack path to suppress the attack.
There are a number of methods to accomplish this notifica-
tion.
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method CHECKTRAFFICONINCOMINGLINK (AllInLink )
1 for inlink ∈ AllInLink
2 if (traffic on inlink) > TrafficTreshold
3 CHECKOUTLINK(AllOutLink)
4 SENDHEAVY INLINK MSG(inlink)
5 HEAVY INLINK TIMER(10000ms)

end CHECKTRAFFICONINCOMINGLINK

method CHECKFORHEAVY INLINK MSG

1 IncomingMessageHandler
2 if msg.type== HeavyInLinkMsg
3 if (traffic on inlink) > (TrafficTreshold∗c)
4 SENDHEAVY INLINK MSG(inlink)
5 HEAVY INLINK TIMER(0.9∗msg.timer)
6 SENDHEAVY INLINK(inlink)
7 inlink = msg.source

end CHECKFORHEAVY INLINK MSG

method CHECKFORHEAVY INLINK TIMER

1 IncomingMessageHandler
2 if msg.type== HeavyInLinkTimerMsg
3 SUPPRESS(heavyinlink)
4 SENDHEAVY INLINK RESPONSE(msg.inlink,

getGraph(msg.inlink))
end CHECKFORHEAVY INLINK TIMER

method CHECKFORHEAVY INLINK RESPONSE

1 IncomingMessageHandler
2 if msg.type== HeavyInLinkTimerMsg
3 ADDGRAPH(msg.inlink, msg.graph)

end CHECKFORHEAVY INLINK RESPONSE

Figure 9: Pseudo-code forDistributed Clustering
Analysis (DCA).

4.2.1 Trace-Back

The trace-back code is described in Figure 10.
CheckMessagesForAttackers begins by checking incom-

ing messages (line 1) to see if the message source is the
detected attacker(s) (line 2). If so, we next check to see if
the attacker(s) is the next node in the trace-back (line 3). If
the attacker is the next node in the trace-back, we just sup-
press the attack without waiting for the timer (line 4). If the
attacker is not the next node, the current node SendTrace-
BackMsg (line 6) to the next node in the attack path. The
node then sets the SuppressionTimer (line 7), with trace-
Timer initially at 10000ms.

Each node is constantly running CheckForTrace-
BackMsg. When the SendTraceBackMsg is received, the
node sets the attackerGUID and traceTimer. The node will
then run CheckMessagesForAttackers (line 5). This will
proceed following the trace-back path until the attacker is
reached or the SuppressionTimer expires. Since one does
not know the number of steps the trace-back will take,
decreasing by a specific number will not work. The best
choice is to decrease by a multiple (0.9) at each step (line
4). This works because it allows the trace-back to go an

method CHECKMESSAGESFORATTACKERS

1 IncomingMessageHandler
2 if msg.source== attackerGUID
3 if msg.peer== attackerGUID
4 SUPPRESSATTACK(attackerGUID)
5 else
6 SENDTRACEBACKMSG(msg.peer, attackerGUID, traceTimer)
7 SUPPRESSIONTIMER(traceTimer)

end CHECKMESSAGESFORATTACKERS

method CHECKFORTRACEBACKMSG

1 IncomingMessageHandler
2 if msg.type== TraceBackMsg
3 attackerGUID= msg.attackerGUID
4 traceTimer= 0.9∗msg.traceTimer
5 CHECKMESSAGESFORATTACKERS(IncomingMessages)

end CHECKFORTRACEBACKMSG

Figure 10:Pseudo-code forTrace-Back.

indefinite number of steps. Also, since at each step of the
trace-back there is a shorter round trip from the start of
trace-back to notification of isolation, a shorter timer is
appropriate. If the timer runs out, keep track of the node
that is non-compliant.

Tracking each attacker may not be necessary to stop the
attack from a particular cluster. If multiple attackers are de-
tected, the trace-backs of attackers from a common router
are bundled in a single trace-back message. This will have
the effect of tracing the clusters of attackers. This method
will trace the attack as far as possible. Then the node at the
convergence point suppresses the attack.

4.2.2 Cluster Notification

The target has identified a particular node at a convergence
point of the attack and directly notifies the node at the con-
vergence point to suppress the attack. Cluster notification is
used by clustering analysis, or any other detection scheme in
which the target would have some global view of the attack
structure.

4.2.3 Distributed Notification

When the target has minimal information about the attack-
ing nodes and their locations a distributed suppression noti-
fication is needed. This means that all nodes in the network
are responsible for monitoring the traffic that passes through
them. Any node that detects an attack must notify the appro-
priate node to suppress the attack or suppress the attack on
its own. This would be the expected form of notification for
distributed clustering analysis, which is an inherently dis-
tributed detection method.
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4.3 Suppression

Once the attackers have been detected and the appropriate
node to suppress the attack has been notified, the attack must
be suppressed. Since a DoS attack stays local to the nearest
replica (Section 3.3.2), the attack will be suppressed in that
region. In a DDoS attack, this technique can be used on
each of the attacking clusters. We evaluated two methods of
suppression:

4.3.1 Simple Cut-off

The most simple, traditional method of suppressing a DoS
attack is to drop messages to targeted destinations from
identified attackers or offending incoming links. The sup-
pressing node is notified to either drop messages to a partic-
ular destination/object or outgoing link.

4.3.2 Isolation

One can exploit the locality properties of a structured P2P
network (Section 3.3.2) to isolate the attack to the source re-
gion. Placing a replica near the source of the attack will pre-
vent nodes far away from being affected. The suppressing
node can suppress messages to a particular object or desti-
nation (if destinations are treated as objects as discussed in
Section 3.1).

This approach has the added benefit of being able to be
used for data replication in a wide-area distributed storage
system. For the purposes of the evaluation, any requests
from legitimate requesters that go to a replica published by
a suppressing node will be counted as false positives, even
though the replica can be real instead of fake.

5 Simulation Environment

The study of algorithms to address such problems often in-
volves simulation or analysis using a model of the actual net-
work structure and applications [37]. It is generally more ef-
ficient to assess solutions using analysis or simulation, pro-
vided the model is a good abstraction of the real network
and the participants.

5.1 Simulation Framework

We built our DoS defense mechanisms as a component for
Tapestry nodes. Tapestry is implemented in Java, for porta-
bility and ease of prototyping. Internally, Tapestry nodes
employ a staged event-driven architecture [36]. A stage
is an independent, contained entity with its own incoming
event queue. In an event-driven architecture the processing
of each task is implemented as a finite state machine, where
transitions between states in the FSM are triggered by exter-
nal events. In the more traditional thread-driven approach

M

ms
0 P 2P 3P

M M M

Figure 11: Timeline of attack stream from each attacker.
Each attacker sends repeated bursts of M requests every P
milliseconds. P is small enough to approximate a continu-
ous attack. Also, M/P is a sufficient attack rate to overwhelm
the target.

the system uses a main thread which hands off tasks to in-
dividual task-handling threads, which step through all the
stages of processing that task.

Each major software component (e.g. dynamic node man-
agement, router, DoSdefense) is a self-contained, event-
driven stage. Stages communicate via an efficient pub-
lish/subscribe message dispatcher. Developers or admin-
istrators can add new stages to quickly add functionality.
We implemented our DoS defense as one stage with mod-
ifications to the router stage. The DoSdefense and Router
stages required a couple of request/response message pairs
for communicating with each other. In total, the system con-
sists of approximately 4000 lines of Java and a few addi-
tional files and scripts for testing. It was designed, built, and
simulated in about 9 months.

Within our DoSdefense stage, we created 5 types of par-
ticipants: node, requester, server, attacker, and master.

A node is similar to a normal Tapestry node except that it
will participate in DoS defense as described in Section 4.

A requester is like a standard client. A requester sends a
LocateObject message for a particular object onto the net-
work and logs the time. When the object arrives at the
requester, the requester calculates the request latency and
stores it. The requester then sends another LocateObject
message and so on. To keep from overwhelming the mas-
ter node, which collects all information, and to smooth out
the request latency, the requester calculates an average re-
quest latency every C requests. This average is sent to the
master node. C can be varied to suit the simulation.

A server responds to requests for objects. When a server
receives a LocateObject message, it checks if it has the ob-
ject and, if so, sends the object to whoever requested it.
We simulate computation time and queuing delays at servers
with a delay ofγ seconds for each message.

An attacker sends a large amount of requests for objects
with the intention of overwhelming the server and making
the object unavailable. An attacker node can individually
be turned on and off and the attack rate can be varied. For
simplicity of implementation, each attacker sends repeated
bursts of M requests every P milliseconds. M and P can
be varied. P is small enough to approximate a continuous
attack. This implementation also allows for the flexibility
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Figure 12:A Transit-Stub Graph.This topology mimics the
structure of large networks observed in nature. Shown also
is an overlay network which minimizes the number of in-
terdomain edge crossings. Such overlays allow the topology
discovery properties of the source filtering algorithm to min-
imize interdomain bandwidth consumption. See Section 5.2
for details.

to modify the attack rate as needed. We illustrate this in
Figure 11. Also, M/P is a sufficient attack rate to overwhelm
the target.

The master node controls the requesters and attackers, and
collects all of the information in a centralized location.

5.2 Network Topology

Our simulator models the physical network as a graph, each
edge of which has two values associated with it,αnet and
βnet. To send a message along an edge takesαnet + sβnet
seconds, whereαnet is the time it takes one byte to cross
an edge,βnet is the time to transfer one byte onto an edge,
ands is the size of the message in bytes. To send a mes-
sage along a path of more than one hop takesα′

net + sβ′net
seconds, whereα′

net is the sum of theαnet values for ev-
ery edge along the path, andβ′

net is the largestβnet value
of any edge along the path. Our simulator does not simulate
queuing delay in the network due to cross traffic on an edge.
We simulate computation time and queuing delays at servers
with a delay ofγ seconds for each message.

Using this simulator, we constructed a physical network
topology using thetransit-stubmodel of GT-ITM [37]. The
Internet today can be viewed as a collection of intercon-
nected routing domains [9], which are groups of nodes that
are under a common administration and share routing infor-
mation. A primary characteristic of these domains is rout-
ing locality: the path between any two nodes in a domain
stays entirely within the domain. Each routing domain in
the Internet can be classified as either a stub domain or a
transit domain [37]. An example transit-stub graph is shown
in Figure 12. The purpose of transit domains is to intercon-
nect stub domains efficiently; without them, every pair of
stub domains would need to be directly connected. A transit

domain comprises a set of backbone nodes, which are typ-
ically highly connected to each other. In a transit domain
each backbone node also connects to nodes in a number of
stub domains. A stub domain usually has one or more gate-
way nodes, which have links to the transit domains. Stub
domains can be further classified as single or multi-homed.
Multi-homed stub domains have connections to more than
one other domain. Single-homed stubs connect to only one
transit domain. In addition to this general layout, there are
interdomain edges and several inter-stub domain edges in
each graph. We augment the GT-ITM model with band-
width numbers as follows. All stub to stub edges are 100
Mb/s, all stub to transit edges are 1.5 Mb/s, and all transit
to transit edges are 45 Mb/s. These values were chosen to
model Fast Ethernet, T1, and T3 connections, respectively.

Our simulations use transit-stub graphs with six transit
domains of ten nodes each. Each transit node has seven stub
domains of an average of twelve nodes each, yielding a to-
tal of 5,100 nodes per graph. The transit domains are fully
connected to each other, and each pair of nodes internal to a
domain are connected with probability 0.6. Each pair of stub
nodes within a stub domain are connected with probability
0.3. We used GT-ITM to generate seven graphs given these
parameters to insure that our results were not dependent on
the particularities of any one graph.

On top of this physical network, we built a Tapestry over-
lay network as follows (Figure 12). We chose 700 of the to-
tal nodes in the graph uniformly at random without replace-
ment and made them Tapestry servers. We then assigned
node-IDs to these servers at random. While the Tapestry in-
frastructure includes algorithms for dynamically building a
network, we assume in this work that the graph is built at the
beginning of our simulation and does not change.

5.3 Attacker Model

There have been many analyses of DDoS attack methodol-
ogy and the tools used in the attacks. The most prevalent
model is one in which a master node controls and coordi-
nates groups of attackers. This is demonstrated by specific
tools used in DDoS attacks [12]. A master node controls
handlers and each handler controls multiple attacking hosts.
The handler layer exists to protect the identity of the master
node. In our simulations, a master node coordinates the at-
tacker(s), as in real attacks. For simplicity, our master node
directly controls the attacker(s).

We outline 4 attack scenarios to analyze how our detec-
tion schemes respond to different situations. In each of these
scenarios there is one predetermined target in the network
which is under attack. Once the network starts up, 40 re-
questers begin requesting an object from the target and send
the request latency to the master node every 5 requests. The
master node will then send a message to each of the attack-
ers telling them to begin their attack. For the simulations
in Section 6.1 we are only interested in the performance of
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Figure 13:Example of network layout of attack sceanio B.
We distribute groups of attackers (rectangles) throughout the
network. Each group of attackers is in the same stub domain.
In our simulations, we used 4 groups of 5 attackers each.
The master node will send a message to each of the attackers
at the same time, instructing them to start attacking the target
(circle). The target is located in a stub domain different from
the attackers.

the detection and suppression techniques during the attack.
In Section 6.2, we are interested in comparing the latency
before and after the start of the attack. So, in Section 6.2,
the attack will begin 20 seconds after the requests in order
to establish a baseline.

The first attack scenario (A) consists of one attacker.
In our second scenario (B), we grouped the attackers into

clusters. We illustrate this in Figure 13. We distribute
groups of attackers (rectangles) throughout the network.
Each group of attackers is in the same stub domain. In our
simulations, we used 4 groups of 5 attackers each. The mas-
ter node will send a message to each of the attackers at the
same time, instructing them to start attacking the target (cir-
cle). The target is located in a stub domain different from
the attackers.

Our third attack scenario (C) is identical to attack B ex-
cept that attack C is dynamic and clusters of attackers are
turned on and off every few seconds during the attack. In
our simulation, we used 4 groups of 5 attackers. The first
group is turned on at 20 seconds. After 5 seconds the first
group is turned off and the second group is turned on. After
5 more seconds, the second group is turned off and the third
group is turned on, and so on. After the fourth group, we cy-
cle to the first group. This is identical to real DDoS attacks
(Section 2.1) [12].

An attacker may use a virus to distribute the slave pro-
gram [32]. Recently there has been a number of self-
propagating Internet worms [1] that have been able to infect
a great number of systems before they were stopped. There

is the possibility of that one of these worms could be used to
set off a DDoS attack at a particular time to allow for a criti-
cal mass of nodes to be infected. To see how well we handle
such an attack, our fourth attack scenario (D) will have at-
tackers that are dispersed through the network instead of in
clusters.

5.4 Experiment Descriptions

In our experiments, we place an object to locate on a server,
which all requesters will try to access. We distribute 40
requesters uniformly throughout the network and each re-
quester will request the object. A requester will request the
object and wait for a response from the server. When the
response arrives, the requester calculates the request latency
and resends the request. Every 5 requests, the requester will
take an average of the request latency and send this average
to the master node which logs the data. We do not simu-
late cross traffic in the network because our simulator is not
able to accurately model the queuing delay caused by cross
traffic at links in the network.

In our experiments for Section 4, we analyze the effec-
tiveness of each of the components of our design. Each of
our analyses is performed under all 4 attack scenarios. We
first do a quantitative analysis of our detection methods by
evaluating the percent of attackers detected and the percent
of legitimate requesters that are falsely identified as attack-
ers (false positives). Second, we do a qualitative analysis of
how fine grained the notification is for the purpose of sup-
pressing the detected attackers. Third, we do a quantitative
analysis of our suppression methods by evaluating the per-
cent of identified attackers that are successfully suppressed
and the percent of legitimate requesters that are falsely sup-
pressed (false positives).

In our experiments for Section 6, we analyze the effective-
ness of our full system at detecting and suppressing a DDoS
attack. We evaluate the request latency under no defense
and three defense schemes: the three detection schemes with
their corresponding notification scheme (local-trace, global-
cluster, distributed-distributed) each under the isolation sup-
pression scheme. After a period of time (20 seconds), used
to establish a non-attack baseline for the object request la-
tency, the master node notifies the attackers to begin flood-
ing object requests. Once the attack begins, the network will
react appropriately under the defense scheme in use. All
data for each node is logged to a local file. All data used in
our results is logged by the master node.

6 Simulation

We evaluated our system as described in Section 5. In our
simulations, we used seven different topologies; our graphs
show the median value with error bars showing the mini-
mum and maximum values. Our results show that a dis-
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Figure 14:Detection Evaluation.% of Attackers Detected.
Local detection fails under attack scenario D because it has
no sense of the network topology. Global detection success-
fully detected all attackers under all 4 attack scenarios. Dis-
tributed detection is nearly as effective as global at detecting
attackers.

tributed approach with local knowledge is almost as effec-
tive as a global approach.

6.1 Analysis of Components

6.1.1 Detection Evaluation

To evaluate the effectiveness of our detection methods, we
analyzed two properties: percent of attackers detected (Fig-
ure 14) and percent of false positives (Figure 15).

Detecting attackers is important in order to suppress them
and keep resources available for legitimate requesters. Lo-
cal detection fails under attack scenario D because it has no
sense of the network topology. Global clustering analysis
(GCA) successfully detected all attackers under all 4 attack
scenarios. Distributed clustering analysis (DCA) is nearly
as effective as GCA at detecting attackers. DCA is only
slightly less effective than GCA but the state that must be
maintained and messages passed are minimal.

Minimizing the number of false positives is essential so
that legitimate requesters are not alienated. Once again,
local detection is susceptible to more dispersed attacks be-
cause it lacks awareness of network topology. The local de-
tection false positive rate is unacceptably high. GCA has
knowledge of the entire network topology and is therefore
able to have no false positives. DCA also has knowledge
of the network topology, but on a local level. As a result,
DCA is able to minimize false positives with a manageable
amount of state and messages when the attack is concen-
trated from certain regions of the network. Unfortunately,
DCA does not operate as well under a highly distributed at-
tack.
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Figure 15:Detection Evaluation.% of False Positives. Lo-
cal detection is susceptible to more dispersed attacks be-
cause it lacks awareness of network topology. Global de-
tection has knowledge of the entire network topology and is
therefore able to have no false positives. Distributed detec-
tion also has knowledge of the network topology, but on a
local level. As a result, distributed detection is able to min-
imize false positives when the attack is concentrated from
certain regions of the network. Unfortunately, distributed
detection does not operate as well under a highly distributed
attack.

Notification Scheme A B C D
Trace-back + 0 - -
Cluster Notification + + 0 +
Distributed Notification + + + 0

Table 1:Notification Evaluation.This is a quantitative anal-
ysis of the notification methods under the 4 attack scenarios.
The +, 0, and - stand for good, acceptable, and poor respec-
tively. We evaluate the notification scheme in terms of ef-
fectiveness and feasibility. A more detailed explanation of
the reasoning can be found in Section 6.1.2.

6.1.2 Tracing Attackers Evaluation

This is a quantitative analysis of the notification methods
under the 4 attack scenarios (Table 1).

Trace-back attempts to trace each individual attacker from
the target, along the attack path, back to the attacker. Such
a method would only be effective against one or at most a
limited number of attackers. Because of the delay in trace-
back, this method would not be effective against dynamic
attackers. The overhead involved with tracing each individ-
ual attacker would make tracing widely dispersed attackers
infeasible.

Cluster notification would be highly effective against
most attack scenarios, except a situation where the attack-
ers are dynamic. In the dynamic case, cluster notification
must first go through a centralized detection process and no-
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Figure 16: Suppression Evaluation.% of False Positives.
Isolation performs only slightly worse than Cut-off under
attack scenario D.

tification of the cluster each time there is a change, which
could be on the order of seconds. Distributed notification,
on the other hand, could detect a change locally and respond
locally.

Distributed notification would be highly effective under
all scenarios except for the scenario with widely distributed
attackers. Distributed notification relies on an attack reach-
ing a convergence point where it can be detected locally. In
the distributed attacker scenario, an attack cannot be sup-
pressed close to the source.

6.1.3 Suppression Evaluation

Both Cut-off and Isolation suppress all of the intended traffic
under all 4 attack scenarios. The more distributed an attack
is the more likely that a legitimate requester will intersect
with an attacker and so the more likely that a requester’s
traffic will be suppressed along with the attackers’ traffic.
Isolation performs only slightly worse than Cut-off under
attack scenario D (Figure 16). The Cut-off and Isolation
publish are on the attack path. With the Isolation publish,
any requesters that intersect the publish path after the pub-
lish will increase the number of false positives. These results
show that Isolation is a viable alternative to Cut-off.

6.2 Full System Simulation

We did full system simulations as described in Section 5.4.
The left axis is the average latency of all requesters. We
chose to show the latency for the median without error bars
for the other topologies because they follow the same trend
and the chart would be too difficult to see. The right axis
is the percentage of legitimate requesters that have not been
suppressed with the attacker(s) and are still requesting. This
data is collected every 5 seconds.
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Figure 17:Performance of defense under attack scenario A.
The attack begins at 20 seconds. As the request queue at
the server fills, the legitimate requesters face an increasing
delay. With no defense, a server will become overwhelmed
within seconds. Isolation can be observed when the request
latency reaches a peak and begins to drop. Global and Dis-
tributed defenses isolate the attack after approximately 2
seconds. Local isolates the attack after approximately 3 sec-
onds. After the attack has been isolated, the server receives
no more messages from the attacker and the request latency
returns to the pre-attack level after approximately 2 more
seconds.

15



The result under attack scenario A is illustrated in Fig-
ure 17. The attack begins at 20 seconds. As the request
queue at the server fills, the legitimate requesters face an
increasing delay. With no defense, a server will become
overwhelmed within seconds. All of the defense schemes
take some initial time to detect that an attack is occurring.
Then the notification must be sent to the node which must
isolate. Isolation can be observed when the request latency
reaches a peak and begins to drop. Global and Distributed
defenses isolate the attack after approximately 2 seconds.
Local defense isolates the attack after approximately 3 sec-
onds. Global and Distributed defenses isolate slightly faster
than Local defense. This is because Global detection and
isolation notification of the offending cluster is done by the
target, while Local defense must do the notification hop-
by-hop. Distributed defense is approximately the same as
Global defense. Distributed defense is very slightly faster
than Global defense since the detection and isolation com-
mand is closer to the attacker. The main advantage of Dis-
tributed defense over Global defense is that much less state
must be maintained and less messages are passed, and so
Distributed defense scales better. After the attack has been
isolated, the server receives no more messages from the at-
tacker and the request latency returns to the pre-attack level
after approximately 2 more seconds. Also, in this case,
the one attackers is easily detected and the false positives
are low, meaning the legitimate requesters after isolation is
still high. You may notice that the latency after isolation
is slightly lower than the latency before the attack began.
The reason for this can be understood by observing the re-
questers near and far from the server separately.

To clearly illustrate the effect, we placed the attacker far
away from the server. For the half of requesters nearest
to the object requested on the server (Figure 18), the post-
isolation latency is the same as the pre-attack level. There
are no legitimate requesters isolated because no isolation oc-
curred near the server. The far requesters (Figure 19), which
in this case are nearer to the attacker, contained all of the iso-
lated legitimate requesters. In fact, the requesters that were
isolated were the ones nearest to the attacker and farthest
from the server, making their latency higher. Since they
were isolated with the attacker, their latency is not included
in the average, resulting in a lower post-isolation latency.

The result under attack scenario B is illustrated in Fig-
ure 20. The result is almost identical to attack scenario A,
except that the peak of the latency is slightly higher. Also,
since there are 4 locations from which attacks are coming
from, there are more legitimate requesters that are isolated
along with the attackers. Even if every attacker is not de-
tected, a beneficial side effect of isolation is that nearby at-
tackers will also be isolated. In this attack scenario, each
of the attack clusters, or at least one attacker from each, is
detected and each cluster is isolated.

The result under attack scenario C is illustrated in Fig-
ure 21. The end result is identical to attack scenario B be-
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Figure 18:Performance of the half of the requesters nearest
to the object requested, under attack scenario A.The post-
isolation latency is the same as the pre-attack level. There
are no legitimate requesters isolated because no isolation oc-
curred near the server.
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Figure 19: Performance of the half of the requesters far-
thest from the object requested, under attack scenario A.
The requesters that were isolated were the ones nearest to
the attacker and farthest from the server, making their la-
tency higher. Their latency is not included in the average,
resulting in a lower post-isolation latency.
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Figure 20:Performance of defense under attack scenario B.
The result is almost identical to attack scenario A, except
that the peak of the latency is slightly higher. Also, since
there are 4 locations from which attacks are coming from,
there are more legitimate requesters that are isolated along
with the attackers.
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Figure 21: Performance of defense under attack scenario
C. The only difference from attack scenario B is that we
cycle through the 4 attack clusters one at a time. The defense
successfully isolates each attack cluster as it appears.
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Figure 22:Performance of defense under attack scenario D.
Local detection is not able to identify all attackers and there-
fore does not isolate all of the attack. Global and distributed
detection manage to isolate all attackers even though they
do not detect all attackers. Some attackers are not noticed
until others are isolated, hence the longer time to isolate.

cause the same attack clusters were used. The only differ-
ence is that in attack scenario B, the 4 attack clusters were
all activated at once, while in attack C, we cycle through
the 4 attack clusters one at a time. The defense successfully
isolates each attack cluster as it appears, and the attackers
stay suppressed even after that first attack cluster reactivates
after the fourth. Intuitively one might think that the amount
of legitimate requesters isolated would increase by the same
amount after each cluster of attackers is activated. In fact
there is some overlap. Some of the requesters that would
have been isolated while isolating a later attack cluster were
isolated while isolating an earlier attack cluster.

The result under attack scenario D is illustrated in Fig-
ure 22. Under all detection methods, it takes longer to iso-
late the attack. This attack scenario is more difficult to detect
and isolate because it does not come from a focused point.
If an attacker is detected and isolated, that will not isolate
many other attackers as a side effect. Each attacker must
be detected and isolated individually. Some attackers are
not noticed until others are isolated, hence the longer time
to isolate. Local detection is not able to identify all attack-
ers and therefore does not isolate all of the attack. Global
and distributed detection manage to isolate all attackers even
though they do not detect all attackers.
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7 Discussion

Many previous approaches have focused on IP level meth-
ods to attempt to identify and stop attackers. IP was de-
signed as a best effort service and was never designed to
handle such a malicious attack. In recent years, there has
been a trend toward deploying overlay networks on top of
IP. Overlay networks bring increased resilience, distribution
of load, and ease of locating data and services. A route-
through overlay will allow nodes outside of the overlay to
leverage its properties. Once people route through the over-
lay, we can automatically detect and suppress a DoS attack.

We believe that our DoS defense architecture will defend
against the most prevalent DoS attack scenarios. These re-
sults suggest that using a distributed approach with local
knowledge is effective in suppressing an attack. These re-
sults rely on synthetic benchmarks running on an artificial
topology. While both were designed for a degree of real-
ism, the behavior of our approach should be examined in a
global-scale network with real users providing the workload.

The benchmark we use as the ideal solution is Global
Clustering Analysis (GCA). GCA knows everything, every-
where, at all times in a centralized location and therefore
allows for highly effective detection (perfect in our simula-
tions). Our goal was to approach the effectiveness of GCA
in a distributed manner with only local knowledge. If an
attack comes from a concentrated location, the distributed
approach is highly effective. The more distributed an attack
is, the less effective a distributed approach is. We use very
simple detection based upon a deviation from average traf-
fic. More effective heuristics could, perhaps, improve the
effectiveness.

The distributed detection is able to detect most of the at-
tackers, even in the more distributed attack. Under attack
A the attack comes from one location. Under attacks B
and C, the attack comes from a few concentrated locations.
As a result, there are not many requesters near the attack
source(s) whose requests will converge paths with the at-
tack traffic. But under the distributed attack (D), the attack-
ers are dispersed throughout the requester population. As a
result, many requesters converge with the attack traffic and
are grouped with attackers once they have converged enough
to be detected.

Unfortunately, our distributed approach is not as success-
ful against the emerging threat of highly distributed DoS at-
tacks. As we described in Section 5.3, attack scenario D is
intended to emulate a totally distributed attack. While this
is not the most prevalent form of attack, it offers benefits to
the attacker; namely easier takeover of hosts and many more
distributed attacking hosts.

The evaluation of our two suppression techniques is com-
parable. Even under a highly distributed attack, isolation
is almost as effective simple cut-off. Under both suppres-
sion techniques, all of the detected attackers are suppressed.
Also, both suppression techniques have relatively low false

positives; most likely because the detection technique can
detect very close to the attack. While isolation did have
slightly higher false positives, a beneficial side effect was
that some of the false positives were attackers. This benefit
to cost was highest in cases where attackers were near each
other in the network.

In this paper we make a number of contributions. First,
we explain that an overlay network is necessary to defend
against DoS because standard IP is incapable. We then
show how an overlay network can be used in the Internet
today through the use of a route-through overlay network.
We propose an enhancement to such a route-through over-
lay to improve the infrastructure for wide-area overlay rout-
ing. We propose some techniques to detect and suppress
a DoS attack in a distributed manner by leveraging the in-
herent collaborative properties of peer-to-peer overlay net-
works. Also, we present a simulation environment to model
the network and attackers. Most importantly, we present
four DoS attack scenarios based on real attacks that have
occurred in the Internet.

We hope that this work will refocus efforts on an impor-
tant research topicand make the case for how services should
be delivered in the future. This work emphasizes the great
promise of peer-to-peer overlay networks in the future of
service delivery.

8 Future Work

There are several different directions this work can take in
the near future.

While our transit-stub topology is fairly realistic, there are
some new simulation topologies, such as power-law degree
networks, which better approximate the nature of the inter-
net. Also, our current simulator does not effectively simu-
late cross-traffic in the network because it does not simulate
queing delay on a network edge. We simulate computation
time and queuing delays at servers to approximate such de-
lays as much as possible. While it is reasonable to expect
that isolating the attack as close to the source of the attack as
possible would mitigate the effect on the cross-traffic from
senders and requesters not associated with the attack, this
should be measured in a quantitative way. Ultimately, the
true behavior or our approach should be examined in a true,
global-scale network with real users providing the workload.

Aside from the application to DoS defense, the most ex-
citing application of our detection and suppression tech-
niques is replication on demand. Analyzing which regions
of the network requests for a service are coming from, will
allow the service to handle flash events. These techniques
can be used to determine the placement of replicas for data
replication in a wide-area distributed storage system [13] to
handle load balancing in general.

Our route-through overlay can be on an isolated IP net-
work. This will protect us from any attack at the IP level.
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This will also allow us to provide certain assurances to help
the overlay. The IP network can provide certain information
to the overlay so that the overlay can better perform its path
selection. The IP network can provide a certain level of QoS
to the overlay. Also, intelligent peering points between ISPs
can provide a smart market which provides aggregate QoS,
pricing, security, etc. information about different ISPs and
paths to allow the overlay to balance its needs. The intelli-
gent peering points are an ideal location for the secondary,
wide-area, overlay nodes (Section 3.1.2). Also, if an isolated
IP network is not feasible for the entire overlay network, it
can be used for the secondary overlay only. This would be
more practical since the secondary overlay has less redun-
dancy and a greater need for high bandwidth and fast access
to the wide-area.

In this work, we do not develop the ability to immedi-
ately track down the culprit behind the attack, but instead
focus on suppressing the attack. The contribution we make
to quickly track down the attacking nodes while the attack
is ongoing will allow for the tracking of the attack’s control
traffic. Currently administrators/investigators take on the or-
der of hours or days to track down the source of the attacking
traffic [27, 22]. One should also attempt to track down the
culprit behind the attack while the attack is occurring.

9 Conclusion

We have built a system for suppressing a DoS attack. This
system uses a distributed approach with local knowledge to
isolate an attack to its originating region.

Overlay networks bring increased resilience, distribution
of load, and ease of locating data and services. A route-
through overlay will allow nodes outside of the overlay to
leverage its properties. We can then automatically detect
and suppress a DoS attack. Previous work using overlay
networks to defend against DoS attacks has taken the sim-
plistic approach of a redirection layer. Our system leverages
the collaborative and distributed power of peer-to-peer over-
lay networks to detect and suppress DoS attacks. It also
relies upon DoS attacks having some kind of concentration
to certain regions of the network.

In a larger system, for example 20,000 nodes and 200 at-
tackers, our defense techniques would be more effective. A
larger system would allow for greater dispersal of partici-
pants. If requesters are more dispersed, larger sections of
the network can be isolated to stop a DoS attack with mini-
mal effect on legitimate requesters.

We show that a distributed approach with local knowledge
is effective in suppressing an attack. Even though there is a
high amount of false positives under a highly distributed at-
ack, if an attack will completely overwhelm it’s target it is
better to sacrifice some legitimate requesters than all legiti-
mate requesters.

Our initial measurements show the direction that future

research should take. Collaborating with other members of
a structured peer-to-peer network can provide a solution to
many problems in the Internet today. We hope that this work
will encourage more research into peer-to-peer networks to
address DoS attacks and other issues with service delivery.
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